WO2016194225A1 - Superconducting wire rod and method for manufacturing same - Google Patents

Superconducting wire rod and method for manufacturing same Download PDF

Info

Publication number
WO2016194225A1
WO2016194225A1 PCT/JP2015/066358 JP2015066358W WO2016194225A1 WO 2016194225 A1 WO2016194225 A1 WO 2016194225A1 JP 2015066358 W JP2015066358 W JP 2015066358W WO 2016194225 A1 WO2016194225 A1 WO 2016194225A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
superconducting wire
mainly composed
rod
Prior art date
Application number
PCT/JP2015/066358
Other languages
French (fr)
Japanese (ja)
Inventor
英次 坂本
寺前 俊哉
田中 秀樹
和也 西
孝明 鈴木
一宗 児玉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/066358 priority Critical patent/WO2016194225A1/en
Publication of WO2016194225A1 publication Critical patent/WO2016194225A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/10Multi-filaments embedded in normal conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting wire and a manufacturing method thereof.
  • the superconducting magnet is applied to, for example, an MRI (Magnetic Resonance Imaging) apparatus used for examination in a hospital. Since the MRI apparatus is large in size and heavy in weight, downsizing is required in consideration of the convenience of securing an installation room in the hospital. In addition, since the MRI apparatus is expensive to manufacture, cost reduction is also required. For this reason, realization of a superconducting magnet that can be reduced in size and cost is required.
  • MRI Magnetic Resonance Imaging
  • the diffusion method is a method of forming a diffusion layer by diffusing a metal by performing heat treatment after drawing a wire containing a plurality of metals into an elongated shape. Since the material structure obtained by the diffusion method is dense and easily transmits electricity, the critical current density can be increased.
  • Patent Document 1 discloses a rod-like composite in which boron (B) is arranged in the center and a magnesium tube (hereinafter referred to as Mg tube) containing aluminum (Al) and zinc (Zn) is installed on the outer periphery thereof.
  • Mg tube magnesium tube
  • Al aluminum
  • Zn zinc
  • a method is disclosed in which a plurality of metal pipes are processed into a long length and then heat-treated. In this method, the powder containing boron (B) filled in the rod-shaped composite is uniformly moved in the metal tube, so that nonuniformity of the powder density is reduced and further heat treatment is performed thereafter.
  • (Mg) and boron (B) diffuse to produce magnesium diboride (MgB 2 ), and a wire having high superconducting properties can be obtained.
  • Patent Document 2 boron (B) is arranged at the center, an Mg tube containing silver (Ag) is installed on the outer periphery thereof, a rod-shaped composite is prepared, and this is heat-treated. It describes that magnesium (Mg) diffuses sideways into boron (B) at the interface between them, making it possible to produce a magnesium diboride (MgB 2 ) superconducting wire.
  • an object of the present invention is to provide a superconducting wire that can have a higher critical current density, and can be reduced in size and cost, and a method for manufacturing the same.
  • a preferred embodiment of the superconducting wire according to the present invention is a superconducting wire including a plurality of rod-shaped composites, wherein the rod-shaped composite includes a first layer mainly composed of a first metal, and the first layer. Two or more joined bodies having a second layer mainly composed of a second metal joined to the layer through a diffusion layer are formed.
  • the first layer mainly composed of the first metal and the second layer mainly composed of the second metal are bonded to these surfaces.
  • FIG. 1 is a cross-sectional view of a superconducting wire according to Example 1.
  • FIG. It is sectional drawing which shows the state before the wire drawing of the superconducting wire 20A of Example 1.
  • FIG. It is sectional drawing which shows the state before heat processing of the rod-shaped composite_body
  • 6 is a cross-sectional view of a superconducting wire of Example 3.
  • FIG. 1 is a cross-sectional view of the superconducting wire according to the first embodiment.
  • the superconducting wire 20 has a plurality of rod-like composites 6 provided inside the outer tube 7.
  • six rod-like composites 6 are provided, and between each of the rod-like composites 6, a filling layer 10 that fills a region between each bar-like composite 6 and the outer peripheral tube 7 is formed. Yes.
  • the rod-shaped composite body 20 is provided with a center layer 1a mainly composed of a first metal at the center, and the second metal is placed outside the center layer 1a.
  • An annular layer 2 a as a main body is provided so as to be joined to the center layer 1 a via the first diffusion layer 4.
  • an annular layer 1b mainly composed of a first metal is provided so as to be joined to the annular layer 2a via the second diffusion layer 12.
  • An annular barrier layer 5 is provided on the outer periphery of the annular layer 1b so as to be in contact with the annular layer 1b.
  • the first diffusion layer 4 and the second diffusion layer 12 are formed by bringing a layer mainly composed of the first metal and a layer mainly composed of the second metal into contact with each other to perform heat treatment. This is a layer obtained by diffusing the second metal.
  • two joined bodies each having a diffusion layer are formed in one rod-shaped composite body 6. That is, it is interposed between a layer mainly composed of a first metal (hereinafter referred to as a first layer) and a layer mainly composed of a second metal (hereinafter referred to as a second layer). Therefore, the amount of current contributing to superconductivity should be doubled compared to a structure in which only one diffusion layer is formed for each rod-shaped composite. And the critical current density can be improved.
  • the joined body having the center layer 1a, the first diffusion layer 4, and the annular layer 2a, the annular layer 2a, the second diffusion layer 12, and the annular layer 1b. Are joined so as to share the annular layer 2a.
  • the ratio of the diffusion layer to the cross-sectional area of the superconducting wire 20 can be improved. Therefore, it is preferable because the critical current density can be increased accordingly.
  • the diffusion layer is not particularly limited as long as superconductivity can be obtained, but a layer mainly composed of magnesium diboride (hereinafter referred to as MgB 2 ) can be preferably used.
  • the high-temperature superconducting material has a large temperature margin that can maintain the superconducting state by cooling with, for example, liquid helium (boiling point 4.2 K) or refrigerator cooling, and thus has high thermal stability and may simplify the cooling equipment.
  • MgB 2 has a possibility that a helium-free, small, light, and low-cost superconducting magnet can be realized because the magnetic flux creep is several times slower than that of the oxide-based superconducting material.
  • first diffusion layer 4 and the second 12 are not necessarily limited to MgB 2 , and for example, niobium titanium (NbTi) or niobium tin (Ni 3 Sn) described above can also be applied.
  • the constituent material of each layer other than the diffusion layer is appropriately selected depending on the type of the diffusion layer, and details thereof will be described later.
  • Example 1 a joined body having the center layer 1a, the first diffusion layer 4, and the annular layer 2a, and a joined body having the annular layer 2a, the second diffusion layer 12, and the annular layer 1b are:
  • the superconducting wire of the embodiment is not necessarily limited to such a configuration.
  • another layer other than the second diffusion layer 12 is interposed between the annular layer 2a and the annular layer 1b, and the second layer is formed on the outer periphery of the annular layer 1b so as to be in contact therewith. May be.
  • Example 1 although the diffusion layer interposed between the 1st layer and the 2nd layer was shown in each rod-shaped composite body 6A, the structure shown by 2 layers was shown. May be provided in three or more layers in each rod-shaped composite body 6A. As the number of diffusion layers contained in the rod-shaped composite increases, the critical current density can be improved, and a superconducting wire having superior superconducting properties can be obtained.
  • each rod-shaped composite 6 is preferably a hexagon, but may be other polygons such as a quadrangle, or may be a circle.
  • first metal 1a and “first metal 1b” are both the first metal 1 or an alloy containing the first metal 1, and “second metal 2a”.
  • second metal 2a is the second metal 2 or an alloy containing the second metal 2
  • third metal 3 is the third metal 3 or an alloy containing the third metal 3, and in the following description These are simply indicated as “first metal 1a”, “first metal 1b”, “second metal 2a”, and "third metal 3".
  • a tubular second metal 2a is prepared.
  • the tubular second metal 2a is filled with the powdery first metal 1a, and using a predetermined jig, pressure is applied to the powdered first metal 1a to form a shaped body. .
  • a tubular barrier layer 5 having an outer diameter larger than that of the second metal 2a is prepared, and this barrier layer 5 is disposed on the outer periphery of the second metal 2a.
  • a powdery first metal 1b is filled between the second metal 2a and the barrier layer 5, and pressure is applied to the powder using a predetermined jig to form a shaped body. By putting them into the space of the tubular third metal 3, a rod-shaped composite before drawing is completed.
  • the rod-shaped composite before drawing is drawn by extrusion or drawing.
  • the rod-shaped composite body 6A having a predetermined cross-sectional shape can be manufactured by using a die having a required processing shape, for example, a hexagonal shape, in the wire drawing process. Thereafter, annealing is performed in an inert atmosphere in order to remove strain that has been hardened by wire drawing.
  • the superconducting wire 20A before drawing is completed by putting a plurality of the rod-like composites 6A into the space of the tubular outer tube 7 and putting the fourth metal 8 in the center.
  • each rod-shaped composite body 6A and the fourth metal 8 is preferably a hexagon, but may be other polygons such as a rectangle, or may be a circle.
  • the barrier layer 5 is placed in the space of the third metal 3 in advance, and after the powdery first metal 1a and the tubular second metal 2a are placed inside, the tubular second metal 2a is placed.
  • the rod-shaped composite 6A may be manufactured by filling the powdery first metal 1b between the metal 2a and the barrier layer 5 and applying pressure to the powder using a predetermined jig to form a shaped body.
  • FIG. 2 is a cross-sectional view showing a state of the superconducting wire 20A of Example 1 before drawing.
  • the superconducting wire 20A is a multi-core wire having a plurality of rod-shaped composite bodies 6A, and has a space 9 in an area excluding the rod-shaped composite bodies 6A and the fourth metal 8 in the outer peripheral tube 7. is doing.
  • the rod-shaped composite body 6A is provided with a first metal 1a at the center, a second metal 2a at the outer periphery thereof, and a first metal 1b at the outer periphery thereof. That is, the first metal 1a and the second metal 2a, and the second metal 2a and the first metal 1b are provided in contact with each other at the joint surface 16 and the joint surface 17, respectively.
  • a barrier layer 5 is provided on the outer periphery of the powdery first metal 1b, and a tubular third metal 3 is provided on the outermost periphery of the rod-shaped composite 6A.
  • the superconducting wire 20A before drawing is elongated by drawing.
  • the third metal 3 and the fourth metal 8 arranged in the superconducting wire 6 ⁇ / b> A move to the space 9 due to plastic deformation during wire drawing.
  • intermediate annealing in an inert atmosphere may be performed in the middle of the drawing.
  • the superconducting wire 20A is heated to a temperature equal to or higher than the melting point of the first metal 1a, the first metal 1b, and the second metal 2a, whichever has a lower melting point, and the first metal 1a
  • the second metal 2a, the second metal 2a, and the first metal 1b are diffused to form the first diffusion layer 4 and the second diffusion layer 12 having superconducting properties as shown in FIG.
  • the third metal 3 and the fourth metal 8 become a filling layer 10 which is an integral mixture by heat treatment and fills the space 9. Thereby, the superconducting wire 20 shown in FIG. 3 is completed.
  • the third metal 3, the fourth metal 8, and the filling layer 10 are described with different names, but all may be made of the same material.
  • the diffusion layer After the diffusion layer is formed by heat treatment, a defect due to a space such as Kirkendall void may occur at the position where the diffused metal exists. For this reason, it is preferable to pressurize the superconducting wire after the formation of the diffusion layer by heat treatment. Thereby, the space volume generated after the formation of the diffusion layer can be reduced, or such a space can be eliminated. For this reason, the superconducting wire 20 which has the dense rod-shaped composite body 6 without the defect in the layers 1a and 1b mainly composed of the first metal and the layer 2a mainly composed of the second metal can be obtained.
  • the constituent materials of each layer when forming the MgB 2 layer as the first diffusion layer 4 and the second diffusion layer 12 will be described by taking as an example the case of using a powdery body as the first metal 1a constituting the center layer 1a. To do.
  • the first metal 1a is a powdery body such as a green compact, for example, boron (B) or an alloy powder containing boron (B) can be used as the first metal 1a.
  • the second metal 2a magnesium (Mg) or a tubular body of an alloy containing magnesium (Mg) can be used.
  • the second metal 2a is preferably a tubular body from the viewpoint of manufacturing convenience.
  • the second metal 2a may be a powder.
  • Mg—B formed by a mechanical milling method (MM method) or an alloy containing the same is used. It may be a powder, or may be a powder of magnesium (Mg) or an alloy containing magnesium (Mg).
  • the particle size is 1 nm to 100 nm, and the second metal 2a is formed by a mechanical milling method (MM method).
  • MM method mechanical milling method
  • the first metal 1b for example, boron (B) or an alloy powder containing boron (B) can be used.
  • a carbide such as silicon carbide (SiC) is appropriately mixed. You may let them.
  • the barrier layer 5 is not particularly limited as long as it is a metal material having low reactivity with the first metal and the second metal.
  • the third metal 3 it is preferable to use a metal material having low reactivity with the first metal and the second metal and having excellent thermal conductivity.
  • a tubular body of copper (Cu) or an alloy containing copper (Cu) can be used.
  • the fourth metal 8 it is preferable to use a metal material having low reactivity with the first metal and the second metal and having excellent thermal conductivity.
  • a metal molded body or powdered body of copper (Cu) or an alloy containing copper (Cu), or an alloy containing iron (Fe) or iron (Fe) can be used.
  • tube 7 iron (Fe), niobium (Nb), copper (Cu), titanium (Ti), nickel (Ni), aluminum (Al), tantalum (Ta), tungsten ( A tubular body of one or two or more metals or alloys selected from the group consisting of W), molybdenum (Mo), and vanadium (V) can be used.
  • MgB 2 is formed as a layer having superconducting characteristics.
  • the center layer 1a mainly composed of the first metal is a layer mainly composed of boron (B) or an alloy containing boron (B).
  • the annular layer 2a mainly composed of the second metal is mainly composed of magnesium (Mg) or an alloy containing magnesium (Mg), Mg—B formed by a mechanical milling method (MM method), or an alloy containing this. Is a layer.
  • the particle diameter of Mg—B formed by the mechanical milling method (MM method) or an alloy including the same is 1 nm to 100 nm.
  • the annular layer 1b mainly composed of the first metal is a layer mainly composed of boron (B) or an alloy containing boron (B).
  • the barrier layer 5 includes iron (Fe), niobium (Nb), copper (Cu), titanium (Ti), nickel (Ni), aluminum (Al), tantalum (Ta), tungsten (W), molybdenum (Mo) and It is a layer mainly composed of one or more metals or alloys selected from the group consisting of vanadium (V).
  • the filling layer 10 is a mixture of the third metal 3 and the fourth metal 8 of the rod-shaped composite body 6A before wire drawing, and for example, copper (Cu) or an alloy containing copper (Cu). Or a layer mainly composed of iron (Fe) or an alloy containing iron (Fe).
  • constituent material of the outer peripheral tube 7 is the same as the constituent material described in the manufacturing method.
  • each rod-like composite 6 and the fourth metal 8 is preferably a hexagon, but may be other polygons such as a rectangle or a circle.
  • each rod-like composite 6A In the present embodiment, an example in which two joint surfaces between the first layer and the second layer are formed in each rod-like composite 6A has been described. As another example, it is also possible to increase the number of first layers or second layers formed in each rod-shaped composite body 6A, and to have three or more joint surfaces thereof. Since the number of diffusion layers formed after the heat treatment increases due to the increase of the joint surfaces, the critical current density can be increased accordingly.
  • the first metal 1a, the second metal 2a, and the first metal are formed so that the joint surfaces 16 and 17 between the first layer and the second layer are continuously formed.
  • these joint surfaces do not necessarily have to be formed continuously.
  • a layer mainly composed of the second metal is provided so that another layer between the second metal 2a and the first metal 1b is interposed and in contact with the outer periphery of the first metal 1b.
  • a second layer may be formed.
  • the proportion of the diffusion layer per 20 cross-sectional areas of the superconducting wire can be improved. This is preferable because the density can be increased.
  • the second metal constituting the annular layer 2a provided on the outer periphery of the center layer 1a of the rod-shaped composite 6 is used by using a powdery material such as a green compact.
  • a powdery material such as a green compact.
  • a rod-shaped first metal 1a and a tubular first metal 1b having a diameter larger than that of the rod-shaped first metal 1a are prepared, and the rod-shaped first metal 1a is placed in the space of the first metal 1b. insert. Then, the gap between the rod-shaped first metal 1a and the tubular first metal 1b is filled with the powdered second metal 2a, and pressure is applied to the powder using a predetermined jig, and the shaped body.
  • a tubular barrier layer 5 having an outer diameter larger than that of the tubular first metal 1b is prepared, and this barrier layer 5 is disposed on the outer periphery of the first metal 1b.
  • a rod-shaped composite before drawing is completed.
  • the rod-shaped composite body before wire drawing formed in this way is subjected to wire drawing by extrusion or drawing like the above-described manufacturing method, and then annealed in an inert atmosphere to produce a rod-shaped composite 6A. To do.
  • the superconducting wire 20A before drawing is completed by putting a plurality of the rod-like composites 6A into the space of the tubular outer tube 7 and putting the fourth metal 8 in the center.
  • the rod-shaped first metal A rod-shaped composite 6A may be manufactured by filling a powdery second metal 2a between 1a and the tubular first metal 1b.
  • the second metal 2a is made into a powdery body such as a green compact, for example, magnesium (Mg) or an alloy containing magnesium (Mg) can be used as the rod-shaped first metal 1a.
  • Mg magnesium
  • Mg alloy containing magnesium
  • the 1st metal 1a is a rod-shaped body from a viewpoint of the convenience of manufacture.
  • the first metal 1a may be a powder, such as Mg-B formed by a mechanical milling method (MM method) or an alloy containing the same. It may be a powder, or may be a powder of magnesium (Mg) or an alloy containing magnesium (Mg).
  • boron (B) or an alloy powder containing boron (B) can be used as the second metal 2a.
  • the first metal 1b a tubular body of magnesium (Mg) or an alloy containing magnesium (Mg) can be used.
  • the 2nd metal 2a is a powdery body
  • the 1st metal 1b is a tubular body.
  • the first metal 1b may be a powder, for example, Mg—B formed by a mechanical milling method (MM method) or an alloy containing the same. It may be a powder, or may be a powder of magnesium (Mg) or an alloy containing magnesium (Mg).
  • the barrier layer 5 For the barrier layer 5, the third metal 3, the fourth metal 8, and the outer tube 7, it is possible to use the same constituent materials as when the powdery body is used as the first metal 1 a.
  • the first metal 1a, the first metal 1b, and the second metal 2a have a powdery body
  • carbides such as SiC may be appropriately mixed.
  • each layer of the superconducting wire 12 shown in FIG. 1 manufactured using the above-described materials as the constituent material of each layer will be described.
  • MgB 2 is formed as the first diffusion layer 4 and the second diffusion layer 12 as a layer having superconducting characteristics.
  • the central layer 1a mainly composed of the first metal is composed mainly of magnesium (Mg) or an alloy containing magnesium (Mg), Mg—B formed by a mechanical milling method (MM method), or an alloy containing this. Is a layer.
  • the annular layer 2a mainly composed of the second metal is a layer mainly composed of boron (B) or an alloy containing boron (B).
  • the annular layer 1b mainly composed of the first metal is composed mainly of magnesium (Mg) or an alloy containing magnesium (Mg), Mg—B formed by a mechanical milling method (MM method), or an alloy containing this. Is a layer.
  • the particle diameter of Mg—B formed by a mechanical milling method (MM method) or an alloy containing the same is 1 nm to 100 nm as described above.
  • barrier layer 5 is the same as those in the case of using a powdery body as the first metal 1a, and the description thereof is omitted.
  • the present invention is not necessarily limited to such a form.
  • any of the first metal 1a, the second metal 2a, and the first metal 1b may be formed of a rod-like body or a tubular body.
  • you may comprise any of the 1st metal 1a, the 2nd metal 2a, and the 1st metal 1b with a powdery body.
  • FIG. 4 is a cross-sectional view showing a state of the superconducting wire of Example 2 before drawing.
  • Example 2 is different from Example 1 in that a plurality of rod-shaped composite bodies 6A and a fourth metal 8 are installed in the outer peripheral pipe 7, and then the outer peripheral pipe 7, the bar-shaped composite bodies 6A and the fourth metal 8 are disposed.
  • the sixth metal 11 is placed in a region between the structure 15 and the structure 15.
  • the sixth metal 11 is a metal molded body having a shape along the region between the outer peripheral tube 7 and the structure 15. Although it does not specifically limit as the 6th metal 11, for example, the alloy containing copper (Cu) or copper (Cu) can be used.
  • the sixth metal 11 it is possible to fill a region between the outer peripheral tube 7 and the structure 15 by using a plurality of metal rods, but the shape along the outer shape of the space 9 It is preferable to use a metal molded body.
  • Example 2 the structure 15 in the state shown in FIG. 4 is drawn together with the sixth metal 11 and the outer tube 7 and further heat-treated. Thereby, after the heat treatment, the first diffusion layer 4 and the second diffusion layer 12 are formed in the rod-shaped composite body 6, and the region between the rod-shaped composite bodies 6 in the outer tube 7 3 is formed, and the filling layer 10 which is a mixture of the fourth metal 8 and the sixth metal 11 in the center is formed, and the superconducting wire 20 is obtained.
  • Example 2 is the same as that of Example 1 except the point which uses the 6th metal 11, and the description is abbreviate
  • the structure of the superconducting wire obtained by the manufacturing method of Example 2 is the same as that of the superconducting wire of Example 1 shown in FIG.
  • Example 2 before the wire drawing process, the space 9 in the outer peripheral tube 7 is filled, whereby the barrier layer breakage of the rod-shaped composite body 6A during the wire drawing process can be prevented, and manufacturing is performed with higher yield. Can do.
  • FIG. 5 is a cross-sectional view showing a state of the superconducting wire of Example 3 before drawing.
  • FIG. 6 is a cross-sectional view of the superconducting wire of Example 3. That is, FIG. 6 is a cross-sectional view of the superconducting wire of the finished product after the wire drawing and heat treatment.
  • the third embodiment is different from the first embodiment in that the outer periphery of the structure 15 in which the plurality of rod-shaped composite bodies 6A and the fourth metal 8 are installed on the outer peripheral surface of the structure 15 in a state before wire drawing. It is the point which has installed the outer periphery pipe
  • Example 3 as shown in FIG. 5, an area corresponding to the space 9 in FIG. 1 is filled with the outer peripheral tube 7.
  • the outer peripheral tube 7 having the shape shown in FIG. 5 can be formed by plastic working such as drawing or extruding.
  • the constituent material of the outer tube 7 can be the same as that of the outer tube 7 of the first embodiment.
  • the superconducting wire 20 shown in FIG. 6 is obtained by drawing the structure 15 shown in FIG. That is, after the heat treatment, the first diffusion layer 4 and the second diffusion layer 12 are formed in the rod-shaped composite body 6, and the region between the rod-shaped composite bodies 6 in the outer peripheral tube 7 is in the third region.
  • the filling layer 10 which is a mixture of the metal 3 and the fourth metal 8 at the center is formed, and the superconducting wire 20 is obtained.
  • Example 3 The manufacturing method of Example 3 is the same as that of Example 1 except that the outer peripheral tube 7 having an inner peripheral shape along the outer peripheral surface of the structure 15 is installed on the outer periphery of the structure 15 before the wire drawing. Yes, the description is omitted.
  • the superconducting wire 20 obtained by the manufacturing method of Example 3 is the same as Example 1 except that the region between the rod-like composites 6 is joined by the outer peripheral tube 7 described above, and the description thereof is omitted. Is omitted.
  • the space area between the outer peripheral tube 7 and the rod-shaped composite body 6A can be reduced by using the above-described form as the outer peripheral tube 7. For this reason, the barrier layer tearing of the rod-shaped composite body 6A at the time of wire drawing can be prevented, and it can be manufactured with higher yield. Moreover, since the process of installing the sixth metal 11 which is a metal molded body in the space 9 is not required before the drawing of the superconducting wire as in the second embodiment, it is manufactured in a shorter amount of time. Is possible.

Abstract

To provide a superconducting wire rod, which has a high critical current density, and is capable of achieving size reduction and cost reduction. This superconducting wire rod includes a plurality of bar-like composite bodies 6, and in each of the bar-like composite bodies 6, two or more bonded bodies are formed, each of said bonded bodies having a first layer 1a, 1b containing a first metal as a main component, and a second layer 2a, which is bonded to the first layer 1a, 1b with a diffusion layer 4, 12 therebetween, and which contains a second metal as a main component.

Description

超電導線材及びその製造方法Superconducting wire and method for manufacturing the same
 本発明は、超電導線材及びその製造方法に関する。 The present invention relates to a superconducting wire and a manufacturing method thereof.
 超伝導磁石は、例えば病院での検査に使用されるMRI(Magnetic Resonanse Imaging)装置に適用されている。MRI装置は、全体サイズが大きく重量も重いため、院内での設置部屋の確保の便宜を考慮して小型化が求められている。またMRI装置は製造コストが高いため、低コスト化も求められている。このため、小型化、低コスト化を可能とする超電導磁石の実現が求められている。 The superconducting magnet is applied to, for example, an MRI (Magnetic Resonance Imaging) apparatus used for examination in a hospital. Since the MRI apparatus is large in size and heavy in weight, downsizing is required in consideration of the convenience of securing an installation room in the hospital. In addition, since the MRI apparatus is expensive to manufacture, cost reduction is also required. For this reason, realization of a superconducting magnet that can be reduced in size and cost is required.
 超電導磁石を小型化する方法として、超電導磁石に用いられる超伝導線材の臨界電流密度(Jc[A/mm])を向上させることが挙げられる。臨界電流密度が大きいほど、同じ電流を流すのに、より小型の超電導線材で実現することが可能となる。 As a method for reducing the size of the superconducting magnet, there is a method of improving the critical current density (Jc [A / mm 2 ]) of the superconducting wire used for the superconducting magnet. The larger the critical current density, the smaller the superconducting wire can be realized for the same current to flow.
 超電導線材の電流密度を高める手法として、拡散法による超伝導電材の製造が挙げられる。拡散法は、複数の金属を含む線材を伸線加工して長尺化後、加熱処理することで金属を拡散させて拡散層を形成する方法である。拡散法により得られる材料組織は緻密であり、その分電気を伝えやすいため、臨界電流密度を高めることが可能である。 As a technique for increasing the current density of a superconducting wire, production of a superconducting electric material by a diffusion method can be mentioned. The diffusion method is a method of forming a diffusion layer by diffusing a metal by performing heat treatment after drawing a wire containing a plurality of metals into an elongated shape. Since the material structure obtained by the diffusion method is dense and easily transmits electricity, the critical current density can be increased.
 例えば特許文献1には、中央にホウ素(B)を配置し、その外周に、アルミニウム(Al)及び亜鉛(Zn)を含むマグネシウム管(以下、Mg管と示す。)を設置した棒状複合体を複数本金属管に入れて長尺加工した後、熱処理する方法が開示されている。この方法では、棒状複合体に充填されたホウ素(B)を含む粉末が、金属管内で均一に移動することで、粉末密度の不均一化が低減されるとともに、その後さらに熱処理することで、マグネシウム(Mg)とホウ素(B)が拡散して二ホウ化マグネシウム(MgB)が生成し、高超電導特性を有する線材を得られる。 For example, Patent Document 1 discloses a rod-like composite in which boron (B) is arranged in the center and a magnesium tube (hereinafter referred to as Mg tube) containing aluminum (Al) and zinc (Zn) is installed on the outer periphery thereof. A method is disclosed in which a plurality of metal pipes are processed into a long length and then heat-treated. In this method, the powder containing boron (B) filled in the rod-shaped composite is uniformly moved in the metal tube, so that nonuniformity of the powder density is reduced and further heat treatment is performed thereafter. (Mg) and boron (B) diffuse to produce magnesium diboride (MgB 2 ), and a wire having high superconducting properties can be obtained.
 また、特許文献2には、中心にホウ素(B)を配置し、その外周に銀(Ag)を含むMg管を設置して棒状複合体を準備し、これを熱処理することで、BとMg間の界面においてマグネシウム(Mg)がホウ素(B)へ側拡散し、二ホウ化マグネシウム(MgB)超電導線材の製造が可能となる点が記載されている。 In Patent Document 2, boron (B) is arranged at the center, an Mg tube containing silver (Ag) is installed on the outer periphery thereof, a rod-shaped composite is prepared, and this is heat-treated. It describes that magnesium (Mg) diffuses sideways into boron (B) at the interface between them, making it possible to produce a magnesium diboride (MgB 2 ) superconducting wire.
特許第5517866公報Japanese Patent No. 5517866 US2010/0093546US2010 / 0093546
 しかしながら、特許文献1、2に記載の技術でも、超伝導線材における臨界電流密度の向上は必ずしも十分ではなかった。 However, even with the techniques described in Patent Documents 1 and 2, improvement of the critical current density in the superconducting wire is not always sufficient.
 そこで本発明は、臨界電流密度がより高くでき、小型化、低コスト化が可能な超電導線材及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a superconducting wire that can have a higher critical current density, and can be reduced in size and cost, and a method for manufacturing the same.
 本発明に係る超電導線材の好ましい実施形態としては、複数の棒状複合体を含む超電導線材であって、前記棒状複合体は、第1の金属を主体とする第1の層と、該第1の層に拡散層を介して接合された第2の金属を主体とする第2の層とを有する接合体が二以上形成されていることを特徴とする。 A preferred embodiment of the superconducting wire according to the present invention is a superconducting wire including a plurality of rod-shaped composites, wherein the rod-shaped composite includes a first layer mainly composed of a first metal, and the first layer. Two or more joined bodies having a second layer mainly composed of a second metal joined to the layer through a diffusion layer are formed.
 また、本発明に係る超電導線材の製造方法の好ましい実施形態としては、第1の金属を主体とする第1の層と第2の金属を主体とする第2の層とを、これらの接合面が二以上形成されるように配置して棒状複合体を形成し、前記棒状複合体を複数配置した構造体を伸線加工した後熱処理することを特徴とする。 As a preferred embodiment of the method for producing a superconducting wire according to the present invention, the first layer mainly composed of the first metal and the second layer mainly composed of the second metal are bonded to these surfaces. Are arranged so that two or more are formed to form a rod-like composite, and a structure in which a plurality of the rod-like composites are arranged is drawn and then heat-treated.
 本発明によれば、臨界電流密度が高く、小型化、低コスト化が可能な超電導線材を実現することができる。 According to the present invention, it is possible to realize a superconducting wire that has a high critical current density and can be reduced in size and cost.
実施例1に係る超電導線材の断面図である。1 is a cross-sectional view of a superconducting wire according to Example 1. FIG. 実施例1の超電導線材20Aの伸線加工前の状態を示す断面図である。It is sectional drawing which shows the state before the wire drawing of the superconducting wire 20A of Example 1. FIG. 実施例1の棒状複合体の加熱処理前及び加熱処理後の状態を示す断面図である。It is sectional drawing which shows the state before heat processing of the rod-shaped composite_body | complex of Example 1, and after heat processing. 実施例2の超電導線材の伸線加工前の状態を示す断面図である。It is sectional drawing which shows the state before the drawing process of the superconducting wire of Example 2. FIG. 実施例3の超電導線材の伸線加工前の状態を示す断面図である。It is sectional drawing which shows the state before the drawing process of the superconducting wire of Example 3. 実施例3の超電導線材の断面図である。6 is a cross-sectional view of a superconducting wire of Example 3. FIG.
 以下に、本発明の実施例1に係る超電導線材及びその製造方法について、図1~3を用いて説明する。なお、図1~2及び図4~6には、各々右側に拡大図を示している。図1は、実施例1に係る超電導線材の断面図である。 Hereinafter, a superconducting wire according to Example 1 of the present invention and a manufacturing method thereof will be described with reference to FIGS. FIGS. 1 and 2 and FIGS. 4 to 6 each show an enlarged view on the right side. FIG. 1 is a cross-sectional view of the superconducting wire according to the first embodiment.
 図1に示すように、超電導線材20は、外周管7の内部に棒状複合体6が複数本設けられている。図1に示す例では、棒状複合体6は6本設けられており、各棒状複合体6間には、各棒状複合体6と外周管7間の領域を充填する充填層10が形成されている。 As shown in FIG. 1, the superconducting wire 20 has a plurality of rod-like composites 6 provided inside the outer tube 7. In the example shown in FIG. 1, six rod-like composites 6 are provided, and between each of the rod-like composites 6, a filling layer 10 that fills a region between each bar-like composite 6 and the outer peripheral tube 7 is formed. Yes.
 棒状複合体20は、図1の拡大図に示すように、その中心に、第1の金属を主体とする中心層1aが設けられており、中心層1aの外側には、第2の金属を主体とする環状層2aが、第1の拡散層4を介して中心層1aに接合するように設けられている。環状層2aの外側には、第1の金属を主体とする環状層1bが、第2の拡散層12を介して環状層2aに接合するように設けられている。 As shown in the enlarged view of FIG. 1, the rod-shaped composite body 20 is provided with a center layer 1a mainly composed of a first metal at the center, and the second metal is placed outside the center layer 1a. An annular layer 2 a as a main body is provided so as to be joined to the center layer 1 a via the first diffusion layer 4. On the outside of the annular layer 2a, an annular layer 1b mainly composed of a first metal is provided so as to be joined to the annular layer 2a via the second diffusion layer 12.
 環状層1bの外周には、環状のバリア層5が、環状層1bと接触させるように設けられている。 An annular barrier layer 5 is provided on the outer periphery of the annular layer 1b so as to be in contact with the annular layer 1b.
 なお、本明細書において、「金属Aを主体とする」とは、金属Aを50%以上含むことをいう。 In the present specification, “consisting mainly of metal A” means containing 50% or more of metal A.
 第1の拡散層4、第2の拡散層12は、第1の金属を主体とする層と第2の金属を主体とする層とを接触させて加熱処理することで、第1の金属と第2の金属とが拡散して得られた層である。実施例1の構成では、図1に示すように、一の棒状複合体6内に、拡散層を有する接合体が二体形成されている。すなわち、第1の金属を主体とする層(以下、第1の層と示す。)と第2の金属を主体とする層(以下、第2の層と示す。)との間に介設された拡散層を二層以上有している、このため、各棒状複合体毎に、拡散層が一層のみ形成されている構成と比較して、超伝導に寄与する電流量を2倍とすることができ、臨界電流密度を向上させることができる。 The first diffusion layer 4 and the second diffusion layer 12 are formed by bringing a layer mainly composed of the first metal and a layer mainly composed of the second metal into contact with each other to perform heat treatment. This is a layer obtained by diffusing the second metal. In the configuration of Example 1, as shown in FIG. 1, two joined bodies each having a diffusion layer are formed in one rod-shaped composite body 6. That is, it is interposed between a layer mainly composed of a first metal (hereinafter referred to as a first layer) and a layer mainly composed of a second metal (hereinafter referred to as a second layer). Therefore, the amount of current contributing to superconductivity should be doubled compared to a structure in which only one diffusion layer is formed for each rod-shaped composite. And the critical current density can be improved.
 また、図1に示すように、棒状複合体6では、中心層1aと第1の拡散層4と環状層2aとを有する接合体と、環状層2aと第2の拡散層12と環状層1bとを有する接合体とが、環状層2aを共有して隣接するように設けられている。 Further, as shown in FIG. 1, in the rod-shaped composite body 6, the joined body having the center layer 1a, the first diffusion layer 4, and the annular layer 2a, the annular layer 2a, the second diffusion layer 12, and the annular layer 1b. Are joined so as to share the annular layer 2a.
 このように、第1の層と第2の層とを、拡散層を介して、交互に連続して設けることで、超電導線材20の断面積当たりに占める拡散層の割合を向上させることができ、その分、臨界電流密度を高められるため好ましい。 Thus, by providing the first layer and the second layer alternately and continuously via the diffusion layer, the ratio of the diffusion layer to the cross-sectional area of the superconducting wire 20 can be improved. Therefore, it is preferable because the critical current density can be increased accordingly.
 拡散層としては、超伝導性を得られるものであれば特に限定されないが、二ホウ化マグネシウム(以下、MgBと示す。)を主体とする層を好適に用いることができる。 
 MgBは、ニオブチタン(NbTi)(臨界温度;Tc=9.8K)やニオブスズ(NiSn)(臨界温度;Tc=18K)と比較して、39Kと高い臨界温度Tcを有する所謂高温超電導材として知られている。
The diffusion layer is not particularly limited as long as superconductivity can be obtained, but a layer mainly composed of magnesium diboride (hereinafter referred to as MgB 2 ) can be preferably used.
MgB 2 is a so-called high temperature superconducting material having a critical temperature Tc as high as 39K compared to niobium titanium (NbTi) (critical temperature; Tc = 9.8K) and niobium tin (Ni 3 Sn) (critical temperature; Tc = 18K). Known as.
 高温超電導材は、例えば液体ヘリウム(沸点4.2K)や冷凍機冷却による冷却で超電導状態を維持できる温度マージンが大きいため、熱的安定性が高く、冷却設備を簡素化できる可能性がある。また、MgBは、酸化物系超電導材と比較して、磁束クリープが数倍遅いため、ヘリウムフリー、小型・軽量、及び低コストの超電導磁石を実現できる可能性が高い。 The high-temperature superconducting material has a large temperature margin that can maintain the superconducting state by cooling with, for example, liquid helium (boiling point 4.2 K) or refrigerator cooling, and thus has high thermal stability and may simplify the cooling equipment. Further, MgB 2 has a possibility that a helium-free, small, light, and low-cost superconducting magnet can be realized because the magnetic flux creep is several times slower than that of the oxide-based superconducting material.
 なお、第1の拡散層4、第2の12としては、必ずしもMgBに限定されず、例えば上記したニオブチタン(NbTi)やニオブスズ(NiSn)を適用することも可能である。拡散層以外の各層の構成材料は、拡散層の種類により適宜選択されるが、その詳細については後述する。 Note that the first diffusion layer 4 and the second 12 are not necessarily limited to MgB 2 , and for example, niobium titanium (NbTi) or niobium tin (Ni 3 Sn) described above can also be applied. The constituent material of each layer other than the diffusion layer is appropriately selected depending on the type of the diffusion layer, and details thereof will be described later.
 なお、実施例1では、中心層1aと第1の拡散層4と環状層2aとを有する接合体と、環状層2aと第2の拡散層12と環状層1bとを有する接合体とが、環状層2aを共有して隣接する構成を示したが、実施形態の超電導線材は必ずしもこのような構成に限定されない。例えば、環状層2aと環状層1bとの間に、第2の拡散層12以外の別の層を介設し、環状層1bの外周に、これと接触させるように、第2の層を形成してもよい。 In Example 1, a joined body having the center layer 1a, the first diffusion layer 4, and the annular layer 2a, and a joined body having the annular layer 2a, the second diffusion layer 12, and the annular layer 1b are: Although the configuration in which the annular layer 2a is shared and adjacent is shown, the superconducting wire of the embodiment is not necessarily limited to such a configuration. For example, another layer other than the second diffusion layer 12 is interposed between the annular layer 2a and the annular layer 1b, and the second layer is formed on the outer periphery of the annular layer 1b so as to be in contact therewith. May be.
 また、実施例1では、各棒状複合体6A内に、第1の層と第2の層との間に介設された拡散層が、二層設けられている構成を示したが、拡散層は、各棒状複合体6A内に三層以上設けるようにしてもよい。棒状複合体に含まれる拡散層の数が増える分、臨界電流密度を向上させることができ、より超伝導特性に優れた超伝導線材を得ることができる。 Moreover, in Example 1, although the diffusion layer interposed between the 1st layer and the 2nd layer was shown in each rod-shaped composite body 6A, the structure shown by 2 layers was shown. May be provided in three or more layers in each rod-shaped composite body 6A. As the number of diffusion layers contained in the rod-shaped composite increases, the critical current density can be improved, and a superconducting wire having superior superconducting properties can be obtained.
 なお、各棒状複合体6の形状は、図1に示すように、六角形が望ましいが、四角形などその他の多角形でもよく、また、円形としてもよい。 In addition, as shown in FIG. 1, the shape of each rod-shaped composite 6 is preferably a hexagon, but may be other polygons such as a quadrangle, or may be a circle.
 次に、図1に示す超電導線材の製造プロセスについて、図2及び図3を用いて説明する。まず、環状複合体6の中心層1aを構成する第1の金属を、圧粉体等の粉状体を用いて形成する場合を例に説明する。 Next, the manufacturing process of the superconducting wire shown in FIG. 1 will be described with reference to FIGS. First, the case where the 1st metal which comprises the center layer 1a of the cyclic | annular composite body 6 is formed using powdery bodies, such as a compact, is demonstrated to an example.
 なお、以下の説明において、例えば「第1の金属1a」、「第1の金属1b」は、いずれも第1の金属1又は第1の金属1を含む合金であり、「第2の金属2a」は、第2の金属2又は第2の金属2を含む合金であり、「第3の金属3」は、第3の金属3又は第3の金属3を含む合金であり、以下の説明では、単に「第1の金属1a」、「第1の金属1b」、「第2の金属2a」、「第3の金属3」と示す。 In the following description, for example, “first metal 1a” and “first metal 1b” are both the first metal 1 or an alloy containing the first metal 1, and “second metal 2a”. "Is the second metal 2 or an alloy containing the second metal 2, and" third metal 3 "is the third metal 3 or an alloy containing the third metal 3, and in the following description These are simply indicated as "first metal 1a", "first metal 1b", "second metal 2a", and "third metal 3".
 まず、管状の第2の金属2aを準備する。次いで、管状の第2の金属2aの中に、粉末状の第1の金属1aを充填し、所定の治具を用いて、粉末状の第1の金属1aに圧を加えて整形体とする。 First, a tubular second metal 2a is prepared. Next, the tubular second metal 2a is filled with the powdery first metal 1a, and using a predetermined jig, pressure is applied to the powdered first metal 1a to form a shaped body. .
 次に、第2の金属2aより大きい外径を有する管状のバリア層5を準備し、このバリア層5を、第2の金属2aの外周に配置する。次に、第2の金属2aとバリア層5との間に、粉末状の第1の金属1bを充填し、所定の治具を用いて粉末に圧を加え整形体とする。それらを管状の第3の金属3の空間部へ入れることで、伸線加工前の棒状複合体が完成する。 Next, a tubular barrier layer 5 having an outer diameter larger than that of the second metal 2a is prepared, and this barrier layer 5 is disposed on the outer periphery of the second metal 2a. Next, a powdery first metal 1b is filled between the second metal 2a and the barrier layer 5, and pressure is applied to the powder using a predetermined jig to form a shaped body. By putting them into the space of the tubular third metal 3, a rod-shaped composite before drawing is completed.
 次に、伸線加工前の棒状複合体を押出しや引抜き加工で伸線加工する。その際、伸線プロセスの中に必要な加工形状、例えば六角形などの形状の穴があいたダイスを用いることで所定の断面形状を有する棒状複合体6Aを作製できる。その後、伸線加工で加工硬化した歪みを除去するために不活性雰囲気で焼鈍する。 Next, the rod-shaped composite before drawing is drawn by extrusion or drawing. At that time, the rod-shaped composite body 6A having a predetermined cross-sectional shape can be manufactured by using a die having a required processing shape, for example, a hexagonal shape, in the wire drawing process. Thereafter, annealing is performed in an inert atmosphere in order to remove strain that has been hardened by wire drawing.
 この棒状複合体6Aを、管状の外周管7の空間部へ複数本入れ、中心部には第4の金属8を入れることで、伸線加工前の超電導線材20Aが完成する。 The superconducting wire 20A before drawing is completed by putting a plurality of the rod-like composites 6A into the space of the tubular outer tube 7 and putting the fourth metal 8 in the center.
 各棒状複合体6A及び第4の金属8の形状は、図2に示すように、六角形が望ましいが、四角形などその他の多角形でもよく、また円形としてもよい。 As shown in FIG. 2, the shape of each rod-shaped composite body 6A and the fourth metal 8 is preferably a hexagon, but may be other polygons such as a rectangle, or may be a circle.
 なお、バリア層5をあらかじめ第3の金属3の空間部へ入れておき、その内側に、粉末状の第1の金属1a、管状の第2の金属2aを入れた後に、管状の第2の金属2aとバリア層5の間に、粉末状の第1の金属1bを充填し、所定の治具を用いて粉末に圧を加え整形体とし、棒状複合体6Aを作製してもよい。 The barrier layer 5 is placed in the space of the third metal 3 in advance, and after the powdery first metal 1a and the tubular second metal 2a are placed inside, the tubular second metal 2a is placed. The rod-shaped composite 6A may be manufactured by filling the powdery first metal 1b between the metal 2a and the barrier layer 5 and applying pressure to the powder using a predetermined jig to form a shaped body.
 図2は、実施例1の超電導線材20Aの伸線加工前の状態を示す断面図である。図2に示すように、超電導線材20Aは、複数の棒状複合体6Aを有する多芯線であり、外周管7内の棒状複合体6A及び第4の金属8を除いた領域に、空間9を有している。 FIG. 2 is a cross-sectional view showing a state of the superconducting wire 20A of Example 1 before drawing. As shown in FIG. 2, the superconducting wire 20A is a multi-core wire having a plurality of rod-shaped composite bodies 6A, and has a space 9 in an area excluding the rod-shaped composite bodies 6A and the fourth metal 8 in the outer peripheral tube 7. is doing.
 棒状複合体6Aは、中心に第1の金属1a、その外周に、第2の金属2aさらにその外周に、第1の金属1bが設けられている。すなわち、第1の金属1aと第2の金属2a、及び第2の金属2aと第1の金属1bは、それぞれ接合面16、接合面17において互いに接触するように設けられている。 The rod-shaped composite body 6A is provided with a first metal 1a at the center, a second metal 2a at the outer periphery thereof, and a first metal 1b at the outer periphery thereof. That is, the first metal 1a and the second metal 2a, and the second metal 2a and the first metal 1b are provided in contact with each other at the joint surface 16 and the joint surface 17, respectively.
 粉末状の第1の金属1bの外周には、バリア層5が設けられており、棒状複合体6Aの最外周には、管状の第3の金属3が設けられている。 A barrier layer 5 is provided on the outer periphery of the powdery first metal 1b, and a tubular third metal 3 is provided on the outermost periphery of the rod-shaped composite 6A.
 その後、伸線加工前の超電導線材20Aを引抜き加工で長尺化させる。この際、超電導線材6Aに配置されていた、第3の金属3及び第4の金属8は、伸線加工時の塑性変形により空間9に移動する。伸線加工時には、その途中で、不活性雰囲気中での中間焼鈍を実施してもよい。 After that, the superconducting wire 20A before drawing is elongated by drawing. At this time, the third metal 3 and the fourth metal 8 arranged in the superconducting wire 6 </ b> A move to the space 9 due to plastic deformation during wire drawing. During wire drawing, intermediate annealing in an inert atmosphere may be performed in the middle of the drawing.
 伸線加工終了後、超電導線材20Aを第1の金属1a、第1の金属1b、第2の金属2aのうち、低融点な方の融点以上の温度に加熱して、第1の金属1aと第2の金属2a及び第2の金属2aと第1の金属1bとを拡散させ、図3に示すように、超電導特性を有する第1の拡散層4と第2の拡散層12を生成させる。この際、第3の金属3及び第4の金属8は、熱処理により、一体の混合体である充填層10となって、空間9内を充填する。これにより、図3に示す超電導線材20が完成する。 After completion of the wire drawing process, the superconducting wire 20A is heated to a temperature equal to or higher than the melting point of the first metal 1a, the first metal 1b, and the second metal 2a, whichever has a lower melting point, and the first metal 1a The second metal 2a, the second metal 2a, and the first metal 1b are diffused to form the first diffusion layer 4 and the second diffusion layer 12 having superconducting properties as shown in FIG. At this time, the third metal 3 and the fourth metal 8 become a filling layer 10 which is an integral mixture by heat treatment and fills the space 9. Thereby, the superconducting wire 20 shown in FIG. 3 is completed.
 なお、図1~3では、第3の金属3、第4の金属8及び充填層10は、各々別の名称で記載したが全て同じ材料としてもよい。 1 to 3, the third metal 3, the fourth metal 8, and the filling layer 10 are described with different names, but all may be made of the same material.
 熱処理による拡散層の形成後には、拡散した金属が存在した位置に、カーケンダルボイドなどの空間による欠陥が生じることがある。このため、熱処理による拡散層の形成後の超電導線材を、加圧処理をすることが好ましい。これにより、拡散層形成後に生じた空間容積を小さくし、又はこのような空間を消滅させることができる。このため、第1の金属を主体とする層1a、1bや、第2の金属を主体とする層2aにおける欠陥のない、緻密な棒状複合体6を有する超電導線材20を得ることができる。 After the diffusion layer is formed by heat treatment, a defect due to a space such as Kirkendall void may occur at the position where the diffused metal exists. For this reason, it is preferable to pressurize the superconducting wire after the formation of the diffusion layer by heat treatment. Thereby, the space volume generated after the formation of the diffusion layer can be reduced, or such a space can be eliminated. For this reason, the superconducting wire 20 which has the dense rod-shaped composite body 6 without the defect in the layers 1a and 1b mainly composed of the first metal and the layer 2a mainly composed of the second metal can be obtained.
 第1の拡散層4、第2の拡散層12としてMgB層を形成する場合の各層の構成材料について、中心層1aを構成する第1の金属1aとして粉状体を用いる場合を例に説明する。 The constituent materials of each layer when forming the MgB 2 layer as the first diffusion layer 4 and the second diffusion layer 12 will be described by taking as an example the case of using a powdery body as the first metal 1a constituting the center layer 1a. To do.
 第1の金属1aを、圧粉体等の粉状体とする場合、第1の金属1aとしては、例えばホウ素(B)又はホウ素(B)を含む合金の粉状体を用いることができる。 When the first metal 1a is a powdery body such as a green compact, for example, boron (B) or an alloy powder containing boron (B) can be used as the first metal 1a.
 第2の金属2aとしては、マグネシウム(Mg)又はマグネシウム(Mg)を含む合金の管状体を用いることができる。第1の金属1aが粉状体である場合には、製造の便宜の観点からは、第2の金属2aは管状体であることが好ましい。
ただし、第1の金属1aが粉状体である場合でも、第2の金属2aは粉状体であっでもよく、例えばメカニカルミリング法(MM法)で形成したMg-B又はこれを含む合金の粉状体であってもよく、マグネシウム(Mg)又はマグネシウム(Mg)を含む合金の粉状体であってもよい。
As the second metal 2a, magnesium (Mg) or a tubular body of an alloy containing magnesium (Mg) can be used. In the case where the first metal 1a is a powdery body, the second metal 2a is preferably a tubular body from the viewpoint of manufacturing convenience.
However, even when the first metal 1a is a powder, the second metal 2a may be a powder. For example, Mg—B formed by a mechanical milling method (MM method) or an alloy containing the same is used. It may be a powder, or may be a powder of magnesium (Mg) or an alloy containing magnesium (Mg).
 第2の金属2aとして、メカニカルミリング法(MM法)で形成したMg-B、又はこれを含む合金を用いた場合、その粒径は1nmから100nmであり、メカニカルミリング法(MM法)で形成していないMg-B金属粉を用いた場合に比べて微細である。このため、熱処理後に形成される第1の拡散層4及び第2の拡散層12のさらなる高密度化が可能である。高密度化することで、その分電流を通し易くなり、臨界電流密度を向上させることができる。 When Mg—B formed by a mechanical milling method (MM method) or an alloy containing the same is used as the second metal 2a, the particle size is 1 nm to 100 nm, and the second metal 2a is formed by a mechanical milling method (MM method). Compared with the case of using untreated Mg-B metal powder. For this reason, it is possible to further increase the density of the first diffusion layer 4 and the second diffusion layer 12 formed after the heat treatment. By increasing the density, it becomes easier to pass the current, and the critical current density can be improved.
 第1の金属1bとしては、例えばホウ素(B)又はホウ素(B)を含む合金の
粉状体を用いることができる。
As the first metal 1b, for example, boron (B) or an alloy powder containing boron (B) can be used.
 なお、第1の金属1a、第1の金属1b及び第2の金属2aには、これらが粉状体である場合、上記した主成分に加えて、炭化ケイ素(SiC)などの炭化物を適宜混合させてもよい。 When the first metal 1a, the first metal 1b, and the second metal 2a are powdery, in addition to the main component described above, a carbide such as silicon carbide (SiC) is appropriately mixed. You may let them.
 バリア層5としては、第1の金属及び第2の金属との反応性の低い金属材料であれば、特に限定されない。バリア層5としては、例えば鉄(Fe)、ニオブ(Nb)、銅(Cu)、チタン(Ti)、ニッケル(Ni)、アルミニウム(Al)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)及びバナジウム(V)よりなる群から選択される一種又は二種以上の金属あるいは各金属を含む合金の管状体又は粉状体を用いることができる。 The barrier layer 5 is not particularly limited as long as it is a metal material having low reactivity with the first metal and the second metal. As the barrier layer 5, for example, iron (Fe), niobium (Nb), copper (Cu), titanium (Ti), nickel (Ni), aluminum (Al), tantalum (Ta), tungsten (W), molybdenum (Mo) ) And vanadium (V) selected from the group consisting of one or two or more metals or alloys containing each metal can be used.
 第3の金属3としては、第1の金属及び第2の金属との反応性が低く、かつ熱伝導性に優れた金属材料を用いることが好ましい。第3の金属3としては、例えば銅(Cu)又は銅(Cu)含む合金の管状体を用いることができる。 As the third metal 3, it is preferable to use a metal material having low reactivity with the first metal and the second metal and having excellent thermal conductivity. As the third metal 3, for example, a tubular body of copper (Cu) or an alloy containing copper (Cu) can be used.
 第4の金属8としては、第1の金属及び第2の金属との反応性が低く、かつ熱伝導性に優れた金属材料を用いることが好ましい。第4の金属8としては、例えば銅(Cu)若しくは銅(Cu)を含む合金、又は鉄(Fe)若しくは鉄(Fe)を含む合金の金属成型体又は粉状体を用いることができる。 As the fourth metal 8, it is preferable to use a metal material having low reactivity with the first metal and the second metal and having excellent thermal conductivity. As the fourth metal 8, for example, a metal molded body or powdered body of copper (Cu) or an alloy containing copper (Cu), or an alloy containing iron (Fe) or iron (Fe) can be used.
 外周管7としては、特に限定されないが、例えば、鉄(Fe)、ニオブ(Nb)、銅(Cu)、チタン(Ti)、ニッケル(Ni)、アルミニウム(Al)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)及びバナジウム(V)よりなる群から選択される一種又は二種以上の金属又は合金の管状体を用いることができる。 Although it does not specifically limit as the outer periphery pipe | tube 7, For example, iron (Fe), niobium (Nb), copper (Cu), titanium (Ti), nickel (Ni), aluminum (Al), tantalum (Ta), tungsten ( A tubular body of one or two or more metals or alloys selected from the group consisting of W), molybdenum (Mo), and vanadium (V) can be used.
 各層の構成材料として上記のものを使用して製造された、図1に示す超電導線材20の各層の構成について説明する。 
 第1の拡散層4及び第2の拡散層12としては、超電導特性を有する層として、MgBが形成される。
The structure of each layer of the superconducting wire 20 shown in FIG. 1 manufactured using the above materials as the constituent material of each layer will be described.
As the first diffusion layer 4 and the second diffusion layer 12, MgB 2 is formed as a layer having superconducting characteristics.
 第1の金属を主体とする中心層1aは、ホウ素(B)又はホウ素(B)を含む合金を主体とする層である。 
 第2の金属を主体とする環状層2aは、マグネシウム(Mg)又はマグネシウム(Mg)を含む合金、メカニカルミリング法(MM法)で形成されたMg-B、又はこれを含む合金を主体とする層である。メカニカルミリング法(MM法)で形成されたMg-B又はこれを含む合金の粒径は、上記したように、1nmから100nmである。
The center layer 1a mainly composed of the first metal is a layer mainly composed of boron (B) or an alloy containing boron (B).
The annular layer 2a mainly composed of the second metal is mainly composed of magnesium (Mg) or an alloy containing magnesium (Mg), Mg—B formed by a mechanical milling method (MM method), or an alloy containing this. Is a layer. As described above, the particle diameter of Mg—B formed by the mechanical milling method (MM method) or an alloy including the same is 1 nm to 100 nm.
 第1の金属を主体とする環状層1bは、ホウ素(B)又はホウ素(B)を含む合金を主体とする層である。 The annular layer 1b mainly composed of the first metal is a layer mainly composed of boron (B) or an alloy containing boron (B).
 バリア層5は、鉄(Fe)、ニオブ(Nb)、銅(Cu)、チタン(Ti)、ニッケル(Ni)、アルミニウム(Al)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)及びバナジウム(V)よりなる群から選択される一種又は二種以上の金属又は合金を主体とする層である。 The barrier layer 5 includes iron (Fe), niobium (Nb), copper (Cu), titanium (Ti), nickel (Ni), aluminum (Al), tantalum (Ta), tungsten (W), molybdenum (Mo) and It is a layer mainly composed of one or more metals or alloys selected from the group consisting of vanadium (V).
 充填層10は、上記したように、伸線加工前の棒状複合体6Aの第3の金属3及び第4の金属8との混合物であり、例えば銅(Cu)若しくは銅(Cu)を含む合金、又は鉄(Fe)若しくは鉄(Fe)を含む合金を主体とする層である。 As described above, the filling layer 10 is a mixture of the third metal 3 and the fourth metal 8 of the rod-shaped composite body 6A before wire drawing, and for example, copper (Cu) or an alloy containing copper (Cu). Or a layer mainly composed of iron (Fe) or an alloy containing iron (Fe).
 なお、外周管7の構成材料は、製造方法で説明した構成材料と同様である。 In addition, the constituent material of the outer peripheral tube 7 is the same as the constituent material described in the manufacturing method.
 各棒状複合体6と第4の金属8の形状は六角形が望ましいが、四角形などその他の多角形でもよく、また、円形としてもよい。 The shape of each rod-like composite 6 and the fourth metal 8 is preferably a hexagon, but may be other polygons such as a rectangle or a circle.
 本実施例では、各棒状複合体6A内に、第1の層と第2の層との接合面を二つ形成する形態を例に説明した。他の例として、各棒状複合体6A内に形成する、第1の層又は第2の層の数を増やし、これらの接合面を三以上とすることも可能である。接合面の増設により、熱処理後に形成される拡散層の数が増えるため、その分、臨界電流密度を高めることができる。 In the present embodiment, an example in which two joint surfaces between the first layer and the second layer are formed in each rod-like composite 6A has been described. As another example, it is also possible to increase the number of first layers or second layers formed in each rod-shaped composite body 6A, and to have three or more joint surfaces thereof. Since the number of diffusion layers formed after the heat treatment increases due to the increase of the joint surfaces, the critical current density can be increased accordingly.
 また、本実施例では、第1の層と第2の層との接合面16、17が、連続して形成されるように、第1の金属1a、第2の金属2a及び第1の金属1bを配置したが、これらの接合面は、必ずしも連続して形成されていなくてもよい。例えば、第2の金属2aと第1の金属1bとの間の別の層を介在させ、第1の金属1bの外周に、これと接触させるように、第2の金属を主体とする層(第2の層)を形成してもよい。 In the present embodiment, the first metal 1a, the second metal 2a, and the first metal are formed so that the joint surfaces 16 and 17 between the first layer and the second layer are continuously formed. Although 1b is arranged, these joint surfaces do not necessarily have to be formed continuously. For example, a layer mainly composed of the second metal is provided so that another layer between the second metal 2a and the first metal 1b is interposed and in contact with the outer periphery of the first metal 1b. A second layer) may be formed.
 ただし、第1の層と第2の層との接合面を連続して形成することで、超電導線材の20の断面積当たりに占める拡散層の割合を向上させることができ、その分、臨界電流密度を高められるため好ましい。 However, by continuously forming the joint surface between the first layer and the second layer, the proportion of the diffusion layer per 20 cross-sectional areas of the superconducting wire can be improved. This is preferable because the density can be increased.
 次に、図1に示す超電導線材の製造プロセスについて、棒状複合体6の中心層1aの外周に設けられる環状層2aを構成する第2の金属を、圧粉体等の粉状体を用いて形成する場合を例に説明する。 Next, regarding the manufacturing process of the superconducting wire shown in FIG. 1, the second metal constituting the annular layer 2a provided on the outer periphery of the center layer 1a of the rod-shaped composite 6 is used by using a powdery material such as a green compact. The case of forming will be described as an example.
 まず、棒状の第1の金属1a、及び棒状の第1の金属1aより径の大きい管状の第1の金属1bを準備し、第1の金属1bの空間部に棒状の第1の金属1aを挿入する。そして、棒状の第1の金属1aと管状の第1の金属1bとの間の隙間に、粉末状の第2の金属2aを充填し、所定の治具を用いて粉末に圧を加え整形体とする。 First, a rod-shaped first metal 1a and a tubular first metal 1b having a diameter larger than that of the rod-shaped first metal 1a are prepared, and the rod-shaped first metal 1a is placed in the space of the first metal 1b. insert. Then, the gap between the rod-shaped first metal 1a and the tubular first metal 1b is filled with the powdered second metal 2a, and pressure is applied to the powder using a predetermined jig, and the shaped body. And
 次に、管状の第1の金属1bより大きい外径を有する管状のバリア層5を準備し、このバリア層5を第1の金属1bの外周部に配置する。これらを管状の第3の金属3の空間部へ入れることで、伸線加工前の棒状複合体が完成する。このようにして形成した伸線加工前の棒状複合体を、上記した製造方法と同様、押出しや引抜き加工により伸線加工を行った後、不活性雰囲気で焼鈍して、棒状複合体6Aを作製する。 Next, a tubular barrier layer 5 having an outer diameter larger than that of the tubular first metal 1b is prepared, and this barrier layer 5 is disposed on the outer periphery of the first metal 1b. By putting these into the space of the tubular third metal 3, a rod-shaped composite before drawing is completed. The rod-shaped composite body before wire drawing formed in this way is subjected to wire drawing by extrusion or drawing like the above-described manufacturing method, and then annealed in an inert atmosphere to produce a rod-shaped composite 6A. To do.
 この棒状複合体6Aを、管状の外周管7の空間部へ複数本入れ、中心部には第4の金属8を入れることで伸線加工前の超電導線材20Aが完成する。 The superconducting wire 20A before drawing is completed by putting a plurality of the rod-like composites 6A into the space of the tubular outer tube 7 and putting the fourth metal 8 in the center.
 なお、バリア層5をあらかじめ第3の金属3の空間部へ入れておき、その内側に、棒状の第1の金属1a、管状の第1の金属1bを入れた後に、棒状の第1の金属1aと管状の第1の金属1bの間に、粉末状の第2の金属2aを充填して、棒状複合体6Aを作製してもよい。 In addition, after putting the barrier layer 5 in the space of the third metal 3 in advance and putting the rod-shaped first metal 1a and the tubular first metal 1b inside thereof, the rod-shaped first metal A rod-shaped composite 6A may be manufactured by filling a powdery second metal 2a between 1a and the tubular first metal 1b.
 なお、超電導線材20Aの伸線加工及び熱処理に関しては、第1の金属1aとして粉状体を用いた場合の上記した製造方法と同様であり、その説明を省略する。 Note that the drawing process and heat treatment of the superconducting wire 20A are the same as in the above-described manufacturing method in the case of using a powdery body as the first metal 1a, and the description thereof is omitted.
 第1の拡散層4、第2の拡散層12としてMgB層を形成する場合の各層の構成材料について、環状層2aを構成する第2の金属2aとして、粉状体を用いる場合を例に説明する。 Regarding the constituent material of each layer when forming the MgB 2 layer as the first diffusion layer 4 and the second diffusion layer 12, the case where a powdery body is used as the second metal 2a constituting the annular layer 2a is taken as an example. explain.
 第2の金属2aを圧粉体等の粉状体とする場合、棒状の第1の金属1aとしては、例えばマグネシウム(Mg)又はマグネシウム(Mg)を含む合金を用いることができる。 When the second metal 2a is made into a powdery body such as a green compact, for example, magnesium (Mg) or an alloy containing magnesium (Mg) can be used as the rod-shaped first metal 1a.
 なお、第2の金属2aが粉状体である場合には、製造の便宜の観点からは、第1の金属1aは棒状体であることが好ましい。ただし、第2の金属2aが粉状体である場合でも、第1の金属1aは粉状体であっでもよく、例えばメカニカルミリング法(MM法)により形成したMg-B又はこれを含む合金の粉状体であってもよく、マグネシウム(Mg)又はマグネシウム(Mg)を含む合金の粉状体であってもよい。 In addition, when the 2nd metal 2a is a powdery body, it is preferable that the 1st metal 1a is a rod-shaped body from a viewpoint of the convenience of manufacture. However, even when the second metal 2a is a powder, the first metal 1a may be a powder, such as Mg-B formed by a mechanical milling method (MM method) or an alloy containing the same. It may be a powder, or may be a powder of magnesium (Mg) or an alloy containing magnesium (Mg).
 第2の金属2aとしては、ホウ素(B)又はホウ素(B)を含む合金の粉状体を用いることができる。 As the second metal 2a, boron (B) or an alloy powder containing boron (B) can be used.
 第1の金属1bとしては、マグネシウム(Mg)又はマグネシウム(Mg)を含む合金の管状体を用いることができる。なお、第2の金属2aが粉状体である場合には、製造の便宜の観点からは、第1の金属1bは管状体であることが好ましい。ただし、第2の金属2aが粉状体である場合でも、第1の金属1bは粉状体であっでもよく、例えばメカニカルミリング法(MM法)により形成したMg-B又はこれを含む合金の粉状体であってもよく、マグネシウム(Mg)又はマグネシウム(Mg)を含む合金の粉状体であってもよい。 As the first metal 1b, a tubular body of magnesium (Mg) or an alloy containing magnesium (Mg) can be used. In addition, when the 2nd metal 2a is a powdery body, it is preferable from a viewpoint of the convenience of manufacture that the 1st metal 1b is a tubular body. However, even when the second metal 2a is a powder, the first metal 1b may be a powder, for example, Mg—B formed by a mechanical milling method (MM method) or an alloy containing the same. It may be a powder, or may be a powder of magnesium (Mg) or an alloy containing magnesium (Mg).
 バリア層5、第3の金属3、第4の金属8、外周管7に関しては、第1の金属1aとして粉状体を用いた場合と同様の構成材料を用いることができる。 For the barrier layer 5, the third metal 3, the fourth metal 8, and the outer tube 7, it is possible to use the same constituent materials as when the powdery body is used as the first metal 1 a.
 なお、第1の金属1aとして粉状体を用いた場合の製造方法と同様、第1の金属1a、第1の金属1b及び第2の金属2aには、これらが粉状体である場合、上記した主成分に加えて、SiCなどの炭化物を適宜混合させてもよい。 In addition, like the manufacturing method when using a powdery body as the first metal 1a, the first metal 1a, the first metal 1b, and the second metal 2a have a powdery body, In addition to the main components described above, carbides such as SiC may be appropriately mixed.
 各層の構成材料として上記のものを使用して製造された、図1に示す超電導線材12の各層の構成について説明する。 
 第1の金属1aとして粉状体を用いた場合と同様、第1の拡散層4及び第2の拡散層12としては、超電導特性を有する層として、MgBが形成される。
The configuration of each layer of the superconducting wire 12 shown in FIG. 1 manufactured using the above-described materials as the constituent material of each layer will be described.
As in the case where a powder is used as the first metal 1a, MgB 2 is formed as the first diffusion layer 4 and the second diffusion layer 12 as a layer having superconducting characteristics.
 第1の金属を主体とする中心層1aは、マグネシウム(Mg)又はマグネシウム(Mg)を含む合金、メカニカルミリング法(MM法)で形成されたMg-B、又はこれを含む合金を主体とする層である。 
 第2の金属を主体とする環状層2aは、ホウ素(B)又はホウ素(B)を含む合金を主体とする層である。 
 第1の金属を主体とする環状層1bは、マグネシウム(Mg)又はマグネシウム(Mg)を含む合金、メカニカルミリング法(MM法)で形成されたMg-B、又はこれを含む合金を主体とする層である。
The central layer 1a mainly composed of the first metal is composed mainly of magnesium (Mg) or an alloy containing magnesium (Mg), Mg—B formed by a mechanical milling method (MM method), or an alloy containing this. Is a layer.
The annular layer 2a mainly composed of the second metal is a layer mainly composed of boron (B) or an alloy containing boron (B).
The annular layer 1b mainly composed of the first metal is composed mainly of magnesium (Mg) or an alloy containing magnesium (Mg), Mg—B formed by a mechanical milling method (MM method), or an alloy containing this. Is a layer.
 中心層1a及び環状層2aにおける、メカニカルミリング法(MM法)で形成されたMg-B又はこれを含む合金の粒径は、上記したように、1nmから100nmである。 In the central layer 1a and the annular layer 2a, the particle diameter of Mg—B formed by a mechanical milling method (MM method) or an alloy containing the same is 1 nm to 100 nm as described above.
 その他のバリア層5、外周管7、充填層10の構成材料は、第1の金属1aとして粉状体を用いた場合の構成材料と同様であり、その説明を省略する。 Other constituent materials of the barrier layer 5, the outer peripheral tube 7, and the filling layer 10 are the same as those in the case of using a powdery body as the first metal 1a, and the description thereof is omitted.
 なお、上記した製造方法では、第1の金属1a又は第2の金属2aが圧粉体等の粉状体である場合を例に説明したが、本発明は必ずしもこのような形態に限られない。例えば第1の金属1a、第2の金属2a、第1の金属1bのいずれも、棒状体や管状体で構成してもよい。また、第1の金属1a、第2の金属2a、第1の金属1bのいずれも、粉状体で構成してもよい。 In the above-described manufacturing method, the case where the first metal 1a or the second metal 2a is a powdery body such as a green compact has been described as an example. However, the present invention is not necessarily limited to such a form. . For example, any of the first metal 1a, the second metal 2a, and the first metal 1b may be formed of a rod-like body or a tubular body. Moreover, you may comprise any of the 1st metal 1a, the 2nd metal 2a, and the 1st metal 1b with a powdery body.
 以下に、実施例2の超電導線材の製造方法について、図4を参照して説明する。図4は、実施例2の超電導線材の伸線加工前の状態を示す断面図である。 Hereinafter, a method of manufacturing the superconducting wire of Example 2 will be described with reference to FIG. FIG. 4 is a cross-sectional view showing a state of the superconducting wire of Example 2 before drawing.
 実施例2が実施例1と異なる点は、外周管7内に、複数の棒状複合体6A及び第4の金属8を設置した後、外周管7と、棒状複合体6A及び第4の金属8からなる構造体15との間の領域に、第6の金属11を設置している点である。 Example 2 is different from Example 1 in that a plurality of rod-shaped composite bodies 6A and a fourth metal 8 are installed in the outer peripheral pipe 7, and then the outer peripheral pipe 7, the bar-shaped composite bodies 6A and the fourth metal 8 are disposed. The sixth metal 11 is placed in a region between the structure 15 and the structure 15.
 第6の金属11は、外周管7と構造体15との間の領域に沿う形状を有する金属成型体である。第6の金属11としては、特に限定されないが、例えば銅(Cu)又は銅(Cu)を含む合金を用いることができる。 The sixth metal 11 is a metal molded body having a shape along the region between the outer peripheral tube 7 and the structure 15. Although it does not specifically limit as the 6th metal 11, For example, the alloy containing copper (Cu) or copper (Cu) can be used.
 第6の金属11としては、金属製の棒状体を複数本使用して、外周管7と構造体15との間の領域に充填することも可能であるが、空間9の外形に沿った形状の金属成型体を用いることが好ましい。 As the sixth metal 11, it is possible to fill a region between the outer peripheral tube 7 and the structure 15 by using a plurality of metal rods, but the shape along the outer shape of the space 9 It is preferable to use a metal molded body.
 実施例2では、図4に示す状態の構造体15を、第6の金属11及び外周管7とともに伸線加工、さらに熱処理する。これにより、熱処理後には、棒状複合体6内には、第1の拡散層4、第2の拡散層12が形成されるとともに、外周管7内の棒状複合体6間の領域には、第3の金属3、中心部の第4の金属8及び第6の金属11との混合体である充填層10が形成され、超電導線材20が得られる。 In Example 2, the structure 15 in the state shown in FIG. 4 is drawn together with the sixth metal 11 and the outer tube 7 and further heat-treated. Thereby, after the heat treatment, the first diffusion layer 4 and the second diffusion layer 12 are formed in the rod-shaped composite body 6, and the region between the rod-shaped composite bodies 6 in the outer tube 7 3 is formed, and the filling layer 10 which is a mixture of the fourth metal 8 and the sixth metal 11 in the center is formed, and the superconducting wire 20 is obtained.
 なお、実施例2の製造方法は、第6の金属11を用いる点以外は実施例1と同様であり、その説明を省略する。また、実施例2の製造方法により得られる超伝導線材の構成は、図1に示す実施例1の超伝導線材と同様であり、その説明を省略する。 In addition, the manufacturing method of Example 2 is the same as that of Example 1 except the point which uses the 6th metal 11, and the description is abbreviate | omitted. Moreover, the structure of the superconducting wire obtained by the manufacturing method of Example 2 is the same as that of the superconducting wire of Example 1 shown in FIG.
 実施例2では、伸線加工前に、外周管7内の空間9を埋めることで、伸線加工時における、棒状複合体6Aのバリア層破れを防止することができ、より歩留りよく製造することができる。 In Example 2, before the wire drawing process, the space 9 in the outer peripheral tube 7 is filled, whereby the barrier layer breakage of the rod-shaped composite body 6A during the wire drawing process can be prevented, and manufacturing is performed with higher yield. Can do.
 以下に、実施例3の超電導線材及びその製造方法について、図5及び図6を参照して説明する。図5は、実施例3の超電導線材の伸線加工前の状態を示す断面図である。図6は、実施例3の超電導線材の断面図である。すなわち、図6は、伸線加工及び熱処理を行った後の完成体の超電導線材の断面図である。 Hereinafter, the superconducting wire of Example 3 and the manufacturing method thereof will be described with reference to FIGS. FIG. 5 is a cross-sectional view showing a state of the superconducting wire of Example 3 before drawing. FIG. 6 is a cross-sectional view of the superconducting wire of Example 3. That is, FIG. 6 is a cross-sectional view of the superconducting wire of the finished product after the wire drawing and heat treatment.
 実施例3が実施例1と異なる点は、伸線加工前の状態において、複数の棒状複合体6A及び第4の金属8を設置した構造体15の外周に、この構造体15の外周面に沿う内周形状を有する外周管7を設置している点である。 The third embodiment is different from the first embodiment in that the outer periphery of the structure 15 in which the plurality of rod-shaped composite bodies 6A and the fourth metal 8 are installed on the outer peripheral surface of the structure 15 in a state before wire drawing. It is the point which has installed the outer periphery pipe | tube 7 which has the inner periphery shape which follows.
 実施例3では、図5に示すように、この外周管7により、図1の空間9に相当する領域が充填されている。図5に示す形状の外周管7は、例えば引抜き加工や押出し加工等の塑性加工により形成することができる。なお、外周管7の構成材料は、実施例1の外周管7と同様のものを用いることができる。 In Example 3, as shown in FIG. 5, an area corresponding to the space 9 in FIG. 1 is filled with the outer peripheral tube 7. The outer peripheral tube 7 having the shape shown in FIG. 5 can be formed by plastic working such as drawing or extruding. The constituent material of the outer tube 7 can be the same as that of the outer tube 7 of the first embodiment.
 そして、図5に示す構造体15を、外周管7とともに伸線加工、さらに熱処理することで、図6に示す超伝導線材20が得られる。すなわち、熱処理後には、棒状複合体6内には、第1の拡散層4、第2の拡散層12が形成されるとともに、外周管7内の棒状複合体6間の領域には、第3の金属3及び中心部の第4の金属8との混合体である充填層10が形成され、超電導線材20が得られる。 And the superconducting wire 20 shown in FIG. 6 is obtained by drawing the structure 15 shown in FIG. That is, after the heat treatment, the first diffusion layer 4 and the second diffusion layer 12 are formed in the rod-shaped composite body 6, and the region between the rod-shaped composite bodies 6 in the outer peripheral tube 7 is in the third region. The filling layer 10 which is a mixture of the metal 3 and the fourth metal 8 at the center is formed, and the superconducting wire 20 is obtained.
 実施例3の製造方法は、伸線加工前の構造体15の外周に、この構造体15の外周面に沿う内周形状を有する外周管7を設置する点以外は、実施例1と同様であり、その説明を省略する。また、実施例3の製造方法により得られる超伝導線材20は、棒状複合体6間の領域が、上記した外周管7で接合されている点以外は、実施例1と同様であり、その説明を省略する。 The manufacturing method of Example 3 is the same as that of Example 1 except that the outer peripheral tube 7 having an inner peripheral shape along the outer peripheral surface of the structure 15 is installed on the outer periphery of the structure 15 before the wire drawing. Yes, the description is omitted. Moreover, the superconducting wire 20 obtained by the manufacturing method of Example 3 is the same as Example 1 except that the region between the rod-like composites 6 is joined by the outer peripheral tube 7 described above, and the description thereof is omitted. Is omitted.
 実施例3によれば、外周管7として、上記した形態のものを用いることで、外周管7と棒状複合体6Aとの間の空間面積を小さくすることができる。このため、伸線加工時における、棒状複合体6Aのバリア層破れを防止することができ、より歩留りよく製造することができる。また、実施例2のように、超電導線材の伸線加工前に、空間9に金属成型体である第6の金属11を設置する工程が不要になるため、その分、短時間で製造することが可能となる。 According to Example 3, the space area between the outer peripheral tube 7 and the rod-shaped composite body 6A can be reduced by using the above-described form as the outer peripheral tube 7. For this reason, the barrier layer tearing of the rod-shaped composite body 6A at the time of wire drawing can be prevented, and it can be manufactured with higher yield. Moreover, since the process of installing the sixth metal 11 which is a metal molded body in the space 9 is not required before the drawing of the superconducting wire as in the second embodiment, it is manufactured in a shorter amount of time. Is possible.
1a…中心層(第1の金属)、1b…環状層(第1の金属)、2a…環状層(第2の金属)、3…第3の金属、4…第1の拡散層、12…第2の拡散層、5…バリア層、6…棒状複合体、6A…伸線加工前の棒状複合体、7…外周管、8…第4の金属、9…空間、10…充填層、11…第6の金属、
15…構造体、16、17…接合面、20…超電導線材、20A…伸線加工前の超電導線材
1a ... center layer (first metal), 1b ... annular layer (first metal), 2a ... annular layer (second metal), 3 ... third metal, 4 ... first diffusion layer, 12 ... 2nd diffusion layer, 5 ... barrier layer, 6 ... rod-shaped composite, 6A ... rod-shaped composite before wire drawing, 7 ... outer peripheral tube, 8 ... fourth metal, 9 ... space, 10 ... filling layer, 11 ... the sixth metal,
DESCRIPTION OF SYMBOLS 15 ... Structure, 16, 17 ... Joint surface, 20 ... Superconducting wire, 20A ... Superconducting wire before wire drawing

Claims (15)

  1.  複数の棒状複合体を含む超電導線材であって、
     前記棒状複合体は、第1の金属を主体とする第1の層と、該第1の層に拡散層を介して接合された第2の金属を主体とする第2の層とを有する接合体が二以上形成されていることを特徴とする超電導線材。
    A superconducting wire containing a plurality of rod-shaped composites,
    The rod-shaped composite has a first layer mainly composed of a first metal and a second layer mainly composed of a second metal bonded to the first layer via a diffusion layer. A superconducting wire comprising two or more bodies.
  2.  前記棒状複合体は、中心に設けられた、前記第1の層としての第1金属中心層の外側に、前記第2の層としての第2金属環状層が設けられており、
     前記第2金属環状層の外側に、さらに前記第1の層としての第1金属環状層が設けられており、
     前記第1金属中心層、前記第2金属環状層及び前記の更なる第1金属環状層を有する積層体の外側に、一種又は二種以上の金属又は合金を主体とするバリア層が設けられていることを特徴とする請求項1に記載の超電導線材。
    The rod-shaped composite body is provided with a second metal annular layer as the second layer outside the first metal center layer as the first layer provided at the center,
    A first metal annular layer as the first layer is further provided outside the second metal annular layer,
    A barrier layer mainly composed of one kind or two or more kinds of metals or alloys is provided outside the laminate having the first metal center layer, the second metal ring layer, and the further first metal ring layer. The superconducting wire according to claim 1, wherein:
  3.  前記第1の層又は前記第2の層を共有して隣接する前記接合体の組合せを二組以上有することを特徴とする請求項1に記載の超電導線材。 2. The superconducting wire according to claim 1, wherein the superconducting wire has two or more combinations of adjacent joints sharing the first layer or the second layer.
  4.  前記第1金属中心層は、ホウ素(B)又はホウ素(B)を含む合金を主体とする層であり、
     前記第2金属環状層は、マグネシウム(Mg)又はマグネシウム(Mg)を含む合金、メカニカルミリング法(MM法)で形成されたMg-B又はこれを含む合金を主体とする層であり、
     前記第1金属環状層は、ホウ素(B)又はホウ素(B)を含む合金を主体とする層であり、
     前記バリア層は、鉄(Fe)、ニオブ(Nb)、銅(Cu)、チタン(Ti)、ニッケル(Ni)、アルミニウム(Al)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)及びバナジウム(V)よりなる群から選択される一種又は二種以上の金属又は合金を主体とする層であることを特徴とする請求項2に記載の超電導線材。
    The first metal center layer is a layer mainly composed of boron (B) or an alloy containing boron (B),
    The second metal annular layer is a layer mainly composed of magnesium (Mg) or an alloy containing magnesium (Mg), Mg—B formed by a mechanical milling method (MM method) or an alloy containing the same.
    The first metal annular layer is a layer mainly composed of boron (B) or an alloy containing boron (B),
    The barrier layer includes iron (Fe), niobium (Nb), copper (Cu), titanium (Ti), nickel (Ni), aluminum (Al), tantalum (Ta), tungsten (W), molybdenum (Mo) and The superconducting wire according to claim 2, wherein the superconducting wire is a layer mainly composed of one or more metals or alloys selected from the group consisting of vanadium (V).
  5.  前記第1金属中心層は、マグネシウム(Mg)又はマグネシウム(Mg)を含む合金、メカニカルミリング法(MM法)により形成されたMg-B又はこれを含む合金を主体とする層であり、
     前記第2金属環状層は、ホウ素(B)又はホウ素(B)を含む合金を主体とする層であり、
     前記第1金属環状層は、マグネシウム(Mg)又はマグネシウム(Mg)を含む合金、メカニカルミリング法(MM法)により形成されたMg-B又はこれを含む合金を主体とする層であり、
     前記バリア層は、鉄(Fe)、ニオブ(Nb)、銅(Cu)、チタン(Ti)、ニッケル(Ni)、アルミニウム(Al)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)及びバナジウム(V)よりなる群から選択される一種又は二種以上の金属又は合金を主体とする層であることを特徴とする請求項2に記載の超電導線材。
    The first metal center layer is a layer mainly composed of magnesium (Mg) or an alloy containing magnesium (Mg), Mg-B formed by a mechanical milling method (MM method) or an alloy containing the same.
    The second metal annular layer is a layer mainly composed of boron (B) or an alloy containing boron (B),
    The first metal annular layer is a layer mainly composed of magnesium (Mg) or an alloy containing magnesium (Mg), Mg—B formed by a mechanical milling method (MM method) or an alloy containing the same.
    The barrier layer includes iron (Fe), niobium (Nb), copper (Cu), titanium (Ti), nickel (Ni), aluminum (Al), tantalum (Ta), tungsten (W), molybdenum (Mo) and The superconducting wire according to claim 2, wherein the superconducting wire is a layer mainly composed of one or more metals or alloys selected from the group consisting of vanadium (V).
  6.  前記メカニカルミリング法(MM法)により形成されたMg-B又はこれを含む合金の粒径は、1nm~100nmであることを特徴とする請求項4に記載の超電導線材。 The superconducting wire according to claim 4, wherein a particle diameter of Mg-B formed by the mechanical milling method (MM method) or an alloy containing the Mg-B is 1 nm to 100 nm.
  7.  前記メカニカルミリング法(MM法)により形成されたMg-B又はこれを含む合金の粒径は、1nm~100nmであることを特徴とする請求項5に記載の超電導線材。 The superconducting wire according to claim 5, wherein the Mg-B formed by the mechanical milling method (MM method) or an alloy containing the Mg-B has a particle size of 1 nm to 100 nm.
  8.  複数の前記棒状複合体の間が、外周管で接合されていることを特徴とする請求項1に記載の超電導線材。 The superconducting wire according to claim 1, wherein a plurality of the rod-shaped composites are joined together by an outer tube.
  9.  前記拡散層が、二ホウ化マグネシウム(MgB)を主体とする層であることを特徴とする請求項1に記載の超電導線材。 The superconducting wire according to claim 1, wherein the diffusion layer is a layer mainly composed of magnesium diboride (MgB 2 ).
  10.  第1の金属を主体とする第1の層と第2の金属を主体とする第2の層とを、これらの接合面が二以上形成されるように配置して棒状複合体を形成し、
     前記棒状複合体を複数配置した構造体を伸線加工した後熱処理することを特徴とする超電導線材の製造方法。
    The first layer mainly composed of the first metal and the second layer mainly composed of the second metal are arranged so that two or more of these joint surfaces are formed to form a rod-shaped composite,
    A method for producing a superconducting wire, characterized by subjecting a structure in which a plurality of the bar-shaped composite bodies are arranged to a heat treatment after wire drawing.
  11.  中心に配置した前記第1の層の外側に、前記第2の層及び前記第1の層を、交互にかつ互いに接触させて配置して棒状複合体を形成することを特徴とする請求項10に記載の超電導線材の製造方法。 11. The rod-like composite is formed by arranging the second layer and the first layer alternately and in contact with each other outside the first layer arranged in the center. The manufacturing method of the superconducting wire described in 1.
  12.  前記棒状複合体を複数配置した構造体を熱処理した後、加圧することを特徴とする請求項10に記載の超電導線材の製造方法。 The method for producing a superconducting wire according to claim 10, wherein the structure in which a plurality of the rod-shaped composite bodies are arranged is heat-treated and then pressurized.
  13.  前記棒状複合体を複数個配置した構造体と外周管との間の領域に、該領域の外形に沿う形状を有する金属成型体を設置した後、該金属成型体及び前記外周管とともに、前記構造体を伸線加工することを特徴とする請求項10に記載の超電導線材の製造方法。 After the metal molded body having a shape conforming to the outer shape of the region is installed in a region between the structure in which a plurality of the rod-shaped composite bodies are arranged and the outer tube, the structure is formed together with the metal molded body and the outer tube. The method of manufacturing a superconducting wire according to claim 10, wherein the body is drawn.
  14.  前記棒状複合体を複数個配置した構造体の外周面に沿う内周形状を有する外周管を、前記構造体の外周に設置した後、前記外周管とともに前記構造体を伸線加工することを特徴とする請求項10に記載の超電導線材の製造方法。 After the outer peripheral tube having an inner peripheral shape along the outer peripheral surface of the structure in which a plurality of the rod-shaped composite bodies are arranged is installed on the outer periphery of the structure, the structure is drawn together with the outer peripheral tube. The method for producing a superconducting wire according to claim 10.
  15.  前記外周管が、引抜き加工又は押出し加工により形成されていることを特徴とする請求項14に記載の超電導線材の製造方法。 The method for manufacturing a superconducting wire according to claim 14, wherein the outer peripheral tube is formed by drawing or extruding.
PCT/JP2015/066358 2015-06-05 2015-06-05 Superconducting wire rod and method for manufacturing same WO2016194225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066358 WO2016194225A1 (en) 2015-06-05 2015-06-05 Superconducting wire rod and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066358 WO2016194225A1 (en) 2015-06-05 2015-06-05 Superconducting wire rod and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016194225A1 true WO2016194225A1 (en) 2016-12-08

Family

ID=57440339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066358 WO2016194225A1 (en) 2015-06-05 2015-06-05 Superconducting wire rod and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016194225A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138820A (en) * 1990-09-28 1992-05-13 Showa Electric Wire & Cable Co Ltd Manufacture of extremely fine multiple superconductive wire
JP2000345332A (en) * 1999-06-04 2000-12-12 Japan Science & Technology Corp Manufacture of layer-shaped cluster
JP2007095367A (en) * 2005-09-27 2007-04-12 National Institute For Materials Science Manufacturing method of magnesium diboroide superconductive wire rod
JP2012074244A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Manufacturing method of superconducting wire rod, and wire rod

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138820A (en) * 1990-09-28 1992-05-13 Showa Electric Wire & Cable Co Ltd Manufacture of extremely fine multiple superconductive wire
JP2000345332A (en) * 1999-06-04 2000-12-12 Japan Science & Technology Corp Manufacture of layer-shaped cluster
JP2007095367A (en) * 2005-09-27 2007-04-12 National Institute For Materials Science Manufacturing method of magnesium diboroide superconductive wire rod
JP2012074244A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Manufacturing method of superconducting wire rod, and wire rod

Similar Documents

Publication Publication Date Title
JP2006269277A (en) MANUFACTURING METHOD OF POWDER METHOD Nb3Sn SUPERCONDUCTING WIRE
US20170062099A1 (en) Superconducting wires and methods of making thereof
JP6105088B2 (en) MgB2 superconducting wire and method for producing the same
JP5401487B2 (en) MgB2 superconducting wire
KR20190037365A (en) Diffusion barrier for metallic superconducting wire
JP2008226501A (en) MgB2 SUPERCONDUCTIVE WIRE
CN115295243B (en) Preparation method of element-doped high-critical-current-density niobium-tin superconducting strand
JP2009301928A (en) Method for manufacturing superconducting wire
JP5520260B2 (en) Superconducting wire and method for manufacturing the same
JP2008300337A (en) Nb3Sn SUPERCONDUCTING WIRE AND PRECURSOR FOR THE SAME
JP5517866B2 (en) Superconducting wire manufacturing method and wire
EP3105799B1 (en) Ternary molybdenum chalcogenide superconducting wire and manufacturing thereof
WO2016194225A1 (en) Superconducting wire rod and method for manufacturing same
JP2007242355A (en) PRECURSOR OF POWDER METHOD Nb3Sn SUPERCONDUCTING WIRE MATERIAL AND ITS MANUFACTURING METHOD
US20110136672A1 (en) Superconductors with improved mecanical strength
JP2006107841A (en) Magnesium diboride compound sheath superconducting wire and manufacturing method of the same
JP7118299B2 (en) Method for manufacturing sub-elements for Nb3Sn-containing superconducting wires based on Nb-containing rod elements with powder-filled core tubes
WO2015049776A1 (en) MgB2 SUPERCONDUCTING WIRE ROD, SUPERCONDUCTING CONNECTION STRUCTURE, SUPERCONDUCTING MAGNET USING MgB2 SUPERCONDUCTING WIRE ROD, AND SUPERCONDUCTING CABLE USING MgB2 SUPERCONDUCTING WIRE ROD
EP3961658B1 (en) Blank for producing a long nb3 sn-based superconducting wire
WO2021024529A1 (en) PRECURSOR FOR Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL, PRODUCTION METHOD THEREFOR, AND PRODUCTION METHOD FOR Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL USING SAME
JP2007294375A (en) Nb3Sn SUPERCONDUCTING WIRING MATERIAL FABRICATION PRECURSOR, METHOD FOR FABRICATION THEREOF AND Nb3Sn SUPERCONDUCTING WIRING MATERIAL
JP4723306B2 (en) Manufacturing method of Nb3Al-based superconducting wire, primary composite material for manufacturing Nb3Al-based superconducting wire and manufacturing method thereof, and multi-core composite material for manufacturing Nb3Al-based superconducting wire
JP6086469B2 (en) Nb3Al superconducting wire manufacturing method
JP4727914B2 (en) Nb3Sn superconducting wire and method for manufacturing the same
JP2010262759A (en) Nb3sn superconductive wire rod and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP