WO2016195194A2 - Novel tlr2 antagonists - Google Patents

Novel tlr2 antagonists Download PDF

Info

Publication number
WO2016195194A2
WO2016195194A2 PCT/KR2015/014202 KR2015014202W WO2016195194A2 WO 2016195194 A2 WO2016195194 A2 WO 2016195194A2 KR 2015014202 W KR2015014202 W KR 2015014202W WO 2016195194 A2 WO2016195194 A2 WO 2016195194A2
Authority
WO
WIPO (PCT)
Prior art keywords
tlr2
receptor
antagonist
compounds
ligand
Prior art date
Application number
PCT/KR2015/014202
Other languages
French (fr)
Korean (ko)
Other versions
WO2016195194A3 (en
Inventor
최상돈
듀라이프라산나벤카테시
아첵아스마
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150175045A external-priority patent/KR101745524B1/en
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Priority to EP15894366.2A priority Critical patent/EP3305767B1/en
Priority to US15/578,086 priority patent/US10308655B2/en
Publication of WO2016195194A2 publication Critical patent/WO2016195194A2/en
Publication of WO2016195194A3 publication Critical patent/WO2016195194A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4436Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a heterocyclic ring having sulfur as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings

Definitions

  • the present invention relates to a novel small molecule TLR2 antagonist, and in particular to 19 novel TLR2 antagonists, pharmaceutical compositions for the prophylaxis or treatment of inflammatory diseases comprising the antagonist and TLR4 modulators.
  • Virtual screening is an in silico that can rapidly predict the binding of molecules from the compound library to target receptors and effectively prioritize molecules with related biological activities for further identification experiments.
  • Approach Overcoming the high cost problem, which is a disadvantage of experimental high-throughput screening (HTS), requires the massive downsizing of a large amount of compound libraries into a small set that can contain specific target drugs.
  • HTS experimental high-throughput screening
  • virtual screening has been increasingly applied in advance of experimental HTS in drug discovery projects.
  • Application of various virtual screening techniques can significantly increase research efficiency in the field of drug discovery.
  • One widely applied technique in virtual screening is to compare two-dimensional (2D) properties between experimentally determined ligands and molecules from compound libraries. In this approach, the structural characteristics of the molecules are expressed by the type of constituent atoms and their bond level.
  • Another technique is to use the three-dimensional structural properties of molecules to compare similarities between molecules.
  • Virtual screening approaches based on three-dimensional structure are classified into approaches based on ligand coordinates and approaches based on receptor coordinates.
  • the ligand-based approach searches for molecules similar to the active ligands determined experimentally by comparing three-dimensional structural properties between molecules. This approach is typically applied where only limited information about the target receptor is available.
  • Ligand-based methods essentially involve a comparative analysis of structural properties, and therefore their application requires the acquisition of information of known active ligands.
  • One of the valid programs, Rapid Overlay of Chemical Structures (ROCS) uses an overlapping method for large-scale form-based comparisons.
  • ROCS adopts a method of comparing structural similarities between two molecules based on three-dimensional form.
  • Three-dimensional forms of specifically parameterized molecules use Gaussian-based overlap to obtain an optimal alignment of the largest volume overlap between the two molecules. Since the similarity of the chemical properties as well as the morphological similarity of the molecules is a decisive factor in biological activity, the overlap between the functional groups possessed by the compound is further calculated using the color force field. By precomputing the conformers ensemble and comparing each of them sequentially, the conformational flexibility of the molecules can be considered.
  • the excellence of the ROCS method has been reported in a number of studies. If high-resolution coordinates of the target receptor are available, molecular docking is the common method of choice in virtual screening.
  • Docking is used to quantify the binding affinity between molecules and receptors from the compound library by computer operation to predict the likelihood of binding between them. In essence, this method does not necessarily require information about compounds that are active against the drug target, but can increase performance by incorporating the binding properties of known active substances into the docking process.
  • TLR2 Toll-like receptor 2
  • TLR2 Toll-like receptor 2
  • Signaling associated with TLR2 has been reported to be associated with cancer, tuberculosis, anemia, atopic dermatitis and atherosclerosis.
  • antagonists of TLR2 have become a major pharmaceutical target due to its inhibitory effect on inflammatory diseases. Therefore, there is a need for screening a new pharmaceutically available antagonist of TRL2, and in particular, research to screen for a small molecule antagonist is needed.
  • the present inventors screened about 7 million compounds based on drug-specific molecular group model, and selected the TLR2 antagonist, a novel small molecule that can be used for the prevention or treatment of inflammatory diseases. Was completed.
  • Another object of the present invention is to provide a pharmaceutical composition for preventing or treating an inflammatory disease comprising the TLR2 antagonist, an oral dosage form, and a TLR4 modulator comprising the antagonist.
  • novel TLR2 antagonist according to the present invention can be effectively used as an oral administration because of its low molecular weight and high oral bioavailability, and effectively inhibits IL-8 secretion and does not cause toxicity in vivo, thus preventing or treating inflammatory diseases. It can be usefully used in pharmaceutical compositions.
  • novel TLR2 antagonists according to the invention can also be used as modulators of TLR4.
  • 1 is a simplified diagram of the overall steps for identifying a TLR2 antagonist.
  • FIG. 2 is a diagram showing the results of identifying the major residues affecting the binding based on the free energy calculated as a result of in silico alanine scanning mutagenesis.
  • Figure 3 is a diagram showing the crystal structure of the TLR2-TLR1-Pam 3 CSK 4 complex used to build the receptor-ligand-based drug specific molecule model.
  • FIG. 5 is a diagram showing the characteristics of five selected drug specific molecule groups in the receptor-ligand-based drug specific molecule model and the periphery of the residues labeled therein (asterisk: TLR1 residue, green sphere: HBA, purple sphere: HBD, blue spheres: HBY, gray spheres: space occupied by proteins).
  • FIG. 6 is a diagram showing the main features shown by the receptor-ligand-based drug specific molecule model.
  • FIG. 7 is a diagram showing the results of constructing four sub-models of five features selected from a receptor-ligand-based drug specific molecule cluster model.
  • FIG. 8 is a diagram showing the structure of compounds A, B, and C used to build a ligand-based drug specific molecule group model.
  • FIG. 9 is a diagram showing active molecules mapped from Ligand-based Drug Specific Molecule Group Model 1 constructed from Compound A.
  • FIG. 10 is a diagram showing active molecules mapped from ligand-based drug specific molecule group model 2 constructed from compounds B and C.
  • FIG. 10 is a diagram showing active molecules mapped from ligand-based drug specific molecule group model 2 constructed from compounds B and C.
  • FIG. 12 is a diagram showing a two-dimensional structure of the three screened compounds (S06690562, S01688300, S01382085).
  • 13A is a diagram showing the docking result of screened compound S06690562.
  • 13B is a view showing a docking result of the screened compound S01688300.
  • 13C is a view showing the docking result of the screened compound S01382085.
  • 14a is a diagram showing the docking result of screened compound S06690562.
  • 14B is a view showing a docking result of the screened compound S01688300.
  • 14C is a view showing the docking result of the screened compound S01382085.
  • 15 is a diagram illustrating the secretion of IL-8 by treating 19 compounds in cells (* P ⁇ 0.05, ** P ⁇ 0.01).
  • FIG. 16 shows the results of inhibition of secretion of concentration-dependent IL-8 of three screened compounds (S06690562, S01688300, S01382085) (* P ⁇ 0.05, ** P ⁇ 0.01).
  • 17 is a diagram confirming the cytotoxicity of the three screened compounds (S06690562, S01688300, S01382085).
  • the present invention provides at least one TLR2 (Toll-like receptor 2) antagonist selected from the group consisting of the compounds of Table 1 below.
  • TLR2 Toll-like receptor 2
  • TLR2 Toll-like receptor 2
  • bacterial cell components fat polysaccharide, peptide glycan, adipocyte protein, anti-bacterial glycolipid, etc.
  • heat shock protein hsp
  • TLR2 inflammatory cytokines and inflammatory mediators
  • an "antagonist” binds to a receptor of a drug or an agonist that acts to attenuate some or all of its action by combination with another drug, but itself binds the receptor. Means a substance that does not exhibit the physiological effect through.
  • the TLR2 antagonist since the TLR2 antagonist has a strong binding force to TLR2, at the micromolecular level, the TLR2 antagonist may function to partially inhibit TLR2-related signaling but not completely abolish it.
  • the "TLR2 antagonist" of the present invention comprises 19 compounds of Table 1 and preferably 6 compounds (S02546436, S02276077, S06696686, S06690562, S01688300, S01382085), more preferably three compounds (S06690562, S01688300, S01382085).
  • the TLR2 antagonist of the present invention may include, without limitation, the 19 compounds of Table 1 as well as analogs thereof having the same and similar activities.
  • Some of the compounds, such as S06690562, are tautomer molecules and may exist in enol or keto form by tautomerization depending on pH.
  • the TLR2 antagonist of the present invention is characterized by being a small molecule because it does not have a fatty acyl residue. Since such a decrease in molecular weight is advantageous in pharmacokinetics, the antagonists of the present invention and analogs thereof can be usefully used for designing a drug as an active ingredient of a pharmaceutical composition.
  • the "small molecule” means, but not limited to, an organic compound having a molecular weight of 900 Da or less.
  • the TLR2 antagonist of the present invention has a core structure different from the molecules previously presented as antagonists of TLR2.
  • the nineteen compounds shown in Table 1 are characterized by having different structures.
  • the 19 TLR2 antagonists of the present invention include all materials purchased and used or synthesized through methods known in the art.
  • the present invention also provides a pharmaceutical composition for preventing or treating an inflammatory disease comprising the TLR2 (Toll-like receptor 2) antagonist.
  • TLR2 Toll-like receptor 2
  • inflammatory disease is edema, dermatitis, allergy, atopic, asthma, conjunctivitis, periodontitis, rhinitis, otitis media, sore throat, tonsillitis, pneumonia, gastric ulcer, gastritis, Crohn's disease, colitis, hemorrhoids, gout, ankylosing spondylitis, rheumatic fever , But are not limited to, lupus, fibromyalgia, psoriatic arthritis, osteoarthritis, rheumatoid arthritis, periarthritis, tendonitis, hay salt, myositis, hepatitis, cystitis, nephritis, sjogren's syndrome and multiple sclerosis.
  • prevention means any action that inhibits or delays the progression of an inflammatory disease by administration of a composition of the present invention.
  • treatment refers to any action in which an inflammatory disease is ameliorated or beneficially altered by administration of a composition of the present invention.
  • the composition of the present invention comprises a pharmaceutically acceptable carrier.
  • Carriers included in the pharmaceutical composition of the present invention and acceptable carriers are those commonly used in the preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, Microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, saline, phosphate buffered saline (PBS) or Media and the like, but is not limited thereto.
  • PBS phosphate buffered saline
  • the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like.
  • a lubricant e.g., talc, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, a kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mann
  • compositions of the present invention can be used together, simultaneously, and sequentially, including additional ingredients that can be used to prevent or treat inflammatory diseases associated with TLR2.
  • Suitable dosages of the pharmaceutical compositions of the present invention may be prescribed in various ways depending on factors such as formulation method, mode of administration, age, weight, sex, morbidity, condition of food, time of administration, route of administration, rate of excretion and response to response of the patient. Can be.
  • the present invention also provides an oral administration agent for the prevention or treatment of an inflammatory disease comprising the TLR2 (Toll-like receptor 2) antagonist.
  • TLR2 Toll-like receptor 2
  • the TLR2 antagonist of the present invention is characterized by being a small molecule, oral bioavailability is good. Bioavailability in the present invention means a portion of the amount of drug administered that falls into the subcategory of the absorption of the drug and reaches the systemic circulation. Therefore, when the oral administration of oral administration for the prevention or treatment of inflammatory diseases comprising the TLR2 antagonist of the present invention orally has the effect of reaching the systemic circulation at a high rate.
  • Oral dosage forms according to the present invention can be prepared in solid pharmaceutical preparations such as tablets, pills, capsules, powders and granules, or in pharmaceutically acceptable aqueous solutions, suspensions and emulsions, syrups, pharmaceutical preparations dissolved in use and liquid pharmaceutical preparations for elixirs oral. Characterized in that the dosage form is administered.
  • the present invention comprises the steps of (a) constructing a receptor-ligand-based pharmacophore model; (b) building a ligand-based pharmacophore model; (c) screening the products of (a) and (b); And (d) performing a biological experiment with the resultant of (c) for screening.
  • TLR2 toll-like receptor 2
  • pharmacophore means a characteristic of a molecule necessary for molecular recognition of a ligand.
  • the "pharmacophore model” describes how various ligands can bind to common receptor sites and can be used for virtual screening of novel ligands that bind to the same receptor.
  • a method for constructing "receptor-ligand-based pharmacophore models" is TLR2-TLR1-Pam 3 CSK 4 Residor at the binding site of Pam 3 CSK 4 and TLR2-TLR1 in the complex is an In Silico Alanine Scanning Mutagenesis technique, a receptor- ligand comprising mutation of alanine.
  • Targeting binding sites of TLR2-TLR1-Pam 3 CSK 4 using the Pharmacophore Generation protocol includes techniques for identifying key residues that play an important role in binding. Using computer-based techniques saves time and costs.
  • Pam 3 CSK 4 of the present invention is an agonist of TLR2 and TLR1.
  • the method for constructing a "ligand-based pharmacophore model" in the present invention includes the process of characterizing a drug-specific molecular group model using an antagonist of TLR2, a known small molecule.
  • Screening the results identified from the drug-specific molecular cluster model constructed in the present invention may include fit value, molecular similarity, screening of drug-like compounds, molecular docking and scoring, and rescoring of docking complexes. rescoring).
  • TLR2 the antagonist of TLR2
  • biological experiment includes IL-8 secretion, cell viability assay. Through the biological experiments, it is possible to determine whether candidate compounds of the selected antagonists of TLR2 act as antagonists of TLR2 and whether they exhibit toxicity.
  • the present invention also provides at least one TLR4 (Toll-like receptor 4) regulator selected from the group consisting of the compounds of Table 1 above.
  • TLR4 Toll-like receptor 4
  • regulatory means a substance that increases or decreases the molecular level to a measurable level, and includes, but is not limited to, inhibitors, antagonists, agonists and the like.
  • TLR4 of the present invention is characterized by having structural and functional similarities to TLR2, the compound screened with an antagonist of TLR2 may have a modulator activity of TLR4.
  • 19 compounds that are TLR2 antagonists of the invention can be utilized as modulators of TLR4.
  • the three residues are protein-ligand It was found to play an important role in the formation of the complex and was used to construct the following receptor-ligand-based drug specific molecule group model.
  • TLR2-TLR1-Pam 3 CSK 4 To build a receptor-ligand-based drug specific molecule model, TLR2-TLR1-Pam 3 CSK 4 to identify the characteristics of ligands that enable binding to receptors The complex was used. The crystal structure of the composite is shown in FIG. 3.
  • TLR2-TLR1-Pam 3 CSK 4 with default parameters Receptor- ligand by targeting lipopeptide binding sites of the complex Pharmacophore Generation protocol was used.
  • TLR2-TLR1-Pam 3 CSK 4 All the features of the drug-specific molecular groups based on the interaction of the complex were confirmed, which is shown in FIG. 4. All of the above features were selected as five features and are shown in FIG. 5. The main features were found in the active site around the main residues identified in Example 1 (Phe325 and Phe349 of TLR2, and Gln316 of TLR1) and the results are shown in FIG.
  • the ligand that enables binding with the protein has two hydrogen bond receptors (HBA), one hydrogen bond provider (HBD), and two hydrophobic features (HBY).
  • HBA hydrogen bond receptors
  • HBD hydrogen bond provider
  • HBY hydrophobic features
  • Compound A was used as a query molecule in constructing the ligand-based drug specific molecule model 1.
  • Ten drug specific molecule cluster models were constructed from various features of Compound A, of which three HBAs and two HBYs were constructed as ligand-based drug specific molecule cluster model 1. Based on this, active molecules were mapped and the results are shown in FIG. 9.
  • Compound B was used as a query molecule in constructing Ligand-based drug specific molecule group Model 2.
  • the characteristics of the drug-specific molecule group identified from Compound B were confirmed to be one HBD, two HBAs, and two HBYs, and the mapping results thereof are shown in FIG. 10.
  • TLR2 antagonist candidates In order to select TLR2 antagonist candidates from a library of about 7 million molecules commercially available, four sub-receptor-ligand-based drug specific molecule models constructed in Example 2 were used. The Search 3D Database of DS 4.0 was used and each of the four models was used as input. Best search method was used to calculate the degree of fit of the ligand to the drug-specific molecular group model (fit value). Based on this value, 500 molecules (hit) were obtained which were ideally mapped to each model. As a result, 2000 hit molecules were selected from a total of four models.
  • TLR2 antagonist candidates from a commercially available library of about 7 million molecules, from Ligand-based Drug Specific Molecule Group Model 1 with Compound A as input, according to the same method as Example 4 above.
  • 2312604 hit molecules were selected from 1651005 hit molecules from Ligand-Based Drug Specific Molecule Group Model 2 with Compound B input.
  • ADMET absorption, distribution, metabolism, excretiom, toxicity
  • 1126 molecules selected as drug-like compounds were identified from a total of 3500 hit molecules.
  • Drug-like characteristics of candidate compounds were calculated and screened to exclude molecules of low availability in drug development.
  • TLR2-TLR1 dimers were used to select optimal docking poses for ligand-receptor binding and to screen ligands.
  • Ligands were prepared with the Prepare Ligand module of DS 4.0. The binding position of the lipopeptide was selected as the docking position.
  • two screening programs were performed: CDocker (using CD, CHARMM force field) and AutoDock (AD) Vina.
  • 1126 drug-like compounds obtained in Example 6 using four CD 4 Pam 3 CSK 4 Docked in position was used.
  • the CD interaction energy was calculated and the top 100 poses were screened for about 60 compounds.
  • the 100 poses were redocked using AD Vina. At this time, dock_runscreening protocol is applied. As a result, the top 26 poses with good docking were screened based on the AD affinity energy value.
  • the 26 docking complexes obtained in Example 7 were prepared by molecular calculation based on the calculation of Poisson-Boltzmann surface area (MM / PBSA) binding free energy. dynamics, MD). MD simulations were performed using the g_mmpbsa tool, and the average binding energy and its standard deviation / error were calculated with MnPbSaSatat.pyscript.
  • Equation 1 MM / PBSA binding free energy
  • G bind is the mean binding free energy
  • G complex is the binding free energy of TRL2-TLR1 complex
  • G protein is the binding free energy of protein (receptor)
  • G ligand is the binding free energy of ligand.
  • HEK293-TLR2 (TLR1 is expressed at endogenous levels) and HEK293-Null cell line at 37 ° C., 95% air and 5% CO 2 at a density of 1 ⁇ 10 4 cells / well in 96-well tissue culture plates (BD Biosciences) Incubated for 24 hours at.
  • cell stimulation was done by treatment of 50 ⁇ M concentration of compound and 50 nM of Pam 3 CSK 4 (Invivogen, SanDiego, Calif., USA).
  • Pam 3 CSK 4 Invivogen, SanDiego, Calif., USA.
  • antagonist activity cells were treated with various concentrations of compounds for 1 hour, followed by co-treatment with 50 nM of Pam 3 CSK 4 .
  • IL-8 secretion was quantified in a human IL-8 ELISA Ready-SET-Go! ® (second-generation) kit (eBioscience, San Diego, Calif., USA) by the method according to the manufacturer's guide. 15 is shown.
  • HEK293-TLR2 and HEK293-Null cell lines were used for 10% heat-inactivated fetal bovine serum, Thermo Fisher Scientific Inc. (50 IU / mL penicillin, 50 ⁇ g / mL streptomycin). (Thermo Fisher Scientific Inc.) and Dulbecco's modified Eagle's medium (Thermo Fisher Scientific Inc., MA, USA) supplemented with Normocin TM 100 mg / mL (Invivogen., San Diego, Calif., USA). The compound was dissolved in dimethyl sulfoxide (Sigma-Aldrich, St. Louis, Mo., USA) in a brown tube and stored at a concentration of 10 mM.
  • dimethyl sulfoxide Sigma-Aldrich, St. Louis, Mo., USA
  • cell activity was measured using a CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS assay; Promega, Madison, WI, USA) according to the manufacturer's guidelines.
  • MTS assay Cells were incubated in 96-well plates at a concentration of 5 ⁇ 10 3 cells / mL and kept overnight at 37 ° C. in a humidified atmosphere containing 5% CO 2 .
  • the cultured cells were treated with three concentration conditions (12.5 ⁇ M, 25 ⁇ M, and 50 ⁇ M) of three screened compounds (S06690562, S01688300, S01382085).
  • the MTS solution was treated in the wells, and the absorbance was measured at 490 nm with a microplate spectrophotometer system (Molecular Devices Inc.), and the results are shown in FIG. 17.
  • the novel TLR2 antagonist according to the present invention effectively inhibits IL-8 secretion and does not cause toxicity in vivo, it may be usefully used in the pharmaceutical composition for preventing or treating inflammatory diseases. Since the TLR2 antagonist has a low molecular weight and high oral bioavailability, the TLR2 antagonist may be effectively used as an oral administration agent, and may also be used as a modulator of TLR4.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to TLR2 antagonists, which are small novel molecules, and, particularly, to: 19 novel TLR2 antagonists; a pharmaceutical composition, containing the antagonists, for preventing or treating inflammatory diseases; and a TLR4 modulator, containing the antagonists. The novel TLR2 antagonists according to the present invention can be effectively used as a preparation for oral administration by having low molecular weight and high oral bioavailability, and can be useful in pharmaceutical compositions for preventing or treating inflammatory diseases since the secretion of IL-8 is effectively inhibited and in vivo cytotoxicity is not induced. In addition, the novel TLR2 antagonists according to the present invention can be used as a TLR4 modulator.

Description

신규한 TLR2 길항제New TLR2 Antagonists
본 발명은 신규한 작은 분자인 TLR2 길항제에 관한 것으로, 구체적으로는 19개의 신규한 TLR2 길항제, 상기 길항제를 포함하는 염증성 질환의 예방 또는 치료용 약학적 조성물 및 TLR4 조절자에 관한 것이다.The present invention relates to a novel small molecule TLR2 antagonist, and in particular to 19 novel TLR2 antagonists, pharmaceutical compositions for the prophylaxis or treatment of inflammatory diseases comprising the antagonist and TLR4 modulators.
가상 스크리닝(virtual screening)은 타겟 수용체에 대한 화합물 라이브러리로부터 분자의 결합을 신속히 예상하고, 추가적인 확인 실험을 위한 관련된 생물학적 활성(biological activities)을 갖는 분자들을 효과적으로 우선 순위를 매길 수 있는 인실리코(in silico) 접근 방법이다. 실험적인 HTS(high-throughput screening) 방식의 단점인 고비용성 문제를 극복하기 위해서는 방대한 양의 화합물 라이브러리를 특정 타켓 약물을 포함할 수 있는 작은 세트로의 선택적 다운사이징을 필요로 한다. 이것을 위해서 가상 스크리닝은 약물 발견 프로젝트에서 실험적 HTS에 선행하여 그 적용이 점차 증가되어 오고 있다. 다양한 가상 스크리닝 기술의 적용은 약물 발견 분야에서의 연구 효율성을 현저하게 증가시킬 수 있다. 가상 스크리닝에 있어서 널리 적용되는 기술 중 하나는, 실험적으로 결정된 리간드와 화합물 라이브러리로부터의 분자들 사이의 2차원(2D) 속성을 비교하는 것이다. 이 접근 방법에서는 구성 원자들의 종류와 그들의 결합 수준(bond level)에 의해 분자들의 구조적 특징이 표현된다. 또 다른 기술 중 하나는, 분자들의 3차원적 구조적 속성을 분자들 간의 유사성 비교에 사용하는 것이다. 3차원 구조 기반의 가상 스크리닝 접근 방법은 주로 리간드 배위(ligand coordinates)에 근거한 접근 방법과, 수용체 배위(receptor coordinates)에 근거한 접근 방법으로 분류된다. 2차원(2D) 방법과 같이, 리간드 기반 접근 방법은 분자들 사이의 3차원 구조 속성을 비교함으로써 실험적으로 결정된 활성 리간드와 유사한 분자들을 탐색한다. 이러한 접근 방법은 타겟 수용체에 대한 제한된 정보만이 이용 가능한 경우에서 전형적으로 적용된다. 리간드 기반 방법은 필수적으로 구조적 속성의 비교 분석 과정을 포함하며, 이에 따라 이의 적용에는 공지 활성 리간드의 정보 입수가 반드시 필요하다. 유효한 프로그램 중 하나인 ROCS(Rapid Overlay of Chemical Structures)는 대규모 형태 기반 비교를 위한 중첩 방법을 사용한다. ROCS는 3차원 형태에 기반 하여 두 분자간의 구조적 유사성을 비교하는 방식을 채택하고 있다. 파라미터화된 구체적으로 표현된 분자의 3차원 형태는 가우시안 기반 중첩(overlap)을 이용하여, 두 분자 간의 가장 큰 체적 중첩의 최적 정렬을 얻는다. 분자의 형태적 유사성 뿐만 아니라 화학적 특성의 유사성은 생물학적 활성에 결정적인 요소이기 때문에, 화합물이 가지고 있는 작용기들 간의 중첩이 칼라 포스 필드(color force field)를 이용하여 추가적으로 계산된다. 컨포머(conformers) 앙상블을 사전 컴퓨팅하고 순차적으로 이들 각각을 비교함으로써, 분자의 배좌 유연성(conformational flexibility)이 고려될 수 있다. ROCS 방법의 우수성은 다수의 연구 문헌들을 통해 보고되고 있다. 타겟 수용체의 고해상도 배위(high-resolution coordinates)가 이용 가능한 경우에는, 분자 도킹(docking)이 가상 스크리닝에서 선택되는 일반적인 방법이다. 도킹은 컴퓨터 연산에 의해 화합물 라이브러리로부터의 분자들과 수용체 간의 결합 친화력을 수치화 하여 이들 간의 결합 가능성을 예측하는데 이용된다. 본질적으로, 이 방법은 약물 표적에 대해 활성을 보이는 화합물에 대한 정보를 필수적으로 요구하지는 않지만, 공지 활성 물질의 결합 속성을 도킹 과정에 통합함으로써 성능을 증가시킬 수 있다. Virtual screening is an in silico that can rapidly predict the binding of molecules from the compound library to target receptors and effectively prioritize molecules with related biological activities for further identification experiments. ) Approach. Overcoming the high cost problem, which is a disadvantage of experimental high-throughput screening (HTS), requires the massive downsizing of a large amount of compound libraries into a small set that can contain specific target drugs. To this end, virtual screening has been increasingly applied in advance of experimental HTS in drug discovery projects. Application of various virtual screening techniques can significantly increase research efficiency in the field of drug discovery. One widely applied technique in virtual screening is to compare two-dimensional (2D) properties between experimentally determined ligands and molecules from compound libraries. In this approach, the structural characteristics of the molecules are expressed by the type of constituent atoms and their bond level. Another technique is to use the three-dimensional structural properties of molecules to compare similarities between molecules. Virtual screening approaches based on three-dimensional structure are classified into approaches based on ligand coordinates and approaches based on receptor coordinates. Like the two-dimensional (2D) method, the ligand-based approach searches for molecules similar to the active ligands determined experimentally by comparing three-dimensional structural properties between molecules. This approach is typically applied where only limited information about the target receptor is available. Ligand-based methods essentially involve a comparative analysis of structural properties, and therefore their application requires the acquisition of information of known active ligands. One of the valid programs, Rapid Overlay of Chemical Structures (ROCS), uses an overlapping method for large-scale form-based comparisons. ROCS adopts a method of comparing structural similarities between two molecules based on three-dimensional form. Three-dimensional forms of specifically parameterized molecules use Gaussian-based overlap to obtain an optimal alignment of the largest volume overlap between the two molecules. Since the similarity of the chemical properties as well as the morphological similarity of the molecules is a decisive factor in biological activity, the overlap between the functional groups possessed by the compound is further calculated using the color force field. By precomputing the conformers ensemble and comparing each of them sequentially, the conformational flexibility of the molecules can be considered. The excellence of the ROCS method has been reported in a number of studies. If high-resolution coordinates of the target receptor are available, molecular docking is the common method of choice in virtual screening. Docking is used to quantify the binding affinity between molecules and receptors from the compound library by computer operation to predict the likelihood of binding between them. In essence, this method does not necessarily require information about compounds that are active against the drug target, but can increase performance by incorporating the binding properties of known active substances into the docking process.
한편, 길항제(antagonist)는 어떤 생체 작용자(agonist)의 수용체에 결합하지만 자신은 수용체를 통한 생리작용을 나타내지는 않는 물질이다. TLR2(Toll-like receptor 2)는 원형질막이나 엔도솜(endosome)에 존재하며 염증 반응시 숙주 방어의 첫 번째 방어 라인에 속한다. TLR2와 관련된 시그널링은 암, 결핵, 빈혈, 아토피 피부염, 죽상경화증과 관련이 있다고 보고되어있다. 특히, TLR2의 길항제는 이것의 염증성 질환의 억제 효과로 인하여 약학적으로 주요한 타겟이 되고 있다. 따라서 약학적으로 이용할 수 있는 신규한 TRL2의 길항제를 스크리닝 할 필요성이 있고, 특히 작은 분자인 길항제를 스크리닝하기 위한 연구가 필요한 실정이다.An antagonist, on the other hand, is a substance that binds to an agonist's receptor but does not exhibit physiological action through the receptor. Toll-like receptor 2 (TLR2) is present in the plasma membrane or endosome and belongs to the first line of defense of the host during an inflammatory response. Signaling associated with TLR2 has been reported to be associated with cancer, tuberculosis, anemia, atopic dermatitis and atherosclerosis. In particular, antagonists of TLR2 have become a major pharmaceutical target due to its inhibitory effect on inflammatory diseases. Therefore, there is a need for screening a new pharmaceutically available antagonist of TRL2, and in particular, research to screen for a small molecule antagonist is needed.
본 발명자들은 약 700만 개의 화합물을 대상으로 하여 약물특이분자단 모델을 기반으로 컴퓨터를 이용한 스크리닝의 결과, 염증성 질환의 예방 또는 치료에 이용될 수 있는 신규한 작은 분자인 TLR2 길항제를 선별하여 본 발명을 완성하였다.The present inventors screened about 7 million compounds based on drug-specific molecular group model, and selected the TLR2 antagonist, a novel small molecule that can be used for the prevention or treatment of inflammatory diseases. Was completed.
본 발명의 목적은 신규한 TLR2 길항제를 제공하는 것이다.It is an object of the present invention to provide novel TLR2 antagonists.
본 발명의 다른 목적은 상기 TLR2 길항제를 포함하는 염증성 질환의 예방 또는 치료용 약학적 조성물, 경구 투여제 및 상기 길항제를 포함하는 TLR4 조절자를 제공하는 것이다.Another object of the present invention is to provide a pharmaceutical composition for preventing or treating an inflammatory disease comprising the TLR2 antagonist, an oral dosage form, and a TLR4 modulator comprising the antagonist.
본 발명에 따른 신규한 TLR2 길항제는 분자량이 작아 경구적 생체이용률이 높으므로 경구 투여제로서 효과적으로 사용될 수 있으며, IL-8 분비를 효과적으로 저해하고 생체 내에서 독성을 유발하지 않으므로 염증성 질환의 예방 또는 치료용 약학적 조성물에 유용하게 사용될 수 있다. 또한 본 발명에 따른 신규한 TLR2 길항제는 TLR4의 조절자로 이용될 수 있다.The novel TLR2 antagonist according to the present invention can be effectively used as an oral administration because of its low molecular weight and high oral bioavailability, and effectively inhibits IL-8 secretion and does not cause toxicity in vivo, thus preventing or treating inflammatory diseases. It can be usefully used in pharmaceutical compositions. The novel TLR2 antagonists according to the invention can also be used as modulators of TLR4.
도 1은 TLR2 길항제를 동정하기 위한 전체 단계를 간략하게 나타낸 도이다.1 is a simplified diagram of the overall steps for identifying a TLR2 antagonist.
도 2는 인 실리코 알라닌 스캐닝 돌연변이 유발 결과 계산된 자유 에너지를 기초로 하여 결합에 영향을 주는 주요 잔기를 확인한 결과를 나타낸 도이다.2 is a diagram showing the results of identifying the major residues affecting the binding based on the free energy calculated as a result of in silico alanine scanning mutagenesis.
도 3은 수용체-리간드-기반 약물특이분자단 모델을 구축하기 위해 사용한 TLR2-TLR1-Pam3CSK4 복합체의 크리스탈 구조를 나타낸 도이다.Figure 3 is a diagram showing the crystal structure of the TLR2-TLR1-Pam 3 CSK 4 complex used to build the receptor-ligand-based drug specific molecule model.
도 4는 TLR2-TLR1에 결합한 Pam3CSK4로부터 얻은 모든 약물특이분자단 특징들을 나타낸 도이다. 4 is a diagram showing all the drug-specific molecular cluster features obtained from Pam 3 CSK 4 bound to TLR2-TLR1.
도 5는 수용체-리간드-기반 약물특이분자단 모델에서 5개의 선택된 약물특이분자단의 특징 및 그 특징들이 라벨링된 잔기의 주변을 나타낸 도이다(별표 : TLR1 잔기, 초록색 구 : HBA, 자주색 구 : HBD, 파란색 구 : HBY, 회색 구 : 단백질이 차지하는 공간).FIG. 5 is a diagram showing the characteristics of five selected drug specific molecule groups in the receptor-ligand-based drug specific molecule model and the periphery of the residues labeled therein (asterisk: TLR1 residue, green sphere: HBA, purple sphere: HBD, blue spheres: HBY, gray spheres: space occupied by proteins).
도 6은 수용체-리간드-기반 약물특이분자단 모델이 보여주는 주요한 특징을 나타낸 도이다.6 is a diagram showing the main features shown by the receptor-ligand-based drug specific molecule model.
도 7는 수용체-리간드-기반 약물특이분자단 모델로부터 선택된 5개의 특징을 4개의 하위 모델로 구축한 결과를 나타낸 도이다.FIG. 7 is a diagram showing the results of constructing four sub-models of five features selected from a receptor-ligand-based drug specific molecule cluster model.
도 8은 리간드-기반 약물특이분자단 모델을 구축하는 데 사용된 화합물 A, B, 및 C의 구조를 나타낸 도이다.8 is a diagram showing the structure of compounds A, B, and C used to build a ligand-based drug specific molecule group model.
도 9는 화합물 A로부터 구축한 리간드-기반 약물특이분자단 모델 1로부터 매핑된 활성 분자를 나타낸 도이다.FIG. 9 is a diagram showing active molecules mapped from Ligand-based Drug Specific Molecule Group Model 1 constructed from Compound A.
도 10은 화합물 B와 C로부터 구축한 리간드-기반 약물특이분자단 모델 2로부터 매핑된 활성 분자를 나타낸 도이다.FIG. 10 is a diagram showing active molecules mapped from ligand-based drug specific molecule group model 2 constructed from compounds B and C. FIG.
도 11은 CDocker를 이용한 분자 도킹을 나타낸 도이다.11 shows molecular docking using CDocker.
도 12는 스크리닝된 3개의 화합물(S06690562, S01688300, S01382085)의 2차원 구조를 나타낸 도이다.12 is a diagram showing a two-dimensional structure of the three screened compounds (S06690562, S01688300, S01382085).
도 13a는 스크리닝된 화합물 S06690562의 도킹 결과를 나타낸 도이다.13A is a diagram showing the docking result of screened compound S06690562.
도 13b는 스크리닝된 화합물 S01688300의 도킹 결과를 나타낸 도이다. 13B is a view showing a docking result of the screened compound S01688300.
도 13c는 스크리닝된 화합물 S01382085의 도킹 결과를 나타낸 도이다.13C is a view showing the docking result of the screened compound S01382085.
도 14a는 스크리닝된 화합물 S06690562의 도킹 결과를 나타낸 도이다.14a is a diagram showing the docking result of screened compound S06690562.
도 14b는 스크리닝된 화합물 S01688300의 도킹 결과를 나타낸 도이다. 14B is a view showing a docking result of the screened compound S01688300.
도 14c는 스크리닝된 화합물 S01382085의 도킹 결과를 나타낸 도이다.14C is a view showing the docking result of the screened compound S01382085.
도 15는 19개의 화합물을 세포에 처리하여 IL-8의 분비를 확인한 도이다(*P<0.05, **P<0.01).15 is a diagram illustrating the secretion of IL-8 by treating 19 compounds in cells (* P <0.05, ** P <0.01).
도 16은 스크리닝된 3개의 화합물(S06690562, S01688300, S01382085)의 농도 의존적 IL-8의 분비 억제 결과를 나타낸 도이다(*P<0.05, **P<0.01).FIG. 16 shows the results of inhibition of secretion of concentration-dependent IL-8 of three screened compounds (S06690562, S01688300, S01382085) (* P <0.05, ** P <0.01).
도 17은 스크리닝된 3개의 화합물(S06690562, S01688300, S01382085)의 세포 독성 여부를 확인한 도이다.17 is a diagram confirming the cytotoxicity of the three screened compounds (S06690562, S01688300, S01382085).
이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 하기의 표 1의 화합물로 이루어진 군에서 선택된 1종 이상의 TLR2(Toll-like receptor 2) 길항제를 제공한다. The present invention provides at least one TLR2 (Toll-like receptor 2) antagonist selected from the group consisting of the compounds of Table 1 below.
화합물 명칭Compound name 화합물 구조Compound structure
S02546436S02546436
Figure PCTKR2015014202-appb-I000001
Figure PCTKR2015014202-appb-I000001
S02276077S02276077
Figure PCTKR2015014202-appb-I000002
Figure PCTKR2015014202-appb-I000002
S06696686S06696686
Figure PCTKR2015014202-appb-I000003
Figure PCTKR2015014202-appb-I000003
S06690562S06690562
Figure PCTKR2015014202-appb-I000004
Figure PCTKR2015014202-appb-I000004
S06713271S06713271
Figure PCTKR2015014202-appb-I000005
Figure PCTKR2015014202-appb-I000005
S02396152S02396152
Figure PCTKR2015014202-appb-I000006
Figure PCTKR2015014202-appb-I000006
S01525559S01525559
Figure PCTKR2015014202-appb-I000007
Figure PCTKR2015014202-appb-I000007
S06542401S06542401
Figure PCTKR2015014202-appb-I000008
Figure PCTKR2015014202-appb-I000008
S01739292S01739292
Figure PCTKR2015014202-appb-I000009
Figure PCTKR2015014202-appb-I000009
S01688300S01688300
Figure PCTKR2015014202-appb-I000010
Figure PCTKR2015014202-appb-I000010
S06570841S06570841
Figure PCTKR2015014202-appb-I000011
Figure PCTKR2015014202-appb-I000011
S06570001S06570001
Figure PCTKR2015014202-appb-I000012
Figure PCTKR2015014202-appb-I000012
S06568641S06568641
Figure PCTKR2015014202-appb-I000013
Figure PCTKR2015014202-appb-I000013
S06572801S06572801
Figure PCTKR2015014202-appb-I000014
Figure PCTKR2015014202-appb-I000014
S01577528S01577528
Figure PCTKR2015014202-appb-I000015
Figure PCTKR2015014202-appb-I000015
S01382085S01382085
Figure PCTKR2015014202-appb-I000016
Figure PCTKR2015014202-appb-I000016
S01442577S01442577
Figure PCTKR2015014202-appb-I000017
Figure PCTKR2015014202-appb-I000017
S01414289S01414289
Figure PCTKR2015014202-appb-I000018
Figure PCTKR2015014202-appb-I000018
S01292238S01292238
Figure PCTKR2015014202-appb-I000019
Figure PCTKR2015014202-appb-I000019
본 발명의 "TLR2(Toll-like receptor 2)"는 단구, 대식세포, 호중구 등의 세포 표면에 위치하며 세균의 균체성분(지방다당, 펩티드글리칸, 지방세포단백질, 항산균당지질 등 및 열충격단백질(hsp)의 수용체의 기능을 하는 물질을 의미한다. TLR2가 자극되면 세포는 활성화되어 염증성 사이토카인 및 염증 매개체(TNF, IL-1, IL-6, IL-8, NO등)의 생성이 촉진된다."TLR2 (Toll-like receptor 2)" of the present invention is located on the cell surface of monocytes, macrophages, neutrophils, etc., and bacterial cell components (fat polysaccharide, peptide glycan, adipocyte protein, anti-bacterial glycolipid, etc.) and heat shock protein (hsp) is a substance that functions as a receptor, and when TLR2 is stimulated, cells are activated to promote the production of inflammatory cytokines and inflammatory mediators (TNF, IL-1, IL-6, IL-8, NO, etc.). do.
본 발명에서 "길항제(antagonist)"는 어떤 약물이 다른 약물과의 병용에 의하여 그 작용의 일부 또는 전부를 감쇠시키는 역할을 하는 약제 또는 어떤 생체작용자(agonist)의 수용체에 결합하지만 자신은 수용체를 통한 생리작용을 나타내지는 않는 물질을 의미한다. 따라서, 상기 TLR2 길항제는 TLR2에 강한 결합력을 가지므로 마이크로 분자 수준에서 부분적으로 TLR2 관련 시그널링을 저해하되 완전히 폐지하지 않는 작용을 할 수 있다.In the present invention, an "antagonist" binds to a receptor of a drug or an agonist that acts to attenuate some or all of its action by combination with another drug, but itself binds the receptor. Means a substance that does not exhibit the physiological effect through. Thus, since the TLR2 antagonist has a strong binding force to TLR2, at the micromolecular level, the TLR2 antagonist may function to partially inhibit TLR2-related signaling but not completely abolish it.
본 발명의 "TLR2 길항제"는 표 1의 19개 화합물을 포함하며 바람직하게는 6개의 화합물(S02546436, S02276077, S06696686, S06690562, S01688300, S01382085), 더욱 바람직하게는 3개의 화합물(S06690562, S01688300, S01382085)을 포함한다. 또한 본 발명의 TLR2 길항제는 표 1의 19개의 화합물 뿐만 아니라 이와 동일, 유사한 활성을 갖는 이의 유사체(analog)를 제한 없이 포함할 수 있다.The "TLR2 antagonist" of the present invention comprises 19 compounds of Table 1 and preferably 6 compounds (S02546436, S02276077, S06696686, S06690562, S01688300, S01382085), more preferably three compounds (S06690562, S01688300, S01382085). ). In addition, the TLR2 antagonist of the present invention may include, without limitation, the 19 compounds of Table 1 as well as analogs thereof having the same and similar activities.
상기 화합물들 중 일부 화합물, 예컨대 S06690562는 토토머(tautomer) 분자로, pH에 따라 토토머화(tautomerization)에 의해서 에놀(enol) 또는 케토(keto) 형태로 존재할 수 있다.Some of the compounds, such as S06690562, are tautomer molecules and may exist in enol or keto form by tautomerization depending on pH.
본 발명의 TLR2 길항제는 fatty acyl 잔기를 가지지 않기 때문에 작은 분자인 특징이 있다. 이러한 분자량의 감소는 약동학(pharmacokinetics)상 유리하므로, 본 발명의 길항제와 이들의 유사체들은 약학적 조성물의 유효성분으로서 약을 디자인하는 데 유용하게 사용될 수 있다.The TLR2 antagonist of the present invention is characterized by being a small molecule because it does not have a fatty acyl residue. Since such a decrease in molecular weight is advantageous in pharmacokinetics, the antagonists of the present invention and analogs thereof can be usefully used for designing a drug as an active ingredient of a pharmaceutical composition.
상기 "작은 분자"란 이에 제한되는 것은 아니나 바람직하게는 분자량 900 Da 이하의 유기 화합물을 의미한다.The "small molecule" means, but not limited to, an organic compound having a molecular weight of 900 Da or less.
본 발명의 TLR2 길항제는 이전에 TLR2의 길항제로서 제시된 분자들과는 다른 코어 구조(core structure)를 가진다. 또한, 표 1에 제시된 19개의 화합물들은 각기 다른 구조를 가지는 특징이 있다.The TLR2 antagonist of the present invention has a core structure different from the molecules previously presented as antagonists of TLR2. In addition, the nineteen compounds shown in Table 1 are characterized by having different structures.
본 발명의 19개의 TLR2 길항제는 구입하여 사용하거나 당 분야에 공지된 방법을 통해 합성되는 물질을 모두 포함한다.The 19 TLR2 antagonists of the present invention include all materials purchased and used or synthesized through methods known in the art.
또한, 본 발명은 상기 TLR2(Toll-like receptor 2) 길항제를 포함하는 염증성 질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for preventing or treating an inflammatory disease comprising the TLR2 (Toll-like receptor 2) antagonist.
본 발명에서 "염증성 질환"은 부종, 피부염, 알레르기, 아토피, 천식, 결막염, 치주염, 비염, 중이염, 인후염, 편도염, 폐렴, 위궤양, 위염, 크론병, 대장염, 치질, 통풍, 강직성 척추염, 류마티스 열, 루푸스, 섬유근통(fibromyalgia), 건선관절염, 골관절염, 류마티스관절염, 견관절주위염, 건염, 건초염, 근육염, 간염, 방광염, 신장염, 쇼그렌 증후군(sjogren's syndrome) 및 다발성 경화증을 포함하나, 이에 제한되지 않는다. In the present invention, "inflammatory disease" is edema, dermatitis, allergy, atopic, asthma, conjunctivitis, periodontitis, rhinitis, otitis media, sore throat, tonsillitis, pneumonia, gastric ulcer, gastritis, Crohn's disease, colitis, hemorrhoids, gout, ankylosing spondylitis, rheumatic fever , But are not limited to, lupus, fibromyalgia, psoriatic arthritis, osteoarthritis, rheumatoid arthritis, periarthritis, tendonitis, hay salt, myositis, hepatitis, cystitis, nephritis, sjogren's syndrome and multiple sclerosis.
본 발명에서 사용되는 용어 "예방"은 본 발명의 조성물의 투여로 염증성 질환을 억제시키거나 진행을 지연시키는 모든 행위를 의미한다.As used herein, the term "prevention" means any action that inhibits or delays the progression of an inflammatory disease by administration of a composition of the present invention.
본 발명에서 사용되는 용어 "치료"는 본 발명의 조성물의 투여로 염증성 질환이 호전 또는 이롭게 변경되는 모든 행위를 의미한다.As used herein, the term "treatment" refers to any action in which an inflammatory disease is ameliorated or beneficially altered by administration of a composition of the present invention.
본 발명의 조성물은 약학적으로 허용되는 담체를 포함한다. 본 발명의 약학적 조성물에 포함되며 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘, 미네랄 오일, 식염수, PBS(phosphate buffered saline) 또는 배지 등을 포함하나, 이에 제한되는 것은 아니다.The composition of the present invention comprises a pharmaceutically acceptable carrier. Carriers included in the pharmaceutical composition of the present invention and acceptable carriers are those commonly used in the preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, Microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, saline, phosphate buffered saline (PBS) or Media and the like, but is not limited thereto.
본 발명의 약학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.In addition to the above components, the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
또한 본 발명의 약학적 조성물은 TLR2와 관련된 염증성 질환을 예방 또는 치료하기 위해 사용할 수 있는 추가적인 성분을 포함하여 함께, 동시에, 순차적으로 사용할 수 있다.In addition, the pharmaceutical compositions of the present invention can be used together, simultaneously, and sequentially, including additional ingredients that can be used to prevent or treat inflammatory diseases associated with TLR2.
본 발명의 약학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다.Suitable dosages of the pharmaceutical compositions of the present invention may be prescribed in various ways depending on factors such as formulation method, mode of administration, age, weight, sex, morbidity, condition of food, time of administration, route of administration, rate of excretion and response to response of the patient. Can be.
또한, 본 발명은 상기 TLR2(Toll-like receptor 2) 길항제를 포함하는 염증성 질환의 예방 또는 치료용 경구 투여제를 제공한다.The present invention also provides an oral administration agent for the prevention or treatment of an inflammatory disease comprising the TLR2 (Toll-like receptor 2) antagonist.
본 발명의 TLR2 길항제는 작은 분자인 것을 특징으로 하므로, 경구적 생체이용률(oral bioavailability)이 좋은 특징이 있다. 본 발명에서 생체이용률은 약물의 흡수(absorption)의 하위범주에 속하는 것으로 전신 순환에 도달하는 투여된 약물의 양의 일부분을 의미한다. 따라서 본 발명의 TLR2 길항제를 포함하는 염증성 질환의 예방 또는 치료용 경구 투여제를 경구로 투여할 경우 약물이 전신 순환에 높은 비율로 도달하는 효과가 있다.Since the TLR2 antagonist of the present invention is characterized by being a small molecule, oral bioavailability is good. Bioavailability in the present invention means a portion of the amount of drug administered that falls into the subcategory of the absorption of the drug and reaches the systemic circulation. Therefore, when the oral administration of oral administration for the prevention or treatment of inflammatory diseases comprising the TLR2 antagonist of the present invention orally has the effect of reaching the systemic circulation at a high rate.
본 발명에 따른 경구 투여제는 정제, 알약, 캡슐, 분말 및 과립과 같은 고체 약학 제제, 또는 약제학적으로 허용 가능한 수용액, 현탁액 및 에멀션, 시럽, 사용시 용해되는 약학 제제 및 엘릭시르 경구용 액체 약학 제제 중에서 선택되는 제형으로 투여되는 것을 특징으로 한다.Oral dosage forms according to the present invention can be prepared in solid pharmaceutical preparations such as tablets, pills, capsules, powders and granules, or in pharmaceutically acceptable aqueous solutions, suspensions and emulsions, syrups, pharmaceutical preparations dissolved in use and liquid pharmaceutical preparations for elixirs oral. Characterized in that the dosage form is administered.
또한, 본 발명은 (a) 수용체-리간드-기반 약물특이분자단 모델(pharmacophore model)을 구축하는 단계; (b) 리간드-기반 약물특이분자단 모델(pharmacophore model)을 구축하는 단계; (c) 상기 (a), (b)의 결과물을 스크리닝하는 단계; 및 (d) 상기 (c)의 결과물로 생물학적 실험을 수행하여 스크리닝하는 단계;를 포함하는, TLR2(Toll-like receptor 2) 길항제의 스크리닝 방법을 제공한다. In addition, the present invention comprises the steps of (a) constructing a receptor-ligand-based pharmacophore model; (b) building a ligand-based pharmacophore model; (c) screening the products of (a) and (b); And (d) performing a biological experiment with the resultant of (c) for screening. The method of claim 1, further comprising a toll-like receptor 2 (TLR2) antagonist.
본 발명에서 "약물특이분자단(pharmacophore)"은 리간드의 분자 인식을 위해 필요한 분자의 특징을 의미한다. "약물특이분자단 모델(pharmacophore model)"은 어떻게 다양한 리간드가 공통의 수용체 위치에 결합할 수 있는지를 설명해주며, 동일 수용체에 결합하는 신규한 리간드의 가상 스크리닝에 사용될 수 있다. In the present invention, "pharmacophore" means a characteristic of a molecule necessary for molecular recognition of a ligand. The "pharmacophore model" describes how various ligands can bind to common receptor sites and can be used for virtual screening of novel ligands that bind to the same receptor.
본 발명에서 "수용체-리간드-기반 약물특이분자단 모델(Pharmacophore models)"을 구축하는 방법은 TLR2-TLR1-Pam3CSK4 복합체에서 Pam3CSK4 와 TLR2-TLR1의 결합 부위(binding site)의 잔기는 알라닌으로 돌연변이시키는 과정을 포함하는 인 실리코 알라닌 스캐닝 돌연변이 유발(In Silico Alanine Scanning Mutagenesis) 기법, Receptor- ligand Pharmacophore Generation 프로토콜을 사용하여 TLR2-TLR1-Pam3CSK4의 결합 부위를 타게팅(targeting)하여 결합에 중요한 역할을 하는 주요 잔기를 확인하는 기법을 포함한다. 컴퓨터를 이용한 기법을 이용하면 시간 절약 및 비용 절약의 효과가 있다.In the present invention, a method for constructing "receptor-ligand-based pharmacophore models" is TLR2-TLR1-Pam 3 CSK 4 Residor at the binding site of Pam 3 CSK 4 and TLR2-TLR1 in the complex is an In Silico Alanine Scanning Mutagenesis technique, a receptor- ligand comprising mutation of alanine. Targeting binding sites of TLR2-TLR1-Pam 3 CSK 4 using the Pharmacophore Generation protocol includes techniques for identifying key residues that play an important role in binding. Using computer-based techniques saves time and costs.
본 발명의 "Pam3CSK4"는 TLR2 및 TLR1의 작용자(agonist)이다."Pam 3 CSK 4 " of the present invention is an agonist of TLR2 and TLR1.
본 발명에서 "리간드-기반 약물특이분자단 모델(Pharmacophore model)"을 구축하는 방법은 공지된 작은 분자인 TLR2의 길항제를 이용하여 약물특이분자단 모델의 특징을 확인하는 과정을 포함한다.The method for constructing a "ligand-based pharmacophore model" in the present invention includes the process of characterizing a drug-specific molecular group model using an antagonist of TLR2, a known small molecule.
본 발명에서 구축된 약물특이분자단 모델로부터 동정된 결과물을 스크리닝하는 단계는 fit value, 분자 유사도, 약물-유사 화합물의 스크리닝, 분자 도킹(moleculatr docking)과 스코어링(scoring) 및 도킹 복합체의 재스코어링(rescoring)을 포함한다. 상기 스크리닝 과정을 통하여 TLR2에 결합력이 우수하여 약물-유사성이 있는 작은 분자인 TLR2의 길항제의 후보 화합물을 얻을 수 있다. Screening the results identified from the drug-specific molecular cluster model constructed in the present invention may include fit value, molecular similarity, screening of drug-like compounds, molecular docking and scoring, and rescoring of docking complexes. rescoring). Through the screening process, it is possible to obtain a candidate compound of the antagonist of TLR2, which is a small molecule having excellent drug-like properties due to its binding to TLR2.
본 발명에서 "생물학적 실험"은 IL-8 분비, 세포 생존활성(cell viability) 분석을 포함한다. 상기 생물학적 실험을 통하여 선별된 TLR2의 길항제의 후보 화합물이 TLR2의 길항제 역할을 하는 지 여부, 독성을 나타내는지 여부를 확인할 수 있다.In the present invention, "biological experiment" includes IL-8 secretion, cell viability assay. Through the biological experiments, it is possible to determine whether candidate compounds of the selected antagonists of TLR2 act as antagonists of TLR2 and whether they exhibit toxicity.
또한, 본 발명은 상기의 표 1의 화합물로 이루어진 군에서 선택된 1종 이상의 TLR4(Toll-like receptor 4) 조절자(regulator)를 제공한다. The present invention also provides at least one TLR4 (Toll-like receptor 4) regulator selected from the group consisting of the compounds of Table 1 above.
본 발명에서 "조절자(regulator)"는 분자 수준을 측정 가능한 정도로 증가시키거나 감소시키는 물질을 의미하며, 저해제(inhibitor), 길항제, 작용자 등을 포함하나 이에 제한되지 않는다.In the present invention, "regulator" means a substance that increases or decreases the molecular level to a measurable level, and includes, but is not limited to, inhibitors, antagonists, agonists and the like.
본 발명의 TLR4는 TLR2와 구조적, 기능적 유사성을 가지는 것을 특징으로 하며, TLR2의 길항제로 스크리닝된 화합물은 TLR4의 조절자 활성을 가질 수 있다. 따라서 본 발명의 TLR2 길항제인 19개의 화합물을 TLR4의 조절자로서 활용할 수 있다.TLR4 of the present invention is characterized by having structural and functional similarities to TLR2, the compound screened with an antagonist of TLR2 may have a modulator activity of TLR4. Thus, 19 compounds that are TLR2 antagonists of the invention can be utilized as modulators of TLR4.
본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술분야에서 통상적으로 사용되는 의미를 갖는 것이다.Terms not defined otherwise in this specification are intended to have a meaning commonly used in the art to which the present invention pertains.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.
이하 실시예 나타낸 통계적 분석은 3번의 독립적인 실험으로부터 얻은 데이터에 대하여, 통계적 유의도를 SigmaPlot software version 12.0 (Systat Software Inc., San Jose, CA, USA)를 이용한 1차원 분산 분석으로 P value(0.05 이하 또는 0.01 이하)로 정의하여 이루어졌다.The statistical analysis shown in the examples below is based on the data obtained from three independent experiments. Or less than or equal to 0.01).
실시예Example 1 - 인  1-Inn 실리코Silico 알라닌 스캐닝 돌연변이 유발(In  Alanine Scanning Mutagenesis (In SilicoSilico AlanineAlanine Scanning Mutagenesis)  Scanning Mutagenesis)
약물특이분자단(pharmacophore)모델을 구축하는 데 필요한 주요 잔기들의 분석을 위하여, 알라닌 스캐닝 돌연변이 유발 기법을 이용하였다. TLR2-TLR1-Pam3CSK4 복합체에서 Pam3CSK4 와 TLR2-TLR1의 결합 부위(binding site)의 잔기는 알라닌으로 돌연변이시켰고, 돌연변이 에너지는 돌연변이와 야생형(wild-type)의 결합 자유 에너지의 차이에 의해 기초하여 계산하였다. Calculate Mutation Energy (Binding) in Accelrys Discovery Studio ( DS ) 4.0을 이용하여 계산하였고, 돌연변이 에너지가 0.5 kcal/mol보다 큰 잔기는 결합을 불안정하게 만들기 때문에 수용체-리간드 복합체의 결합력에 영향을 준다고 판단하였다. 결합에 영향을 주는 주요 잔기를 도 2에 나타내었다.Alanine scanning mutagenesis was used to analyze the key residues needed to build a pharmacophore model. TLR2-TLR1-Pam 3 CSK 4 The residues at the binding site of Pam 3 CSK 4 and TLR2-TLR1 in the complex were mutated to alanine, and the mutation energy was calculated based on the difference in binding free energy between mutation and wild-type. Calculate Mutation Energy (Binding) in Accelrys Discovery Studio ( DS ) 4.0 was calculated and determined that residues with mutation energy greater than 0.5 kcal / mol affect the binding capacity of the receptor-ligand complex because they make the binding unstable. Key residues that affect binding are shown in FIG. 2.
상위 10개의 불안정하게 만드는 잔기의 값을 표 2에 나타내었으며, 다른 모든 잔기의 값은 표 3에 나타내었다.The values of the top ten destabilizing residues are shown in Table 2 and the values of all other residues are shown in Table 3.
Figure PCTKR2015014202-appb-T000001
Figure PCTKR2015014202-appb-T000001
* TLR1의 잔기* Residues of TLR1
Figure PCTKR2015014202-appb-T000002
Figure PCTKR2015014202-appb-T000002
* TLR1의 잔기* Residues of TLR1
상기 표 2에서 계산되어 결합력에 영향을 준다고 판단된 잔기들은 TLR2의 Phe325와 Phe349 및 TLR1의 Gln316이며, 이들은 이전의 연구에서 생물학적 실험 기법으로 밝혀진 주요 잔기와도 일치함을 확인하였다.The residues calculated in Table 2 and determined to affect the binding force were Phe325 of TLR2 and Gln316 of Phe349 and TLR1, and they were confirmed to be consistent with major residues found in biological experiments in previous studies.
따라서, 상기 3가지의 잔기는 단백질-리간드 복합체를 형성하는 과정에서 중요한 역할을 하는 것으로 확인하였으며 하기의 수용체-리간드-기반 약물특이분자단 모델을 구축하는 데 사용되었다.Thus, the three residues are protein-ligand It was found to play an important role in the formation of the complex and was used to construct the following receptor-ligand-based drug specific molecule group model.
실시예 2 - 수용체-리간드-기반 약물특이분자단 모델의 구축Example 2 Construction of a Receptor-ligand-Based Drug-Specific Molecule Group Model
수용체-리간드-기반 약물특이분자단 모델을 구축하기 위해, 수용체와 결합을 가능하게 하는 리간드의 특징을 동정하기 위하여 TLR2-TLR1-Pam3CSK4 복합체를 이용하였다. 상기 복합체의 크리스탈 구조를 도 3에 나타내었다. To build a receptor-ligand-based drug specific molecule model, TLR2-TLR1-Pam 3 CSK 4 to identify the characteristics of ligands that enable binding to receptors The complex was used. The crystal structure of the composite is shown in FIG. 3.
디폴트 파라미터와 함께 TLR2-TLR1-Pam3CSK4 복합체의 리포펩티드 결합 부위를 타게팅(targeting)하여 Receptor- ligand Pharmacophore Generation 프로토콜을 사용하였다. 그 결과, TLR2-TLR1-Pam3CSK4 복합체의 상호작용에 기반된 약물특이분자단의 모든 특징을 확인하였으며, 이를 도 4에 나타내었다. 상기 모든 특징들을 5개의 특징으로 선별하였으며 이를 도 5에 나타내었다. 주요한 특징은 상기 실시예 1에서 확인한 주요 잔기(TLR2의 Phe325 와 Phe349, 및 TLR1의 Gln316) 주변의 활성 위치(active site)에 존재함을 확인하였으며 그 결과를 도 6에 나타내었다. TLR2-TLR1-Pam 3 CSK 4 with default parameters Receptor- ligand by targeting lipopeptide binding sites of the complex Pharmacophore Generation protocol was used. As a result, TLR2-TLR1-Pam 3 CSK 4 All the features of the drug-specific molecular groups based on the interaction of the complex were confirmed, which is shown in FIG. 4. All of the above features were selected as five features and are shown in FIG. 5. The main features were found in the active site around the main residues identified in Example 1 (Phe325 and Phe349 of TLR2, and Gln316 of TLR1) and the results are shown in FIG.
도 5 및 도 6에 나타낸 것과 같이, 단백질과 결합을 가능하게 하는 리간드는 2개의 수소 결합 수용체(HBA), 1개의 수소 결합 제공자(HBD), 2개의 소수성 특징(HBY)을 가지는 것을 확인하였다.As shown in FIG. 5 and FIG. 6, it was confirmed that the ligand that enables binding with the protein has two hydrogen bond receptors (HBA), one hydrogen bond provider (HBD), and two hydrophobic features (HBY).
상기에서 확인한 5가지 특징을 다시 4개의 하위 모델로 분류하였으며, 이를 도 7에 나타내었다.The five features identified above were further classified into four sub-models, which are shown in FIG. 7.
실시예 3 - 리간드-기반 약물특이분자단 모델의 구축Example 3 Construction of Ligand-Based Drug-Specific Molecule Group Model
리간드-기반 약물특이분자단 모델을 구축하기 위하여, 공지된 작은 분자 TLR2의 길항제인 화합물 A, B, 및 C를 이용하였으며, 이들의 구조를 도 8에 나타내었다. 이들의 2차원 구조는 ChemBioDraw Ultra(CambridgeSoft)를 이용하여 그렸다. 또한 실시예 2에서 확인한 상기 HBD, HBA, HBY 특징을 Common Feature Pharmacophore Generation 프로토콜을 이용하여 조사하였다.In order to construct a ligand-based drug specific molecule group model, compounds A, B, and C, which are antagonists of the known small molecule TLR2, were used and their structure is shown in FIG. 8. Their two-dimensional structure was drawn using ChemBioDraw Ultra (CambridgeSoft). In addition, the HBD, HBA, HBY features identified in Example 2 were investigated using the Common Feature Pharmacophore Generation protocol.
리간드-기반 약물특이분자단 모델 1을 구축하는데 있어서 화합물 A를 query 분자로 사용하였다. 화합물 A의 다양한 특징으로부터 10개의 약물특이분자단 모델이 구축되었고, 이 중 3개의 HBA와 2개의 HBY를 리간드-기반 약물특이분자단 모델 1로 구축하였다. 이를 바탕으로 활성 분자(active molecule)를 매핑하였으며 그 결과를 도 9에 나타내었다 Compound A was used as a query molecule in constructing the ligand-based drug specific molecule model 1. Ten drug specific molecule cluster models were constructed from various features of Compound A, of which three HBAs and two HBYs were constructed as ligand-based drug specific molecule cluster model 1. Based on this, active molecules were mapped and the results are shown in FIG. 9.
리간드-기반 약물특이분자단 모델 2를 구축하는데 있어서 화합물 B를 query 분자로 사용하였다. 화합물 B로부터 확인한 약물특이분자단의 특징은 1개의 HBD, 2개의 HBA, 2개의 HBY인 것을 확인하였으며 이를 바탕으로 하여 매핑한 결과를 도 10에 나타내었다. Compound B was used as a query molecule in constructing Ligand-based drug specific molecule group Model 2. The characteristics of the drug-specific molecule group identified from Compound B were confirmed to be one HBD, two HBAs, and two HBYs, and the mapping results thereof are shown in FIG. 10.
또한 화합물 C와 화합물 B의 구조적 유사성 때문에, 화합물 C로부터 확인한 특징을 매핑한 결과가 도 10과 같음을 확인하였다. Also, because of the structural similarity between Compound C and Compound B, it was confirmed that the result of mapping the characteristic identified from Compound C is shown in FIG. 10.
실시예 4 - fit value를 이용한 스크리닝Example 4-Screening with fit values
상업적으로 얻을 수 있는 약 700만 분자의 라이브러리로부터 TLR2 길항제 후보 물질을 선별하기 위하여, 상기 실시예 2에서 구축한 4개의 하위 수용체-리간드-기반 약물특이분자단 모델을 이용하였다. DS 4.0의 Search 3D Database를 이용했으며 상기 4개의 각 모델을 입력(input)으로 하였다. Best Search 방법으로 리간드가 약물특이분자단 모델에 적합한 정도를 계산하였다(fit value). 상기 값을 기반으로 각 모델에 이상적으로 매핑된 500개 분자들(hit)을 얻었다. 결과적으로 총 4개의 모델로부터 2000개의 hit 분자를 선별하였다.In order to select TLR2 antagonist candidates from a library of about 7 million molecules commercially available, four sub-receptor-ligand-based drug specific molecule models constructed in Example 2 were used. The Search 3D Database of DS 4.0 was used and each of the four models was used as input. Best search method was used to calculate the degree of fit of the ligand to the drug-specific molecular group model (fit value). Based on this value, 500 molecules (hit) were obtained which were ideally mapped to each model. As a result, 2000 hit molecules were selected from a total of four models.
실시예 5 - 분자 유사도를 이용한 스크리닝 Example 5 Screening Using Molecular Similarity
상업적으로 얻을 수 있는 약 700만 분자의 라이브러리로부터 TLR2 길항제 후보 물질을 선별하기 위하여, 상기 실시예 4와 같은 방법에 따라, 화합물 A를 입력(input)으로 한 리간드-기반 약물특이분자단 모델 1로부터 2312604개의 hit 분자를, 화합물 B를 입력(input)으로 한 리간드-기반 약물특이분자단 모델 2로부터 1651005개의 hit 분자를 선별하였다. To select TLR2 antagonist candidates from a commercially available library of about 7 million molecules, from Ligand-based Drug Specific Molecule Group Model 1 with Compound A as input, according to the same method as Example 4 above. 2312604 hit molecules were selected from 1651005 hit molecules from Ligand-Based Drug Specific Molecule Group Model 2 with Compound B input.
두 모델로부터 선별된 3963609개의 hit 분자들을 추가적으로 선별하기 위하여, query 분자와 hit 분자의 모양 및 원자 타입의 유사도에 따른 ROCS_tanimoto-Combo의 스코어링 기능을 이용하였다. 리간드-기반 약물특이분자단 모델 1로부터 얻은 2312604개의 hit 분자와 비교하기 위해서 화합물 A를 query 분자로 하였고, 리간드-기반 약물특이분자단 모델 2로부터 얻은 1651005개의 hit 분자와 비교하기 위해서 화합물 B, C를 query 분자로 하였다. 스코어링 결과, 리간드-기반 약물특이분자단 모델로부터 총 1500개의 hit 분자를 선별하였다. To further select 3963609 hit molecules from two models, we used the scoring function of ROCS_tanimoto-Combo according to the similarity of the shape and atomic type of query and hit molecules. Compound A was used as a query molecule to compare 2312604 hit molecules obtained from Ligand-based drug specific molecule group Model 1, and compounds B and C to compare with 1651005 hit molecules obtained from ligand-based drug specific molecule group Model 2 Is the query molecule. As a result of the scoring, a total of 1500 hit molecules were selected from the ligand-based drug-specific molecular group model.
실시예 6 - 약물-유사 화합물의 스크리닝Example 6 Screening of Drug-Like Compounds
상기 실시예 4에서 얻은 2000개의 hit 분자와 상기 실시예 5에서 얻은 1500개의 hit 분자, 즉 총 3500개의 hit 분자 중 신약 개발 단계에서 요구되는 약물-유사성을 가진 화합물을 추가적으로 스크리닝하기 위하여 Lipinski 및 Veber 규칙과 ADMET(absorption, distribution, metabolism, excretiom, toxicity) 특징을 이용하였다.Lipinski and Veber rules for additional screening of drug-similar compounds required in the drug development phase out of the 2000 hit molecules obtained in Example 4 and 1500 hit molecules obtained in Example 5, that is, 3500 hit molecules in total And ADMET (absorption, distribution, metabolism, excretiom, toxicity) characteristics.
구체적으로, Lipinski 및 Veber 규칙은 더 좋은 경구적 생체이용률(oral bioavailability)를 가지는 화합물을 스크리닝 하기 위한 필터로 이용되었다. ADMET(absorption, distribution, metabolism, excretiom, toxicity) 특징은 좋은 흡수, 적절한 용해도, 낮은 혈액-뇌 장벽 관통성(blood-brain penetrability), 시토크롬 P450 2D6 비-저해, 비-간세포독성, 및 비-플라즈마 단백질 결합 능력을 동정하는 데 이용되었다.Specifically, Lipinski and Veber rules were used as filters to screen for compounds with better oral bioavailability. ADMET (absorption, distribution, metabolism, excretiom, toxicity) features good absorption, adequate solubility, low blood-brain penetrability, cytochrome P450 2D6 non-inhibitory, non-hepatocytotoxic, and non-plasma It was used to identify protein binding capacity.
결과적으로, 총 3500개의 hit 분자로부터 약물-유사 화합물로 선별된 1126개의 분자를 확인하였다. 후보 화합물들의 약물-유사 특징을 계산하여 선별함으로써 약 개발 단계에서 이용가능성이 낮은 분자를 배제하였다.As a result, 1126 molecules selected as drug-like compounds were identified from a total of 3500 hit molecules. Drug-like characteristics of candidate compounds were calculated and screened to exclude molecules of low availability in drug development.
실시예 7 - 분자 도킹(moleculatr docking)과 스코어링(scoring)Example 7 Moleculatr Docking and Scoring
리간드와 수용체의 결합에 있어 최적의 도킹 포즈를 선별하고 리간드를 스크리닝하기 위하여 TLR2-TLR1 이합체의 분자 도킹을 이용하였다. 리간드는 DS 4.0의 Prepare Ligand 모듈로 준비하였다. 리포펩티드의 결합 위치를 도킹 위치로 선정하였다. 최적의 스크리닝을 위하여 CDocker (CD, CHARMM force field를 이용한다), AutoDock (AD) Vina 두 가지의 프로그램을 이용한 스크리닝을 수행했다.Molecular docking of TLR2-TLR1 dimers was used to select optimal docking poses for ligand-receptor binding and to screen ligands. Ligands were prepared with the Prepare Ligand module of DS 4.0. The binding position of the lipopeptide was selected as the docking position. For optimal screening, two screening programs were performed: CDocker (using CD, CHARMM force field) and AutoDock (AD) Vina.
보다 구체적으로, 상기 실시예 6에서 얻은 1126개의 약물-유사 화합물들을 CD를 이용하여 4개의 Pam3CSK4 위치에 도킹시켰다. 이 때 도 11에 나타낸 바와 같이 B, C 위치를 대부분 커버하는 반지름 13Å의 구를 이용하였다. CD 상호작용 에너지(CD interaction energy)를 계산하였으며 그 결과 약 60개의 화합물에서 상위 100개의 포즈(pose)가 스크리닝되었다. More specifically, 1126 drug-like compounds obtained in Example 6 using four CD 4 Pam 3 CSK 4 Docked in position. At this time, as shown in Fig. 11, a sphere having a radius of 13 Å covering most of B and C positions was used. The CD interaction energy was calculated and the top 100 poses were screened for about 60 compounds.
상기 100개의 포즈를 AD Vina를 이용하여 재도킹시켰다. 이 때 dock_runscreening 프로토콜을 적용하였다. 그 결과 AD 결합 에너지 값(AD affinity energy value)에 기초하여 도킹이 우수한 상위 26개의 포즈를 스크리닝하였다.The 100 poses were redocked using AD Vina. At this time, dock_runscreening protocol is applied. As a result, the top 26 poses with good docking were screened based on the AD affinity energy value.
실시예 8 - 도킹 복합체의 재스코어링(rescoring)Example 8-Rescoring of a Docking Composite
단백질-리간드 상호작용의 추진력(driving force)를 판단하기 위하여 결합 자유에너지(binding free energy)를 이용한 도킹 복합체 재스코어링을 수행하였다.Docking complex rescoring using binding free energy was performed to determine the driving force of the protein-ligand interaction.
구체적으로는, TRL2-TLR1 복합체와 리간드의 열역학적 상호작용을 정량화하기 위하여, 상기 실시예 7에서 얻은 26개의 도킹 복합체들을 Poisson-Boltzmann surface area(MM/PBSA) 결합 자유에너지 계산에 따른 분자 역학(molecular dynamics, MD)에 따라 다시 정렬하였다. MD 시뮬레이션은 g_mmpbsa tool을 이용하여 이루어졌고, 평균 결합 에너지와 이의 표준 편차/오차는 MnPbSaSatat.pyscript로 계산하였다.Specifically, in order to quantify the thermodynamic interaction of the ligand with the TRL2-TLR1 complex, the 26 docking complexes obtained in Example 7 were prepared by molecular calculation based on the calculation of Poisson-Boltzmann surface area (MM / PBSA) binding free energy. dynamics, MD). MD simulations were performed using the g_mmpbsa tool, and the average binding energy and its standard deviation / error were calculated with MnPbSaSatat.pyscript.
MM/PBSA 결합 자유에너지는 하기의 식 1에 의해 계산하였다.MM / PBSA binding free energy was calculated by Equation 1 below.
[식 1][Equation 1]
Figure PCTKR2015014202-appb-I000020
Figure PCTKR2015014202-appb-I000020
Gbind는 평균 결합 자유에너지, Gcomplex는 TRL2-TLR1복합체의 결합 자유에너지, Gprotein은 단백질(수용체)의 결합 자유에너지, Gligand는 리간드의 결합 자유에너지를 의미한다.G bind is the mean binding free energy, G complex is the binding free energy of TRL2-TLR1 complex, G protein is the binding free energy of protein (receptor), and G ligand is the binding free energy of ligand.
상기와 같은 계산에 의하여 얻은 평균 MM/PBSA 값, 상기 실시예 7의 AD 결합 에너지값 및 CD 결합 에너지값에 기반하여 3개의 화합물(S06690562, S01688300, S01382085)을 선별하였다. 그 결과, 수용체-리간드-기반 모델로부터 2개의 화합물이, 리간드-기반 모델로부터 1개의 화합물이 선별되었음을 확인하였고 이들의 2차원 구조를 도 12에 나타내었다. 또한 이들의 분자 도킹 결과는 도 13a 내지 13c 및 도 14a 내지 14c에 나타내었다. Three compounds (S06690562, S01688300, S01382085) were selected based on the average MM / PBSA value obtained by the above calculation, the AD binding energy value and the CD binding energy value of Example 7. As a result, it was confirmed that two compounds were selected from the receptor-ligand-based model and one compound was selected from the ligand-based model and their two-dimensional structure is shown in FIG. 12. In addition, the molecular docking results are shown in FIGS. 13A to 13C and 14A to 14C.
실시예 9 - IL-8 분비의 확인Example 9-Confirmation of IL-8 Secretion
상기 실시예 7에서 스크리닝한 26개의 화합물 중 19개의 화합물 (S02546436, S02276077, S06696686, S06690562, S06713271, S02396152, S01525559, S06542401, S01739292, S01688300, S06570841, S06570001, S06568641, S06572801, S01577528, S01382085, S01442577, S01414289, S01292238)이 TLR2의 길항제로서 생물학적 활성을 나타내는지 확인하기 위하여 상기 화합물을 처리하고, TLR2에 의해 유발되는 사이토카인인 IL-8의 분비 변화를 확인하였다.19 compounds out of 26 compounds screened in Example 7 (S02546436, S02276077, S06696686, S06690562, S06713271, S02396152, S01525559, S06542401, S01739292, S01688300, S06570841, S06570001, S06568641, S06572801, S01577528, 013,775, 026 , S01292238) was treated with the compound to confirm that it exhibits biological activity as an antagonist of TLR2, and the secretion changes of IL-8, a cytokine induced by TLR2, were confirmed.
HEK293-TLR2(TLR1은 내생 수준으로 발현됨)와 HEK293-Null 세포 라인은 96-웰 조직 배양 플레이트(BD Biosciences)에서 밀도 1×104 세포/웰로, 37℃, 95% 공기 및 5% CO2에서 24시간 동안 배양되었다. 작용자(agonist)의 활동성을 알아보기 위하여, 세포 자극은 50 μM 농도의 화합물 및 50 nM의 Pam3CSK4(Invivogen, SanDiego, CA, USA)를 처리함으로써 이루어졌다. 길항제 활동성을 알아보기 위하여, 세포를 다양한 농도의 화합물로 1시간동안 처리하였고, 후에 50 nM의 Pam3CSK4를 동시-처리(co-treatment)하였다. 다음날, IL-8 분비를 인간 IL-8 ELISA Ready-SET-Go!® (second-generation) kit (eBioscience, San Diego, CA, USA)로 제조업자의 가이드에 따른 방법으로 정량하였으며, 정량한 결과를 도 15에 나타내었다.HEK293-TLR2 (TLR1 is expressed at endogenous levels) and HEK293-Null cell line at 37 ° C., 95% air and 5% CO 2 at a density of 1 × 10 4 cells / well in 96-well tissue culture plates (BD Biosciences) Incubated for 24 hours at. To examine the activity of agonists, cell stimulation was done by treatment of 50 μM concentration of compound and 50 nM of Pam 3 CSK 4 (Invivogen, SanDiego, Calif., USA). To determine antagonist activity, cells were treated with various concentrations of compounds for 1 hour, followed by co-treatment with 50 nM of Pam 3 CSK 4 . The following day, IL-8 secretion was quantified in a human IL-8 ELISA Ready-SET-Go! ® (second-generation) kit (eBioscience, San Diego, Calif., USA) by the method according to the manufacturer's guide. 15 is shown.
도 15에 나타낸 바와 같이 19개의 화합물 모두 IL-8의 분비를 감소시키는 것을 확인하였고, 특히 6개의 화합물(S02546436, S02276077, S06696686, S06690562, S01688300, S01382085)을 처리한 경우에 Pam3CSK4-유발된 IL-8의 분비량이 크게 감소되었음을 확인하였다. 따라서 상기 6개의 화합물이 TLR2의 길항제로 작용하여 IL-8의 분비를 유의적으로 감소시키는 사실을 확인하였다.As shown in FIG. 15, all 19 compounds were found to reduce the secretion of IL-8, and in particular, when treated with 6 compounds (S02546436, S02276077, S06696686, S06690562, S01688300, S01382085), Pam 3 CSK 4 -induced. It was confirmed that the amount of secreted IL-8 was greatly reduced. Therefore, it was confirmed that the six compounds act as an antagonist of TLR2 and significantly reduce the secretion of IL-8.
상기 6개의 화합물 중 상위 3개의 화합물(S06690562, S01688300, S01382085)에 대한 농도 의존적(dose-dependent) 분석을 위하여, 상기 3가지 화합물의 농도를 12.5 μM, 25 μM, 50 μM로 달리하고 상기의 방법과 같이 IL-8의 분비량을 분석하였으며 그 결과를 도 16에 나타내었다.For concentration-dependent analysis of the top three of the six compounds (S06690562, S01688300, S01382085), the concentrations of the three compounds were varied at 12.5 μM, 25 μM, 50 μM and the method described above. As described above, the secretion amount of IL-8 was analyzed and the results are shown in FIG. 16.
도 16에 나타낸 것과 같이 3개의 화합물 모두 낮은 농도로 처리했을 때에 비하여 50 μM의 고농도로 화합물을 처리한 경우에 IL-8의 분비가 상당 수준 감소됨을 확인하였다. 따라서 상기 3개의 화합물이 농도 의존적으로 IL-8의 분비를 감소시키는 물질임을 확인하였다.As shown in FIG. 16, all three compounds were found to significantly reduce the secretion of IL-8 when the compounds were treated at a high concentration of 50 μM compared to the treatment at low concentrations. Therefore, the three compounds were confirmed to be a substance that reduces the secretion of IL-8 in a concentration-dependent manner.
실시예 10 - 세포 배양 및 세포 생존활성(cell viability) 분석Example 10 Cell Culture and Cell Viability Assay
HEK293-TLR2 와 HEK293-Null 세포주(Invivogen, San Diego, CA, USA)를 10% 열-비활성화된 FBS(fetal bovine serum, Thermo Fisher Scientific Inc.), 50 IU/mL 페니실린, 50 ㎍/mL 스트렙토마이신 (Thermo Fisher Scientific Inc.) 및 NormocinTM 100 mg/mL (Invivogen., San Diego, CA, USA)가 보충된 Dulbecco's modified Eagle's medium(Thermo Fisher Scientific Inc., MA, USA)에서 배양하였다. 화합물은 갈색 튜브에 들어있는 디메틸 설폭사이드(dimethyl sulfoxide, Sigma-Aldrich, St. Louis, MO, USA)에 녹였고 10 mM의 농도로 저장하였다. HEK293-TLR2 and HEK293-Null cell lines (Invivogen, San Diego, Calif., USA) were used for 10% heat-inactivated fetal bovine serum, Thermo Fisher Scientific Inc. (50 IU / mL penicillin, 50 μg / mL streptomycin). (Thermo Fisher Scientific Inc.) and Dulbecco's modified Eagle's medium (Thermo Fisher Scientific Inc., MA, USA) supplemented with Normocin ™ 100 mg / mL (Invivogen., San Diego, Calif., USA). The compound was dissolved in dimethyl sulfoxide (Sigma-Aldrich, St. Louis, Mo., USA) in a brown tube and stored at a concentration of 10 mM.
상기 실시예 8에서 스크리닝된 3개의 화합물(S06690562, S01688300, S01382085)에 대하여 세포 독성 여부를 확인하기 위하여, HEK293-TLR2에서 MTS 기법을 수행하였으며, 그 결과를 도 7에 나타내었다. In order to confirm the cytotoxicity of the three compounds screened in Example 8 (S06690562, S01688300, S01382085), MTS technique was performed in HEK293-TLR2, and the results are shown in FIG.
구체적으로, 제조업체의 가이드라인에 따라 CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS assay; Promega, Madison, WI, USA)를 이용하여 세포 활성도를 측정하였다. 세포들은 96-웰 플레이트에 농도 5×103 세포/mL 로 배양되었고 5%의 CO2를 포함하는 가습 대기에서 37℃로 밤새도록 유지되었다. 다음날, 상기 배양된 세포를 3개의 스크리닝된 화합물(S06690562, S01688300, S01382085)의 3가지 농도 조건(12.5 μM, 25 μM, 및 50 μM)으로 처리하였다. 24시간 후, MTS 용액을 웰에 처리하였고, 마이크로플레이트 분광 광도계 시스템(Molecular Devices Inc.)으로 490nm에서 흡광도를 측정하였으며, 그 결과를 도 17에 나타내었다.Specifically, cell activity was measured using a CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS assay; Promega, Madison, WI, USA) according to the manufacturer's guidelines. Cells were incubated in 96-well plates at a concentration of 5 × 10 3 cells / mL and kept overnight at 37 ° C. in a humidified atmosphere containing 5% CO 2 . The following day, the cultured cells were treated with three concentration conditions (12.5 μM, 25 μM, and 50 μM) of three screened compounds (S06690562, S01688300, S01382085). After 24 hours, the MTS solution was treated in the wells, and the absorbance was measured at 490 nm with a microplate spectrophotometer system (Molecular Devices Inc.), and the results are shown in FIG. 17.
도 17에 나타낸 바와 같이, 상기 3개의 화합물 모두 12.5 μM, 25 μM, 및 50 μM의 농도 조건에서 세포 독성을 나타내지 않아 안전한 물질이며 약물로 활용 가능함을 확인하였다.As shown in FIG. 17, all three compounds did not show cytotoxicity at concentrations of 12.5 μM, 25 μM, and 50 μM, and thus were found to be safe substances and used as drugs.
본 발명에 따른 신규한 TLR2 길항제는 IL-8 분비를 효과적으로 저해하고 생체 내에서 독성을 유발하지 않으므로 염증성 질환의 예방 또는 치료용 약학적 조성물에 유용하게 사용될 수 있다. 상기 TLR2 길항제는 분자량이 작아 경구적 생체이용률이 높으므로 특히 경구 투여제로서 효과적으로 사용될 수 있으며, TLR4의 조절자로도 이용될 수 있다.Since the novel TLR2 antagonist according to the present invention effectively inhibits IL-8 secretion and does not cause toxicity in vivo, it may be usefully used in the pharmaceutical composition for preventing or treating inflammatory diseases. Since the TLR2 antagonist has a low molecular weight and high oral bioavailability, the TLR2 antagonist may be effectively used as an oral administration agent, and may also be used as a modulator of TLR4.

Claims (6)

  1. 표 1의 화합물로 이루어진 군에서 선택된 1종 이상의 TLR2(Toll-like receptor 2) 길항제(antagonist).At least one TLR2 (Toll-like receptor 2) antagonist selected from the group consisting of the compounds of Table 1.
    [표 1]TABLE 1
    Figure PCTKR2015014202-appb-I000021
    Figure PCTKR2015014202-appb-I000021
    Figure PCTKR2015014202-appb-I000022
    Figure PCTKR2015014202-appb-I000022
    Figure PCTKR2015014202-appb-I000023
    Figure PCTKR2015014202-appb-I000023
    Figure PCTKR2015014202-appb-I000024
    Figure PCTKR2015014202-appb-I000024
    Figure PCTKR2015014202-appb-I000025
    Figure PCTKR2015014202-appb-I000025
  2. 제1항에 있어서, 상기 TLR2 길항제는 표 1의 S06690562, S01688300 및 S01382085로 이루어진 군에서 선택된 1종 이상인, TLR2(Toll-like receptor 2) 길항제.The TLR2 (Toll-like receptor 2) antagonist according to claim 1, wherein the TLR2 antagonist is at least one selected from the group consisting of S06690562, S01688300 and S01382085 in Table 1.
  3. 제1항의 TLR2(Toll-like receptor 2) 길항제를 포함하는 염증성 질환의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating an inflammatory disease comprising the toll-like receptor 2 (TLR2) antagonist of claim 1.
  4. 제3항에 있어서, 상기 염증성 질환은 부종, 피부염, 알레르기, 아토피, 천식, 결막염, 치주염, 비염, 중이염, 인후염, 편도염, 폐렴, 위궤양, 위염, 크론병, 대장염, 치질, 통풍, 강직성 척추염, 류마티스 열, 루푸스, 섬유근통(fibromyalgia), 건선관절염, 골관절염, 류마티스관절염, 견관절주위염, 건염, 건초염, 근육염, 간염, 방광염, 신장염, 쇼그렌 증후군(sjogren's syndrome) 및 다발성 경화증으로 구성된 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 염증성 질환의 예방 또는 치료용 약학적 조성물.According to claim 3, The inflammatory disease is edema, dermatitis, allergy, atopic, asthma, conjunctivitis, periodontitis, rhinitis, otitis media, sore throat, tonsillitis, pneumonia, gastric ulcer, gastritis, Crohn's disease, colitis, hemorrhoids, gout, ankylosing spondylitis, At least one member selected from the group consisting of rheumatic fever, lupus, fibromyalgia, psoriatic arthritis, osteoarthritis, rheumatoid arthritis, periarthritis, tendinitis, hay salt, myositis, hepatitis, cystitis, nephritis, sjogren's syndrome and multiple sclerosis Characterized in that for the prevention or treatment of inflammatory diseases.
  5. 제1항의 TLR2(Toll-like receptor 2) 길항제를 포함하는 염증성 질환의 예방 또는 치료용 경구 투여제.An oral dosage form for the prevention or treatment of an inflammatory disease comprising the toll-like receptor 2 (TLL2) antagonist of claim 1.
  6. 표 1의 화합물로 이루어진 군에서 선택된 1종 이상의 TLR4(Toll-like receptor 4) 조절자(regulator).At least one TLR4 (Toll-like receptor 4) regulator selected from the group consisting of the compounds of Table 1.
    [표 1]TABLE 1
    Figure PCTKR2015014202-appb-I000026
    Figure PCTKR2015014202-appb-I000026
    Figure PCTKR2015014202-appb-I000027
    Figure PCTKR2015014202-appb-I000027
    Figure PCTKR2015014202-appb-I000028
    Figure PCTKR2015014202-appb-I000028
    Figure PCTKR2015014202-appb-I000029
    Figure PCTKR2015014202-appb-I000029
    Figure PCTKR2015014202-appb-I000030
    Figure PCTKR2015014202-appb-I000030
PCT/KR2015/014202 2015-05-29 2015-12-23 Novel tlr2 antagonists WO2016195194A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15894366.2A EP3305767B1 (en) 2015-05-29 2015-12-23 Novel tlr2 antagonists for treating inflammatory diseases
US15/578,086 US10308655B2 (en) 2015-05-29 2015-12-23 Method of treating Crohn's disease comprising a TLR2 antagonist

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150076217 2015-05-29
KR10-2015-0076217 2015-05-29
KR10-2015-0175045 2015-12-09
KR1020150175045A KR101745524B1 (en) 2015-05-29 2015-12-09 Novel TLR2 antagonists

Publications (2)

Publication Number Publication Date
WO2016195194A2 true WO2016195194A2 (en) 2016-12-08
WO2016195194A3 WO2016195194A3 (en) 2017-01-26

Family

ID=57440661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014202 WO2016195194A2 (en) 2015-05-29 2015-12-23 Novel tlr2 antagonists

Country Status (1)

Country Link
WO (1) WO2016195194A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157620A1 (en) * 2019-01-30 2020-08-06 Insilico Medicine Ip Limited Tlr inhibitors
US11008303B2 (en) 2019-01-30 2021-05-18 Insilico Medicine Ip Limited TLR 9 inhibitors
US11807622B2 (en) 2019-01-30 2023-11-07 Insilico Medicine Ip Limited TLR 9 inhibitors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514648A (en) * 2003-10-24 2007-06-07 エーザイ株式会社 Compounds and methods for treating diseases and conditions associated with Toll-likereceptor2
US8734788B2 (en) * 2007-08-03 2014-05-27 Opsona Therapeutics Ltd Composition and method for treatment of reperfusion injury and tissue damage
US8853177B2 (en) * 2008-10-06 2014-10-07 Idera Pharmaceuticals, Inc. Use of inhibitors of toll-like receptors in the prevention and treatment of hypercholesterolemia and hyperlipidemia and diseases related thereto
CA2742596A1 (en) * 2008-11-04 2010-05-14 Idera Pharmaceuticals, Inc. Modulation of toll-like receptor 2 expression by antisense oligonucleotides

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157620A1 (en) * 2019-01-30 2020-08-06 Insilico Medicine Ip Limited Tlr inhibitors
US10988457B2 (en) 2019-01-30 2021-04-27 Insilico Medicine Ip Limited TLR inhibitors
US11008303B2 (en) 2019-01-30 2021-05-18 Insilico Medicine Ip Limited TLR 9 inhibitors
US11807622B2 (en) 2019-01-30 2023-11-07 Insilico Medicine Ip Limited TLR 9 inhibitors

Also Published As

Publication number Publication date
WO2016195194A3 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
WO2016195194A2 (en) Novel tlr2 antagonists
Meyer-Almes Repurposing approved drugs as potential inhibitors of 3CL-protease of SARS-CoV-2: Virtual screening and structure based drug design
Sharma et al. Computational search for potential COVID-19 drugs from FDA-approved drugs and small molecules of natural origin identifies several anti-virals and plant products
Fields et al. Using bacterial genomes and essential genes for the development of new antibiotics
Liu et al. Mast cell-mediated hypersensitivity to fluoroquinolone is MRGPRX2 dependent
Qiao et al. Spectrum-effect relationship between UHPLC-Q-TOF/MS fingerprint and promoting gastrointestinal motility activity of Fructus aurantii based on multivariate statistical analysis
Tao et al. Network pharmacology-based prediction of the active compounds, potential targets, and signaling pathways involved in danshiliuhao granule for treatment of liver fibrosis
Basharat et al. Pan-genomics, drug candidate mining and ADMET profiling of natural product inhibitors screened against Yersinia pseudotuberculosis
Balavignesh et al. Molecular docking study ON NS5B polymerase of hepatitis c virus by screening of volatile compounds from Acacia concinna and ADMET prediction
Lee et al. New insights into drug repurposing for COVID-19 using deep learning
US10308655B2 (en) Method of treating Crohn&#39;s disease comprising a TLR2 antagonist
Wang et al. Pulsatilla decoction alleviates colitis by enhancing autophagy and regulating PI3K‑Akt‑mTORC1 signaling pathway
Bibi et al. Prospects for discovering the secondary metabolites of Cordyceps sensu lato by the integrated strategy
Lawal et al. Identification of a novel immune-inflammatory signature of COVID-19 infections, and evaluation of pharmacokinetics and therapeutic potential of RXn-02, a novel small-molecule derivative of quinolone
Tran et al. Synthetic sansanmycin analogues as potent Mycobacterium tuberculosis translocase I inhibitors
CN104107173A (en) Roflumilast tablet and preparation method thereof
Djokovic et al. An Integrative in silico drug repurposing approach for identification of potential inhibitors of SARS‐CoV‐2 main protease
Verma et al. In silico screening of DNA gyrase B potent flavonoids for the treatment of clostridium difficile infection from phytoHub database
Saha et al. Molecular modeling and characterization of Vibrio cholerae transcription regulator HlyU
Dessalew et al. 3D‐QSAR CoMFA Study on Aminothiazole Derivatives as Cyclin‐Dependent Kinase 2 Inhibitors
Song et al. Discovery of non-peptide inhibitors of Plasmepsin II by structure-based virtual screening
Xiao et al. Mechanism of action of Ermiao san on rheumatoid arthritis based on bioinformatics and molecular dynamics
Pitakbut The antiviral activity of andrographolide, the active metabolite from Andrographis paniculata (Burm. f.) Wall. ex Nees. against SARS-CoV-2 by using bio-and chemoinformatic tools
Zrieq et al. Repurposing of anisomycin and oleandomycin as a potential anti-(SARS-CoV-2) virus targeting key enzymes using virtual computational approaches
Maste et al. Screening of Plectranthus amboinicus against COVID-19—in silico approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894366

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15578086

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015894366

Country of ref document: EP