WO2016194508A1 - Al ALLOY SPUTTERING TARGET - Google Patents

Al ALLOY SPUTTERING TARGET Download PDF

Info

Publication number
WO2016194508A1
WO2016194508A1 PCT/JP2016/062571 JP2016062571W WO2016194508A1 WO 2016194508 A1 WO2016194508 A1 WO 2016194508A1 JP 2016062571 W JP2016062571 W JP 2016062571W WO 2016194508 A1 WO2016194508 A1 WO 2016194508A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
ray diffraction
plane
diffraction peak
peak intensity
Prior art date
Application number
PCT/JP2016/062571
Other languages
French (fr)
Japanese (ja)
Inventor
高木 勝寿
Original Assignee
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ科研 filed Critical 株式会社コベルコ科研
Priority to KR1020177034931A priority Critical patent/KR20180004214A/en
Priority to CN201680029641.7A priority patent/CN107614745B/en
Priority to KR1020207007179A priority patent/KR20200029634A/en
Publication of WO2016194508A1 publication Critical patent/WO2016194508A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to an Al alloy sputtering target.
  • the present invention relates to an Al alloy sputtering target capable of forming an Al alloy thin film at a high deposition rate.
  • the films forming speed can be increased by increasing the sputtering power, that is, the power.
  • the sputtering power is increased, film formation abnormalities such as arcing and splash are likely to occur, and problems such as a decrease in yield of a touch panel or the like occur. Therefore, a sputtering target that can increase the deposition rate without increasing the sputtering power is desired.
  • an Al—Nd alloy thin film having both low electric resistivity and high heat resistance is used for the wiring film of the liquid crystal display.
  • a sputtering method is adopted as a film formation method of this Al-Nd alloy thin film, and an Al-Nd alloy sputtering target is used as a raw material for thin film formation.
  • the technologies of the following Patent Documents 1 to 5 have been proposed as the Al-Nd alloy sputtering target so far.
  • Patent Document 1 shows that an Al alloy film excellent in alkali corrosion resistance for display devices can be provided by reducing the Fe content of an Al-based alloy sputtering target.
  • Patent Document 2 shows that by reducing the variation in Vickers hardness of the surface of an Al alloy sputtering target, it is possible to produce an Al alloy film such as liquid crystal excellent in film uniformity.
  • Patent Document 3 shows that an Al alloy electrode of a thermal printer excellent in heat resistance, void resistance, hillock resistance and the like can be formed by using an Al-based alloy sputtering target of a predetermined alloy composition. Further, in Patent Document 4, by using an Al-Nd alloy sputtering target of a predetermined alloy composition, generation of hillocks after annealing treatment of an Al-Nd alloy thin film of a conductive portion for a liquid crystal display can be suppressed and resistance value is improved. It has been shown that it can be reduced.
  • Patent Document 5 shows that by using an Al-Nd alloy sputtering target having a reduced oxygen content, it is possible to suppress the generation of hillocks of an alloy thin film constituting an electrode for a liquid crystal display and to reduce the specific resistance value. There is.
  • Japan JP 2012-132091 Japanese Patent Application Laid-Open No. 2004-204284 Japanese Patent Application Laid-Open No. 2003-103821 Japanese Patent Application Laid-Open No. 2001-125123 JP JP 2001-93862
  • Patent Documents 1 to 5 disclose that the component composition of the sputtering target is controlled in order to improve the characteristics and the like of the film to be formed, but the film forming rate is increased to produce a display device.
  • the subject of improving the sex is not mentioned, and the means for solving the subject is not disclosed.
  • the present invention has been made in view of the above situation, and its object is to obtain a high deposition rate as compared with a conventional Al-Nd alloy sputtering target, and to remarkably improve the productivity of a touch panel etc. It is an object of the present invention to provide an Al-Nd alloy sputtering target that can be
  • the Al alloy sputtering target of the present invention which has solved the above problems, comprises an Al alloy containing 0.1 atomic% to 3 atomic% of Nd, and X-ray diffraction of Al (200) plane in an X-ray diffraction pattern.
  • the peak intensity, the X-ray diffraction peak intensity of the Al (311) plane, the X-ray diffraction peak intensity of the Al (220) plane, and the X-ray diffraction peak intensity of the Al (111) plane satisfy the relationship of the following formula (1) And it has a gist in the place where Vickers hardness Hv fills 29 or more and 36 or less.
  • I Al (200) is the X-ray diffraction peak intensity of the Al (200) plane
  • I Al (311) is the X-ray diffraction peak intensity of the Al (311) plane
  • I Al (220) is Al (220 )
  • I Al (111) represents the X-ray diffraction peak intensity of the Al (111) plane.
  • the Al alloy sputtering target has an average crystal grain size of 10 ⁇ m to 100 ⁇ m.
  • the Al alloy sputtering target is used for forming a lead-out wiring film of a touch panel and a wiring film of a touch panel sensor.
  • the film forming rate when the sputtering target is used for forming an Al-Nd alloy thin film can be raised enough.
  • the productivity of a touch panel using the thin film for example, as a lead wiring film and a wiring film of a touch panel sensor can be remarkably improved.
  • FIG. 1 shows an example of X-ray diffraction peak intensities of (111), (200), (220) and (311) planes of Al of the Al alloy sputtering target of the present invention.
  • the present inventors have intensively studied to provide an Al-Nd alloy sputtering target capable of forming an Al-Nd alloy thin film at high speed.
  • X-ray diffraction peak intensities of the Al (200) plane, Al (311) plane, Al (220) plane, and Al (111) plane of the sputtering surface of the Al-Nd alloy sputtering target of the component composition described later It has been found that the Al—Nd alloy sputtering target can be realized by controlling so as to satisfy the relationship of the following formula (1) and controlling the Vickers hardness to 29 or more and 36 or less.
  • I Al (200) is the X-ray diffraction peak intensity of the Al (200) plane
  • I Al (311) is the X-ray diffraction peak intensity of the Al (311) plane
  • I Al (220) is Al (220 )
  • I Al (111) represents the X-ray diffraction peak intensity of the Al (111) plane.
  • the film forming rate can be further increased by controlling the average crystal grain size of the Al—Nd alloy sputtering target to preferably 10 ⁇ m or more and 100 ⁇ m or less, and completed the present invention.
  • the characteristic capable of forming an Al—Nd alloy thin film at high speed is sometimes referred to as “having a high deposition rate”.
  • the present invention is characterized in that the magnitude relationship of X-ray diffraction peak intensities satisfies I Al (200) > I Al (311) > I Al (220) > I Al (111) .
  • the process of finding out that a high deposition rate can be realized by satisfying the magnitude relationship between the X-ray diffraction peak intensities is as follows.
  • A It has been known that the collision energy of Ar ions at the time of sputtering is efficiently transmitted in the direction in which the degree of atomic packing of the metal crystal face is high.
  • B In particular, in the order of (200), (311), (220), and (111) planes of the crystal plane of Al, the degree of atomic packing in the direction of the normal to the crystal plane is high. It has been known that the collision energy can be transmitted more efficiently.
  • the present inventor found that in the Al-Nd alloy sputtering target, the atomic filling degree in the direction normal to the crystal plane of Al is in the order of high (200) plane (311 It has been found that by satisfying the magnitude relationship of the above-mentioned X-ray diffraction peak intensities of the (220) plane and the (111) plane, many sputtered particles can be ejected, and a high deposition rate can be realized.
  • the magnitude relationship is the (200) plane, the (311) plane, and the (220) plane among a plurality of peaks including the (222) plane and the like.
  • And (111) planes are selected and determined by comparing X-ray diffraction peak intensities.
  • the Vickers hardness Hv of the Al—Nd alloy sputtering target will be described.
  • the Vickers hardness of the Al-Nd alloy sputtering target exceeds 36, collision energy of Ar ion at the time of sputtering is not efficiently propagated, and sputtered particles are hard to be ejected from the sputtering target, so a high deposition rate can not be obtained.
  • the upper limit of the Vickers hardness is set to 36 or less.
  • the upper limit of Vickers hardness is preferably 35 or less, more preferably 34 or less, and still more preferably 33 or less.
  • the lower limit of Vickers hardness is set to 29 or more.
  • the lower limit of the Vickers hardness is preferably 30 or more, more preferably 31 or more.
  • the average crystal grain size of the Al—Nd alloy sputtering target is preferably 10 ⁇ m or more and 100 ⁇ m or less from the viewpoint of securing an excellent high deposition rate. If it is less than 10 ⁇ m, collision energy of Ar ions at the time of sputtering is not efficiently propagated, and sputtered particles are hardly ejected from the sputtering target. As a result, since a high deposition rate may not be obtained in some cases, the thickness is preferably 10 ⁇ m or more as described above.
  • the lower limit of the average crystal grain size is more preferably 20 ⁇ m or more, still more preferably 30 ⁇ m or more, and still more preferably 40 ⁇ m or more.
  • the thickness is preferably 100 ⁇ m or less as described above.
  • the upper limit of the average crystal grain size is more preferably 90 ⁇ m or less, still more preferably 80 ⁇ m or less.
  • the said average grain size is calculated
  • the crystal grain size can be determined more accurately as the magnification of the microscope is larger, and usually, it is set to about 100 to 500 times. Next, draw four or more straight lines in the shape of a well in the obtained photograph. The crystal grain size can be determined more accurately as the number of straight lines increases.
  • the number n of crystal grain boundaries on the straight line is examined, and the crystal grain diameter d is calculated based on the following equation for each straight line. Thereafter, the average value of the crystal grain diameter d determined from each of a plurality of straight lines is taken as the average crystal grain diameter of the sputtering target.
  • d (unit: ⁇ m) L / n / m
  • L represents a linear length L
  • n represents the number n of grain boundaries on the straight line
  • m represents a magnification of an optical micrograph.
  • the sputtering target of the present invention is made of an Al alloy containing 0.1% to 3% of Nd in atomic percent.
  • % means “atomic%” about a chemical component.
  • Nd 0.1% to 3%
  • Nd is an element that prevents hillocks and is useful for improving heat resistance. If the content in the Al alloy is less than 0.1%, it is not possible to form an Al alloy thin film having high heat resistance. Therefore, the lower limit of the Nd content is 0.1% or more. The lower limit of the Nd content is preferably 0.15% or more, more preferably 0.20% or more. On the other hand, when the Nd content exceeds 3%, an Al alloy thin film having a low electrical resistivity can not be formed. Therefore, the upper limit of the Nd content is 3% or less. The upper limit of the Nd content is preferably 2% or less, more preferably 1% or less.
  • the contained elements specified in the present invention are as described above, and the balance is Al and unavoidable impurities.
  • unavoidable impurities it is possible to allow mixing of elements brought in from raw materials, materials, manufacturing facilities and the like, for example, elements such as Fe, Si, Cu, C, O, N and the like.
  • the Al-Nd alloy sputtering target may be an Al alloy sputtering target substantially consisting only of Al and Nd as described above, but even if it contains the following elements within a range that does not adversely affect the present invention good.
  • Ti 0.0005% or more and 0.01% or less
  • Ti is an element effective for refining Al crystal grains.
  • the lower limit of the Ti content is preferably 0.0005% or more, more preferably 0.0010% or more.
  • the upper limit of the Ti content is preferably 0.01% or less, more preferably 0.005% or less.
  • B is an element effective for refining Al crystal grains.
  • the lower limit of the B content is preferably 0.0005% or more, more preferably 0.0010% or more.
  • the upper limit of the B content is preferably 0.01% or less, more preferably 0.005% or less.
  • the shape of the sputtering target is not particularly limited, and may be various shapes known in the art, such as a flat plate such as a circular plate and a square plate, and a cylindrical shape. For example, it can be in the shape of a disc.
  • a disk-shaped sputtering target for example, rounds off a cylindrical forged body whose metal structure and Nd distribution are equalized by forging and heat treatment; for example, the metal structure and Nd distribution are equalized by rolling and heat treatment
  • a flat plate-shaped rolled body is round-cut; or a flat-plate-shaped rolled body with uniformed metal structure and Nd distribution by forging, rolling and heat treatment;
  • the system thin film can be formed continuously and stably.
  • the Al—Nd alloy sputtering target of the present invention is preferably used for forming a lead-out wiring film of a touch panel and a wiring film of a touch panel sensor which are required to improve productivity, particularly a high deposition rate.
  • productivity of the touch panel can be remarkably improved.
  • the Al-Nd alloy sputtering target of the present invention melts and casts an Al material and an Nd material into the atmosphere, performs at least one plastic working of forging and rolling, heat treats, and machine, if necessary It can be manufactured by bonding to a backing plate.
  • the Al—Nd alloy sputtering target of the present invention can be manufactured under the following conditions.
  • the Al material and the Nd material are melted in the air, and an ingot with a thickness of 150 to 180 mm is formed by DC (Direct Chill Casting) casting, and then cold forging and hot rolling are performed for annealing. Then, machining such as rounding and lathing may be performed to manufacture an Al—Nd alloy sputtering target.
  • DC Direct Chill Casting
  • the upper limit and the lower limit of the heating temperature and reduction ratio of hot rolling and the upper limit and the lower limit of the heating temperature of annealing are particularly described below. It is important to control in the range of Hereafter, the process after cold forging is explained in full detail.
  • the lower limit of the working ratio of cold forging is preferably 30% or more, more preferably 35% or more.
  • the upper limit of the working ratio of cold forging is preferably 50% or less, more preferably 45% or less.
  • Machining ratio (%) 100 ⁇ (thickness before cold forging start-cold forging completed thickness) / thickness before cold forging start
  • Heating temperature of hot rolling 350 to 450 ° C
  • the X-ray diffraction peak intensity of the Al (200) surface decreases, and the X-ray diffraction pattern of the above formula (1) can not be obtained.
  • the X-ray diffraction peak of the Al (200) plane is smaller than the X-ray diffraction peak of the Al (311) plane. Therefore, the lower limit of the heating temperature of hot rolling is 350 ° C. or more.
  • the lower limit of the heating temperature of hot rolling is preferably 370 ° C. or higher.
  • the heating temperature for hot rolling exceeds 450 ° C.
  • the X-ray diffraction peak intensity of the Al (111) surface becomes large, and the X-ray diffraction pattern of the above formula (1) can not be obtained.
  • the X-ray diffraction peak of the Al (111) plane is larger than the X-ray diffraction peak of the Al (220) plane. Therefore, the upper limit of the heating temperature of hot rolling is set to 450 ° C. or less.
  • the upper limit of the heating temperature for hot rolling is preferably 430 ° C. or less.
  • Hot rolling reduction ratio 75 to 95%
  • the rolling reduction of the hot rolling is less than 75%, the X-ray diffraction peak intensity of the Al (200) surface becomes small, and the X-ray diffraction pattern of the above formula (1) can not be obtained.
  • the X-ray diffraction peak of the Al (200) plane is smaller than the X-ray diffraction peak of the Al (300) plane. Therefore, the lower limit of the rolling reduction of hot rolling is set to 75% or more.
  • the lower limit of the rolling reduction of hot rolling is preferably 77% or more.
  • the upper limit of the rolling reduction of hot rolling is 95% or less.
  • the upper limit of the rolling reduction in hot rolling is preferably 90% or less.
  • Rolling reduction (%) 100 ⁇ (thickness before rolling start-rolling complete thickness) / thickness before rolling start
  • Annealing heating temperature 350 to 450 ° C
  • the lower limit of the heating temperature for annealing is set to 350 ° C. or more.
  • the lower limit of the heating temperature for annealing is preferably 370 ° C. or more.
  • the upper limit of the heating temperature for annealing is preferably 450 ° C. or less, more preferably 430 ° C. or less.
  • Annealing heating time 1.0 hour or more and less than 3.0 hours If the annealing heating time is too short, the average crystal grain size of the Al—Nd alloy sputtering target becomes too small, and the Vickers hardness becomes too high. Therefore, the lower limit of the heating time of annealing is preferably 1.0 hour or more, more preferably 1.2 hours or more. On the other hand, when the heating time of annealing is too long, the average grain size of the Al—Nd alloy sputtering target becomes too large, and the Vickers hardness becomes too low. Therefore, the upper limit of the heating time of annealing is preferably less than 3.0 hours, more preferably 2.8 hours or less.
  • Al material Al having a purity of 99.99 atomic%
  • Nd material Nd 99.5 atomic% purity
  • rolled plate cutting, rounding and lathe processing were performed. Specifically, grinding is performed from the surface layer portion of one side to 0.5 mm in the thickness direction of the rolled plate subjected to cutting and rounding, and 1.0 mm in total on both sides, and one side after grinding is a sputtering surface It lathe processed so that it might become. Thus, a disc-shaped Al—Nd alloy sputtering target having a size of 101.6 mm in diameter ⁇ 5.0 mm in thickness was produced. The amount of Nd in the sputtering target thus obtained was analyzed by inductively coupled plasma (ICP) emission spectroscopy.
  • ICP inductively coupled plasma
  • X-ray Diffraction Conditions a) Pretreatment of Test Piece
  • the surface of the test piece was smooth, so no pretreatment was performed.
  • the Vickers hardness Hv of each sputtering target was measured with a load of 1 kgf using a Vickers hardness tester (AVK-G2, manufactured by Akashi Manufacturing Co., Ltd.).
  • L represents a linear length L
  • n represents the number n of grain boundaries on the straight line
  • m represents a magnification of an optical micrograph.
  • the average value of the crystal grain size d determined from each of the four straight lines was taken as the average crystal grain size ( ⁇ m).
  • the deposition rate of an Al—Nd alloy thin film by DC magnetron sputtering was evaluated using the above-described Al—Nd alloy sputtering target. Specifically, for a glass substrate of 50.0 mm diameter ⁇ 0.70 mm thickness, using a sputtering apparatus “Sputtering system HSR-542S” manufactured by Shimadzu Corporation, DC magnetron sputtering is carried out with a film forming time of 120 seconds. Then, an Al-Nd alloy film was obtained.
  • the sputtering conditions are as follows. Back pressure: 3.0 ⁇ 10 -6 Torr or less Ar gas pressure: 2.25 ⁇ 10 -3 Torr Ar gas flow rate: 30 sccm Sputtering power: DC 260 W Distance between poles: 51.6 mm Substrate temperature: room temperature
  • the deposition rate was calculated.
  • a and B were accepted as having a high deposition rate, particularly in the case of A, it was evaluated that the deposition rate was preferable faster, and C was evaluated as a rejection as a deposition rate was slow.
  • the results are shown in Table 1.
  • C Film forming speed less than 1.8 nm / s
  • Table 1 No. 5, 8 and 11 are examples of the present invention, and since the magnitude relationship of X-ray diffraction peak intensity and Vickers hardness are appropriately controlled, a high deposition rate can be achieved, and the determination is a pass. Since this Al-Nd alloy sputtering target has a high deposition rate, it is possible to improve the productivity of touch panels and the like.
  • the Vickers hardness is in a more preferable range, and the average crystal grain size is in a still more preferable range, so an extremely high film forming speed can be obtained and the productivity of the touch panel is remarkably improved. It is possible.
  • Table 1 No. No. 1 is a comparative example in which the average crystal grain size is small and the Vickers hardness is high because the annealing heating temperature is low, and a high deposition rate can not be obtained, and the determination is rejection.
  • No. No. 2 is a comparative example in which the magnitude relationship of the X-ray diffraction peak intensity is not appropriately controlled because the reduction ratio of hot rolling is low, a high deposition rate can not be obtained, and the determination is rejected.
  • No. No. 4 is a comparative example in which the average crystal grain size is large and the Vickers hardness is low because the heating temperature for annealing is high, and a high deposition rate can not be obtained, and the determination is a rejection.
  • No. No. 6 is a comparative example in which the magnitude relationship of the X-ray diffraction peak intensity is not appropriately controlled because the heating temperature of hot rolling is low, a high deposition rate can not be obtained, and the determination is a rejection.
  • No. No. 7 is a comparative example in which the magnitude relationship of the X-ray diffraction peak intensity is not appropriately controlled because the heating temperature of hot rolling is high, a high deposition rate can not be obtained, and the determination is rejected.
  • No. 9 is a comparative example in which the average crystal grain size is small and the Vickers hardness is high because the annealing heating time is short, and a high deposition rate can not be obtained, and the determination is a rejection.
  • No. 10 is a comparative example in which the average crystal grain size is large and the Vickers hardness is low because the annealing heating time is long, a high deposition rate can not be obtained, and the determination is a rejection.
  • the productivity of a display device such as a touch panel can be significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A sputtering target which is formed of an Al alloy containing 0.1-3 atom% of Nd, and has a Vickers hardness of 29-36 and an X-ray diffraction peak intensity satisfying the relationship of formula (1). IAl(200) > IAl(311) > IAl(220) > IAl(111) (1) In the formula, IAl(200) represents the X-ray diffraction peak intensity of the Al (200) plane; IAl(311) represents the X-ray diffraction peak intensity of the Al (311) plane; IAl(220) represents the X-ray diffraction peak intensity of the Al (220) plane; and IAl(111) represents the X-ray diffraction peak intensity of the Al (111) plane.

Description

Al合金スパッタリングターゲットAl alloy sputtering target
 本発明は、Al合金スパッタリングターゲットに関する。特にはAl合金薄膜を高い成膜速度で形成することのできるAl合金スパッタリングターゲットに関する。 The present invention relates to an Al alloy sputtering target. In particular, the present invention relates to an Al alloy sputtering target capable of forming an Al alloy thin film at a high deposition rate.
 タッチパネル等の表示装置、例えば液晶ディスプレイ等の生産性を向上させる方法の一つとして、該タッチパネルを構成する例えば引き出し配線膜およびタッチパネルセンサーの配線膜の形成時に、薄膜を速く成膜することが挙げられる。薄膜をスパッタリング法で成膜する場合、スパッタリングパワー即ち電力を高くすることで成膜速度を高めることができる。しかし、スパッタリングパワーを高くすると、アーキングやスプラッシュ等の成膜異常が発生しやすく、タッチパネル等の歩留まりが低下する等の不具合が生じる。そのため、スパッタリングパワーを高くしなくとも成膜速度を高めることのできるスパッタリングターゲットが望まれている。 As one of the methods for improving the productivity of a display device such as a touch panel, for example, a liquid crystal display, it is mentioned to rapidly form a thin film when forming a lead wiring film forming the touch panel and a wiring film of a touch panel sensor. Be In the case of forming a thin film by sputtering, the film forming speed can be increased by increasing the sputtering power, that is, the power. However, when the sputtering power is increased, film formation abnormalities such as arcing and splash are likely to occur, and problems such as a decrease in yield of a touch panel or the like occur. Therefore, a sputtering target that can increase the deposition rate without increasing the sputtering power is desired.
 ところで、前記液晶ディスプレイの配線膜には、低電気抵抗率と高耐熱性を兼備するAl-Nd合金薄膜が使用されている。このAl-Nd合金薄膜の成膜方法にはスパッタリング法が採用され、Al-Nd合金スパッタリングターゲットが薄膜形成の原材料として使用されている。該Al-Nd合金スパッタリングターゲットとしては、これまでに次の特許文献1~5の技術が提案されている。 By the way, an Al—Nd alloy thin film having both low electric resistivity and high heat resistance is used for the wiring film of the liquid crystal display. A sputtering method is adopted as a film formation method of this Al-Nd alloy thin film, and an Al-Nd alloy sputtering target is used as a raw material for thin film formation. The technologies of the following Patent Documents 1 to 5 have been proposed as the Al-Nd alloy sputtering target so far.
 特許文献1には、Al基合金スパッタリングターゲットのFe含有量を低減することにより、表示デバイス用の耐アルカリ腐食性に優れたAl合金膜を提供できることが示されている。特許文献2には、Al合金スパッタリングターゲットの表面のビッカース硬度のばらつきを低減させることにより、膜均一性に優れた液晶等のAl合金膜を作製できることが示されている。 Patent Document 1 shows that an Al alloy film excellent in alkali corrosion resistance for display devices can be provided by reducing the Fe content of an Al-based alloy sputtering target. Patent Document 2 shows that by reducing the variation in Vickers hardness of the surface of an Al alloy sputtering target, it is possible to produce an Al alloy film such as liquid crystal excellent in film uniformity.
 特許文献3には、所定の合金組成のAl基合金スパッタリングターゲットを用いることにより、耐熱性、ボイド耐性、およびヒロック耐性等に優れたサーマルプリンターのAl合金電極を形成できることが示されている。また特許文献4には、所定の合金組成のAl-Nd合金スパッタリングターゲットを用いることにより、液晶ディスプレイ用導電部のAl-Nd合金薄膜の、アニール処理後のヒロック発生を抑制できると共に、抵抗値を低減できることが示されている。 Patent Document 3 shows that an Al alloy electrode of a thermal printer excellent in heat resistance, void resistance, hillock resistance and the like can be formed by using an Al-based alloy sputtering target of a predetermined alloy composition. Further, in Patent Document 4, by using an Al-Nd alloy sputtering target of a predetermined alloy composition, generation of hillocks after annealing treatment of an Al-Nd alloy thin film of a conductive portion for a liquid crystal display can be suppressed and resistance value is improved. It has been shown that it can be reduced.
 特許文献5には、酸素含有量を低減させたAl-Nd合金スパッタリングターゲットを用いることにより、液晶ディスプレイ用電極を構成する合金薄膜のヒロック発生を抑制できると共に比抵抗値を低減できることが示されている。 Patent Document 5 shows that by using an Al-Nd alloy sputtering target having a reduced oxygen content, it is possible to suppress the generation of hillocks of an alloy thin film constituting an electrode for a liquid crystal display and to reduce the specific resistance value. There is.
日本国特開2012-132091号公報Japan JP 2012-132091 日本国特開2004-204284号公報Japanese Patent Application Laid-Open No. 2004-204284 日本国特開2003-103821号公報Japanese Patent Application Laid-Open No. 2003-103821 日本国特開2001-125123号公報Japanese Patent Application Laid-Open No. 2001-125123 日本国特開2001-93862号公報JP JP 2001-93862
 上記の通り、特許文献1~5には、形成される膜の特性等を高めるべく、スパッタリングターゲットの成分組成を制御すること等が示されているが、成膜速度を高めて表示装置の生産性を向上させるといった課題は挙げられておらず、この課題を解決するための手段も開示されていない。 As described above, Patent Documents 1 to 5 disclose that the component composition of the sputtering target is controlled in order to improve the characteristics and the like of the film to be formed, but the film forming rate is increased to produce a display device. The subject of improving the sex is not mentioned, and the means for solving the subject is not disclosed.
 本発明は以上のような状況に鑑みてなされたものであり、その目的は、従来のAl-Nd合金スパッタリングターゲットに比較して高い成膜速度が得られ、タッチパネル等の生産性を格段に向上させることが可能なAl-Nd合金スパッタリングターゲットを提供することにある。 The present invention has been made in view of the above situation, and its object is to obtain a high deposition rate as compared with a conventional Al-Nd alloy sputtering target, and to remarkably improve the productivity of a touch panel etc. It is an object of the present invention to provide an Al-Nd alloy sputtering target that can be
 上記課題を解決し得た本発明のAl合金スパッタリングターゲットは、Ndを0.1原子%以上3原子%以下含有するAl合金からなり、X線回析パターンにおけるAl(200)面のX線回折ピーク強度、Al(311)面のX線回折ピーク強度、Al(220)面のX線回折ピーク強度、およびAl(111)面のX線回折ピーク強度が下記式(1)の関係を満たし、且つ、ビッカース硬さHvが29以上、36以下を満たすところに要旨を有するものである。 
 IAl(200)>IAl(311)>IAl(220)>IAl(111)・・・(1) 
 式中、IAl(200)はAl(200)面のX線回折ピーク強度を、IAl(311)はAl(311)面のX線回折ピーク強度を、IAl(220)はAl(220)面のX線回折ピーク強度を、IAl(111)はAl(111)面のX線回折ピーク強度を示す。 
The Al alloy sputtering target of the present invention, which has solved the above problems, comprises an Al alloy containing 0.1 atomic% to 3 atomic% of Nd, and X-ray diffraction of Al (200) plane in an X-ray diffraction pattern. The peak intensity, the X-ray diffraction peak intensity of the Al (311) plane, the X-ray diffraction peak intensity of the Al (220) plane, and the X-ray diffraction peak intensity of the Al (111) plane satisfy the relationship of the following formula (1) And it has a gist in the place where Vickers hardness Hv fills 29 or more and 36 or less.
I Al (200) > I Al (311) > I Al (220) > I Al (111) (1)
In the formula, I Al (200) is the X-ray diffraction peak intensity of the Al (200) plane, I Al (311) is the X-ray diffraction peak intensity of the Al (311) plane, I Al (220) is Al (220 ) I Al (111) represents the X-ray diffraction peak intensity of the Al (111) plane.
 本発明の好ましい実施形態において、上記Al合金スパッタリングターゲットは、平均結晶粒径が10μm以上100μm以下である。  In a preferred embodiment of the present invention, the Al alloy sputtering target has an average crystal grain size of 10 μm to 100 μm.
 本発明の好ましい実施形態において、上記Al合金スパッタリングターゲットは、タッチパネルの引き出し配線膜およびタッチパネルセンサーの配線膜の形成に用いられるものである。 In a preferred embodiment of the present invention, the Al alloy sputtering target is used for forming a lead-out wiring film of a touch panel and a wiring film of a touch panel sensor.
 本発明によれば、Al-Nd合金スパッタリングターゲットの、特にX線回折ピーク強度とビッカース硬さを制御しているため、該スパッタリングターゲットをAl-Nd合金薄膜の形成に用いた時に、成膜速度を十分高めることができる。その結果、上記薄膜を例えば引き出し配線膜およびタッチパネルセンサーの配線膜に用いたタッチパネル等の生産性を格段に向上させることができる。 According to the present invention, since the X-ray diffraction peak intensity and the Vickers hardness of the Al-Nd alloy sputtering target are controlled, the film forming rate when the sputtering target is used for forming an Al-Nd alloy thin film Can be raised enough. As a result, the productivity of a touch panel using the thin film, for example, as a lead wiring film and a wiring film of a touch panel sensor can be remarkably improved.
図1は、本発明のAl合金スパッタリングターゲットのAlの(111)面、(200)面、(220)面、および(311)面のX線回折ピーク強度の一例を示す。FIG. 1 shows an example of X-ray diffraction peak intensities of (111), (200), (220) and (311) planes of Al of the Al alloy sputtering target of the present invention.
 本発明者は上記課題の下で、Al-Nd合金薄膜を高速で形成できるAl-Nd合金スパッタリングターゲットを提供すべく鋭意研究を重ねてきた。その結果、後述する成分組成のAl-Nd合金スパッタリングターゲットの、スパッタリング面のAl(200)面、Al(311)面、Al(220)面、およびAl(111)面のX線回折ピーク強度を、下記式(1)の関係を満たすように制御し、且つ、ビッカース硬さを29以上、36以下に制御すれば、上記Al-Nd合金スパッタリングターゲットを実現できることを見出した。
 IAl(200)>IAl(311)>IAl(220)>IAl(111)・・・(1) 
 式中、IAl(200)はAl(200)面のX線回折ピーク強度を、IAl(311)はAl(311)面のX線回折ピーク強度を、IAl(220)はAl(220)面のX線回折ピーク強度を、IAl(111)はAl(111)面のX線回折ピーク強度を示す。 
Under the above-mentioned problems, the present inventors have intensively studied to provide an Al-Nd alloy sputtering target capable of forming an Al-Nd alloy thin film at high speed. As a result, X-ray diffraction peak intensities of the Al (200) plane, Al (311) plane, Al (220) plane, and Al (111) plane of the sputtering surface of the Al-Nd alloy sputtering target of the component composition described later It has been found that the Al—Nd alloy sputtering target can be realized by controlling so as to satisfy the relationship of the following formula (1) and controlling the Vickers hardness to 29 or more and 36 or less.
I Al (200) > I Al (311) > I Al (220) > I Al (111) (1)
In the formula, I Al (200) is the X-ray diffraction peak intensity of the Al (200) plane, I Al (311) is the X-ray diffraction peak intensity of the Al (311) plane, I Al (220) is Al (220 ) I Al (111) represents the X-ray diffraction peak intensity of the Al (111) plane.
 更にAl-Nd合金スパッタリングターゲットの平均結晶粒径を、好ましくは10μm以上100μm以下に制御すれば、成膜速度を更に高めることができることを見出し、本発明を完成した。 Furthermore, it has been found that the film forming rate can be further increased by controlling the average crystal grain size of the Al—Nd alloy sputtering target to preferably 10 μm or more and 100 μm or less, and completed the present invention.
 本明細書において、Al-Nd合金薄膜を高速で形成できる特性を「高成膜速度を有する」ということがある。 In the present specification, the characteristic capable of forming an Al—Nd alloy thin film at high speed is sometimes referred to as “having a high deposition rate”.
 以下、本発明について詳しく説明する。 Hereinafter, the present invention will be described in detail.
 まず、Al-Nd合金スパッタリングターゲットのX線回折パターンについて説明する。本発明は、X線回折ピーク強度の大小関係がIAl(200)>IAl(311)>IAl(220)>IAl(111)を満たすところに特徴がある。 First, the X-ray diffraction pattern of the Al—Nd alloy sputtering target will be described. The present invention is characterized in that the magnitude relationship of X-ray diffraction peak intensities satisfies I Al (200) > I Al (311) > I Al (220) > I Al (111) .
 上記X線回折ピーク強度の大小関係を満たすことにより、高成膜速度を実現できることを見出した経緯は以下の通りである。
(a)スパッタリング時のArイオンの衝突エネルギーは、金属の結晶面の原子の充填度の高い方向に効率良く伝わることが知られていた。
(b)特にAlの結晶面は(200)面、(311)面、(220)面、(111)面の順序で、その結晶面の法線方向の原子充填度が高く、上記法線方向に上記衝突エネルギーが、より効率良く伝わり易いことが知られていた。
(c)しかし、Al基合金スパッタリングターゲットを対象とした場合、例えばSi含有Al基スパッタリングターゲットにおいて、<111>の結晶方位の比率を高めて成膜速度を向上させている技術が存在する一方で、<111>の結晶方位の比率は低い方がよいとする技術も存在していた。このように結晶方位と成膜速度の関係については不明な部分が多かった。本発明者は、結晶面と成膜速度の関係について鋭意検討した結果、Al-Nd合金スパッタリングターゲットにおいて、Alの結晶面の法線方向の原子充填度が高い順序の(200)面、(311)面、(220)面、(111)面の上記X線回折ピーク強度の大小関係を満たすことにより、多くのスパッタ粒子が射出され、高成膜速度を実現することができることを見出した。なお上記大小関係は、X線回折の測定範囲2θ=30~90゜のX線回折パターンにおいて、(222)面等も含む複数のピークの中から(200)面、(311)面、(220)面、(111)面のピークを選出し、X線回折ピーク強度を比較することによって決定される。 
The process of finding out that a high deposition rate can be realized by satisfying the magnitude relationship between the X-ray diffraction peak intensities is as follows.
(A) It has been known that the collision energy of Ar ions at the time of sputtering is efficiently transmitted in the direction in which the degree of atomic packing of the metal crystal face is high.
(B) In particular, in the order of (200), (311), (220), and (111) planes of the crystal plane of Al, the degree of atomic packing in the direction of the normal to the crystal plane is high. It has been known that the collision energy can be transmitted more efficiently.
(C) However, in the case of an Al-based alloy sputtering target, for example, in a Si-containing Al-based sputtering target, there is a technique in which the ratio of the crystal orientation of <111> is increased to improve the deposition rate. There is also a technology in which it is preferable that the ratio of crystal orientations of <111> be low. As described above, the relationship between the crystal orientation and the deposition rate was often unknown. As a result of intensive investigations on the relationship between the crystal plane and the deposition rate, the present inventor found that in the Al-Nd alloy sputtering target, the atomic filling degree in the direction normal to the crystal plane of Al is in the order of high (200) plane (311 It has been found that by satisfying the magnitude relationship of the above-mentioned X-ray diffraction peak intensities of the (220) plane and the (111) plane, many sputtered particles can be ejected, and a high deposition rate can be realized. In the X-ray diffraction pattern in the measurement range 2θ = 30 to 90 ° of X-ray diffraction, the magnitude relationship is the (200) plane, the (311) plane, and the (220) plane among a plurality of peaks including the (222) plane and the like. ) And (111) planes are selected and determined by comparing X-ray diffraction peak intensities.
 次に、Al-Nd合金スパッタリングターゲットのビッカース硬さHvについて説明する。Al-Nd合金スパッタリングターゲットのビッカース硬さが36を超える場合、スパッタリング時のArイオンの衝突エネルギーが効率良く伝播されず、スパッタ粒子がスパッタリングターゲットから射出されにくいため、高成膜速度が得られない。よって本発明ではビッカース硬さの上限を36以下とする。ビッカース硬さの上限は、好ましくは35以下、より好ましくは34以下、更に好ましくは33以下である。 Next, the Vickers hardness Hv of the Al—Nd alloy sputtering target will be described. When the Vickers hardness of the Al-Nd alloy sputtering target exceeds 36, collision energy of Ar ion at the time of sputtering is not efficiently propagated, and sputtered particles are hard to be ejected from the sputtering target, so a high deposition rate can not be obtained. . Therefore, in the present invention, the upper limit of the Vickers hardness is set to 36 or less. The upper limit of Vickers hardness is preferably 35 or less, more preferably 34 or less, and still more preferably 33 or less.
 但し、ビッカース硬さが29を下回り、低すぎてもスパッタリング時のArイオンの衝突エネルギーが効率良く伝播されず、スパッタ粒子がスパッタリングターゲットから射出されにくいため、高成膜速度が得られにくい。よって、ビッカース硬さの下限を29以上とする。ビッカース硬さの下限は、好ましくは30以上、より好ましくは31以上である。 However, even if the Vickers hardness is less than 29, the collision energy of Ar ions at the time of sputtering is not efficiently propagated when the Vickers hardness is too low, and sputtered particles are hardly ejected from the sputtering target. Therefore, the lower limit of Vickers hardness is set to 29 or more. The lower limit of the Vickers hardness is preferably 30 or more, more preferably 31 or more.
 Al-Nd合金スパッタリングターゲットの平均結晶粒径は、10μm以上100μm以下であることが、優れた高成膜速度を確保する観点から好ましい。10μm未満では、スパッタリング時のArイオンの衝突エネルギーが効率良く伝播されず、スパッタ粒子がスパッタリングターゲットから射出されにくい。その結果、高成膜速度が得られない場合があるため、上述の通り10μm以上が好ましい。平均結晶粒径の下限は、より好ましくは20μm以上、更に好ましくは30μm以上、更により好ましくは40μm以上である。 The average crystal grain size of the Al—Nd alloy sputtering target is preferably 10 μm or more and 100 μm or less from the viewpoint of securing an excellent high deposition rate. If it is less than 10 μm, collision energy of Ar ions at the time of sputtering is not efficiently propagated, and sputtered particles are hardly ejected from the sputtering target. As a result, since a high deposition rate may not be obtained in some cases, the thickness is preferably 10 μm or more as described above. The lower limit of the average crystal grain size is more preferably 20 μm or more, still more preferably 30 μm or more, and still more preferably 40 μm or more.
 一方、平均結晶粒径が大きくなり過ぎて100μmを超えてもスパッタリング時のArイオンの衝突エネルギーが効率良く伝播されず、スパッタ粒子がスパッタリングターゲットから射出されにくい。その結果、高成膜速度が得られにくいため、上述の通り100μm以下が好ましい。平均結晶粒径の上限は、より好ましくは90μm以下、更に好ましくは80μm以下である。 On the other hand, even if the average crystal grain size is too large and exceeds 100 μm, the collision energy of Ar ions at the time of sputtering is not efficiently propagated, and sputtered particles are hardly ejected from the sputtering target. As a result, since it is difficult to obtain a high deposition rate, the thickness is preferably 100 μm or less as described above. The upper limit of the average crystal grain size is more preferably 90 μm or less, still more preferably 80 μm or less.
 なお、上記平均結晶粒径は次のようにして求める。Al-Nd合金スパッタリングターゲットのスパッタリング面の光学顕微鏡写真を撮影する。顕微鏡倍率が大きい程正確に結晶粒径を求めることができ、通常、100~500倍程度に設定する。次に、得られた写真に井桁状に4本以上の直線を引く。なお直線の数が多い程正確に結晶粒径を求めることができる。上記直線上にある結晶粒界の数nを調べ、各直線ごとに下記式に基づいて結晶粒径dを算出する。その後、複数本の直線それぞれから求めた結晶粒径dの平均値をスパッタリングターゲットの平均結晶粒径とする。
 d(単位:μm)=L/n/m
 式中、Lは直線の長さLを示し、nは直線上の結晶粒界の数nを示し、mは光学顕微鏡写真の倍率を示す。
In addition, the said average grain size is calculated | required as follows. Take an optical micrograph of the sputtering surface of the Al-Nd alloy sputtering target. The crystal grain size can be determined more accurately as the magnification of the microscope is larger, and usually, it is set to about 100 to 500 times. Next, draw four or more straight lines in the shape of a well in the obtained photograph. The crystal grain size can be determined more accurately as the number of straight lines increases. The number n of crystal grain boundaries on the straight line is examined, and the crystal grain diameter d is calculated based on the following equation for each straight line. Thereafter, the average value of the crystal grain diameter d determined from each of a plurality of straight lines is taken as the average crystal grain diameter of the sputtering target.
d (unit: μm) = L / n / m
In the formula, L represents a linear length L, n represents the number n of grain boundaries on the straight line, and m represents a magnification of an optical micrograph.
 次に、本発明に係るAl-Nd合金スパッタリングターゲットの成分組成とその限定理由を説明する。 Next, the component composition of the Al—Nd alloy sputtering target according to the present invention and the reason for limitation will be described.
 本発明のスパッタリングターゲットは、原子%で、Ndを0.1%以上3%以下含有するAl合金からなる。以下、化学成分について「%」は「原子%」を意味する。 The sputtering target of the present invention is made of an Al alloy containing 0.1% to 3% of Nd in atomic percent. Hereinafter, "%" means "atomic%" about a chemical component.
[Nd:0.1%以上3%以下]
 Ndは、ヒロックの発生を防止し、耐熱性向上に有用な元素である。Al合金中の含有率が0.1%未満の場合は、高耐熱性を有するAl合金薄膜を成膜できない。そのため、Nd含有率の下限は0.1%以上である。Nd含有率の下限は、好ましくは0.15%以上、より好ましくは0.20%以上である。一方、Nd含有率が3%を超える場合は、低電気抵抗率を有するAl合金薄膜を成膜できない。そのため、Nd含有率の上限は3%以下である。Nd含有率の上限は、好ましくは2%以下、より好ましくは1%以下である。
[Nd: 0.1% to 3%]
Nd is an element that prevents hillocks and is useful for improving heat resistance. If the content in the Al alloy is less than 0.1%, it is not possible to form an Al alloy thin film having high heat resistance. Therefore, the lower limit of the Nd content is 0.1% or more. The lower limit of the Nd content is preferably 0.15% or more, more preferably 0.20% or more. On the other hand, when the Nd content exceeds 3%, an Al alloy thin film having a low electrical resistivity can not be formed. Therefore, the upper limit of the Nd content is 3% or less. The upper limit of the Nd content is preferably 2% or less, more preferably 1% or less.
 本発明で規定する含有元素は上記の通りであって、残部はAlおよび不可避不純物である。不可避不純物として、原料、資材、製造設備等から持ち込まれる元素、例えばFe、Si、Cu、C、O、N等の元素の混入が許容され得る。 The contained elements specified in the present invention are as described above, and the balance is Al and unavoidable impurities. As unavoidable impurities, it is possible to allow mixing of elements brought in from raw materials, materials, manufacturing facilities and the like, for example, elements such as Fe, Si, Cu, C, O, N and the like.
 Al-Nd合金スパッタリングターゲットは、上記の通り、実質的にAlとNdのみからなるAl合金スパッタリングターゲットであってもよいが、本発明に悪影響を与えない範囲で、以下の元素を含有しても良い。 The Al-Nd alloy sputtering target may be an Al alloy sputtering target substantially consisting only of Al and Nd as described above, but even if it contains the following elements within a range that does not adversely affect the present invention good.
[Ti:0.0005%以上0.01%以下]
 TiはAlの結晶粒の微細化に有効な元素である。このような効果を有効に発揮させるために、Ti含有率の下限は、好ましくは0.0005%以上、より好ましくは0.0010%以上である。しかし、Ti含有率が過剰になると、低電気抵抗率を有するAl合金薄膜を成膜できない。そのため、Ti含有率の上限は、好ましくは0.01%以下、より好ましくは0.005%以下である。
[Ti: 0.0005% or more and 0.01% or less]
Ti is an element effective for refining Al crystal grains. In order to exert such effects effectively, the lower limit of the Ti content is preferably 0.0005% or more, more preferably 0.0010% or more. However, when the Ti content is excessive, an Al alloy thin film having a low electrical resistivity can not be formed. Therefore, the upper limit of the Ti content is preferably 0.01% or less, more preferably 0.005% or less.
[B:0.0005%以上0.01%以下]
 BはAlの結晶粒の微細化に有効な元素である。このような効果を有効に発揮させるために、B含有率の下限は、好ましくは0.0005%以上、より好ましくは0.0010%以上である。しかし、B含有率が過剰になると、低電気抵抗率を有するAl合金薄膜を成膜できない。そのため、B含有率の上限は、好ましくは0.01%以下、より好ましくは0.005%以下である。
[B: 0.0005% or more and 0.01% or less]
B is an element effective for refining Al crystal grains. In order to exert such effects effectively, the lower limit of the B content is preferably 0.0005% or more, more preferably 0.0010% or more. However, when the B content is excessive, an Al alloy thin film having low electrical resistivity can not be formed. Therefore, the upper limit of the B content is preferably 0.01% or less, more preferably 0.005% or less.
 スパッタリングターゲットの形状は特に限定されず、円板、四角板等の平板形状や、円筒形状などの公知の種々の形状のものとすることができる。例えば、円板形状とすることができる。このような円板形状のスパッタリングターゲットは、例えば、鍛造と熱処理によって金属組織とNd分布が均一化された円柱形状の鍛造体を輪切り加工;圧延と熱処理によって金属組織とNd分布が均一化された平板形状の圧延体を丸抜き加工;あるいは鍛造と圧延と熱処理によって金属組織とNd分布が均一化された平板形状の圧延体を丸抜き加工;されたものであるため、均一性に優れたAl系薄膜を継続かつ安定して形成することができる。 The shape of the sputtering target is not particularly limited, and may be various shapes known in the art, such as a flat plate such as a circular plate and a square plate, and a cylindrical shape. For example, it can be in the shape of a disc. Such a disk-shaped sputtering target, for example, rounds off a cylindrical forged body whose metal structure and Nd distribution are equalized by forging and heat treatment; for example, the metal structure and Nd distribution are equalized by rolling and heat treatment A flat plate-shaped rolled body is round-cut; or a flat-plate-shaped rolled body with uniformed metal structure and Nd distribution by forging, rolling and heat treatment; The system thin film can be formed continuously and stably.
 本発明のAl-Nd合金スパッタリングターゲットは、生産性の向上、特に高い成膜速度が求められるタッチパネルの引き出し配線膜およびタッチパネルセンサーの配線膜の形成に用いられることが好ましい。該引き出し配線膜およびタッチパネルセンサーの配線膜の形成に用いることによって、タッチパネルの生産性を格段に向上させることができる。 The Al—Nd alloy sputtering target of the present invention is preferably used for forming a lead-out wiring film of a touch panel and a wiring film of a touch panel sensor which are required to improve productivity, particularly a high deposition rate. By using the lead wiring film and the wiring film of the touch panel sensor, the productivity of the touch panel can be remarkably improved.
 次に、上記Al-Nd合金スパッタリングターゲットを製造する方法について説明する。本発明のAl-Nd合金スパッタリングターゲットは、Al材料とNd材料を大気溶解し、鋳造した後、鍛造および圧延のうち少なくとも1つの塑性加工を行い、熱処理し、機械加工して、必要に応じてバッキングプレートにボンディングを行うことによって製造することができる。 Next, a method of producing the Al-Nd alloy sputtering target will be described. The Al-Nd alloy sputtering target of the present invention melts and casts an Al material and an Nd material into the atmosphere, performs at least one plastic working of forging and rolling, heat treats, and machine, if necessary It can be manufactured by bonding to a backing plate.
 例えば、本発明のAl-Nd合金スパッタリングターゲットを以下の条件で製造することができる。 For example, the Al—Nd alloy sputtering target of the present invention can be manufactured under the following conditions.
 Al材料とNd材料を大気溶解し、DC(Direct Chill Casting)鋳造法によって厚み150~180mmの鋳塊を造塊した後、冷間鍛造と熱間圧延を行ない焼鈍する。次いで、丸抜き加工、旋盤加工等の機械加工を行なって、Al-Nd合金スパッタリングターゲットを製造すれば良い。 The Al material and the Nd material are melted in the air, and an ingot with a thickness of 150 to 180 mm is formed by DC (Direct Chill Casting) casting, and then cold forging and hot rolling are performed for annealing. Then, machining such as rounding and lathing may be performed to manufacture an Al—Nd alloy sputtering target.
 このうち、上記式(1)のX線回折パターンおよびビッカース硬さを確保するためには、特に熱間圧延の加熱温度および圧下率の上限と下限、並びに焼鈍の加熱温度の上限と下限を下記の範囲に制御することが重要である。以下、冷間鍛造以後の工程について詳述する。 Among these, in order to secure the X-ray diffraction pattern and Vickers hardness of the above-mentioned formula (1), the upper limit and the lower limit of the heating temperature and reduction ratio of hot rolling and the upper limit and the lower limit of the heating temperature of annealing are particularly described below. It is important to control in the range of Hereafter, the process after cold forging is explained in full detail.
冷間鍛造の加工率:30~50%
 冷間鍛造の加工率が低すぎると、10μm以上100μm以下の平均結晶粒径が得られなくなる。そのため、冷間鍛造の加工率の下限は、好ましくは30%以上、より好ましくは35%以上とする。一方、冷間鍛造の加工率が高過ぎると、割れ等の破壊が生じる。そのため、冷間鍛造の加工率の上限は、好ましくは50%以下、より好ましくは45%以下とする。
Working ratio of cold forging: 30 to 50%
When the working ratio of cold forging is too low, an average grain size of 10 μm to 100 μm can not be obtained. Therefore, the lower limit of the working ratio of cold forging is preferably 30% or more, more preferably 35% or more. On the other hand, if the working ratio of cold forging is too high, breakage such as cracking occurs. Therefore, the upper limit of the working ratio of cold forging is preferably 50% or less, more preferably 45% or less.
 尚、冷間鍛造の加工率は、下記式で求められるものである。
 加工率(%)=100×(冷間鍛造開始前厚-冷間鍛造完了厚)/冷間鍛造開始前厚
The working ratio of cold forging is determined by the following equation.
Machining ratio (%) = 100 × (thickness before cold forging start-cold forging completed thickness) / thickness before cold forging start
熱間圧延の加熱温度:350~450℃
 熱間圧延の加熱温度が350℃を下回ると、Al(200)面のX線回折ピーク強度が小さくなり、上記式(1)のX線回折パターンが得られなくなる。具体的には、Al(200)面のX線回折ピークが、Al(311)面のX線回折ピークよりも小さくなっている。そのため、熱間圧延の加熱温度の下限は、350℃以上とする。熱間圧延の加熱温度の下限は、好ましくは370℃以上とする。一方、熱間圧延の加熱温度が450℃を上回ると、Al(111)面のX線回折ピーク強度が大きくなり、上記式(1)のX線回折パターンが得られなくなる。具体的には、Al(111)面のX線回折ピークが、Al(220)面のX線回折ピークよりも大きくなる。そのため、熱間圧延の加熱温度の上限は450℃以下とする。熱間圧延の加熱温度の上限は、好ましくは430℃以下とする。
Heating temperature of hot rolling: 350 to 450 ° C
When the heating temperature of the hot rolling falls below 350 ° C., the X-ray diffraction peak intensity of the Al (200) surface decreases, and the X-ray diffraction pattern of the above formula (1) can not be obtained. Specifically, the X-ray diffraction peak of the Al (200) plane is smaller than the X-ray diffraction peak of the Al (311) plane. Therefore, the lower limit of the heating temperature of hot rolling is 350 ° C. or more. The lower limit of the heating temperature of hot rolling is preferably 370 ° C. or higher. On the other hand, when the heating temperature for hot rolling exceeds 450 ° C., the X-ray diffraction peak intensity of the Al (111) surface becomes large, and the X-ray diffraction pattern of the above formula (1) can not be obtained. Specifically, the X-ray diffraction peak of the Al (111) plane is larger than the X-ray diffraction peak of the Al (220) plane. Therefore, the upper limit of the heating temperature of hot rolling is set to 450 ° C. or less. The upper limit of the heating temperature for hot rolling is preferably 430 ° C. or less.
熱間圧延の圧下率:75~95%
 熱間圧延の圧下率が75%を下回ると、Al(200)面のX線回折ピーク強度が小さくなり、上記式(1)のX線回折パターンが得られなくなる。具体的には、Al(200)面のX線回折ピークが、Al(300)面のX線回折ピークよりも小さくなる。そのため、熱間圧延の圧下率の下限は75%以上とする。熱間圧延の圧下率の下限は、好ましくは77%以上とする。一方、熱間圧延の圧下率が95%を上回ると、割れ等の破壊が生じる。そのため、熱間圧延の圧下率の上限は95%以下とする。熱間圧延の圧下率の上限は、好ましくは90%以下とする。
Hot rolling reduction ratio: 75 to 95%
When the rolling reduction of the hot rolling is less than 75%, the X-ray diffraction peak intensity of the Al (200) surface becomes small, and the X-ray diffraction pattern of the above formula (1) can not be obtained. Specifically, the X-ray diffraction peak of the Al (200) plane is smaller than the X-ray diffraction peak of the Al (300) plane. Therefore, the lower limit of the rolling reduction of hot rolling is set to 75% or more. The lower limit of the rolling reduction of hot rolling is preferably 77% or more. On the other hand, when the rolling reduction of hot rolling exceeds 95%, fracture such as cracking occurs. Therefore, the upper limit of the rolling reduction of hot rolling is 95% or less. The upper limit of the rolling reduction in hot rolling is preferably 90% or less.
 尚、熱間圧延の圧下率は、下記式で求められるものである。
 圧下率(%)=100×(圧延開始前厚-圧延完了厚)/圧延開始前厚
The rolling reduction of the hot rolling is determined by the following equation.
Rolling reduction (%) = 100 × (thickness before rolling start-rolling complete thickness) / thickness before rolling start
焼鈍の加熱温度:350~450℃
 焼鈍の加熱温度が350℃を下回ると、平均結晶粒径が小さくなりすぎ、ビッカース硬さが高くなりすぎる。そのため、焼鈍の加熱温度の下限は350℃以上とする。焼鈍の加熱温度の下限は、好ましくは370℃以上である。一方、焼鈍の加熱温度が450℃を上回ると、平均結晶粒径が大きくなりすぎ、ビッカース硬さが低くなりすぎる。そのため、焼鈍の加熱温度の上限は、好ましくは450℃以下、より好ましくは430℃以下とする。
Annealing heating temperature: 350 to 450 ° C
When the heating temperature of annealing is below 350 ° C., the average grain size becomes too small and the Vickers hardness becomes too high. Therefore, the lower limit of the heating temperature for annealing is set to 350 ° C. or more. The lower limit of the heating temperature for annealing is preferably 370 ° C. or more. On the other hand, when the heating temperature of annealing exceeds 450 ° C., the average grain size becomes too large and the Vickers hardness becomes too low. Therefore, the upper limit of the heating temperature for annealing is preferably 450 ° C. or less, more preferably 430 ° C. or less.
焼鈍の加熱時間:1.0時間以上3.0時間未満
 焼鈍の加熱時間が短すぎると、Al-Nd合金スパッタリングターゲットの平均結晶粒径が小さくなりすぎ、ビッカース硬さが高くなりすぎる。そのため、焼鈍の加熱時間の下限は、好ましくは1.0時間以上、より好ましくは1.2時間以上とする。一方、焼鈍の加熱時間が長過ぎると、Al-Nd合金スパッタリングターゲットの平均結晶粒径が大きくなりすぎ、ビッカース硬さが低くなりすぎる。そのため、焼鈍の加熱時間の上限は、好ましくは3.0時間未満、より好ましくは2.8時間以下とする。
Annealing heating time: 1.0 hour or more and less than 3.0 hours If the annealing heating time is too short, the average crystal grain size of the Al—Nd alloy sputtering target becomes too small, and the Vickers hardness becomes too high. Therefore, the lower limit of the heating time of annealing is preferably 1.0 hour or more, more preferably 1.2 hours or more. On the other hand, when the heating time of annealing is too long, the average grain size of the Al—Nd alloy sputtering target becomes too large, and the Vickers hardness becomes too low. Therefore, the upper limit of the heating time of annealing is preferably less than 3.0 hours, more preferably 2.8 hours or less.
 以下の実施例によって本発明をさらに詳述するが、以下の実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。 The present invention will be further described in detail by the following examples, but the following examples do not limit the present invention, and all modifications and variations within the scope of the present invention are included in the technical scope of the present invention. Be done.
〔Al-Nd合金スパッタリングターゲットの製造〕
 はじめに、Al-Nd合金スパッタリングターゲットの製造方法について説明する。
[Production of Al-Nd alloy sputtering target]
First, a method of manufacturing an Al—Nd alloy sputtering target will be described.
 原材料として以下のAlとNdの各材料を用意する。
(1)Al材料:純度99.99原子%のAl
(2)Nd材料:純度99.5原子%のNd 
Prepare the following materials of Al and Nd as raw materials.
(1) Al material: Al having a purity of 99.99 atomic%
(2) Nd material: Nd 99.5 atomic% purity
 上記材料を用い、大気溶解しDC鋳造法によって幅300mm×長さ350mm×厚み65mmの四角板形状の鋳塊を造塊した。その後、加工率38%の条件で冷間鍛造を行い、幅380mm×長さ450mm×厚み40mmの四角板形状の鍛造体を得た。次いで、表1に示す条件で熱間圧延を行い、幅400mmで、表1に示す厚さの熱間圧延板を得た。その後、焼鈍を行なった。なお、No.3については、熱間圧延の圧下率が高く圧延板が割れたため、その後の工程へ進めることができず、以後の試験を行わなかった。 Using the above-mentioned materials, it was melted in the air and formed into a rectangular plate-shaped ingot of width 300 mm × length 350 mm × thickness 65 mm by a DC casting method. Thereafter, cold forging was performed under the condition of a working ratio of 38% to obtain a square plate-shaped forged body of width 380 mm × length 450 mm × thickness 40 mm. Subsequently, hot rolling was performed under the conditions shown in Table 1 to obtain a hot-rolled sheet having a width of 400 mm and a thickness shown in Table 1. Thereafter, annealing was performed. No. As for No. 3, since the rolling reduction was high due to the hot rolling reduction ratio, it was not possible to proceed to the subsequent steps, and the subsequent tests were not performed.
 次いで、圧延板切断、丸抜き加工および旋盤加工を行なった。詳細には、切断と丸抜き加工を行った圧延板の厚さ方向に向って片面の表層部から0.5mmまで研削し、両面で合計1.0mm研削し、その研削後の片面がスパッタリング面となるように旋盤加工を行った。こうして直径101.6mm×厚さ5.0mmのサイズの円板形状のAl-Nd合金スパッタリングターゲットを製造した。このようにして得られたスパッタリングターゲット中のNd量を、誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析法によって分析した。 Then, rolled plate cutting, rounding and lathe processing were performed. Specifically, grinding is performed from the surface layer portion of one side to 0.5 mm in the thickness direction of the rolled plate subjected to cutting and rounding, and 1.0 mm in total on both sides, and one side after grinding is a sputtering surface It lathe processed so that it might become. Thus, a disc-shaped Al—Nd alloy sputtering target having a size of 101.6 mm in diameter × 5.0 mm in thickness was produced. The amount of Nd in the sputtering target thus obtained was analyzed by inductively coupled plasma (ICP) emission spectroscopy.
 上記で得られた厚さ5.0mmのスパッタリングターゲットの物性は、下記の方法に従って求めた。  Physical properties of the sputtering target having a thickness of 5.0 mm obtained above were determined according to the following method.
[X線回折ピーク強度] 
 スパッタリングターゲットのターゲット表面の任意の4箇所を下記に示す条件でX線回折法によって分析し、Alの(111)面、(200)面、(220)面、および(311)面のX線回折ピーク強度、より具体的には積分強度を、単位はCPS(counts per second)で測定した。これらの値の大小関係を評価した。その一例として、本発明例である表1のNo.5の結果を図1に示す。尚、上記のとおり4箇所について分析したが、いずれのターゲットも上記4箇所の上記X線回折ピーク強度の大小関係は同じであった。即ち、何れのターゲットも、上記の分析箇所4箇所の各X線回折ピーク強度の大小関係は、それぞれ表1に示される大小関係と4箇所とも同じである。
[X-ray diffraction peak intensity]
The arbitrary four places on the target surface of the sputtering target are analyzed by X-ray diffraction under the conditions shown below, and X-ray diffraction of (111), (200), (220) and (311) planes of Al is carried out. Peak intensity, more specifically, integrated intensity was measured in units of CPS (counts per second). The magnitude relationship between these values was evaluated. As an example thereof, No. 1 in Table 1 which is an example of the present invention. The result of 5 is shown in FIG. In addition, although it analyzed about four places as mentioned above, the magnitude correlation of the said X-ray-diffraction peak intensity of said four places was the same in all targets. That is, in any target, the magnitude relationship between the X-ray diffraction peak intensities at the four analysis locations described above is the same as the magnitude relationship shown in Table 1 at all four locations.
X線回折条件
a)試験片の前処理
 本実験例では試験片の表面が平滑であったため前処理は行わなかった。尚、試験片表面の切削ひずみの影響を除去したい場合は、試験片の前処理として、表面を湿式研磨後に希硝酸にてエッチングすることが好ましい。
b)分析装置
理学電機(株)製「RINT1500」
c)分析条件
ターゲット:Cu
単色化:モノクロメータ使用によるCuKα線
ターゲット出力:40kV-200mA
スリット:発散1゜,散乱1°,受光0.15mm
走査速度:4゜/min
サンプリング幅:0.02゜
測定範囲(2θ):30~90゜
X-ray Diffraction Conditions a) Pretreatment of Test Piece In the present experimental example, the surface of the test piece was smooth, so no pretreatment was performed. When it is desired to remove the influence of cutting strain on the surface of the test piece, it is preferable to etch the surface with wet nitric acid and then to dilute nitric acid as a pretreatment for the test piece.
b) Analyzer "RINT 1500" manufactured by Rigaku Denki Co., Ltd.
c) Analysis condition target: Cu
Monochromization: CuKα ray target output by using monochromator: 40 kV-200 mA
Slit: divergence 1 °, scattering 1 °, light reception 0.15 mm
Scanning speed: 4 ° / min
Sampling width: 0.02 ° Measurement range (2θ): 30 to 90 °
[ビッカース硬さ] 
 各スパッタリングターゲットのビッカース硬さHvを、ビッカース硬さ試験機(株式会社明石製作所製、AVK-G2)を用いて、荷重1kgfにて測定した。 
[Vickers hardness]
The Vickers hardness Hv of each sputtering target was measured with a load of 1 kgf using a Vickers hardness tester (AVK-G2, manufactured by Akashi Manufacturing Co., Ltd.).
[平均結晶粒径]
 スパッタリングターゲットのスパッタリング面の光学顕微鏡写真を撮影し、得られた写真に、井桁状の4本の直線を引いた。該直線上にある結晶粒界の数nを調べ、各直線ごとに下記式に基づいて、結晶粒径dを算出した。
[Average grain size]
An optical micrograph of the sputtering surface of the sputtering target was taken, and four straight lines in the form of parallel bars were drawn in the obtained photograph. The number n of crystal grain boundaries on the straight line was examined, and the crystal grain diameter d was calculated based on the following equation for each straight line.
 d(単位:μm)=L/n/m
 式中、Lは直線の長さLを示し、nは直線上の結晶粒界の数nを示し、mは光学顕微鏡写真の倍率を示す。4本の直線それぞれから求めた結晶粒径dの平均値を、平均結晶粒径(μm)とした。
d (unit: μm) = L / n / m
In the formula, L represents a linear length L, n represents the number n of grain boundaries on the straight line, and m represents a magnification of an optical micrograph. The average value of the crystal grain size d determined from each of the four straight lines was taken as the average crystal grain size (μm).
[成膜速度] 
 上記のAl-Nd合金スパッタリングターゲットを用い、DCマグネトロンスパッタリング法によるAl-Nd合金薄膜の成膜速度を評価した。詳細には、直径50.0mm×厚さ0.70mmのサイズのガラス基板に対し、株式会社島津製作所製「スパッタリングシステムHSR-542S」のスパッタリング装置を用い、DCマグネトロンスパッタリングを成膜時間120秒間で行ってAl-Nd合金膜を得た。
[Deposition rate]
The deposition rate of an Al—Nd alloy thin film by DC magnetron sputtering was evaluated using the above-described Al—Nd alloy sputtering target. Specifically, for a glass substrate of 50.0 mm diameter × 0.70 mm thickness, using a sputtering apparatus “Sputtering system HSR-542S” manufactured by Shimadzu Corporation, DC magnetron sputtering is carried out with a film forming time of 120 seconds. Then, an Al-Nd alloy film was obtained.
 スパッタリング条件は、以下の通りである。 
背圧:3.0×10-6Torr以下 
Arガス圧:2.25×10-3Torr 
Arガス流量:30sccm 
スパッタリングパワー:DC260W 
極間距離:51.6mm 
基板温度:室温
The sputtering conditions are as follows.
Back pressure: 3.0 × 10 -6 Torr or less
Ar gas pressure: 2.25 × 10 -3 Torr
Ar gas flow rate: 30 sccm
Sputtering power: DC 260 W
Distance between poles: 51.6 mm
Substrate temperature: room temperature
 成膜されたAl-Nd合金薄膜の膜厚を触針式膜厚計で測定し,成膜速度[nm/s]=膜厚[nm]/(成膜時間[s]=120秒)によって成膜速度を算出した。ここで下記の通り判断し、AおよびBを成膜速度が速いとして合格、特にAの場合を成膜速度がより速く好ましいと評価し、Cを成膜速度が遅いとして不合格と評価した。これらの結果を表1に示す。
A・・・成膜速度2.0nm/s以上 
B・・・成膜速度1.8nm/s以上、2.0nm/s未満 
C・・・成膜速度1.8nm/s未満
The film thickness of the deposited Al-Nd alloy thin film is measured with a stylus type film thickness meter, and the film forming speed [nm / s] = film thickness [nm] / (film forming time [s] = 120 seconds) The deposition rate was calculated. Here, it was judged as follows, and A and B were accepted as having a high deposition rate, particularly in the case of A, it was evaluated that the deposition rate was preferable faster, and C was evaluated as a rejection as a deposition rate was slow. The results are shown in Table 1.
A: Deposition speed 2.0 nm / s or more
B ··· Deposition speed is 1.8 nm / s or more and less than 2.0 nm / s
C: Film forming speed less than 1.8 nm / s
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から次のことがわかる。表1のNo.5、8、11は本発明例でありX線回折ピーク強度の大小関係、およびビッカース硬さが適切に制御されているため、高成膜速度を達成でき、判定は合格である。このAl-Nd合金スパッタリングターゲットは高成膜速度を有するため、タッチパネル等の生産性を向上させることが可能である。  The following can be seen from Table 1. Table 1 No. 5, 8 and 11 are examples of the present invention, and since the magnitude relationship of X-ray diffraction peak intensity and Vickers hardness are appropriately controlled, a high deposition rate can be achieved, and the determination is a pass. Since this Al-Nd alloy sputtering target has a high deposition rate, it is possible to improve the productivity of touch panels and the like.
 特に、表1のNo.5、11は、ビッカース硬さが更に好ましい範囲内にあり、平均結晶粒径が更により好ましい範囲内にあるため、極めて優れた高成膜速度が得られ、タッチパネルの生産性を格段に向上させることが可能である。  In particular, no. In Nos. 5 and 11, the Vickers hardness is in a more preferable range, and the average crystal grain size is in a still more preferable range, so an extremely high film forming speed can be obtained and the productivity of the touch panel is remarkably improved. It is possible.
 これに対し、表1のNo.1、2、4、6、7、9、10は、本発明のいずれかの要件を満足しないため、高成膜速度が得られなかった。  On the other hand, No. 1 in Table 1 Since 1, 2, 4, 6, 7, 9, 10 do not satisfy any of the requirements of the present invention, high deposition rates were not obtained.
 表1のNo.1は、焼鈍の加熱温度が低いため、平均結晶粒径が小さくなり、ビッカース硬さが高い比較例であり、高成膜速度が得られず、判定は不合格である。  Table 1 No. No. 1 is a comparative example in which the average crystal grain size is small and the Vickers hardness is high because the annealing heating temperature is low, and a high deposition rate can not be obtained, and the determination is rejection.
 No.2は、熱間圧延の圧下率が低いため、X線回折ピーク強度の大小関係が適切に制御されていない比較例であり、高成膜速度が得られず、判定は不合格である。  No. No. 2 is a comparative example in which the magnitude relationship of the X-ray diffraction peak intensity is not appropriately controlled because the reduction ratio of hot rolling is low, a high deposition rate can not be obtained, and the determination is rejected.
 No.4は、焼鈍の加熱温度が高いため、平均結晶粒径が大きくなり、ビッカース硬さが低い比較例であり、高成膜速度が得られず、判定は不合格である。  No. No. 4 is a comparative example in which the average crystal grain size is large and the Vickers hardness is low because the heating temperature for annealing is high, and a high deposition rate can not be obtained, and the determination is a rejection.
 No.6は、熱間圧延の加熱温度が低いため、X線回折ピーク強度の大小関係が適切に制御されていない比較例であり、高成膜速度が得られず、判定は不合格である。  No. No. 6 is a comparative example in which the magnitude relationship of the X-ray diffraction peak intensity is not appropriately controlled because the heating temperature of hot rolling is low, a high deposition rate can not be obtained, and the determination is a rejection.
 No.7は、熱間圧延の加熱温度が高いため、X線回折ピーク強度の大小関係が適切に制御されていない比較例であり、高成膜速度が得られず、判定は不合格である。  No. No. 7 is a comparative example in which the magnitude relationship of the X-ray diffraction peak intensity is not appropriately controlled because the heating temperature of hot rolling is high, a high deposition rate can not be obtained, and the determination is rejected.
 No.9は、焼鈍の加熱時間が短いため、平均結晶粒径が小さくなり、ビッカース硬さが高い比較例であり、高成膜速度が得られず、判定は不合格である。  No. 9 is a comparative example in which the average crystal grain size is small and the Vickers hardness is high because the annealing heating time is short, and a high deposition rate can not be obtained, and the determination is a rejection.
 No.10は、焼鈍の加熱時間が長いため、平均結晶粒径が大きくなり、ビッカース硬さが低い比較例であり、高成膜速度が得られず、判定は不合格である。  No. 10 is a comparative example in which the average crystal grain size is large and the Vickers hardness is low because the annealing heating time is long, a high deposition rate can not be obtained, and the determination is a rejection.
 尚、No.3は、前述のとおり熱間圧延の圧下率が高いため、圧延板に割れが生じた。 No. As for No. 3, since the rolling reduction of hot rolling was high as mentioned above, the crack arose in the rolled sheet.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2015年6月5日出願の日本特許出願(特願2015-115184)基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application (Japanese Patent Application No. 2015-115184) filed on June 5, 2015, the contents of which are incorporated herein by reference.
 本発明のAl合金スパッタリングターゲットは上記のように高成膜速度を有するため、タッチパネルなどの表示装置の生産性を格段に向上させることができる。 Since the Al alloy sputtering target of the present invention has a high deposition rate as described above, the productivity of a display device such as a touch panel can be significantly improved.

Claims (3)

  1.  Ndを0.1原子%以上3原子%以下含有するAl合金からなるAl合金スパッタリングターゲットであって、
     X線回析パターンにおけるAl(200)面のX線回折ピーク強度、Al(311)面のX線回折ピーク強度、Al(220)面のX線回折ピーク強度、およびAl(111)面のX線回折ピーク強度が下記式(1)の関係を満たし、且つ、
     ビッカース硬さHvが29以上、36以下であることを特徴とするAl合金スパッタリングターゲット。 
     IAl(200)>IAl(311)>IAl(220)>IAl(111)・・・(1) 
     式中、IAl(200)はAl(200)面のX線回折ピーク強度を、IAl(311)はAl(311)面のX線回折ピーク強度を、IAl(220)はAl(220)面のX線回折ピーク強度を、IAl(111)はAl(111)面のX線回折ピーク強度を示す。
    An Al alloy sputtering target comprising an Al alloy containing 0.1 atomic% or more and 3 atomic% or less of Nd,
    X-ray diffraction peak intensity of Al (200) plane, X-ray diffraction peak intensity of Al (311) plane, X-ray diffraction peak intensity of Al (220) plane, and X of Al (111) plane in X-ray diffraction pattern Line diffraction peak intensity satisfies the relationship of the following formula (1), and
    An Al alloy sputtering target characterized by having Vickers hardness Hv of 29 or more and 36 or less.
    I Al (200) > I Al (311) > I Al (220) > I Al (111) (1)
    In the formula, I Al (200) is the X-ray diffraction peak intensity of the Al (200) plane, I Al (311) is the X-ray diffraction peak intensity of the Al (311) plane, I Al (220) is Al (220 ) I Al (111) represents the X-ray diffraction peak intensity of the Al (111) plane.
  2.  平均結晶粒径が10μm以上100μm以下である請求項1に記載のAl合金スパッタリングターゲット。 The Al alloy sputtering target according to claim 1, wherein the average crystal grain size is 10 μm or more and 100 μm or less.
  3.  タッチパネルの引き出し配線膜およびタッチパネルセンサーの配線膜の形成に用いられる請求項1または2に記載のAl合金スパッタリングターゲット。 The Al alloy sputtering target according to claim 1 or 2, which is used for forming a lead-out wiring film of a touch panel and a wiring film of a touch panel sensor.
PCT/JP2016/062571 2015-06-05 2016-04-20 Al ALLOY SPUTTERING TARGET WO2016194508A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177034931A KR20180004214A (en) 2015-06-05 2016-04-20 Al alloy sputtering target
CN201680029641.7A CN107614745B (en) 2015-06-05 2016-04-20 Aluminum alloy sputtering target material
KR1020207007179A KR20200029634A (en) 2015-06-05 2016-04-20 Al ALLOY SPUTTERING TARGET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-115184 2015-06-05
JP2015115184A JP6377021B2 (en) 2015-06-05 2015-06-05 Al alloy sputtering target

Publications (1)

Publication Number Publication Date
WO2016194508A1 true WO2016194508A1 (en) 2016-12-08

Family

ID=57440018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062571 WO2016194508A1 (en) 2015-06-05 2016-04-20 Al ALLOY SPUTTERING TARGET

Country Status (5)

Country Link
JP (1) JP6377021B2 (en)
KR (2) KR20180004214A (en)
CN (2) CN107614745B (en)
TW (1) TWI585214B (en)
WO (1) WO2016194508A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210140032A1 (en) * 2018-06-28 2021-05-13 Ulvac, Inc. Aluminum alloy target and method of producing the same
CN115287497B (en) * 2022-07-29 2023-05-26 先导薄膜材料(广东)有限公司 Tin-silver-copper target and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128737A (en) * 1992-10-20 1994-05-10 Mitsubishi Kasei Corp Sputtering target
JP2011179054A (en) * 2010-02-26 2011-09-15 Kobe Steel Ltd SPUTTERING TARGET OF Al-BASE ALLOY
JP2012224942A (en) * 2010-10-08 2012-11-15 Kobe Steel Ltd Al-BASED ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145771A (en) * 1986-12-10 1988-06-17 Kasei Naoetsu:Kk Sputtering target
JP2857015B2 (en) * 1993-04-08 1999-02-10 株式会社ジャパンエナジー Sputtering target made of high-purity aluminum or its alloy
EP0709483B1 (en) * 1994-10-28 2002-04-10 Sumitomo Electric Industries, Ltd. Multilayer material
JP3634208B2 (en) * 1999-09-21 2005-03-30 真空冶金株式会社 Electrode / wiring material for liquid crystal display and sputtering target
JP4405008B2 (en) * 1999-10-25 2010-01-27 アルバックマテリアル株式会社 Electrode / wiring material for liquid crystal display and manufacturing method thereof
US20010047838A1 (en) * 2000-03-28 2001-12-06 Segal Vladimir M. Methods of forming aluminum-comprising physical vapor deposition targets; sputtered films; and target constructions
JP2003103821A (en) * 2001-09-28 2003-04-09 Kobe Steel Ltd Thermal printer head and spattering target for forming electrode of the same
JP4237479B2 (en) * 2002-12-25 2009-03-11 株式会社東芝 Sputtering target, Al alloy film and electronic parts
US20060081465A1 (en) * 2004-10-19 2006-04-20 Kobelco Research Institute, Inc. Assembly for sputtering aluminum-neodymium alloys
US8304359B2 (en) * 2005-09-27 2012-11-06 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film, and transparent electrode for touch panel
JP2010070857A (en) * 2009-12-15 2010-04-02 Kobelco Kaken:Kk SPUTTERING TARGET OF Al-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2012132091A (en) * 2010-11-29 2012-07-12 Kobelco Kaken:Kk Al-BASED ALLOY SPUTTERING TARGET
JP5723171B2 (en) * 2011-02-04 2015-05-27 株式会社神戸製鋼所 Al-based alloy sputtering target
CN104630723A (en) * 2013-11-13 2015-05-20 宸鸿科技(厦门)有限公司 Sputtering target, transparent conducting film, manufacturing method of transparent conducting film and touch panel
CN103614698B (en) * 2013-12-18 2015-10-21 广西大学 A kind of High-temperature antioxidant niobium alloy compound coating and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128737A (en) * 1992-10-20 1994-05-10 Mitsubishi Kasei Corp Sputtering target
JP2011179054A (en) * 2010-02-26 2011-09-15 Kobe Steel Ltd SPUTTERING TARGET OF Al-BASE ALLOY
JP2012224942A (en) * 2010-10-08 2012-11-15 Kobe Steel Ltd Al-BASED ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
TW201643263A (en) 2016-12-16
JP6377021B2 (en) 2018-08-22
CN110205591B (en) 2021-04-30
JP2017002343A (en) 2017-01-05
TWI585214B (en) 2017-06-01
KR20180004214A (en) 2018-01-10
CN107614745B (en) 2019-08-06
KR20200029634A (en) 2020-03-18
CN110205591A (en) 2019-09-06
CN107614745A (en) 2018-01-19

Similar Documents

Publication Publication Date Title
JP5092939B2 (en) Flat plate copper sputtering target material for TFT and sputtering method
KR102079855B1 (en) Pure copper plate production method, and pure copper plate
KR101882606B1 (en) Tantalum sputtering target, method for manufacturing same, and barrier film for semiconductor wiring formed by using target
WO2011111373A1 (en) Sputtering target, method for producing same and method for producing semiconductor device
CN108998692B (en) Oxygen-free copper plate and ceramic wiring board
CN107109634B (en) Tantalum sputtering target and method for producing same
WO2016194508A1 (en) Al ALLOY SPUTTERING TARGET
WO2012073831A1 (en) Al-based alloy sputtering target
TWI676691B (en) Sputum sputtering target and manufacturing method thereof
JP5567042B2 (en) Copper sputtering target material for TFT
WO2022185858A1 (en) Hot-rolled copper alloy sheet and sputtering target
US11177119B2 (en) Tantalum sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177034931

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802945

Country of ref document: EP

Kind code of ref document: A1