WO2016195427A1 - Interference measurement-based grouping method in full-duplex wireless communication system and apparatus therefor - Google Patents

Interference measurement-based grouping method in full-duplex wireless communication system and apparatus therefor Download PDF

Info

Publication number
WO2016195427A1
WO2016195427A1 PCT/KR2016/005929 KR2016005929W WO2016195427A1 WO 2016195427 A1 WO2016195427 A1 WO 2016195427A1 KR 2016005929 W KR2016005929 W KR 2016005929W WO 2016195427 A1 WO2016195427 A1 WO 2016195427A1
Authority
WO
WIPO (PCT)
Prior art keywords
idi
terminal
measurement
group
base station
Prior art date
Application number
PCT/KR2016/005929
Other languages
French (fr)
Korean (ko)
Inventor
노광석
김동규
고현수
이상림
이호재
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2016195427A1 publication Critical patent/WO2016195427A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to an interference measurement-based grouping method and apparatus therefor in a full-duplex wireless communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described in brief.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is located at an end of a user equipment (UE) and a base station (eNode B, eNB, network (E-UTRAN)) and connects an access gateway (AG) connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data, and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • DL downlink
  • HARQ Hybrid Automatic Repeat and reQuest
  • the core network may be composed of a network node for the user registration of the AG and the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • TA tracking area
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • a grouping method of a base station supporting full-duplex communication which is an aspect of the present invention for solving the above-described problem, a plurality of beamforming in which the base station corresponds to a plurality of areas Transmitting the measured signals, wherein the measured signals are measurement signals for IDI (Inter-Device Interference) measurement between terminals supporting full-duplex communication; Receiving IDI measurement information from at least one terminal located in each of the plurality of areas; And setting terminal groups based on the IDI measurement information.
  • IDI Inter-Device Interference
  • the IDI measurement information may be transmitted from the at least one terminal through an uplink channel, and may include an IDI measurement value for a specific direction among the directions of the measurement signals. Furthermore, when the uplink data transmission is not performed, the IDI measurement information may be characterized by indicating an IDI measurement value using channel quality indicator.
  • the IDI measurement information may be indicated by a specific value when the IDI measurement value is less than or equal to a threshold.
  • the IDI measurement information may be indicated by a specific value when the IDI measurement value is greater than or equal to a threshold.
  • the IDI measurement information may be transmitted from the at least one terminal through an uplink channel, and may include IDI measurement values for all directions of the measurement signals. Furthermore, the method may further include sequentially mapping IDI measurement values included in the IDI measurement information to a beamforming index, or the IDI measurement information may include beamforming indexes and the beamforming index in all the beamformed directions. It may be characterized by including the IDI measurement values indicated by.
  • tracking may be performed according to the distance relation between the terminals and the IDI measurement information.
  • setting the terminal groups may include selecting at least one candidate terminal whose IDI measurement value exceeds a minimum value; And setting a group for the candidate terminals based on a difference of IDI measurement values within a predetermined range.
  • the predetermined range may be determined by at least one of the IDI interference performance, the number of allocated frequencies, and the number of full-duplex mode operation terminals.
  • Another aspect of the present invention for solving the above-described problem is a base station for performing grouping (grouping) to support full-duplex communication, the radio frequency unit; And a processor, wherein the processor transmits a plurality of beamformed measurement signals corresponding to a plurality of regions, receives IDI measurement information from at least one terminal located in each of the plurality of regions, Terminal groups are configured based on the IDI measurement information, and the measurement signal is a measurement signal for measuring IDI (Inter-Device Interference) between terminals supporting full-duplex communication.
  • grouping grouping
  • interference measurement based grouping may be efficiently performed in a full-duplex wireless communication system.
  • FIG. 1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 illustrates a structure of a control plane and a user plane of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • 3 illustrates physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 illustrates a structure of a radio frame used in an LTE system.
  • 5 illustrates a resource grid for a downlink slot.
  • FIG. 6 illustrates a structure of a downlink radio frame used in an LTE system.
  • FIG. 7 illustrates a structure of an uplink subframe used in an LTE system.
  • FDR 8 illustrates a Full-Duplex Radio (FDR) communication system.
  • FIG. 10 illustrates multiple access of a terminal in an FDR system.
  • FIG. 11 is a flowchart illustrating a grouping method according to an embodiment of the present invention.
  • FIG. 12 is a reference diagram illustrating an arrangement of a terminal and a base station beamforming in order to explain an embodiment of the present invention.
  • FIG. 13 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a trans-antenna port channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • IPv4 Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting an eNB is set to one of bandwidths such as 1.4, 3, 5, 10, 15, and 20 MHz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • the user equipment that is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S301.
  • the user equipment receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • the user equipment may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the user equipment may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the user equipment receives the physical downlink control channel (PDCCH) and the physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S302. Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the user equipment may perform a random access procedure such as step S303 to step S306 to complete the access to the base station.
  • the user equipment transmits a preamble through a physical random access channel (PRACH) (S303), and responds to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel.
  • PRACH physical random access channel
  • the message may be received (S304).
  • contention resolution procedures such as transmission of an additional physical random access channel (S305) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S306) may be performed. .
  • UCI uplink control information
  • HARQ ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK
  • SR Scheduling Request
  • CSI Channel State Information
  • HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX.
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CPs include extended CPs and normal CPs.
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the user equipment moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 radio frames consist of two half frames, each half frame comprising four general subframes including two slots, a downlink pilot time slot (DwPTS), a guard period (GP) and It consists of a special subframe including an Uplink Pilot Time Slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS Uplink Pilot Time Slot
  • DwPTS is used for initial cell search, synchronization or channel estimation at the user equipment.
  • UpPTS is used for channel estimation at base station and synchronization of uplink transmission of user equipment. That is, DwPTS is used for downlink transmission and UpPTS is used for uplink transmission.
  • UpPTS is used for PRACH preamble or SRS transmission.
  • the guard period is a period for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the current 3GPP standard document defines a configuration as shown in Table 1 below.
  • Table 1 In the case of DwPTS and UpPTS, the remaining area is set as a protection interval.
  • the structure of the type 2 radio frame that is, UL / DL configuration (UL / DL configuration) in the TDD system is shown in Table 2 below.
  • D denotes a downlink subframe
  • U denotes an uplink subframe
  • S denotes the special subframe.
  • Table 2 also shows the downlink-uplink switching period in the uplink / downlink subframe configuration in each system.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • 5 illustrates a resource grid for a downlink slot.
  • the downlink slot is in the time domain Contains OFDM symbols and in the frequency domain Contains resource blocks.
  • the number of OFDM symbols included in the downlink slot may be modified according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • Each element on the resource grid is called a Resource Element (RE), and one resource element is indicated by one OFDM symbol index and one subcarrier index.
  • the number of resource blocks included in the downlink slot ( ) depends on the downlink transmission bandwidth set in the cell.
  • FIG. 6 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which the Physical Downlink Shared Channel (PDSCH) is allocated.
  • Examples of a downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat request acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
  • DCI downlink control information
  • the DCI includes resource allocation information and other control information for the user device or user device group.
  • the DCI includes uplink / downlink scheduling information, uplink transmission (Tx) power control command, and the like.
  • the PDCCH includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel, Resource allocation information of upper-layer control messages such as paging information on PCH), system information on DL-SCH, random access response transmitted on PDSCH, Tx power control command set for individual user devices in a group of user devices, Tx power It carries control commands and activation instruction information of Voice over IP (VoIP).
  • a plurality of PDCCHs may be transmitted in the control region.
  • the user equipment may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the user equipment, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier (eg, a radio network temporary identifier (RNTI)) according to the owner or purpose of use of the PDCCH.
  • RNTI radio network temporary identifier
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 7 illustrates a structure of an uplink subframe used in LTE.
  • an uplink subframe includes a plurality (eg, two) slots.
  • the slot may include different numbers of SC-FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit data signals such as voice.
  • the control region includes a PUCCH and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • PUCCH may be used to transmit the following control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ ACK / NACK This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received. One bit of ACK / NACK is transmitted in response to a single downlink codeword, and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • CSI Channel State Information
  • the CSI includes a channel quality indicator (CQI), and the feedback information related to multiple input multiple output (MIMO) includes a rank indicator (RI), a precoding matrix indicator (PMI), a precoding type indicator (PTI), and the like. 20 bits are used per subframe.
  • CQI channel quality indicator
  • MIMO multiple input multiple output
  • RI rank indicator
  • PMI precoding matrix indicator
  • PTI precoding type indicator
  • the amount of control information (UCI) that a user equipment can transmit in a subframe depends on the number of SC-FDMAs available for control information transmission.
  • SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • the FDR refers to a system for simultaneously transmitting and receiving using the same resource in a transmitting device (eg, a terminal or a base station).
  • the same resource means a radio resource having the same time and the same frequency.
  • two types of interference are largely classified into intra-device interference and inter-device interference according to the FDR. This may exist.
  • intra-device interference refers to a case in which a signal transmitted from a transmitting antenna acts as interference by being received by a receiving antenna within one base station or terminal
  • inter-device interference refers to a base station.
  • the uplink signal transmitted from the terminal and the like is received by an adjacent base station / terminal and acts as an interference.
  • IDI inter-device interference
  • IDI is interference caused only in FDR due to using the same radio resource in one cell.
  • FIG. 9 shows that the base station is in full-duplex (FD) mode (ie, in the same resource).
  • IDI generated when using simultaneous transmit / receive mode using the same frequency and when UE uses full-duplex (FD) mode or half-duplex (HD) mode (i.e., half-duplex mode such as conventional FDD and TDD) Represents a conceptual diagram for.
  • FIG. 9 illustrates only 2 UEs for ease of IDI description, the present invention can be applied to the case where two or more UEs exist.
  • IDI occurs because signals are transmitted and received using frequency division duplex (FDD) or time division duplex (TDD), that is, signals are transmitted and received using different transmission and reception resources. Did not do it.
  • FDD frequency division duplex
  • TDD time division duplex
  • 10 is a reference diagram for explaining multiple access of a terminal in an FDR system.
  • FDR system not only a full-duplex scheme using the same resource but also a full-duplex scheme not using the same resource may exist.
  • 10 illustrates an example of FDMA and TDMA operations when a base station operates in a full-duplex (FD) mode on the same resource and multiple terminals perform multiple accesses.
  • FD full-duplex
  • TDD time division duplex
  • a frame configuration for transmitting interference between asynchronous devices, a signal transmission between devices, and Assume that a listen attempt setting is performed. Under these assumptions, simultaneous transmission and reception is possible in a cell through UE-specific configuration, which is a method of differently assigning configuration for each terminal in each cell.
  • a unique signature may be given to each terminal or each terminal group in order to measure IDI between devices and reduce or eliminate the measured IDI.
  • a signal for measuring interference that can be distinguished between terminals is defined as a signature signal.
  • the terminal uses the received signature signal to determine the signal strength, terminal or signature index, phase, and the like for the terminal causing the IDI and timing information. (timing information) and the like.
  • the signature signal may be in any form, for example, a code sequence or a puncturing pattern, which may distinguish the terminal or the terminal group. That is, unique scramble or interleaving of a terminal / terminal group may be applied using a code sequence, and a signature signal is transmitted exclusively in only one terminal / terminal group to facilitate interference measurement at a receiving terminal. May be In this case, an exclusive unit may be a minimum OFDM symbol.
  • the present invention assumes that a UE group classification (grouping) method for scheduling IDI-generated UEs and an IDI measurement and reporting technique for grouping may be applied in an FDR system. That is, UE groups may be classified using only the order of IDI sizes measured by each UE, and IDI size-based UE groups in consideration of IDI removal / mitigation capability of each UE, not the number of UEs sharing the same resource. Classification techniques may be applied.
  • the base station determines whether the terminal is operating in the full-duplex mode and transmits necessary information or instructions to the candidate terminals for grouping. Specifically, a method of identifying candidate terminals to be set as a group by a base station will be described.
  • the base station may allocate a bit to the full-duplex (FD) mode participation request in the same resource through a UCI format of PUCCH / PUSCH and inform the base station.
  • FD full-duplex
  • the base station is aware of the characteristics of the terminal data, or the preliminary information about the terminal, such as recognize the terminals friendly to the full-duplex (FD) participation setting in the same resource (for example, the terminal may participate in grouping) Ready, but does not currently participate in the full-duplex mode in the same resource), by assigning the bit to the DCI format or PDSCH through the PDCCH / E-PDCCH to the corresponding UE to perform the full-duplex (FD) mode It can be operated.
  • the base station is aware of the characteristics of the terminal data, or the preliminary information about the terminal, such as recognize the terminals friendly to the full-duplex (FD) participation setting in the same resource (for example, the terminal may participate in grouping) Ready, but does not currently participate in the full-duplex mode in the same resource)
  • the base station is aware of the characteristics of the terminal data, or the preliminary information about the terminal, such as recognize the terminals friendly to the full-duplex (FD) participation setting in the same resource (for example, the terminal may participate in grouping
  • whether or not to participate in grouping is i) distinguishing whether it is an FDR device capable of operating in full-duplex (FD) mode within the same resource (e.g., including a magnetic interference canceller), ii) in the same resource UCI, which cannot operate in full-duplex (FD) mode but supports full-duplex (FD) mode within the same resource, iii) distinguishes whether it is an FDR device and requests to participate in grouping.
  • a total of 3 bits ie 1 bit for each distinction
  • '011' is assigned to a device to be used / participated, it cannot operate in full-duplex (FD) mode within the same resource, but it supports full-duplex (FD) mode within the same resource. Indicates that the device is to participate.
  • '000' may be allocated to a terminal not participating in the grouping to support operation in a legacy system.
  • the FDR device may change the grouping participation request bit in consideration of transmission data characteristics, residual power profile, buffer status, and the like, and to reduce a time for identifying a bit allocated to the terminal at the base station. Settings may be possible to disable full-duplex (FD) mode operation and support therefor.
  • FD full-duplex
  • Bits indicating full-duplex (FD) mode operation and support therefor may be transmitted only when the group first participates in the grouping, or when the group is excluded from the group after group setting and then participates in the grouping again.
  • the base station is a terminal capable of supporting the full-duplex (FD) mode only with the identifier (ie UE_ID) of the terminal, the terminal capable of operating the '0', full-duplex (FD) mode Can be managed in the form of assigning '1'.
  • a terminal capable of operating in full-duplex (FD) mode may additionally allocate a bit indicating a method of operation in full-duplex (FD) mode to the UCI format. For example, if the corresponding bit is '0', It may indicate that operation is performed by supporting the duplex (FD) mode, and if it is '1', it may indicate that the operation is performed by the full-duplex (FD) mode operation.
  • the base station may identify the corresponding bit and use the resource for the case of operating in the full-duplex (FD) mode.
  • the candidate terminals are assigned to i) whether the candidate terminal is selected, ii) the same frequency to be used, and iii) the total number N of the grouping candidate terminals, and bits for the DCI format of the PDCCH or PDSCH. Can be assigned and sent.
  • the base station may limit the operation terminal in consideration of the number of terminals that can be operated, and may inform the terminal that has been informed that the mobile station can participate in the grouping or not as a grouping candidate terminal.
  • the terminal that is not selected by the base station as a candidate terminal operates in a fallback mode. Fallback mode refers to operating in half-duplex or full-duplex (FD) mode within another frequency as is conventional.
  • the degree of influence of IDI is determined by a terminal (ie, a Victim candidate terminal) that is likely to receive IDI (ie, an Aggressor candidate terminal) whose IDI is likely to be an interference measurement subject. Perform interference measurements from At this time, one Aggressor candidate terminal transmits a measurement signal at one measurement unit time for accurate measurement of IDI, and the other Victim candidate terminals measure interference.
  • a terminal ie, a Victim candidate terminal
  • IDI ie, an Aggressor candidate terminal
  • the other Victim candidate terminals measure interference.
  • such interference is an inevitable increase in the number and time of measurement as the number of terminals increases.
  • a method for measuring interference using a measurement signal generated by a base station in a system using full-duplex communication within the same resource will be described. Specifically, a method of shortening the number and time of interference measurement by transmitting a measurement signal instead of transmitting by the aggressor terminals will be described.
  • the base station confirms the distance relationship between the terminals by using beamforming, and then performs grouping to conceptually group the terminals on a specific basis.
  • the base station performs the signal transmission for interference measurement for grouping, each terminal measures the signal for interference measurement, and reports the signal measurement result to the base station.
  • the base station performs group management and resource allocation for each terminal with reference to the reported information.
  • FIG. 11 is a flowchart illustrating operations of a base station and a terminal for grouping according to the present invention.
  • a preliminary step for grouping may be performed in FDR (Sa01).
  • the base station may inform the UE of a precoding matrix for beamforming or information (eg, measurement start time) for measurement.
  • the base station may transmit information for determining whether the terminal is operating in a full-duplex mode and information or instructions necessary for grouping to the candidate terminals.
  • the base station may perform grouping based on measurement information (eg, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), etc.) of IDIs from candidate terminals. For example, grouping may be performed based on UEs with low IDI or terminals with high IDI.
  • measurement information eg, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), etc.
  • grouping may be performed based on UEs with low IDI or terminals with high IDI.
  • the present invention is not limited thereto and may be applied to various types of grouping through additional limitations such as thresholds. The present invention can be applied.
  • This step S1101 may be omitted in some cases, or may be reset through periodic / abnormal signaling. For example, i) whether the UE supports full-duplex mode through different paths, or ii) when the full-duplex mode operation or support is determined in particular. In the case of performing FDR, at least a part of step S1101 may be omitted for the case where iii) the frequency used in the FDR is used as a wideband so that frequency division is not necessary.
  • step S1102 the base station forms an i-th beam and transmits a measurement signal to the candidate terminal.
  • each group candidate terminal measures a signal for every beamforming direction in which the measurement signal is received (S1103).
  • the signal measurement may be performed independently for each beamforming direction, or may be simultaneously performed for all beamforming directions.
  • each group candidate terminal transmits the measurement result to the base station.
  • the reporting process of the measurement result may be performed by the terminals for every beamforming direction, or may be performed at once after the measurement is completed for all the beamforming directions. For example, when the UE completes the measurement for each beamforming direction, even if the measurement for the other beamforming direction is not completed, a report on the beamforming direction in which the measurement is completed may be performed. In some cases, this may be performed when all beamforming is completed.
  • the UE performs interference measurement and can measure RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality).
  • the interference measurement signal may use an IDI measurement signal (Inter-Device Interference Channel State Information-RS, IDICSI-RS).
  • IDICSI-RS Inter-Device Interference Channel State Information-RS
  • the IDI measurement signal should be included in the uplink resource arrangement because the IDI-inducing terminal in the FDR system generates IDI while transmitting a signal to the base station in uplink.
  • the measurement information report of the terminal may be performed according to one of the following methods 1 to 3.
  • Method 1 The terminal may perform reporting on every beamforming direction.
  • a measurement value or an offset of the measurement value may be transmitted through a UCI format (UCI format) of the PUCCH / PUSCH.
  • the base station may implicitly map the measurement information reported from the terminal to the beamforming index sequentially.
  • the terminal may report by borrowing the existing CQI index (CQI index) when data transmission is not made when the measurement report.
  • the threshold may be determined to omit reporting on values below a certain value or above a certain value. For example, you can report an index or a specific value indicating that it is below a certain value. (Similarly, an index / specific value can be reported even if it is above a certain value.) Since it must tell the base station whether the measured value is large or small, either report below or above a certain value must be performed. Should be. In this case, the UE may also report by mapping a CQI index for a small value below a specific threshold or a large value above a certain threshold.
  • Scheme 2 The terminal reports all beamforming directions. (Implicit beamforming index mapping)
  • the terminal may transmit the measured value or the offset of the measured value through the UCI format of the PUCCH / PUSCH in all beamforming directions.
  • the base station may implicitly map the measurement information reported from the terminal to the beamforming index sequentially.
  • the terminal may report successive measurement information after setting a threshold.
  • the terminal may transmit the measured value or the offset of the measured value through the UCI format of the PUCCH / PUSCH in all beamforming directions.
  • the base station may explicitly report the beamforming index and the information measured at the index.
  • the beamforming index may not transmit a specific value below a threshold through no transmission.
  • terminal b may measure a very low value for the third beamforming, which may affect the terminal (e terminal) corresponding to the third beam when the third beam is transmitted. This can be regarded as '0' and can be represented by not transmitting the corresponding index.
  • the number of beam tracking may be adjusted (S1105).
  • N ⁇ 4 it may be used when the information about the beam can be known through previous measurement in a manner of excluding the beam where the terminal is not located.
  • N> 4 may be used when the movement of the terminal is predicted or when it is determined that the terminal is moved after a large difference from the previous measurement value.
  • the N value and the corresponding N value may be set in advance when the beamforming generation matrix is transmitted.
  • an indication for the next measurement may be transmitted in step S1107 with an N value, a beamforming angle, and an associated beamforming generation matrix.
  • the beamforming angle can be changed every measurement in consideration of the weakening of power between the main lobe and the side lobe due to the beam pattern characteristic, so that information on the beamforming generation matrix can be transmitted. For example, an index change for a generation matrix or a generation matrix bundle used among shared generation matrices may be indicated.
  • the terminal group may be set based on the reported information.
  • the measured value reported from the terminal means a value considering power of a radius and a beam direction from a base station.
  • Table 4 is a reference diagram for explaining a measurement value according to the beamforming direction with reference to FIG. 12.
  • the base station performs group setting (ie, grouping) based on the reported measurement value.
  • group setting ie, grouping
  • rules A to D are grouping algorithms for a terminal group scheme that is expected to have a large IDI size between terminals. This terminal group represents a relationship with a large IDI size between terminals, similarly to a worst relation group.
  • Rule A For each beam direction (column in Table 4), if there are terminals above a certain value (e.g., threshold), these terminals are selected as candidate terminals to be positioned for the beam direction. If a terminal having a predetermined value (ie, a threshold) or less exists, the terminal may be a terminal that does not exist in the beam direction or a terminal that is far from the beam direction. Therefore, the minimum value for the measured value is set, and when it is equal to or less than the minimum value for all beam directions, the transmission power at the base station is increased and the beam transmission is attempted again.
  • a certain value e.g., threshold
  • the corresponding terminals may be set to the same group when the difference in measurement value with the terminals for the corresponding beam direction is within a predetermined value.
  • the terminal may belong to a plurality of groups.
  • Rule B For each UE, if more than one value (row in Table 4) is above a certain value (e.g., threshold, which may be different from the threshold in Rule A), The candidate terminal is selected.
  • a certain value e.g., threshold, which may be different from the threshold in Rule A
  • Rule C In Rule A, among candidate terminals located in the corresponding beam direction, a terminal not corresponding to B is determined as a terminal located in the corresponding beam direction. (A, b, c, e terminal in Table 4) That is, even if the terminal in the same beam, if the difference in the measured value in the beam is within a certain value, the corresponding terminals may be set to the same group.
  • Rule D For a candidate terminal near a base station corresponding to Rule B, it is determined that the candidate terminal is located in the middle of the reported beams above a certain value (the exact position moves in the center according to the ratio of the measured value for each beam direction).
  • the corresponding terminals may be set in the same group. For example, in Table 4, the terminal d is determined to be located in the middle of the second and third beam directions, and is based on the difference between the measured values of the terminal c located on the second beam and the terminal e located on the third beam. You can set up groups. At this time, the terminal corresponding to B may belong to a plurality of groups.
  • the grouping result information is transmitted to the terminal. That is, i) transmits only the group ID to which the terminal belongs to all terminals by allocating bits through the DCI format (DCI format) of the PDCCH, or ii) transmits the group ID to which all the terminals belong to the terminal and the neighboring group ID. Or, iii) all group IDs and IDs of UEs belonging to the corresponding group may be transmitted to all terminals through the PDCCH.
  • DCI format DCI format
  • an indication of the next measurement may be transmitted in S1107 with a beam tracking (ie, N) value, a beamforming angle, and an associated beamforming generation matrix.
  • the beam pattern may transmit an omni-direction beam as well as a directional beam to perform interference measurement.
  • a large measured value means that the base station is located around the base station.
  • the measured value may be displayed at a predetermined level for all the directional beams. Therefore, the worst group may be set using the radial beam, and the group may be set using the value for the directional beam only when the measured value is small.
  • FIG. 13 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • a relay When a relay is included in the wireless communication system, communication is performed between the base station and the relay in the backhaul link, and communication is performed between the relay and the terminal in the access link. Therefore, the base station or the terminal illustrated in the figure may be replaced with a relay according to the situation.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNodeB (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a method for grouping base stations supporting full-duplex communication. Specifically, the method comprises the steps of: transmitting multiple beam-formed measurement signals corresponding to multiple areas by a base station; receiving inter-device-interference (IDI) measurement information from at least one terminal located at each of the multiple areas; and configuring terminal groups on the basis of the IDI measurement information, wherein the measurement signals correspond to measurement signals for measuring IDI measurement between terminals supporting full-duplex communication.

Description

풀-듀플렉스(FULL-DUPLEX) 무선 통신 시스템에서 간섭 측정 기반 그룹핑 방법 및 이를 위한 장치Interferometry based grouping method and device therefor in full-duplex wireless communication system
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 풀-듀플렉스(Full-Duplex) 무선 통신 시스템에서 간섭 측정 기반 그룹핑 방법 및 이를 위한 장치에 관한 것이다.The present invention relates to a wireless communication system, and more particularly, to an interference measurement-based grouping method and apparatus therefor in a full-duplex wireless communication system.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution, 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.As an example of a wireless communication system to which the present invention may be applied, a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described in brief.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system. The Evolved Universal Mobile Telecommunications System (E-UMTS) system is an evolution from the existing Universal Mobile Telecommunications System (UMTS), and is currently undergoing basic standardization in 3GPP. In general, the E-UMTS may be referred to as a Long Term Evolution (LTE) system. For details of technical specifications of UMTS and E-UMTS, refer to Release 7 and Release 8 of the "3rd Generation Partnership Project; Technical Specification Group Radio Access Network", respectively.
도 1을 참조하면, E-UMTS는 단말(User Equipment, UE)과 기지국(eNode B, eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway, AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다. Referring to FIG. 1, an E-UMTS is located at an end of a user equipment (UE) and a base station (eNode B, eNB, network (E-UTRAN)) and connects an access gateway (AG) connected to an external network. The base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크(Downlink, DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향 링크(Uplink, UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network, CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.One or more cells exist in one base station. The cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths. The base station controls data transmission and reception for a plurality of terminals. For downlink (DL) data, the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information. In addition, the base station transmits uplink scheduling information to the terminal for uplink (UL) data, and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use. An interface for transmitting user traffic or control traffic may be used between base stations. The core network (Core Network, CN) may be composed of a network node for the user registration of the AG and the terminal. The AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing. In addition, as other radio access technologies continue to be developed, new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
상술한 바와 같은 논의를 바탕으로 이하에서는, 풀-듀플렉스(Full-Duplex) 무선 통신 시스템에서 간섭 측정 기반 그룹핑 방법 및 이를 위한 장치를 제안하고자 한다.Based on the discussion as described above, an interference measurement based grouping method and a device therefor in a full-duplex wireless communication system are proposed.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved in the present invention are not limited to the above technical problems, and other technical problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상술한 문제점을 해결하기 위한 본 발명의 일 양상인 풀-듀플렉스(Full-Duplex) 통신을 지원하는 기지국의 그룹핑(grouping) 방법에 있어서, 상기 기지국이 다수의 영역에 대응하는 다수의 빔포밍(beamforming)된 측정 신호들을 송신하며, 상기 측정 신호는 풀-듀플렉스 통신을 지원하는 단말들간의 IDI(Inter-Device Interference) 측정을 위한 측정 신호인 단계; 상기 다수의 영역 각각에 위치하는 적어도 하나의 단말로부터 IDI 측정 정보를 수신하는 단계; 및 상기 IDI 측정 정보에 기반하여 단말 그룹들을 설정하는 단계를 포함하는 것을 특징으로 한다.In a grouping method of a base station supporting full-duplex communication, which is an aspect of the present invention for solving the above-described problem, a plurality of beamforming in which the base station corresponds to a plurality of areas Transmitting the measured signals, wherein the measured signals are measurement signals for IDI (Inter-Device Interference) measurement between terminals supporting full-duplex communication; Receiving IDI measurement information from at least one terminal located in each of the plurality of areas; And setting terminal groups based on the IDI measurement information.
나아가, 상기 IDI 측정 정보는, 상기 적어도 하나의 단말로부터 상향링크 채널을 통하여 전송되며, 상기 측정 신호들의 방향 중 특정 방향에 대한 IDI 측정 값을 포함하는 것을 특징으로 할 수 있다. 더 나아가, 상기 IDI 측정 정보는, 상향링크 데이터 송신이 수행되지 않는 경우, 채널 상태 정보(Channel Quality Indicator)를 이용하여 IDI 측정 값이 지시되는 것을 특징으로 할 수 있다.Further, the IDI measurement information may be transmitted from the at least one terminal through an uplink channel, and may include an IDI measurement value for a specific direction among the directions of the measurement signals. Furthermore, when the uplink data transmission is not performed, the IDI measurement information may be characterized by indicating an IDI measurement value using channel quality indicator.
나아가, 상기 IDI 측정 정보는, IDI 측정 값이 임계치 이하인 경우 특정 값으로 지시되는 것을 특징으로 할 수 있다.Further, the IDI measurement information may be indicated by a specific value when the IDI measurement value is less than or equal to a threshold.
나아가, 상기 IDI 측정 정보는, IDI 측정 값이 임계치 이상인 경우 특정 값으로 지시되는 것을 특징으로 할 수 있다.Furthermore, the IDI measurement information may be indicated by a specific value when the IDI measurement value is greater than or equal to a threshold.
나아가, 상기 IDI 측정 정보는, 상기 적어도 하나의 단말로부터 상향링크 채널을 통하여 전송되며, 상기 측정 신호들의 방향들 모두에 대한 IDI 측정 값을 포함하는 것을 특징으로 할 수 있다. 더 나아가, 상기 IDI 측정 정보에 포함된 IDI 측정 값들을 순차적으로 빔포밍 인덱스에 매핑하는 단계를 더 포함하거나, 상기 IDI 측정 정보는, 상기 빔포밍된 모든 방향의 빔포밍 인덱스들과 상기 빔포밍 인덱스들이 지시하는 IDI 측정 값들을 포함하는 것을 특징으로 할 수 있다.Furthermore, the IDI measurement information may be transmitted from the at least one terminal through an uplink channel, and may include IDI measurement values for all directions of the measurement signals. Furthermore, the method may further include sequentially mapping IDI measurement values included in the IDI measurement information to a beamforming index, or the IDI measurement information may include beamforming indexes and the beamforming index in all the beamformed directions. It may be characterized by including the IDI measurement values indicated by.
나아가, 상기 단말들간의 거리 관계 및 상기 IDI 측정 정보에 따라 트래킹(tracking)되는 것을 특징으로 할 수 있다.Furthermore, tracking may be performed according to the distance relation between the terminals and the IDI measurement information.
나아가, 상기 단말 그룹들을 설정하는 단계는, IDI 측정 값이 최소 값을 넘는 적어도 하나의 후보 단말들을 선정하는 단계; 상기 후보 단말들에 대하여 소정 범위의 IDI 측정 값 차이를 기반으로 그룹을 설정하는 단계를 포함할 수 있다. 더 나아가, 상기 소정 범위는, IDI 간섭 성능, 할당된 주파수의 개수, 풀-듀플렉스 모드 동작 단말의 개수 중 적어도 하나에 의하여 결정되는 것을 특징으로 할 수 있다.Further, setting the terminal groups may include selecting at least one candidate terminal whose IDI measurement value exceeds a minimum value; And setting a group for the candidate terminals based on a difference of IDI measurement values within a predetermined range. Furthermore, the predetermined range may be determined by at least one of the IDI interference performance, the number of allocated frequencies, and the number of full-duplex mode operation terminals.
상술한 문제점을 해결하기 위한 본 발명의 다른 양상인 풀-듀플렉스(Full-Duplex) 통신을 지원하는 그룹핑(grouping)을 수행하는 기지국은, 무선 주파수 유닛; 및 프로세서를 포함하며, 상기 프로세서는, 다수의 영역에 대응하는 다수의 빔포밍(beamforming)된 측정 신호들을 송신하며, 상기 다수의 영역 각각에 위치하는 적어도 하나의 단말로부터 IDI 측정 정보를 수신하고, 상기 IDI 측정 정보에 기반하여 단말 그룹들을 설정하도록 구성되고, 상기 측정 신호는 풀-듀플렉스 통신을 지원하는 단말들간의 IDI(Inter-Device Interference) 측정을 위한 측정 신호인 것을 특징으로 한다.Another aspect of the present invention for solving the above-described problem is a base station for performing grouping (grouping) to support full-duplex communication, the radio frequency unit; And a processor, wherein the processor transmits a plurality of beamformed measurement signals corresponding to a plurality of regions, receives IDI measurement information from at least one terminal located in each of the plurality of regions, Terminal groups are configured based on the IDI measurement information, and the measurement signal is a measurement signal for measuring IDI (Inter-Device Interference) between terminals supporting full-duplex communication.
본 발명의 실시예에 따르면 풀-듀플렉스(Full-Duplex) 무선 통신 시스템에서 간섭 측정 기반 그룹핑이 효율적으로 수행될 수 있다.According to an embodiment of the present invention, interference measurement based grouping may be efficiently performed in a full-duplex wireless communication system.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtained in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included as part of the detailed description in order to provide a thorough understanding of the present invention, provide an embodiment of the present invention and together with the description, illustrate the technical idea of the present invention.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 예시한다.1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 예시한다.FIG. 2 illustrates a structure of a control plane and a user plane of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.3 illustrates physical channels used in a 3GPP system and a general signal transmission method using the same.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시한다.4 illustrates a structure of a radio frame used in an LTE system.
도 5는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한다.5 illustrates a resource grid for a downlink slot.
도 6은 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시한다.6 illustrates a structure of a downlink radio frame used in an LTE system.
도 7은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 예시한다.7 illustrates a structure of an uplink subframe used in an LTE system.
도 8은 풀-듀플렉스 무선(Full-Duplex Radio, FDR) 통신 시스템을 나타낸다.8 illustrates a Full-Duplex Radio (FDR) communication system.
도 9 는 Inter-device interference 를 나타낸다.9 shows inter-device interference.
도 10은 FDR 시스템에서 단말의 다중 접속을 나타낸다.10 illustrates multiple access of a terminal in an FDR system.
도 11은 본 발명의 일 실시예에 따른 그룹핑 방법을 나타내는 순서도이다.11 is a flowchart illustrating a grouping method according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에를 설명하기 위하여 단말의 배치와 기지국 빔포밍을 예시한 참고도이다.12 is a reference diagram illustrating an arrangement of a terminal and a base station beamforming in order to explain an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다.13 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used in various radio access systems. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA). UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA. LTE-A (Advanced) is an evolution of 3GPP LTE.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.For clarity, the following description focuses on 3GPP LTE / LTE-A, but the technical spirit of the present invention is not limited thereto. In addition, specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard. The control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted. The user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Trans안테나 포트 Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.The physical layer, which is the first layer, provides an information transfer service to an upper layer by using a physical channel. The physical layer is connected to the upper layer of the medium access control layer through a trans-antenna port channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel. The physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.The medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel. The RLC layer of the second layer supports reliable data transmission. The function of the RLC layer may be implemented as a functional block inside the MAC. The PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.The Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane. The RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs). RB means a service provided by the second layer for data transmission between the terminal and the network. To this end, the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode. The non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
기지국(eNB)을 구성하는 하나의 셀은 1.4, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.One cell constituting an eNB is set to one of bandwidths such as 1.4, 3, 5, 10, 15, and 20 MHz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.The downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message. have. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message. It is located above the transport channel, and the logical channel mapped to the transport channel is a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
도 3은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다. FIG. 3 is a diagram for describing physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 사용자 기기는 단계 S301에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 사용자 기기는 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다. 그 후, 사용자 기기는 기지국으로부터 물리방송채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 사용자 기기는 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.The user equipment that is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S301. To this end, the user equipment receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID. Thereafter, the user equipment may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the user equipment may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
초기 셀 탐색을 마친 사용자 기기는 단계 S302에서 물리 하향링크제어채널(Physical Downlink Control Channel, PDCCH) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.After the initial cell search, the user equipment receives the physical downlink control channel (PDCCH) and the physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S302. Specific system information can be obtained.
이후, 사용자 기기는 기지국에 접속을 완료하기 위해 이후 단계 S303 내지 단계 S306과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 사용자 기기는 물리임의접속채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S303), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304). 경쟁 기반 임의 접속의 경우 추가적인 물리임의접속채널의 전송(S305) 및 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널 수신(S306)과 같은 충돌해결절차(Contention Resolution Procedure)를 수행할 수 있다.Thereafter, the user equipment may perform a random access procedure such as step S303 to step S306 to complete the access to the base station. To this end, the user equipment transmits a preamble through a physical random access channel (PRACH) (S303), and responds to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. The message may be received (S304). In case of contention-based random access, contention resolution procedures such as transmission of an additional physical random access channel (S305) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S306) may be performed. .
상술한 바와 같은 절차를 수행한 사용자 기기는 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널/물리하향링크공유채널 수신(S307) 및 물리상향링크공유채널(Physical Uplink Shared Channel, PUSCH)/물리상향링크제어채널(Physical Uplink Control Channel, PUCCH) 전송(S308)을 수행할 수 있다. 사용자 기기가 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. 본 명세서에서, HARQ ACK/NACK은 간단히 HARQ-ACK 혹은 ACK/NACK(A/N)으로 지칭된다. HARQ-ACK은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 및 NACK/DTX 중 적어도 하나를 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다. The user equipment which has performed the above-described procedure is then subjected to a physical downlink control channel / physical downlink shared channel (S307) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure. Physical Uplink Control Channel (PUCCH) transmission (S308) may be performed. The control information transmitted from the user equipment to the base station is collectively referred to as uplink control information (UCI). UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel State Information (CSI), and the like. In the present specification, HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N). HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX. The CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like. UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.4 is a diagram illustrating a structure of a radio frame used in an LTE system.
도 4를 참조하면, 셀룰라 OFDM 무선 패킷 통신 시스템에서, 상향링크/하향링크 데이터 패킷 전송은 서브프레임(subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다. Referring to FIG. 4, in a cellular OFDM wireless packet communication system, uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols. . The 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
도4의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다. 4A illustrates the structure of a type 1 radio frame. The downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain. The time taken for one subframe to be transmitted is called a transmission time interval (TTI). For example, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms. One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. In the 3GPP LTE system, since OFDMA is used in downlink, an OFDM symbol represents one symbol period. An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period. A resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 표준 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 표준 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 표준 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 사용자 기기가 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.The number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP). CPs include extended CPs and normal CPs. For example, when an OFDM symbol is configured by a standard CP, the number of OFDM symbols included in one slot may be seven. When the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP. In the case of an extended CP, for example, the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the user equipment moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
표준 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.When a standard CP is used, since one slot includes 7 OFDM symbols, one subframe includes 14 OFDM symbols. In this case, the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
도4의 (b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 2개의 슬롯을 포함하는 4개의 일반 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(Guard Period, GP) 및UpPTS(Uplink Pilot Time Slot)을 포함하는 특별 서브프레임(special subframe)으로 구성된다. 4B illustrates a structure of a type 2 radio frame. Type 2 radio frames consist of two half frames, each half frame comprising four general subframes including two slots, a downlink pilot time slot (DwPTS), a guard period (GP) and It consists of a special subframe including an Uplink Pilot Time Slot (UpPTS).
상기 특별 서브프레임에서, DwPTS는 사용자 기기에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 사용자 기기의 상향링크 전송 동기를 맞추는 데 사용된다. 즉, DwPTS는 하향링크 전송으로, UpPTS는 상향링크 전송으로 사용되며, 특히 UpPTS는 PRACH 프리앰블이나 SRS 전송의 용도로 활용된다. 또한, 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. In the special subframe, DwPTS is used for initial cell search, synchronization or channel estimation at the user equipment. UpPTS is used for channel estimation at base station and synchronization of uplink transmission of user equipment. That is, DwPTS is used for downlink transmission and UpPTS is used for uplink transmission. In particular, UpPTS is used for PRACH preamble or SRS transmission. In addition, the guard period is a period for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
상기 특별 서브프레임에 관하여 현재 3GPP 표준 문서에서는 아래 표 1과 같이 설정을 정의하고 있다. 표 1에서
Figure PCTKR2016005929-appb-I000001
인 경우 DwPTS와 UpPTS를 나타내며, 나머지 영역이 보호구간으로 설정된다.
Regarding the special subframe, the current 3GPP standard document defines a configuration as shown in Table 1 below. In Table 1
Figure PCTKR2016005929-appb-I000001
In the case of DwPTS and UpPTS, the remaining area is set as a protection interval.
표 1
Figure PCTKR2016005929-appb-T000001
Table 1
Figure PCTKR2016005929-appb-T000001
한편, 타입 2 무선 프레임의 구조, 즉 TDD 시스템에서 상향링크/하향링크 서브프레임 설정(UL/DL configuration)은 아래의 표 2와 같다.On the other hand, the structure of the type 2 radio frame, that is, UL / DL configuration (UL / DL configuration) in the TDD system is shown in Table 2 below.
표 2
Figure PCTKR2016005929-appb-T000002
TABLE 2
Figure PCTKR2016005929-appb-T000002
상기 표 2에서 D는 하향링크 서브프레임, U는 상향링크 서브프레임을 지시하며, S는 상기 특별 서브프레임을 의미한다. 또한, 상기 표 2는 각각의 시스템에서 상향링크/하향링크 서브프레임 설정에서 하향링크-상향링크 스위칭 주기 역시 나타나있다.In Table 2, D denotes a downlink subframe, U denotes an uplink subframe, and S denotes the special subframe. Table 2 also shows the downlink-uplink switching period in the uplink / downlink subframe configuration in each system.
상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.The structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
도 5는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한다.5 illustrates a resource grid for a downlink slot.
도 5를 참조하면, 하향링크 슬롯은 시간 영역에서
Figure PCTKR2016005929-appb-I000002
OFDM 심볼을 포함하고 주파수 영역에서
Figure PCTKR2016005929-appb-I000003
자원블록을 포함한다. 각각의 자원블록이
Figure PCTKR2016005929-appb-I000004
부반송파를 포함하므로 하향링크 슬롯은 주파수 영역에서
Figure PCTKR2016005929-appb-I000005
×
Figure PCTKR2016005929-appb-I000006
부반송파를 포함한다. 도 5는 하향링크 슬롯이 7 OFDM 심볼을 포함하고 자원블록이 12 부반송파를 포함하는 것으로 예시하고 있지만 반드시 이로 제한되는 것은 아니다. 예를 들어, 하향링크 슬롯에 포함되는 OFDM 심볼의 개수는 순환전치(Cyclic Prefix; CP)의 길이에 따라 변형될 수 있다.
5, the downlink slot is in the time domain
Figure PCTKR2016005929-appb-I000002
Contains OFDM symbols and in the frequency domain
Figure PCTKR2016005929-appb-I000003
Contains resource blocks. Each resource block
Figure PCTKR2016005929-appb-I000004
Downlink slots in the frequency domain because they include subcarriers
Figure PCTKR2016005929-appb-I000005
×
Figure PCTKR2016005929-appb-I000006
Includes subcarriers 5 illustrates that the downlink slot includes 7 OFDM symbols and the resource block includes 12 subcarriers, but is not necessarily limited thereto. For example, the number of OFDM symbols included in the downlink slot may be modified according to the length of a cyclic prefix (CP).
자원그리드 상의 각 요소를 자원요소(Resource Element; RE)라 하고, 하나의 자원 요소는 하나의 OFDM 심볼 인덱스 및 하나의 부반송파 인덱스로 지시된다. 하나의 RB는
Figure PCTKR2016005929-appb-I000007
×
Figure PCTKR2016005929-appb-I000008
자원요소로 구성되어 있다. 하향링크 슬롯에 포함되는 자원블록의 수(
Figure PCTKR2016005929-appb-I000009
)는 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다.
Each element on the resource grid is called a Resource Element (RE), and one resource element is indicated by one OFDM symbol index and one subcarrier index. One RB
Figure PCTKR2016005929-appb-I000007
×
Figure PCTKR2016005929-appb-I000008
It consists of resource elements. The number of resource blocks included in the downlink slot (
Figure PCTKR2016005929-appb-I000009
) Depends on the downlink transmission bandwidth set in the cell.
도 6은 하향링크 서브프레임의 구조를 예시한다.6 illustrates a structure of a downlink subframe.
도 6을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(4)개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대응한다. 남은 OFDM 심볼은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역에 해당한다. LTE에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답으로 HARQ ACK/NACK(Hybrid Automatic Repeat request acknowledgment/negative-acknowledgment) 신호를 나른다.Referring to FIG. 6, up to three (4) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated. The remaining OFDM symbols correspond to data regions to which the Physical Downlink Shared Channel (PDSCH) is allocated. Examples of a downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like. The PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe. The PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat request acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 지칭한다. DCI는 사용자 기기 또는 사용자 기기 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI는 상향/하향링크 스케줄링 정보, 상향링크 전송(Tx) 파워 제어 명령 등을 포함한다.Control information transmitted through the PDCCH is referred to as downlink control information (DCI). The DCI includes resource allocation information and other control information for the user device or user device group. For example, the DCI includes uplink / downlink scheduling information, uplink transmission (Tx) power control command, and the like.
PDCCH는 하향링크 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널(uplink shared channel,UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 사용자 기기 그룹 내의 개별 사용자 기기들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 나른다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 사용자 기기는 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집합(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은 사용자 기기에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH가 특정 사용자 기기를 위한 것일 경우, 해당 사용자 기기의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system Information block, SIC))를 위한 것일 경우, SI-RNTI(system Information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다.The PDCCH includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel, Resource allocation information of upper-layer control messages such as paging information on PCH), system information on DL-SCH, random access response transmitted on PDSCH, Tx power control command set for individual user devices in a group of user devices, Tx power It carries control commands and activation instruction information of Voice over IP (VoIP). A plurality of PDCCHs may be transmitted in the control region. The user equipment may monitor the plurality of PDCCHs. The PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs). CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions. The CCE corresponds to a plurality of resource element groups (REGs). The format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs. The base station determines the PDCCH format according to the DCI to be transmitted to the user equipment, and adds a cyclic redundancy check (CRC) to the control information. The CRC is masked with an identifier (eg, a radio network temporary identifier (RNTI)) according to the owner or purpose of use of the PDCCH. For example, when the PDCCH is for a specific user equipment, an identifier (eg, cell-RNTI (C-RNTI)) of the corresponding user equipment may be masked to the CRC. If the PDCCH is for a paging message, a paging identifier (eg, paging-RNTI (P-RNTI)) may be masked in the CRC. When the PDCCH is for system information (more specifically, a system information block (SIC)), a system information RNTI (SI-RNTI) may be masked to the CRC. If the PDCCH is for a random access response, a random access-RNTI (RA-RNTI) may be masked to the CRC.
도 7은 LTE에서 사용되는 상향링크 서브프레임의 구조를 예시한다.7 illustrates a structure of an uplink subframe used in LTE.
도 7을 참조하면, 상향링크 서브프레임은 복수(예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터영역은 PUSCH를 포함하고 음성등의 데이터 신호를 전송하는데 사용된다. 제어영역은 PUCCH를 포함하고 상향링크 제어정보(Uplink Control Information, UCI)를 전송하는데 사용된다. PUCCH는 주파수축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍(RB pair)을 포함하며 슬롯을 경계로 호핑한다.Referring to FIG. 7, an uplink subframe includes a plurality (eg, two) slots. The slot may include different numbers of SC-FDMA symbols according to the CP length. The uplink subframe is divided into a data region and a control region in the frequency domain. The data area includes a PUSCH and is used to transmit data signals such as voice. The control region includes a PUCCH and is used to transmit uplink control information (UCI). The PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.PUCCH may be used to transmit the following control information.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.SR (Scheduling Request): Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
- HARQ ACK/NACK:PDSCH 상의 하향링크 데이터 패킷에 대한 응답 신호이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.HARQ ACK / NACK: This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received. One bit of ACK / NACK is transmitted in response to a single downlink codeword, and two bits of ACK / NACK are transmitted in response to two downlink codewords.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. CSI는 CQI(Channel Quality Indicator)를 포함하고, MIMO(Multiple Input Multiple Output) 관련 피드백 정보는 RI(Rank Indicator), PMI(Precoding Matrix Indicator), PTI(Precoding 타입 Indicator) 등을 포함한다. 서브프레임 당 20비트가 사용된다.Channel State Information (CSI): Feedback information for the downlink channel. The CSI includes a channel quality indicator (CQI), and the feedback information related to multiple input multiple output (MIMO) includes a rank indicator (RI), a precoding matrix indicator (PMI), a precoding type indicator (PTI), and the like. 20 bits are used per subframe.
사용자 기기가 서브프레임에서 전송할 수 있는 제어 정보(UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다. The amount of control information (UCI) that a user equipment can transmit in a subframe depends on the number of SC-FDMAs available for control information transmission. SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded. The reference signal is used for coherent detection of the PUCCH.
이하에서는 전술한 내용을 바탕으로, 본 발명에서는 동일 자원 내 풀-듀플렉스(Full-duplex) 통신을 사용하는 시스템에 있어, 단말간 간섭(IDI, Inter-Device Interference)에 대해 회피/완화를 지원하기 위한 단말들의 모임(Group)을 설정하는 방법 및 이를 위한 장치를 설명한다.Hereinafter, based on the above description, in the present invention, in the system using full-duplex communication in the same resource, to support the avoidance / mitigation for inter-device interference (IDI, Inter-Device Interference) A method of setting a group of terminals for and a device therefor will be described.
도 8은 본 발명에서의 풀-듀플렉스 무선(Full-Duplex Radio, FDR) 통신 시스템을 설명하기 위한 참고도이다. 도 8을 참조하여, FDR 은 전송 장치(예, 단말, 기지국)에서 같은 자원을 이용하여 송수신을 동시에 수행하는 시스템을 의미한다. 여기서, 같은 자원이란 동일한 시간, 동일한 주파수를 가지는 무선 자원을 의미한다. 도 8에서와 같이, FDR을 지원하는 단말과 기지국이 존재할 수 있으며, 이러한 경우, FDR을 지원함에 따라 기기내 간섭(Intra-device interference) 와 기기간 간섭(Inter-device interference)으로 크게 2종류의 간섭이 존재할 수 있다. 먼저, 기기-내 간섭(Intra-device interference) 는, 하나의 기지국 혹은 단말 내에서, 송신 안테나에서 송신되는 신호가 수신 안테나로 수신됨으로써 간섭으로 작용되는 경우를 의미하며, Inter-device interference 는, 기지국/단말 등에서 송신한 상향링크 신호가 인접하게 위치한 기지국/단말에게 수신되어 간섭으로 작용되는 경우를 나타낸다.8 is a reference diagram for explaining a full-duplex radio (FDR) communication system according to the present invention. Referring to FIG. 8, the FDR refers to a system for simultaneously transmitting and receiving using the same resource in a transmitting device (eg, a terminal or a base station). Here, the same resource means a radio resource having the same time and the same frequency. As shown in FIG. 8, there may be a terminal and a base station supporting FDR. In this case, two types of interference are largely classified into intra-device interference and inter-device interference according to the FDR. This may exist. First, intra-device interference refers to a case in which a signal transmitted from a transmitting antenna acts as interference by being received by a receiving antenna within one base station or terminal, and inter-device interference refers to a base station. The uplink signal transmitted from the terminal and the like is received by an adjacent base station / terminal and acts as an interference.
이하에서는 설명의 편의를 위하여, 기기간 간섭(Inter-device interference, 이하, IDI)를 중심으로 설명한다.Hereinafter, for convenience of description, the description will be made based on inter-device interference (hereinafter, referred to as IDI).
도 9 는 기기간 간섭(Inter-device interference) 를 설명하기 위한 참고도이다. 도 9를 참조하여 설명하면, IDI는 하나의 셀(cell) 내에서 동일 무선 자원을 사용함으로 인해 FDR에서만 발생하는 간섭으로, 도 9는 기지국이 동일 자원 내 풀-듀플렉스(FD) 모드(즉, 동일 주파수를 이용한 동시 송수신 모드) 사용 시, 그리고 단말이 풀-듀플렉스(FD) 모드 또는 하프-듀플렉스(HD) 모드(즉, 기존 FDD, TDD와 같은 half-duplex 모드)를 사용함에 의해 발생하는 IDI에 대한 개념도를 나타낸다. 도 9는 IDI 설명의 용이를 위해 2 UE만을 나타내었으나, 본 발명은 2 이상의 UE가 존재하는 경우에도 적용될 수 있음은 물론이다. 9 is a reference diagram for explaining inter-device interference. Referring to FIG. 9, IDI is interference caused only in FDR due to using the same radio resource in one cell. FIG. 9 shows that the base station is in full-duplex (FD) mode (ie, in the same resource). IDI generated when using simultaneous transmit / receive mode using the same frequency and when UE uses full-duplex (FD) mode or half-duplex (HD) mode (i.e., half-duplex mode such as conventional FDD and TDD) Represents a conceptual diagram for. Although FIG. 9 illustrates only 2 UEs for ease of IDI description, the present invention can be applied to the case where two or more UEs exist.
기존 풀-듀플렉스(Full-duplex, FD)를 사용하는 통신시스템에서는 FDD (frequency division duplex) 또는 TDD (time division duplex)를 사용하여 신호를 송수신, 즉 송수신 자원을 달리하여 신호를 송수신하므로 IDI가 발생하지 않았다. 또한, 기존 통신 시스템 상의 인접 셀의 간섭은 FDR 시스템에서도 여전히 유효하긴 하나, 이는 본 발명에서는 설명의 편의를 위하여 언급하지 않는다.In a communication system using a full-duplex (FD), IDI occurs because signals are transmitted and received using frequency division duplex (FDD) or time division duplex (TDD), that is, signals are transmitted and received using different transmission and reception resources. Did not do it. In addition, although interference of neighbor cells on the existing communication system is still effective in the FDR system, this is not mentioned for convenience of description in the present invention.
도 10은 FDR 시스템에서 단말의 다중 접속을 설명하기 위한 참고도이다. 도 10을 참조하여 설명하면, FDR 시스템에서는 동일 자원을 사용하는 풀-듀플렉스(full-duplex) 방식뿐만 아니라, 동일 자원을 사용하지 않는 풀-듀플렉스(full-duplex) 방식도 존재할 수 있다. 도 10에서는 기지국이 동일 자원 상에서 풀-듀플렉스(FD) 모드로 동작하고, 다수의 단말들이 다중 접속을 수행하는 경우, FDMA와 TDMA 동작의 예시를 나타낸다. 10 is a reference diagram for explaining multiple access of a terminal in an FDR system. Referring to FIG. 10, in the FDR system, not only a full-duplex scheme using the same resource but also a full-duplex scheme not using the same resource may exist. 10 illustrates an example of FDMA and TDMA operations when a base station operates in a full-duplex (FD) mode on the same resource and multiple terminals perform multiple accesses.
또한, 본 발명에서는 동일 자원 상에서의 풀-듀플렉스(full-duplex) 통신을 사용하는 TDD(Time division duplex) 시스템에 있어서, 비동기 기기 간 간섭 측정을 위한 프레임 설정(frame configuration), 기기간 구별 신호 전송 및 청취 시도 설정이 수행됨을 가정한다. 이러한 가정하에, 각 셀 내에서 단말 별로 설정(configuration)을 달리 할당 받는 방법인 UE-특정 설정(UE-specific configuration)을 통하여 셀 내에서 동시 송수신이 가능하도록 한다. In addition, in the present invention, in a time division duplex (TDD) system using full-duplex communication on the same resource, a frame configuration for transmitting interference between asynchronous devices, a signal transmission between devices, and Assume that a listen attempt setting is performed. Under these assumptions, simultaneous transmission and reception is possible in a cell through UE-specific configuration, which is a method of differently assigning configuration for each terminal in each cell.
즉, 본 발명에서는 기기간의 IDI를 측정하여, 측정된 IDI를 줄이거나 없애기 위해, 각 단말 또는 각 단말 그룹에 대해 고유한 서명(signature)이 부여될 수 있다. 이 때, 단말간 구별될 수 있는 간섭 측정을 위한 신호를 서명(signature) 신호라고 정의한다.That is, in the present invention, a unique signature may be given to each terminal or each terminal group in order to measure IDI between devices and reduce or eliminate the measured IDI. In this case, a signal for measuring interference that can be distinguished between terminals is defined as a signature signal.
따라서, 단말은 수신된 서명 신호(signature)를 통하여, IDI를 유발시키는 단말에 대한 신호 강도(strength), 단말 또는 서명(signature) 인덱스, 위상(phase) 등과 같은 채널 벡터(channel vector), 타이밍 정보(timing information) 등을 알 수 있다. 나아가, 서명(Signature) 신호는 단말 또는 단말 그룹을 구별할 수 있는, 예를 들어, 코드 시퀀스(code sequence) 또는 펑처링(puncturing) 패턴 등 어떤 형태든지 가능하다. 즉, 코드 시퀀스(Code sequence)를 이용하여 단말/단말 그룹의 고유 스크램블 또는 인터리빙이 적용될 수 있으며, 수신 단말에서 간섭 측정을 용이하기 위해 서명(signature) 신호는 배타적으로 하나의 단말/단말 그룹에서만 전송될 수도 있다. 이 때, 배타적인 단위는 최소 OFDM 심볼이 될 수 도 있다. Accordingly, the terminal uses the received signature signal to determine the signal strength, terminal or signature index, phase, and the like for the terminal causing the IDI and timing information. (timing information) and the like. Further, the signature signal may be in any form, for example, a code sequence or a puncturing pattern, which may distinguish the terminal or the terminal group. That is, unique scramble or interleaving of a terminal / terminal group may be applied using a code sequence, and a signature signal is transmitted exclusively in only one terminal / terminal group to facilitate interference measurement at a receiving terminal. May be In this case, an exclusive unit may be a minimum OFDM symbol.
또한, 본 발명에서는 FDR 시스템에서 IDI 발생 단말들의 스케줄링을 위한 단말 그룹 분류(그룹핑) 방법과 그룹핑을 위한 IDI 측정 및 보고 기법이 적용될 수 있음을 가정한다. 즉, 각 단말이 측정한 IDI 크기의 순서만을 이용하여 단말 그룹이 분류될 수 도 있고, 동일 자원을 공유하는 단말의 개수가 아닌 각 단말의 IDI 제거/완화 능력을 고려한 방식의 IDI 크기 기반 단말 그룹 분류 기법이 적용될 수 도 있다. In addition, the present invention assumes that a UE group classification (grouping) method for scheduling IDI-generated UEs and an IDI measurement and reporting technique for grouping may be applied in an FDR system. That is, UE groups may be classified using only the order of IDI sizes measured by each UE, and IDI size-based UE groups in consideration of IDI removal / mitigation capability of each UE, not the number of UEs sharing the same resource. Classification techniques may be applied.
나아가, 기지국은 단말이 풀-듀플렉스(Full-duplex) 모드로의 동작 여부를 파악하고, 그룹핑을 위해 필요 정보 또는 지시를 후보 단말들에게 전송한다. 구체적으로, 기지국이 그룹으로 설정될 후보 단말들을 파악하는 방법에 대하여 설명한다.Further, the base station determines whether the terminal is operating in the full-duplex mode and transmits necessary information or instructions to the candidate terminals for grouping. Specifically, a method of identifying candidate terminals to be set as a group by a base station will be described.
먼저, 해당 기지국에 링크(link)가 연결된 모든 단말들에게 PDCCH/E-PDCCH의 DCI 포맷 또는 PDSCH상에, 그룹핑에 참여할 지에 대한 정보를 요청하는 비트(bit)를 할당하고, 단말은 그룹핑에 참여할 지에 대한 여부를 PUCCH/ PUSCH의 UCI 포맷을 통해 이에 대한 비트(bit)를 할당하여 운용할 수 있다. First, allocating a bit requesting information on whether to participate in the grouping on the DCI format or PDSCH of the PDCCH / E-PDCCH to all terminals connected to a link to the corresponding base station, the terminal to participate in the grouping Whether or not to allocate a bit (bit) for this through the UCI format of PUCCH / PUSCH.
또는, 각 단말들이 전송하고자 하는 데이터의 특성 등을 고려하여 동일 자원 내 풀-듀플렉스(FD) 모드 참여 설정 요청을 PUCCH/PUSCH의 UCI 포맷을 통해 이에 대한 비트를 할당하여 기지국에 알려줄 수 있다. Alternatively, in consideration of the characteristics of data to be transmitted by each terminal, the base station may allocate a bit to the full-duplex (FD) mode participation request in the same resource through a UCI format of PUCCH / PUSCH and inform the base station.
또는, 기지국이 단말 데이터의 특징들을 알고 있거나, 동일 자원 내 풀-듀플렉스(FD) 참여 설정에 우호적인 단말들을 인식하는 등 단말에 대한 사전 정보를 인지하고 있는 경우(예를 들어 단말은 그룹핑에 참여할 준비가 되어 있으나 현재 동일 자원 내 풀-듀플렉스 모드에 참여하지 않은 경우), 해당하는 단말들에게 PDCCH/E-PDCCH를 통해 DCI 포맷 또는 PDSCH에 이에 대한 비트를 할당하여 풀-듀플렉스(FD) 모드를 운용할 수 있다. Or, if the base station is aware of the characteristics of the terminal data, or the preliminary information about the terminal, such as recognize the terminals friendly to the full-duplex (FD) participation setting in the same resource (for example, the terminal may participate in grouping) Ready, but does not currently participate in the full-duplex mode in the same resource), by assigning the bit to the DCI format or PDSCH through the PDCCH / E-PDCCH to the corresponding UE to perform the full-duplex (FD) mode It can be operated.
나아가, 그룹핑에 참여할 지에 대한 여부는 i)동일 자원 내 풀-듀플렉스(FD) 모드로 동작할 수 있는 (예를 들어, 자기 간섭 제거기가 포함된) FDR 장치인지에 대한 구별, ii)동일 자원 내 풀-듀플렉스(FD) 모드로 동작할 수는 없지만 동일 자원 내 풀-듀플렉스(FD) 모드를 지원하는 FDR 장치인지에 대한 구별, iii)FDR 장치이며 그룹핑에 참여를 요청할 지에 대한 구별을 위하여, UCI 포맷에 총 3 비트(즉, 각각의 구별을 위하여 1비트씩)를 할당할 수 있다. 예를 들어, 상기 i) 내지 iii)의 구별을 위하여 사용/참여하는 장치에 대해서는 각각의 비트에 '1'을 할당할 수 있으며, 표 3 에서는 비트 할당에 대한 실시 예를 나타낸다.Further, whether or not to participate in grouping is i) distinguishing whether it is an FDR device capable of operating in full-duplex (FD) mode within the same resource (e.g., including a magnetic interference canceller), ii) in the same resource UCI, which cannot operate in full-duplex (FD) mode but supports full-duplex (FD) mode within the same resource, iii) distinguishes whether it is an FDR device and requests to participate in grouping. A total of 3 bits (ie 1 bit for each distinction) can be allocated to the format. For example, '1' can be assigned to each bit for devices used / participated for the purpose of distinguishing i) to iii), and Table 3 shows an embodiment of bit allocation.
표 3
Figure PCTKR2016005929-appb-T000003
TABLE 3
Figure PCTKR2016005929-appb-T000003
표 3을 예로 들면, 사용/참여하는 장치에 '011'을 할당하면 동일 자원 내 풀-듀플렉스(FD) 모드로 동작할 수는 없지만 동일 자원 내 풀-듀플렉스(FD) 모드를 지원하며 현재 그룹핑에 참여하고자 하는 장치임을 나타낸다. 또는, 그룹핑에 참여하지 않는 단말에게 '000'을 할당하여 기존(legacy) 시스템에서의 동작을 지원할 수도 있다.For example, in Table 3, if '011' is assigned to a device to be used / participated, it cannot operate in full-duplex (FD) mode within the same resource, but it supports full-duplex (FD) mode within the same resource. Indicates that the device is to participate. Alternatively, '000' may be allocated to a terminal not participating in the grouping to support operation in a legacy system.
FDR 장치는 전송 데이터 특성, 잔여 파워 프로필(remain power profile), 버퍼(buffer) 상태 등을 고려하여 그룹핑 참여 요청 비트를 변경할 수 있으며, 기지국에서의 단말에 할당된 비트를 파악하는 시간을 감소시키기 위해 풀-듀플렉스(FD) 모드 동작 및 이에 대한 지원을 사용하지 않을 수 있도록 세팅(setting)이 가능할 수 있다. The FDR device may change the grouping participation request bit in consideration of transmission data characteristics, residual power profile, buffer status, and the like, and to reduce a time for identifying a bit allocated to the terminal at the base station. Settings may be possible to disable full-duplex (FD) mode operation and support therefor.
풀-듀플렉스(FD) 모드 동작과 이에 대한 지원을 지시하는 비트는 그룹핑에 처음 참여하거나, 그룹 설정 후 그룹에서 제외된 후 다시 그룹핑에 참여하는 경우에만 전송될 수 도 있다. 예를 들어, 그룹 설정이 완료되면, 기지국은 해당 단말의 식별자(즉, UE_ID)와 함께 풀-듀플렉스(FD) 모드 지원만 가능한 단말은 '0', 풀-듀플렉스(FD) 모드 동작이 가능한 단말은 '1'을 할당하는 형태로 관리할 수 있다. Bits indicating full-duplex (FD) mode operation and support therefor may be transmitted only when the group first participates in the grouping, or when the group is excluded from the group after group setting and then participates in the grouping again. For example, when the group configuration is completed, the base station is a terminal capable of supporting the full-duplex (FD) mode only with the identifier (ie UE_ID) of the terminal, the terminal capable of operating the '0', full-duplex (FD) mode Can be managed in the form of assigning '1'.
또한, 풀-듀플렉스(FD) 모드 동작이 가능한 단말은 추가적으로 풀-듀플렉스(FD) 모드에서의 동작 방법을 나타내는 비트를 UCI 포맷에 할당할 수 있으며, 예를 들어, 해당 비트가 '0' 이면 풀-듀플렉스(FD) 모드 지원으로 동작함을 지시하고, '1' 이면 풀-듀플렉스(FD) 모드 동작으로 동작함을 지시할 수 있다. 기지국은 풀-듀플렉스(FD) 모드로 동작하는 경우에 대해 해당 비트를 파악하여 자원 할당 등에 이용할 수 도 있다. In addition, a terminal capable of operating in full-duplex (FD) mode may additionally allocate a bit indicating a method of operation in full-duplex (FD) mode to the UCI format. For example, if the corresponding bit is '0', It may indicate that operation is performed by supporting the duplex (FD) mode, and if it is '1', it may indicate that the operation is performed by the full-duplex (FD) mode operation. The base station may identify the corresponding bit and use the resource for the case of operating in the full-duplex (FD) mode.
나아가, 후보 단말이 선정된 후, 후보 단말들에게 i)후보 단말로 선정 여부, ii)동일하게 사용할 주파수, iii)그룹핑 후보 단말의 전체 개수 N을, PDCCH의 DCI 포맷 또는 PDSCH에 이에 대한 비트를 할당하여 전송할 수 있다. 기지국은 운용 가능한 단말의 개수 등을 고려하여 운용 단말을 제한할 수 있으며, 그룹핑에 참여할 수 있다고 알려준 단말에게 그룹핑 후보 단말로 선정됐는지 여부를 알려줄 수 도 있다. 이 때, 기지국에 의해 후보 단말에 선정되지 못한 단말은 폴-백(fallback) 모드로 동작하게 된다. 폴-백(Fallback) 모드는 기존대로 하프-듀플렉스(Half-duplex) 또는 다른 주파수 내 풀-듀플렉스(FD) 모드로 동작하는 것을 나타낸다. Furthermore, after the candidate terminal is selected, the candidate terminals are assigned to i) whether the candidate terminal is selected, ii) the same frequency to be used, and iii) the total number N of the grouping candidate terminals, and bits for the DCI format of the PDCCH or PDSCH. Can be assigned and sent. The base station may limit the operation terminal in consideration of the number of terminals that can be operated, and may inform the terminal that has been informed that the mobile station can participate in the grouping or not as a grouping candidate terminal. At this time, the terminal that is not selected by the base station as a candidate terminal operates in a fallback mode. Fallback mode refers to operating in half-duplex or full-duplex (FD) mode within another frequency as is conventional.
그러나, 기존의 경우 IDI 영향 정도는, IDI를 수신 받을 가능성이 있는 단말(즉, 빅팀(Victim) 후보 단말)들이 간섭 측정 주체로써 IDI 유발 가능성이 있는 단말(즉, 어그레서(Aggressor) 후보 단말)로부터의 간섭 측정을 수행한다. 이 때, IDI의 정확한 측정을 위해 하나의 측정 단위 시간에는 어그레서(Aggressor) 후보 단말 하나가 측정 신호를 전송하고, 나머지 빅팀(Victim) 후보 단말들이 간섭을 측정한다. 그러나 이러한 간섭은 단말이 개수가 증가할수록 측정 횟수 및 시간의 지수적인 증가가 불가피하다. However, in the conventional case, the degree of influence of IDI is determined by a terminal (ie, a Victim candidate terminal) that is likely to receive IDI (ie, an Aggressor candidate terminal) whose IDI is likely to be an interference measurement subject. Perform interference measurements from At this time, one Aggressor candidate terminal transmits a measurement signal at one measurement unit time for accurate measurement of IDI, and the other Victim candidate terminals measure interference. However, such interference is an inevitable increase in the number and time of measurement as the number of terminals increases.
따라서, 이하 본 발명에서는 동일 자원 내 풀-듀플렉스(Full-duplex) 통신을 사용하는 시스템에 있어, 기지국이 발생하는 측정 신호를 이용하여 간섭을 측정하는 방법에 대하여 설명한다. 구체적으로, 측정용 신호를 어그레서(Aggressor) 단말들이 전송하는 대신 기지국이 전송함으로 인해 간섭 측정 횟수 및 시간을 단축하는 방법에 대하여 설명한다. Therefore, in the present invention, a method for measuring interference using a measurement signal generated by a base station in a system using full-duplex communication within the same resource will be described. Specifically, a method of shortening the number and time of interference measurement by transmitting a measurement signal instead of transmitting by the aggressor terminals will be described.
즉, 본 발명에서는 기지국이 빔포밍을 이용하여 단말들 간의 거리 관계를 확인한 뒤, 단말들을 특정 기준으로 개념상 묶는 그룹핑을 수행한다. 이 때, 그룹핑을 위한 간섭 측정용 신호 전송은 기지국이 수행하고, 각 단말들은 간섭 측정용 신호를 측정한 뒤, 기지국으로 신호 측정 결과를 보고한다. 기지국은 보고한 정보를 참조하여 각 단말에 대한 그룹 관리 및 자원 할당을 수행한다.That is, in the present invention, the base station confirms the distance relationship between the terminals by using beamforming, and then performs grouping to conceptually group the terminals on a specific basis. At this time, the base station performs the signal transmission for interference measurement for grouping, each terminal measures the signal for interference measurement, and reports the signal measurement result to the base station. The base station performs group management and resource allocation for each terminal with reference to the reported information.
도 11은 본 발명의 그룹핑을 위한 기지국과 단말의 동작에 대한 순서도이다. 11 is a flowchart illustrating operations of a base station and a terminal for grouping according to the present invention.
즉, FDR에서 그룹핑을 위한 사전 단계가 수행될 수 있다(Sa01). 단계 Sa01에서 기지국은 단말에게 빔포밍(Beamforming)을 위한 프리코딩 행렬 또는 측정을 위한 정보(예 측정 시작 시간)등을 알려줄 수 있다.That is, a preliminary step for grouping may be performed in FDR (Sa01). In step Sa01, the base station may inform the UE of a precoding matrix for beamforming or information (eg, measurement start time) for measurement.
나아가, 기지국은 단말이 풀-듀플렉스(Full-Duplex) 모드로의 동작 여부를 파악하기 위한 정보 및 그룹핑(groupig)을 위해 필요한 정보 또는 지시를 후보 단말들에게 전송할 수 있다. Furthermore, the base station may transmit information for determining whether the terminal is operating in a full-duplex mode and information or instructions necessary for grouping to the candidate terminals.
예를 들어, 기지국은 후보 단말들로부터 IDI(Inter-Device Interference)의 측정 정보(예, RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality)등)을 기준으로 그룹핑을 수행할 수 있다. 예를 들어, IDI가 적게 발생하는 단말들, 혹은 IDI가 많이 발생하는 단말들을 기준으로 그룹핑을 수행할 수 있으며, 이에 한정할 것은 아니고 임계치 등의 추가 한정을 통하여 다양한 방식의 그룹핑이 적용되는 경우에도 본 발명이 적용될 수 있다.For example, the base station may perform grouping based on measurement information (eg, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), etc.) of IDIs from candidate terminals. For example, grouping may be performed based on UEs with low IDI or terminals with high IDI. However, the present invention is not limited thereto and may be applied to various types of grouping through additional limitations such as thresholds. The present invention can be applied.
이러한 단계 S1101은 경우에 따라 생략될 수 있으며, 정기적/부정기적인 시그널링등을 통하여 재설정될 수 도 있다. 예를 들어, i)다른 경로를 통하여 단말의 풀-듀플렉스(FULL-DUPLEX) 모드 지원 여부를 인지했다던지, ii)특정하게 풀-듀플렉스(FULL-DUPLEX) 모드 동작 또는 지원이 결정되어 있는 경우에 있어서 FDR을 수행하는 경우, iii)FDR에서 사용하는 주파수가 와이드밴드(wideband)로 사용되어 주파수 구분이 필요 없는 경우 등에 대해 단계 S1101 의 적어도 일부가 생략될 수 도 있다.This step S1101 may be omitted in some cases, or may be reset through periodic / abnormal signaling. For example, i) whether the UE supports full-duplex mode through different paths, or ii) when the full-duplex mode operation or support is determined in particular. In the case of performing FDR, at least a part of step S1101 may be omitted for the case where iii) the frequency used in the FDR is used as a wideband so that frequency division is not necessary.
이하에서는 단계 S1101 에서의 단말 배치와 90도 간격으로 형성되는 기지국 빔포밍 예시를 도 12d와 같다고 가정한다. Hereinafter, it is assumed that an example of a base station beamforming formed at 90 degree intervals with the terminal arrangement in step S1101 is the same as that of FIG. 12D.
단계 S1102에서는 기지국은 i번째 빔을 형성하여 측정 신호를 후보 단말로 송신한다.In step S1102, the base station forms an i-th beam and transmits a measurement signal to the candidate terminal.
이에 따라, 측정 신호를 수신한 매 빔포밍 방향에 대해 각 그룹 후보 단말들이 신호를 측정한다 (S1103). 이 때, 신호 측정은 각각의 빔포밍 방향에 대하여 독립적으로 수행될 수 있고, 모든 빔포밍 방향에 대하여 동시에 수행될 수 도 있다Accordingly, each group candidate terminal measures a signal for every beamforming direction in which the measurement signal is received (S1103). In this case, the signal measurement may be performed independently for each beamforming direction, or may be simultaneously performed for all beamforming directions.
S1103 단계 이후, 각 그룹 후보 단말들은 측정 결과를 기지국으로 송신한다. 이 때, 측정 결과의 보고 과정은 매 빔포밍 방향에 대하여 단말들이 수행할 수도 있고, 모든 빔포밍 방향에 대하여 측정이 완료된 후 한 번에 수행될 수 도 있다. 예를 들어, 단말이 각각의 빔포밍 방향에 대한 측정이 완료되는 경우에는, 다른 빔포밍 방향에 대한 측정이 완료되지 아니한 경우라도, 이미 측정이 완료된 빔포밍 방향에 대한 보고가 수행될 수 있으며, 경우에 따라서는 모든 빔포밍이 완료된 경우에 수행될 수 도 있다.After step S1103, each group candidate terminal transmits the measurement result to the base station. At this time, the reporting process of the measurement result may be performed by the terminals for every beamforming direction, or may be performed at once after the measurement is completed for all the beamforming directions. For example, when the UE completes the measurement for each beamforming direction, even if the measurement for the other beamforming direction is not completed, a report on the beamforming direction in which the measurement is completed may be performed. In some cases, this may be performed when all beamforming is completed.
예를 들어, S1103에서는 단말이 간섭 측정을 수행하며 RSRP(Reference Signal Received Power) 또는 RSRQ(Reference Signal Received Quality) 등을 측정할 수 있다. 이 때, 간섭 측정용 신호는 IDI 측정용 신호 (Inter-Device Interference Channel State Information-RS, IDICSI-RS)를 사용할 수 있다. 바람직하게, IDI 측정 신호는 상향링크 자원 배치에 포함되어야 하는데, FDR 시스템에서 IDI 유발 단말은 기지국에 상향링크로 신호를 송신하는 도중 IDI가 발생하기 때문이다.For example, in S1103, the UE performs interference measurement and can measure RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality). In this case, the interference measurement signal may use an IDI measurement signal (Inter-Device Interference Channel State Information-RS, IDICSI-RS). Preferably, the IDI measurement signal should be included in the uplink resource arrangement because the IDI-inducing terminal in the FDR system generates IDI while transmitting a signal to the base station in uplink.
S1104에서 단말의 측정 정보 보고는 이하 방안 1 내지 방안 3중 하나의 방안에 따라 수행될 수 있다.In S1104, the measurement information report of the terminal may be performed according to one of the following methods 1 to 3.
● 방안 1: 단말은 매 빔포밍 방향에 대한 보고를 수행할 수 있다. Method 1: The terminal may perform reporting on every beamforming direction.
즉, 매 빔포밍 방향에 대하여, PUCCH/PUSCH의 UCI 포맷(UCI format) 등을 통해, 측정 값 또는 측정 값의 오프셋(offset)을 전송할 수 있다. 이 때, 기지국은 묵시적(implicit)으로 단말로부터 보고 받는 측정 정보를 순차적으로 빔포밍 인덱스와 매핑할 수 도 있다. 또한, 단말은 측정 보고 시, 데이터 전송이 이루어지지 않는 경우 기존 CQI 인덱스 (CQI index)를 차용하여 보고할 수도 있다. That is, for every beamforming direction, a measurement value or an offset of the measurement value may be transmitted through a UCI format (UCI format) of the PUCCH / PUSCH. At this time, the base station may implicitly map the measurement information reported from the terminal to the beamforming index sequentially. In addition, the terminal may report by borrowing the existing CQI index (CQI index) when data transmission is not made when the measurement report.
나아가, 임계치(Threshold)를 정해 특정 값 이하 또는 특정 값 이상 값에 대해서는 보고를 생략할 수도 있다. 예를 들어, 특정 값 이하임을 알려주는 인덱스 또는 특정 값을 보고할 수 있다. (마찬가지로, 특정 값 이상의 경우에도 인덱스/특정 값을 보고할 수 있다.) 이는 기지국에 대하여 측정 값이 큰지 작은 지를 알려줘야 하기 때문에, 특정 값 이하 또는 특정 값 이상에 대해 둘 중 하나는 반드시 보고가 수행되어야 한다. 이 때에도 단말은 특정 임계치(threshold) 이하의 작은 값이거나 특정 임계치(threshold) 이상의 큰 값에 대해, CQI 인덱스(CQI index)를 매핑하여 보고할 수도 있다. In addition, the threshold may be determined to omit reporting on values below a certain value or above a certain value. For example, you can report an index or a specific value indicating that it is below a certain value. (Similarly, an index / specific value can be reported even if it is above a certain value.) Since it must tell the base station whether the measured value is large or small, either report below or above a certain value must be performed. Should be. In this case, the UE may also report by mapping a CQI index for a small value below a specific threshold or a large value above a certain threshold.
● 방안 2: 단말은 모든 빔포밍 방향에 대한 보고를 수행한다. (묵시적(implicit)인 빔포밍 인덱스 매핑)Scheme 2: The terminal reports all beamforming directions. (Implicit beamforming index mapping)
단말은 모든 빔포밍 방향의 PUCCH/PUSCH의 UCI 포맷 등을 통해 측정 값 또는 측정 값의 오프셋(offset)을 전송할 수 있다. The terminal may transmit the measured value or the offset of the measured value through the UCI format of the PUCCH / PUSCH in all beamforming directions.
이 때, 기지국은 묵시적(implicit)으로 단말로부터 보고 받는 측정 정보를 순차적으로 빔포밍 인덱스와 매핑할 수 도 있다. 또한, 단말은 상기 매 빔포밍 방향의 경우와 마찬가지로 임계치(threshold)를 정한 뒤 연속된 측정 정보를 보고할 수 도 있다. At this time, the base station may implicitly map the measurement information reported from the terminal to the beamforming index sequentially. In addition, as in the case of each beamforming direction, the terminal may report successive measurement information after setting a threshold.
● 방안 3: 모든 빔포밍 방향에 대한 보고 (명시적(explicit)인 빔포밍 인덱스 매핑)Option 3: Report on all beamforming directions (explicit beamforming index mapping)
단말은 모든 빔포밍 방향의 PUCCH/PUSCH의 UCI 포맷 등을 통해 측정 값 또는 측정 값의 오프셋(offset)을 전송할 수 있다. 이 때, 기지국은 명시적(explicit)으로 빔포밍 인덱스와 해당 인덱스에서 측정된 정보를 보고할 수 있다.The terminal may transmit the measured value or the offset of the measured value through the UCI format of the PUCCH / PUSCH in all beamforming directions. At this time, the base station may explicitly report the beamforming index and the information measured at the index.
이 때, 빔포밍 인덱스 미 전송을 통해 임계치(threshold) 이하 특정 값을 전송하지 않을 수 도 있다. 예를 들어 도 6에서 단말 b는 3번째 빔포밍에 대해 매우 낮은 값을 측정할 수 있으며, 이는 측정 값이 3번째 빔 전송 시 3번째 빔에 해당하는 단말(e 단말)에 대한 영향(impact)이 '0'이라고 간주할 수 있어 해당 인덱스를 전송하지 않음으로써 나타낼 수 있다. In this case, the beamforming index may not transmit a specific value below a threshold through no transmission. For example, in FIG. 6, terminal b may measure a very low value for the third beamforming, which may affect the terminal (e terminal) corresponding to the third beam when the third beam is transmitted. This can be regarded as '0' and can be represented by not transmitting the corresponding index.
나아가, 본 발명의 실시예에서 빔 트래킹을 횟수를 조절할 수 도 있다(S1105). 예를 들어, N=4인 경우 도 6에서 1~4번 빔에 대해서의 수행을 나타낸다. 만약, N<4이라면 단말이 위치하지 않는 빔을 제외하는 방식으로 해당 빔에 대한 정보가 이전 측정을 통해 알 수 있는 경우에 사용할 수 있다. 또한, N>4인 경우는 단말의 이동이 예측되거나 이전 측정 값과의 차이가 많이 나서 이동한 단말로 판단된 경우 사용할 수 있다. Furthermore, in the embodiment of the present invention, the number of beam tracking may be adjusted (S1105). For example, when N = 4, the performance of beams 1 to 4 is illustrated in FIG. 6. If N <4, it may be used when the information about the beam can be known through previous measurement in a manner of excluding the beam where the terminal is not located. In addition, N> 4 may be used when the movement of the terminal is predicted or when it is determined that the terminal is moved after a large difference from the previous measurement value.
나아가, S1101에서 초기 설정 N 값과 빔포밍 생성 행렬 전송 시 해당 N 값을 미리 설정할 수 있다. 또는, 그룹핑이 완료된 후 다음 측정에 대한 지시를 S1107에서 N값과 빔포밍 각도 및 관련 빔포밍 생성 행렬을 전송할 수 있다. Furthermore, in operation S1101, the N value and the corresponding N value may be set in advance when the beamforming generation matrix is transmitted. Alternatively, after the grouping is completed, an indication for the next measurement may be transmitted in step S1107 with an N value, a beamforming angle, and an associated beamforming generation matrix.
빔 패턴 특성 상 메인 로브(main lobe)와 사이드 로브(side lobe) 사이의 전력이 약화되는 현상을 고려하여 빔포밍 각도를 측정 시마다 변경할 수 있으므로 해당 빔포밍 생성 행렬에 대한 정보를 전송할 수 있다. 예를 들어, 공유하는 생성 행렬 중에서 사용하는 생성 행렬 또는 생성 행렬 묶음에 대한 인덱스(index) 변경을 지시할 수 있다. The beamforming angle can be changed every measurement in consideration of the weakening of power between the main lobe and the side lobe due to the beam pattern characteristic, so that information on the beamforming generation matrix can be transmitted. For example, an index change for a generation matrix or a generation matrix bundle used among shared generation matrices may be indicated.
S1106에서는 보고된 정보를 바탕으로 단말 그룹을 설정할 수 있다. 단말로부터 보고된 측정 값은 기지국으로부터의 반경과 빔 방향에 대한 전력을 고려한 값을 의미한다. In S1106, the terminal group may be set based on the reported information. The measured value reported from the terminal means a value considering power of a radius and a beam direction from a base station.
표 4는 도 12를 기준으로 빔포밍 방향에 따른 측정 값을 설명하기 위한 참고도이다.Table 4 is a reference diagram for explaining a measurement value according to the beamforming direction with reference to FIG. 12.
표 4
Figure PCTKR2016005929-appb-T000004
Table 4
Figure PCTKR2016005929-appb-T000004
기지국은 보고된 측정 값을 바탕으로 그룹 설정(즉, 그룹핑)을 수행한다. 이하, 규칙 A 내지 규칙 D는 단말 간 IDI 크기가 클 것으로 예측되는 단말 그룹 기법에 대한 그룹핑 알고리즘이다. 이 단말 그룹은 최저 관계(worst relation) 그룹과 동일하게 단말 간 IDI 크기가 큰 관계를 나타낸다.  The base station performs group setting (ie, grouping) based on the reported measurement value. In the following, rules A to D are grouping algorithms for a terminal group scheme that is expected to have a large IDI size between terminals. This terminal group represents a relationship with a large IDI size between terminals, similarly to a worst relation group.
- 규칙 A: 각 빔 방향에 대해 (표 4에서의 열(column)) 일정 값(예, 임계치) 이상의 단말이 존재하는 경우, 이 단말들은 해당 빔 방향에 대해 위치할 후보 단말로 선정한다. 만약, 일정 값(즉, 임계치) 이하의 단말이 존재하는 경우, 해당 단말은 해당 빔 방향에 존재하지 않는 단말이거나 해당 빔 방향에서 거리가 먼 단말일 수 있다. 따라서, 측정 값에 대한 최소 값을 설정하고, 모든 빔 방향에 대해 최소 값 이하인 경우 기지국에서의 전송 전력을 증가시켜 다시 빔 전송을 시도한다. 나아가, 최소 값을 넘는 빔 방향에 대해서는, 해당 빔 방향에 대한 단말들과의 측정 값 차이가 일정 값 이내인 경우 해당 단말들은 같은 그룹으로 설정될 수 있다. 이 때, 단말은 복수 개 그룹에 속할 수도 있다.Rule A: For each beam direction (column in Table 4), if there are terminals above a certain value (e.g., threshold), these terminals are selected as candidate terminals to be positioned for the beam direction. If a terminal having a predetermined value (ie, a threshold) or less exists, the terminal may be a terminal that does not exist in the beam direction or a terminal that is far from the beam direction. Therefore, the minimum value for the measured value is set, and when it is equal to or less than the minimum value for all beam directions, the transmission power at the base station is increased and the beam transmission is attempted again. Furthermore, for a beam direction exceeding the minimum value, the corresponding terminals may be set to the same group when the difference in measurement value with the terminals for the corresponding beam direction is within a predetermined value. In this case, the terminal may belong to a plurality of groups.
- 규칙 B: 각 단말에 대해 (표 4에서의 행(row)) 일정 값(예, 임계치, 단, 규칙 A에서의 임계치와 상이할 수 있음) 이상의 값이 2개 이상 존재하면 기지국에 가까이 있는 후보 단말로 선정한다.Rule B: For each UE, if more than one value (row in Table 4) is above a certain value (e.g., threshold, which may be different from the threshold in Rule A), The candidate terminal is selected.
- 규칙 C: 규칙 A에서 해당 빔 방향에 위치할 후보 단말들 중, B에 해당 하지 않는 단말은 해당 빔 방향에 위치한 단말로 판정한다. (표 4에서 a, b, c, e 단말) 즉, 같은 빔 안에 있는 단말이더라도 해당 빔에서의 측정 값의 차이가 일정 값 이내인 경우 해당 단말들은 같은 그룹으로 설정될 수 있다. Rule C: In Rule A, among candidate terminals located in the corresponding beam direction, a terminal not corresponding to B is determined as a terminal located in the corresponding beam direction. (A, b, c, e terminal in Table 4) That is, even if the terminal in the same beam, if the difference in the measured value in the beam is within a certain value, the corresponding terminals may be set to the same group.
- 규칙 D: 규칙 B에 해당하는 기지국 가까이 있는 후보 단말에 대해서는 일정 값 이상으로 보고된 빔들의 중간(정확한 위치는 각 빔 방향에 대한 측정 값의 비율에 따라 정중앙에서 이동)에 위치한 것으로 판정한다. 일정 값 이상으로 측정 값이 보고된 빔들에 속한 다른 단말들과의 측정 값 차이가 소정의 범위 이내인 경우 해당 단말들은 같은 그룹으로 설정할 수 있다. 예를 들어, 표 4의 경우, d 단말은 2, 3번째 빔 방향 중간쯤에 위치하는 것으로 판단하고 2번째 빔에 위치한 c 단말과 3번째 빔에 위치한 e 단말과의 각 측정 값 차이를 기반으로 그룹을 설정할 수 있다. 이 때, B에 해당하는 단말은 복수 개 그룹에 속할 수도 있다. Rule D: For a candidate terminal near a base station corresponding to Rule B, it is determined that the candidate terminal is located in the middle of the reported beams above a certain value (the exact position moves in the center according to the ratio of the measured value for each beam direction). When the measured value difference with other terminals belonging to beams in which the measured value is reported above a certain value is within a predetermined range, the corresponding terminals may be set in the same group. For example, in Table 4, the terminal d is determined to be located in the middle of the second and third beam directions, and is based on the difference between the measured values of the terminal c located on the second beam and the terminal e located on the third beam. You can set up groups. At this time, the terminal corresponding to B may belong to a plurality of groups.
이상의 규칙 A 내지 규칙 D에서, 일정 값들은 IDI 간섭 성능, 할당된 주파수 개수, 풀-듀플렉스(Full duplex) 모드 동작 단말의 개수 등에 의해 정해질 수 있다. In Rule A to Rule D, certain values may be determined by IDI interference performance, number of allocated frequencies, number of full duplex mode operating terminals, and the like.
S1107에서는 그룹핑 결과 정보를 단말에게 전송한다. 즉, i) 모든 단말에게 단말 자신이 속한 그룹 ID 만을 PDCCH의 DCI 포맷(DCI format)을 통해 비트(bit)를 할당하여 전송하거나, ii)모든 단말에게 단말 자신이 속한 그룹 ID와 주변 그룹 ID를 PDCCH를 통해 전송하거나, iii)모든 단말에게 모든 그룹 ID와 해당 그룹에 속하는 UE의 ID를 PDCCH를 통해 전송할 수 있다.In S1107, the grouping result information is transmitted to the terminal. That is, i) transmits only the group ID to which the terminal belongs to all terminals by allocating bits through the DCI format (DCI format) of the PDCCH, or ii) transmits the group ID to which all the terminals belong to the terminal and the neighboring group ID. Or, iii) all group IDs and IDs of UEs belonging to the corresponding group may be transmitted to all terminals through the PDCCH.
추가적으로 그룹핑이 완료된 후 다음 측정에 대한 지시를 S1107에서 빔 트래킹 (즉, N)값과 빔포밍 각도 및 관련 빔포밍 생성 행렬을 전송할 수 있다.In addition, after the grouping is completed, an indication of the next measurement may be transmitted in S1107 with a beam tracking (ie, N) value, a beamforming angle, and an associated beamforming generation matrix.
빔 패턴은 도 12와 같이 방향성 빔뿐만 아니라 방사형태(Omni-direction)의 빔을 송신하여 간섭 측정을 수행할 수 있다. 이 때, 측정 값이 큰 것은 기지국 주위에 위치하는 것을 의미하고, 이는 방향성 빔을 사용했을 때 모든 방향성 빔에 대해서 측정 값이 일정 수준으로 나타날 수 있다. 따라서, 방사 형태 빔을 이용하여 최악의 그룹(worst group)을 설정할 수 있으며, 측정 값이 작은 경우에 한하여 방향성 빔에 대한 값을 이용하여 그룹 설정을 할 수도 있다.As shown in FIG. 12, the beam pattern may transmit an omni-direction beam as well as a directional beam to perform interference measurement. In this case, a large measured value means that the base station is located around the base station. When the directional beam is used, the measured value may be displayed at a predetermined level for all the directional beams. Therefore, the worst group may be set using the radial beam, and the group may be set using the value for the directional beam only when the measured value is small.
도 13은 본 발명의 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 13 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
무선 통신 시스템에 릴레이가 포함되는 경우, 백홀 링크에서 통신은 기지국과 릴레이 사이에 이뤄지고 억세스 링크에서 통신은 릴레이와 단말 사이에 이뤄진다. 따라서, 도면에 예시된 기지국 또는 단말은 상황에 맞춰 릴레이로 대체될 수 있다.When a relay is included in the wireless communication system, communication is performed between the base station and the relay in the backhaul link, and communication is performed between the relay and the terminal in the access link. Therefore, the base station or the terminal illustrated in the figure may be replaced with a relay according to the situation.
도 13을 참조하면, 무선 통신 시스템은 기지국(BS, 110) 및 단말(UE, 120)을 포함한다. 기지국(110)은 프로세서(112), 메모리(114) 및 무선 주파수(Radio Frequency, RF) 유닛(116)을 포함한다. 프로세서(112)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. 단말(120)은 프로세서(122), 메모리(124) 및 RF 유닛(126)을 포함한다. 프로세서(122)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다. 기지국(110) 및/또는 단말(120)은 단일 안테나 또는 다중 안테나를 가질 수 있다.Referring to FIG. 13, a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120. Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116. The processor 112 may be configured to implement the procedures and / or methods proposed in the present invention. The memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112. The RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal. The terminal 120 includes a processor 122, a memory 124, and an RF unit 126. The processor 122 may be configured to implement the procedures and / or methods proposed by the present invention. The memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122. The RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal. The base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNodeB(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station. A base station may be replaced by terms such as a fixed station, a Node B, an eNodeB (eNB), an access point, and the like.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof. In the case of a hardware implementation, an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. In the case of implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above. The software code may be stored in a memory unit and driven by a processor.
상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit of the invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.
상술한 바와 같은 무선 통신 시스템에서 풀-듀플렉스(Full-Duplex) 무선 통신 시스템에서 단말간 간섭 측정 기반 그룹핑 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.In the wireless communication system as described above, a method for inter-terminal interference measurement based grouping and a device therefor in a full-duplex wireless communication system have been described with reference to an example applied to a 3GPP LTE system. It is possible to apply to a wireless communication system.

Claims (12)

  1. 풀-듀플렉스(Full-Duplex) 통신을 지원하는 기지국의 그룹핑(grouping) 방법에 있어서, In a grouping method of a base station supporting full-duplex communication,
    상기 기지국이 다수의 영역에 대응하는 다수의 빔포밍(beamforming)된 측정 신호들을 송신하며, 상기 측정 신호는 풀-듀플렉스 통신을 지원하는 단말들간의 IDI(Inter-Device Interference) 측정을 위한 측정 신호인 단계;The base station transmits a plurality of beamformed measurement signals corresponding to a plurality of areas, and the measurement signal is a measurement signal for measuring IDI (Inter-Device Interference) between terminals supporting full-duplex communication. step;
    상기 다수의 영역 각각에 위치하는 적어도 하나의 단말로부터 IDI 측정 정보를 수신하는 단계; 및Receiving IDI measurement information from at least one terminal located in each of the plurality of areas; And
    상기 IDI 측정 정보에 기반하여 단말 그룹들을 설정하는 단계를 포함하는,Setting terminal groups based on the IDI measurement information;
    그룹핑 방법.How to group.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 IDI 측정 정보는,The IDI measurement information,
    상기 적어도 하나의 단말로부터 상향링크 채널을 통하여 전송되며,Transmitted from the at least one terminal through an uplink channel,
    상기 측정 신호들의 방향 중 특정 방향에 대한 IDI 측정 값을 포함하는 것을 특징으로 하는,Characterized in that the IDI measurement value for a particular direction of the direction of the measurement signal,
    그룹핑 방법.How to group.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 IDI 측정 정보는,The IDI measurement information,
    상향링크 데이터 송신이 수행되지 않는 경우, 채널 상태 정보(Channel Quality Indicator)를 이용하여 IDI 측정 값이 지시되는 것을 특징으로 하는,When the uplink data transmission is not performed, characterized in that the IDI measurement value is indicated using the channel quality information (Channel Quality Indicator),
    그룹핑 방법.How to group.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 IDI 측정 정보는,The IDI measurement information,
    IDI 측정 값이 임계치 이하인 경우 특정 값으로 지시되는 것을 특징으로 하는,Characterized in that indicated by a specific value when the IDI measurement value is below the threshold,
    그룹핑 방법.How to group.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 IDI 측정 정보는,The IDI measurement information,
    IDI 측정 값이 임계치 이상인 경우 특정 값으로 지시되는 것을 특징으로 하는,Characterized in that indicated by a specific value when the IDI measured value is above the threshold,
    그룹핑 방법.How to group.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 IDI 측정 정보는,The IDI measurement information,
    상기 적어도 하나의 단말로부터 상향링크 채널을 통하여 전송되며,Transmitted from the at least one terminal through an uplink channel,
    상기 측정 신호들의 방향들 모두에 대한 IDI 측정 값을 포함하는 것을 특징으로 하는,Characterized in that it comprises an IDI measurement value for all of the directions of the measurement signals,
    그룹핑 방법.How to group.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 IDI 측정 정보에 포함된 IDI 측정 값들을 순차적으로 빔포밍 인덱스에 매핑하는 단계를 더 포함하는,And sequentially mapping IDI measurement values included in the IDI measurement information to a beamforming index.
    그룹핑 방법.How to group.
  8. 제 6 항에 있어서,The method of claim 6,
    상기 IDI 측정 정보는,The IDI measurement information,
    상기 빔포밍된 모든 방향의 빔포밍 인덱스들과 상기 빔포밍 인덱스들이 지시하는 IDI 측정 값들을 포함하는 것을 특징으로 하는,Characterized in that it comprises beamforming indexes of all beamformed directions and IDI measurement values indicated by the beamforming indexes.
    그룹핑 방법.How to group.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 단말들간의 거리 관계 및 상기 IDI 측정 정보에 따라 트래킹(tracking)되는 것을 특징으로 하는,Characterized in that the tracking is tracked according to the distance relation between the terminals and the IDI measurement information.
    그룹핑 방법.How to group.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 단말 그룹들을 설정하는 단계는,Setting the terminal groups,
    IDI 측정 값이 최소 값을 넘는 적어도 하나의 후보 단말들을 선정하는 단계;Selecting at least one candidate terminal whose IDI measurement value exceeds a minimum value;
    상기 후보 단말들에 대하여 소정 범위의 IDI 측정 값 차이를 기반으로 그룹을 설정하는 단계를 포함하는,And setting a group for the candidate terminals based on a difference of IDI measurement values within a predetermined range.
    그룹핑 방법.How to group.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 소정 범위는,The predetermined range is
    IDI 간섭 성능, 할당된 주파수의 개수, 풀-듀플렉스 모드 동작 단말의 개수 중 적어도 하나에 의하여 결정되는 것을 특징으로 하는,Characterized in that determined by at least one of the IDI interference performance, the number of allocated frequencies, the number of full-duplex mode operation terminal,
    그룹핑 방법.How to group.
  12. 풀-듀플렉스(Full-Duplex) 통신을 지원하는 그룹핑(grouping)을 수행하는 기지국에 있어서, In the base station performing grouping to support full-duplex communication,
    무선 주파수 유닛; 및Radio frequency unit; And
    프로세서를 포함하며,Includes a processor,
    상기 프로세서는, 다수의 영역에 대응하는 다수의 빔포밍(beamforming)된 측정 신호들을 송신하며, 상기 다수의 영역 각각에 위치하는 적어도 하나의 단말로부터 IDI 측정 정보를 수신하고, 상기 IDI 측정 정보에 기반하여 단말 그룹들을 설정하도록 구성되고,The processor transmits a plurality of beamformed measurement signals corresponding to a plurality of areas, receives IDI measurement information from at least one terminal located in each of the plurality of areas, and based on the IDI measurement information. Configured to set terminal groups,
    상기 측정 신호는 풀-듀플렉스 통신을 지원하는 단말들간의 IDI(Inter-Device Interference) 측정을 위한 측정 신호인The measurement signal is a measurement signal for measuring inter-device interference (IDI) between terminals supporting full-duplex communication.
    기지국. Base station.
PCT/KR2016/005929 2015-06-03 2016-06-03 Interference measurement-based grouping method in full-duplex wireless communication system and apparatus therefor WO2016195427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562170658P 2015-06-03 2015-06-03
US62/170,658 2015-06-03

Publications (1)

Publication Number Publication Date
WO2016195427A1 true WO2016195427A1 (en) 2016-12-08

Family

ID=57441997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005929 WO2016195427A1 (en) 2015-06-03 2016-06-03 Interference measurement-based grouping method in full-duplex wireless communication system and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2016195427A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115715010A (en) * 2017-01-05 2023-02-24 三星电子株式会社 Method, device and system for terminal identification and paging signal transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140169234A1 (en) * 2012-12-14 2014-06-19 Futurewei Technologies, Inc. Systems and Methods for Interference Avoidance, Channel Sounding, and Other Signaling for Multi-User Full Duplex Transmission
US20140226538A1 (en) * 2013-02-13 2014-08-14 Qualcomm Incorporated Method and apparatus for managing interference in full-duplex communication
WO2014208953A1 (en) * 2013-06-25 2014-12-31 엘지전자 주식회사 Method and apparatus for estimating self-interference in wireless access system supporting full-duplex radio communication
US20150055515A1 (en) * 2012-01-16 2015-02-26 Huawei Technologies Co., Ltd. Method and apparatus for handling full-duplex interference
US20150078177A1 (en) * 2013-09-13 2015-03-19 Blackberry Limited Mitigating interference in full duplex communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150055515A1 (en) * 2012-01-16 2015-02-26 Huawei Technologies Co., Ltd. Method and apparatus for handling full-duplex interference
US20140169234A1 (en) * 2012-12-14 2014-06-19 Futurewei Technologies, Inc. Systems and Methods for Interference Avoidance, Channel Sounding, and Other Signaling for Multi-User Full Duplex Transmission
US20140226538A1 (en) * 2013-02-13 2014-08-14 Qualcomm Incorporated Method and apparatus for managing interference in full-duplex communication
WO2014208953A1 (en) * 2013-06-25 2014-12-31 엘지전자 주식회사 Method and apparatus for estimating self-interference in wireless access system supporting full-duplex radio communication
US20150078177A1 (en) * 2013-09-13 2015-03-19 Blackberry Limited Mitigating interference in full duplex communication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115715010A (en) * 2017-01-05 2023-02-24 三星电子株式会社 Method, device and system for terminal identification and paging signal transmission

Similar Documents

Publication Publication Date Title
WO2018080151A1 (en) Method for performing harq for v2x communication in wireless communication system and apparatus therefor
WO2014107033A1 (en) Method for monitoring downlink control channel in wireless communication system and device for same
WO2016126033A1 (en) Method for allocating resource by considering inter-device interference in full-duplex wireless communication system and apparatus therefor
WO2018169327A1 (en) Method for ack/nack transmission and reception in wireless communication system and apparatus therefor
WO2014104627A1 (en) Apparatus and method for performing device-to-device communication in wireless communication system
WO2013043007A2 (en) Method and apparatus for random-accessing in wireless communication system
WO2014137170A1 (en) Method and apparatus for transmitting/receiving signal related to device-to-device communication in wireless communication system
WO2014209035A1 (en) Method and apparatus for acquiring control information in wireless communication system
WO2014007593A1 (en) Method and apparatus for transceiving control signal
WO2017078384A1 (en) Communication method using narrow band, and mtc device
WO2013105821A1 (en) Method and apparatus for receiving signal in wireless communication system
WO2015016567A1 (en) Method and device for performing link adaptation in wireless communication system
WO2016018069A1 (en) Method for transmitting control information for d2d communication in wireless communication system and device therefor
WO2016048111A2 (en) Monitoring method by terminal in wireless communication system supporting carrier aggregation and device for same
WO2016048112A2 (en) Method for transmitting and receiving signal by terminal in wireless communication system supporting carrier aggregation and device for same
WO2018131933A1 (en) Method and apparatus for transmitting sa and data associated with congestion control in wireless communication system
WO2016085310A1 (en) Wireless signal transmission and reception method and device in wireless communication system
WO2019031946A1 (en) Method for transmitting/receiving signal on basis of lte and nr in wireless communication system, and device therefor
WO2014119939A1 (en) Method and apparatus for receiving downlink signal in wireless communication system
WO2016018075A1 (en) Method for transceiving signal for device-to-device (d2d) communication and apparatus therefor in wireless communication system
WO2012144839A2 (en) Method and apparatus for transmission of signal from device to device in a wireless communication system
WO2016018132A1 (en) Method supporting d2d communication and apparatus therefor in wireless communication system
WO2018101738A1 (en) Resource allocation method for v2x communication in wireless communication system and device therefor
WO2016117983A1 (en) Method and apparatus for transmitting/receiving signal of device-to-device communication terminal in wireless communication system
WO2017043947A1 (en) Method for transmitting signal for v2x communication in wireless communication system and device for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803780

Country of ref document: EP

Kind code of ref document: A1