WO2016194181A1 - Numerical control device and cutting method - Google Patents

Numerical control device and cutting method Download PDF

Info

Publication number
WO2016194181A1
WO2016194181A1 PCT/JP2015/066082 JP2015066082W WO2016194181A1 WO 2016194181 A1 WO2016194181 A1 WO 2016194181A1 JP 2015066082 W JP2015066082 W JP 2015066082W WO 2016194181 A1 WO2016194181 A1 WO 2016194181A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference point
machining
workpiece
cutting
numerical control
Prior art date
Application number
PCT/JP2015/066082
Other languages
French (fr)
Japanese (ja)
Inventor
雄哉 別役
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/066082 priority Critical patent/WO2016194181A1/en
Publication of WO2016194181A1 publication Critical patent/WO2016194181A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work

Definitions

  • the present invention relates to a numerical control device and a cutting method that perform control based on a fixed cycle program.
  • the fixed cycle program can command a series of operations such as machining position, machining depth, depth of cut, reference point, cutting speed and number of repetitions of a fixed cycle when cutting a workpiece. It is a kind of program.
  • Patent Document 1 relating to a fixed cycle control device for a two-stage hole
  • a reference initial point and a second initial point are set in front of the reference initial point, and rapid feed and cutting feed are combined.
  • processing techniques are disclosed. This technique is intended for two-step drilling through a workpiece.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a numerical control device capable of improving the cutting chip discharge efficiency and shortening the machining time.
  • the present invention is a numerical control device for controlling the driving of a processing tool for cutting a workpiece, which is set below the surface of the workpiece. From the first reference point to the target position deeper than the first reference point, the processing tool performs cutting feed with cutting on the workpiece, and then the target position is set closer to the surface than the first reference point. A machining cycle for causing the machining tool to return to the second reference point is performed.
  • the numerical control device has the effect of improving the cutting chip discharge efficiency and shortening the processing time.
  • FIG. 6 is a diagram for explaining the meaning of a command format and a commanded address of a fixed cycle program in which one reference point is commanded according to the first embodiment;
  • indicated was instruct
  • Process drawing explaining the hole processed by control of the numerical control apparatus concerning Embodiment 1 The figure explaining the 2nd process part processed by control of the numerical control apparatus concerning Embodiment 1.
  • indicated by the numerical control apparatus concerning Embodiment 1 is implemented.
  • the figure explaining one machining cycle in the fixed cycle program implemented by the numerical control apparatus concerning Embodiment 1 The figure explaining the processing cycle by control of the numerical controller concerning Embodiment 1.
  • FIG. 3 is a diagram illustrating an example of a fixed cycle program in which one reference point according to the first embodiment is commanded.
  • FIG. 3 shows an example in which the program described in the subprogram 2 is read by a command of the fixed cycle program of one block when the fixed cycle is called in the main program 1 which is a machining program.
  • the numerical control device 100 is executing the main program 1 and reads the call instruction of the fixed cycle program described in the block (P1), the process jumps to the subprogram 2, and from (P2) to ( The numerical control device 100 reads the programs described in the block of P11) in order from the top.
  • FIG. 3 shows a fixed cycle program for drilling indicated by “G83”.
  • the reference point of the fixed cycle program is a point that passes through the processing tool 35 or changes the moving direction by rapid feed or cutting feed. That is, it is a point that becomes the start point or end point of rapid feed or cutting feed.
  • FIG. 4 is a diagram for explaining the meaning of the command format and the commanded address of the fixed cycle program in which one reference point according to the first embodiment is commanded.
  • the fixed cycle program command is composed of a G code indicating a fixed cycle program and a plurality of addresses. The meaning of each address is as shown in FIG. In FIG. 3, the fixed cycle program corresponding to the subprogram 2 is only executed once, and therefore the description of the number of repetitions of the fixed cycle is omitted.
  • the processing tool 35 moves at a rapid feed from the initial point to the designated reference point. After passing through the reference point, the workpiece 10 is processed while operating by cutting feed as shown in (3) of FIG. When the machining of the workpiece 10 is completed to the depth corresponding to the cutting amount in one machining cycle, the machining tool 35 escapes back to the reference point as shown in FIG. Thereafter, the reference point is a reference for reversing the moving direction of the processing tool 35 and performing another cutting process on the workpiece 10 shown in FIG. 5 (6).
  • FIG. 7 is a diagram for explaining the second machining unit 4 machined by the control of the numerical control device 100 according to the first embodiment.
  • the second machining section 4 is machined by a fixed cycle program for drilling in which one reference point is commanded. As shown in FIG. 7, the reference point is set on the surface of the workpiece 10, and the second processing tool 40 is moved to the initial point. Then, the numerical control device 100 moves the second processing tool 40 from the reference point to the target position 52 by the cutting feed 51, and then the numerical control device 100 performs the fast feed 53 from the target position 52 to the reference point. Move 40. The numerical controller 100 gradually increases the target position 52 and performs this machining cycle a plurality of times. In this way, the second processing tool 40 moves from the initial point, finishes processing the second processing portion 4 on the workpiece 10, and then returns to the initial point again, which is a fixed cycle.
  • FIG. 9 is a diagram for explaining another problem that occurs when the first machining unit 3 is machined by setting one reference point in the first embodiment.
  • the reference point is set above the surface 11 that is the outside of the workpiece 10, and the machining is executed in the same machining cycle as in FIG. 8.
  • the first processing tool 30 is moved by cutting feed in the already processed second processing portion 4, there arises a problem that the processing time increases.
  • the first processing tool 30 moves at a rapid feed 81 from the second reference point to the first reference point, and processes the workpiece 10 with a cutting feed 82 from the first reference point to the target position 83. Thereafter, the numerical control device 100 performs a machining cycle so that the first machining tool 30 moves to the second reference point by rapid traverse 84.
  • 12 to 16 are diagrams for explaining a machining cycle under the control of the numerical control device 100 according to the first embodiment.
  • numerical values are obtained from the first reference point set within the workpiece 10 and below the surface 11 of the workpiece 10 in which the opening of the second machining portion 4 is formed to the target position.
  • the control device 100 causes the first processing tool 30 to execute the cutting feed 101 to process the workpiece 10. Thereafter, the numerical controller 100 returns the tip of the first processing tool 30 to the second reference point that is closer to the surface 11 of the workpiece 10 than the first reference point but is inside the workpiece 10 by fast-forwarding 102.
  • the cutting feed 101 and the rapid feed 102 are included in one machining cycle. Such a machining cycle is carried out a plurality of times with the target position gradually deepened until the machining of the first machining section 3 is completed.
  • the target position is gradually deepened until machining of the first machining unit 3 is completed, and a machining cycle similar to that of FIG. 12 is performed a plurality of times. Thus, it is set above the surface 11 of the workpiece 10.
  • the target position is sequentially deepened and machining cycles similar to those in FIG. 12 are performed a plurality of times until the machining of the first machining portion 3 is completed.
  • 11 is a machining start position in a machining cycle of machining from 11. Accordingly, the first processing tool 30 is moved at a rapid feed rate from the second reference point that is the machining start position to the first reference point that is the starting point of the cutting feed 101. Specifically, the second reference point is set at a position close to the surface 11 of the workpiece 10 or the outer surface 11 of the workpiece 10.
  • the target position is gradually deepened until the processing of the first processing unit 3 is completed, and the same processing cycle as in FIG. 12 is performed a plurality of times.
  • the second reference point in the machining cycle including the rapid feed 110 is the machining start position of the immediately preceding machining cycle, that is, the second reference point of the immediately preceding machining cycle.
  • FIG. 17 is a diagram illustrating an example of a fixed cycle program in which two reference points according to the first embodiment are commanded.
  • the numerical control device 100 is executing the main program 5, which is a machining program
  • the processing jumps to the subprogram 6, and from (P13) to (P25
  • the numerical controller 100 reads the program described in the block) in order from the top.
  • FIG. 17 shows a fixed cycle program for drilling indicated by “G83”.
  • FIG. 20 is a flowchart illustrating an operation processing procedure according to a cutting method in which the numerical control device 100 according to the first embodiment executes a fixed cycle program.
  • a fixed cycle command by the fixed cycle program shown in FIG. 3 or FIG. 17 is read (step S1), it moves to the initial point by fast-forwarding according to the argument of the fixed cycle command. Then, positioning of the X and Y coordinates is executed (step S2). Next, it is determined whether or not there is a second reference point command at the fixed cycle program address (step S3).
  • step S3 When the second reference point is instructed as in the main program 5 of FIG. 17 (step S3: Yes), positioning is executed by rapid traverse to the second reference point as shown in (2) of FIG. S4). After that, as shown in (3) of FIG. 19, it further moves to the first reference point by rapid traverse (step S5). Then, as shown in FIG. 19 (4), the hole machining, which is a cutting step by cutting feed, is executed from the first reference point (step S6). When machining to the target position of the machining cycle, as shown in FIG. 19 (5), the first machining tool 30 is moved to the second reference point as a positioning step of the first machining tool 30 (step S7). .
  • step S8 it is determined whether the movement of the 1st processing tool 30 was completed to the hole bottom designated by the fixed cycle program.
  • step S8: No the process returns to step S5, and the next machining cycle consisting of (6), (7), (8) and (9) in FIG. 19 is executed.
  • step S8: Yes the movement to the hole bottom is completed (step S8: Yes)
  • step S13 it moves to the initial point by fast-forwarding (step S13), finishes the fixed cycle command, and processes to the hole bottom. Ends.
  • step S3 When the second reference point is not instructed as in the main program 1 of FIG. 3 (step S3: No), positioning is executed by rapid traverse to the reference point as shown in (2) of FIG. 5 (step S9). . Thereafter, as shown in (3) of FIG. 5, drilling by cutting feed is executed from the reference point (step S10). When machining is performed up to the target position of the machining cycle, as shown in (4) of FIG. Then, it is determined whether or not the movement to the hole bottom designated by the fixed cycle program is completed (step S12). If the movement to the hole bottom has not been completed (step S12: No), the process returns to step S10, and the next machining cycle consisting of (5), (6) and (7) in FIG. 5 is executed. When the movement to the bottom of the hole is completed (step S12: Yes), as shown in (n) of FIG. 5, it moves to the initial point by rapid traverse (step S13), finishes the fixed cycle command, and processes to the bottom of the hole. Ends.
  • the numerical control device 100 when the workpiece 10 is machined by the fixed cycle program, a plurality of reference points are provided, whereby the first machining tool 30 for the workpiece 10 is provided.
  • the effects of shortening the machining time and improving the cutting chip discharge efficiency can be obtained.
  • the first processing tool 30 can be moved by fast-forwarding the already-cut second processing portion 4, and the processing time can be shortened. Further, after cutting the first processed portion 3, the first processing tool 30 is raised to a position higher than the starting point of the cutting process, such as the outside of the work piece 10, so that the cutting chips generated during the processing can be reduced. 10 can be discharged to the outside.
  • an operation command can be realized by a command by a fixed cycle program described in one block of the machining program.

Abstract

A numerical control device for controlling the driving of a machining tool (30) for cutting a workpiece (10), the device performing a machining cycle in which the machining tool (30) is made to carry out a cut-feed (82) operation, which involves cutting the workpiece (10), from a first reference point that is set below the surface (11) of the workpiece (10) to a target position (83) deeper than the first reference point, after which the machining tool (30) is made to execute an operation of returning from the target position (83) to a second reference point, which is set at a position that is closer to the surface (11) than the first reference point.

Description

数値制御装置および切削加工方法Numerical control device and cutting method
 本発明は、固定サイクルプログラムに基づいて制御を行う数値制御装置および切削加工方法に関する。 The present invention relates to a numerical control device and a cutting method that perform control based on a fixed cycle program.
 固定サイクルプログラムとは、被加工物を切削加工する際に、加工位置、加工深さ、毎回の切り込み量、基準点、切削速度および固定サイクルの繰返し回数といった一連動作を、1ブロックで指令可能なプログラムの一種である。 The fixed cycle program can command a series of operations such as machining position, machining depth, depth of cut, reference point, cutting speed and number of repetitions of a fixed cycle when cutting a workpiece. It is a kind of program.
 2段穴の固定サイクル制御装置に関する特許文献1においては、2段穴を加工する固定サイクル制御において、基準イニシャル点と、その前方に2段目のイニシャル点を設定し、早送りと切削送りを組み合わせて加工する技術が開示されている。この技術は、被加工物を貫通させる2段穴加工を対象としている。 In Patent Document 1 relating to a fixed cycle control device for a two-stage hole, in a fixed cycle control for machining a two-stage hole, a reference initial point and a second initial point are set in front of the reference initial point, and rapid feed and cutting feed are combined. And processing techniques are disclosed. This technique is intended for two-step drilling through a workpiece.
実開昭63-67050号公報Japanese Utility Model Publication No. 63-67050
 しかしながら、被加工物を貫通させない穴あけ加工をする場合において、直径が異なる連結した穴の深い方の穴を穴あけ固定サイクルで加工する際に、基準点を既に加工した穴の穴底に設定すると、固定サイクルの終了まで被加工物の外に加工具が戻らない。このため切粉を穴の外に排出できず、切粉による加工不良の可能性が生じる。またこれを回避しようとすると、既に加工した穴の領域も加工具を切削送りで移動することになるので、加工時間、即ちタクトタイムが増加するという問題があった。 However, when drilling without penetrating the workpiece, when processing the deeper hole of the connected holes with different diameters in the drilling fixed cycle, the reference point is set at the hole bottom of the hole that has already been processed, The work tool does not return to the work piece until the end of the fixed cycle. For this reason, the chips cannot be discharged out of the hole, and there is a possibility of processing defects due to the chips. In addition, when trying to avoid this, there is a problem that the machining time, that is, the tact time is increased because the machining tool also moves the machining tool by cutting feed.
 本発明は、上記に鑑みてなされたものであって、切削切粉の排出効率の向上および加工時間の短縮が可能となる数値制御装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a numerical control device capable of improving the cutting chip discharge efficiency and shortening the machining time.
 上述した課題を解決し、目的を達成するために、本発明は、被加工物を切削加工する加工具の駆動を制御する数値制御装置であって、被加工物の表面より下に設定された第一基準点から第一基準点より深い目標位置まで、被加工物に対する切削加工を伴う切削送りを加工具に実行させ、その後、目標位置から第一基準点よりも表面に近い位置に設定された第二基準点まで戻る動作を加工具に実行させる加工サイクルを実施することを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is a numerical control device for controlling the driving of a processing tool for cutting a workpiece, which is set below the surface of the workpiece. From the first reference point to the target position deeper than the first reference point, the processing tool performs cutting feed with cutting on the workpiece, and then the target position is set closer to the surface than the first reference point. A machining cycle for causing the machining tool to return to the second reference point is performed.
 本発明にかかる数値制御装置は、切削切粉の排出効率の向上および加工時間の短縮が可能となるという効果を奏する。 The numerical control device according to the present invention has the effect of improving the cutting chip discharge efficiency and shortening the processing time.
本発明の実施の形態1にかかる切削加工装置の構成を示す図The figure which shows the structure of the cutting apparatus concerning Embodiment 1 of this invention. 実施の形態1にかかる数値制御装置のハードウェア構成を示す図The figure which shows the hardware constitutions of the numerical control apparatus concerning Embodiment 1. FIG. 実施の形態1にかかる基準点が1つ指令された固定サイクルプログラムの一例を示す図The figure which shows an example of the fixed cycle program in which one reference point concerning Embodiment 1 was instruct | indicated 実施の形態1にかかる基準点が1つ指令された固定サイクルプログラムの指令フォーマットおよび指令されたアドレスの意味を説明する図FIG. 6 is a diagram for explaining the meaning of a command format and a commanded address of a fixed cycle program in which one reference point is commanded according to the first embodiment; 実施の形態1にかかる基準点が1つ指令された固定サイクルプログラムが指令された時の加工具の動作を説明する図The figure explaining operation | movement of the processing tool when the fixed cycle program by which one reference point concerning Embodiment 1 was instruct | indicated was instruct | indicated. 実施の形態1にかかる数値制御装置の制御により加工される穴を説明する加工図Process drawing explaining the hole processed by control of the numerical control apparatus concerning Embodiment 1 実施の形態1にかかる数値制御装置の制御により加工された第二加工部を説明する図The figure explaining the 2nd process part processed by control of the numerical control apparatus concerning Embodiment 1. FIG. 実施の形態1において1つの基準点を設定して第一加工部を加工したときに生ずる問題を説明する図The figure explaining the problem which arises when the 1st processing part is processed by setting one reference point in Embodiment 1. 実施の形態1において1つの基準点を設定して第一加工部を加工したときに生ずる別の問題を説明する図The figure explaining another problem which arises when the 1st processing part is processed by setting one reference point in Embodiment 1. 実施の形態1にかかる数値制御装置により基準点が2つ指令された固定サイクルプログラムを実施する様子を説明する図The figure explaining a mode that the fixed cycle program in which two reference points were instruct | indicated by the numerical control apparatus concerning Embodiment 1 is implemented. 実施の形態1にかかる数値制御装置により実施される固定サイクルプログラムにおける1回の加工サイクルを説明する図The figure explaining one machining cycle in the fixed cycle program implemented by the numerical control apparatus concerning Embodiment 1 実施の形態1にかかる数値制御装置の制御による加工サイクルを説明する図The figure explaining the processing cycle by control of the numerical controller concerning Embodiment 1. 実施の形態1にかかる数値制御装置の制御による加工サイクルを説明する図The figure explaining the processing cycle by control of the numerical controller concerning Embodiment 1. 実施の形態1にかかる数値制御装置の制御による加工サイクルを説明する図The figure explaining the processing cycle by control of the numerical controller concerning Embodiment 1. 実施の形態1にかかる数値制御装置の制御による加工サイクルを説明する図The figure explaining the processing cycle by control of the numerical controller concerning Embodiment 1. 実施の形態1にかかる数値制御装置の制御による加工サイクルを説明する図The figure explaining the processing cycle by control of the numerical controller concerning Embodiment 1. 実施の形態1にかかる基準点が2つ指令された固定サイクルプログラムの一例を示す図The figure which shows an example of the fixed cycle program in which two reference points concerning Embodiment 1 were commanded 実施の形態1にかかる基準点が2つ指令された固定サイクルプログラムの指令フォーマットおよび指令されたアドレスの意味を説明する図FIG. 6 is a diagram for explaining the meaning of a command format and a commanded address of a fixed cycle program in which two reference points are commanded according to the first embodiment; 実施の形態1にかかる基準点が2つ指令された固定サイクルプログラムが指令された時の第一加工具の動作を説明する図The figure explaining operation | movement of the 1st processing tool when the fixed cycle program by which two reference points concerning Embodiment 1 were instruct | indicated was instruct | indicated. 実施の形態1にかかる数値制御装置が固定サイクルプログラムを実行した切削加工方法による動作処理手順を示すフローチャートThe flowchart which shows the operation | movement procedure by the cutting method which the numerical control apparatus concerning Embodiment 1 performed the fixed cycle program.
 以下に、本発明の実施の形態にかかる数値制御装置および切削加工方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a numerical controller and a cutting method according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる切削加工装置300の構成を示す図である。切削加工装置300は、ワークである被加工物10を切削加工する加工具35と、加工具35を駆動する駆動部200と、駆動部200を制御する数値制御装置100と、を備える。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a cutting apparatus 300 according to the first embodiment of the present invention. The cutting apparatus 300 includes a processing tool 35 that cuts the workpiece 10 that is a workpiece, a driving unit 200 that drives the processing tool 35, and a numerical control device 100 that controls the driving unit 200.
 図2は、実施の形態1にかかる数値制御装置100のハードウェア構成を示す図である。数値制御装置100は、演算処理を行うCPU(Central Processing Unit)といった演算装置41と、演算装置41がワークエリアに用いるメモリ42と、加工プログラムを記憶する記憶装置43と、ユーザとの間の入力インタフェースである入力装置44と、ユーザに情報を表示する表示装置45と、駆動部200との通信機能を有する通信装置46と、を備える。 FIG. 2 is a diagram illustrating a hardware configuration of the numerical control device 100 according to the first embodiment. The numerical control device 100 includes an arithmetic device 41 such as a CPU (Central Processing Unit) that performs arithmetic processing, a memory 42 used for a work area by the arithmetic device 41, a storage device 43 that stores a machining program, and an input between a user. An input device 44 that is an interface, a display device 45 that displays information to the user, and a communication device 46 having a communication function with the drive unit 200 are provided.
 図3は、実施の形態1にかかる基準点が1つ指令された固定サイクルプログラムの一例を示す図である。図3は、加工プログラムであるメインプログラム1における固定サイクルの呼び出し時に、1ブロックの固定サイクルプログラムの指令でサブプログラム2に記載のプログラムが読み込まれる例を示している。具体的には、メインプログラム1を数値制御装置100が実行中に、(P1)のブロックに記載された固定サイクルプログラムの呼び出し指令を読み込むと、サブプログラム2に処理が飛び、(P2)から(P11)のブロックに記載されたプログラムを上から順に数値制御装置100が読み込む。図3では、“G83”で示される穴開けの固定サイクルプログラムが示されている。 FIG. 3 is a diagram illustrating an example of a fixed cycle program in which one reference point according to the first embodiment is commanded. FIG. 3 shows an example in which the program described in the subprogram 2 is read by a command of the fixed cycle program of one block when the fixed cycle is called in the main program 1 which is a machining program. Specifically, when the numerical control device 100 is executing the main program 1 and reads the call instruction of the fixed cycle program described in the block (P1), the process jumps to the subprogram 2, and from (P2) to ( The numerical control device 100 reads the programs described in the block of P11) in order from the top. FIG. 3 shows a fixed cycle program for drilling indicated by “G83”.
 数値制御装置100が(P11)の処理内容を読み込み終えた後は、再度メインプログラム1に戻り、固定サイクルプログラムが記載された(P1)のブロックの次のブロックを読み込む。図3から分かるように、固定サイクルプログラムは、メインプログラム1の(P1)のブロックに記載された固定サイクル呼び出しの1行を指令するのみで、サブプログラム2の(P2)から(P11)のブロックに記載されたプログラムを読み込む。従って、被加工物10を切削加工する際の加工位置、加工深さ、毎回の切り込み量、基準点、切削速度および固定サイクルの繰返し回数といった条件をメインプログラム1の1ブロックで定める事が可能である。 After the numerical control device 100 finishes reading the processing content of (P11), it returns to the main program 1 again and reads the block next to the block of (P1) in which the fixed cycle program is written. As can be seen from FIG. 3, the fixed cycle program only commands one line of the fixed cycle call described in the block (P1) of the main program 1, and blocks (P2) to (P11) of the subprogram 2 Load the program described in. Accordingly, it is possible to define conditions such as a machining position, a machining depth, a cutting depth, a reference point, a cutting speed, and a number of repetitions of a fixed cycle in the main program 1 when the workpiece 10 is machined. is there.
 固定サイクルプログラムの基準点は、早送りまたは切削送りで加工具35を通過または移動方向の変更を行う点である。即ち、早送りまたは切削送りの始点または終点となる点である。 The reference point of the fixed cycle program is a point that passes through the processing tool 35 or changes the moving direction by rapid feed or cutting feed. That is, it is a point that becomes the start point or end point of rapid feed or cutting feed.
 図4は、実施の形態1にかかる基準点が1つ指令された固定サイクルプログラムの指令フォーマットおよび指令されたアドレスの意味を説明する図である。固定サイクルプログラムの指令は、固定サイクルプログラムであることを示すGコードと、複数個のアドレスから成立っている。それぞれのアドレスの意味は、図4に示す通りである。図3では、サブプログラム2に相当する固定サイクルプログラムを1回実行するだけなので、固定サイクルの繰返し回数の記載は省略されている。 FIG. 4 is a diagram for explaining the meaning of the command format and the commanded address of the fixed cycle program in which one reference point according to the first embodiment is commanded. The fixed cycle program command is composed of a G code indicating a fixed cycle program and a plurality of addresses. The meaning of each address is as shown in FIG. In FIG. 3, the fixed cycle program corresponding to the subprogram 2 is only executed once, and therefore the description of the number of repetitions of the fixed cycle is omitted.
 図5は、実施の形態1にかかる基準点が1つ指令された固定サイクルプログラムが指令された時の加工具35の動作を説明する図である。左下のプログラムで示した(1)から(n)のブロックに対応する動きが図の上に示した(1)から(n)で示されている。なお、図5の中で“m”で示されるパラメータは、入力装置44を介してユーザが数値制御装置100に設定した値である。 FIG. 5 is a diagram for explaining the operation of the processing tool 35 when a fixed cycle program in which one reference point is instructed according to the first embodiment is instructed. The movements corresponding to the blocks (1) to (n) shown in the lower left program are shown in (1) to (n) shown in the upper part of the figure. The parameter indicated by “m” in FIG. 5 is a value set in the numerical control device 100 by the user via the input device 44.
 “G00”で始まるブロックは、被加工物10に対する切削加工を伴わない位置決め動作、即ち早送りの動作を示す。“G01”で始まるブロックは、被加工物10に対する切削加工を伴う直線補間の動作、即ち切削送りの動作を示す。切削送りにおける直線補間の動作速度は、早送りの動作速度より遅い速度である。 A block starting with “G00” indicates a positioning operation without cutting with respect to the workpiece 10, that is, a fast-forward operation. A block beginning with “G01” indicates a linear interpolation operation with a cutting operation on the workpiece 10, that is, a cutting feed operation. The operation speed of linear interpolation in cutting feed is slower than the fast feed operation speed.
 被加工物10を切削加工する際、図5の(2)に示すようにイニシャル点から指定された基準点まで、加工具35が早送りで移動する。基準点を通過した後は、図5の(3)に示すように切削送りで動作しながら被加工物10を加工する。そして1回の加工サイクルによる切り込み量分の深さまで被加工物10への加工が終了すると、加工具35の逃げる動作として、図5の(4)に示すように基準点まで早送りで戻る。基準点は、その後、加工具35の移動方向を反転し、図5の(6)に示す被加工物10に対する再度の切削加工を行うための基準となる。 When the workpiece 10 is cut, as shown in (2) of FIG. 5, the processing tool 35 moves at a rapid feed from the initial point to the designated reference point. After passing through the reference point, the workpiece 10 is processed while operating by cutting feed as shown in (3) of FIG. When the machining of the workpiece 10 is completed to the depth corresponding to the cutting amount in one machining cycle, the machining tool 35 escapes back to the reference point as shown in FIG. Thereafter, the reference point is a reference for reversing the moving direction of the processing tool 35 and performing another cutting process on the workpiece 10 shown in FIG. 5 (6).
 図6は、実施の形態1にかかる数値制御装置100の制御により加工される穴を説明する加工図である。図6に示す穴の第一加工部3と第二加工部4とではそれぞれ直径が異なる。具体例としては、第二加工部4より第一加工部3の直径が小さい場合である。従って、第一加工部3は第一加工具30で加工し、第二加工部4は第一加工具30とは別の工具である第二加工具40で加工する。 FIG. 6 is a processing diagram for explaining holes to be processed under the control of the numerical control apparatus 100 according to the first embodiment. The first processed portion 3 and the second processed portion 4 of the hole shown in FIG. 6 have different diameters. As a specific example, the diameter of the first processed portion 3 is smaller than that of the second processed portion 4. Therefore, the first processing unit 3 is processed by the first processing tool 30, and the second processing unit 4 is processed by the second processing tool 40, which is a tool different from the first processing tool 30.
 図7は、実施の形態1にかかる数値制御装置100の制御により加工された第二加工部4を説明する図である。第二加工部4は、基準点が1つ指令された穴空けの固定サイクルプログラムで加工される。図7に示す様に、基準点を被加工物10の表面に設定し、第二加工具40をイニシャル点に移動する。そして、基準点から目標位置52まで切削送り51で、数値制御装置100は第二加工具40を移動し、その後、目標位置52から基準点まで早送り53で、数値制御装置100は第二加工具40を移動する。数値制御装置100は、目標位置52を徐々に深くして、この加工サイクルを複数回実施する。このようにして、イニシャル点から第二加工具40が移動して、被加工物10に第二加工部4を加工し終えて、再度イニシャル点に戻ってくるまでが固定サイクルである。 FIG. 7 is a diagram for explaining the second machining unit 4 machined by the control of the numerical control device 100 according to the first embodiment. The second machining section 4 is machined by a fixed cycle program for drilling in which one reference point is commanded. As shown in FIG. 7, the reference point is set on the surface of the workpiece 10, and the second processing tool 40 is moved to the initial point. Then, the numerical control device 100 moves the second processing tool 40 from the reference point to the target position 52 by the cutting feed 51, and then the numerical control device 100 performs the fast feed 53 from the target position 52 to the reference point. Move 40. The numerical controller 100 gradually increases the target position 52 and performs this machining cycle a plurality of times. In this way, the second processing tool 40 moves from the initial point, finishes processing the second processing portion 4 on the workpiece 10, and then returns to the initial point again, which is a fixed cycle.
 図8は、実施の形態1において1つの基準点を設定して第一加工部3を加工したときに生ずる問題を説明する図である。図8に示すように、基準点を第二加工部4の穴底に設定すると、基準点と第一加工部3の穴底との間を往復する加工サイクルは、第一加工具30が被加工物10の表面11まで上がらないため、切粉が被加工物10の外に排出できない。そのため、切粉が被加工物10の穴底に溜まり、加工時の加工不良に繋がるという問題が生ずる。 FIG. 8 is a diagram for explaining a problem that occurs when the first machining portion 3 is machined by setting one reference point in the first embodiment. As shown in FIG. 8, when the reference point is set at the hole bottom of the second processing portion 4, the first processing tool 30 covers the machining cycle that reciprocates between the reference point and the hole bottom of the first processing portion 3. Since it does not rise to the surface 11 of the workpiece 10, the chips cannot be discharged out of the workpiece 10. Therefore, there arises a problem that chips accumulate on the hole bottom of the workpiece 10 and lead to a processing failure during processing.
 図9は、実施の形態1において1つの基準点を設定して第一加工部3を加工したときに生ずる別の問題を説明する図である。図9では、図8の問題を回避するために、基準点を被加工物10の外部である表面11より上に設定して、図8と同様な加工サイクルで加工を実行する。しかしこの場合、既に加工されている第二加工部4において第一加工具30を切削送りで動かすため、加工時間が増大するという問題が生ずる。 FIG. 9 is a diagram for explaining another problem that occurs when the first machining unit 3 is machined by setting one reference point in the first embodiment. In FIG. 9, in order to avoid the problem of FIG. 8, the reference point is set above the surface 11 that is the outside of the workpiece 10, and the machining is executed in the same machining cycle as in FIG. 8. However, in this case, since the first processing tool 30 is moved by cutting feed in the already processed second processing portion 4, there arises a problem that the processing time increases.
 図10は、実施の形態1にかかる数値制御装置100により基準点が2つ指令された固定サイクルプログラムを実施する様子を説明する図である。図10では、被加工物10に第二加工部4が既に形成されており、第一基準点と第二基準点の2つの異なる基準点を設定して固定サイクルプログラムが実施される。第二基準点は、第一基準点よりも被加工物10の表面11に近い位置に設定される。具体的には、第一基準点は第二加工部4の底に設定され、第二基準点は表面11の傍に設定される。第一加工具30は、第二基準点から第一基準点まで早送り81で移動し、第一基準点から目標位置83まで切削送り82で被加工物10を加工する。その後、第一加工具30は、第二基準点まで早送り84で移動するように、数値制御装置100が加工サイクルを実施する。 FIG. 10 is a diagram for explaining a state in which a fixed cycle program in which two reference points are commanded by the numerical controller 100 according to the first embodiment is executed. In FIG. 10, the 2nd process part 4 has already been formed in the to-be-processed object 10, and a fixed cycle program is implemented by setting two different reference points, a 1st reference point and a 2nd reference point. The second reference point is set at a position closer to the surface 11 of the workpiece 10 than the first reference point. Specifically, the first reference point is set at the bottom of the second processed portion 4, and the second reference point is set near the surface 11. The first processing tool 30 moves at a rapid feed 81 from the second reference point to the first reference point, and processes the workpiece 10 with a cutting feed 82 from the first reference point to the target position 83. Thereafter, the numerical control device 100 performs a machining cycle so that the first machining tool 30 moves to the second reference point by rapid traverse 84.
 図11は、実施の形態1にかかる数値制御装置100により実施される固定サイクルプログラムにおける1回の加工サイクルを説明する図である。この加工サイクルは、被加工物10に第二加工部4が既に形成されている状態で実行される。図11では、被加工物10の内部であって、第二加工部4の開口が形成されている被加工物10の表面11よりも下に設定された第一基準点から目標位置92まで、数値制御装置100が第一加工具30に切削送り91を実行させて、被加工物10を加工する。その後、数値制御装置100は、第一加工具30の先端を第一基準点よりも被加工物10の表面11に近い第二基準点まで早送り93で戻す。この切削送り91および早送り92を含んだ加工サイクルが、図11に示されている。 FIG. 11 is a diagram for explaining one machining cycle in the fixed cycle program executed by the numerical control device 100 according to the first embodiment. This processing cycle is executed in a state where the second processed portion 4 is already formed on the workpiece 10. In FIG. 11, from the first reference point set inside the workpiece 10 and below the surface 11 of the workpiece 10 in which the opening of the second processing portion 4 is formed, to the target position 92, The numerical control apparatus 100 causes the first processing tool 30 to execute the cutting feed 91 to process the workpiece 10. Thereafter, the numerical control device 100 returns the tip of the first processing tool 30 to the second reference point closer to the surface 11 of the workpiece 10 than the first reference point by fast-forwarding 93. A machining cycle including the cutting feed 91 and the rapid feed 92 is shown in FIG.
 図12から図16は、実施の形態1にかかる数値制御装置100の制御による加工サイクルを説明する図である。 12 to 16 are diagrams for explaining a machining cycle under the control of the numerical control device 100 according to the first embodiment.
 図12では、被加工物10の内部であって、第二加工部4の開口が形成されている被加工物10の表面11よりも下に設定された第一基準点から目標位置まで、数値制御装置100が第一加工具30に切削送り101を実行させて、被加工物10を加工する。その後、数値制御装置100は、第一加工具30の先端を第一基準点よりも被加工物10の表面11に近いが被加工物10の内部である第二基準点まで早送り102で戻す。切削送り101および早送り102は、1つの加工サイクルに含まれる。この様な加工サイクルを、第一加工部3の加工が終了するまで目標位置を順次深くして複数回実施する。 In FIG. 12, numerical values are obtained from the first reference point set within the workpiece 10 and below the surface 11 of the workpiece 10 in which the opening of the second machining portion 4 is formed to the target position. The control device 100 causes the first processing tool 30 to execute the cutting feed 101 to process the workpiece 10. Thereafter, the numerical controller 100 returns the tip of the first processing tool 30 to the second reference point that is closer to the surface 11 of the workpiece 10 than the first reference point but is inside the workpiece 10 by fast-forwarding 102. The cutting feed 101 and the rapid feed 102 are included in one machining cycle. Such a machining cycle is carried out a plurality of times with the target position gradually deepened until the machining of the first machining section 3 is completed.
 図13においても、第一加工部3の加工が終了するまで、目標位置を順次深くして図12と同様な加工サイクルを複数回実施するが、第二基準点は被加工物10の外部であって、被加工物10の表面11よりも上に設定されている。 Also in FIG. 13, the target position is gradually deepened until machining of the first machining unit 3 is completed, and a machining cycle similar to that of FIG. 12 is performed a plurality of times. Thus, it is set above the surface 11 of the workpiece 10.
 図14においても、第一加工部3の加工が終了するまで、目標位置を順次深くして図12と同様な加工サイクルを複数回実施するが、第二基準点は、被加工物10を表面11から加工する加工サイクルにおける加工開始位置である。従って、加工開始位置である第二基準点から切削送り101の始点である第一基準点まで、第一加工具30は早送りで移動される。第二基準点は、具体的には、被加工物10の表面11または被加工物10の外部の表面11に近い位置に設定されている。 Also in FIG. 14, the target position is sequentially deepened and machining cycles similar to those in FIG. 12 are performed a plurality of times until the machining of the first machining portion 3 is completed. 11 is a machining start position in a machining cycle of machining from 11. Accordingly, the first processing tool 30 is moved at a rapid feed rate from the second reference point that is the machining start position to the first reference point that is the starting point of the cutting feed 101. Specifically, the second reference point is set at a position close to the surface 11 of the workpiece 10 or the outer surface 11 of the workpiece 10.
 図15においても、第一加工部3の加工が終了するまで、目標位置を順次深くして図12と同様な加工サイクルを複数回実施するが、第二基準点は図12の場合より深く、第一基準点と表面11との間に設定されている。 Also in FIG. 15, until the processing of the first processing unit 3 is completed, the target position is sequentially deepened and a processing cycle similar to FIG. 12 is performed a plurality of times, but the second reference point is deeper than in the case of FIG. It is set between the first reference point and the surface 11.
 図16においても、第一加工部3の加工が終了するまで、目標位置を順次深くして図12と同様な加工サイクルを複数回実施する。ここでは、早送り110を含んだ加工サイクルにおける第二基準点が一つ前の加工サイクルの加工開始位置、即ち一つ前の加工サイクルの第二基準点であることを示している。 Also in FIG. 16, the target position is gradually deepened until the processing of the first processing unit 3 is completed, and the same processing cycle as in FIG. 12 is performed a plurality of times. Here, it is shown that the second reference point in the machining cycle including the rapid feed 110 is the machining start position of the immediately preceding machining cycle, that is, the second reference point of the immediately preceding machining cycle.
 図17は、実施の形態1にかかる基準点が2つ指令された固定サイクルプログラムの一例を示す図である。加工プログラムであるメインプログラム5を数値制御装置100が実行中に、(P12)のブロックに記載された固定サイクルプログラムの呼び出し指令を読み込むと、サブプログラム6に処理が飛び、(P13)から(P25)のブロックに記載されたプログラムを上から順に数値制御装置100が読み込む。図17では、“G83”で示される穴開けの固定サイクルプログラムが示されている。 FIG. 17 is a diagram illustrating an example of a fixed cycle program in which two reference points according to the first embodiment are commanded. When the numerical control device 100 is executing the main program 5, which is a machining program, when a call instruction for the fixed cycle program described in the block (P12) is read, the processing jumps to the subprogram 6, and from (P13) to (P25 The numerical controller 100 reads the program described in the block) in order from the top. FIG. 17 shows a fixed cycle program for drilling indicated by “G83”.
 数値制御装置100が(P25)の処理内容を読み込み終えた後は、再度メインプログラム5に戻り、固定サイクルプログラムが記載された(P12)のブロックの次ブロックを読み込む。図17は、メインプログラム5の(P12)のブロックに記載された固定サイクルプログラムの“R”および“K”において、第一基準点および第二基準点を指令する方法の一例を示しており、基準点が1つ指令された固定サイクルプログラムを示した図3の指令とは、基準点を2箇所指令している点が異なっている。メインプログラム5においても、被加工物10を切削加工する際の加工位置、加工深さ、毎回の切り込み量、第一基準点、第二基準点、切削速度および固定サイクルの繰返し回数といった条件を1ブロックで定める事が可能である。 After the numerical control device 100 finishes reading the processing contents of (P25), it returns to the main program 5 again and reads the next block of the block (P12) where the fixed cycle program is written. FIG. 17 shows an example of a method for instructing the first reference point and the second reference point in “R” and “K” of the fixed cycle program described in the block (P12) of the main program 5, The command in FIG. 3 showing the fixed cycle program in which one reference point is commanded is different in that two reference points are commanded. In the main program 5 as well, conditions such as the machining position when machining the workpiece 10, the machining depth, the amount of cutting each time, the first reference point, the second reference point, the cutting speed and the number of repetitions of the fixed cycle are set to 1. It is possible to define in blocks.
 図18は、実施の形態1にかかる基準点が2つ指令された固定サイクルプログラムの指令フォーマットおよび指令されたアドレスの意味を説明する図である。基準点が2つ指令された固定サイクルプログラムの指令は、固定サイクルプログラムを示すGコードと、第一基準点および第二基準点を指令するアドレスを含んだ複数個のアドレスから成立っている。それぞれのアドレスの意味は、図18に示す通りである。図17では、サブプログラム6に相当する固定サイクルプログラムを1回実行するだけなので、固定サイクルの繰返し回数の記載は省略されている。 FIG. 18 is a diagram for explaining the meaning of a command format and a commanded address of a fixed cycle program in which two reference points according to the first embodiment are commanded. The command of the fixed cycle program in which two reference points are instructed is composed of a plurality of addresses including a G code indicating the fixed cycle program and addresses for instructing the first reference point and the second reference point. The meaning of each address is as shown in FIG. In FIG. 17, the fixed cycle program corresponding to the subprogram 6 is only executed once, so that the description of the number of repetitions of the fixed cycle is omitted.
 図19は、実施の形態1にかかる基準点が2つ指令された固定サイクルプログラムが指令された時の第一加工具30の動作を説明する図である。左下のプログラムで示した(1)から(n)のブロックに対応する動きが図の上に示した(1)から(n)で示されている。なお、図19の中で“m”で示されるパラメータは、入力装置44を介してユーザが数値制御装置100に設定した値である。 FIG. 19 is a diagram for explaining the operation of the first processing tool 30 when a fixed cycle program in which two reference points are instructed according to the first embodiment is instructed. The movements corresponding to the blocks (1) to (n) shown in the lower left program are shown in (1) to (n) shown in the upper part of the figure. Note that the parameter indicated by “m” in FIG. 19 is a value set by the user in the numerical control device 100 via the input device 44.
 図20は、実施の形態1にかかる数値制御装置100が固定サイクルプログラムを実行した切削加工方法による動作処理手順を示すフローチャートである。数値制御装置100による加工プログラムの処理中に、図3または図17に記載の固定サイクルプログラムによる固定サイクル指令を読み込む(ステップS1)と、固定サイクル指令の引数に応じて早送りでイニシャル点まで移動して、X,Y座標の位置決めを実行する(ステップS2)。次に、固定サイクルプログラムのアドレスに第二基準点の指令があるか否かが判定される(ステップS3)。 FIG. 20 is a flowchart illustrating an operation processing procedure according to a cutting method in which the numerical control device 100 according to the first embodiment executes a fixed cycle program. During processing of the machining program by the numerical control device 100, when a fixed cycle command by the fixed cycle program shown in FIG. 3 or FIG. 17 is read (step S1), it moves to the initial point by fast-forwarding according to the argument of the fixed cycle command. Then, positioning of the X and Y coordinates is executed (step S2). Next, it is determined whether or not there is a second reference point command at the fixed cycle program address (step S3).
 図17のメインプログラム5のように第二基準点が指令されている場合(ステップS3:Yes)、図19の(2)に示すように第二基準点まで早送りで位置決めが実行される(ステップS4)。その後、さらに図19の(3)に示すように第一基準点まで早送りで移動する(ステップS5)。そして、第一基準点から図19の(4)に示すように切削送りによる切削ステップである穴加工が実行される(ステップS6)。当該加工サイクルの目標位置まで加工されると、第一加工具30の位置決めステップとして図19の(5)に示すように第二基準点まで第一加工具30が早送りで移動する(ステップS7)。そして、固定サイクルプログラムで指定された穴底まで第一加工具30の移動が完了したか否かが判定される(ステップS8)。穴底までの移動が完了していない場合(ステップS8:No)、ステップS5に戻り、図19の(6)、(7)、(8)および(9)からなる次の加工サイクルが実行される。穴底までの移動が完了した場合(ステップS8:Yes)、図19の(n)に示すように早送りでイニシャル点まで移動して(ステップS13)、固定サイクル指令を終えて穴底までの加工が終了する。 When the second reference point is instructed as in the main program 5 of FIG. 17 (step S3: Yes), positioning is executed by rapid traverse to the second reference point as shown in (2) of FIG. S4). After that, as shown in (3) of FIG. 19, it further moves to the first reference point by rapid traverse (step S5). Then, as shown in FIG. 19 (4), the hole machining, which is a cutting step by cutting feed, is executed from the first reference point (step S6). When machining to the target position of the machining cycle, as shown in FIG. 19 (5), the first machining tool 30 is moved to the second reference point as a positioning step of the first machining tool 30 (step S7). . And it is determined whether the movement of the 1st processing tool 30 was completed to the hole bottom designated by the fixed cycle program (step S8). When the movement to the hole bottom is not completed (step S8: No), the process returns to step S5, and the next machining cycle consisting of (6), (7), (8) and (9) in FIG. 19 is executed. The When the movement to the hole bottom is completed (step S8: Yes), as shown in FIG. 19 (n), it moves to the initial point by fast-forwarding (step S13), finishes the fixed cycle command, and processes to the hole bottom. Ends.
 図3のメインプログラム1のように第二基準点が指令されていない場合(ステップS3:No)、図5の(2)に示すように基準点まで早送りで位置決めが実行される(ステップS9)。その後、さらに図5の(3)に示すように基準点から切削送りによる穴加工が実行される(ステップS10)。当該加工サイクルの目標位置まで加工されると、図5の(4)に示すように基準点まで早送りで移動する(ステップS11)。そして、固定サイクルプログラムで指定された穴底まで移動が完了したか否かが判定される(ステップS12)。穴底までの移動が完了していない場合(ステップS12:No)、ステップS10に戻り、図5の(5)、(6)および(7)からなる次の加工サイクルが実行される。穴底までの移動が完了した場合(ステップS12:Yes)、図5の(n)に示すように早送りでイニシャル点まで移動して(ステップS13)、固定サイクル指令を終えて穴底までの加工が終了する。 When the second reference point is not instructed as in the main program 1 of FIG. 3 (step S3: No), positioning is executed by rapid traverse to the reference point as shown in (2) of FIG. 5 (step S9). . Thereafter, as shown in (3) of FIG. 5, drilling by cutting feed is executed from the reference point (step S10). When machining is performed up to the target position of the machining cycle, as shown in (4) of FIG. Then, it is determined whether or not the movement to the hole bottom designated by the fixed cycle program is completed (step S12). If the movement to the hole bottom has not been completed (step S12: No), the process returns to step S10, and the next machining cycle consisting of (5), (6) and (7) in FIG. 5 is executed. When the movement to the bottom of the hole is completed (step S12: Yes), as shown in (n) of FIG. 5, it moves to the initial point by rapid traverse (step S13), finishes the fixed cycle command, and processes to the bottom of the hole. Ends.
 以上説明したように、実施の形態1にかかる数値制御装置100においては、固定サイクルプログラムにより被加工物10を加工する際、基準点を複数設けることで、被加工物10に対する第一加工具30のアプローチを基準点に応じて細かく制御することにより、加工時間の短縮および切削切粉の排出効率の向上という効果が得られる。 As described above, in the numerical control device 100 according to the first embodiment, when the workpiece 10 is machined by the fixed cycle program, a plurality of reference points are provided, whereby the first machining tool 30 for the workpiece 10 is provided. By finely controlling the approach according to the reference point, the effects of shortening the machining time and improving the cutting chip discharge efficiency can be obtained.
 即ち、固定サイクルプログラムにおいて2つの基準点を設定することにより、既に切削した第二加工部4を早送りで第一加工具30を移動させることができ、加工時間を短縮することができる。また、第一加工部3の切削加工後に、被加工物10の外部といった切削加工の開始点より高い位置まで第一加工具30を上昇させることにより、加工時に出る切削切粉を、被加工物10の外に排出することが可能となる。また、このような動作の指令を加工プログラムの1ブロックに記載された固定サイクルプログラムによる指令で実現することが可能になる。 That is, by setting two reference points in the fixed cycle program, the first processing tool 30 can be moved by fast-forwarding the already-cut second processing portion 4, and the processing time can be shortened. Further, after cutting the first processed portion 3, the first processing tool 30 is raised to a position higher than the starting point of the cutting process, such as the outside of the work piece 10, so that the cutting chips generated during the processing can be reduced. 10 can be discharged to the outside. In addition, such an operation command can be realized by a command by a fixed cycle program described in one block of the machining program.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,5 メインプログラム、2,6 サブプログラム、3 第一加工部、4 第二加工部、10 被加工物、11 表面、30 第一加工具、35 加工具、40 第二加工具、41 演算装置、42 メモリ、43 記憶装置、44 入力装置、45表示装置、46 通信装置、51,82,91,101 切削送り、52,83,92 目標位置、53,81,84,93,102,110 早送り、100 数値制御装置、200 駆動部、300 切削加工装置。 1,5 main program, 2,6 subprogram, 3, first machining section, 4 second machining section, 10 workpiece, 11 surface, 30 first machining tool, 35 machining tool, 40 second machining tool, 41 computation Device, 42 memory, 43 storage device, 44 input device, 45 display device, 46 communication device, 51, 82, 91, 101 cutting feed, 52, 83, 92 target position, 53, 81, 84, 93, 102, 110 Fast feed, 100 numerical control device, 200 drive unit, 300 cutting device.

Claims (7)

  1.  被加工物を切削加工する加工具の駆動を制御する数値制御装置であって、
     前記被加工物の表面より下に設定された第一基準点から前記第一基準点より深い目標位置まで、前記被加工物に対する切削加工を伴う切削送りを前記加工具に実行させ、その後、前記目標位置から前記第一基準点よりも前記表面に近い位置に設定された第二基準点まで戻る動作を前記加工具に実行させる加工サイクルを実施することを特徴とする数値制御装置。
    A numerical control device for controlling driving of a processing tool for cutting a workpiece,
    From the first reference point set below the surface of the workpiece to a target position deeper than the first reference point, the processing tool is caused to execute a cutting feed with a cutting process on the workpiece, and thereafter A numerical control apparatus for performing a machining cycle for causing the machining tool to perform an operation of returning from a target position to a second reference point set at a position closer to the surface than the first reference point.
  2.  前記第二基準点は、前記被加工物の外部である
     ことを特徴とする請求項1に記載の数値制御装置。
    The numerical control apparatus according to claim 1, wherein the second reference point is outside the workpiece.
  3.  前記第二基準点は、前記加工サイクルの加工開始位置である
     ことを特徴とする請求項1に記載の数値制御装置。
    The numerical control apparatus according to claim 1, wherein the second reference point is a machining start position of the machining cycle.
  4.  前記第二基準点は、前記第一基準点と前記表面との間である
     ことを特徴とする請求項1に記載の数値制御装置。
    The numerical control apparatus according to claim 1, wherein the second reference point is between the first reference point and the surface.
  5.  前記第二基準点は、前記加工サイクルのひとつ前の加工サイクルの加工開始位置である
      ことを特徴とする請求項1に記載の数値制御装置。
    The numerical control apparatus according to claim 1, wherein the second reference point is a machining start position of a machining cycle immediately before the machining cycle.
  6.  前記加工サイクルを複数回実行する固定サイクルプログラムを実施する
     ことを特徴とする請求項1から5のいずれか1項に記載の数値制御装置。
    The numerical control apparatus according to any one of claims 1 to 5, wherein a fixed cycle program for executing the machining cycle a plurality of times is executed.
  7.  被加工物を加工具により切削加工する切削加工方法において、
     前記被加工物の表面より下に設定された第一基準点から前記第一基準点より深い目標位置まで、前記被加工物に対する切削加工を伴う切削送りを前記加工具に実行させる切削ステップと、
     前記切削ステップの後、前記目標位置から前記第一基準点よりも前記表面に近い位置に設定された第二基準点まで戻るステップを前記加工具に実行させる加工サイクルを実施することを特徴とする切削加工方法。
     
     
    In a cutting method of cutting a workpiece with a processing tool,
    From the first reference point set below the surface of the workpiece to a target position deeper than the first reference point, a cutting step for causing the processing tool to execute a cutting feed with cutting on the workpiece;
    After the cutting step, a machining cycle is performed in which the machining tool is caused to perform a step of returning from the target position to a second reference point set closer to the surface than the first reference point. Cutting method.

PCT/JP2015/066082 2015-06-03 2015-06-03 Numerical control device and cutting method WO2016194181A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066082 WO2016194181A1 (en) 2015-06-03 2015-06-03 Numerical control device and cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066082 WO2016194181A1 (en) 2015-06-03 2015-06-03 Numerical control device and cutting method

Publications (1)

Publication Number Publication Date
WO2016194181A1 true WO2016194181A1 (en) 2016-12-08

Family

ID=57440720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066082 WO2016194181A1 (en) 2015-06-03 2015-06-03 Numerical control device and cutting method

Country Status (1)

Country Link
WO (1) WO2016194181A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228154A (en) * 1985-07-27 1987-02-06 Fanuc Ltd Method for preparing nc data
JPH09168909A (en) * 1995-10-31 1997-06-30 Kwan Soon Jang Drive controller of drill tap manufacture machine main spindle
JPH11216640A (en) * 1998-02-02 1999-08-10 Toshiba Mach Co Ltd Control device for drilling work machine by drill and drilling work method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228154A (en) * 1985-07-27 1987-02-06 Fanuc Ltd Method for preparing nc data
JPH09168909A (en) * 1995-10-31 1997-06-30 Kwan Soon Jang Drive controller of drill tap manufacture machine main spindle
JPH11216640A (en) * 1998-02-02 1999-08-10 Toshiba Mach Co Ltd Control device for drilling work machine by drill and drilling work method

Similar Documents

Publication Publication Date Title
JP5556971B1 (en) Numerical controller
US9891618B2 (en) Program correcting device and program correcting method of industrial robot
US10514681B2 (en) Numerical controller including overlap function between arbitrary blocks by common acceleration/deceleration control unit
JP2016159367A (en) Robot control device for automatically switching operation mode of robot
CN108581191B (en) Method for achieving laser head light-stopping idle movement obstacle avoidance through laser cutting path planning
JP2016118888A (en) Numerical control system including automatic display means of teaching program
JP5702833B2 (en) Numerical control device with screen display switching function following NC program
US10146213B2 (en) Numerical controller for automatically switching acceleration/deceleration setting in accordance with machining content or state
WO2016194181A1 (en) Numerical control device and cutting method
JP5362146B1 (en) Numerical control apparatus and numerical control system
US10656621B2 (en) Information processing device
JP6457418B2 (en) Machining program creation device
KR101355222B1 (en) Computerized numerical control machine tool apparatus, controller thereof, control method of the apparatus and program thereof
JP3945507B2 (en) Numerical controller
JP4112433B2 (en) Numerical control device for machine tool and numerical control method for machine tool
JP7173928B2 (en) Numerical controller
JP2009076018A (en) Numerical control device, numerical control program and computer readable recording medium with numerical control program recorded thereon
JP2002328711A (en) Numerical control method and its device
JP6356709B2 (en) Motion controller with high response control
JP2007310499A (en) Numerical controller
JP5512050B1 (en) Numerical controller
JP7401244B2 (en) Control device and control method
WO2022219701A1 (en) Numerical control device
JP2006085575A (en) Controller for controlling movement of moving body of machine tool, machine tool having controller and moving body moving method
JPS603942B2 (en) Grooving control method in numerically controlled machine tools

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP