WO2016195008A1 - Damping valve and shock absorber - Google Patents

Damping valve and shock absorber Download PDF

Info

Publication number
WO2016195008A1
WO2016195008A1 PCT/JP2016/066384 JP2016066384W WO2016195008A1 WO 2016195008 A1 WO2016195008 A1 WO 2016195008A1 JP 2016066384 W JP2016066384 W JP 2016066384W WO 2016195008 A1 WO2016195008 A1 WO 2016195008A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
chamber
side chamber
pressure
hole
Prior art date
Application number
PCT/JP2016/066384
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 石井
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to CN201680021032.7A priority Critical patent/CN107614923A/en
Publication of WO2016195008A1 publication Critical patent/WO2016195008A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/20Excess-flow valves
    • F16K17/22Excess-flow valves actuated by the difference of pressure between two places in the flow line
    • F16K17/24Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member
    • F16K17/28Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member operating in one direction only
    • F16K17/30Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member operating in one direction only spring-loaded

Definitions

  • This invention relates to a damping valve and a shock absorber.
  • a damping valve is used, for example, as a shock absorber that is interposed between a bogie and a vehicle body of a railway vehicle to suppress vehicle body vibration.
  • a damping valve as disclosed in JP5324502B, one of two chambers formed in the shock absorber is upstream and the other is downstream.
  • An annular valve seat provided in the middle of the valve hole, a valve body movably accommodated in the valve hole and seated on and away from the annular valve seat, a spring seat fixed in the valve hole, a valve body and a spring seat, And a first port that is provided between the annular valve seat and the annular valve seat, and communicates the space between the annular valve seat and the spring seat to the other chamber.
  • a second port that bypasses the first port and communicates the space to the other chamber, and a damping valve that shuts off the first port when the valve body is retracted by a predetermined amount in a direction away from the annular valve seat. is there.
  • a damping valve that shuts off the first port when the valve body is retracted by a predetermined amount in a direction away from the annular valve seat.
  • an object of the present invention is to provide a damping valve and a shock absorber that can solve the above problems and can reliably block the flow path with a desired pressure.
  • the present invention includes a valve body having a sliding shaft portion into which a damping valve is slidably inserted into a valve hole, and a flow path provided in the valve body.
  • a valve body having a sliding shaft portion into which a damping valve is slidably inserted into a valve hole, and a flow path provided in the valve body.
  • a damping valve V1 according to an embodiment of the present invention is mounted on a shock absorber D that is interposed between a vehicle body B and a carriage W of a railway vehicle and suppresses vehicle body vibration. , Embodied in the piston portion of the shock absorber D.
  • the shock absorber D includes a cylindrical cylinder 1, a piston 10 inserted into the cylinder 1 so as to be axially slidable, and a rod 11 having one end connected to the piston 10 and the other end extending outside the cylinder 1.
  • the outer cylinder 12 disposed on the outer periphery of the cylinder 1, the one end opening of the cylinder 1 and the outer cylinder 12 are closed, and the other end opening of the cylinder 1 and the outer cylinder 12 is closed.
  • the bottom member 14 is provided.
  • the shock absorber D is connected to the vehicle body B via a bracket 15 attached to the protruding end of the rod 11 protruding from the cylinder 1, and is connected to the carriage W via a bracket 16 attached to the bottom member 14. Therefore, when vibration is input to the carriage W, the rod 11 moves in and out of the cylinder 1 and the piston 10 moves in the cylinder 1 so that the shock absorber D expands and contracts.
  • an extension side chamber L1 and a compression side chamber L2 defined by the piston 10 are formed, and the extension side chamber L1 and the compression side chamber L2 are filled with hydraulic oil, respectively.
  • a reservoir R is formed between the cylinder 1 and the outer cylinder 12, and the hydraulic oil is stored and gas is sealed therein.
  • the extension side chamber L1 and the pressure side chamber L2 are communicated with each other via the extension side flow path 2 and the pressure side flow path 3 provided in the piston 10, and the pressure side chamber L2 and the reservoir R are in the suction flow path 4 provided in the bottom member 14. And via the discharge channel 5.
  • the rod guide 13 is provided with an annular seal that is in sliding contact with the outer periphery of the rod 11. Further, a well-known seal or the like is provided between the cylinder 1 and the rod guide 13, between the cylinder 1 and the bottom member 14, between the outer cylinder 12 and the rod guide 13, and between the outer cylinder 12 and the bottom member 14. It is closed liquid-tightly. Therefore, the inside of the outer cylinder 12 is made a sealed space, and the hydraulic oil does not go back and forth inside the cylinder 1 without passing through the suction flow path 4 or the discharge flow path 5.
  • the extension side flow path 2 provided in the piston 10 includes a passage 20 that communicates the extension side chamber L1 and the compression side chamber L2, and an extension side valve V2 provided in the middle of the passage 20.
  • the expansion side valve V2 allows the flow of hydraulic oil from the expansion side chamber L1 toward the compression side chamber L2 through the passage 20 to provide resistance to the flow, and prevents the flow in the opposite direction.
  • the pressure side flow path 3 provided in the piston 10 extends through a passage 30 that communicates the expansion side chamber L1 and the pressure side chamber L2, a pressure side valve V3 provided in the middle of the passage 30, and the pressure side valve V3.
  • the bypass passage 33 communicates the side chamber L1 and the pressure side chamber L2, and a damping valve V1 provided in the middle of the bypass passage 33.
  • the pressure side valve V3 allows the flow of hydraulic oil from the pressure side chamber L2 toward the extension side chamber L1 through the passage 30 to provide resistance to the flow, and blocks the flow in the opposite direction.
  • the other damping valve V ⁇ b> 1 forms an orifice in the middle of the bypass passage 33, and provides resistance to the flow of hydraulic oil moving through the bypass passage 33.
  • the damping valve V1 uses the pressure side chamber L2 as one chamber and the extension side chamber L1 as the other chamber, and allows the flow of hydraulic oil from the pressure side chamber L2 toward the extension side chamber L1 to pass through the orifice and to flow in the opposite direction. Stop.
  • the damping valve V1 blocks communication of the bypass passage 33 when the pressure in the pressure side chamber L2 on the upstream side becomes higher than a predetermined value.
  • the suction flow path 4 provided in the bottom member 14 includes a passage 40 communicating the pressure side chamber L2 and the reservoir R, and a suction valve V4 provided in the middle of the passage 40.
  • the suction valve V4 is a check valve, and allows the flow of hydraulic oil from the reservoir R to the pressure side chamber L2 through the passage 40 to block the flow in the opposite direction.
  • the discharge flow path 5 provided in the bottom member 14 includes a passage 50 that communicates the compression side chamber L2 and the reservoir R, and a discharge valve V5 provided in the middle of the passage 50.
  • This discharge valve V5 allows the flow of hydraulic oil from the pressure side chamber L2 to the reservoir R through the passage 50 to provide resistance to the flow and block the flow in the opposite direction.
  • the expansion side valve V2, the pressure side valve V3, and the discharge valve V5 that provide resistance to the flow of the hydraulic oil that moves through the passages 20, 30, 50, and make the passages 20, 30, 50 one-way, have any structure.
  • a conventionally known configuration can be adopted.
  • the expansion side valve V2, the pressure side valve V3, and the discharge valve V5 are energized in the direction of closing the valve bodies 21, 31, 51 provided in the middle of the passages 20, 30, 50, and the valve bodies 21, 31, 51. Springs 22, 32, and 52.
  • the valve bodies 21, 31, 51 retreat (lift) against the urging force of the springs 22, 32, 52 and the passages 20, 30, Open 50.
  • the suction valve V4 which is a check valve for setting the passage 40 to one-way, can also employ a conventionally known configuration. Therefore, description of the detailed structure of the expansion side valve V2, the pressure side valve V3, the suction valve V4, and the discharge valve V5 is omitted.
  • the damping valve V ⁇ b> 1 is disposed on the valve body 6 accommodated in the valve hole H provided in the piston 10 and the extension side chamber L ⁇ b> 1 on the downstream side of the valve body 6.
  • a spring receiver 7 to be screwed, a coil spring 8 interposed between the valve body 6 and the spring receiver 7, and a check valve V6 accommodated in the valve body 6 are configured.
  • the piston 10 that divides the inside of the cylinder 1 into an extension side chamber L1 and a pressure side chamber L2 also serves as a housing in the damping valve V1, and a valve body 6 and a spring are placed in a valve hole H formed in the piston 10.
  • the receiver 7, the coil spring 8, and the check valve V6 are accommodated.
  • the housing of the damping valve V1 may be other than the piston 10.
  • the housing of the damping valve V1 according to the present invention may include a rod 11 or a nut (not shown) for fixing the piston 10 to the rod 11. It may be used as
  • a valve hole H formed in the piston 10 which is a housing passes through the piston 10 in the axial direction and communicates the extension side chamber L1 and the pressure side chamber L2.
  • the valve hole H includes a screw hole 10a that is continuous from the upper side to the lower side in FIG. 2, a large diameter hole 10b, a guide hole 10c that has a smaller diameter than the large diameter hole 10b, and the guide hole 10c. And a protective hole 10d having a larger diameter.
  • a screw groove is formed in the wall surface of the screw hole 10a, and the spring receiver 7 is screwed together.
  • the spring receiver 7 includes a protrusion 7a that protrudes toward the valve body 6, and the upper end of the coil spring 8 in FIG. 2 is fitted to the outer periphery of the protrusion 7a. Further, the spring receiver 7 is formed with a hole 7b penetrating the center of the spring receiver 7 in the axial direction and a plurality of engagement holes 7c opening upward in FIG. Then, when a tool or the like is engaged with the engagement hole 7c and the spring receiver 7 is rotated, the spring receiver 7 advances and retracts in the direction of the rotation axis, and stops when the rotation is stopped.
  • the configuration for changing the axial position of the spring receiver 7 is not limited to this, and can be changed as appropriate.
  • valve body 6 is accommodated in a space below the screw hole 10a in FIG.
  • the valve body 6 is connected to a cylindrical sliding shaft portion 60a located at the tip which is the lower end of the valve body 6 in FIG. 2, and to the upper side in FIG. 2 of the sliding shaft portion 60a, and the sliding shaft portion 60a.
  • a valve body 60 having a flange portion 60b having a larger outer diameter and a body portion 60c connected to the upper side in FIG. 2 of the flange portion 60b, and an upper end portion of the body portion 60c of the valve body 60 in FIG.
  • a cap 61 The valve body 6 is inserted into the valve hole H from the upper side in FIG. 2 of the valve hole H, the sliding shaft portion 60a is inserted through the guide hole 10c, and the upper side in FIG. It is accommodated in the large-diameter hole 10b.
  • the sliding shaft portion 60a of the valve main body 60 is in sliding contact with the wall surface of the guide hole 10c and can slide in the guide hole 10c in the axial direction. That is, in the present embodiment, the sliding shaft 60a is supported by the wall surface of the guide hole 10c so as to be movable in the axial direction, so that the valve body 6 can move forward and backward toward the pressure side chamber L2.
  • the outer diameter of the valve body 6 is smaller than the diameter of the large diameter hole 10b, and the clearance gap s1 is made between the wall surfaces of the large diameter hole 10b.
  • the outer diameter of the flange portion 60b of the valve body 60 is larger than the outer diameter of the trunk portion 60c, and the outer periphery of the flange portion 60b protruding from the trunk portion 60c to the outer peripheral side is shown in FIG. While supporting the middle and lower ends, the inner periphery of the coil spring 8 can be supported by the body 60c.
  • the coil spring 8 is compressed in advance and exerts an elastic force, and urges the valve body 6 toward the pressure side chamber L2.
  • An annular step 10e is formed on the wall surface of the valve hole H at the boundary between the large diameter hole 10b and the guide hole 10c.
  • the step 10e provided on the piston 10 functions as a stopper that restricts the advancement of the valve body 6 by a predetermined amount or more.
  • the valve body 6 in a state where no external force is applied to the damping valve V1, that is, in a no-load state, the valve body 6 is advanced as much as possible by receiving the biasing force of the coil spring 8, and the flange portion 60b is pressed against the step 10e. It becomes.
  • the preset load of the coil spring 8 can be changed by changing the axial position of the spring receiver 7. Specifically, when the spring receiver 7 is rotated in the forward direction and advanced toward the valve body 6, the amount of compression of the coil spring 8 increases and the preset load increases. On the other hand, if the spring receiver 7 is rotated in the reverse direction and retracted away from the valve body 6, the amount of compression of the coil spring 8 is reduced and the preset load is reduced.
  • the coil spring 8 functions as a biasing member that biases the valve body 6 toward the pressure side chamber L2, but as such a biasing member, a spring other than the coil spring or An elastic body such as rubber may be used.
  • the valve body 6 receives the pressure of the compression side chamber L2 from the front side and the pressure of the extension side chamber L1 from the back side. Then, a force obtained by multiplying the pressure receiving area on the front side of the valve body 6 that receives the pressure in the compression side chamber L2 by the pressure in the compression side chamber L2 (hereinafter referred to as force F1) is the back surface of the valve body 6 that receives the pressure in the expansion side chamber L1.
  • the valve body 6 When the total force (hereinafter referred to as force F2) of the force obtained by multiplying the pressure receiving area on the side by the pressure of the expansion chamber L1 and the urging force of the coil spring 8 is exceeded, the valve body 6 is retracted. As described above, when the preset load is increased, the force F2 is increased, so that the pressure in the compression side chamber L2 required to retract the valve body 6 is increased. On the other hand, when the preset load is reduced, the force F2 is reduced, so that the pressure in the compression side chamber L2 required to retract the valve body 6 is reduced.
  • the axial length of the sliding shaft portion 60a of the valve body 60 is longer than the axial length of the guide hole 10c. Therefore, in a state where the flange portion 60b contacts the step 10e and the advancement of the valve body 6 is restricted, the tip end portion of the sliding shaft portion 60a protrudes into the protective hole 10d. Further, when the forward movement of the valve body 6 is restricted, the protruding amount of the sliding shaft portion 60a into the protective hole 10d is the largest. Even in this state, the lower end of the sliding shaft portion 60a in FIG. The axial length of the protective hole 10d is set so that does not protrude downward from the piston 10 in FIG.
  • the sliding shaft part 60a is accommodated in the protective hole 10d, the sliding shaft part 60a is protected by the piston 10, and interference between the sliding shaft part 60a and other members is prevented. Further, since the diameter of the protective hole 10d is larger than the outer diameter of the sliding shaft portion 60a, an annular gap s2 is formed along the circumferential direction on the outer periphery of the sliding shaft portion 60a inserted into the protective hole 10d.
  • a check valve accommodating hole 60d for accommodating the check valve V6 is formed inside the valve body 60 from the flange portion 60b to the body portion 60c.
  • the other sliding shaft portion 60a is provided at the central portion of the sliding shaft portion 60a, and is connected to the check valve accommodating hole 60d.
  • the shaft hole 60e extends radially from the shaft hole 60e.
  • a plurality of lateral holes 60f are formed to open to the sides. The position of the lateral hole 60f is set so that the opening o1 of the lateral hole 60f is exposed in the protective hole 10d in a state where the advancement of the valve body 6 is restricted.
  • the compression side chamber L2 and the lateral hole 60f communicate with each other through a gap s2 that is formed on the outer periphery of the sliding shaft portion 60a.
  • the openings o1 of the lateral holes 60f are closed by the wall surfaces of the guide holes 10c, and the communication between the pressure side chamber L2 and the lateral holes 60f is established. Blocked.
  • the openings o1 of all the horizontal holes 60f are provided with substantially the same size and the same height (axial position). Furthermore, in the state where the forward movement of the valve body 6 is restricted, the upper end in FIG. 2 of the opening o1 is located at the boundary between the guide hole 10c and the protective hole 10d. Therefore, when the valve body 6 retreats (lifts) by an amount corresponding to the vertical width of the opening o1 of the horizontal hole 60f, the openings o1 of all the horizontal holes 60f are closed substantially simultaneously facing the wall surface of the guide hole 10c.
  • the number, shape, and orientation of the horizontal holes 60f are not limited to the above, and can be changed as appropriate. Moreover, the timing which closes the opening o1 of the some horizontal hole 60f can also be changed suitably.
  • the check valve accommodating hole 60d connected to the horizontal hole 60f via the shaft hole 60e is opened above the trunk portion 60c in FIG. 2, and the opening end portion is a screw hole (not shown). .
  • the cap 61 is screwed into this screw hole.
  • the lower end portion of the check valve accommodating hole 60d in FIG. 2 is reduced in diameter, and an annular valve seat 60g is provided on the wall of the check valve accommodating hole 60d at the boundary of the portion where the diameter changes.
  • the cap 61 is formed with a hole 61a penetrating the cap 61 in the axial direction, and the space above the valve seat 60g in the check valve accommodating hole 60d is opened through the hole 61a in FIG. It communicates outside the body 6.
  • the shaft hole 60e of the sliding shaft portion 60a is connected to the space below the valve seat 60g in the other check valve housing hole 60d in FIG.
  • the check valve V6 includes a check valve valve body 9 that is slidably inserted into a space above the valve seat 60g in the check valve housing hole 60d in FIG. 2 and between the check valve valve body 9 and the cap 61.
  • the coil spring 90 is interposed and configured to bias the check valve valve body 9 toward the valve seat 60g.
  • the check valve valve body 9 has a bottomed cylindrical valve head 9a whose bottom is seated on the valve seat 60g, and extends upward in FIG. 2 from the cylindrical portion of the valve head 9a and has a larger outer diameter than the valve head 9a. It has a cylindrical large-diameter portion 9b.
  • the check valve valve body 9 has the large-diameter portion 9b in sliding contact with the inner periphery of the valve main body 60 and is movable in the axial direction.
  • An annular gap s3 is formed on the outer periphery of the valve head 9a with the valve body 60, and a hole communicating the gap s3 and the inside of the valve head 9a is formed in the tubular portion of the valve head 9a. 9c is formed.
  • the flow path 62 is configured by including the horizontal hole 60f, the shaft hole 60e, the check valve accommodating hole 60d, and the hole 61a of the cap 61 provided in the valve body 6.
  • One end of the cap 61 opens to the side of the sliding shaft portion 60a, and the other end opens to the upper side of the cap 61 in FIG.
  • the flow path 62 and the hole 7b of the spring receiver 7 constitute a bypass path 33 that bypasses the compression side valve V3 (FIG. 1) and communicates the expansion side chamber L1 and the compression side chamber L2.
  • the check valve V6 is provided in the middle of the flow path 62, and allows the flow of hydraulic oil from the pressure side chamber L2 toward the extension side chamber L1 through the flow path 62 to prevent the flow in the opposite direction. Therefore, the flow path 62 becomes one-way, and as a result, the bypass path 33 also becomes one-way. Further, in the present embodiment, the lateral hole 60f is narrowed to function as an orifice, and resistance is given to the flow of hydraulic oil that moves through the flow path 62 through the orifice (lateral hole 60f).
  • the pressure in the pressure side chamber L2 that can retreat the valve body 6 is higher than the pressure in the pressure side chamber L2 that can retreat the check valve valve body 9. Therefore, if the pressure in the pressure side chamber L2 does not reach a pressure that can cause the check valve valve body 9 to retreat, the valve body 6 is advanced as much as possible by receiving the urging force of the coil spring 8, and the flange portion 60b is pressed against the step 10e. It becomes a state.
  • the check valve valve body 9 also advances as much as possible by receiving the urging force of the coil spring 90, and the valve head 9a is seated on the valve seat 60g. Therefore, the flow path 62 provided in the valve body 6 is maintained in a closed state by the check valve V6.
  • the sliding shaft portion 60a provided with the opening o1 of the lateral hole 60f serving as an opening on one end side of the flow path 62 protrudes into the protective hole 10d, and the gap s2 formed on the outer periphery of the sliding shaft portion 60a.
  • the pressure side chamber L2 and the shaft hole 60e are communicated with each other through the horizontal hole 60f.
  • the horizontal hole 60f functions as an orifice
  • the hydraulic fluid passes through the orifice with relatively little resistance and passes from the compression side chamber L2 to the expansion side chamber L1.
  • the differential pressure between the compression side chamber L2 and the extension side chamber L1 does not increase.
  • resistance is given by the orifice to the flow of hydraulic oil from the compression side chamber L2 toward the expansion side chamber L1, and the differential pressure between the compression side chamber L2 and the expansion side chamber L1 increases.
  • the force F1 obtained by multiplying the pressure receiving area on the front side of the valve body 6 by the pressure of the pressure side chamber L2 is multiplied by the force obtained by multiplying the pressure receiving area on the back side of the valve body 6 by the pressure of the expansion side chamber L1 and the coil spring 8 is attached.
  • the valve body 6 moves backward until the forces F1 and F2 are suspended.
  • the flow path 62 is closed, so that the communication of the bypass path 33 is blocked.
  • a pressure side valve V3 is provided in parallel with the damping valve V1.
  • the valve body 31 of the pressure side valve V3 moves backward to open the passage 30, and the hydraulic oil in the pressure side chamber L2 passes through the passage 30 and enters the expansion side chamber L1.
  • the pressure side flow path 3 that allows the flow of the hydraulic oil from the pressure side chamber L2 toward the expansion side chamber L1 is configured to have two paths, the passage 30 and the bypass path 33. When the communication of the bypass path 33 is blocked, the hydraulic oil in the compression side chamber L2 moves through the passage 30 to the extension side chamber L1.
  • a general damping valve configured to include a normally open type orifice and a poppet valve set to a predetermined valve opening pressure
  • the opening area of the orifice is increased and the flow rate per unit time is increased. If the pressure in the region where there is a small amount is lowered, the pressure in the region where the flow rate per unit time is large will be kept low.
  • the orifice opening area cannot be increased, and the pressure in the region where the flow rate per unit time is small also increases (in FIG. 3). Dashed line Z).
  • the pressure flow characteristic when the bypass passage 33 is communicated can be freely set by the opening area of the lateral hole 60f, and the pressure flow characteristic when the bypass passage 33 is closed can be set to the pressure side valve V3. It can be set freely according to the specifications. That is, in the present embodiment, the pressure flow characteristics when the hydraulic oil passes through the pressure side flow path 3 can be set independently before and after the bypass path 33 is closed. Therefore, when the damping valve V1 is used, as shown by solid lines X and Y in FIG. 3, the pressure flow characteristics in which the pressure in the region where the flow rate per unit time is low is low and the pressure in the region where the flow rate is high are high. It can be easily realized.
  • the pressure when the valve body 6 closes the bypass passage 33 can be changed by rotating the spring receiver 7 and changing the axial position of the spring receiver 7. Specifically, when the spring receiver 7 is rotated in the forward direction and advanced toward the valve body 6, the preset load of the coil spring 8 increases, and the pressure side chamber when the valve body 6 closes the bypass path 33. The pressure of L2 can be increased. On the other hand, when the spring receiver 7 is rotated in the reverse direction and is retracted away from the valve body 6, the preset load of the coil spring 8 is reduced and the pressure side chamber L ⁇ b> 2 is closed when the valve body 6 closes the bypass path 33. The pressure can be reduced.
  • the distance between the valve body 6 and the spring receiver 7 is changed by adjusting the preset load, as in the case of the conventional damping valve, but the valve body 6 closes the bypass passage 33.
  • the required lift amount (retraction amount) of the valve body 6 is always constant. Specifically, the lift amount corresponds to the distance from the lower end in FIG. 2 of the wall surface of the guide hole 10c to the lower end of the opening o1 on one end side of the flow path 62. In the present embodiment, the lift amount of the flow path 62 is This corresponds to the vertical width in FIG. 2 of the opening o1 on one end side.
  • the damping valve V ⁇ b> 1 it is possible to suppress the variation in the lift amount required for closing the flow path 62 from product to product.
  • the sliding shaft portion 60a in which the opening o1 is formed is a portion supported by the wall surface of the guide hole 10c and is not easily tilted. Therefore, the flow path 62 can be reliably closed when the opening o1 faces the wall surface. . Therefore, according to the damping valve V1, the flow path 62 can be reliably closed with a desired pressure.
  • a plurality of lateral holes 60f for guiding hydraulic oil from the compression side chamber L2 to the shaft hole 60e are formed, and the opening area on one side of the flow path 62 is the opening o1 of each lateral hole 60f.
  • the pressure in the expansion side chamber L1 to be compressed rises, and the hydraulic oil in the expansion side chamber L1 pushes open the expansion side valve V2, passes through the expansion side flow path 2, and moves to the compression side chamber L2.
  • the hydraulic oil corresponding to the retracted rod volume is insufficient, but the suction valve V ⁇ b> 4 is opened, and hydraulic oil corresponding to the shortage is supplied from the reservoir R to the pressure side chamber L ⁇ b> 2 through the suction flow path 4. . Since the resistance by the extension side valve V2 is given to the flow of the hydraulic fluid from the extension side chamber L1 toward the compression side chamber L2, the pressure in the extension side chamber L1 increases.
  • the pressure side chamber L2 since the pressure side chamber L2 receives the supply of hydraulic oil from the reservoir R, the pressure side chamber L2 becomes substantially equal to the pressure in the reservoir R. Therefore, a differential pressure is generated in the pressures of the extension side chamber L1 and the compression side chamber L2, and this differential pressure acts on the piston 10, and the shock absorber D exerts an extension side damping force that prevents the extension operation.
  • the hydraulic oil corresponding to the volume of the rod that has entered becomes surplus, but the surplus hydraulic oil opens the discharge valve V ⁇ b> 5, passes through the discharge flow path 5, and is discharged from the pressure side chamber L ⁇ b> 2 to the reservoir R. .
  • a resistance is given to the flow of hydraulic oil from the pressure side chamber L2 toward the extension side chamber L1 and the reservoir R by the lateral hole 60f or the pressure side valve V3 functioning as an orifice, and the discharge valve V5, so that the pressure in the pressure side chamber L2 is reduced.
  • the pressure flow characteristics when the hydraulic oil passes through the pressure side flow path 3 are such that the differential pressure between the pressure side chamber L2 and the expansion side chamber L1 is small in the region where the flow rate per unit time is small as described above. Is set. For this reason, in the low speed region where the hydraulic oil passes through the orifice of the bypass passage 33, the differential pressure between the compression side chamber L2 and the expansion side chamber L1 becomes small, so that substantially equal pressure is applied to both the left and right sides of the piston 10 in FIG.
  • the apparent pressure receiving area is close to the cross-sectional area of the rod 11.
  • the pressure flow characteristic when the hydraulic oil passes through the pressure side flow path 3 is set so that the differential pressure between the pressure side chamber L2 and the extension side chamber L1 becomes large in a region where the flow rate per unit time is large. Has been. For this reason, while the communication of the bypass path 33 is interrupted, the differential pressure between the compression side chamber L2 and the expansion side chamber L1 increases in a high speed region where the hydraulic oil passes through the compression side valve V3. Therefore, the pressure applied to the right side in FIG. 1 of the piston 10 is larger than the pressure applied to the left side in FIG. 1, and the apparent pressure receiving area of the piston 10 is the difference between the cross-sectional area of the piston 10 and the cross-sectional area of the rod 11 (piston 10 cross-sectional area-cross-sectional area of the rod 11).
  • the damping valve V1 when the pressure flow characteristic of the hydraulic fluid from the compression side chamber L2 to the expansion side chamber L1 is set as described above using the damping valve V1, the flow rate of the flow passage 62 is apparently dependent on the piston speed. It appears that the pressure receiving area of the piston 10 has changed. When the apparent pressure receiving area of the piston 10 decreases, the damping force generation response of the shock absorber D decreases. On the contrary, when the apparent pressure receiving area of the piston 10 increases, the damping force generation response of the shock absorber D. Improves. Therefore, when the damping valve V1 is used for the pressure side flow path 3, the apparent pressure receiving area of the piston 10 can be switched by opening and closing the flow path 62, and the damping force generation response can be easily changed according to the speed.
  • the damping valve V1 according to the present invention is mounted on the shock absorber D for railway vehicles.
  • the present invention is not limited to this.
  • a shock absorber used for damping a structure Or you may mount in another buffer.
  • the configuration of the shock absorber D is not limited to the above, and can be changed as appropriate.
  • a fluid other than hydraulic oil may be used as the fluid for generating the damping force.
  • the rod 11 may extend on both sides of the piston 10, and the shock absorber D may be a double rod type.
  • a reservoir R is formed between the cylinder 1 and the outer cylinder 12 that are arranged in the inner and outer doubles.
  • a separate tank is provided outside the cylinder 1, and the reservoir R is formed in the tank.
  • the shock absorber D may be a uniflow type in which hydraulic oil circulates always in one direction in the order of the pressure side chamber L2, the extension side chamber L1, and the reservoir R. And according to such a form of the shock absorber D, the position where the damping valve V1 is provided and the type of the mounted valve can be changed as appropriate.
  • the shock absorber D is inserted into the cylinder 1 so as to be axially movable in the cylinder 1 and divides the inside of the cylinder 1 into an extension side chamber (other chamber) L1 and a pressure side chamber (one chamber) L2.
  • a piston 10, a rod 11 having one end connected to the piston 10 and penetrating through the expansion side chamber L1 and the other end extending outside the cylinder 1, a reservoir R for storing hydraulic oil (fluid), an expansion side chamber L1, and a compression side chamber
  • the expansion side flow path 2 having the expansion side valve V2 that communicates with L2 and allows the flow of hydraulic oil from the expansion side chamber L1 toward the compression side chamber L2 to provide resistance to the flow, and the expansion side chamber L1 and the compression side chamber L2.
  • a pressure side flow path 3 having a pressure side valve V3 and a damping valve V1 that allows the flow of hydraulic oil from the pressure side chamber L2 toward the expansion side chamber L1 and provides resistance to this flow, and the pressure side chamber L2 and the reservoir R. Communication, pressure side from reservoir R
  • the suction flow path 4 having a suction valve V4 that allows the flow of hydraulic oil toward L2, the pressure side chamber L2, and the reservoir R communicate with each other to allow the flow of hydraulic oil toward the reservoir R from the pressure side chamber L2 and this flow.
  • a discharge passage 5 having a discharge valve V5 that provides resistance to the.
  • the pressure side flow path 3 communicates the expansion side chamber L1 and the pressure side chamber L2, and bypasses the pressure side valve V3, bypasses the expansion side chamber L1 and the pressure side chamber L2, and attenuates. And a bypass path 33 provided with a valve V1.
  • the damping valve V1 can block the flow path 62 and block the communication of the bypass path 33 by increasing the piston speed. Therefore, according to the shock absorber D, it is possible to change the apparent pressure receiving area of the piston 10 at the speed at which the damping valve V1 closes the flow path 62, thereby changing the damping force generation responsiveness. .
  • the structure of the buffer D which mounts the damping valve V1 which concerns on this invention is not restricted above, but can be changed suitably.
  • the apparent pressure receiving area of the piston 10 can be switched between an area close to the cross-sectional area of the rod 11 and an area close to the difference between the cross-sectional area of the piston 10 and the cross-sectional area of the rod 11.
  • the same effect can be obtained even if one of the pressure side valve V3 and the discharge valve V5 is eliminated.
  • the suction passage on the extension side chamber L1 side that allows the extension side chamber L1 and the reservoir R to communicate with each other and allows the flow of hydraulic oil from the reservoir R to the extension side chamber L2, an apparent pressure receiving area of the piston 10 is obtained.
  • the area can be switched between an area close to the cross-sectional area of the rod 11 and an area close to the cross-sectional area of the piston 10.
  • Such a change in the damping force generation responsiveness by opening and closing the flow path 62 can be realized if the damping valve V ⁇ b> 1 is provided in the middle of the pressure side flow path 3.
  • the flow path 62 has a shaft hole 60e formed at the center of the sliding shaft portion 60a, and extends from the shaft hole 60e to the side of the sliding shaft portion 60a. It has a plurality of lateral holes 60f that open.
  • the plurality of horizontal holes 60f extend radially from the shaft hole 60e, but this is not restrictive.
  • the plurality of lateral holes 60f may extend substantially parallel to the diameter of the sliding shaft portion 60a while intersecting the shaft hole 60e.
  • the horizontal hole 60f functions as an orifice, but an orifice may be provided in a portion other than the horizontal hole 60f in the flow path 62, and the throttle provided in the middle of the flow path 62 is a choke other than the orifice.
  • the valve hole H is connected to the guide hole 10c into which the sliding shaft portion 60a is slidably inserted and the pressure side chamber (one chamber) L2 side of the guide hole 10c.
  • the valve body 6 has a protective hole 10d that allows the passage 62 to communicate and accommodates the sliding shaft portion 60a in a state in which the movement of the valve body 6 to the pressure side chamber L2 side is restricted by the step (stopper) 10e. Configured.
  • the outer periphery of the sliding shaft portion 60a is covered with the wall surface of the protective hole 10d while allowing the flow path 62 to communicate. That is, since the sliding shaft portion 60a does not protrude from the piston 10 which is a housing, the sliding shaft portion 60a can be protected and interference between the sliding shaft portion 60a and other members can be prevented.
  • the portion of the piston 10 where the protective hole 10d is formed is formed.
  • the sliding shaft portion 60a may be omitted below the lower surface of the piston 10 in FIG. Such a change is possible regardless of the type of the shock absorber on which the damping valve V1 according to the present invention is mounted and the configuration of the flow path 62.
  • the flow path 62 is provided with a check valve V6 that allows only the flow of hydraulic fluid (fluid) from the pressure side chamber (one chamber) L2 side to the extension side chamber (other chamber) L1 side. .
  • the flow path 62 can be made one-way, the flow path 62 can be maintained closed when the pressure in the extension side chamber L1 on the downstream side of the damping valve V1 increases. Therefore, for example, when a normally open orifice is provided and the shock absorber D extends at a low speed, when the hydraulic oil moves from the expansion side chamber L1 to the pressure side chamber L2 through the orifice, the check valve V6 is used. When the is provided, the extension side low speed damping force and the compression side low speed damping force can be individually set.
  • the check valve V6 may be omitted if the hydraulic oil may be allowed to pass in both directions.
  • the cap 61 and the valve seat 60g of the valve body 6 can be omitted, the structure of the damping valve V1 can be simplified.
  • the check valve V6 since the check valve V6 is accommodated in the valve body 6 of the damping valve V1, the damping valve V1 is not bulky in the axial direction. Can be changed as appropriate.
  • the check valve V6 may be attached to the spring receiver 7. Such changes are possible regardless of the type of shock absorber on which the damping valve V1 according to the present invention is mounted, the configuration of the flow path 62, and the configuration of the valve hole H.
  • the damping valve V1 includes a step (stopper) 10e that regulates the forward movement (movement toward the pressure side chamber L2) of the valve body 6.
  • a step (stopper) 10e that regulates the forward movement (movement toward the pressure side chamber L2) of the valve body 6.
  • the pressure flow characteristics when the hydraulic oil (fluid) flows from the pressure side chamber (one chamber) L2 to the extension side chamber (other chamber) L1 can be switched before and after the flow path 62 is closed.
  • the valve body 6 when the valve body 6 is restricted from moving forward, the communication between the flow path 62 and the pressure side chamber L2 is set to be blocked, and when the pressure in the pressure side chamber L2 becomes a predetermined pressure, The communication of the flow path 62 is allowed, and the flow path 62 may be set to be closed when the pressure becomes higher.
  • the damping valve V1 of the present embodiment is slid into the valve hole H and a piston (housing) 10 having a valve hole H communicating the pressure side chamber (one chamber) L2 and the expansion side chamber (other chamber) L1.
  • a valve body 6 having a sliding shaft portion 60a that can be inserted, a coil spring (elastic member) 8 that biases the valve body 6 toward the pressure side chamber L2, and a side of the sliding shaft portion 60a at one end.
  • a flow path 62 having the other end opened to the extension side chamber L1 side from the sliding shaft portion 60a of the valve body 6.
  • the opening o1 on one end side of the flow path 62 faces the wall surface of the guide hole 10c (the wall surface of the valve hole H slidably contacting the outer periphery of the sliding shaft portion 60a).
  • the flow path 62 is closed.
  • the pressure flow characteristics when hydraulic fluid (fluid) flows from the pressure side chamber (one chamber) L2 to the extension side chamber (other chamber) L1 can be freely set before and after the flow path 62 is closed. . Further, in a state in which the valve body 6 is restricted from moving forward, the valve body 6 can be set to receive the urging force of the coil spring (elastic member) 8 and be pressed against the step (stopper) 10e. The load can be set easily. Even when the preset load is adjusted, the lift amount of the valve body 6 required to close the flow path 62 is the lower end of the opening o1 on the one end side of the flow path 62 from the lower end in FIG. 2 of the wall surface of the guide hole 10c.
  • an opening o1 on one end side of the flow path 62 opened and closed by the wall surface of the guide hole 10c is provided in the sliding shaft portion 60a that is in sliding contact with the wall surface. Since the portion is difficult to tilt, the flow path 62 can be reliably closed when the opening o1 faces the wall surface of the guide hole 10c. Therefore, according to the damping valve V1, the flow path 62 can be reliably closed with a desired pressure.

Abstract

[Problem] To provide a damping valve that can reliably block the flow channel at a desired pressure and a shock absorber. [Solution] A damping valve comprises: a piston (10) that has a valve hole (H) by which an extension side chamber (L1) and a compression side chamber (L2) communicate; a valve body (6) that has a sliding shaft (60a) inserted into the valve hole (H) so as to be able to slide; a step (10e) that regulates motion of the valve body (6) toward the compression side chamber (L2); a coil spring (8) that biases the valve body (6) toward the compression side chamber (L2); and a flow channel (62), one end of which opens to the side of the sliding shaft (60a) and the other end of which opens further toward the extension side chamber (L1) side than the sliding shaft (60a) of the valve body (6). The flow channel (62) is blocked when the valve body (6) moves to the extension side chamber (L1) side and the one end opening (o1) of the flow channel (62) faces the wall face of the valve hole H that is in sliding contact with the outer circumference of the sliding shaft (60a).

Description

減衰バルブ及び緩衝器Damping valve and shock absorber
 この発明は、減衰バルブ及び緩衝器に関する。 This invention relates to a damping valve and a shock absorber.
 従来、減衰バルブは、例えば、鉄道車両の台車と車体との間に介装されて、車体振動を抑制する緩衝器に利用されている。このような減衰バルブの中には、JP5324502Bに開示されているように、緩衝器内に形成される二つの室うちの一方を上流とし他方を下流として二つの部屋を連通する弁孔と、この弁孔の途中に設けた環状弁座と、弁孔内に移動自在に収容されて環状弁座に離着座する弁体と、弁孔内に固定されるばね座と、弁体とばね座との間に介装されて弁体を環状弁座に向けて附勢するばねと、ばね座に設けられて環状弁座とばね座との間の空間を他方の室へ連通する第一ポートと、第一ポートを迂回して上記空間を他方の室へ連通する第二ポートとを備え、弁体が環状弁座から遠ざかる方向へ所定量後退すると弁体が第一ポートを遮断する減衰バルブがある。このような減衰バルブによれば、第一ポート閉塞時の圧力流量特性と、第一ポート開放時の圧力流量特性とを独立して自由に設定できる。 Conventionally, a damping valve is used, for example, as a shock absorber that is interposed between a bogie and a vehicle body of a railway vehicle to suppress vehicle body vibration. In such a damping valve, as disclosed in JP5324502B, one of two chambers formed in the shock absorber is upstream and the other is downstream. An annular valve seat provided in the middle of the valve hole, a valve body movably accommodated in the valve hole and seated on and away from the annular valve seat, a spring seat fixed in the valve hole, a valve body and a spring seat, And a first port that is provided between the annular valve seat and the annular valve seat, and communicates the space between the annular valve seat and the spring seat to the other chamber. And a second port that bypasses the first port and communicates the space to the other chamber, and a damping valve that shuts off the first port when the valve body is retracted by a predetermined amount in a direction away from the annular valve seat. is there. According to such a damping valve, the pressure flow characteristic when the first port is closed and the pressure flow characteristic when the first port is open can be set independently and freely.
 ここで、JP5324502Bに開示されている減衰バルブでは、弁体のリフト量が徐々に大きくなって所定のリフト量に達すると、弁体がばね座に突き当たって第一ポートを閉塞するようになっている。また、上記ばね座は、弁孔に螺合されており、ばね座を回転して回転軸方向に移動させると、ばねのプリセット荷重を変えられる。 Here, in the damping valve disclosed in JP5324502B, when the lift amount of the valve body gradually increases and reaches a predetermined lift amount, the valve body hits the spring seat and closes the first port. Yes. The spring seat is screwed into the valve hole. When the spring seat is rotated and moved in the direction of the rotation axis, the preset load of the spring can be changed.
 しかしながら、上記したようにばねのプリセット荷重を調節すると弁体からばね座までの距離が製品毎に変わるので、第一ポートを閉塞するのに要する弁体のリフト量にバラツキが生じる。さらに、上記したようにばね座が弁孔に螺合されていて、ばね座の弁体側の面を弁体の軸に対して垂直にするのが難しい。加えて、第一ポートを通過する流体の流体力の影響等もある。よって、JP5324502Bに開示された図1に示す場合のみならず、たとえ、同図4に示すように、弁体の端部を円錐台状にしたとしても、一方の室の圧力が所望の圧力になったとき第一ポートを確実に閉塞できない可能性がある。 However, when the preset load of the spring is adjusted as described above, the distance from the valve body to the spring seat varies depending on the product, and thus the lift amount of the valve body required to close the first port varies. Further, as described above, the spring seat is screwed into the valve hole, and it is difficult to make the surface of the spring seat on the valve body side perpendicular to the axis of the valve body. In addition, there is an influence of the fluid force of the fluid passing through the first port. Therefore, not only in the case shown in FIG. 1 disclosed in JP5324502B, but also in the case where the end of the valve body has a truncated cone shape as shown in FIG. 4, the pressure in one chamber becomes a desired pressure. If this happens, the first port may not be securely blocked.
 そこで、本発明は、上記不具合を解消し、所望の圧力で流路を確実に閉塞できる減衰バルブ及び緩衝器の提供を課題とする。 Therefore, an object of the present invention is to provide a damping valve and a shock absorber that can solve the above problems and can reliably block the flow path with a desired pressure.
 上記課題を解決するために、本発明では、減衰バルブが弁孔内に摺動可能に挿入される摺動軸部を有する弁体と、この弁体に設けられる流路とを備え、前記流路の一端側の開口が前記摺動軸部の外周に摺接する前記弁孔の壁面に対向すると、前記流路が閉塞される。 In order to solve the above-described problems, the present invention includes a valve body having a sliding shaft portion into which a damping valve is slidably inserted into a valve hole, and a flow path provided in the valve body. When the opening on one end side of the passage is opposed to the wall surface of the valve hole that is in sliding contact with the outer periphery of the sliding shaft portion, the passage is closed.
本発明の一実施の形態に係る減衰バルブを搭載した緩衝器を原理的に示した図である。It is the figure which showed in principle the shock absorber carrying the damping valve which concerns on one embodiment of this invention. 図1の減衰バルブを拡大し、具体的に示した縦断面図である。It is the longitudinal cross-sectional view which expanded and specifically showed the damping valve of FIG. 本発明の一実施の形態に係る減衰バルブを搭載した緩衝器において、作動油が圧側室から伸側室に流れる際の圧力流量特性を示した図である。It is the figure which showed the pressure flow characteristic at the time of hydraulic fluid flowing from a compression side chamber to an extension side chamber in the shock absorber equipped with the damping valve concerning one embodiment of the present invention.
 以下に本発明の実施の形態について、図面を参照しながら説明する。いくつかの図面を通して付された同じ符号は、同じ部品を示す。また、図面は符号の向きに見るとする。 Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals used throughout the several drawings indicate the same parts. The drawings are viewed in the direction of the reference numerals.
 図1に示すように、本発明の一実施の形態に係る減衰バルブV1は、鉄道車両の車体Bと台車Wとの間に介装されて車体振動を抑制する緩衝器Dに搭載されており、当該緩衝器Dのピストン部に具現化されている。 As shown in FIG. 1, a damping valve V1 according to an embodiment of the present invention is mounted on a shock absorber D that is interposed between a vehicle body B and a carriage W of a railway vehicle and suppresses vehicle body vibration. , Embodied in the piston portion of the shock absorber D.
 上記緩衝器Dは、筒状のシリンダ1と、このシリンダ1内に軸方向摺動自在に挿入されるピストン10と、一端がピストン10に連結されて他端がシリンダ1外に延びるロッド11と、シリンダ1の外周に配置される外筒12と、シリンダ1及び外筒12の一端開口を閉塞するとともにロッド11を軸支するロッドガイド13と、シリンダ1及び外筒12の他端開口を閉塞するボトム部材14とを備えている。また、緩衝器Dは、シリンダ1から突出するロッド11の突端部に取り付けられるブラケット15を介して車体Bに連結され、ボトム部材14に取り付けられるブラケット16を介して台車Wに連結されている。よって、振動が台車Wに入力されると、ロッド11がシリンダ1に出入りするとともにピストン10がシリンダ1内を移動して緩衝器Dが伸縮する。 The shock absorber D includes a cylindrical cylinder 1, a piston 10 inserted into the cylinder 1 so as to be axially slidable, and a rod 11 having one end connected to the piston 10 and the other end extending outside the cylinder 1. The outer cylinder 12 disposed on the outer periphery of the cylinder 1, the one end opening of the cylinder 1 and the outer cylinder 12 are closed, and the other end opening of the cylinder 1 and the outer cylinder 12 is closed. The bottom member 14 is provided. The shock absorber D is connected to the vehicle body B via a bracket 15 attached to the protruding end of the rod 11 protruding from the cylinder 1, and is connected to the carriage W via a bracket 16 attached to the bottom member 14. Therefore, when vibration is input to the carriage W, the rod 11 moves in and out of the cylinder 1 and the piston 10 moves in the cylinder 1 so that the shock absorber D expands and contracts.
 シリンダ1内には、ピストン10で区画される伸側室L1と圧側室L2が形成されており、これら伸側室L1と圧側室L2には、それぞれ作動油が充填されている。また、シリンダ1と外筒12との間には、リザーバRが形成されており、作動油が貯留されるとともに気体が封入されている。伸側室L1と圧側室L2は、ピストン10に設けた伸側流路2と圧側流路3を介して連通されており、圧側室L2とリザーバRは、ボトム部材14に設けた吸込流路4と排出流路5を介して連通されている。 In the cylinder 1, an extension side chamber L1 and a compression side chamber L2 defined by the piston 10 are formed, and the extension side chamber L1 and the compression side chamber L2 are filled with hydraulic oil, respectively. In addition, a reservoir R is formed between the cylinder 1 and the outer cylinder 12, and the hydraulic oil is stored and gas is sealed therein. The extension side chamber L1 and the pressure side chamber L2 are communicated with each other via the extension side flow path 2 and the pressure side flow path 3 provided in the piston 10, and the pressure side chamber L2 and the reservoir R are in the suction flow path 4 provided in the bottom member 14. And via the discharge channel 5.
 図示しないが、ロッドガイド13には、ロッド11の外周に摺接する環状のシールが設けられている。また、シリンダ1とロッドガイド13との間、シリンダ1とボトム部材14との間、外筒12とロッドガイド13との間、及び外筒12とボトム部材14との間が周知のシール等を利用して液密に塞がれている。よって、外筒12の内側を密閉空間にするとともに、作動油が吸込流路4又は排出流路5を通らずにシリンダ1内外を行き来しないようになっている。 Although not shown, the rod guide 13 is provided with an annular seal that is in sliding contact with the outer periphery of the rod 11. Further, a well-known seal or the like is provided between the cylinder 1 and the rod guide 13, between the cylinder 1 and the bottom member 14, between the outer cylinder 12 and the rod guide 13, and between the outer cylinder 12 and the bottom member 14. It is closed liquid-tightly. Therefore, the inside of the outer cylinder 12 is made a sealed space, and the hydraulic oil does not go back and forth inside the cylinder 1 without passing through the suction flow path 4 or the discharge flow path 5.
 つづいて、ピストン10に設けた伸側流路2は、伸側室L1と圧側室L2とを連通する通路20と、当該通路20の途中に設けられる伸側バルブV2とを有して構成される。この伸側バルブV2は、通路20を伸側室L1から圧側室L2へ向かう作動油の流れを許容して当該流れに抵抗を与えるとともに、反対方向の流れを阻止する。 Subsequently, the extension side flow path 2 provided in the piston 10 includes a passage 20 that communicates the extension side chamber L1 and the compression side chamber L2, and an extension side valve V2 provided in the middle of the passage 20. . The expansion side valve V2 allows the flow of hydraulic oil from the expansion side chamber L1 toward the compression side chamber L2 through the passage 20 to provide resistance to the flow, and prevents the flow in the opposite direction.
 また、ピストン10に設けた圧側流路3は、伸側室L1と圧側室L2とを連通する通路30と、この通路30の途中に設けられる圧側バルブV3と、この圧側バルブV3を迂回して伸側室L1と圧側室L2とを連通するバイパス路33と、このバイパス路33の途中に設けられる減衰バルブV1とを有して構成される。そして、圧側バルブV3は、通路30を圧側室L2から伸側室L1へ向かう作動油の流れを許容して当該流れに抵抗を与えるとともに、反対方向の流れを阻止する。他方の減衰バルブV1は、バイパス路33の途中にオリフィスを形成し、バイパス路33を移動する作動油の流れに抵抗を与える。さらに、減衰バルブV1は、圧側室L2を一方室とし、伸側室L1を他方室として圧側室L2から伸側室L1へ向かう作動油の流れに対してはオリフィスを通過させるとともに、反対方向の流れを阻止する。加えて、減衰バルブV1は、上流側となる圧側室L2の圧力が所定よりも高くなるとバイパス路33の連通を遮断する。 Further, the pressure side flow path 3 provided in the piston 10 extends through a passage 30 that communicates the expansion side chamber L1 and the pressure side chamber L2, a pressure side valve V3 provided in the middle of the passage 30, and the pressure side valve V3. The bypass passage 33 communicates the side chamber L1 and the pressure side chamber L2, and a damping valve V1 provided in the middle of the bypass passage 33. The pressure side valve V3 allows the flow of hydraulic oil from the pressure side chamber L2 toward the extension side chamber L1 through the passage 30 to provide resistance to the flow, and blocks the flow in the opposite direction. The other damping valve V <b> 1 forms an orifice in the middle of the bypass passage 33, and provides resistance to the flow of hydraulic oil moving through the bypass passage 33. Further, the damping valve V1 uses the pressure side chamber L2 as one chamber and the extension side chamber L1 as the other chamber, and allows the flow of hydraulic oil from the pressure side chamber L2 toward the extension side chamber L1 to pass through the orifice and to flow in the opposite direction. Stop. In addition, the damping valve V1 blocks communication of the bypass passage 33 when the pressure in the pressure side chamber L2 on the upstream side becomes higher than a predetermined value.
 つづいて、ボトム部材14に設けた吸込流路4は、圧側室L2とリザーバRとを連通する通路40と、当該通路40の途中に設けられる吸込バルブV4とを有して構成される。この吸込バルブV4は、チェックバルブであり、通路40をリザーバRから圧側室L2へ向かう作動油の流れを許容して反対方向の流れを阻止する。 Subsequently, the suction flow path 4 provided in the bottom member 14 includes a passage 40 communicating the pressure side chamber L2 and the reservoir R, and a suction valve V4 provided in the middle of the passage 40. The suction valve V4 is a check valve, and allows the flow of hydraulic oil from the reservoir R to the pressure side chamber L2 through the passage 40 to block the flow in the opposite direction.
 また、ボトム部材14に設けた排出流路5は、圧側室L2とリザーバRとを連通する通路50と、この通路50の途中に設けられる排出バルブV5とを有して構成される。この排出バルブV5は、通路50を圧側室L2からリザーバRへ向かう作動油の流れを許容して当該流れに抵抗を与えるとともに、反対方向の流れを阻止する。 The discharge flow path 5 provided in the bottom member 14 includes a passage 50 that communicates the compression side chamber L2 and the reservoir R, and a discharge valve V5 provided in the middle of the passage 50. This discharge valve V5 allows the flow of hydraulic oil from the pressure side chamber L2 to the reservoir R through the passage 50 to provide resistance to the flow and block the flow in the opposite direction.
 前述の各通路20,30,50を移動する作動油の流れに抵抗を与えるとともに、当該通路20,30,50を一方通行にする伸側バルブV2、圧側バルブV3及び排出バルブV5は、如何なる構造であってもよく、従来周知の構成を採用できる。例えば、伸側バルブV2、圧側バルブV3及び排出バルブV5は、通路20,30,50の途中に設けた弁体21,31,51と、この弁体21,31,51を閉じる方向に附勢するばね22,32,52とを有して構成される。そして、弁体21,31,51の上流側の圧力が高まると、ばね22,32,52の附勢力に抗して弁体21,31,51が後退(リフト)して通路20,30,50を開く。弁体21,31,51のリフト量は、弁体21,31,51の上流側の圧力上昇に見合って大きくなるので、伸側バルブV2、圧側バルブV3及び排出バルブV5の圧力流量特性(流量に対する圧力の特性)は、流量に比例するバルブ特有の特性となる。また、通路40を一方通行に設定するチェックバルブである吸込バルブV4も、従来周知の構成を採用できる。よって、伸側バルブV2、圧側バルブV3、吸込バルブV4及び排出バルブV5の詳細な構成の説明を省略する。 The expansion side valve V2, the pressure side valve V3, and the discharge valve V5 that provide resistance to the flow of the hydraulic oil that moves through the passages 20, 30, 50, and make the passages 20, 30, 50 one-way, have any structure. However, a conventionally known configuration can be adopted. For example, the expansion side valve V2, the pressure side valve V3, and the discharge valve V5 are energized in the direction of closing the valve bodies 21, 31, 51 provided in the middle of the passages 20, 30, 50, and the valve bodies 21, 31, 51. Springs 22, 32, and 52. When the pressure on the upstream side of the valve bodies 21, 31, 51 increases, the valve bodies 21, 31, 51 retreat (lift) against the urging force of the springs 22, 32, 52 and the passages 20, 30, Open 50. Since the lift amount of the valve bodies 21, 31, 51 increases in proportion to the pressure increase on the upstream side of the valve bodies 21, 31, 51, the pressure flow characteristics (flow rate) of the extension side valve V2, the pressure side valve V3, and the discharge valve V5. The characteristic of the pressure with respect to is a characteristic of the valve proportional to the flow rate. The suction valve V4, which is a check valve for setting the passage 40 to one-way, can also employ a conventionally known configuration. Therefore, description of the detailed structure of the expansion side valve V2, the pressure side valve V3, the suction valve V4, and the discharge valve V5 is omitted.
 つづいて、以下減衰バルブV1の具体的な構造について説明する。図2に示すように、減衰バルブV1は、ピストン10に設けた弁孔H内に収容される弁体6と、弁体6の下流側となる伸側室L1側に配置され、弁孔Hに螺合されるばね受7と、弁体6とばね受7との間に介装されるコイルばね8と、上記弁体6内に収容されるチェックバルブV6とを有して構成される。 Next, the specific structure of the damping valve V1 will be described below. As shown in FIG. 2, the damping valve V <b> 1 is disposed on the valve body 6 accommodated in the valve hole H provided in the piston 10 and the extension side chamber L <b> 1 on the downstream side of the valve body 6. A spring receiver 7 to be screwed, a coil spring 8 interposed between the valve body 6 and the spring receiver 7, and a check valve V6 accommodated in the valve body 6 are configured.
 本実施の形態において、シリンダ1内を伸側室L1と圧側室L2とに区画するピストン10が減衰バルブV1におけるハウジングを兼ねており、ピストン10に形成される弁孔H内に弁体6、ばね受7、コイルばね8及びチェックバルブV6が収容されている。なお、減衰バルブV1におけるハウジングは、ピストン10以外であってもよく、例えば、ロッド11又はロッド11にピストン10を固定するためのナット(図示せず)等を本発明に係る減衰バルブV1のハウジングとして利用してもよい。 In the present embodiment, the piston 10 that divides the inside of the cylinder 1 into an extension side chamber L1 and a pressure side chamber L2 also serves as a housing in the damping valve V1, and a valve body 6 and a spring are placed in a valve hole H formed in the piston 10. The receiver 7, the coil spring 8, and the check valve V6 are accommodated. The housing of the damping valve V1 may be other than the piston 10. For example, the housing of the damping valve V1 according to the present invention may include a rod 11 or a nut (not shown) for fixing the piston 10 to the rod 11. It may be used as
 ハウジングであるピストン10に形成される弁孔Hは、ピストン10を軸方向に貫通して伸側室L1と圧側室L2とを連通する。そして、この弁孔Hは、図2中上方から下方に向けて順に連なる螺子孔10aと、大径孔10bと、大径孔10bよりも小径に形成されるガイド孔10cと、このガイド孔10cよりも大径に形成される保護孔10dとを有して構成される。 A valve hole H formed in the piston 10 which is a housing passes through the piston 10 in the axial direction and communicates the extension side chamber L1 and the pressure side chamber L2. The valve hole H includes a screw hole 10a that is continuous from the upper side to the lower side in FIG. 2, a large diameter hole 10b, a guide hole 10c that has a smaller diameter than the large diameter hole 10b, and the guide hole 10c. And a protective hole 10d having a larger diameter.
 螺子孔10aの壁面には螺子溝が形成されており、ばね受7が螺合する。このばね受7は、弁体6側に突出する突出部7aを備え、当該突出部7aの外周にコイルばね8の図2中上端部が嵌合する。また、ばね受7には、当該ばね受7の中心を軸方向に貫通する孔7bと、図2中上方に開口する複数の係合穴7cが形成されている。そして、この係合穴7cに工具等を係合してばね受7を回転すると、ばね受7が回転軸方向に進退し、回転を止めるとその場に止まる。このように、本実施の形態においては、ばね受7が螺子孔10aに螺合されているので、ばね受7の軸方向位置を容易に調節できる。なお、ばね受7の軸方向位置を変更するための構成は、この限りではなく、適宜変更できる。 A screw groove is formed in the wall surface of the screw hole 10a, and the spring receiver 7 is screwed together. The spring receiver 7 includes a protrusion 7a that protrudes toward the valve body 6, and the upper end of the coil spring 8 in FIG. 2 is fitted to the outer periphery of the protrusion 7a. Further, the spring receiver 7 is formed with a hole 7b penetrating the center of the spring receiver 7 in the axial direction and a plurality of engagement holes 7c opening upward in FIG. Then, when a tool or the like is engaged with the engagement hole 7c and the spring receiver 7 is rotated, the spring receiver 7 advances and retracts in the direction of the rotation axis, and stops when the rotation is stopped. Thus, in this embodiment, since the spring receiver 7 is screwed into the screw hole 10a, the axial position of the spring receiver 7 can be easily adjusted. The configuration for changing the axial position of the spring receiver 7 is not limited to this, and can be changed as appropriate.
 つづいて、弁体6は、上記螺子孔10aよりも図2中下側の空間に収容される。この弁体6は、当該弁体6の図2中下端となる先端に位置する円柱状の摺動軸部60aと、この摺動軸部60aの図2中上側に連なり、摺動軸部60aよりも外径が大きいフランジ部60bと、このフランジ部60bの図2中上側に連なる胴部60cとを有する弁本体60と、この弁本体60の胴部60cの図2中上端部に取り付けられるキャップ61とを有して構成される。そして、弁体6は、弁孔Hの図2中上側から弁孔H内に挿入されて、摺動軸部60aがガイド孔10cに挿通されるとともに、フランジ部60bよりも図2中上側が大径孔10b内に収容される。 Subsequently, the valve body 6 is accommodated in a space below the screw hole 10a in FIG. The valve body 6 is connected to a cylindrical sliding shaft portion 60a located at the tip which is the lower end of the valve body 6 in FIG. 2, and to the upper side in FIG. 2 of the sliding shaft portion 60a, and the sliding shaft portion 60a. A valve body 60 having a flange portion 60b having a larger outer diameter and a body portion 60c connected to the upper side in FIG. 2 of the flange portion 60b, and an upper end portion of the body portion 60c of the valve body 60 in FIG. And a cap 61. The valve body 6 is inserted into the valve hole H from the upper side in FIG. 2 of the valve hole H, the sliding shaft portion 60a is inserted through the guide hole 10c, and the upper side in FIG. It is accommodated in the large-diameter hole 10b.
 弁本体60の摺動軸部60aは、ガイド孔10cの壁面に摺接し、ガイド孔10c内を軸方向に摺動できる。つまり、本実施の形態において、ガイド孔10cの壁面で摺動軸部60aを軸方向移動自在に支えているので、弁体6が圧側室L2側に向けて前進したり、後退したりできる。本実施の形態において、弁体6の外径が大径孔10bの径よりも小さく、大径孔10bの壁面との間に隙間s1ができる。よって、大径孔10bとガイド孔10cの軸が、径方向に多少ずれていたとしても弁体6の移動の妨げにならず、弁孔Hを形成するにあたっての要求精度を低くできるので、弁孔Hを形成するための加工を容易にできる。 The sliding shaft portion 60a of the valve main body 60 is in sliding contact with the wall surface of the guide hole 10c and can slide in the guide hole 10c in the axial direction. That is, in the present embodiment, the sliding shaft 60a is supported by the wall surface of the guide hole 10c so as to be movable in the axial direction, so that the valve body 6 can move forward and backward toward the pressure side chamber L2. In this Embodiment, the outer diameter of the valve body 6 is smaller than the diameter of the large diameter hole 10b, and the clearance gap s1 is made between the wall surfaces of the large diameter hole 10b. Therefore, even if the axes of the large-diameter hole 10b and the guide hole 10c are slightly deviated in the radial direction, the movement of the valve body 6 is not hindered, and the required accuracy in forming the valve hole H can be lowered. Processing for forming the hole H can be facilitated.
 つづいて、弁本体60のフランジ部60bの外径は、胴部60cの外径よりも大きくなっており、胴部60cから外周側に突出するフランジ部60bの外周部分でコイルばね8の図2中下端を支えるとともに、胴部60cでコイルばね8の内周を支えられる。コイルばね8は予め圧縮されて弾性力を発揮し、弁体6を圧側室L2側に向けて附勢する。また、弁孔Hの壁面には、大径孔10bとガイド孔10cの境界部分に、環状の段差10eが形成されている。上記フランジ部60bの外径はガイド孔10cの径よりも大きいので、弁体6が図2中下方に向かって前進を続けるとフランジ部60bが段差10eに突き当たり、それ以上の前進ができなくなる。つまり、本実施の形態において、ピストン10に設けた段差10eが、弁体6の所定量以上の前進を規制するストッパとして機能する。 Subsequently, the outer diameter of the flange portion 60b of the valve body 60 is larger than the outer diameter of the trunk portion 60c, and the outer periphery of the flange portion 60b protruding from the trunk portion 60c to the outer peripheral side is shown in FIG. While supporting the middle and lower ends, the inner periphery of the coil spring 8 can be supported by the body 60c. The coil spring 8 is compressed in advance and exerts an elastic force, and urges the valve body 6 toward the pressure side chamber L2. An annular step 10e is formed on the wall surface of the valve hole H at the boundary between the large diameter hole 10b and the guide hole 10c. Since the outer diameter of the flange portion 60b is larger than the diameter of the guide hole 10c, if the valve body 6 continues to advance downward in FIG. 2, the flange portion 60b hits the step 10e, and further advancement cannot be performed. That is, in the present embodiment, the step 10e provided on the piston 10 functions as a stopper that restricts the advancement of the valve body 6 by a predetermined amount or more.
 よって、減衰バルブV1に外力が作用していない状態、即ち、無負荷状態においては、弁体6がコイルばね8の附勢力を受けて最大限前進し、フランジ部60bを段差10eに押し付けた状態となる。そして、コイルばね8のプリセット荷重は、ばね受7の軸方向位置を変えると変更できる。具体的には、ばね受7を正方向に回転して弁体6に向けて前進させると、コイルばね8の圧縮量が増えてプリセット荷重が大きくなる。反対に、ばね受7を逆方向に回転して弁体6から離れるように後退させると、コイルばね8の圧縮量が減ってプリセット荷重が小さくなる。このように、本実施の形態においては、コイルばね8が弁体6を圧側室L2側に附勢する附勢部材として機能するが、このような附勢部材として、コイルばね以外のばね又は、ゴム等の弾性体を利用してもよい。 Therefore, in a state where no external force is applied to the damping valve V1, that is, in a no-load state, the valve body 6 is advanced as much as possible by receiving the biasing force of the coil spring 8, and the flange portion 60b is pressed against the step 10e. It becomes. The preset load of the coil spring 8 can be changed by changing the axial position of the spring receiver 7. Specifically, when the spring receiver 7 is rotated in the forward direction and advanced toward the valve body 6, the amount of compression of the coil spring 8 increases and the preset load increases. On the other hand, if the spring receiver 7 is rotated in the reverse direction and retracted away from the valve body 6, the amount of compression of the coil spring 8 is reduced and the preset load is reduced. Thus, in the present embodiment, the coil spring 8 functions as a biasing member that biases the valve body 6 toward the pressure side chamber L2, but as such a biasing member, a spring other than the coil spring or An elastic body such as rubber may be used.
 また、減衰バルブV1が弁孔Hに取り付けられて、バイパス路33に設けられると、弁体6は、正面側から圧側室L2の圧力を受けるとともに、背面側から伸側室L1の圧力を受ける。そして、圧側室L2の圧力を受ける弁体6の正面側の受圧面積に圧側室L2の圧力を乗じた力(以下、力F1とする)が、伸側室L1の圧力を受ける弁体6の背面側の受圧面積に伸側室L1の圧力を乗じた力と、コイルばね8の附勢力との合計の力(以下、力F2とする)を超えると、弁体6が後退する。前述のようにプリセット荷重を大きくすると、上記力F2が大きくなるので、弁体6を後退させるのに要する圧側室L2の圧力が高くなる。反対に、プリセット荷重を小さくすると、上記力F2が小さくなるので、弁体6を後退させるのに要する圧側室L2の圧力が低くなる。 Further, when the damping valve V1 is attached to the valve hole H and provided in the bypass passage 33, the valve body 6 receives the pressure of the compression side chamber L2 from the front side and the pressure of the extension side chamber L1 from the back side. Then, a force obtained by multiplying the pressure receiving area on the front side of the valve body 6 that receives the pressure in the compression side chamber L2 by the pressure in the compression side chamber L2 (hereinafter referred to as force F1) is the back surface of the valve body 6 that receives the pressure in the expansion side chamber L1. When the total force (hereinafter referred to as force F2) of the force obtained by multiplying the pressure receiving area on the side by the pressure of the expansion chamber L1 and the urging force of the coil spring 8 is exceeded, the valve body 6 is retracted. As described above, when the preset load is increased, the force F2 is increased, so that the pressure in the compression side chamber L2 required to retract the valve body 6 is increased. On the other hand, when the preset load is reduced, the force F2 is reduced, so that the pressure in the compression side chamber L2 required to retract the valve body 6 is reduced.
 つづいて、弁本体60の摺動軸部60aの軸方向長さは、ガイド孔10cの軸方向長さよりも長くなっている。よって、フランジ部60bが段差10eに当接して弁体6の前進が規制された状態では、摺動軸部60aの先端部が保護孔10d内に突出する。さらに、弁体6の前進が規制された状態では、保護孔10d内への摺動軸部60aの突出量が最も大きくなるが、この状態であっても摺動軸部60aの図2中下端がピストン10から図2中下側突出しないように保護孔10dの軸方向長さが設定される。このように、摺動軸部60aが保護孔10d内に収容されるので、ピストン10により摺動軸部60aが保護されて、摺動軸部60aと他部材との干渉が阻止される。また、保護孔10dの径は摺動軸部60aの外径よりも大きいので、保護孔10d内に挿入される摺動軸部60aの外周に、周方向に沿って環状の隙間s2ができる。 Subsequently, the axial length of the sliding shaft portion 60a of the valve body 60 is longer than the axial length of the guide hole 10c. Therefore, in a state where the flange portion 60b contacts the step 10e and the advancement of the valve body 6 is restricted, the tip end portion of the sliding shaft portion 60a protrudes into the protective hole 10d. Further, when the forward movement of the valve body 6 is restricted, the protruding amount of the sliding shaft portion 60a into the protective hole 10d is the largest. Even in this state, the lower end of the sliding shaft portion 60a in FIG. The axial length of the protective hole 10d is set so that does not protrude downward from the piston 10 in FIG. Thus, since the sliding shaft part 60a is accommodated in the protective hole 10d, the sliding shaft part 60a is protected by the piston 10, and interference between the sliding shaft part 60a and other members is prevented. Further, since the diameter of the protective hole 10d is larger than the outer diameter of the sliding shaft portion 60a, an annular gap s2 is formed along the circumferential direction on the outer periphery of the sliding shaft portion 60a inserted into the protective hole 10d.
 つづいて、弁本体60のフランジ部60bから胴部60cにかけての内部には、チェックバルブV6を収容するチェックバルブ収容孔60dが形成される。他方の摺動軸部60aには、当該摺動軸部60aの中心部に設けられ、上記チェックバルブ収容孔60dに連なる軸穴60eと、この軸穴60eから放射状に延びて摺動軸部60aの側方に開口する複数の横孔60fが形成されている。当該横孔60fの位置は、弁体6の前進が規制された状態で、横孔60fの開口o1が保護孔10d内に露出するように設定される。よって、弁体6の前進が規制された状態においては、圧側室L2と横孔60fが摺動軸部60aの外周にできる隙間s2を介して連通する。しかし、弁体6が後退して横孔60fの開口o1が全てガイド孔10c内に進入すると、開口o1が当該ガイド孔10cの壁面で塞がれて圧側室L2と横孔60fとの連通が遮断される。 Subsequently, a check valve accommodating hole 60d for accommodating the check valve V6 is formed inside the valve body 60 from the flange portion 60b to the body portion 60c. The other sliding shaft portion 60a is provided at the central portion of the sliding shaft portion 60a, and is connected to the check valve accommodating hole 60d. The shaft hole 60e extends radially from the shaft hole 60e. A plurality of lateral holes 60f are formed to open to the sides. The position of the lateral hole 60f is set so that the opening o1 of the lateral hole 60f is exposed in the protective hole 10d in a state where the advancement of the valve body 6 is restricted. Therefore, in a state where the forward movement of the valve body 6 is restricted, the compression side chamber L2 and the lateral hole 60f communicate with each other through a gap s2 that is formed on the outer periphery of the sliding shaft portion 60a. However, when the valve body 6 moves backward and all the openings o1 of the lateral holes 60f enter the guide holes 10c, the openings o1 are closed by the wall surfaces of the guide holes 10c, and the communication between the pressure side chamber L2 and the lateral holes 60f is established. Blocked.
 本実施の形態において、全ての横孔60fの開口o1が、略同じ大きさで同じ高さ(軸方向位置)に設けられている。さらに、弁体6の前進が規制された状態において、開口o1の図2中上端がガイド孔10cと保護孔10dとの境界に位置する。よって、横孔60fの開口o1の上下幅に相当する分、弁体6が後退(リフト)すると、全ての横孔60fの開口o1がガイド孔10cの壁面に対向して略同時に閉じられる。なお、横孔60fの数、形状、及び向きは、上記の限りではなく、適宜変更できる。また、複数の横孔60fの開口o1を閉じるタイミングも適宜変更できる。 In the present embodiment, the openings o1 of all the horizontal holes 60f are provided with substantially the same size and the same height (axial position). Furthermore, in the state where the forward movement of the valve body 6 is restricted, the upper end in FIG. 2 of the opening o1 is located at the boundary between the guide hole 10c and the protective hole 10d. Therefore, when the valve body 6 retreats (lifts) by an amount corresponding to the vertical width of the opening o1 of the horizontal hole 60f, the openings o1 of all the horizontal holes 60f are closed substantially simultaneously facing the wall surface of the guide hole 10c. The number, shape, and orientation of the horizontal holes 60f are not limited to the above, and can be changed as appropriate. Moreover, the timing which closes the opening o1 of the some horizontal hole 60f can also be changed suitably.
 つづいて、上記横孔60fに軸穴60eを介して連なるチェックバルブ収容孔60dは、胴部60cの図2中上方に開口し、当該開口端部が螺子孔(符示せず)となっている。そして、この螺子孔にキャップ61が螺合する。また、チェックバルブ収容孔60dの図2中下端部が縮径されており、チェックバルブ収容孔60dの壁面には、径が変わる部分の境界に環状の弁座60gが設けられている。また、上記キャップ61には、当該キャップ61を軸方向に貫通する孔61aが形成されており、当該孔61aを介してチェックバルブ収容孔60dにおける弁座60gよりも図2中上側の空間を弁体6外に連通する。そして、他方のチェックバルブ収容孔60dにおける弁座60gよりも図2中下側の空間に、摺動軸部60aの軸穴60eが連なっている。 Subsequently, the check valve accommodating hole 60d connected to the horizontal hole 60f via the shaft hole 60e is opened above the trunk portion 60c in FIG. 2, and the opening end portion is a screw hole (not shown). . Then, the cap 61 is screwed into this screw hole. Further, the lower end portion of the check valve accommodating hole 60d in FIG. 2 is reduced in diameter, and an annular valve seat 60g is provided on the wall of the check valve accommodating hole 60d at the boundary of the portion where the diameter changes. Further, the cap 61 is formed with a hole 61a penetrating the cap 61 in the axial direction, and the space above the valve seat 60g in the check valve accommodating hole 60d is opened through the hole 61a in FIG. It communicates outside the body 6. Then, the shaft hole 60e of the sliding shaft portion 60a is connected to the space below the valve seat 60g in the other check valve housing hole 60d in FIG.
 チェックバルブV6は、チェックバルブ収容孔60dにおける弁座60gよりも図2中上側の空間に摺動自在に挿入されるチェックバルブ弁体9と、このチェックバルブ弁体9とキャップ61との間に介装されて、チェックバルブ弁体9を弁座60g側に向けて附勢するコイルばね90とを有して構成される。 The check valve V6 includes a check valve valve body 9 that is slidably inserted into a space above the valve seat 60g in the check valve housing hole 60d in FIG. 2 and between the check valve valve body 9 and the cap 61. The coil spring 90 is interposed and configured to bias the check valve valve body 9 toward the valve seat 60g.
 チェックバルブ弁体9は、底部を弁座60gに離着座させる有底筒状の弁頭9aと、この弁頭9aの筒部から図2中上方に延びて弁頭9aよりも外径が大きい筒状の大径部9bとを有して構成される。そして、チェックバルブ弁体9は、大径部9bを弁本体60の内周に摺接させており、軸方向に移動可能である。また、弁頭9aの外周には、弁本体60との間に環状の隙間s3が形成されるとともに、弁頭9aの筒部には、この隙間s3と弁頭9aの内側とを連通する孔9cが形成されている。 The check valve valve body 9 has a bottomed cylindrical valve head 9a whose bottom is seated on the valve seat 60g, and extends upward in FIG. 2 from the cylindrical portion of the valve head 9a and has a larger outer diameter than the valve head 9a. It has a cylindrical large-diameter portion 9b. The check valve valve body 9 has the large-diameter portion 9b in sliding contact with the inner periphery of the valve main body 60 and is movable in the axial direction. An annular gap s3 is formed on the outer periphery of the valve head 9a with the valve body 60, and a hole communicating the gap s3 and the inside of the valve head 9a is formed in the tubular portion of the valve head 9a. 9c is formed.
 そして、当該弁頭9aの底部が弁座60gに着座すると、軸穴60eとチェックバルブ収容孔60dとの連通を遮断する。しかし、圧側室L2から横孔60fを通って軸穴60eに流入した作動油が、コイルばね90の附勢力に抗してチェックバルブ弁体9を後退させると、作動油は、弁頭9aと弁座60gとの間にできる隙間、弁頭9aの外周にできる隙間s3、弁頭9aの孔9c、弁頭9aの内側、大径部9bの内側、及びキャップ61の孔61aをこの順に通って弁体6の外側に流出する。このように弁体6外に流出した作動油は、ばね受7の孔7bを通って伸側室L1に移動できる。 When the bottom of the valve head 9a is seated on the valve seat 60g, the communication between the shaft hole 60e and the check valve housing hole 60d is blocked. However, when the hydraulic oil that has flowed into the shaft hole 60e through the lateral hole 60f from the compression side chamber L2 retreats the check valve valve body 9 against the urging force of the coil spring 90, the hydraulic oil is separated from the valve head 9a. The gap formed between the valve seat 60g, the gap s3 formed on the outer periphery of the valve head 9a, the hole 9c of the valve head 9a, the inner side of the valve head 9a, the inner side of the large diameter portion 9b, and the hole 61a of the cap 61 are passed in this order. And flows out of the valve body 6. Thus, the hydraulic oil that has flowed out of the valve body 6 can move through the hole 7b of the spring receiver 7 to the extension side chamber L1.
 つまり、本実施の形態においては、弁体6に設けた横孔60f、軸穴60e、チェックバルブ収容孔60d及びキャップ61の孔61aを備えて流路62が構成されており、当該流路62の一端が摺動軸部60aの側方に開口し、他端がキャップ61の図2中上方に開口する。そして、この流路62は、ばね受7の孔7bとともに圧側バルブV3(図1)を迂回して伸側室L1と圧側室L2とを連通するバイパス路33を構成する。 That is, in the present embodiment, the flow path 62 is configured by including the horizontal hole 60f, the shaft hole 60e, the check valve accommodating hole 60d, and the hole 61a of the cap 61 provided in the valve body 6. One end of the cap 61 opens to the side of the sliding shaft portion 60a, and the other end opens to the upper side of the cap 61 in FIG. The flow path 62 and the hole 7b of the spring receiver 7 constitute a bypass path 33 that bypasses the compression side valve V3 (FIG. 1) and communicates the expansion side chamber L1 and the compression side chamber L2.
 また、チェックバルブV6は流路62の途中に設けられ、流路62を圧側室L2から伸側室L1へ向かう作動油の流れを許容して反対方向の流れを阻止する。よって、流路62が一方通行になり、その結果、バイパス路33も一方通行になる。また、本実施の形態において、横孔60fを絞ってオリフィスとして機能させており、当該オリフィス(横孔60f)で流路62を移動する作動油の流れに抵抗を与える。 Also, the check valve V6 is provided in the middle of the flow path 62, and allows the flow of hydraulic oil from the pressure side chamber L2 toward the extension side chamber L1 through the flow path 62 to prevent the flow in the opposite direction. Therefore, the flow path 62 becomes one-way, and as a result, the bypass path 33 also becomes one-way. Further, in the present embodiment, the lateral hole 60f is narrowed to function as an orifice, and resistance is given to the flow of hydraulic oil that moves through the flow path 62 through the orifice (lateral hole 60f).
 次に、本実施の形態に係る減衰バルブV1の作動について説明する。 Next, the operation of the damping valve V1 according to this embodiment will be described.
 弁体6を後退させ得る圧側室L2の圧力は、チェックバルブ弁体9を後退させ得る圧側室L2の圧力よりも高い。よって、圧側室L2の圧力がチェックバルブ弁体9を後退させ得る圧力に達しないと、弁体6がコイルばね8の附勢力を受けて最大限前進し、フランジ部60bを段差10eに押し付けた状態となる。また、チェックバルブ弁体9もコイルばね90の附勢力を受けて最大限前進し、弁頭9aを弁座60gに着座させた状態となる。よって、弁体6に設けた流路62は、チェックバルブV6により閉じられた状態に維持される。この状態では、流路62の一端側の開口となる横孔60fの開口o1が設けられる摺動軸部60aが保護孔10d内に突出しており、摺動軸部60aの外周にできる隙間s2と横孔60fを介して圧側室L2と軸穴60eが連通される。 The pressure in the pressure side chamber L2 that can retreat the valve body 6 is higher than the pressure in the pressure side chamber L2 that can retreat the check valve valve body 9. Therefore, if the pressure in the pressure side chamber L2 does not reach a pressure that can cause the check valve valve body 9 to retreat, the valve body 6 is advanced as much as possible by receiving the urging force of the coil spring 8, and the flange portion 60b is pressed against the step 10e. It becomes a state. In addition, the check valve valve body 9 also advances as much as possible by receiving the urging force of the coil spring 90, and the valve head 9a is seated on the valve seat 60g. Therefore, the flow path 62 provided in the valve body 6 is maintained in a closed state by the check valve V6. In this state, the sliding shaft portion 60a provided with the opening o1 of the lateral hole 60f serving as an opening on one end side of the flow path 62 protrudes into the protective hole 10d, and the gap s2 formed on the outer periphery of the sliding shaft portion 60a. The pressure side chamber L2 and the shaft hole 60e are communicated with each other through the horizontal hole 60f.
 これに対して、圧側室L2の圧力がチェックバルブ弁体9を後退させ得る圧力よりも上昇すると、チェックバルブ弁体9がコイルばね90の附勢力に抗して後退し、流路62の連通を許容する。すると、流路62の他端側の開口となる孔61aの開口o2から流出した作動油は、ばね受7の孔7bを通って伸側室L1に流出する。 On the other hand, when the pressure in the pressure side chamber L2 rises higher than the pressure that can cause the check valve valve body 9 to retreat, the check valve valve body 9 retreats against the urging force of the coil spring 90, and the flow path 62 communicates. Is acceptable. Then, the hydraulic fluid that has flowed out from the opening o2 of the hole 61a that is the opening on the other end side of the flow path 62 flows out to the extension side chamber L1 through the hole 7b of the spring receiver 7.
 前述のように、横孔60fがオリフィスとして機能するので、流路62を流れる作動油の流量が少ない場合には、作動油が比較的抵抗なくオリフィスを通過して圧側室L2から伸側室L1に移動でき、圧側室L2と伸側室L1の差圧が大きくならない。しかし、流量が増加すると、圧側室L2から伸側室L1へ向かう作動油の流れに対してオリフィスによって抵抗が与えられ、圧側室L2と伸側室L1の差圧が大きくなる。そして、弁体6の正面側の受圧面積に圧側室L2の圧力を乗じた力F1が、弁体6の背面側の受圧面積に伸側室L1の圧力を乗じた力と、コイルばね8の附勢力との合計の力F2を超えると、力F1,F2が吊り合うまで弁体6が後退する。このように弁体6が後退し、横孔60fの開口o1全てがガイド孔10cの壁面に対向するまで移動すると流路62が閉塞されるので、バイパス路33の連通が遮断される。 As described above, since the horizontal hole 60f functions as an orifice, when the flow rate of the hydraulic fluid flowing through the flow path 62 is small, the hydraulic fluid passes through the orifice with relatively little resistance and passes from the compression side chamber L2 to the expansion side chamber L1. The differential pressure between the compression side chamber L2 and the extension side chamber L1 does not increase. However, when the flow rate increases, resistance is given by the orifice to the flow of hydraulic oil from the compression side chamber L2 toward the expansion side chamber L1, and the differential pressure between the compression side chamber L2 and the expansion side chamber L1 increases. The force F1 obtained by multiplying the pressure receiving area on the front side of the valve body 6 by the pressure of the pressure side chamber L2 is multiplied by the force obtained by multiplying the pressure receiving area on the back side of the valve body 6 by the pressure of the expansion side chamber L1 and the coil spring 8 is attached. When the total force F2 with the force is exceeded, the valve body 6 moves backward until the forces F1 and F2 are suspended. Thus, when the valve body 6 moves backward and moves until all the openings o1 of the lateral holes 60f face the wall surface of the guide hole 10c, the flow path 62 is closed, so that the communication of the bypass path 33 is blocked.
 また、本実施の形態においては、図1に示すように、減衰バルブV1と並列に圧側バルブV3が設けられている。そして、圧側室L2と伸側室L1の差圧が所定以上になると、圧側バルブV3の弁体31が後退して通路30を開き、圧側室L2の作動油が通路30を通って伸側室L1に移動する。このように、本実施の形態においては、圧側室L2から伸側室L1へ向かう作動油の流れを許容する圧側流路3が、通路30とバイパス路33の二つの経路を有して構成されており、バイパス路33の連通が遮断されると、圧側室L2の作動油が通路30を通って伸側室L1に移動するようになる。 In the present embodiment, as shown in FIG. 1, a pressure side valve V3 is provided in parallel with the damping valve V1. When the pressure difference between the pressure side chamber L2 and the expansion side chamber L1 becomes a predetermined value or more, the valve body 31 of the pressure side valve V3 moves backward to open the passage 30, and the hydraulic oil in the pressure side chamber L2 passes through the passage 30 and enters the expansion side chamber L1. Moving. Thus, in the present embodiment, the pressure side flow path 3 that allows the flow of the hydraulic oil from the pressure side chamber L2 toward the expansion side chamber L1 is configured to have two paths, the passage 30 and the bypass path 33. When the communication of the bypass path 33 is blocked, the hydraulic oil in the compression side chamber L2 moves through the passage 30 to the extension side chamber L1.
 より詳しくは、圧側流路3を流れる作動油の単位時間当たりの流量が少ない場合には、作動油がバイパス路33を通るので、圧力流量特性が図3中実線Xで示すように、流量の二乗に比例するオリフィス特有の特性となる。そして、単位時間当たりの流量が多くなると、バイパス路33が減衰バルブV1で遮断されるとともに圧側バルブV3が通路30を開くので、圧力流量特性が図3中実線Yで示すように、流量に比例するバルブ特有の特性となる。 More specifically, when the flow rate per unit time of the hydraulic oil flowing through the pressure side flow path 3 is small, the hydraulic oil passes through the bypass path 33, so that the pressure flow characteristic is as shown by the solid line X in FIG. This is an orifice-specific characteristic proportional to the square. When the flow rate per unit time increases, the bypass passage 33 is blocked by the damping valve V1 and the pressure side valve V3 opens the passage 30, so that the pressure flow characteristic is proportional to the flow rate as shown by the solid line Y in FIG. It becomes the characteristic peculiar to the valve.
 ここで、常開型のオリフィスと、所定の開弁圧に設定されるポペット弁とを備えて構成される一般的な減衰バルブにおいては、オリフィスの開口面積を大きくして、単位時間当たりの流量が少ない領域での圧力を低くすると、これに引きずられて単位時間当たりの流量が多い領域での圧力も低く抑えられてしまう。反対に、単位時間当たりの流量が多い領域での圧力を高くしようとした場合、オリフィスの開口面積を大きくできず、単位時間当たりの流量が少ない領域での圧力も上昇してしまう(図3中破線Z)。このように、一般的な減衰バルブでは、単位時間当たりの流量が少ない領域の圧力を低く、流量が多い領域の圧力を高くするような圧力流量特性を実現するのが困難である。 Here, in a general damping valve configured to include a normally open type orifice and a poppet valve set to a predetermined valve opening pressure, the opening area of the orifice is increased and the flow rate per unit time is increased. If the pressure in the region where there is a small amount is lowered, the pressure in the region where the flow rate per unit time is large will be kept low. On the other hand, when an attempt is made to increase the pressure in a region where the flow rate per unit time is large, the orifice opening area cannot be increased, and the pressure in the region where the flow rate per unit time is small also increases (in FIG. 3). Dashed line Z). As described above, in a general damping valve, it is difficult to realize a pressure flow characteristic in which the pressure in a region where the flow rate per unit time is low is low and the pressure in a region where the flow rate is high is high.
 これに対して、本実施の形態においては、上記したバイパス路33連通時の圧力流量特性を横孔60fの開口面積によって自由に設定でき、バイパス路33閉塞時の圧力流量特性を圧側バルブV3の仕様によって自由に設定できる。つまり、本実施の形態においては、圧側流路3を作動油が通過する際の圧力流量特性を、バイパス路33の閉塞前後で独立して自由に設定できる。よって、上記減衰バルブV1を利用すると、図3中実線X,Yで示すように、単位時間当たりの流量が少ない領域での圧力を低く、流量が多い領域での圧力を高くした圧力流量特性を容易に実現できる。 On the other hand, in the present embodiment, the pressure flow characteristic when the bypass passage 33 is communicated can be freely set by the opening area of the lateral hole 60f, and the pressure flow characteristic when the bypass passage 33 is closed can be set to the pressure side valve V3. It can be set freely according to the specifications. That is, in the present embodiment, the pressure flow characteristics when the hydraulic oil passes through the pressure side flow path 3 can be set independently before and after the bypass path 33 is closed. Therefore, when the damping valve V1 is used, as shown by solid lines X and Y in FIG. 3, the pressure flow characteristics in which the pressure in the region where the flow rate per unit time is low is low and the pressure in the region where the flow rate is high are high. It can be easily realized.
 さらに、弁体6がバイパス路33を閉塞する際の圧力は、ばね受7を回転し、ばね受7の軸方向位置を変えると変更できる。具体的には、ばね受7を正方向に回転して弁体6側に向けて前進させると、コイルばね8のプリセット荷重が大きくなり、弁体6がバイパス路33を閉塞する際の圧側室L2の圧力を大きくできる。反対に、ばね受7を逆方向に回転して弁体6から離れるように後退させると、コイルばね8のプリセット荷重が小さくなり、弁体6がバイパス路33を閉塞する際の圧側室L2の圧力を小さくできる。 Furthermore, the pressure when the valve body 6 closes the bypass passage 33 can be changed by rotating the spring receiver 7 and changing the axial position of the spring receiver 7. Specifically, when the spring receiver 7 is rotated in the forward direction and advanced toward the valve body 6, the preset load of the coil spring 8 increases, and the pressure side chamber when the valve body 6 closes the bypass path 33. The pressure of L2 can be increased. On the other hand, when the spring receiver 7 is rotated in the reverse direction and is retracted away from the valve body 6, the preset load of the coil spring 8 is reduced and the pressure side chamber L <b> 2 is closed when the valve body 6 closes the bypass path 33. The pressure can be reduced.
 このように、本実施の形態においても、従来の減衰バルブと同様に、プリセット荷重の調整により弁体6とばね受7との距離が変わるが、弁体6がバイパス路33を閉塞するのに要する弁体6のリフト量(後退量)は、常に一定である。具体的には、当該リフト量は、ガイド孔10cの壁面の図2中下端から流路62の一端側の開口o1の下端までの距離に相当し、本実施の形態においては、流路62の一端側の開口o1の図2中上下幅に相当する。よって、上記減衰バルブV1によれば、流路62を塞ぐのに要するリフト量に、製品毎にバラツキが生じるのを抑制できる。また、上記開口o1が形成される摺動軸部60aは、ガイド孔10cの壁面で支えられる部分であり、傾き難いので、当該壁面に上記開口o1が対向したとき確実に流路62を閉塞できる。したがって、上記減衰バルブV1によれば、所望の圧力で流路62を確実に閉塞できる。 Thus, in the present embodiment as well, the distance between the valve body 6 and the spring receiver 7 is changed by adjusting the preset load, as in the case of the conventional damping valve, but the valve body 6 closes the bypass passage 33. The required lift amount (retraction amount) of the valve body 6 is always constant. Specifically, the lift amount corresponds to the distance from the lower end in FIG. 2 of the wall surface of the guide hole 10c to the lower end of the opening o1 on one end side of the flow path 62. In the present embodiment, the lift amount of the flow path 62 is This corresponds to the vertical width in FIG. 2 of the opening o1 on one end side. Therefore, according to the damping valve V <b> 1, it is possible to suppress the variation in the lift amount required for closing the flow path 62 from product to product. Further, the sliding shaft portion 60a in which the opening o1 is formed is a portion supported by the wall surface of the guide hole 10c and is not easily tilted. Therefore, the flow path 62 can be reliably closed when the opening o1 faces the wall surface. . Therefore, according to the damping valve V1, the flow path 62 can be reliably closed with a desired pressure.
 また、本実施の形態において、圧側室L2から軸穴60eに作動油を導くための横孔60fが複数形成されており、流路62の一方側の開口面積は、各横孔60fの開口o1の面積の総和となる。このように横孔60fを複数設けているので、流路62の一方側の開口面積を確保しつつ、各横孔60fの開口o1の径を小さくできる。そして、このように各横孔60fの開口径を小さくすると、流路62を閉塞するのに要する弁体6のリフト量を小さくできる。このため、弁体6で流路62を閉塞する際の圧側室L2の圧力にバラツキが生じるのをより一層抑制できる。 Further, in the present embodiment, a plurality of lateral holes 60f for guiding hydraulic oil from the compression side chamber L2 to the shaft hole 60e are formed, and the opening area on one side of the flow path 62 is the opening o1 of each lateral hole 60f. The total area of As described above, since the plurality of horizontal holes 60f are provided, the diameter of the opening o1 of each horizontal hole 60f can be reduced while securing the opening area on one side of the flow path 62. And if the opening diameter of each horizontal hole 60f is made small in this way, the lift amount of the valve body 6 required for closing the flow path 62 can be made small. For this reason, it is possible to further suppress variations in the pressure in the pressure side chamber L2 when the flow path 62 is closed by the valve body 6.
 次に、本実施の形態に係る減衰バルブV1を備えた緩衝器Dの作動について説明する。 Next, the operation of the shock absorber D provided with the damping valve V1 according to the present embodiment will be described.
 緩衝器Dが伸長する場合、ロッド11がシリンダ1に対して図1中左側に移動し、ピストン10がシリンダ1内を図1中左側に移動して、伸側室L1が圧縮されるとともに圧側室L2が拡大する。 When the shock absorber D extends, the rod 11 moves to the left side in FIG. 1 with respect to the cylinder 1, the piston 10 moves to the left side in FIG. 1 in the cylinder 1, and the expansion side chamber L1 is compressed and the pressure side chamber is compressed. L2 expands.
 すると、圧縮される伸側室L1の圧力が上昇し、伸側室L1の作動油が伸側バルブV2を押し開き、伸側流路2を通過して圧側室L2へ移動する。シリンダ1内では、退出したロッド体積分の作動油が不足するが、吸込バルブV4が開いて、不足分に見合った作動油が吸込流路4を通ってリザーバRから圧側室L2に供給される。伸側室L1から圧側室L2へ向かう作動油の流れに対して伸側バルブV2による抵抗が与えられるため、伸側室L1の圧力が上昇する。これに対して、圧側室L2はリザーバRからの作動油の供給を受けるのでリザーバR内の圧力と略等しくなる。よって、伸側室L1と圧側室L2の圧力に差圧が生じ、この差圧がピストン10に作用して、緩衝器Dが伸長作動を妨げる伸側減衰力を発揮する。 Then, the pressure in the expansion side chamber L1 to be compressed rises, and the hydraulic oil in the expansion side chamber L1 pushes open the expansion side valve V2, passes through the expansion side flow path 2, and moves to the compression side chamber L2. In the cylinder 1, the hydraulic oil corresponding to the retracted rod volume is insufficient, but the suction valve V <b> 4 is opened, and hydraulic oil corresponding to the shortage is supplied from the reservoir R to the pressure side chamber L <b> 2 through the suction flow path 4. . Since the resistance by the extension side valve V2 is given to the flow of the hydraulic fluid from the extension side chamber L1 toward the compression side chamber L2, the pressure in the extension side chamber L1 increases. On the other hand, since the pressure side chamber L2 receives the supply of hydraulic oil from the reservoir R, the pressure side chamber L2 becomes substantially equal to the pressure in the reservoir R. Therefore, a differential pressure is generated in the pressures of the extension side chamber L1 and the compression side chamber L2, and this differential pressure acts on the piston 10, and the shock absorber D exerts an extension side damping force that prevents the extension operation.
 反対に、緩衝器Dが収縮する場合、ロッド11がシリンダ1に対して図1中右方へ移動し、ピストン10がシリンダ1内を図1中右方へ移動して、圧側室L2が圧縮されるとともに伸側室L1が拡大する。 On the contrary, when the shock absorber D contracts, the rod 11 moves to the right in FIG. 1 with respect to the cylinder 1, the piston 10 moves to the right in FIG. 1 in the cylinder 1, and the compression side chamber L2 is compressed. In addition, the extension side chamber L1 is enlarged.
 すると、圧縮される圧側室L2の圧力が上昇し、ピストン速度が低速である場合には、単位時間あたりの流量が少ないので、圧側室L2の作動油が減衰バルブV1のチェックバルブV6を開き、バイパス路33を通って伸側室L1に移動する。そして、ピストン速度が高速になり、単位時間あたりの流量が増えると、圧側室L2の作動油が弁体6を後退させるため、減衰バルブV1がバイパス路33を閉塞する。バイパス路33が閉塞されると、圧側室L2の作動油は、圧側バルブV3を押し開き、通路30を通って伸側室L1に移動する。シリンダ1内では、進入したロッド体積分の作動油が余剰になるが、余剰分の作動油が排出バルブV5を押し開き、排出流路5を通過して圧側室L2からリザーバRに排出される。圧側室L2から伸側室L1及びリザーバRへ向かう作動油の流れに対して、オリフィスとして機能する横孔60f又は圧側バルブV3と、排出バルブV5によって抵抗が与えられるため、圧側室L2内の圧力が上昇する。これに対して、拡大する伸側室L1内の圧力は低下するので、圧側室L2と伸側室L1の圧力に差圧が生じ、この差圧がピストン10に作用して、緩衝器Dが収縮作動を妨げる圧側低速減衰力を発揮する。 Then, when the pressure in the compression side chamber L2 to be compressed rises and the piston speed is low, the flow rate per unit time is small, so the hydraulic oil in the compression side chamber L2 opens the check valve V6 of the damping valve V1, It moves through the bypass path 33 to the extension side chamber L1. When the piston speed increases and the flow rate per unit time increases, the hydraulic oil in the compression side chamber L2 moves the valve body 6 backward, so that the damping valve V1 closes the bypass passage 33. When the bypass passage 33 is closed, the hydraulic oil in the pressure side chamber L2 pushes open the pressure side valve V3 and moves through the passage 30 to the extension side chamber L1. In the cylinder 1, the hydraulic oil corresponding to the volume of the rod that has entered becomes surplus, but the surplus hydraulic oil opens the discharge valve V <b> 5, passes through the discharge flow path 5, and is discharged from the pressure side chamber L <b> 2 to the reservoir R. . A resistance is given to the flow of hydraulic oil from the pressure side chamber L2 toward the extension side chamber L1 and the reservoir R by the lateral hole 60f or the pressure side valve V3 functioning as an orifice, and the discharge valve V5, so that the pressure in the pressure side chamber L2 is reduced. To rise. On the other hand, since the pressure in the expanding side chamber L1 is reduced, a pressure difference is generated between the pressure side chamber L2 and the pressure side chamber L1, and this differential pressure acts on the piston 10 so that the shock absorber D is contracted. Demonstrates compression-side low-speed damping force that prevents
 ここで、圧側流路3を作動油が通過する際の圧力流量特性は、前述のように、単位時間当たりの流量が少ない領域で、圧側室L2と伸側室L1の差圧が小さくなるように設定されている。このため、バイパス路33のオリフィスを作動油が通過する低速領域では、圧側室L2と伸側室L1の差圧が小さくなるので、ピストン10の図1中左右両側に略等しい圧力がかかり、ピストン10の見かけ上の受圧面積がロッド11の断面積に近くなる。また、圧側流路3を作動油が通過する際の圧力流量特性は、前述のように、単位時間当たりの流量が多い領域で、圧側室L2と伸側室L1の差圧が大きくなるように設定されている。このため、バイパス路33の連通が遮断されるとともに、圧側バルブV3を作動油が通過する高速領域では、圧側室L2と伸側室L1の差圧が大きくなる。よって、ピストン10の図1中右側にかかる圧力が図1中左側にかかる圧力よりも大きくなり、ピストン10の見かけ上の受圧面積がピストン10の断面積とロッド11の断面積との差分(ピストン10の断面積-ロッド11の断面積)に近くなる。 Here, the pressure flow characteristics when the hydraulic oil passes through the pressure side flow path 3 are such that the differential pressure between the pressure side chamber L2 and the expansion side chamber L1 is small in the region where the flow rate per unit time is small as described above. Is set. For this reason, in the low speed region where the hydraulic oil passes through the orifice of the bypass passage 33, the differential pressure between the compression side chamber L2 and the expansion side chamber L1 becomes small, so that substantially equal pressure is applied to both the left and right sides of the piston 10 in FIG. The apparent pressure receiving area is close to the cross-sectional area of the rod 11. Further, as described above, the pressure flow characteristic when the hydraulic oil passes through the pressure side flow path 3 is set so that the differential pressure between the pressure side chamber L2 and the extension side chamber L1 becomes large in a region where the flow rate per unit time is large. Has been. For this reason, while the communication of the bypass path 33 is interrupted, the differential pressure between the compression side chamber L2 and the expansion side chamber L1 increases in a high speed region where the hydraulic oil passes through the compression side valve V3. Therefore, the pressure applied to the right side in FIG. 1 of the piston 10 is larger than the pressure applied to the left side in FIG. 1, and the apparent pressure receiving area of the piston 10 is the difference between the cross-sectional area of the piston 10 and the cross-sectional area of the rod 11 (piston 10 cross-sectional area-cross-sectional area of the rod 11).
 つまり、上記減衰バルブV1を利用して、圧側室L2から伸側室L1へ向かう作動油の圧力流量特性を上記のように設定すると、流路62の開閉により、見かけ上、ピストン速度に依存してピストン10の受圧面積が変化したように見える。そして、ピストン10の見かけ上の受圧面積が小さくなると、緩衝器Dの減衰力発生応答性が低下し、反対に、ピストン10の見かけ上の受圧面積が大きくなると、緩衝器Dの減衰力発生応答性が向上する。よって、上記減衰バルブV1を圧側流路3に利用すると、ピストン10の見かけ上の受圧面積を流路62の開閉により切換えて、減衰力発生応答性を速度に応じて容易に変更できる。 That is, when the pressure flow characteristic of the hydraulic fluid from the compression side chamber L2 to the expansion side chamber L1 is set as described above using the damping valve V1, the flow rate of the flow passage 62 is apparently dependent on the piston speed. It appears that the pressure receiving area of the piston 10 has changed. When the apparent pressure receiving area of the piston 10 decreases, the damping force generation response of the shock absorber D decreases. On the contrary, when the apparent pressure receiving area of the piston 10 increases, the damping force generation response of the shock absorber D. Improves. Therefore, when the damping valve V1 is used for the pressure side flow path 3, the apparent pressure receiving area of the piston 10 can be switched by opening and closing the flow path 62, and the damping force generation response can be easily changed according to the speed.
 なお、本実施の形態において、本発明に係る減衰バルブV1は、鉄道車両用の緩衝器Dに搭載されているが、この限りではなく、例えば、構造物の制振に利用される緩衝器、又は他の緩衝器に搭載されてもよい。また、緩衝器Dの構成も上記の限りではなく、適宜変更できる。例えば、減衰力を発生するための流体として作動油以外の流体を利用してもよい。また、ピストン10の両側にロッド11が延びて、緩衝器Dが両ロッド型になっていてもよい。また、内外二重に配置されるシリンダ1と外筒12との間にリザーバRが形成されているが、シリンダ1の外方に別置き型のタンクを設け、このタンク内にリザーバRを形成してもよい。また、緩衝器Dは、作動油が圧側室L2、伸側室L1、リザーバRの順に常に一方方向に循環するユニフロー型になっていてもよい。そして、このような緩衝器Dの形態に合わせて、減衰バルブV1を設ける位置及び、搭載するバルブの種類を適宜変更できる。 In the present embodiment, the damping valve V1 according to the present invention is mounted on the shock absorber D for railway vehicles. However, the present invention is not limited to this. For example, a shock absorber used for damping a structure, Or you may mount in another buffer. The configuration of the shock absorber D is not limited to the above, and can be changed as appropriate. For example, a fluid other than hydraulic oil may be used as the fluid for generating the damping force. Moreover, the rod 11 may extend on both sides of the piston 10, and the shock absorber D may be a double rod type. In addition, a reservoir R is formed between the cylinder 1 and the outer cylinder 12 that are arranged in the inner and outer doubles. A separate tank is provided outside the cylinder 1, and the reservoir R is formed in the tank. May be. Further, the shock absorber D may be a uniflow type in which hydraulic oil circulates always in one direction in the order of the pressure side chamber L2, the extension side chamber L1, and the reservoir R. And according to such a form of the shock absorber D, the position where the damping valve V1 is provided and the type of the mounted valve can be changed as appropriate.
 以下、本実施の形態における減衰バルブV1、及び当該減衰バルブV1を搭載する緩衝器Dの作用効果について説明する。 Hereinafter, the operational effects of the damping valve V1 and the shock absorber D equipped with the damping valve V1 in the present embodiment will be described.
 本実施の形態において、緩衝器Dは、シリンダ1と、シリンダ1内に軸方向移動自在に挿入されてシリンダ1内を伸側室(他方室)L1と圧側室(一方室)L2とに区画するピストン10と、一端部がピストン10に連結されて伸側室L1を貫通し他端部がシリンダ1外に延びるロッド11と、作動油(流体)を貯留するリザーバRと、伸側室L1と圧側室L2とを連通し、伸側室L1から圧側室L2へ向かう作動油の流れを許容してこの流れに抵抗を与える伸側バルブV2を有する伸側流路2と、伸側室L1と圧側室L2とを連通し、圧側室L2から伸側室L1へ向かう作動油の流れを許容してこの流れに抵抗を与える圧側バルブV3及び減衰バルブV1を有する圧側流路3と、圧側室L2とリザーバRとを連通し、リザーバRから圧側室L2へ向かう作動油の流れを許容する吸込バルブV4を有する吸込流路4と、圧側室L2とリザーバRとを連通し、圧側室L2からリザーバRへ向かう作動油の流れを許容してこの流れに抵抗を与える排出バルブV5を有する排出流路5とを備える。そして、圧側流路3は、伸側室L1と圧側室L2とを連通するとともに圧側バルブV3が設けられる通路30と、圧側バルブV3を迂回して伸側室L1と圧側室L2とを連通するとともに減衰バルブV1が設けられるバイパス路33とを有して構成される。 In the present embodiment, the shock absorber D is inserted into the cylinder 1 so as to be axially movable in the cylinder 1 and divides the inside of the cylinder 1 into an extension side chamber (other chamber) L1 and a pressure side chamber (one chamber) L2. A piston 10, a rod 11 having one end connected to the piston 10 and penetrating through the expansion side chamber L1 and the other end extending outside the cylinder 1, a reservoir R for storing hydraulic oil (fluid), an expansion side chamber L1, and a compression side chamber The expansion side flow path 2 having the expansion side valve V2 that communicates with L2 and allows the flow of hydraulic oil from the expansion side chamber L1 toward the compression side chamber L2 to provide resistance to the flow, and the expansion side chamber L1 and the compression side chamber L2. , A pressure side flow path 3 having a pressure side valve V3 and a damping valve V1 that allows the flow of hydraulic oil from the pressure side chamber L2 toward the expansion side chamber L1 and provides resistance to this flow, and the pressure side chamber L2 and the reservoir R. Communication, pressure side from reservoir R The suction flow path 4 having a suction valve V4 that allows the flow of hydraulic oil toward L2, the pressure side chamber L2, and the reservoir R communicate with each other to allow the flow of hydraulic oil toward the reservoir R from the pressure side chamber L2 and this flow. And a discharge passage 5 having a discharge valve V5 that provides resistance to the. The pressure side flow path 3 communicates the expansion side chamber L1 and the pressure side chamber L2, and bypasses the pressure side valve V3, bypasses the expansion side chamber L1 and the pressure side chamber L2, and attenuates. And a bypass path 33 provided with a valve V1.
 上記構成によれば、減衰バルブV1は、ピストン速度の上昇により流路62を閉塞してバイパス路33の連通を遮断できる。よって、上記緩衝器Dによれば、減衰バルブV1が流路62を閉塞する速度を境にしたピストン10の見かけ上の受圧面積の変更が可能となり、これにより、減衰力発生応答性を変更できる。 According to the above configuration, the damping valve V1 can block the flow path 62 and block the communication of the bypass path 33 by increasing the piston speed. Therefore, according to the shock absorber D, it is possible to change the apparent pressure receiving area of the piston 10 at the speed at which the damping valve V1 closes the flow path 62, thereby changing the damping force generation responsiveness. .
 なお、本発明に係る減衰バルブV1を搭載する緩衝器Dの構成は、上記の限りではなく、適宜変更できる。例えば、上記緩衝器Dでは、ピストン10の見かけ上の受圧面積を、ロッド11の断面積に近い面積と、ピストン10の断面積とロッド11の断面積との差分に近い面積とで切り替えられる。しかし、圧側バルブV3と排出バルブV5の一方を廃しても同様の効果を得られる。また、伸側室L1とリザーバRとを連通し、リザーバRから伸側室L2へ向かう作動油の流れを許容する伸側室L1側の吸込流路を設けると、ピストン10の見かけ上の受圧面積を、ロッド11の断面積に近い面積とピストン10の断面積に近い面積とで切り替えられる。このような、流路62の開閉による減衰力発生応答性の変更は、減衰バルブV1が圧側流路3の途中に設けられていれば実現できる。 In addition, the structure of the buffer D which mounts the damping valve V1 which concerns on this invention is not restricted above, but can be changed suitably. For example, in the shock absorber D, the apparent pressure receiving area of the piston 10 can be switched between an area close to the cross-sectional area of the rod 11 and an area close to the difference between the cross-sectional area of the piston 10 and the cross-sectional area of the rod 11. However, the same effect can be obtained even if one of the pressure side valve V3 and the discharge valve V5 is eliminated. In addition, when the suction passage on the extension side chamber L1 side that allows the extension side chamber L1 and the reservoir R to communicate with each other and allows the flow of hydraulic oil from the reservoir R to the extension side chamber L2, an apparent pressure receiving area of the piston 10 is obtained. The area can be switched between an area close to the cross-sectional area of the rod 11 and an area close to the cross-sectional area of the piston 10. Such a change in the damping force generation responsiveness by opening and closing the flow path 62 can be realized if the damping valve V <b> 1 is provided in the middle of the pressure side flow path 3.
 また、本実施の形態の減衰バルブV1において、流路62は、摺動軸部60aの中心部に形成される軸穴60eと、この軸穴60eから延びて摺動軸部60aの側方に開口する複数の横孔60fとを有して構成される。 In the damping valve V1 of the present embodiment, the flow path 62 has a shaft hole 60e formed at the center of the sliding shaft portion 60a, and extends from the shaft hole 60e to the side of the sliding shaft portion 60a. It has a plurality of lateral holes 60f that open.
 上記構成によれば、流路62の一端側の開口面積を確保しつつ、流路62を閉塞するのに要する弁体6のリフト量を小さくできる。よって、弁体6で流路62を閉塞する際の圧側室L2の圧力にバラツキが生じるのを抑制できる。 According to the above configuration, it is possible to reduce the lift amount of the valve element 6 required to close the flow path 62 while securing the opening area on one end side of the flow path 62. Therefore, it is possible to suppress variation in the pressure in the pressure side chamber L2 when the flow path 62 is closed by the valve body 6.
 なお、本実施の形態において、複数の横孔60fが軸穴60eから放射状に延びているが、この限りではない。例えば、複数の横孔60fが軸穴60eに交わりつつ、摺動軸部60aの直径に対して略平行に延びていてもよい。さらに、本実施の形態において、横孔60fがオリフィスとして機能するが、流路62における横孔60f以外の部分にオリフィスを設けてもよく、流路62の途中に設ける絞りがオリフィス以外のチョークであってもよく、流路62の途中に絞りを設けなくてもよい。このような変更は、本発明に係る減衰バルブV1が搭載される緩衝器の種類を問わず可能である。 In the present embodiment, the plurality of horizontal holes 60f extend radially from the shaft hole 60e, but this is not restrictive. For example, the plurality of lateral holes 60f may extend substantially parallel to the diameter of the sliding shaft portion 60a while intersecting the shaft hole 60e. Furthermore, in the present embodiment, the horizontal hole 60f functions as an orifice, but an orifice may be provided in a portion other than the horizontal hole 60f in the flow path 62, and the throttle provided in the middle of the flow path 62 is a choke other than the orifice. There may be no restriction, and no restriction may be provided in the middle of the flow path 62. Such a change is possible regardless of the type of shock absorber on which the damping valve V1 according to the present invention is mounted.
 また、本実施の形態の減衰バルブV1において、弁孔Hは、摺動軸部60aが摺動可能に挿入されるガイド孔10cと、このガイド孔10cの圧側室(一方室)L2側に連なり、弁体6が段差(ストッパ)10eで圧側室L2側への移動を規制された状態で、流路62の連通を許容するとともに、摺動軸部60aを収容する保護孔10dとを有して構成される。 Further, in the damping valve V1 of the present embodiment, the valve hole H is connected to the guide hole 10c into which the sliding shaft portion 60a is slidably inserted and the pressure side chamber (one chamber) L2 side of the guide hole 10c. The valve body 6 has a protective hole 10d that allows the passage 62 to communicate and accommodates the sliding shaft portion 60a in a state in which the movement of the valve body 6 to the pressure side chamber L2 side is restricted by the step (stopper) 10e. Configured.
 上記構成によれば、流路62の連通を許容しつつ、摺動軸部60aの外周が保護孔10dの壁面で覆われる。つまり、摺動軸部60aがハウジングであるピストン10から突出しないので、摺動軸部60aを保護し、摺動軸部60aと他部材との干渉を防止できる。 According to the above configuration, the outer periphery of the sliding shaft portion 60a is covered with the wall surface of the protective hole 10d while allowing the flow path 62 to communicate. That is, since the sliding shaft portion 60a does not protrude from the piston 10 which is a housing, the sliding shaft portion 60a can be protected and interference between the sliding shaft portion 60a and other members can be prevented.
 なお、緩衝器Dの構造、又は減衰バルブV1を設ける位置等の事情により、摺動軸部60aと他部材との干渉が懸念されない場合には、ピストン10における保護孔10dが形成される部分を省略し、摺動軸部60aがピストン10の図2中下面よりも下方に突出するようにしてもよい。このような変更は、本発明に係る減衰バルブV1が搭載される緩衝器の種類、流路62の構成を問わず可能である。 If there is no concern about interference between the sliding shaft portion 60a and other members due to the structure of the shock absorber D or the position where the damping valve V1 is provided, the portion of the piston 10 where the protective hole 10d is formed is formed. The sliding shaft portion 60a may be omitted below the lower surface of the piston 10 in FIG. Such a change is possible regardless of the type of the shock absorber on which the damping valve V1 according to the present invention is mounted and the configuration of the flow path 62.
 また、本実施の形態において、流路62には、圧側室(一方室)L2側から伸側室(他方室)L1側へ向かう作動油(流体)の流れのみを許容するチェックバルブV6が設けられる。 In the present embodiment, the flow path 62 is provided with a check valve V6 that allows only the flow of hydraulic fluid (fluid) from the pressure side chamber (one chamber) L2 side to the extension side chamber (other chamber) L1 side. .
 上記構成によれば、流路62を一方通行にできるので、減衰バルブV1の下流側となる伸側室L1の圧力が高くなったときに、流路62を閉塞した状態に維持できる。よって、例えば、常開型のオリフィスを設けて、緩衝器Dが低速で伸長するとき、作動油が上記オリフィスを通って伸側室L1から圧側室L2に移動する場合等には、上記チェックバルブV6を設けると、伸側低速減衰力と圧側低速減衰力を個別に設定できる。 According to the above configuration, since the flow path 62 can be made one-way, the flow path 62 can be maintained closed when the pressure in the extension side chamber L1 on the downstream side of the damping valve V1 increases. Therefore, for example, when a normally open orifice is provided and the shock absorber D extends at a low speed, when the hydraulic oil moves from the expansion side chamber L1 to the pressure side chamber L2 through the orifice, the check valve V6 is used. When the is provided, the extension side low speed damping force and the compression side low speed damping force can be individually set.
 なお、作動油の双方向の通過を許容してもよい場合には、上記チェックバルブV6を省略してもよい。この場合、弁体6のキャップ61及び弁座60gを省略できるので、減衰バルブV1の構造を簡易にできる。加えて、本実施の形態においては、減衰バルブV1の弁体6内にチェックバルブV6が収容されているので、減衰バルブV1が軸方向に嵩張らないが、チェックバルブV6を設ける位置、及び構造は、適宜変更できる。例えば、ばね受7にチェックバルブV6を取り付けるようにしてもよい。これらのような変更は、本発明に係る減衰バルブV1が搭載される緩衝器の種類、流路62の構成、弁孔Hの構成を問わず可能である。 Note that the check valve V6 may be omitted if the hydraulic oil may be allowed to pass in both directions. In this case, since the cap 61 and the valve seat 60g of the valve body 6 can be omitted, the structure of the damping valve V1 can be simplified. In addition, in this embodiment, since the check valve V6 is accommodated in the valve body 6 of the damping valve V1, the damping valve V1 is not bulky in the axial direction. Can be changed as appropriate. For example, the check valve V6 may be attached to the spring receiver 7. Such changes are possible regardless of the type of shock absorber on which the damping valve V1 according to the present invention is mounted, the configuration of the flow path 62, and the configuration of the valve hole H.
 また、本実施の形態において、減衰バルブV1は、弁体6の前進(圧側室L2側への移動)を規制する段差(ストッパ)10eを備える。そして、弁体6が段差(ストッパ)10eで前進(圧側室(一方室)L2側への移動)を規制された状態では、流路62と圧側室L2との連通が許容される。 Further, in the present embodiment, the damping valve V1 includes a step (stopper) 10e that regulates the forward movement (movement toward the pressure side chamber L2) of the valve body 6. When the valve body 6 is restricted from moving forward (moving toward the pressure side chamber (one chamber) L2) by the step (stopper) 10e, communication between the flow path 62 and the pressure side chamber L2 is allowed.
 上記構成によれば、作動油(流体)が圧側室(一方室)L2から伸側室(他方室)L1に流れる際の圧力流量特性を、流路62の閉塞前後で切り替えられる。しかし、例えば、弁体6が前進を規制された状態で、流路62と圧側室L2との連通が遮断されるように設定しておき、圧側室L2の圧力が所定圧力になったとき上記流路62の連通を許容し、より高圧になったとき上記流路62を閉塞するように設定してもよい。このような変更は、本発明に係る減衰バルブV1が搭載される緩衝器の種類、流路62の構成、弁孔Hの構成、チェックバルブV6の位置及び有無を問わず可能である。 According to the above configuration, the pressure flow characteristics when the hydraulic oil (fluid) flows from the pressure side chamber (one chamber) L2 to the extension side chamber (other chamber) L1 can be switched before and after the flow path 62 is closed. However, for example, when the valve body 6 is restricted from moving forward, the communication between the flow path 62 and the pressure side chamber L2 is set to be blocked, and when the pressure in the pressure side chamber L2 becomes a predetermined pressure, The communication of the flow path 62 is allowed, and the flow path 62 may be set to be closed when the pressure becomes higher. Such a change is possible regardless of the type of the shock absorber on which the damping valve V1 according to the present invention is mounted, the configuration of the flow path 62, the configuration of the valve hole H, and the position and presence of the check valve V6.
 また、本実施の形態の減衰バルブV1は、圧側室(一方室)L2と伸側室(他方室)L1とを連通する弁孔Hを有するピストン(ハウジング)10と、弁孔H内に摺動可能に挿入される摺動軸部60aを有する弁体6と、弁体6を圧側室L2側に向けて附勢するコイルばね(弾性部材)8と、一端が摺動軸部60aの側方に開口するとともに他端が弁体6の摺動軸部60aよりも伸側室L1側に開口する流路62とを備える。そして、弁体6が伸側室L1側に移動して、流路62の一端側の開口o1がガイド孔10cの壁面(摺動軸部60aの外周に摺接する弁孔Hの壁面)に対向すると、流路62が閉塞される。 Further, the damping valve V1 of the present embodiment is slid into the valve hole H and a piston (housing) 10 having a valve hole H communicating the pressure side chamber (one chamber) L2 and the expansion side chamber (other chamber) L1. A valve body 6 having a sliding shaft portion 60a that can be inserted, a coil spring (elastic member) 8 that biases the valve body 6 toward the pressure side chamber L2, and a side of the sliding shaft portion 60a at one end. And a flow path 62 having the other end opened to the extension side chamber L1 side from the sliding shaft portion 60a of the valve body 6. Then, when the valve body 6 moves to the extension side chamber L1 side, the opening o1 on one end side of the flow path 62 faces the wall surface of the guide hole 10c (the wall surface of the valve hole H slidably contacting the outer periphery of the sliding shaft portion 60a). The flow path 62 is closed.
 上記構成によれば、圧側室(一方室)L2から伸側室(他方室)L1に作動油(流体)が流れる際の圧力流量特性を、流路62の閉塞前後で独立して自由に設定できる。さらに、弁体6が前進を規制された状態において、弁体6がコイルばね(弾性部材)8の附勢力を受けて段差(ストッパ)10eに押し付けられるように設定できて、コイルばね8のプリセット荷重を容易に設定できる。そして、当該プリセット荷重を調節したとしても、流路62を閉塞するのに要する弁体6のリフト量は、ガイド孔10cの壁面の図2中下端から流路62の一端側の開口o1の下端までの距離に相当し、一定である。よって、流路62を閉塞するのに要する弁体6のリフト量に製品毎にバラツキが生じるのを抑制できる。加えて、ガイド孔10cの壁面で開閉される流路62の一端側の開口o1は、上記壁面に摺接する摺動軸部60aに設けられている。当該部分は傾き難いので、ガイド孔10cの壁面に上記開口o1が対向したとき確実に流路62を閉塞できる。したがって、上記減衰バルブV1によれば、所望の圧力で流路62を確実に閉塞できる。 According to the above configuration, the pressure flow characteristics when hydraulic fluid (fluid) flows from the pressure side chamber (one chamber) L2 to the extension side chamber (other chamber) L1 can be freely set before and after the flow path 62 is closed. . Further, in a state in which the valve body 6 is restricted from moving forward, the valve body 6 can be set to receive the urging force of the coil spring (elastic member) 8 and be pressed against the step (stopper) 10e. The load can be set easily. Even when the preset load is adjusted, the lift amount of the valve body 6 required to close the flow path 62 is the lower end of the opening o1 on the one end side of the flow path 62 from the lower end in FIG. 2 of the wall surface of the guide hole 10c. It corresponds to the distance up to and is constant. Therefore, it is possible to suppress variation in the lift amount of the valve body 6 required for closing the flow path 62 from product to product. In addition, an opening o1 on one end side of the flow path 62 opened and closed by the wall surface of the guide hole 10c is provided in the sliding shaft portion 60a that is in sliding contact with the wall surface. Since the portion is difficult to tilt, the flow path 62 can be reliably closed when the opening o1 faces the wall surface of the guide hole 10c. Therefore, according to the damping valve V1, the flow path 62 can be reliably closed with a desired pressure.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形及び変更が可能である。 The preferred embodiments of the present invention have been described above in detail, but modifications, changes and modifications can be made without departing from the scope of the claims.
 本願は、2015年6月3日に日本国特許庁に出願された特願2015-112794に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2015-112794 filed with the Japan Patent Office on June 3, 2015, the entire contents of which are incorporated herein by reference.

Claims (7)

  1.  減衰バルブであって、
     一方室と他方室とを連通する弁孔を有するハウジングと、
     前記弁孔内に摺動可能に挿入される摺動軸部を有する弁体と、
     前記弁体を前記一方室側に向けて附勢する弾性部材と、
     一端が前記摺動軸部の側方に開口するとともに他端が前記弁体の前記摺動軸部よりも前記他方室側に開口する流路とを備え、
     前記弁体が前記他方室側に移動して、前記流路の前記一端側の開口が前記摺動軸部の外周に摺接する前記弁孔の壁面に対向すると、前記流路が閉塞される
     ことを特徴とする減衰バルブ。
    A damping valve,
    A housing having a valve hole communicating between the one chamber and the other chamber;
    A valve body having a sliding shaft portion slidably inserted into the valve hole;
    An elastic member for urging the valve body toward the one chamber;
    One end opens to the side of the sliding shaft portion and the other end includes a flow path opening to the other chamber side from the sliding shaft portion of the valve body,
    When the valve body moves to the other chamber side and the opening on the one end side of the flow channel faces the wall surface of the valve hole that is in sliding contact with the outer periphery of the sliding shaft portion, the flow channel is closed. A damping valve characterized by
  2.  請求項1に記載の減衰バルブであって、
     前記弁体の前記一方室側への移動を規制するストッパを備えるとともに、
     前記弁体が前記ストッパで前記一方室側への移動を規制された状態では、前記流路と前記一方室との連通が許容される
     ことを特徴とする減衰バルブ。
    A damping valve according to claim 1,
    With a stopper that restricts the movement of the valve body toward the one chamber,
    In the state in which the valve body is restricted from moving toward the one chamber by the stopper, communication between the flow path and the one chamber is allowed.
  3.  請求項1に記載の減衰バルブであって、
     前記流路には、前記一方室側から前記他方室側へ向かう流体の流れのみを許容するチェックバルブが設けられる
     ことを特徴とする減衰バルブ。
    A damping valve according to claim 1,
    A damping valve characterized in that a check valve that allows only a flow of fluid from the one chamber side toward the other chamber side is provided in the flow path.
  4.  請求項2に記載の減衰バルブであって、
     前記弁孔は、
     前記摺動軸部が摺動可能に挿入されるガイド孔と、
     前記ガイド孔の前記一方室側に連なり、前記弁体が前記ストッパで前記一方室側への移動を規制された状態で前記流路の連通を許容するとともに、前記摺動軸部を収容する保護孔とを有して構成される
     ことを特徴とする減衰バルブ。
    A damping valve according to claim 2,
    The valve hole is
    A guide hole into which the sliding shaft portion is slidably inserted;
    Protection that accommodates the sliding shaft portion while allowing the passage to communicate with the guide hole in a state where the valve body is restricted from moving toward the one chamber by the stopper. A damping valve characterized by comprising a hole.
  5.  請求項1に記載の減衰バルブであって、
     前記流路は、
     前記摺動軸部の中心部に形成される軸穴と、
     前記軸穴から延びて前記摺動軸部の側方に開口する複数の横孔とを有して構成される
     ことを特徴とする減衰バルブ。
    A damping valve according to claim 1,
    The flow path is
    A shaft hole formed in a central portion of the sliding shaft portion;
    A damping valve comprising: a plurality of lateral holes extending from the shaft hole and opening to the side of the sliding shaft portion.
  6.  緩衝器であって、
     シリンダと、
     前記シリンダ内に軸方向移動自在に挿入されて前記シリンダ内を伸側室と圧側室とに区画するピストンと、
     前記伸側室と前記圧側室とを連通し、前記圧側室から前記伸側室へ向かう流体の流れを許容する圧側流路と、
     前記圧側流路の途中に設けられる請求項1に記載の減衰バルブとを備え、
     前記伸側室が前記他方室であり、
     前記圧側室が前記一方室であり、
     前記ピストンが前記ハウジングである
     ことを特徴とする緩衝器。
    A shock absorber,
    A cylinder,
    A piston that is inserted into the cylinder so as to be axially movable and divides the cylinder into an extension side chamber and a pressure side chamber;
    A pressure-side flow path that allows the flow of fluid from the pressure-side chamber to the extension-side chamber;
    The damping valve according to claim 1 provided in the middle of the pressure side flow path,
    The extension chamber is the other chamber;
    The pressure side chamber is the one chamber;
    The shock absorber, wherein the piston is the housing.
  7.  請求項6に記載の緩衝器であって、
     一端部が前記ピストンに連結されて前記伸側室を貫通し、他端部が前記シリンダ外に延びるロッドと、
     流体を貯留するリザーバと、
     前記伸側室と前記圧側室とを連通し、前記伸側室から前記圧側室へ向かう流体の流れを許容して前記流れに抵抗を与える伸側バルブを有する伸側流路と、
     前記圧側室と前記リザーバとを連通し、前記リザーバから前記圧側室へ向かう流体の流れを許容する吸込バルブを有する吸込流路と、
     前記圧側室と前記リザーバとを連通し、前記圧側室から前記リザーバへ向かう流体の流れを許容して前記流れに抵抗を与える排出バルブを有する排出流路とを備え、
     前記圧側流路は、前記伸側室と前記圧側室とを連通する通路と、前記通路に設けられ、前記圧側室から前記伸側室へ向かう流体の流れを許容して前記流れに抵抗を与える圧側バルブと、前記圧側バルブを迂回して前記伸側室と前記圧側室とを連通するバイパス路とを有し、
     前記減衰バルブは、前記バイパス路に設けられる
     ことを特徴とする緩衝器。
    The shock absorber according to claim 6, wherein
    A rod having one end connected to the piston and penetrating the extension side chamber, the other end extending outside the cylinder;
    A reservoir for storing fluid;
    An extension-side flow path having an extension-side valve that communicates the extension-side chamber and the compression-side chamber, allows a flow of fluid from the extension-side chamber toward the compression-side chamber, and gives resistance to the flow;
    A suction flow path having a suction valve communicating the pressure side chamber and the reservoir and allowing a flow of fluid from the reservoir toward the pressure side chamber;
    A discharge passage having a discharge valve that communicates the pressure side chamber and the reservoir, allows a flow of fluid from the pressure side chamber toward the reservoir, and provides resistance to the flow;
    The pressure-side flow path is provided in the passage that communicates the extension side chamber and the pressure-side chamber, and a pressure-side valve that allows the flow of fluid from the pressure-side chamber toward the extension-side chamber and provides resistance to the flow. And a bypass path that bypasses the pressure side valve and communicates the extension side chamber and the pressure side chamber,
    The damping valve is provided in the bypass path.
PCT/JP2016/066384 2015-06-03 2016-06-02 Damping valve and shock absorber WO2016195008A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680021032.7A CN107614923A (en) 2015-06-03 2016-06-02 Decay valve and buffer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-112794 2015-06-03
JP2015112794A JP6464036B2 (en) 2015-06-03 2015-06-03 Damping valve and shock absorber

Publications (1)

Publication Number Publication Date
WO2016195008A1 true WO2016195008A1 (en) 2016-12-08

Family

ID=57441291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066384 WO2016195008A1 (en) 2015-06-03 2016-06-02 Damping valve and shock absorber

Country Status (3)

Country Link
JP (1) JP6464036B2 (en)
CN (1) CN107614923A (en)
WO (1) WO2016195008A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158099A (en) * 2018-03-16 2019-09-19 Kyb株式会社 Relief valve
CN110200340A (en) * 2019-06-27 2019-09-06 金其 A kind of cooling device and shared cooling clothes of comfortable wearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007425A (en) * 2011-06-24 2013-01-10 Kyb Co Ltd Shock absorber
JP2014214805A (en) * 2013-04-25 2014-11-17 川崎重工業株式会社 Valve with overflow prevention function

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324502B2 (en) * 2010-03-10 2013-10-23 カヤバ工業株式会社 Damping valve
CN102092118B (en) * 2010-12-22 2013-07-17 吉林大学珠海学院 Spring slide valve type nozzle device
JP5584110B2 (en) * 2010-12-28 2014-09-03 日立オートモティブシステムズ株式会社 Damping force adjustable shock absorber
GB2508524A (en) * 2011-07-28 2014-06-04 Hitachi Automotive Systems Ltd Damper for railway vehicles
CN203202263U (en) * 2013-04-18 2013-09-18 济南易恒技术有限公司 Slide valve for refrigerant filling gun
CN104295781B (en) * 2014-10-16 2017-03-15 江苏恒立液压科技有限公司 Safety throttle valve
CN204312210U (en) * 2014-11-14 2015-05-06 宁波中策动力机电集团有限公司 A kind of gas inlet control gear
CN204457929U (en) * 2014-12-23 2015-07-08 潍柴动力股份有限公司 A kind of bypass valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007425A (en) * 2011-06-24 2013-01-10 Kyb Co Ltd Shock absorber
JP2014214805A (en) * 2013-04-25 2014-11-17 川崎重工業株式会社 Valve with overflow prevention function

Also Published As

Publication number Publication date
CN107614923A (en) 2018-01-19
JP6464036B2 (en) 2019-02-06
JP2016223597A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
KR101420441B1 (en) Damping force adjusting hydraulic shock absorber
US7997394B2 (en) Damping force adjustable fluid pressure shock absorber
US9975598B2 (en) Vibration damper with level control
JP5639870B2 (en) Hydraulic shock absorber for vehicles
KR101710820B1 (en) Shock absorber
US11655875B2 (en) Damping valve and shock absorber
CN107614924B (en) Shock absorber
US8641022B2 (en) Front fork
US8042791B2 (en) Self-pumping hydropneumatic shock absorber
WO2016147905A1 (en) Front fork
WO2016195008A1 (en) Damping valve and shock absorber
JP6580262B2 (en) Shock absorber and manufacturing method thereof
WO2016024538A1 (en) Front fork
JP5559576B2 (en) Damping valve
JP2002295566A (en) Damping force adjustable hydraulic shock absorber
JP4336187B2 (en) Liquid pressure vehicle height adjustment device
JP2021081025A (en) Buffer
JP2019184033A (en) Shock absorber
JP2011252529A (en) Fluid pressure buffer
JP5941421B2 (en) Shock absorber
JP6630186B2 (en) Shock absorber
JP5395746B2 (en) Fluid pressure buffer
JP2016176543A (en) Attenuation force generator and shock absorber
JP2022180852A (en) Front fork
JP2022133840A (en) Shock absorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803442

Country of ref document: EP

Kind code of ref document: A1