WO2016194432A1 - Ultrasonic diagnostic apparatus - Google Patents
Ultrasonic diagnostic apparatus Download PDFInfo
- Publication number
- WO2016194432A1 WO2016194432A1 PCT/JP2016/057902 JP2016057902W WO2016194432A1 WO 2016194432 A1 WO2016194432 A1 WO 2016194432A1 JP 2016057902 W JP2016057902 W JP 2016057902W WO 2016194432 A1 WO2016194432 A1 WO 2016194432A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- frames
- frame
- dimensional
- diagnostic apparatus
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
- A61B8/14—Echo-tomography
Definitions
- the present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an apparatus for forming a three-dimensional ultrasonic image.
- an ultrasonic diagnostic apparatus that forms a three-dimensional ultrasonic image representing a diagnostic object in three dimensions based on volume data obtained by three-dimensionally transmitting and receiving ultrasonic waves to a space including the diagnostic object.
- a volume rendering image can be obtained as a three-dimensional ultrasound image in which a fetus is projected three-dimensionally by performing rendering processing on volume data obtained from the mother's body.
- an ultrasonic beam is scanned two-dimensionally by electronic scanning or a combination of electronic scanning and mechanical scanning, and volume data is constructed from within the scanning space (volume).
- a large number of data (voxel data) is collected. Therefore, compared to a B-mode image that forms a tomographic image corresponding to the scanning surface by scanning an ultrasonic beam in a one-dimensional manner, formation of a three-dimensional ultrasonic image requires a lot of transmission / reception time. This is one problem in dynamically displaying a three-dimensional ultrasonic image.
- Patent Documents 1 and 2 disclose a technique (FRC: frame rate control) for increasing the frame rate by increasing the number of frames of an image by generating an interpolation frame using an image motion vector. .
- FRC frame rate control
- the present invention has been made in view of the background art described above, and an object thereof is to improve the dynamic display of a three-dimensional ultrasonic image.
- An ultrasonic diagnostic apparatus suitable as a specific example of the present invention is based on volume data of a plurality of time phases obtained by transmitting and receiving ultrasound three-dimensionally, and a plurality of frames of three-dimensional ultrasound corresponding to the plurality of time phases.
- An ultrasonic image forming unit that forms an image, and one or a plurality of frames of three-dimensional intermediate images that are added between the frames based on movement information of the images between the frames of the plurality of frames of the three-dimensional ultrasound images
- An intermediate image forming unit, and a display processing unit that displays a three-dimensional moving image based on the three-dimensional ultrasonic image of the plurality of frames and the three-dimensional intermediate image of the plurality of frames added between the plurality of frames. It is characterized by having.
- volume data is obtained for each time phase, for example, over a plurality of time phases by transmitting and receiving ultrasonic waves three-dimensionally.
- the volume data obtained for each time phase is composed of, for example, a plurality of data (voxel data) collected from the space (volume) in which ultrasonic waves are transmitted and received.
- a three-dimensional ultrasonic image of each frame corresponding to that time phase is formed.
- a preferred specific example of the three-dimensional ultrasonic image is a rendered image obtained by rendering processing on volume data, but the specific example of the three-dimensional ultrasonic image is not limited to the rendered image.
- one or a plurality of frames of three-dimensional intermediate images are added between the frames of a plurality of frames of three-dimensional ultrasound images.
- one or more three-dimensional intermediate images are added between one frame and the other frame (between each frame) adjacent to each other in the three-dimensional ultrasound image.
- the number of frames of the three-dimensional intermediate image added between the frames of the three-dimensional ultrasound image is determined according to, for example, the frame rate to be targeted. For example, if you want to double the frame rate of a 3D ultrasound image of multiple frames, you want to add a 1D 3D intermediate image between each frame of the 3D ultrasound image and quadruple the frame rate. In this case, three frames of three-dimensional intermediate images are added between the frames of the three-dimensional ultrasound image. In other words, if you want to increase the frame rate of a 3D ultrasound image of multiple frames by M times (M is an integer greater than or equal to 2), between each frame of the 3D ultrasound image, (M-1) 3D intermediate Add an image.
- a three-dimensional moving image is displayed based on a plurality of frames of three-dimensional ultrasound images and a plurality of frames of three-dimensional intermediate images added between the plurality of frames.
- a three-dimensional moving image is an image that dynamically reproduces a three-dimensional ultrasonic image and a three-dimensional intermediate image.
- a three-dimensional ultrasonic image and a plurality of added three-dimensional intermediate images are A three-dimensional moving image is realized by displaying one after another in phase order.
- 3D video is realized by slow playback (low-speed playback) and frame-by-frame playback in addition to normal playback (single-speed playback) that displays images corresponding to multiple time phases one after another in real time.
- rewind playback or the like in which the phase order is reversed may be realized.
- a 3D moving image is displayed based on a 3D ultrasonic image of a plurality of frames and a 3D intermediate image of the plurality of frames added between the plurality of frames.
- the frame rate of the displayed image is increased.
- Patent Documents 1 and 2 only disclose a technique for increasing the frame rate of a general image such as a television image as a representative example, and there is no specific disclosure regarding a three-dimensional ultrasonic image. For example, the content does not suggest that a three-dimensional ultrasonic image is targeted.
- the ultrasonic diagnostic apparatus further includes a control unit that controls a volume rate, which is the number of volume data per unit time, in accordance with the degree of reliability of the movement information.
- the degree of reliability of the movement information may be determined by, for example, a continuous degree (e.g., an evaluation value indicating a continuous degree) or, for example, a stepped degree ("high, medium, low”) Or “high, low”, etc.). If the degree of reliability of the movement information is determined by a continuous degree, the volume rate can be controlled to be a continuous value according to the continuous degree. If the degree of reliability of the movement information is determined by a stepped degree, for example, the volume rate can be controlled so as to have a stepped value according to the degree.
- the reliability of the 3D intermediate image depends on the reliability of the movement information. Therefore, the volume rate, which is the number of volume data per unit time, is controlled according to the degree of reliability of the movement information. For example, if volume data is collected at a relatively high density for each time phase, the volume rate will be relatively low, but if the reliability of movement information is relatively high, the reliability of the 3D intermediate image is also reliable. Therefore, collection of relatively high-density volume data at a relatively low volume rate is maintained. On the other hand, for example, when the reliability of movement information is relatively low, the reliability of the 3D intermediate image is expected to be low, so control that increases the volume rate and increases the reliability of the 3D intermediate image is realized. Is done.
- control unit increases the volume rate per unit time of the three-dimensional ultrasonic image when it is determined that the reliability of the movement information is low based on a reliability determination condition.
- the frame rate which is the number of frames is increased.
- control unit transmits and receives a plurality of transmission / reception including a number of spatial frames in a volume for transmitting and receiving ultrasonic waves three-dimensionally, a number of beam lines constituting each spatial frame, and an ultrasonic pulse repetition period.
- the volume rate is controlled by changing at least one of the parameters.
- the intermediate image forming unit uses, as the movement information, a movement vector based on a correlation calculation between the frames for each image element of a plurality of image elements constituting the three-dimensional ultrasonic image of each frame. And obtaining the plurality of intermediate image elements corresponding to each frame based on the plurality of image elements and their movement vectors, thereby forming the three-dimensional intermediate image composed of the plurality of intermediate image elements. It is characterized by that.
- the ultrasonic diagnostic apparatus is configured such that the reliability of the movement vector derived as the movement information based on the magnitude of the correlation value obtained by the correlation calculation for each image element of the plurality of image elements.
- An evaluation unit that calculates an evaluation value indicating the degree of the control, and the control unit controls a volume rate that is the number of volume data per unit time based on the evaluation value indicating the reliability of the movement vector. It is characterized by that.
- the present invention improves the dynamic display of 3D ultrasound images.
- a 3D moving image is displayed based on a 3D ultrasound image of a plurality of frames and a 3D intermediate image of a plurality of frames added between the plurality of frames.
- the frame rate of the displayed image can be increased as compared with a case where a moving image is displayed based only on a three-dimensional ultrasonic image of a plurality of frames.
- FIG. 1 is an overall configuration diagram of an ultrasonic diagnostic apparatus suitable as an embodiment of the present invention. It is a figure which shows the specific example of a three-dimensional ultrasonic image and a three-dimensional intermediate image. It is a figure which shows the specific example of the process which derives
- FIG. 1 is an overall configuration diagram of an ultrasonic diagnostic apparatus suitable as an embodiment of the present invention.
- the probe 10 is an ultrasonic probe that transmits and receives ultrasonic waves in a three-dimensional space including a diagnosis target.
- the probe 10 includes a plurality of vibration elements, and each vibration element transmits an ultrasonic wave in a three-dimensional space according to a transmission signal obtained from the transmission / reception unit 12.
- each vibration element that receives an ultrasonic reflected wave (echo) from the three-dimensional space outputs a received signal corresponding to the reflected wave to the transmission / reception unit 12.
- the transmission / reception unit 12 controls transmission of the probe 10 by outputting a transmission signal corresponding to each of the plurality of vibration elements included in the probe 10.
- a transmission signal corresponding to each of the plurality of vibration elements included in the probe 10.
- the beam data processing unit 14 obtains a plurality of received signals corresponding to the plurality of vibration elements included in the probe 10 from the transmission / reception unit 12, and performs beam forming processing such as phasing addition processing on the plurality of received signals. Apply. As a result, an ultrasonic reception beam is formed and scanned in the three-dimensional space. That is, the reception beam is scanned in the three-dimensional space while changing the beam address of the reception beam, and the beam data processing unit 14 forms a plurality of line data corresponding to the plurality of beam addresses. Each line data is composed of a plurality of echo data.
- an ultrasonic beam (transmission beam and reception beam corresponding thereto) is scanned three-dimensionally in the three-dimensional space, and a plurality of echo data are obtained from the three-dimensional space.
- the probe 10 is a 3D probe that collects echo data three-dimensionally by scanning an ultrasonic beam in a three-dimensional space.
- the ultrasonic beam is scanned three-dimensionally by mechanically moving a scanning surface formed electronically by a plurality of vibration elements (1D array transducers) arranged one-dimensionally.
- the ultrasonic beam may be scanned three-dimensionally by electronically controlling a plurality of vibration elements (2D array transducers) arranged two-dimensionally.
- the volume data storage unit 16 stores volume data based on a plurality of echo data obtained from the three-dimensional space.
- the beam data processing unit 14 performs a coordinate conversion process or the like on a plurality of echo data, converts the data to a suitable coordinate system in the subsequent process, and then converts the converted data as volume data into a volume data storage unit 16 is stored.
- the beam data processing unit 14 performs a three-dimensional coordinate conversion process, an interpolation process, and the like on a plurality of echo data obtained in an ultrasonic scanning coordinate system (for example, an r ⁇ coordinate system), thereby obtaining a three-dimensional image.
- an ultrasonic scanning coordinate system for example, an r ⁇ coordinate system
- a plurality of voxel data corresponding to the orthogonal coordinate system (xyz coordinate system) is formed, and volume data composed of the plurality of voxel data is stored in the volume data storage unit 16.
- the beam data processing unit 14 performs two-dimensional coordinate conversion processing on the plurality of echo data, so that, for example, the r ⁇ coordinate system corresponding to the scanning plane in the scanning coordinate system is an orthogonal coordinate system (xy coordinate system).
- the converted data may be stored in the volume data storage unit 16 as volume data.
- a plurality of echo data obtained by three-dimensionally scanning ultrasonic waves in a three-dimensional space has addresses corresponding to a scanning coordinate system (for example, r ⁇ coordinate system) corresponding to ultrasonic three-dimensional scanning. And may be stored in the volume data storage unit 16 as volume data.
- Volume data is formed one after another for each time phase over a plurality of time phases and stored in the volume data storage unit 16.
- the three-dimensional image forming unit 20 forms a three-dimensional ultrasonic image based on the volume data stored in the volume data storage unit 16.
- the three-dimensional image forming unit 20 forms a three-dimensional ultrasonic image that three-dimensionally displays the diagnosis target based on volume data corresponding to a three-dimensional space including the diagnosis target such as a fetus.
- a preferred specific example of the three-dimensional ultrasound image is a rendering image obtained by a known volume rendering process.
- a virtual virtual viewpoint VP is set outside the volume data corresponding to the three-dimensional space, and the two-dimensional plane is calculated on the opposite side of the viewpoint VP with the volume data in between.
- the screen is virtually set.
- a plurality of rays are defined on the basis of the viewpoint VP. For example, each ray is set so as to reach the screen after penetrating the volume data starting from the viewpoint VP.
- voxel data of a plurality of voxels corresponding to the ray correspond to each ray or in the vicinity of the ray.
- a rendering image is obtained by mapping a plurality of pixel values obtained from a plurality of rays on the screen.
- the volume data storage unit 16 stores volume data of a plurality of time phases, and the three-dimensional image forming unit 20 performs, for each time phase, a tertiary corresponding to the time phase based on the volume data corresponding to the time phase.
- An original ultrasonic image (rendered image) is formed.
- a plurality of frames of three-dimensional ultrasound images corresponding to a plurality of time phases are successively formed.
- the intermediate image forming unit 50 forms one or a plurality of frames of a three-dimensional intermediate image added between the frames of the plurality of frames of the three-dimensional ultrasound image.
- FIG. 2 is a diagram showing a specific example of a three-dimensional ultrasonic image and a three-dimensional intermediate image.
- FIG. 2A shows a specific example of a three-dimensional ultrasonic image (3D ultrasonic image) of a plurality of frames.
- FIG. 2A representatively shows 3D ultrasound images of frames 1 to 5 out of a plurality of frames. Then, one or a plurality of three-dimensional intermediate images (3D intermediate images) are added between the frames of the plurality of frames of the 3D ultrasound image to form a frame sequence for a three-dimensional moving image (3D moving image).
- 3D moving image three-dimensional moving image
- FIG. 2B shows a specific example of a frame sequence for 3D moving images.
- 4 frames of 3D intermediate images are added between the frames of the 3D ultrasound image. That is, 4 frames (4 frames) of 3D intermediate images are added between the frame 1 and the frame 2 of the 3D ultrasonic image, and between the frame 2 and the frame 3 of the 3D ultrasonic image and the frame 3 and the frame. 4 frames and 4 frames are also added between the frames 4 and 5, respectively.
- the frame rate after the addition can be made higher than the frame rate before the addition. That is, the number of frames per unit time (frame) in the 3D moving image frame sequence in which the 3D intermediate image is added to the 3D ultrasound image, rather than the number of frames per unit time (frame rate) in the case of only the 3D ultrasound image. (Rate) increases (higher).
- the frame rate of the 3D moving image frame sequence shown in FIG. 2B is five times higher than the frame rate of only the 3D ultrasound image shown in FIG. It becomes.
- the display image forming unit 80 includes a plurality of frames of three-dimensional ultrasound images (3D ultrasound images) formed in the three-dimensional image forming unit 20 and a plurality of frames formed in the intermediate image forming unit 50. Based on the three-dimensional intermediate image (3D intermediate image), a frame sequence for the three-dimensional moving image (3D moving image frame sequence in FIG. 2) is formed. The display image forming unit 80 then displays a three-dimensional moving image (3D moving image) that dynamically shows a three-dimensional ultrasonic image based on a frame sequence for a three-dimensional moving image (a frame sequence for a 3D moving image). Is displayed on the display unit 82.
- the movement vector used for forming the three-dimensional intermediate image (3D intermediate image) is derived by the movement vector calculation unit 30.
- the movement vector evaluation unit 40 evaluates the degree of reliability of the movement vector.
- the control unit 100 generally controls the inside of the ultrasonic diagnostic apparatus in FIG.
- the overall control by the control unit 100 also reflects an instruction received from a user such as a doctor or a laboratory technician via the operation device 90.
- the transmission / reception unit 12 the beam data processing unit 14, the three-dimensional image forming unit 20, the movement vector calculation unit 30, the movement vector evaluation unit 40, and the intermediate image formation unit 50
- Each unit of the display image forming unit 80 can be realized by using hardware such as an electric / electronic circuit or a processor, for example, and a device such as a memory may be used as necessary in the realization.
- a device such as a memory
- at least some of the functions corresponding to the above-described units may be realized by a computer. That is, at least a part of the functions corresponding to the above-described units may be realized by cooperation between hardware such as a CPU, a processor, and a memory and software (program) that defines the operation of the CPU and the processor.
- the volume data storage unit 16 can be realized by a storage device such as a semiconductor memory or a hard disk drive.
- a preferred specific example of the display unit 82 is a liquid crystal display or the like.
- the operation device 90 can be realized by at least one of, for example, a mouse, a keyboard, a trackball, a touch panel, and other switches.
- the control unit 100 can be realized by, for example, cooperation between hardware such as a CPU, a processor, and a memory, and software (program) that defines the operation of the CPU and the processor.
- the overall configuration of the ultrasonic diagnostic apparatus in FIG. 1 is as described above. Next, specific examples of functions realized by the ultrasonic diagnostic apparatus of FIG. 1 will be described in detail. In addition, about the structure (each part to which the code
- FIG. 3 is a diagram showing a specific example of the process for deriving the movement vector.
- the movement vector calculation unit 30 derives a movement vector for each of the plurality of pixels constituting the three-dimensional ultrasonic image between two adjacent frames of the three-dimensional ultrasonic image (3D ultrasonic image) of the plurality of frames. (calculate. A pattern matching process is used to derive the movement vector.
- FIG. 3 shows 3D ultrasound images of a frame n (n is a natural number) and a frame (n + 1) that are adjacent to each other among a plurality of frames.
- the movement vector calculation unit 30 calculates a movement vector for each pixel of a plurality of pixels constituting the 3D ultrasound image of the frame n by pattern matching processing, and a plurality of pixels constituting the 3D ultrasound image of the frame n, preferably The movement vector of each pixel is derived for all pixels.
- a template T is set so as to surround the pixel.
- the search area SA is set so as to include, for example, an image area at a position corresponding to the template T in the 3D ultrasonic image of the frame (n + 1).
- Various known methods can be used for setting the search area SA.
- the entire area in the 3D ultrasound image of the frame (n + 1) may be set as the search area SA.
- the template T and the search area SA are set, the template T is moved in the search area SA.
- a correlation calculation is performed based on a plurality of pixels in the template T of the ultrasonic image. For example, a position corresponding to the template T in the frame n is set as an initial position, and a correlation value is calculated for each displacement (dx, dy) from the initial position, and corresponds to a plurality of displacements throughout the search area SA. A correlation value is calculated.
- the correlation value is a numerical value indicating the degree of correlation (similarity) between image data (a plurality of pixels and a plurality of pixels), and a known mathematical formula corresponding to each method of correlation calculation is used for calculating the correlation value.
- the correlation value for example, SSD (Sum of Square Difference) is suitable, and the SSD indicates a smaller value as the degree of similarity increases.
- a correlation value indicating a larger value may be used as the degree of similarity increases by a phase-only correlation method, a cross-correlation method, or the like.
- FIG. 3 shows a pixel A as a representative example of a plurality of pixels constituting the 3D ultrasonic image of the frame n.
- the pixel B is specified as the movement destination of the pixel A in the 3D ultrasonic image of the frame (n + 1) by the pattern matching process regarding the pixel A.
- the movement vector calculation unit 30 sets a vector having the position (coordinate) of the pixel A as a start point and the position (coordinate) of the pixel B as an end point as a movement vector AB of the pixel A.
- the movement vector calculation unit 30 derives a movement vector having a position of the pixel as a start point and a movement destination of the pixel as an end point for each of the plurality of pixels in the frame n, preferably for all the pixels.
- the movement vector calculation unit 30 performs a smoothing process on the movement vector of each pixel constituting the 3D ultrasonic image of the frame n.
- FIG. 4 is a diagram showing a specific example of the smoothing process for the movement vector.
- the movement vector calculation unit 30 calculates, for each target pixel, an average vector of a plurality of movement vectors corresponding to the target pixel and a plurality of pixels located in the vicinity thereof, and the calculated average vector is smoothed after the target pixel.
- FIG. 4 shows a pixel A as a representative example of a plurality of pixels, and an average vector of nine movement vectors corresponding to nine pixels consisting of the pixel A and eight peripheral pixels is calculated. Is a movement vector after the smoothing of the pixel A.
- the movement vector calculation unit 30 may calculate the average vector after excluding a specific movement vector from a plurality of movement vectors.
- a three-dimensional intermediate image (3D intermediate image) is generated based on the calculated movement vector. It is formed.
- FIG. 5 is a diagram showing a specific example 1 of a process for forming a three-dimensional intermediate image.
- the intermediate image forming unit 50 is added between the frames based on the movement vector of the plurality of pixels obtained between two adjacent frames of the three-dimensional ultrasound image (3D ultrasound image) of the plurality of frames.
- One or a plurality of frames of a three-dimensional intermediate image (3D intermediate image) is formed.
- FIG. 5 shows a specific example of forming an intermediate image added between a frame n (n is a natural number) and a frame (n + 1) of the 3D ultrasound image.
- the movement vector AB shown in FIG. 5A is a movement vector corresponding to the pixel A in the 3D ultrasound image of the frame n (see FIGS. 3 and 4). That is, the movement destination of the pixel A is the position (coordinates) of the pixel B in the 3D ultrasonic image of the frame (n + 1).
- the intermediate image forming unit 50 obtains the intermediate vector AC shown in FIG. 5 (2) from the movement vector AB shown in FIG. 5 (1).
- FIG. 6 is a diagram showing a specific example 1 of the intermediate vector.
- FIG. 6 shows a specific example of an intermediate vector between the 3D ultrasound image of frame n and the 3D ultrasound image of frame (n + 1).
- the movement vector AB is a movement vector corresponding to the pixel A in the 3D ultrasonic image of the frame n
- the movement destination of the pixel A is the position (coordinate) of the pixel B in the 3D ultrasonic image of the frame (n + 1). .
- FIG. 6 shows a specific example in which the frame rate is M times (M is an integer of 2 or more). That is, the 3D intermediate image of (M ⁇ 1) frames is added between the 3D ultrasound image of frame n and the 3D ultrasound image of frame (n + 1).
- the 3D intermediate images of frames 1, 2, 3,..., M ⁇ 1 are arranged in the order close to the 3D ultrasound image of frame n (close to the temporal phase).
- the intermediate image forming unit 50 derives an intermediate vector AC (AC1, AC2, AC3,..., AC (M ⁇ 1)) regarding the pixel A from the movement vector AB corresponding to the pixel A.
- the start point and direction of the intermediate vector AC are the same as those of the movement vector AB, and the size (vector length) of the intermediate vector AC is determined by the frame number (1, 2, 3,..., M ⁇ 1) of the 3D intermediate image. ).
- the intermediate vector AC1 corresponding to the 3D intermediate image of frame 1 has the same starting point and direction as the movement vector AB, and the size (the length of the vector) is 1 / M of the movement vector AB.
- the intermediate vector AC2 corresponding to the 3D intermediate image of the frame 2 has the same starting point and direction as the movement vector AB, and the size (the length of the vector) is 2 / M of the movement vector AB.
- the intermediate vector AC (M-1) corresponding to the 3D intermediate image of the frame (M-1) has the same starting point and direction as the movement vector AB, and the magnitude (vector length) of the movement vector AB. (M-1) / M.
- the intermediate image forming unit 50 generates an intermediate vector corresponding to each frame of the 3D intermediate image based on the movement vector corresponding to each pixel of the plurality of pixels constituting the 3D ultrasonic image of the frame n. .
- the intermediate vector AC shown in FIG. 5 (2) is an intermediate vector related to the pixel A of the 3D ultrasound image of frame n, and is the frame of interest of the 3D intermediate image (for example, frames 1 to M-1 in FIG. 6). Intermediate vector corresponding to any of the 3D intermediate images).
- the intermediate image forming unit 50 generates an intermediate vector for each pixel for a plurality of pixels constituting the 3D ultrasonic image of the frame n, preferably for all pixels. Then, the intermediate image forming unit 50 selects an intermediate vector whose end point of the vector is closest to the position (coordinates) of the pixel of interest Z among a plurality of intermediate vectors corresponding to the plurality of pixels. In the specific example shown in FIG. 5 (2), the intermediate vector AC is selected.
- the intermediate image forming unit 50 translates the intermediate vector so that the end point of the selected intermediate vector becomes the position of the target pixel.
- the intermediate vector A′C ′ of FIG. 5 (3) is obtained as a result of translation of the intermediate vector AC of FIG. 5 (2).
- the intermediate image forming unit 50 determines the pixel value of the target pixel based on the pixel values of a plurality of pixels in the vicinity of the start point of the intermediate vector after translation. For example, as shown in FIG. 5 (4), the pixel value of the pixel of interest Z is calculated from the pixel values of the four pixels in the vicinity of the coordinate A ′ in the 3D ultrasound image of the frame n by, for example, linear interpolation processing. Is done. Then, the calculated pixel value of the target pixel Z is set as an intermediate pixel constituting the target frame of the 3D intermediate image.
- the intermediate image forming unit 50 executes the processing described with reference to FIG. 5 using each of the pixels constituting the target frame of the 3D intermediate image as the target pixel, and performs the processing for all the pixels constituting the target frame of the 3D intermediate image. By obtaining the pixel value, a 3D intermediate image corresponding to the frame of interest is formed. Further, the intermediate image forming unit 50 performs the processing described with reference to FIG. 5 using each frame of a 3D intermediate image of a plurality of frames (for example, 3D intermediate images from frames 1 to M-1 in FIG. 6) as a frame of interest. By executing this, a 3D intermediate image of a plurality of frames is formed.
- FIG. 7 is a diagram showing a specific example 2 of a process for forming a three-dimensional intermediate image.
- FIG. 7 shows a specific example of forming an intermediate image added between a frame n (n is a natural number) and a frame (n + 1) of the 3D ultrasound image.
- a movement vector AB shown in FIG. 7A is a movement vector (see FIGS. 3 and 4) corresponding to the pixel A in the 3D ultrasonic image of the frame n. That is, the movement destination of the pixel A is the position (coordinates) of the pixel B in the 3D ultrasonic image of the frame (n + 1).
- the intermediate image forming unit 50 obtains the intermediate vector CB shown in FIG. 7 (2) from the movement vector AB shown in FIG. 7 (1).
- FIG. 8 is a diagram showing a specific example 2 of the intermediate vector.
- FIG. 8 shows a specific example of an intermediate vector between the 3D ultrasound image of frame n and the 3D ultrasound image of frame (n + 1).
- the movement vector AB is a movement vector corresponding to the pixel A in the 3D ultrasonic image of the frame n
- the movement destination of the pixel A is the position (coordinate) of the pixel B in the 3D ultrasonic image of the frame (n + 1). .
- FIG. 8 shows a specific example in which the frame rate is M times (M is an integer of 2 or more). That is, the 3D intermediate image of (M ⁇ 1) frames is added between the 3D ultrasound image of frame n and the 3D ultrasound image of frame (n + 1).
- the 3D intermediate images of frames 1, 2, 3,..., M ⁇ 1 are arranged in the order close to the 3D ultrasound image of frame n (close in time).
- the intermediate image forming unit 50 uses the intermediate vector CB (C1B, C2B, C3B,..., C (M ⁇ 1) from the movement vector AB corresponding to the pixel A to the pixel B that is the end point of the movement vector AB. B) is derived.
- the end point and direction of the intermediate vector CB are the same as those of the movement vector AB, and the size (vector length) of the intermediate vector CB is the frame number (1, 2, 3,..., M ⁇ 1) of the 3D intermediate image. ).
- the intermediate vector C1B corresponding to the 3D intermediate image of frame 1 has the same end point and direction as the movement vector AB, and the size (the length of the vector) is 1 / M of the movement vector AB.
- the intermediate vector C2B corresponding to the 3D intermediate image of the frame 2 has the same end point and direction as the movement vector AB, and the size (the length of the vector) is 2 / M of the movement vector AB.
- the intermediate vector C (M ⁇ 1) B corresponding to the 3D intermediate image of the frame (M ⁇ 1) has the same end point and direction as the movement vector AB, and the size (the length of the vector) is the movement vector AB. (M-1) / M.
- the intermediate image forming unit 50 generates an intermediate vector corresponding to each frame of the 3D intermediate image based on the movement vector corresponding to each pixel of the plurality of pixels constituting the 3D ultrasonic image of the frame n. .
- the intermediate vector CB shown in FIG. 7 (2) is an intermediate vector related to the pixel A of the 3D ultrasound image of the frame n, and is a frame of interest of the 3D intermediate image (for example, frames 1 to M-1 in FIG. 8). Intermediate vector corresponding to any of the 3D intermediate images).
- the intermediate image forming unit 50 generates an intermediate vector for each pixel for a plurality of pixels constituting the 3D ultrasonic image of the frame n, preferably for all pixels. Then, the intermediate image forming unit 50 selects, from among a plurality of intermediate vectors corresponding to the plurality of pixels, an intermediate vector whose vector starting point is closest to the position (coordinates) of the target pixel Z. In the specific example shown in FIG. 7B, the intermediate vector CB is selected.
- the intermediate image forming unit 50 translates the intermediate vector so that the start point of the selected intermediate vector is the position of the target pixel.
- the intermediate vector C′B ′ of FIG. 7 (3) is obtained as a result of translation of the intermediate vector CB of FIG. 7 (2).
- the intermediate image forming unit 50 determines the pixel value of the target pixel based on the pixel values of a plurality of pixels in the vicinity of the end point of the intermediate vector after translation. For example, as shown in FIG. 7 (4), the pixel value of the target pixel Z is obtained from the pixel values of the four pixels near the coordinate B ′ in the 3D ultrasound image of the frame (n + 1) by, for example, linear interpolation processing. Calculated. Then, the calculated pixel value of the target pixel Z is set as an intermediate pixel constituting the target frame of the 3D intermediate image.
- the intermediate image forming unit 50 executes the processing described with reference to FIG. 7 using each of the pixels constituting the target frame of the 3D intermediate image as the target pixel, and performs the processing for all the pixels constituting the target frame of the 3D intermediate image. By obtaining the pixel value, a 3D intermediate image corresponding to the frame of interest is formed. Further, the intermediate image forming unit 50 performs the processing described with reference to FIG. 7 using each frame of the 3D intermediate image of a plurality of frames (for example, the 3D intermediate images from frames 1 to M-1 in FIG. 8) as the target frame. By executing this, a 3D intermediate image of a plurality of frames is formed.
- the movement vector derived by the movement vector calculation unit 30 is used to form the three-dimensional intermediate image (3D intermediate image).
- the movement vector calculation unit 30 is configured to move the pixel from the position of the pixel, starting from the position of each pixel, preferably for all the pixels in the frame n of the three-dimensional ultrasonic image (3D ultrasonic image).
- a movement vector with ending at is derived (see FIG. 3).
- the movement vector evaluation unit 40 evaluates reliability related to a plurality of movement vectors corresponding to a plurality of pixels in each frame of the 3D ultrasound image. For example, in the pattern matching process by the movement vector calculation unit 30, the reliability of the movement vector is evaluated based on the correlation value at the movement destination of each pixel selected as having the strongest correlation (the most similar degree).
- a correlation value that is smaller as the correlation is stronger (similarity is greater) is used, and when the calculated correlation value exceeds the threshold (or above the threshold), It is determined that the correlation value is not a reliable value and the reliability of the movement vector obtained based on the correlation value is low.
- the ratio of the number of pixels determined to be low in the reliability of the movement vector among the plurality of pixels constituting the frame is the reliability of the movement vector in the frame.
- the evaluation value In this specific example, the greater the reliability evaluation value obtained for each frame, the lower the reliability of the motion vector of that frame.
- the search area SA (FIG. 3) in pattern matching is expanded. It is desirable to expand the selection range of the movement destination of each pixel and increase the identification accuracy of the movement destination. Note that, since the processing time for pattern matching increases when the search area SA is expanded, for example, the number of frames of 3D intermediate images (frames of frames) added between the frames of the 3D ultrasound image as the processing time increases. (Number of sheets) may be reduced. Further, when the reliability of the movement vector of each frame is low, the template T (FIG. 3) may be enlarged to increase the accuracy of specifying the movement destination of each pixel.
- control unit 100 may control transmission / reception of ultrasonic waves based on the evaluation value of the reliability of the movement vector obtained in the movement vector evaluation unit 40.
- control unit 100 may control the volume rate based on the evaluation value of the reliability of the movement vector obtained from the movement vector evaluation unit 40.
- FIG. 9 is a diagram showing a specific example of volume rate control.
- FIG. 9A shows a specific example of volume data obtained for each time phase over a plurality of time phases. That is, a plurality of volume data for time phase 1 to time phase 6 are representatively shown. Note that volume data may be obtained for each time phase even after time phase 7 (not shown).
- FIG. 9 (2) shows a specific example of a three-dimensional ultrasonic image (3D ultrasonic image) of a plurality of frames.
- a 3D ultrasonic image of each frame is formed based on time-phase volume data corresponding to the frame.
- the 3D ultrasound image of frame 1 is formed based on the volume data of time phase 1
- the 3D ultrasound image of frame 2 is formed based on the volume data of time phase 2. That is, the time number of the volume data and the frame number of the 3D ultrasound image correspond to each other.
- FIG. 9 (3) shows a specific example of a three-dimensional intermediate image (3D intermediate image)
- FIG. 9 (4) shows a specific example of a three-dimensional moving image (3D moving image).
- 3 frames (3 frames) of 3D intermediate images are added between frames 1 and 2 of the 3D ultrasound image, and between the frames 2 and 3 of the 3D ultrasound image.
- 3D (3 frames) 3D intermediate image is also added, and 3D intermediate images are also added between frames after frame 3 of the 3D ultrasound image to form a 3D moving image frame sequence. ing.
- the reliability of the movement vector obtained between the frame 1 and the frame 2 of the 3D ultrasonic image is low.
- the control unit 100 increases the volume rate.
- the standard rate Volume data of time phase 3 is acquired while maintaining the above. Then, immediately after the volume data of time phase 3 is acquired, the volume rate is increased, and the volume data of time phase 4 and time phase 5 are acquired at a high rate (volume rate higher than the standard).
- the volume data of time phase 3 may be obtained by switching to the high rate immediately after the volume data of time phase 2 is obtained.
- the reliability of the movement vector obtained between the frame 3 and the frame 4 of the 3D ultrasonic image is high.
- the control unit 100 may decrease the volume rate.
- the volume rate is reduced, that is, returned to the standard rate, and the volume data of time phase 6 is acquired at the standard rate.
- the volume data of time phase 5 may be obtained by switching to the standard rate immediately after the volume data of time phase 4 is obtained.
- the control unit 100 controls the volume rate based on a plurality of transmission / reception parameters related to transmission / reception of ultrasonic waves.
- the plurality of transmission / reception parameters include, for example, the number of spatial frames (spatial frame density), the number of beam lines (line density), and PRT (pulse repetition time).
- the number of spatial frames is the number of spatial frames (spatial frames) constituting a volume (three-dimensional region) in which ultrasonic waves are transmitted and received in three dimensions.
- the number of beam lines is the number of reception beam lines constituting each spatial frame. For example, if the size of each spatial frame is constant and the number of beam lines changes, the line density also changes.
- PRT is an ultrasonic pulse repetition period.
- the volume rate is determined by these multiple transmission / reception parameters.
- the plurality of transmission / reception parameters corresponding to the standard rate are set with emphasis on the data density of the volume data, for example.
- the plurality of transmission / reception parameters corresponding to the high rate are set so that the volume rate is higher than the standard rate (standard volume rate).
- the number of high-rate spatial frames is set smaller (less) than the number of standard-rate spatial frames
- the number of high-rate beamlines is set smaller (less) than the number of standard-rate beamlines
- the high-rate PRT Is set smaller (shorter) than the standard rate PRT.
- the control unit 100 controls the transmission / reception unit 12 with a plurality of transmission / reception parameters corresponding to the standard rate, thereby realizing acquisition of volume data at the standard rate, and controls the transmission / reception unit 12 with a plurality of transmission / reception parameters corresponding to the high rate. By doing so, the acquisition of volume data at a high rate is realized.
- the volume rate may be changed by changing parallel reception (the number of parallel receptions (one or more)) or THI (whether or not to perform tissue harmonic imaging).
- the frame rate of the 3D moving image can be kept constant regardless of the change of the volume rate.
- the high rate high volume rate
- standard rate standard volume rate
- 3 frames of 3D intermediate images are added between each frame of the 3D ultrasound image corresponding to the standard rate
- the frame interval (time phase interval) of the 3D moving image is maintained constant, and the frame rate of the 3D moving image is increased.
- the specific example shown in FIG. 9 is merely an example, and the frame rate of the 3D moving image does not necessarily have to be constant.
- the frame rate of the 3D moving image is determined according to the display frame rate that can be supported by the display unit 82. For example, if the display frame rate of the display unit 82 is 60 Hz (Hertz), the volume rate and the number of frames of the 3D intermediate image (between each frame of the 3D ultrasound image are set so that the frame rate of the 3D moving image is 60 Hz. The number of frames of 3D intermediate image to be added to the image may be determined.
- the display image forming unit 80 may play back the 3D moving image slowly. At the time of slow reproduction, it is desirable to determine the number of frames of the 3D intermediate image (the number of frames of the 3D intermediate image added between each frame of the 3D ultrasound image) according to the reproduction speed.
- the playback speed is 1 ⁇ 2 times that of normal playback.
- the number of 3D intermediate images (number of frames) between frames during playback is 2K
- the number of 3D intermediate images (number of frames) between frames during slow playback at 1/3 times normal playback is 3K.
- the number of 3D intermediate images (number of frames) between each frame during slow playback at 1/4 times the speed of playback is 4K. That is, the number of 3D intermediate images (number of frames) between each frame during slow playback at 1 / S times normal speed (S is a natural number) is S ⁇ K.
- each image frame among a plurality of image frames used in normal playback is repeatedly played in association with a plurality of display frames. That is, the same image frame is used in a plurality of display frames.
- the number of display frames in which the same image frame (each frame of the 3D moving image) is used can be reduced by the above-described processing for determining the number of frames of the 3D intermediate image according to the playback speed during slow playback.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Image Processing (AREA)
- Image Generation (AREA)
- Image Analysis (AREA)
Abstract
In the present invention, a three-dimensional image generation unit 20 generates, on the basis of volume data of a plurality of time phases obtained by transmitting and receiving ultrasonic waves, a three-dimensional ultrasonic image of a plurality of frames corresponding to the time phases. An intermediate image generation unit 50 generates three-dimensional intermediate images of one or more frames to be added between the frames of the three-dimensional ultrasonic image on the basis of movement vectors between the frames of the image. A display image generation unit 80 generates a three-dimensional moving image, on the basis of the three-dimensional ultrasonic image of a plurality of frames and the three-dimensional intermediate images of a plurality of frames added between the former frames, and displays the three-dimensional moving image on a display unit 82.
Description
本発明は、超音波診断装置に関し、特に、三次元超音波画像を形成する装置に関する。
The present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an apparatus for forming a three-dimensional ultrasonic image.
診断対象を含む空間に超音波を立体的に送受することにより得られるボリュームデータに基づいて、診断対象を立体的に表現した三次元超音波画像を形成する超音波診断装置が知られている。例えば、母体内から得られたボリュームデータに対してレンダリング処理を行うことにより、胎児を立体的に映し出した三次元超音波画像としてボリュームレンダリング画像を得ることができる。
There is known an ultrasonic diagnostic apparatus that forms a three-dimensional ultrasonic image representing a diagnostic object in three dimensions based on volume data obtained by three-dimensionally transmitting and receiving ultrasonic waves to a space including the diagnostic object. For example, a volume rendering image can be obtained as a three-dimensional ultrasound image in which a fetus is projected three-dimensionally by performing rendering processing on volume data obtained from the mother's body.
三次元超音波画像を形成するにあたっては、電子的走査または電子的走査と機械的走査の組み合わせにより、超音波ビームが2次元的に走査され、走査空間(ボリューム)内から、ボリュームデータを構成する多数のデータ(ボクセルデータ)が収集される。そのため、超音波ビームを1次元的に走査することにより走査面に対応した断層画像を形成するBモード画像と比較して、三次元超音波画像の形成には多くの送受信時間を要し、例えば三次元超音波画像を動的に表示する際の一つの課題となる。
In forming a three-dimensional ultrasonic image, an ultrasonic beam is scanned two-dimensionally by electronic scanning or a combination of electronic scanning and mechanical scanning, and volume data is constructed from within the scanning space (volume). A large number of data (voxel data) is collected. Therefore, compared to a B-mode image that forms a tomographic image corresponding to the scanning surface by scanning an ultrasonic beam in a one-dimensional manner, formation of a three-dimensional ultrasonic image requires a lot of transmission / reception time. This is one problem in dynamically displaying a three-dimensional ultrasonic image.
ちなみに、テレビジョン映像などを代表例とする一般的な画像に係る画像処理の分野においては、画像を動的に表示する際のフレームレートを改善する技術が提案されている。例えば、特許文献1,2には、画像の動きベクトルを利用して補間フレームを生成することにより画像のフレーム数を増加させてフレームレートを高める技術(FRC:フレームレートコントロール)が開示されている。
Incidentally, in the field of image processing related to a general image such as a television image as a representative example, a technique for improving a frame rate when an image is dynamically displayed has been proposed. For example, Patent Documents 1 and 2 disclose a technique (FRC: frame rate control) for increasing the frame rate by increasing the number of frames of an image by generating an interpolation frame using an image motion vector. .
本発明は、上述した背景技術に鑑みて成されたものであり、その目的は、三次元超音波画像の動的な表示を改善することにある。
The present invention has been made in view of the background art described above, and an object thereof is to improve the dynamic display of a three-dimensional ultrasonic image.
本発明の具体例として好適な超音波診断装置は、超音波を立体的に送受して得られた複数時相のボリュームデータに基づいて、当該複数時相に対応した複数フレームの三次元超音波画像を形成する超音波画像形成部と、前記複数フレームの三次元超音波画像の各フレーム間における画像の移動情報に基づいて、当該各フレーム間に追加される1又は複数フレームの三次元中間画像を形成する中間画像形成部と、前記複数フレームの三次元超音波画像とそれらの複数フレーム間に追加された前記複数フレームの三次元中間画像に基づいて三次元動画像を表示する表示処理部と、を有することを特徴とする。
An ultrasonic diagnostic apparatus suitable as a specific example of the present invention is based on volume data of a plurality of time phases obtained by transmitting and receiving ultrasound three-dimensionally, and a plurality of frames of three-dimensional ultrasound corresponding to the plurality of time phases. An ultrasonic image forming unit that forms an image, and one or a plurality of frames of three-dimensional intermediate images that are added between the frames based on movement information of the images between the frames of the plurality of frames of the three-dimensional ultrasound images An intermediate image forming unit, and a display processing unit that displays a three-dimensional moving image based on the three-dimensional ultrasonic image of the plurality of frames and the three-dimensional intermediate image of the plurality of frames added between the plurality of frames. It is characterized by having.
上記構成においては、超音波を立体的に送受することにより、例えば複数時相に亘って各時相ごとにボリュームデータが得られる。各時相ごとに得られるボリュームデータは、例えば、超音波が送受される空間(ボリューム)内から収集される複数のデータ(ボクセルデータ)で構成される。
In the above configuration, volume data is obtained for each time phase, for example, over a plurality of time phases by transmitting and receiving ultrasonic waves three-dimensionally. The volume data obtained for each time phase is composed of, for example, a plurality of data (voxel data) collected from the space (volume) in which ultrasonic waves are transmitted and received.
そして、各時相ごとに得られるボリュームデータに基づいて、その時相に対応した各フレームの三次元超音波画像が形成される。三次元超音波画像の好適な具体例は、ボリュームデータに対するレンダリング処理により得られるレンダリング画像であるが、三次元超音波画像の具体例はレンダリング画像に限定されない。
Then, based on the volume data obtained for each time phase, a three-dimensional ultrasonic image of each frame corresponding to that time phase is formed. A preferred specific example of the three-dimensional ultrasonic image is a rendered image obtained by rendering processing on volume data, but the specific example of the three-dimensional ultrasonic image is not limited to the rendered image.
さらに、上記構成においては、複数フレームの三次元超音波画像の各フレーム間に、1又は複数フレームの三次元中間画像が追加される。例えば、三次元超音波画像の互いに隣接する一方フレームと他方フレームの間(各フレーム間)に、1フレーム以上の三次元中間画像が追加される。三次元超音波画像の各フレーム間に追加される三次元中間画像のフレーム数は、例えば、目標とすべきフレームレートに応じて決定される。例えば、複数フレームの三次元超音波画像のフレームレートを2倍にしたいのであれば、三次元超音波画像の各フレーム間に1フレームの三次元中間画像が追加され、フレームレートを4倍にしたいのであれば、三次元超音波画像の各フレーム間に3フレームの三次元中間画像が追加される。つまり、複数フレームの三次元超音波画像のフレームレートをM倍(Mは2以上の整数)にしたいのであれば、三次元超音波画像の各フレーム間に(M-1)フレームの三次元中間画像を追加すればよい。
Furthermore, in the above configuration, one or a plurality of frames of three-dimensional intermediate images are added between the frames of a plurality of frames of three-dimensional ultrasound images. For example, one or more three-dimensional intermediate images are added between one frame and the other frame (between each frame) adjacent to each other in the three-dimensional ultrasound image. The number of frames of the three-dimensional intermediate image added between the frames of the three-dimensional ultrasound image is determined according to, for example, the frame rate to be targeted. For example, if you want to double the frame rate of a 3D ultrasound image of multiple frames, you want to add a 1D 3D intermediate image between each frame of the 3D ultrasound image and quadruple the frame rate. In this case, three frames of three-dimensional intermediate images are added between the frames of the three-dimensional ultrasound image. In other words, if you want to increase the frame rate of a 3D ultrasound image of multiple frames by M times (M is an integer greater than or equal to 2), between each frame of the 3D ultrasound image, (M-1) 3D intermediate Add an image.
そして、上記構成においては、複数フレームの三次元超音波画像とそれらの複数フレーム間に追加された複数フレームの三次元中間画像に基づいて三次元動画像が表示される。三次元動画像は、三次元超音波画像と三次元中間画像を動的に再生する画像であり、例えば、複数フレームの三次元超音波画像と追加された複数フレームの三次元中間画像を、時相順に次々に表示することにより三次元動画像が実現される。なお、三次元動画像は、実時間に合わせて複数時相に対応した画像を次々に表示させる通常再生(1倍速再生)の他に、スロー再生(低倍速再生)やコマ送り再生により実現されてもよいし、時相順を逆順とする巻き戻し再生等が実現されてもよい。
In the above configuration, a three-dimensional moving image is displayed based on a plurality of frames of three-dimensional ultrasound images and a plurality of frames of three-dimensional intermediate images added between the plurality of frames. A three-dimensional moving image is an image that dynamically reproduces a three-dimensional ultrasonic image and a three-dimensional intermediate image.For example, a three-dimensional ultrasonic image and a plurality of added three-dimensional intermediate images are A three-dimensional moving image is realized by displaying one after another in phase order. Note that 3D video is realized by slow playback (low-speed playback) and frame-by-frame playback in addition to normal playback (single-speed playback) that displays images corresponding to multiple time phases one after another in real time. Alternatively, rewind playback or the like in which the phase order is reversed may be realized.
上記構成の装置によれば、複数フレームの三次元超音波画像とそれらの複数フレーム間に追加された複数フレームの三次元中間画像に基づいて三次元動画像が表示されるため、例えば複数フレームの三次元超音波画像のみに基づいて動画像を表示する場合に比べて、表示される画像のフレームレートが高められる。
According to the apparatus having the above configuration, a 3D moving image is displayed based on a 3D ultrasonic image of a plurality of frames and a 3D intermediate image of the plurality of frames added between the plurality of frames. Compared with the case where a moving image is displayed based only on a three-dimensional ultrasound image, the frame rate of the displayed image is increased.
ちなみに、特許文献1,2には、テレビジョン映像などを代表例とする一般的な画像のフレームレートを高める技術が開示されているに過ぎず、三次元超音波画像に関する具体的な開示もなければ、三次元超音波画像を対象とすることを示唆する内容すらない。
Incidentally, Patent Documents 1 and 2 only disclose a technique for increasing the frame rate of a general image such as a television image as a representative example, and there is no specific disclosure regarding a three-dimensional ultrasonic image. For example, the content does not suggest that a three-dimensional ultrasonic image is targeted.
望ましい具体例において、前記超音波診断装置は、前記移動情報の信頼性の程度に応じて、単位時間あたりのボリュームデータ数であるボリュームレートを制御する制御部をさらに有する、ことを特徴とする。
In a desirable specific example, the ultrasonic diagnostic apparatus further includes a control unit that controls a volume rate, which is the number of volume data per unit time, in accordance with the degree of reliability of the movement information.
上記構成において、移動情報の信頼性の程度は、例えば連続的な度合い(連続的に程度を示す評価値など)によって決定されてもよいし、例えば段階的な度合い(「高,中,低」または「高,低」など)によって決定されてもよい。移動情報の信頼性の程度が連続的な度合いによって決定されていれば、その連続的な度合いに応じてボリュームレートが連続的な値となるように制御することができる。移動情報の信頼性の程度が段階的な度合いによって決定されていれば、例えば、その段階的に度合いに応じてボリュームレートも段階的な値となるように制御することができる。
In the above configuration, the degree of reliability of the movement information may be determined by, for example, a continuous degree (e.g., an evaluation value indicating a continuous degree) or, for example, a stepped degree ("high, medium, low") Or “high, low”, etc.). If the degree of reliability of the movement information is determined by a continuous degree, the volume rate can be controlled to be a continuous value according to the continuous degree. If the degree of reliability of the movement information is determined by a stepped degree, for example, the volume rate can be controlled so as to have a stepped value according to the degree.
三次元中間画像は移動情報に基づいて得られるため、三次元中間画像の信頼性は移動情報の信頼性に依存する。そこで、移動情報の信頼性の程度に応じて、単位時間あたりのボリュームデータ数であるボリュームレートが制御される。例えば、各時相ごとに比較的高密度にボリュームデータが収集されるとボリュームレートは比較的低くなってしまうものの、移動情報の信頼性が比較的高い場合には三次元中間画像にも信頼性が認められると判断して、比較的低いボリュームレートによる比較的高密度なボリュームデータの収集が維持される。その一方、例えば、移動情報の信頼性が比較的低い場合には三次元中間画像の信頼性が低いことが予想されるため、ボリュームレートを高めて三次元中間画像の信頼性を高める制御が実現される。これにより、例えば、胎児の三次元動画像を得る場合に、移動情報の信頼性が比較的高い場合には、低いボリュームレートによる高密度なボリュームデータの収集を行い、例えば、胎児の動きが激しくなるなどの理由により移動情報の信頼性が低くなった場合に、ボリュームレートを高めることにより、移動情報の信頼性を向上させて例えば胎児の激しい動きに対応することなどが可能になる。
Since the 3D intermediate image is obtained based on the movement information, the reliability of the 3D intermediate image depends on the reliability of the movement information. Therefore, the volume rate, which is the number of volume data per unit time, is controlled according to the degree of reliability of the movement information. For example, if volume data is collected at a relatively high density for each time phase, the volume rate will be relatively low, but if the reliability of movement information is relatively high, the reliability of the 3D intermediate image is also reliable. Therefore, collection of relatively high-density volume data at a relatively low volume rate is maintained. On the other hand, for example, when the reliability of movement information is relatively low, the reliability of the 3D intermediate image is expected to be low, so control that increases the volume rate and increases the reliability of the 3D intermediate image is realized. Is done. Thus, for example, when obtaining a three-dimensional moving image of a fetus, if the reliability of movement information is relatively high, high-density volume data is collected at a low volume rate. When the reliability of the movement information becomes low due to such reasons, it is possible to improve the reliability of the movement information by increasing the volume rate, for example, to cope with the intense movement of the fetus.
望ましい具体例において、前記制御部は、信頼性の判定条件に基づいて前記移動情報の信頼性が低いと判定された場合に、前記ボリュームレートを増加させて前記三次元超音波画像の単位時間あたりのフレーム数であるフレームレートを増加させる、ことを特徴とする。
In a preferred embodiment, the control unit increases the volume rate per unit time of the three-dimensional ultrasonic image when it is determined that the reliability of the movement information is low based on a reliability determination condition. The frame rate which is the number of frames is increased.
望ましい具体例において、前記制御部は、超音波を立体的に送受するボリューム内における空間フレーム数と、各空間フレームを構成するビームライン数と、超音波のパルス繰り返し周期と、を含む複数の送受信パラメータのうちの少なくとも1つを変更することにより、前記ボリュームレートを制御する、ことを特徴とする。
In a preferred embodiment, the control unit transmits and receives a plurality of transmission / reception including a number of spatial frames in a volume for transmitting and receiving ultrasonic waves three-dimensionally, a number of beam lines constituting each spatial frame, and an ultrasonic pulse repetition period. The volume rate is controlled by changing at least one of the parameters.
望ましい具体例において、前記中間画像形成部は、前記移動情報として、前記各フレームの三次元超音波画像を構成する複数の画像要素の各画像要素ごとに各フレーム間における相関演算に基づいて移動ベクトルを導出し、複数の画像要素とそれらの移動ベクトルに基づいて当該各フレーム間に対応した複数の中間画像要素を得ることにより、複数の中間画像要素で構成された前記三次元中間画像を形成する、ことを特徴とする。
In a desirable specific example, the intermediate image forming unit uses, as the movement information, a movement vector based on a correlation calculation between the frames for each image element of a plurality of image elements constituting the three-dimensional ultrasonic image of each frame. And obtaining the plurality of intermediate image elements corresponding to each frame based on the plurality of image elements and their movement vectors, thereby forming the three-dimensional intermediate image composed of the plurality of intermediate image elements. It is characterized by that.
上記構成において、移動ベクトルの導出には、例えば、各フレーム間における画像同士のパターンマッチング処理を利用することが望ましいものの、勾配法、位相限定相関法などの他の公知の手法が利用されてもよい。
In the above configuration, for the derivation of the movement vector, for example, it is desirable to use pattern matching processing between images between frames, but other known methods such as a gradient method and a phase-only correlation method may be used. Good.
望ましい具体例において、前記超音波診断装置は、前記複数の画像要素の各画像要素ごとに前記相関演算により得られる相関値の大きさに基づいて、前記移動情報として導出される移動ベクトルの信頼性の程度を示す評価値を算出する評価部をさらに有し、前記制御部は、移動ベクトルの信頼性を示す前記評価値に基づいて、単位時間あたりのボリュームデータ数であるボリュームレートを制御する、ことを特徴とする。
In a preferred embodiment, the ultrasonic diagnostic apparatus is configured such that the reliability of the movement vector derived as the movement information based on the magnitude of the correlation value obtained by the correlation calculation for each image element of the plurality of image elements. An evaluation unit that calculates an evaluation value indicating the degree of the control, and the control unit controls a volume rate that is the number of volume data per unit time based on the evaluation value indicating the reliability of the movement vector. It is characterized by that.
本発明により、三次元超音波画像の動的な表示が改善される。例えば、本発明の好適な具体例によれば、複数フレームの三次元超音波画像とそれらの複数フレーム間に追加された複数フレームの三次元中間画像に基づいて三次元動画像が表示されるため、例えば複数フレームの三次元超音波画像のみに基づいて動画像を表示する場合に比べて、表示される画像のフレームレートが高められる。
The present invention improves the dynamic display of 3D ultrasound images. For example, according to a preferred embodiment of the present invention, a 3D moving image is displayed based on a 3D ultrasound image of a plurality of frames and a 3D intermediate image of a plurality of frames added between the plurality of frames. For example, the frame rate of the displayed image can be increased as compared with a case where a moving image is displayed based only on a three-dimensional ultrasonic image of a plurality of frames.
図1は、本発明の実施形態として好適な超音波診断装置の全体構成図である。プローブ10は、診断対象を含む三次元空間内に超音波を送受する超音波探触子である。プローブ10は、複数の振動素子を備えており、各振動素子が送受信部12から得られる送信信号に応じて三次元空間に超音波を送波する。また、三次元空間から超音波の反射波(エコー)を受波した各振動素子がその反射波に応じた受波信号を送受信部12に出力する。
FIG. 1 is an overall configuration diagram of an ultrasonic diagnostic apparatus suitable as an embodiment of the present invention. The probe 10 is an ultrasonic probe that transmits and receives ultrasonic waves in a three-dimensional space including a diagnosis target. The probe 10 includes a plurality of vibration elements, and each vibration element transmits an ultrasonic wave in a three-dimensional space according to a transmission signal obtained from the transmission / reception unit 12. In addition, each vibration element that receives an ultrasonic reflected wave (echo) from the three-dimensional space outputs a received signal corresponding to the reflected wave to the transmission / reception unit 12.
送受信部12は、プローブ10が備える複数の振動素子の各々に対応した送信信号を出力してプローブ10を送信制御する。その送信制御により、超音波の送信ビームが形成され、三次元空間内で送信ビームが走査される。
The transmission / reception unit 12 controls transmission of the probe 10 by outputting a transmission signal corresponding to each of the plurality of vibration elements included in the probe 10. By the transmission control, an ultrasonic transmission beam is formed, and the transmission beam is scanned in the three-dimensional space.
ビームデータ処理部14は、プローブ10が備える複数の振動素子に対応した複数の受波信号を送受信部12から得て、それら複数の受波信号に対して整相加算処理などのビーム形成処理を施す。これにより、超音波の受信ビームが形成されて三次元空間内で走査される。つまり、受信ビームのビームアドレスを異ならせながら、三次元空間内で受信ビームが走査され、ビームデータ処理部14は、複数のビームアドレスに対応した複数のラインデータを形成する。各ラインデータは、複数のエコーデータで構成される。
The beam data processing unit 14 obtains a plurality of received signals corresponding to the plurality of vibration elements included in the probe 10 from the transmission / reception unit 12, and performs beam forming processing such as phasing addition processing on the plurality of received signals. Apply. As a result, an ultrasonic reception beam is formed and scanned in the three-dimensional space. That is, the reception beam is scanned in the three-dimensional space while changing the beam address of the reception beam, and the beam data processing unit 14 forms a plurality of line data corresponding to the plurality of beam addresses. Each line data is composed of a plurality of echo data.
こうして、三次元空間内で超音波ビーム(送信ビームとそれに対応した受信ビーム)が立体的に走査され、三次元空間内から複数のエコーデータが得られる。なお、プローブ10は、超音波ビームを三次元空間内において走査して立体的にエコーデータを収集する3Dプローブである。例えば、一次元的に配列された複数の振動素子(1Dアレイ振動子)によって電子的に形成される走査面を機械的に動かすことにより超音波ビームが三次元的に走査される。また、二次元的に配列された複数の振動素子(2Dアレイ振動子)を電子的に制御して超音波ビームが三次元的に走査されてもよい。
Thus, an ultrasonic beam (transmission beam and reception beam corresponding thereto) is scanned three-dimensionally in the three-dimensional space, and a plurality of echo data are obtained from the three-dimensional space. The probe 10 is a 3D probe that collects echo data three-dimensionally by scanning an ultrasonic beam in a three-dimensional space. For example, the ultrasonic beam is scanned three-dimensionally by mechanically moving a scanning surface formed electronically by a plurality of vibration elements (1D array transducers) arranged one-dimensionally. Alternatively, the ultrasonic beam may be scanned three-dimensionally by electronically controlling a plurality of vibration elements (2D array transducers) arranged two-dimensionally.
ボリュームデータ記憶部16には、三次元空間内から得られた複数のエコーデータに基づくボリュームデータが記憶される。例えば、ビームデータ処理部14が複数のエコーデータに対して座標変換処理等を施し、後段の処理において好適な座標系にデータを変換してから、変換後のデータがボリュームデータとしてボリュームデータ記憶部16に記憶される。
The volume data storage unit 16 stores volume data based on a plurality of echo data obtained from the three-dimensional space. For example, the beam data processing unit 14 performs a coordinate conversion process or the like on a plurality of echo data, converts the data to a suitable coordinate system in the subsequent process, and then converts the converted data as volume data into a volume data storage unit 16 is stored.
例えば、ビームデータ処理部14は、超音波の走査座標系(例えばrθφ座標系)で得られた複数のエコーデータに対して、三次元の座標変換処理と補間処理などを施すことにより、三次元の直交座標系(xyz座標系)に対応した複数のボクセルデータを形成し、複数のボクセルデータで構成されるボリュームデータがボリュームデータ記憶部16に記憶される。
For example, the beam data processing unit 14 performs a three-dimensional coordinate conversion process, an interpolation process, and the like on a plurality of echo data obtained in an ultrasonic scanning coordinate system (for example, an rθφ coordinate system), thereby obtaining a three-dimensional image. A plurality of voxel data corresponding to the orthogonal coordinate system (xyz coordinate system) is formed, and volume data composed of the plurality of voxel data is stored in the volume data storage unit 16.
なお、ビームデータ処理部14が複数のエコーデータに対して二次元の座標変換処理を施すことにより、例えば、走査座標系のうち走査面に対応したrθ座標系が直交座標系(xy座標系)に変換されて、変換後のデータがボリュームデータとしてボリュームデータ記憶部16に記憶されてもよい。また、三次元空間内において超音波を立体的に走査することにより得られた複数のエコーデータが、超音波の立体的な走査に対応した走査座標系(例えばrθφ座標系)に対応したアドレスを付され、ボリュームデータとしてボリュームデータ記憶部16に記憶されてもよい。
The beam data processing unit 14 performs two-dimensional coordinate conversion processing on the plurality of echo data, so that, for example, the rθ coordinate system corresponding to the scanning plane in the scanning coordinate system is an orthogonal coordinate system (xy coordinate system). The converted data may be stored in the volume data storage unit 16 as volume data. In addition, a plurality of echo data obtained by three-dimensionally scanning ultrasonic waves in a three-dimensional space has addresses corresponding to a scanning coordinate system (for example, rθφ coordinate system) corresponding to ultrasonic three-dimensional scanning. And may be stored in the volume data storage unit 16 as volume data.
ボリュームデータは、複数時相に亘って各時相ごとに次々に形成されてボリュームデータ記憶部16に記憶される。
Volume data is formed one after another for each time phase over a plurality of time phases and stored in the volume data storage unit 16.
三次元画像形成部20は、ボリュームデータ記憶部16に記憶されたボリュームデータに基づいて三次元超音波画像を形成する。三次元画像形成部20は、胎児等の診断対象を含む三次元空間に対応したボリュームデータに基づいて、その診断対象を立体的に映し出した三次元超音波画像を形成する。三次元超音波画像の好適な具体例は、公知のボリュームレンダリング処理により得られるレンダリング画像である。
The three-dimensional image forming unit 20 forms a three-dimensional ultrasonic image based on the volume data stored in the volume data storage unit 16. The three-dimensional image forming unit 20 forms a three-dimensional ultrasonic image that three-dimensionally displays the diagnosis target based on volume data corresponding to a three-dimensional space including the diagnosis target such as a fetus. A preferred specific example of the three-dimensional ultrasound image is a rendering image obtained by a known volume rendering process.
ボリュームレンダリング処理においては、三次元空間に対応したボリュームデータの外側に演算上の仮想的な視点VPが設定され、ボリュームデータを間に挟んで、視点VPと反対側に演算上の二次元平面としてのスクリーンが仮想的に設定される。その視点VPを基準として複数のレイ(透視線)が定義される。各レイは、例えば視点VPを起点としてボリュームデータを貫通してからスクリーン上に達するように設定される。これにより、各レイ上またはそのレイの近傍において、そのレイに対応した複数ボクセルのボクセルデータが対応することになる。そして、各レイごとに、視点VP側から、そのレイに対応した複数ボクセルに対してレンダリング法に基づくボクセル演算を逐次的に実行すると、最終のボクセル演算の結果としてそのレイに対応した画素値が決定される。そして、複数のレイから得られる複数の画素値をスクリーン上にマッピングすることによりレンダリング画像が得られる。
In the volume rendering process, a virtual virtual viewpoint VP is set outside the volume data corresponding to the three-dimensional space, and the two-dimensional plane is calculated on the opposite side of the viewpoint VP with the volume data in between. The screen is virtually set. A plurality of rays (perspective lines) are defined on the basis of the viewpoint VP. For example, each ray is set so as to reach the screen after penetrating the volume data starting from the viewpoint VP. Thereby, voxel data of a plurality of voxels corresponding to the ray correspond to each ray or in the vicinity of the ray. Then, for each ray, when the voxel operation based on the rendering method is sequentially performed on the plurality of voxels corresponding to the ray from the viewpoint VP side, the pixel value corresponding to the ray is obtained as a result of the final voxel operation. It is determined. A rendering image is obtained by mapping a plurality of pixel values obtained from a plurality of rays on the screen.
ボリュームデータ記憶部16には、複数時相のボリュームデータが記憶されており、三次元画像形成部20は、各時相ごとに、その時相に対応したボリュームデータに基づいてその時相に対応した三次元超音波画像(レンダリング画像)を形成する。これにより、複数時相に対応した複数フレームの三次元超音波画像が次々に形成される。そして、中間画像形成部50により、複数フレームの三次元超音波画像の各フレーム間に追加される1又は複数フレームの三次元中間画像が形成される。
The volume data storage unit 16 stores volume data of a plurality of time phases, and the three-dimensional image forming unit 20 performs, for each time phase, a tertiary corresponding to the time phase based on the volume data corresponding to the time phase. An original ultrasonic image (rendered image) is formed. As a result, a plurality of frames of three-dimensional ultrasound images corresponding to a plurality of time phases are successively formed. Then, the intermediate image forming unit 50 forms one or a plurality of frames of a three-dimensional intermediate image added between the frames of the plurality of frames of the three-dimensional ultrasound image.
図2は、三次元超音波画像と三次元中間画像の具体例を示す図である。図2(A)には複数フレームの三次元超音波画像(3D超音波画像)の具体例が図示されている。図2(A)には、複数フレームのうちのフレーム1~5までの3D超音波画像が代表的に図示されている。そして、複数フレームの3D超音波画像の各フレーム間に、1又は複数フレームの三次元中間画像(3D中間画像)が追加されて、三次元動画像(3D動画像)用のフレーム列が形成される。
FIG. 2 is a diagram showing a specific example of a three-dimensional ultrasonic image and a three-dimensional intermediate image. FIG. 2A shows a specific example of a three-dimensional ultrasonic image (3D ultrasonic image) of a plurality of frames. FIG. 2A representatively shows 3D ultrasound images of frames 1 to 5 out of a plurality of frames. Then, one or a plurality of three-dimensional intermediate images (3D intermediate images) are added between the frames of the plurality of frames of the 3D ultrasound image to form a frame sequence for a three-dimensional moving image (3D moving image). The
図2(B)には、3D動画像用のフレーム列の具体例が図示されている。図2(B)に示す具体例では、3D超音波画像の各フレーム間に4フレームの3D中間画像が追加されている。つまり、3D超音波画像のフレーム1とフレーム2の間に4フレーム(フレーム数4)の3D中間画像が追加されており、3D超音波画像のフレーム2とフレーム3の間と、フレーム3とフレーム4の間と、フレーム4とフレーム5の間にも、それぞれ、4フレームの3D中間画像が追加されている。
FIG. 2B shows a specific example of a frame sequence for 3D moving images. In the specific example shown in FIG. 2B, 4 frames of 3D intermediate images are added between the frames of the 3D ultrasound image. That is, 4 frames (4 frames) of 3D intermediate images are added between the frame 1 and the frame 2 of the 3D ultrasonic image, and between the frame 2 and the frame 3 of the 3D ultrasonic image and the frame 3 and the frame. 4 frames and 4 frames are also added between the frames 4 and 5, respectively.
3D中間画像を追加することにより、追加前のフレームレートよりも追加後のフレームレートが高められる。つまり、3D超音波画像のみの場合における単位時間あたりのフレーム数(フレームレート)よりも、3D超音波画像に3D中間画像が追加された3D動画像用フレーム列における単位時間あたりのフレーム数(フレームレート)が多く(高く)なる。例えば、図2に示す具体例においては、図2(A)に示す3D超音波画像のみのフレームレートと比較して、図2(B)に示す3D動画像用フレーム列のフレームレートは5倍となる。
追加 By adding the 3D intermediate image, the frame rate after the addition can be made higher than the frame rate before the addition. That is, the number of frames per unit time (frame) in the 3D moving image frame sequence in which the 3D intermediate image is added to the 3D ultrasound image, rather than the number of frames per unit time (frame rate) in the case of only the 3D ultrasound image. (Rate) increases (higher). For example, in the specific example shown in FIG. 2, the frame rate of the 3D moving image frame sequence shown in FIG. 2B is five times higher than the frame rate of only the 3D ultrasound image shown in FIG. It becomes.
例えば、複数フレームの3D超音波画像のフレームレートをM倍(Mは2以上の整数)にしたいのであれば、3D超音波画像の各フレーム間に(M-1)フレームの3D中間画像を追加すればよい。
For example, if you want to multiply the frame rate of multiple frames of 3D ultrasound images by M times (M is an integer greater than or equal to 2), add (M-1) frames of 3D intermediate images between each frame of 3D ultrasound images do it.
図1に戻り、表示画像形成部80は、三次元画像形成部20において形成された複数フレームの三次元超音波画像(3D超音波画像)と、中間画像形成部50において形成された複数フレームの三次元中間画像(3D中間画像)に基づいて、三次元動画像用のフレーム列(図2の3D動画像用フレーム列)を形成する。そして、表示画像形成部80は、三次元動画像用のフレーム列(3D動画像用フレーム列)に基づいて、三次元の超音波画像を動的に示した三次元動画像(3D動画像)を表示部82に表示させる。
Returning to FIG. 1, the display image forming unit 80 includes a plurality of frames of three-dimensional ultrasound images (3D ultrasound images) formed in the three-dimensional image forming unit 20 and a plurality of frames formed in the intermediate image forming unit 50. Based on the three-dimensional intermediate image (3D intermediate image), a frame sequence for the three-dimensional moving image (3D moving image frame sequence in FIG. 2) is formed. The display image forming unit 80 then displays a three-dimensional moving image (3D moving image) that dynamically shows a three-dimensional ultrasonic image based on a frame sequence for a three-dimensional moving image (a frame sequence for a 3D moving image). Is displayed on the display unit 82.
なお、三次元中間画像(3D中間画像)の形成に利用される移動ベクトルは、移動ベクトル演算部30において導出される。また、移動ベクトル評価部40において、移動ベクトルの信頼性の程度が評価される。
The movement vector used for forming the three-dimensional intermediate image (3D intermediate image) is derived by the movement vector calculation unit 30. In addition, the movement vector evaluation unit 40 evaluates the degree of reliability of the movement vector.
制御部100は、図1の超音波診断装置内を全体的に制御する。制御部100による全体的な制御には、操作デバイス90を介して、医師や検査技師などのユーザから受け付けた指示も反映される。
The control unit 100 generally controls the inside of the ultrasonic diagnostic apparatus in FIG. The overall control by the control unit 100 also reflects an instruction received from a user such as a doctor or a laboratory technician via the operation device 90.
図1に示す構成(符号を付された各部)のうち、送受信部12,ビームデータ処理部14,三次元画像形成部20,移動ベクトル演算部30,移動ベクトル評価部40,中間画像形成部50,表示画像形成部80の各部は、例えば電気電子回路やプロセッサ等のハードウェアを利用して実現することができ、その実現において必要に応じてメモリ等のデバイスが利用されてもよい。また、上記各部に対応した機能の少なくとも一部がコンピュータにより実現されてもよい。つまり、上記各部に対応した機能の少なくとも一部が、CPUやプロセッサやメモリ等のハードウェアと、CPUやプロセッサの動作を規定するソフトウェア(プログラム)との協働により実現されてもよい。
Among the configurations shown in FIG. 1 (respectively assigned parts), the transmission / reception unit 12, the beam data processing unit 14, the three-dimensional image forming unit 20, the movement vector calculation unit 30, the movement vector evaluation unit 40, and the intermediate image formation unit 50 Each unit of the display image forming unit 80 can be realized by using hardware such as an electric / electronic circuit or a processor, for example, and a device such as a memory may be used as necessary in the realization. In addition, at least some of the functions corresponding to the above-described units may be realized by a computer. That is, at least a part of the functions corresponding to the above-described units may be realized by cooperation between hardware such as a CPU, a processor, and a memory and software (program) that defines the operation of the CPU and the processor.
ボリュームデータ記憶部16は、例えば、半導体メモリやハードディスクドライブなどの記憶デバイスによって実現することができる。表示部82の好適な具体例は、液晶ディスプレイ等である。操作デバイス90は、例えばマウス、キーボード、トラックボール、タッチパネル、その他のスイッチ類等のうちの少なくとも一つにより実現できる。そして制御部100は、例えば、CPUやプロセッサやメモリ等のハードウェアと、CPUやプロセッサの動作を規定するソフトウェア(プログラム)との協働により実現することができる。
The volume data storage unit 16 can be realized by a storage device such as a semiconductor memory or a hard disk drive. A preferred specific example of the display unit 82 is a liquid crystal display or the like. The operation device 90 can be realized by at least one of, for example, a mouse, a keyboard, a trackball, a touch panel, and other switches. The control unit 100 can be realized by, for example, cooperation between hardware such as a CPU, a processor, and a memory, and software (program) that defines the operation of the CPU and the processor.
図1の超音波診断装置の全体構成は以上のとおりである。次に、図1の超音波診断装置により実現される機能の具体例について詳述する。なお、図1に示した構成(符号を付された各部)については、以下の説明において図1の符号を利用する。
The overall configuration of the ultrasonic diagnostic apparatus in FIG. 1 is as described above. Next, specific examples of functions realized by the ultrasonic diagnostic apparatus of FIG. 1 will be described in detail. In addition, about the structure (each part to which the code | symbol was attached | subjected) shown in FIG. 1, the code | symbol of FIG. 1 is utilized in the following description.
図3は、移動ベクトルを導出する処理の具体例を示す図である。移動ベクトル演算部30は、複数フレームの三次元超音波画像(3D超音波画像)の互いに隣接する2つのフレームの間において、三次元超音波画像を構成する複数画素の各々についての移動ベクトルを導出(算出)する。移動ベクトルの導出にはパターンマッチング処理が利用される。
FIG. 3 is a diagram showing a specific example of the process for deriving the movement vector. The movement vector calculation unit 30 derives a movement vector for each of the plurality of pixels constituting the three-dimensional ultrasonic image between two adjacent frames of the three-dimensional ultrasonic image (3D ultrasonic image) of the plurality of frames. (calculate. A pattern matching process is used to derive the movement vector.
図3には、複数フレームのうちの互いに隣接するフレームn(nは自然数)とフレーム(n+1)の3D超音波画像が図示されている。移動ベクトル演算部30は、フレームnの3D超音波画像を構成する複数画素の各画素ごとに、パターンマッチング処理により移動ベクトルを算出し、フレームnの3D超音波画像を構成する複数画素、望ましくは全画素について、各画素の移動ベクトルを導出する。
FIG. 3 shows 3D ultrasound images of a frame n (n is a natural number) and a frame (n + 1) that are adjacent to each other among a plurality of frames. The movement vector calculation unit 30 calculates a movement vector for each pixel of a plurality of pixels constituting the 3D ultrasound image of the frame n by pattern matching processing, and a plurality of pixels constituting the 3D ultrasound image of the frame n, preferably The movement vector of each pixel is derived for all pixels.
パターンマッチング処理においては、フレームnの3D超音波画像の各画素ごとに、例えばその画素を取り囲むようにテンプレートTが設定される。そして、フレーム(n+1)の3D超音波画像内において、例えばテンプレートTに対応した位置の画像領域を含むように探索領域SAが設定される。探索領域SAの設定には、公知の様々な手法を利用することができる。もちろん、例えばフレーム(n+1)の3D超音波画像内の全域が探索領域SAとされてもよい。
In the pattern matching process, for each pixel of the 3D ultrasonic image of frame n, for example, a template T is set so as to surround the pixel. Then, the search area SA is set so as to include, for example, an image area at a position corresponding to the template T in the 3D ultrasonic image of the frame (n + 1). Various known methods can be used for setting the search area SA. Of course, for example, the entire area in the 3D ultrasound image of the frame (n + 1) may be set as the search area SA.
テンプレートTと探索領域SAが設定されると、探索領域SA内においてテンプレートTが移動され、各移動位置において、フレームnの3D超音波画像のテンプレートT内の複数画素と、フレーム(n+1)の3D超音波画像のテンプレートT内の複数画素とに基づいて、相関演算が行われる。例えば、フレームn内のテンプレートTに対応した位置を初期位置とし、その初期位置からの各変位(dx,dy)ごとに相関値が算出され、探索領域SA内の全域に亘る複数変位に対応した相関値が算出される。
When the template T and the search area SA are set, the template T is moved in the search area SA. At each movement position, a plurality of pixels in the template T of the 3D ultrasound image of the frame n and the 3D of the frame (n + 1). A correlation calculation is performed based on a plurality of pixels in the template T of the ultrasonic image. For example, a position corresponding to the template T in the frame n is set as an initial position, and a correlation value is calculated for each displacement (dx, dy) from the initial position, and corresponds to a plurality of displacements throughout the search area SA. A correlation value is calculated.
相関値とは画像データ間(複数画素と複数画素)の相関関係の程度(類似の程度)を示す数値であり、相関値の算出には相関演算の各手法に応じた公知の数式が用いられる。相関値としては、例えば、SSD(Sum of Square Difference:差の二乗和)などが好適であり、SSDは、類似の度合が大きいほど小さな値を示す。なお、例えば、位相限定相関法や相互相関法等により類似の度合が大きいほど大きな値を示す相関値が利用されてもよい。
The correlation value is a numerical value indicating the degree of correlation (similarity) between image data (a plurality of pixels and a plurality of pixels), and a known mathematical formula corresponding to each method of correlation calculation is used for calculating the correlation value. . As the correlation value, for example, SSD (Sum of Square Difference) is suitable, and the SSD indicates a smaller value as the degree of similarity increases. Note that, for example, a correlation value indicating a larger value may be used as the degree of similarity increases by a phase-only correlation method, a cross-correlation method, or the like.
探索領域SA内の全域に亘る複数変位に対応した相関値が算出されると、複数変位の中から最も類似の度合が大きい変位が特定され、演算対象となる各画素の移動先が決定される。
When correlation values corresponding to a plurality of displacements over the entire search area SA are calculated, a displacement having the highest degree of similarity is specified from the plurality of displacements, and a movement destination of each pixel to be calculated is determined. .
図3には、フレームnの3D超音波画像を構成する複数画素の代表例として画素Aが図示されている。そして、画素Aに関するパターンマッチング処理により、フレーム(n+1)の3D超音波画像内において、画素Aの移動先として画素Bが特定される。移動ベクトル演算部30は、画素Aの位置(座標)を始点として画素Bの位置(座標)を終点とするベクトルを画素Aの移動ベクトルABとする。移動ベクトル演算部30は、フレームn内の複数画素について、望ましくは全画素について、各画素ごとに、その画素の位置を始点としてその画素の移動先を終点とする移動ベクトルを導出する。
FIG. 3 shows a pixel A as a representative example of a plurality of pixels constituting the 3D ultrasonic image of the frame n. Then, the pixel B is specified as the movement destination of the pixel A in the 3D ultrasonic image of the frame (n + 1) by the pattern matching process regarding the pixel A. The movement vector calculation unit 30 sets a vector having the position (coordinate) of the pixel A as a start point and the position (coordinate) of the pixel B as an end point as a movement vector AB of the pixel A. The movement vector calculation unit 30 derives a movement vector having a position of the pixel as a start point and a movement destination of the pixel as an end point for each of the plurality of pixels in the frame n, preferably for all the pixels.
さらに、移動ベクトル演算部30は、フレームnの3D超音波画像を構成する各画素の移動ベクトルに対して、平滑化処理を施すことが望ましい。
Furthermore, it is desirable that the movement vector calculation unit 30 performs a smoothing process on the movement vector of each pixel constituting the 3D ultrasonic image of the frame n.
図4は、移動ベクトルに対する平滑化処理の具体例を示す図である。移動ベクトル演算部30は、各注目画素ごとに、その注目画素とその近傍に位置する複数画素に対応した複数の移動ベクトルの平均ベクトルを算出し、算出した平均ベクトルをその注目画素における平滑化後の移動ベクトルとする。
FIG. 4 is a diagram showing a specific example of the smoothing process for the movement vector. The movement vector calculation unit 30 calculates, for each target pixel, an average vector of a plurality of movement vectors corresponding to the target pixel and a plurality of pixels located in the vicinity thereof, and the calculated average vector is smoothed after the target pixel. The movement vector of
図4には、複数画素の代表例として画素Aが図示されており、画素Aとその周辺の8画素からなる9画素に対応した9つの移動ベクトルの平均ベクトルが算出され、算出された平均ベクトルが画素Aの平滑化後の移動ベクトルとされる。なお、移動ベクトル演算部30は、平均ベクトルの算出において、複数の移動ベクトルの中から特異な移動ベクトルを除外してから平均ベクトルを算出するようにしてもよい。
FIG. 4 shows a pixel A as a representative example of a plurality of pixels, and an average vector of nine movement vectors corresponding to nine pixels consisting of the pixel A and eight peripheral pixels is calculated. Is a movement vector after the smoothing of the pixel A. In addition, in the calculation of the average vector, the movement vector calculation unit 30 may calculate the average vector after excluding a specific movement vector from a plurality of movement vectors.
各画素の移動ベクトルを平滑化処理することにより、例えば、ある画素の移動ベクトルが誤検出された場合においても、その誤検出に伴う悪影響を低減または除去することができる。
By smoothing the movement vector of each pixel, for example, even when a movement vector of a certain pixel is erroneously detected, it is possible to reduce or eliminate an adverse effect associated with the erroneous detection.
移動ベクトル演算部30により、複数画素に対応した複数の移動ベクトル(平滑化後の移動ベクトルが望ましい)が算出されると、算出された移動ベクトルに基づいて三次元中間画像(3D中間画像)が形成される。
When the movement vector calculation unit 30 calculates a plurality of movement vectors corresponding to a plurality of pixels (preferably a movement vector after smoothing), a three-dimensional intermediate image (3D intermediate image) is generated based on the calculated movement vector. It is formed.
図5は、三次元中間画像を形成する処理の具体例1を示す図である。中間画像形成部50は、複数フレームの三次元超音波画像(3D超音波画像)の互いに隣接する2つのフレームの間において得られた複数画素の移動ベクトルに基づいて、そのフレーム間に追加される1又は複数フレームの三次元中間画像(3D中間画像)を形成する。
FIG. 5 is a diagram showing a specific example 1 of a process for forming a three-dimensional intermediate image. The intermediate image forming unit 50 is added between the frames based on the movement vector of the plurality of pixels obtained between two adjacent frames of the three-dimensional ultrasound image (3D ultrasound image) of the plurality of frames. One or a plurality of frames of a three-dimensional intermediate image (3D intermediate image) is formed.
図5には、3D超音波画像のフレームn(nは自然数)とフレーム(n+1)の間に追加される中間画像を形成する具体例が図示されている。図5(1)に示す移動ベクトルABはフレームnの3D超音波画像内における画素Aに対応した移動ベクトル(図3,図4参照)である。つまり、画素Aの移動先がフレーム(n+1)の3D超音波画像内における画素Bの位置(座標)である。中間画像形成部50は、図5(1)に示す移動ベクトルABから図5(2)に示す中間ベクトルACを得る。
FIG. 5 shows a specific example of forming an intermediate image added between a frame n (n is a natural number) and a frame (n + 1) of the 3D ultrasound image. The movement vector AB shown in FIG. 5A is a movement vector corresponding to the pixel A in the 3D ultrasound image of the frame n (see FIGS. 3 and 4). That is, the movement destination of the pixel A is the position (coordinates) of the pixel B in the 3D ultrasonic image of the frame (n + 1). The intermediate image forming unit 50 obtains the intermediate vector AC shown in FIG. 5 (2) from the movement vector AB shown in FIG. 5 (1).
図6は、中間ベクトルの具体例1を示す図である。図6には、フレームnの3D超音波画像とフレーム(n+1)の3D超音波画像の間における中間ベクトルの具体例が図示されている。移動ベクトルABは、フレームnの3D超音波画像内における画素Aに対応した移動ベクトルであり、画素Aの移動先がフレーム(n+1)の3D超音波画像内における画素Bの位置(座標)である。
FIG. 6 is a diagram showing a specific example 1 of the intermediate vector. FIG. 6 shows a specific example of an intermediate vector between the 3D ultrasound image of frame n and the 3D ultrasound image of frame (n + 1). The movement vector AB is a movement vector corresponding to the pixel A in the 3D ultrasonic image of the frame n, and the movement destination of the pixel A is the position (coordinate) of the pixel B in the 3D ultrasonic image of the frame (n + 1). .
また、図6には、フレームレートをM倍(Mは2以上の整数)とする具体例が図示されている。つまり、フレームnの3D超音波画像とフレーム(n+1)の3D超音波画像の間に、(M-1)フレームの3D中間画像が追加される。図6に示す具体例では、フレームnの3D超音波画像に近い(時相的に近い)順に、フレーム1,2,3,・・・,M-1の3D中間画像が配置されている。
FIG. 6 shows a specific example in which the frame rate is M times (M is an integer of 2 or more). That is, the 3D intermediate image of (M−1) frames is added between the 3D ultrasound image of frame n and the 3D ultrasound image of frame (n + 1). In the specific example shown in FIG. 6, the 3D intermediate images of frames 1, 2, 3,..., M−1 are arranged in the order close to the 3D ultrasound image of frame n (close to the temporal phase).
中間画像形成部50は、画素Aに対応した移動ベクトルABから画素Aに関する中間ベクトルAC(AC1,AC2,AC3,・・・,AC(M-1))を導出する。中間ベクトルACの始点と方向は移動ベクトルABと同じであり、中間ベクトルACの大きさ(ベクトルの長さ)は、3D中間画像のフレーム番号(1,2,3,・・・,M-1)に応じて決定される。
The intermediate image forming unit 50 derives an intermediate vector AC (AC1, AC2, AC3,..., AC (M−1)) regarding the pixel A from the movement vector AB corresponding to the pixel A. The start point and direction of the intermediate vector AC are the same as those of the movement vector AB, and the size (vector length) of the intermediate vector AC is determined by the frame number (1, 2, 3,..., M−1) of the 3D intermediate image. ).
例えば、図6において、フレーム1の3D中間画像に対応した中間ベクトルAC1は、始点と方向は移動ベクトルABと同じであり、大きさ(ベクトルの長さ)が移動ベクトルABの1/Mとされる。また。フレーム2の3D中間画像に対応した中間ベクトルAC2は、始点と方向は移動ベクトルABと同じであり、大きさ(ベクトルの長さ)が移動ベクトルABの2/Mとされる。そして、フレーム(M-1)の3D中間画像に対応した中間ベクトルAC(M-1)は、始点と方向は移動ベクトルABと同じであり、大きさ(ベクトルの長さ)が移動ベクトルABの(M-1)/Mとされる。
For example, in FIG. 6, the intermediate vector AC1 corresponding to the 3D intermediate image of frame 1 has the same starting point and direction as the movement vector AB, and the size (the length of the vector) is 1 / M of the movement vector AB. The Also. The intermediate vector AC2 corresponding to the 3D intermediate image of the frame 2 has the same starting point and direction as the movement vector AB, and the size (the length of the vector) is 2 / M of the movement vector AB. The intermediate vector AC (M-1) corresponding to the 3D intermediate image of the frame (M-1) has the same starting point and direction as the movement vector AB, and the magnitude (vector length) of the movement vector AB. (M-1) / M.
中間画像形成部50は、フレームnの3D超音波画像を構成する複数画素の各画素ごとに、その画素に対応した移動ベクトルに基づいて、3D中間画像の各フレームに対応した中間ベクトルを生成する。
The intermediate image forming unit 50 generates an intermediate vector corresponding to each frame of the 3D intermediate image based on the movement vector corresponding to each pixel of the plurality of pixels constituting the 3D ultrasonic image of the frame n. .
図5に戻り、図5(2)に示す中間ベクトルACは、フレームnの3D超音波画像の画素Aに関する中間ベクトルであり、3D中間画像の注目フレーム(例えば図6におけるフレーム1~M-1までの3D中間画像のいずれか)に対応した中間ベクトルである。
Returning to FIG. 5, the intermediate vector AC shown in FIG. 5 (2) is an intermediate vector related to the pixel A of the 3D ultrasound image of frame n, and is the frame of interest of the 3D intermediate image (for example, frames 1 to M-1 in FIG. 6). Intermediate vector corresponding to any of the 3D intermediate images).
中間画像形成部50は、フレームnの3D超音波画像を構成する複数画素について、望ましくは全画素について、各画素ごとに中間ベクトルを生成する。そして、中間画像形成部50は、複数画素に対応した複数の中間ベクトルのうち、ベクトルの終点が注目画素Zの位置(座標)に最も近い中間ベクトルを選択する。図5(2)に示す具体例では、中間ベクトルACが選択される。
The intermediate image forming unit 50 generates an intermediate vector for each pixel for a plurality of pixels constituting the 3D ultrasonic image of the frame n, preferably for all pixels. Then, the intermediate image forming unit 50 selects an intermediate vector whose end point of the vector is closest to the position (coordinates) of the pixel of interest Z among a plurality of intermediate vectors corresponding to the plurality of pixels. In the specific example shown in FIG. 5 (2), the intermediate vector AC is selected.
さらに、中間画像形成部50は、選択した中間ベクトルの終点が注目画素の位置となるように中間ベクトルを平行移動する。図5の具体例では、図5(2)の中間ベクトルACを平行移動した結果として、図5(3)の中間ベクトルA´C´が得られる。
Further, the intermediate image forming unit 50 translates the intermediate vector so that the end point of the selected intermediate vector becomes the position of the target pixel. In the specific example of FIG. 5, the intermediate vector A′C ′ of FIG. 5 (3) is obtained as a result of translation of the intermediate vector AC of FIG. 5 (2).
そして、中間画像形成部50は、平行移動後の中間ベクトルの始点近傍における複数画素の画素値に基づいて注目画素の画素値を決定する。例えば、図5(4)に示すように、フレームnの3D超音波画像内における座標A´の近傍4点の画素の画素値から、例えば線形補間処理等により、注目画素Zの画素値が算出される。そして、算出された注目画素Zの画素値が、3D中間画像の注目フレームを構成する中間画素とされる。
Then, the intermediate image forming unit 50 determines the pixel value of the target pixel based on the pixel values of a plurality of pixels in the vicinity of the start point of the intermediate vector after translation. For example, as shown in FIG. 5 (4), the pixel value of the pixel of interest Z is calculated from the pixel values of the four pixels in the vicinity of the coordinate A ′ in the 3D ultrasound image of the frame n by, for example, linear interpolation processing. Is done. Then, the calculated pixel value of the target pixel Z is set as an intermediate pixel constituting the target frame of the 3D intermediate image.
中間画像形成部50は、3D中間画像の注目フレームを構成する全画素の各々を注目画素として、図5を利用して説明した処理を実行し、3D中間画像の注目フレームを構成する全画素の画素値を得ることにより、その注目フレームに対応した3D中間画像を形成する。さらに、中間画像形成部50は、複数フレームの3D中間画像(例えば図6におけるフレーム1~M-1までの3D中間画像)の各フレームを注目フレームとして、図5を利用して説明した処理を実行することにより、複数フレームの3D中間画像を形成する。
The intermediate image forming unit 50 executes the processing described with reference to FIG. 5 using each of the pixels constituting the target frame of the 3D intermediate image as the target pixel, and performs the processing for all the pixels constituting the target frame of the 3D intermediate image. By obtaining the pixel value, a 3D intermediate image corresponding to the frame of interest is formed. Further, the intermediate image forming unit 50 performs the processing described with reference to FIG. 5 using each frame of a 3D intermediate image of a plurality of frames (for example, 3D intermediate images from frames 1 to M-1 in FIG. 6) as a frame of interest. By executing this, a 3D intermediate image of a plurality of frames is formed.
図7は、三次元中間画像を形成する処理の具体例2を示す図である。図7には、3D超音波画像のフレームn(nは自然数)とフレーム(n+1)の間に追加される中間画像を形成する具体例が図示されている。図7(1)に示す移動ベクトルABはフレームnの3D超音波画像内における画素Aに対応した移動ベクトル(図3,図4参照)である。つまり、画素Aの移動先がフレーム(n+1)の3D超音波画像内における画素Bの位置(座標)である。中間画像形成部50は、図7(1)に示す移動ベクトルABから図7(2)に示す中間ベクトルCBを得る。
FIG. 7 is a diagram showing a specific example 2 of a process for forming a three-dimensional intermediate image. FIG. 7 shows a specific example of forming an intermediate image added between a frame n (n is a natural number) and a frame (n + 1) of the 3D ultrasound image. A movement vector AB shown in FIG. 7A is a movement vector (see FIGS. 3 and 4) corresponding to the pixel A in the 3D ultrasonic image of the frame n. That is, the movement destination of the pixel A is the position (coordinates) of the pixel B in the 3D ultrasonic image of the frame (n + 1). The intermediate image forming unit 50 obtains the intermediate vector CB shown in FIG. 7 (2) from the movement vector AB shown in FIG. 7 (1).
図8は、中間ベクトルの具体例2を示す図である。図8には、フレームnの3D超音波画像とフレーム(n+1)の3D超音波画像の間における中間ベクトルの具体例が図示されている。移動ベクトルABは、フレームnの3D超音波画像内における画素Aに対応した移動ベクトルであり、画素Aの移動先がフレーム(n+1)の3D超音波画像内における画素Bの位置(座標)である。
FIG. 8 is a diagram showing a specific example 2 of the intermediate vector. FIG. 8 shows a specific example of an intermediate vector between the 3D ultrasound image of frame n and the 3D ultrasound image of frame (n + 1). The movement vector AB is a movement vector corresponding to the pixel A in the 3D ultrasonic image of the frame n, and the movement destination of the pixel A is the position (coordinate) of the pixel B in the 3D ultrasonic image of the frame (n + 1). .
また、図8には、フレームレートをM倍(Mは2以上の整数)とする具体例が図示されている。つまり、フレームnの3D超音波画像とフレーム(n+1)の3D超音波画像の間に、(M-1)フレームの3D中間画像が追加される。図8に示す具体例では、フレームnの3D超音波画像に近い(時相的に近い)順に、フレーム1,2,3,・・・,M-1の3D中間画像が配置されている。
FIG. 8 shows a specific example in which the frame rate is M times (M is an integer of 2 or more). That is, the 3D intermediate image of (M−1) frames is added between the 3D ultrasound image of frame n and the 3D ultrasound image of frame (n + 1). In the specific example shown in FIG. 8, the 3D intermediate images of frames 1, 2, 3,..., M−1 are arranged in the order close to the 3D ultrasound image of frame n (close in time).
中間画像形成部50は、画素Aに対応した移動ベクトルABから、移動ベクトルABの終点である画素Bを基準として、中間ベクトルCB(C1B,C2B,C3B,・・・,C(M-1)B)を導出する。中間ベクトルCBの終点と方向は移動ベクトルABと同じであり、中間ベクトルCBの大きさ(ベクトルの長さ)は、3D中間画像のフレーム番号(1,2,3,・・・,M-1)に応じて決定される。
The intermediate image forming unit 50 uses the intermediate vector CB (C1B, C2B, C3B,..., C (M−1) from the movement vector AB corresponding to the pixel A to the pixel B that is the end point of the movement vector AB. B) is derived. The end point and direction of the intermediate vector CB are the same as those of the movement vector AB, and the size (vector length) of the intermediate vector CB is the frame number (1, 2, 3,..., M−1) of the 3D intermediate image. ).
例えば、図8において、フレーム1の3D中間画像に対応した中間ベクトルC1Bは、終点と方向は移動ベクトルABと同じであり、大きさ(ベクトルの長さ)が移動ベクトルABの1/Mとされる。また。フレーム2の3D中間画像に対応した中間ベクトルC2Bは、終点と方向は移動ベクトルABと同じであり、大きさ(ベクトルの長さ)が移動ベクトルABの2/Mとされる。そして、フレーム(M-1)の3D中間画像に対応した中間ベクトルC(M-1)Bは、終点と方向は移動ベクトルABと同じであり、大きさ(ベクトルの長さ)が移動ベクトルABの(M-1)/Mとされる。
For example, in FIG. 8, the intermediate vector C1B corresponding to the 3D intermediate image of frame 1 has the same end point and direction as the movement vector AB, and the size (the length of the vector) is 1 / M of the movement vector AB. The Also. The intermediate vector C2B corresponding to the 3D intermediate image of the frame 2 has the same end point and direction as the movement vector AB, and the size (the length of the vector) is 2 / M of the movement vector AB. The intermediate vector C (M−1) B corresponding to the 3D intermediate image of the frame (M−1) has the same end point and direction as the movement vector AB, and the size (the length of the vector) is the movement vector AB. (M-1) / M.
中間画像形成部50は、フレームnの3D超音波画像を構成する複数画素の各画素ごとに、その画素に対応した移動ベクトルに基づいて、3D中間画像の各フレームに対応した中間ベクトルを生成する。
The intermediate image forming unit 50 generates an intermediate vector corresponding to each frame of the 3D intermediate image based on the movement vector corresponding to each pixel of the plurality of pixels constituting the 3D ultrasonic image of the frame n. .
図7に戻り、図7(2)に示す中間ベクトルCBは、フレームnの3D超音波画像の画素Aに関する中間ベクトルであり、3D中間画像の注目フレーム(例えば図8におけるフレーム1~M-1までの3D中間画像のいずれか)に対応した中間ベクトルである。
Returning to FIG. 7, the intermediate vector CB shown in FIG. 7 (2) is an intermediate vector related to the pixel A of the 3D ultrasound image of the frame n, and is a frame of interest of the 3D intermediate image (for example, frames 1 to M-1 in FIG. 8). Intermediate vector corresponding to any of the 3D intermediate images).
中間画像形成部50は、フレームnの3D超音波画像を構成する複数画素について、望ましくは全画素について、各画素ごとに中間ベクトルを生成する。そして、中間画像形成部50は、複数画素に対応した複数の中間ベクトルのうち、ベクトルの始点が注目画素Zの位置(座標)に最も近い中間ベクトルを選択する。図7(2)に示す具体例では、中間ベクトルCBが選択される。
The intermediate image forming unit 50 generates an intermediate vector for each pixel for a plurality of pixels constituting the 3D ultrasonic image of the frame n, preferably for all pixels. Then, the intermediate image forming unit 50 selects, from among a plurality of intermediate vectors corresponding to the plurality of pixels, an intermediate vector whose vector starting point is closest to the position (coordinates) of the target pixel Z. In the specific example shown in FIG. 7B, the intermediate vector CB is selected.
さらに、中間画像形成部50は、選択した中間ベクトルの始点が注目画素の位置となるように中間ベクトルを平行移動する。図7の具体例では、図7(2)の中間ベクトルCBを平行移動した結果として、図7(3)の中間ベクトルC´B´が得られる。
Further, the intermediate image forming unit 50 translates the intermediate vector so that the start point of the selected intermediate vector is the position of the target pixel. In the specific example of FIG. 7, the intermediate vector C′B ′ of FIG. 7 (3) is obtained as a result of translation of the intermediate vector CB of FIG. 7 (2).
そして、中間画像形成部50は、平行移動後の中間ベクトルの終点近傍における複数画素の画素値に基づいて注目画素の画素値を決定する。例えば図7(4)に示すように、フレーム(n+1)の3D超音波画像内における座標B´の近傍4点の画素の画素値から、例えば線形補間処理等により、注目画素Zの画素値が算出される。そして、算出された注目画素Zの画素値が、3D中間画像の注目フレームを構成する中間画素とされる。
Then, the intermediate image forming unit 50 determines the pixel value of the target pixel based on the pixel values of a plurality of pixels in the vicinity of the end point of the intermediate vector after translation. For example, as shown in FIG. 7 (4), the pixel value of the target pixel Z is obtained from the pixel values of the four pixels near the coordinate B ′ in the 3D ultrasound image of the frame (n + 1) by, for example, linear interpolation processing. Calculated. Then, the calculated pixel value of the target pixel Z is set as an intermediate pixel constituting the target frame of the 3D intermediate image.
中間画像形成部50は、3D中間画像の注目フレームを構成する全画素の各々を注目画素として、図7を利用して説明した処理を実行し、3D中間画像の注目フレームを構成する全画素の画素値を得ることにより、その注目フレームに対応した3D中間画像を形成する。さらに、中間画像形成部50は、複数フレームの3D中間画像(例えば図8におけるフレーム1~M-1までの3D中間画像)の各フレームを注目フレームとして、図7を利用して説明した処理を実行することにより、複数フレームの3D中間画像を形成する。
The intermediate image forming unit 50 executes the processing described with reference to FIG. 7 using each of the pixels constituting the target frame of the 3D intermediate image as the target pixel, and performs the processing for all the pixels constituting the target frame of the 3D intermediate image. By obtaining the pixel value, a 3D intermediate image corresponding to the frame of interest is formed. Further, the intermediate image forming unit 50 performs the processing described with reference to FIG. 7 using each frame of the 3D intermediate image of a plurality of frames (for example, the 3D intermediate images from frames 1 to M-1 in FIG. 8) as the target frame. By executing this, a 3D intermediate image of a plurality of frames is formed.
例えば、図5と図6を利用して説明した具体例1または図7と図8を利用して説明した具体例2により、複数フレームの3D超音波画像の複数フレーム間に追加される複数フレームの3D中間画像が形成される。
For example, according to Specific Example 1 described using FIGS. 5 and 6 or Specific Example 2 described using FIGS. 7 and 8, a plurality of frames added between a plurality of frames of a 3D ultrasound image of a plurality of frames. The 3D intermediate image is formed.
上述したように、三次元中間画像(3D中間画像)の形成には、移動ベクトル演算部30において導出される移動ベクトルが利用される。移動ベクトル演算部30は、三次元超音波画像(3D超音波画像)のフレームn内の複数画素について、望ましくは全画素について、各画素ごとに、その画素の位置を始点としてその画素の移動先を終点とする移動ベクトルを導出する(図3参照)。
As described above, the movement vector derived by the movement vector calculation unit 30 is used to form the three-dimensional intermediate image (3D intermediate image). The movement vector calculation unit 30 is configured to move the pixel from the position of the pixel, starting from the position of each pixel, preferably for all the pixels in the frame n of the three-dimensional ultrasonic image (3D ultrasonic image). A movement vector with ending at is derived (see FIG. 3).
移動ベクトル評価部40は、3D超音波画像の各フレーム内の複数画素に対応した複数の移動ベクトルに関する信頼性を評価する。例えば、移動ベクトル演算部30によるパターンマッチング処理において、最も相関が強い(最も類似の度合が大きい)として選択された各画素の移動先における相関値に基づいて移動ベクトルの信頼性が評価される。
The movement vector evaluation unit 40 evaluates reliability related to a plurality of movement vectors corresponding to a plurality of pixels in each frame of the 3D ultrasound image. For example, in the pattern matching process by the movement vector calculation unit 30, the reliability of the movement vector is evaluated based on the correlation value at the movement destination of each pixel selected as having the strongest correlation (the most similar degree).
具体的には、相関が強い(類似の程度が大きい)ほど小さな値となる相関値が利用されており、算出された相関値が閾値を超えた場合(または閾値以上の場合)には、その相関値が信頼できる値ではなく、その相関値に基づいて得られた移動ベクトルの信頼性が低いと判定される。そして、例えば、3D超音波画像の各フレームごとに、そのフレームを構成する複数画素のうちの、移動ベクトルの信頼性が低いと判定された画素数の割合が、そのフレームにおける移動ベクトルの信頼性の評価値とされる。この具体例の場合、各フレームごとに得られる信頼性の評価値が大きいほど、そのフレームの移動ベクトルの信頼性が低いことを示している。
Specifically, a correlation value that is smaller as the correlation is stronger (similarity is greater) is used, and when the calculated correlation value exceeds the threshold (or above the threshold), It is determined that the correlation value is not a reliable value and the reliability of the movement vector obtained based on the correlation value is low. For example, for each frame of the 3D ultrasound image, the ratio of the number of pixels determined to be low in the reliability of the movement vector among the plurality of pixels constituting the frame is the reliability of the movement vector in the frame. The evaluation value. In this specific example, the greater the reliability evaluation value obtained for each frame, the lower the reliability of the motion vector of that frame.
そして、例えば、各フレームの移動ベクトルの信頼性が低い場合には、例えば、信頼性の評価値が閾値よりも大きい場合には、例えば、パターンマッチングにおける探索領域SA(図3)が広げられ、各画素の移動先の選択範囲を広げて移動先の特定精度を高めることが望ましい。なお、探索領域SAを広げるとパターンマッチングの処理時間が増大するため、例えば、その処理時間の増大に応じて、3D超音波画像の各フレーム間に追加される3D中間画像のフレーム数(フレームの枚数)を少なくするようにしてもよい。また、各フレームの移動ベクトルの信頼性が低い場合に、テンプレートT(図3)を大きくすることにより、各画素の移動先の特定精度を高めるようにしてもよい。
For example, when the reliability of the movement vector of each frame is low, for example, when the reliability evaluation value is larger than the threshold, for example, the search area SA (FIG. 3) in pattern matching is expanded, It is desirable to expand the selection range of the movement destination of each pixel and increase the identification accuracy of the movement destination. Note that, since the processing time for pattern matching increases when the search area SA is expanded, for example, the number of frames of 3D intermediate images (frames of frames) added between the frames of the 3D ultrasound image as the processing time increases. (Number of sheets) may be reduced. Further, when the reliability of the movement vector of each frame is low, the template T (FIG. 3) may be enlarged to increase the accuracy of specifying the movement destination of each pixel.
また、移動ベクトル評価部40において得られた移動ベクトルの信頼性の評価値に基づいて、制御部100が超音波の送受信を制御するようにしてもよい。例えば、制御部100は、移動ベクトル評価部40から得られる移動ベクトルの信頼性の評価値に基づいて、ボリュームレートを制御してもよい。
Also, the control unit 100 may control transmission / reception of ultrasonic waves based on the evaluation value of the reliability of the movement vector obtained in the movement vector evaluation unit 40. For example, the control unit 100 may control the volume rate based on the evaluation value of the reliability of the movement vector obtained from the movement vector evaluation unit 40.
図9は、ボリュームレート制御の具体例を示す図である。図9(1)には、複数時相に亘って各時相ごとに得られるボリュームデータの具体例が図示されている。つまり、時相1~時相6に対した複数のボリュームデータが代表的に図示されている。なお、図示省略した時相7以降においても各時相ごとにボリュームデータが得られてもよい。
FIG. 9 is a diagram showing a specific example of volume rate control. FIG. 9A shows a specific example of volume data obtained for each time phase over a plurality of time phases. That is, a plurality of volume data for time phase 1 to time phase 6 are representatively shown. Note that volume data may be obtained for each time phase even after time phase 7 (not shown).
図9(2)には、複数フレームの三次元超音波画像(3D超音波画像)の具体例が図示されている。各フレームの3D超音波画像は、そのフレームに対応した時相のボリュームデータに基づいて形成される。図9に示す具体例において、時相1のボリュームデータに基づいてフレーム1の3D超音波画像が形成され、時相2のボリュームデータに基づいてフレーム2の3D超音波画像が形成される。つまり、ボリュームデータの時相番号と3D超音波画像のフレーム番号が互いに対応している。
FIG. 9 (2) shows a specific example of a three-dimensional ultrasonic image (3D ultrasonic image) of a plurality of frames. A 3D ultrasonic image of each frame is formed based on time-phase volume data corresponding to the frame. In the specific example shown in FIG. 9, the 3D ultrasound image of frame 1 is formed based on the volume data of time phase 1, and the 3D ultrasound image of frame 2 is formed based on the volume data of time phase 2. That is, the time number of the volume data and the frame number of the 3D ultrasound image correspond to each other.
図9(3)には、三次元中間画像(3D中間画像)の具体例が図示されており、図9(4)には、三次元動画像(3D動画像)の具体例が図示されている。図9に示す具体例では、例えば、3D超音波画像のフレーム1とフレーム2の間に3フレーム(フレーム数3)の3D中間画像が追加され、3D超音波画像のフレーム2とフレーム3の間にも3フレーム(フレーム数3)の3D中間画像が追加され、さらに、3D超音波画像のフレーム3以降にも各フレーム間に3D中間画像が追加されて、3D動画像のフレーム列が構成されている。
FIG. 9 (3) shows a specific example of a three-dimensional intermediate image (3D intermediate image), and FIG. 9 (4) shows a specific example of a three-dimensional moving image (3D moving image). Yes. In the specific example shown in FIG. 9, for example, 3 frames (3 frames) of 3D intermediate images are added between frames 1 and 2 of the 3D ultrasound image, and between the frames 2 and 3 of the 3D ultrasound image. 3D (3 frames) 3D intermediate image is also added, and 3D intermediate images are also added between frames after frame 3 of the 3D ultrasound image to form a 3D moving image frame sequence. ing.
図9に示す具体例では、3D超音波画像のフレーム1とフレーム2の間において得られた移動ベクトルの信頼性が低い。移動ベクトルの信頼性が低い場合に、制御部100は、ボリュームレートを増加させる。但し、図9に示す具体例では、時相2のボリュームデータが得られた直後から、標準レート(標準のボリュームレート)で時相3のボリュームデータの取得が開始されているため、その標準レートを維持したまま時相3のボリュームデータが取得される。そして、時相3のボリュームデータが取得された直後からボリュームレートが増大され、高レート(標準よりも高いボリュームレート)で時相4と時相5のボリュームデータが取得される。なお、時相2のボリュームデータが得られた直後から高レートに切り換えて時相3のボリュームデータを得るようにしてもよい。
In the specific example shown in FIG. 9, the reliability of the movement vector obtained between the frame 1 and the frame 2 of the 3D ultrasonic image is low. When the reliability of the movement vector is low, the control unit 100 increases the volume rate. However, in the specific example shown in FIG. 9, since acquisition of volume data of time phase 3 is started at a standard rate (standard volume rate) immediately after volume data of time phase 2 is obtained, the standard rate Volume data of time phase 3 is acquired while maintaining the above. Then, immediately after the volume data of time phase 3 is acquired, the volume rate is increased, and the volume data of time phase 4 and time phase 5 are acquired at a high rate (volume rate higher than the standard). Alternatively, the volume data of time phase 3 may be obtained by switching to the high rate immediately after the volume data of time phase 2 is obtained.
また、図9に示す具体例では、3D超音波画像のフレーム3とフレーム4の間において得られた移動ベクトルの信頼性が高い。移動ベクトルの信頼性が高い場合に、制御部100は、ボリュームレートを減少させてもよい。但し、図9に示す具体例では、時相4のボリュームデータが得られた直後から、高レートで時相5のボリュームデータの取得が開始されているため、その高レートを維持したまま時相5のボリュームデータが取得される。そして、時相5のボリュームデータが取得された直後からボリュームレートが減少され、つまり標準レートに戻され、標準レートで時相6のボリュームデータが取得される。なお時相4のボリュームデータが得られた直後から標準レートに切り換えて時相5のボリュームデータを得るようにしてもよい。
In the specific example shown in FIG. 9, the reliability of the movement vector obtained between the frame 3 and the frame 4 of the 3D ultrasonic image is high. When the reliability of the movement vector is high, the control unit 100 may decrease the volume rate. However, in the specific example shown in FIG. 9, since acquisition of volume data of time phase 5 is started at a high rate immediately after the volume data of time phase 4 is obtained, the time phase is maintained while maintaining the high rate. 5 volume data is acquired. Then, immediately after the volume data of time phase 5 is acquired, the volume rate is reduced, that is, returned to the standard rate, and the volume data of time phase 6 is acquired at the standard rate. Alternatively, the volume data of time phase 5 may be obtained by switching to the standard rate immediately after the volume data of time phase 4 is obtained.
制御部100は、超音波の送受に係る複数の送受信パラメータに基づいてボリュームレートを制御する。複数の送受信パラメータには、例えば、空間フレーム数(空間フレーム密度)、ビームライン数(ライン密度)、PRT(pulse repetition time)などが含まれる。
The control unit 100 controls the volume rate based on a plurality of transmission / reception parameters related to transmission / reception of ultrasonic waves. The plurality of transmission / reception parameters include, for example, the number of spatial frames (spatial frame density), the number of beam lines (line density), and PRT (pulse repetition time).
空間フレーム数は、超音波が立体的に送受されるボリューム(三次元領域)を構成する空間的なフレーム(空間フレーム)の枚数(フレーム数)である。例えば、ボリュームの大きさが一定で空間フレーム数が変化すると空間フレーム密度も変化する。ビームライン数は、各空間フレームを構成する受信ビームラインの本数である。例えば、各空間フレームの大きさが一定でビームライン数が変化するとライン密度も変化する。そして、PRTは、超音波のパルス繰り返し周期である。
The number of spatial frames is the number of spatial frames (spatial frames) constituting a volume (three-dimensional region) in which ultrasonic waves are transmitted and received in three dimensions. For example, when the volume size is constant and the number of spatial frames changes, the spatial frame density also changes. The number of beam lines is the number of reception beam lines constituting each spatial frame. For example, if the size of each spatial frame is constant and the number of beam lines changes, the line density also changes. PRT is an ultrasonic pulse repetition period.
これら複数の送受信パラメータによりボリュームレートが決定される。標準レート(標準のボリュームレート)に対応した複数の送受信パラメータは、例えば、ボリュームデータのデータ密度を重視して設定される。一方、高レートに対応した複数の送受信パラメータは、標準レート(標準のボリュームレート)よりもボリュームレートが高くなるように設定される。
The volume rate is determined by these multiple transmission / reception parameters. The plurality of transmission / reception parameters corresponding to the standard rate (standard volume rate) are set with emphasis on the data density of the volume data, for example. On the other hand, the plurality of transmission / reception parameters corresponding to the high rate are set so that the volume rate is higher than the standard rate (standard volume rate).
例えば、高レートの空間フレーム数は標準レートの空間フレーム数よりも小さく(少なく)設定され、高レートのビームライン数は標準レートのビームライン数よりも小さく(少なく)設定され、高レートのPRTは標準レートのPRTよりも小さく(短く)設定される。
For example, the number of high-rate spatial frames is set smaller (less) than the number of standard-rate spatial frames, the number of high-rate beamlines is set smaller (less) than the number of standard-rate beamlines, and the high-rate PRT Is set smaller (shorter) than the standard rate PRT.
制御部100は、標準レートに対応した複数の送受信パラメータで送受信部12を制御することにより、標準レートによるボリュームデータの取得を実現し、高レートに対応した複数の送受信パラメータで送受信部12を制御することにより、高レートによるボリュームデータの取得を実現する。
The control unit 100 controls the transmission / reception unit 12 with a plurality of transmission / reception parameters corresponding to the standard rate, thereby realizing acquisition of volume data at the standard rate, and controls the transmission / reception unit 12 with a plurality of transmission / reception parameters corresponding to the high rate. By doing so, the acquisition of volume data at a high rate is realized.
なお、送受信パラメータとして、パラレル受信(パラレル受信の本数(1本以上))やTHI(tissue harmonic imagingを行うか否か)が変更されて、ボリュームレートが変更されてもよい。
As a transmission / reception parameter, the volume rate may be changed by changing parallel reception (the number of parallel receptions (one or more)) or THI (whether or not to perform tissue harmonic imaging).
図9に示す具体例では、ボリュームレートの変更に係わらず、3D動画像のフレームレートを一定に維持することができる。
In the specific example shown in FIG. 9, the frame rate of the 3D moving image can be kept constant regardless of the change of the volume rate.
例えば、高レート(高いボリュームレート)が標準レート(標準のボリュームレート)の2倍である場合に、標準レートに対応した3D超音波画像の各フレーム間に3フレームの3D中間画像を追加し、高レートに対応した3D超音波画像の各フレーム間に1フレームの3D中間画像を追加することにより、3D動画像のフレーム間隔(時相間隔)が一定に維持され、3D動画像のフレームレートを一定に維持することができる。なお、図9に示す具体例はあくまでも一例であり、3D動画像のフレームレートを必ずしも一定にする必要はない。
For example, when the high rate (high volume rate) is twice the standard rate (standard volume rate), 3 frames of 3D intermediate images are added between each frame of the 3D ultrasound image corresponding to the standard rate, By adding one frame of 3D intermediate image between each frame of the 3D ultrasound image corresponding to the high rate, the frame interval (time phase interval) of the 3D moving image is maintained constant, and the frame rate of the 3D moving image is increased. Can be kept constant. Note that the specific example shown in FIG. 9 is merely an example, and the frame rate of the 3D moving image does not necessarily have to be constant.
また、3D動画像のフレームレートは、表示部82において対応可能な表示フレームレートに応じて決定されることが望ましい。例えば、表示部82の表示フレームレートが60Hz(ヘルツ)であるならば、3D動画像のフレームレートが60Hzとなるように、ボリュームレートと3D中間画像のフレーム数(3D超音波画像の各フレーム間に追加される3D中間画像のフレーム数)を決定すればよい。
Further, it is desirable that the frame rate of the 3D moving image is determined according to the display frame rate that can be supported by the display unit 82. For example, if the display frame rate of the display unit 82 is 60 Hz (Hertz), the volume rate and the number of frames of the 3D intermediate image (between each frame of the 3D ultrasound image are set so that the frame rate of the 3D moving image is 60 Hz. The number of frames of 3D intermediate image to be added to the image may be determined.
さらに、表示画像形成部80は、3D動画像をスロー再生するようにしてもよい。そして、スロー再生時には、再生速度に応じて3D中間画像のフレーム数(3D超音波画像の各フレーム間に追加される3D中間画像のフレーム数)を決定することが望ましい。
Further, the display image forming unit 80 may play back the 3D moving image slowly. At the time of slow reproduction, it is desirable to determine the number of frames of the 3D intermediate image (the number of frames of the 3D intermediate image added between each frame of the 3D ultrasound image) according to the reproduction speed.
例えば、通常再生(1倍速再生)時における各フレーム間の3D中間画像の枚数(フレーム数)がK枚(フレーム数K:但しKは自然数)の場合に、通常再生の1/2倍速のスロー再生時における各フレーム間の3D中間画像の枚数(フレーム数)を2Kとし、通常再生の1/3倍速のスロー再生時における各フレーム間の3D中間画像の枚数(フレーム数)を3Kとし、通常再生の1/4倍速のスロー再生時における各フレーム間の3D中間画像の枚数(フレーム数)を4Kとする。つまり、通常再生の1/S倍速(Sは自然数)のスロー再生時における各フレーム間の3D中間画像の枚数(フレーム数)をS×Kとする。
For example, when the number of 3D intermediate images between frames (the number of frames) during normal playback (1 × speed playback) is K (number of frames K: K is a natural number), the playback speed is ½ times that of normal playback. The number of 3D intermediate images (number of frames) between frames during playback is 2K, and the number of 3D intermediate images (number of frames) between frames during slow playback at 1/3 times normal playback is 3K. The number of 3D intermediate images (number of frames) between each frame during slow playback at 1/4 times the speed of playback is 4K. That is, the number of 3D intermediate images (number of frames) between each frame during slow playback at 1 / S times normal speed (S is a natural number) is S × K.
一般に従来のスロー再生では、通常再生で利用される複数の画像フレームのうちの各画像フレームが複数の表示フレームに対応付けられて繰り返し再生される。つまり、同一の画像フレームが複数の表示フレームで利用される。
Generally, in conventional slow playback, each image frame among a plurality of image frames used in normal playback is repeatedly played in association with a plurality of display frames. That is, the same image frame is used in a plurality of display frames.
これに対し、スロー再生時に再生速度に応じて3D中間画像のフレーム数を決定する上記処理により、同一の画像フレーム(3D動画像の各フレーム)が利用される表示フレーム数を少なくすることができ、望ましくは、各画像フレームと各表示フレームとを1対1に対応付けたスロー再生を実現することができる。これにより、例えば、画像内容が滑らかに変化するスロー再生が可能になる。
On the other hand, the number of display frames in which the same image frame (each frame of the 3D moving image) is used can be reduced by the above-described processing for determining the number of frames of the 3D intermediate image according to the playback speed during slow playback. Desirably, it is possible to realize slow reproduction in which each image frame and each display frame are associated one-to-one. Thereby, for example, slow reproduction in which the image content changes smoothly becomes possible.
以上、本発明の好適な実施形態を説明したが、上述した実施形態は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。本発明は、その本質を逸脱しない範囲で各種の変形形態を包含する。
The preferred embodiments of the present invention have been described above, but the above-described embodiments are merely examples in all respects and do not limit the scope of the present invention. The present invention includes various modifications without departing from the essence thereof.
10 プローブ、12 送受信部、14 ビームデータ処理部、16 ボリュームデータ記憶部、20 三次元画像形成部、30 移動ベクトル演算部、40 移動ベクトル評価部、50 中間画像形成部、80 表示画像形成部、82 表示部、90 操作デバイス、100 制御部。
10 probe, 12 transmission / reception unit, 14 beam data processing unit, 16 volume data storage unit, 20 three-dimensional image formation unit, 30 movement vector calculation unit, 40 movement vector evaluation unit, 50 intermediate image formation unit, 80 display image formation unit, 82 display unit, 90 operation device, 100 control unit.
Claims (13)
- 超音波を立体的に送受して得られた複数時相のボリュームデータに基づいて、当該複数時相に対応した複数フレームの三次元超音波画像を形成する超音波画像形成部と、
前記複数フレームの三次元超音波画像の各フレーム間における画像の移動情報に基づいて、当該各フレーム間に追加される1又は複数フレームの三次元中間画像を形成する中間画像形成部と、
前記複数フレームの三次元超音波画像とそれらの複数フレーム間に追加された前記複数フレームの三次元中間画像に基づいて三次元動画像を表示する表示処理部と、
を有する、
ことを特徴とする超音波診断装置。 Based on volume data of a plurality of time phases obtained by transmitting and receiving ultrasound three-dimensionally, an ultrasound image forming unit that forms a three-dimensional ultrasound image of a plurality of frames corresponding to the plurality of time phases;
An intermediate image forming unit that forms one or a plurality of frames of three-dimensional intermediate images added between the frames based on movement information of the images between the frames of the plurality of frames of three-dimensional ultrasound images;
A display processing unit for displaying a three-dimensional moving image based on the three-dimensional ultrasound image of the plurality of frames and the three-dimensional intermediate image of the plurality of frames added between the plurality of frames;
Having
An ultrasonic diagnostic apparatus. - 請求項1に記載の超音波診断装置において、
前記移動情報の信頼性の程度に応じて、単位時間あたりのボリュームデータ数であるボリュームレートを制御する制御部をさらに有する、
ことを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 1,
According to the degree of reliability of the movement information, further includes a control unit that controls a volume rate that is the number of volume data per unit time.
An ultrasonic diagnostic apparatus. - 請求項2に記載の超音波診断装置において、
前記制御部は、信頼性の判定条件に基づいて前記移動情報の信頼性が低いと判定された場合に、前記ボリュームレートを増加させて前記三次元超音波画像の単位時間あたりのフレーム数であるフレームレートを増加させる、
ことを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 2,
The control unit is the number of frames per unit time of the three-dimensional ultrasound image by increasing the volume rate when it is determined that the reliability of the movement information is low based on a reliability determination condition. Increase the frame rate,
An ultrasonic diagnostic apparatus. - 請求項2に記載の超音波診断装置において、
前記制御部は、超音波を立体的に送受するボリューム内における空間フレーム数と、各空間フレームを構成するビームライン数と、超音波のパルス繰り返し周期と、を含む複数の送受信パラメータのうちの少なくとも1つを変更することにより、前記ボリュームレートを制御する、
ことを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 2,
The control unit includes at least one of a plurality of transmission / reception parameters including a number of spatial frames in a volume for transmitting and receiving ultrasonic waves three-dimensionally, a number of beam lines constituting each spatial frame, and an ultrasonic pulse repetition period. Controlling the volume rate by changing one;
An ultrasonic diagnostic apparatus. - 請求項3に記載の超音波診断装置において、
前記制御部は、超音波を立体的に送受するボリューム内における空間フレーム数と、各空間フレームを構成するビームライン数と、超音波のパルス繰り返し周期と、を含む複数の送受信パラメータのうちの少なくとも1つを変更することにより、前記ボリュームレートを制御する、
ことを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 3.
The control unit includes at least one of a plurality of transmission / reception parameters including a number of spatial frames in a volume for transmitting and receiving ultrasonic waves three-dimensionally, a number of beam lines constituting each spatial frame, and an ultrasonic pulse repetition period. Controlling the volume rate by changing one;
An ultrasonic diagnostic apparatus. - 請求項1に記載の超音波診断装置において、
前記中間画像形成部は、前記移動情報として、前記各フレームの三次元超音波画像を構成する複数の画像要素の各画像要素ごとに各フレーム間における相関演算に基づいて移動ベクトルを導出し、複数の画像要素とそれらの移動ベクトルに基づいて当該各フレーム間に対応した複数の中間画像要素を得ることにより、複数の中間画像要素で構成された前記三次元中間画像を形成する、
ことを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 1,
The intermediate image forming unit derives, as the movement information, a movement vector based on a correlation calculation between the frames for each image element of the plurality of image elements constituting the three-dimensional ultrasonic image of each frame. Forming a plurality of intermediate image elements corresponding to each frame based on the image elements and their movement vectors to form the three-dimensional intermediate image composed of a plurality of intermediate image elements,
An ultrasonic diagnostic apparatus. - 請求項2に記載の超音波診断装置において、
前記中間画像形成部は、前記移動情報として、前記各フレームの三次元超音波画像を構成する複数の画像要素の各画像要素ごとに各フレーム間における相関演算に基づいて移動ベクトルを導出し、複数の画像要素とそれらの移動ベクトルに基づいて当該各フレーム間に対応した複数の中間画像要素を得ることにより、複数の中間画像要素で構成された前記三次元中間画像を形成する、
ことを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 2,
The intermediate image forming unit derives, as the movement information, a movement vector based on a correlation calculation between the frames for each image element of the plurality of image elements constituting the three-dimensional ultrasonic image of each frame. Forming a plurality of intermediate image elements corresponding to each frame based on the image elements and their movement vectors to form the three-dimensional intermediate image composed of a plurality of intermediate image elements,
An ultrasonic diagnostic apparatus. - 請求項3に記載の超音波診断装置において、
前記中間画像形成部は、前記移動情報として、前記各フレームの三次元超音波画像を構成する複数の画像要素の各画像要素ごとに各フレーム間における相関演算に基づいて移動ベクトルを導出し、複数の画像要素とそれらの移動ベクトルに基づいて当該各フレーム間に対応した複数の中間画像要素を得ることにより、複数の中間画像要素で構成された前記三次元中間画像を形成する、
ことを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 3.
The intermediate image forming unit derives, as the movement information, a movement vector based on a correlation calculation between the frames for each image element of the plurality of image elements constituting the three-dimensional ultrasonic image of each frame. Forming a plurality of intermediate image elements corresponding to each frame based on the image elements and their movement vectors to form the three-dimensional intermediate image composed of a plurality of intermediate image elements,
An ultrasonic diagnostic apparatus. - 請求項4に記載の超音波診断装置において、
前記中間画像形成部は、前記移動情報として、前記各フレームの三次元超音波画像を構成する複数の画像要素の各画像要素ごとに各フレーム間における相関演算に基づいて移動ベクトルを導出し、複数の画像要素とそれらの移動ベクトルに基づいて当該各フレーム間に対応した複数の中間画像要素を得ることにより、複数の中間画像要素で構成された前記三次元中間画像を形成する、
ことを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 4,
The intermediate image forming unit derives, as the movement information, a movement vector based on a correlation calculation between the frames for each image element of the plurality of image elements constituting the three-dimensional ultrasonic image of each frame. Forming a plurality of intermediate image elements corresponding to each frame based on the image elements and their movement vectors to form the three-dimensional intermediate image composed of a plurality of intermediate image elements,
An ultrasonic diagnostic apparatus. - 請求項6に記載の超音波診断装置において、
前記複数の画像要素の各画像要素ごとに前記相関演算により得られる相関値の大きさに基づいて、前記移動情報として導出される移動ベクトルの信頼性の程度を示す評価値を算出する評価部をさらに有し、
前記制御部は、移動ベクトルの信頼性を示す前記評価値に基づいて、単位時間あたりのボリュームデータ数であるボリュームレートを制御する、
ことを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 6,
An evaluation unit that calculates an evaluation value indicating a degree of reliability of the movement vector derived as the movement information based on a correlation value obtained by the correlation calculation for each image element of the plurality of image elements; In addition,
The control unit controls a volume rate, which is the number of volume data per unit time, based on the evaluation value indicating the reliability of the movement vector.
An ultrasonic diagnostic apparatus. - 請求項7に記載の超音波診断装置において、
前記複数の画像要素の各画像要素ごとに前記相関演算により得られる相関値の大きさに基づいて、前記移動情報として導出される移動ベクトルの信頼性の程度を示す評価値を算出する評価部をさらに有し、
前記制御部は、移動ベクトルの信頼性を示す前記評価値に基づいて、単位時間あたりのボリュームデータ数であるボリュームレートを制御する、
ことを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 7,
An evaluation unit that calculates an evaluation value indicating a degree of reliability of the movement vector derived as the movement information based on a correlation value obtained by the correlation calculation for each image element of the plurality of image elements; In addition,
The control unit controls a volume rate, which is the number of volume data per unit time, based on the evaluation value indicating the reliability of the movement vector.
An ultrasonic diagnostic apparatus. - 請求項8に記載の超音波診断装置において、
前記複数の画像要素の各画像要素ごとに前記相関演算により得られる相関値の大きさに基づいて、前記移動情報として導出される移動ベクトルの信頼性の程度を示す評価値を算出する評価部をさらに有し、
前記制御部は、移動ベクトルの信頼性を示す前記評価値に基づいて、単位時間あたりのボリュームデータ数であるボリュームレートを制御する、
ことを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 8,
An evaluation unit that calculates an evaluation value indicating a degree of reliability of the movement vector derived as the movement information based on a correlation value obtained by the correlation calculation for each image element of the plurality of image elements; In addition,
The control unit controls a volume rate, which is the number of volume data per unit time, based on the evaluation value indicating the reliability of the movement vector.
An ultrasonic diagnostic apparatus. - 請求項9に記載の超音波診断装置において、
前記複数の画像要素の各画像要素ごとに前記相関演算により得られる相関値の大きさに基づいて、前記移動情報として導出される移動ベクトルの信頼性の程度を示す評価値を算出する評価部をさらに有し、
前記制御部は、移動ベクトルの信頼性を示す前記評価値に基づいて、単位時間あたりのボリュームデータ数であるボリュームレートを制御する、
ことを特徴とする超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 9,
An evaluation unit that calculates an evaluation value indicating a degree of reliability of the movement vector derived as the movement information based on a correlation value obtained by the correlation calculation for each image element of the plurality of image elements; In addition,
The control unit controls a volume rate, which is the number of volume data per unit time, based on the evaluation value indicating the reliability of the movement vector.
An ultrasonic diagnostic apparatus.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-111869 | 2015-06-02 | ||
JP2015111869A JP5985007B1 (en) | 2015-06-02 | 2015-06-02 | Ultrasonic diagnostic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016194432A1 true WO2016194432A1 (en) | 2016-12-08 |
Family
ID=56843280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/057902 WO2016194432A1 (en) | 2015-06-02 | 2016-03-14 | Ultrasonic diagnostic apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5985007B1 (en) |
WO (1) | WO2016194432A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113509207B (en) * | 2021-09-13 | 2021-12-24 | 南京霆升医疗科技有限公司 | Method for adjusting volume ratio based on ultrasonic hardware |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012008217A1 (en) * | 2010-07-14 | 2012-01-19 | 株式会社日立メディコ | Ultrasound image reconstruction method, device therefor and ultrasound diagnostic device |
-
2015
- 2015-06-02 JP JP2015111869A patent/JP5985007B1/en active Active
-
2016
- 2016-03-14 WO PCT/JP2016/057902 patent/WO2016194432A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012008217A1 (en) * | 2010-07-14 | 2012-01-19 | 株式会社日立メディコ | Ultrasound image reconstruction method, device therefor and ultrasound diagnostic device |
Also Published As
Publication number | Publication date |
---|---|
JP2016221076A (en) | 2016-12-28 |
JP5985007B1 (en) | 2016-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mohamed et al. | A survey on 3D ultrasound reconstruction techniques | |
JP6393703B2 (en) | Continuously adaptive enhanced ultrasound imaging of subvolumes | |
JP5606076B2 (en) | Ultrasonic diagnostic apparatus, medical image processing apparatus, and medical image processing program | |
CN103202709B (en) | Diagnostic ultrasound equipment, medical image-processing apparatus and medical imaging display packing arranged side by side | |
JP7150800B2 (en) | Motion-adaptive visualization in medical 4D imaging | |
JP5462598B2 (en) | Ultrasound diagnostic system | |
JP4855926B2 (en) | Synchronizing swivel 3D ultrasonic display with vibration target | |
JP2009011468A (en) | Ultrasound diagnosis apparatus | |
US11903760B2 (en) | Systems and methods for scan plane prediction in ultrasound images | |
JP4598652B2 (en) | Ultrasonic diagnostic equipment | |
JP7071898B2 (en) | How to operate ultrasonic diagnostic equipment, programs and ultrasonic diagnostic equipment | |
WO2012090658A1 (en) | Ultrasonic diagnosis device and image processing method | |
US20230355213A1 (en) | Ultrasound image processing | |
JP5985007B1 (en) | Ultrasonic diagnostic equipment | |
WO2016039100A1 (en) | Ultrasonic diagnostic device | |
JP2012115387A (en) | Ultrasonic image processor | |
JP6879039B2 (en) | Ultrasound diagnostic equipment, composite image display method and program | |
JP5665304B2 (en) | Ultrasonic system and method for providing volume information of a periodically moving object | |
JP6356528B2 (en) | Ultrasonic diagnostic equipment | |
JP5950291B1 (en) | Ultrasonic diagnostic apparatus and program | |
JP6591199B2 (en) | Ultrasonic diagnostic apparatus and program | |
JP2013135974A (en) | Ultrasonic diagnosis apparatus | |
JP2014000291A (en) | Ultrasound diagnostic apparatus | |
JP2013017716A (en) | Ultrasonic diagnostic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16802871 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16802871 Country of ref document: EP Kind code of ref document: A1 |