WO2016194090A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
WO2016194090A1
WO2016194090A1 PCT/JP2015/065683 JP2015065683W WO2016194090A1 WO 2016194090 A1 WO2016194090 A1 WO 2016194090A1 JP 2015065683 W JP2015065683 W JP 2015065683W WO 2016194090 A1 WO2016194090 A1 WO 2016194090A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
circuit
unit
electronic device
Prior art date
Application number
PCT/JP2015/065683
Other languages
French (fr)
Japanese (ja)
Inventor
正義 柳生
照典 横井
諭 村岡
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/065683 priority Critical patent/WO2016194090A1/en
Publication of WO2016194090A1 publication Critical patent/WO2016194090A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision

Definitions

  • the present invention relates to an electronic apparatus including a plurality of circuit blocks and a power supply circuit that supplies power to the plurality of circuit blocks.
  • a power supply voltage is supplied to all semiconductor chips having the same power supply voltage, for example, as described in Japanese Patent Application Laid-Open No. 2012-8869 (Patent Document 1).
  • Patent Document 1 a power feeding circuit and a plurality of semiconductor chips are connected.
  • a voltage detection unit that is connected to a starting end portion of a power supply line that connects the power supply adapter and the circuit element unit group and outputs a power information signal based on a power supply voltage supplied from the power supply adapter;
  • a power control unit that controls the power consumption of the circuit element unit group stepwise according to the power information signal from the voltage detection unit, and reduces the power consumption as the power supply voltage is lower.
  • Information processing apparatus characterized by the above.
  • Patent Document 1 it is not assumed that the power supply voltage supplied to each semiconductor chip deviates from each power supply voltage specification range, and a chip in which the supply voltage exceeds the upper limit value and a chip below the lower limit value are mixed. .
  • Such a state is caused by the difference in impedance of the power supply line from the power supply circuit to each semiconductor chip and the temporal change in power consumption of the plurality of semiconductor chips, and the power actually supplied to each semiconductor chip. This occurs because the voltage varies spatially and temporally.
  • an object of the present invention is to provide a low power consumption power supply technology that supplies an appropriate voltage to each of a plurality of semiconductor chips from one power supply circuit.
  • one of the power supply techniques of the present invention is based on the power supply voltage information of each of a plurality of semiconductor chips, and the voltage of one power supply circuit arranged in common, It controls both voltages of each semiconductor chip.
  • An example of a representative electronic device of the present invention is an electronic device that includes a plurality of circuit blocks and a power supply circuit that supplies power to the plurality of circuit blocks, and each of the plurality of circuit blocks. Based on the output of the detection result output unit, the detection result output unit that outputs the detection result by combining the respective power supply voltage determination results of the voltage determination unit, and the output of the detection result output unit An output setting unit that determines an output voltage of the supply circuit; and an individual voltage adjustment unit that adjusts a power supply voltage in each of the circuit blocks. The determination results of the power supply voltages of the plurality of circuit blocks are combined. The output voltage of the power supply circuit is adjusted, and the power supply voltage of each circuit block is adjusted by the individual voltage adjustment unit.
  • the power supply voltage supplied to each of the plurality of semiconductor chips can be stably fed by one power supply circuit without deviating from the power supply voltage specification range.
  • FIG. 1st Example of this invention It is a block diagram which shows the power supply technique by the 1st Example of this invention. It is a figure which shows the structure of the semiconductor chip in FIG. It is a flowchart which shows the process sequence of VDD setting circuit in FIG. It is a flowchart which shows the process sequence of the voltage adjustment circuit in FIG. It is a block diagram which shows the power supply technique by the 2nd Example of this invention. It is a figure which shows the 1st structure of the power supply circuit in FIG. It is a figure which shows the 2nd structure of the power supply circuit in FIG. It is a figure which shows the function structure of the microcomputer in FIG.
  • FIG. 1 is a diagram showing a configuration of a power supply technology according to the first embodiment of the present invention.
  • a power supply voltage VDD is supplied from a single power supply circuit 12 mounted on the printed circuit board 11 to a plurality of semiconductor chips 13a, 13b, and 13c. Signals are transmitted from the signal output terminals Ho and Lo of the semiconductor chip 13a to the signal input terminals Hin and Lin of the semiconductor chip 13b. Similarly, a signal is transmitted from the semiconductor chip 13b to the semiconductor chip 13c. A signal is transmitted from the signal output terminal VRo of the semiconductor chip 13 c to the signal input terminal VRin of the power supply circuit 12.
  • the signal output terminal VRo of the semiconductor chip 13c outputs information specifying the output voltage value VDD of the power supply circuit 12.
  • the output voltage VDD is set by a signal from the signal input terminal VRin.
  • FIG. 2 is a diagram showing the configuration of the semiconductor chips 13a, 13b, and 13c according to the embodiment of FIG.
  • a power supply voltage VDD is applied to the semiconductor chip 13 from the outside of the chip.
  • the applied power supply voltage VDD is converted to the power supply voltage VDDi by the voltage adjustment circuit 20 and supplied to the logic circuit 22 in the semiconductor chip.
  • the voltage determination circuit 23 compares the upper limit reference voltage VrH determined based on the upper limit value of the specified power supply voltage specification range with the power supply voltage VDDi. When VDDi is higher than the upper limit reference voltage VrH, the voltage determination circuit 23 applies a logic to the terminal 25. Outputs “H” signal. In other cases, a logic “L” signal is output to the terminal 25.
  • the signal at the terminal 25 is input to the OR circuit 27 together with the power supply voltage determination result information of another semiconductor chip transmitted from outside the chip.
  • the OR circuit 27 generates a logic “H” when either the power supply voltage VDDi of its own semiconductor chip or the power supply voltage of another semiconductor chip transmitted through the terminal Hin is high outside the power supply voltage specification range. "The signal is transmitted to the signal output terminal Ho.
  • a pull-down resistor RHin is added to the terminal Hin.
  • the voltage determination circuit 24 compares the lower limit reference voltage VrL determined based on the lower limit value of the specified power supply voltage specification range with the power supply voltage VDDi, and if VDDi is lower than the lower limit reference voltage VrL, the voltage is determined at the terminal 26.
  • the “H” signal is output. In other cases, a logic “L” signal is output to the terminal 26.
  • the signal of the terminal 26 is input to the AND circuit 28 together with the power supply voltage determination result information of another semiconductor chip transmitted from outside the chip.
  • the AND circuit 28 outputs a logic “H” when both the power supply voltage VDDi of its own semiconductor chip and the power supply voltage of another semiconductor chip transmitted via the terminal Lin are low outside the power supply voltage specification range. The signal is transmitted to the signal output terminal Lo.
  • a pull-up resistor RLin is added to the terminal Lin.
  • the voltage adjustment amount setting circuit 21 determines the voltage adjustment value of the voltage adjustment circuit 20 from the information of the terminals 25 and 26. Details will be described with reference to FIG.
  • the VDD setting circuit 29 determines information to be transmitted to the signal output terminal VRo from the information of the terminal Ho and the terminal Lo. Details will be described with reference to FIG.
  • the voltage determination circuits 23 and 24 constitute a voltage determination unit 81.
  • the logical sum circuit 27 and the logical product circuit 28 constitute a detection result output unit 82.
  • the VDD setting circuit 29 constitutes a power supply circuit output setting unit 83.
  • the voltage adjustment circuit 20 and the voltage adjustment amount setting circuit 21 constitute an individual voltage adjustment unit 84.
  • FIG. 3 is a flowchart showing a processing procedure of the VDD setting circuit 29. The operation based on the flowchart of FIG. 3 is as follows.
  • Step 31 Output the initial voltage setting value of the power supply circuit 12 to the terminal VRo.
  • a specific method for encoding the voltage setting value is determined by the specification of the power supply circuit 12, but it is not the essence of the present invention, so the description is omitted.
  • Step 32 If the signal at the terminal Ho is logic “H”, execute Steps 33, 34 and 35, and return to Step 32. If the signal at terminal Ho is not logic “H”, step 36 is executed.
  • Step 33 The current setting value of VRo is changed in the direction in which the voltage decreases. For example, the amount of change may be about 1/2 to 1/10 of the difference between the upper limit reference voltage VrH and the center value of the specification of the power supply voltage VDD.
  • Step 34 The setting value changed in step 33 is stored as a new VRo setting value.
  • Step 35 A new set value is output to the terminal VRo.
  • Step 36 If the signal at the terminal Lo is logic “H”, execute Steps 37, 38 and 39 and return to Step 32. If the signal at the terminal Lo is not logic “H”, the process returns to step 32.
  • Step 37 The current setting value of VRo is changed to increase the voltage. The amount of change may be, for example, about 1/2 to 1/10 of the difference between the center value of the specification of the power supply voltage VDD and the lower limit reference voltage VrL.
  • Step 38 The setting value changed in step 37 is stored as a new VRo setting value.
  • Step 39 Output a new set value to the terminal VRo.
  • the output voltage VDD of the power supply circuit 12 is adjusted by executing the operations from step 32 to step 39 described above at appropriate time intervals.
  • step 33 or 37 when the current set value reaches the lower limit value or the upper limit value of the range that can be specified for the signal terminal VRin of the power supply circuit 12, no further change is made.
  • FIG. 4 is a flowchart showing a processing procedure of the voltage adjustment amount setting circuit 21. The operation based on the flowchart of FIG. 4 is as follows.
  • Step 41 An initial voltage adjustment amount of the voltage adjustment circuit 20 is set.
  • the initial voltage adjustment amount may be a differential voltage between the initial set value of the power supply voltage VDD and the center value of the specification range of the power supply voltage VDDi in the semiconductor chip 13.
  • Step 42 If the signal at the terminal 25 is logic “H”, execute Steps 43, 44 and 45, and return to Step 42. If the signal at terminal 25 is not logic "H”, step 46 is executed.
  • Step 43 The current set value of the voltage adjustment circuit 20 is changed in the direction in which the voltage decreases. The amount of change may be, for example, about 1/2 to 1/10 of the difference between the upper limit reference voltage VrH and the center value of the specification of the power supply voltage VDDi.
  • Step 44 The setting value changed in step 43 is stored as a new setting value of the voltage adjustment circuit 20.
  • Step 45 The voltage drop amount of the voltage adjustment circuit 20 is adjusted.
  • Step 46 If the signal at the terminal 26 is logic "H”, execute steps 47, 48 and 49, and return to step 42. If the signal at terminal 26 is not logic "H”, the process returns to step 42.
  • Step 47 The current set value of the voltage adjustment circuit 20 is changed in the direction in which the voltage increases. The amount of change may be, for example, about 1/2 to 1/10 of the difference between the center value of the specification of the power supply voltage VDDi and the lower limit reference voltage VrL.
  • Step 48 The setting value changed in Step 47 is stored as a new setting value of the voltage adjustment circuit 20.
  • Step 49 The voltage drop amount of the voltage adjustment circuit 20 is adjusted.
  • the voltage drop amount of the voltage adjustment circuit 20 is adjusted by executing the operations from step 42 to step 49 described above at appropriate time intervals.
  • This time interval may be the same as or different from the time interval for executing the flowchart described in FIG.
  • step 43 or 47 if the current set value reaches the lower limit value or upper limit value of the range that can be specified for the voltage adjustment circuit 20 voltage effect amount, no further change is made.
  • the adjustment of the output voltage VDD of the power supply circuit 12 described with reference to FIGS. 1 to 4 and the adjustment of the VDDi of the plurality of semiconductor chips 13a, 13b, and 13c are repeated, so that the power supply voltage VDDi of all the semiconductor chips. Is set within the specification range.
  • This effect is obtained by observing the power supply voltage value VDDi of each semiconductor chip and adjusting the power supply voltage in each semiconductor chip, and the observation result of the power supply voltage VDDi of each semiconductor chip.
  • This is obtained by providing a second voltage control loop for adjusting the output voltage of the power supply circuit 12 by controlling the first loop and the second loop at the same time. Therefore, it is possible to supply an appropriate voltage to each of a plurality of semiconductor chips from one power supply circuit, which is an object of the present invention.
  • the power supply circuit 12 decreases the output voltage VDD. To do. This is because the logical sum information of the voltage detection results 25 of the semiconductor chips 13a, 13b, and 13c is processed by the VDD setting circuit 29 of the chip 13c.
  • the output voltage VDD of the power supply circuit 12 is increased only when all the power supply voltages VDDi of the semiconductor chips 13a, 13b, and 13c are lower than exceeding the respective lower limit reference voltages VrL. This is because the logical product information of the voltage detection results 26 of the semiconductor chips 13a, 13b, and 13c is processed by the VDD setting circuit 29 of the chip 13c.
  • the output voltage VDD of the power supply circuit 12 is not changed. Therefore, in FIG. 1, the voltage VDD applied from the outside to the semiconductor chips 13a, 13b, and 13c is controlled to be as low as possible. Therefore, the voltage drop amount of the voltage adjustment circuit 20 necessary for setting the power supply voltage VDDi of the logic circuit 22 in FIG. 2 within the power supply voltage specification range is reduced, and the power consumed by the voltage adjustment circuit 20 is reduced. This effect can also be obtained by simultaneously controlling the two control loops and setting the power supply voltage VDD as low as possible. For this reason, it is possible to provide a power supply technology with low power consumption, which is an object of the present invention.
  • FIG. 5 is a diagram showing the configuration of the second embodiment of the present invention.
  • a power supply circuit 52 is disposed on the printed circuit board 51, and a power supply voltage is supplied to the power supply circuits 54 a, 54 b and 54 c through the power supply wiring 55.
  • the power supply circuits 54a, 54b, and 54c supply power supply voltages to the semiconductor chips 53a, 53b, and 53c, respectively.
  • the printed circuit board 51 is equipped with a microcomputer 57 incorporating an analog-digital conversion circuit.
  • the power supply voltages applied to the respective semiconductor chips 53a, 53b, and 53c are monitored from the power supply wirings 56a, 56b, and 56c in the vicinity of the semiconductor chips 53a, 53b, and 53c, and transmitted to the microcomputer 57.
  • the microcomputer 57 transmits a signal to the signal input terminal VRin of the power supply circuit 52 and adjusts the voltage value of the power supply wiring 55.
  • FIG. 6 is a diagram illustrating a first configuration example of the power supply circuits 54a, 54b, and 54c in FIG.
  • the power supply circuit 60 includes voltage observation circuits 63 and 64, a voltage detection unit 80 including an upper limit reference voltage VrH and a lower limit reference voltage VrL, an individual voltage adjustment unit 84 including a voltage adjustment circuit 20 and a voltage adjustment amount setting circuit 21. Is included.
  • the voltage output from the power supply circuit 60 to the outside is compared with the upper limit reference voltage VrH and the lower limit reference voltage VrL. If the voltage deviates from the specification range, the output voltage is set via the voltage adjustment amount setting circuit 21 and the voltage adjustment circuit 20. Adjust so that it is within the specification range.
  • FIG. 7 is a diagram illustrating a second configuration example of the power supply circuits 54a, 54b, and 54c in FIG.
  • the power supply circuit 70 uses a commercially available power supply IC.
  • the voltage detection function 72 and the output voltage adjustment function 71 that the power supply IC generally has are used to adjust the output voltage of the power supply circuit 70 within the specification range.
  • the voltage detection function 72 corresponds to the voltage detection unit 80 in FIG.
  • the output voltage adjustment function 71 corresponds to the individual voltage adjustment unit 84.
  • FIG. 8 is a block diagram showing a functional configuration of the microcomputer 57 in FIG.
  • the microcomputer 57 includes a voltage determination unit 81, a detection result output unit 82, and a voltage supply circuit output setting unit 83 configured by a program.
  • the power supply voltages 56a, 56b, and 56c in the vicinity of the ICs 53a, 53b, and 53c are input to the voltage determination unit 81, and it is detected whether the power supply voltages of the respective ICs are out of the specification range.
  • the detection result of each power supply voltage is processed by the detection result output unit 82 to determine the operation of the power supply circuit 52.
  • the determination result of the detection result output unit 82 is sent to the voltage supply circuit output setting unit 83, and a signal to be transmitted to the terminal VRin of the power supply circuit 52 is generated by the same processing as the flowchart described in FIG. Output.
  • the power supply voltage VDD in FIG. 1 corresponds to the voltage of the power supply wiring 55 in FIG.
  • the power supply voltage VDDi in the semiconductor chip 13 in FIG. 2 corresponds to the voltages at the locations 56a, 56b, and 56c where the power supply voltage is monitored in FIG.
  • the same power supply voltage control method as in the first embodiment can be realized.
  • the semiconductor chips 53a, 53b, and 53c can use components that are generally commercially available as they are, and an increase in the design period and manufacturing cost of the semiconductor chip can be prevented.
  • the case where the power supply circuit and the semiconductor chip are mounted on the printed board has been described as an example.
  • all of them are arranged in one semiconductor chip.
  • the semiconductor chips 13a, 13b, and 13c in FIG. 1 correspond to logic blocks in one semiconductor chip.
  • the present invention can be applied to HBM (High Bandwidth Memory) and HMC (Hybrid Memory Cube) in which a plurality of memory chips and a memory controller chip are stacked.
  • This configuration corresponds to a plurality of memory chips in which the semiconductor chips 53a, 53b, and 53c in FIG. 5 are stacked.
  • a configuration in which a function corresponding to the power supply circuit 52, the power supply circuits 54a, 54b, 54c, and the microcomputer 57 is built in the memory controller chip may be considered.
  • the case where the power supply circuit and the semiconductor chip are mounted on the printed circuit board has been described as an example. However, it is not necessary to mount the power supply circuit and the semiconductor chip on the same printed circuit board.
  • a plurality of circuit blocks are not limited to the chip.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the number of semiconductor chips is not necessarily limited to three, and the present invention is not limited to three. The essence of is unchanged.
  • the output voltage is similarly controlled for this power supply circuit using the method of the present invention. Is possible. In this configuration, the loop for controlling the power supply voltage is tripled, but the essence of the present invention is not impaired.
  • the upper limit reference voltage VrH and the lower limit reference voltage VrL shown in FIG. 2 may be the same in the semiconductor chips 13a, 13b, and 13c shown in FIG. 1, and are different for each chip. May be.
  • Semiconductor chip 54a, 54b, 54c ... Power supply circuit 57 ... Microcomputer 60, 70 ... Power supply circuit 63, 64 ... Voltage observation circuit , 80 ... voltage detection unit, 81 ... voltage determination unit, 82 ... detection result output unit, 83 ... voltage supply circuit output setting unit, 84 ... individual voltage adjustment unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

The present invention provides a power supply technology with low power consumption to supply an appropriate voltage to a plurality of semiconductor chips from a single power supply circuit. This electronic device provided with a plurality of circuit blocks and a power supply circuit that supplies power to the plurality of circuit blocks is characterized by comprising: a voltage determining unit that determines the power voltages of the plurality of circuit blocks; a detection result outputting unit that combines the determination results on the respective power voltages by the voltage determining unit, to output a detection result; an output setting unit that determines the output voltage by the power supply circuit on the basis of the output by the detection result outputting unit; and an individual voltage adjusting unit that adjusts the power voltages in the respective circuit blocks, wherein the output voltage by the power supply circuit is adjusted by combining the determination results on the power voltages of the plurality of circuit blocks, and the power voltages in the circuit blocks are adjusted respectively by the individual voltage adjusting unit.

Description

電子機器Electronics
 本発明は、複数の回路ブロックと、当該複数の回路ブロックに電源を供給する電源供給回路を備えた電子機器に関する。 The present invention relates to an electronic apparatus including a plurality of circuit blocks and a power supply circuit that supplies power to the plurality of circuit blocks.
 複数の半導体チップを使用する電子機器では、電源電圧が同一である半導体チップに一括に電源電圧を供給するために、例えば特開2012-8869号公報(特許文献1)に記載のように、電源給電用回路と複数の半導体チップを接続することが一般に行われている。この公報には、「前記電源アダプタと前記回路要素ユニット群とを接続する電源ラインの始端部に接続され、前記電源アダプタから供給される電源電圧に基づく電力情報信号を出力する電圧検出部と、前記電圧検出部からの前記電力情報信号に応じて、前記回路要素ユニット群の消費電力を段階的に制御し、前記電源電圧が低い程、前記消費電力を低減させる電力制御部とを備えたことを特徴とする情報処理装置。」と記載されている。 In an electronic device using a plurality of semiconductor chips, a power supply voltage is supplied to all semiconductor chips having the same power supply voltage, for example, as described in Japanese Patent Application Laid-Open No. 2012-8869 (Patent Document 1). Generally, a power feeding circuit and a plurality of semiconductor chips are connected. In this publication, “a voltage detection unit that is connected to a starting end portion of a power supply line that connects the power supply adapter and the circuit element unit group and outputs a power information signal based on a power supply voltage supplied from the power supply adapter; A power control unit that controls the power consumption of the circuit element unit group stepwise according to the power information signal from the voltage detection unit, and reduces the power consumption as the power supply voltage is lower. Information processing apparatus characterized by the above. "
特開2012-8869号公報JP 2012-8869 A
 特許文献1では、それぞれの半導体チップに供給される電源電圧が、それぞれの電源電圧仕様範囲を逸脱し、供給電圧が上限値を越えるチップと下限値を下回るチップが混在する場合が想定されていない。このような状態は、電源供給回路からそれぞれの半導体チップまでの電源ラインのインピーダンスの違いと複数の半導体チップの消費電力の時間変化とに起因して、それぞれの半導体チップに実際に供給される電源電圧が空間的および時間的に変動するために生じる。 In Patent Document 1, it is not assumed that the power supply voltage supplied to each semiconductor chip deviates from each power supply voltage specification range, and a chip in which the supply voltage exceeds the upper limit value and a chip below the lower limit value are mixed. . Such a state is caused by the difference in impedance of the power supply line from the power supply circuit to each semiconductor chip and the temporal change in power consumption of the plurality of semiconductor chips, and the power actually supplied to each semiconductor chip. This occurs because the voltage varies spatially and temporally.
 そこで本発明は、一つの電源供給回路から複数の半導体チップそれぞれに適切な電圧を供給する、低消費電力な電源給電技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a low power consumption power supply technology that supplies an appropriate voltage to each of a plurality of semiconductor chips from one power supply circuit.
 上記課題を解決するために、本発明の電源給電技術の一つは、複数の半導体チップそれぞれの電源電圧情報をもとに、共通に配置されている一つの電源供給回路の電圧と、複数の半導体チップそれぞれの電圧の両方を制御するものである。 In order to solve the above problems, one of the power supply techniques of the present invention is based on the power supply voltage information of each of a plurality of semiconductor chips, and the voltage of one power supply circuit arranged in common, It controls both voltages of each semiconductor chip.
 本発明の代表的な電子機器の一例を挙げるならば、複数の回路ブロックと、当該複数の回路ブロックに電源を供給する電源供給回路を備えた電子機器であって、前記複数の回路ブロックのそれぞれの電源電圧を判定する電圧判定部と、前記電圧判定部のそれぞれの電源電圧判定結果を総合して検出結果を出力する検出結果出力部と、前記検出結果出力部の出力に基づいて、前記電源供給回路の出力電圧を決定する出力設定部と、それぞれの前記回路ブロック内の電源電圧を調整する個別電圧調整部と、を有し、前記複数の回路ブロックの電源電圧の判定結果を総合して前記電源供給回路の出力電圧を調整するとともに、前記個別電圧調整部により、それぞれの回路ブロックの電源電圧を調整することを特徴とする。 An example of a representative electronic device of the present invention is an electronic device that includes a plurality of circuit blocks and a power supply circuit that supplies power to the plurality of circuit blocks, and each of the plurality of circuit blocks. Based on the output of the detection result output unit, the detection result output unit that outputs the detection result by combining the respective power supply voltage determination results of the voltage determination unit, and the output of the detection result output unit An output setting unit that determines an output voltage of the supply circuit; and an individual voltage adjustment unit that adjusts a power supply voltage in each of the circuit blocks. The determination results of the power supply voltages of the plurality of circuit blocks are combined. The output voltage of the power supply circuit is adjusted, and the power supply voltage of each circuit block is adjusted by the individual voltage adjustment unit.
 本発明によれば、複数の半導体チップのそれぞれに供給される電源電圧が電源電圧仕様範囲を逸脱することなく、一つの電源供給回路で安定に給電することができる。 According to the present invention, the power supply voltage supplied to each of the plurality of semiconductor chips can be stably fed by one power supply circuit without deviating from the power supply voltage specification range.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の第1の実施例による電源給電技術を示すブロック図である。It is a block diagram which shows the power supply technique by the 1st Example of this invention. 図1における半導体チップの構成を示す図である。It is a figure which shows the structure of the semiconductor chip in FIG. 図2におけるVDD設定回路の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of VDD setting circuit in FIG. 図2における電圧調整回路の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the voltage adjustment circuit in FIG. 本発明の第2の実施例による電源給電技術を示すブロック図である。It is a block diagram which shows the power supply technique by the 2nd Example of this invention. 図5における電源回路の第1の構成を示す図である。It is a figure which shows the 1st structure of the power supply circuit in FIG. 図5における電源回路の第2の構成を示す図である。It is a figure which shows the 2nd structure of the power supply circuit in FIG. 図5におけるマイコンの機能構成を示す図である。It is a figure which shows the function structure of the microcomputer in FIG.
 以下、本発明の実施例を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の第1の実施例による電源給電技術の構成を示す図である。プリント基板11の上に搭載された一つの電源供給回路12から、複数の半導体チップ13a、13b、13cに電源電圧VDDを供給している。半導体チップ13aの信号出力端子HoおよびLoから、半導体チップ13bの信号入力端子HinおよびLinへ信号が伝達される。同様に半導体チップ13bから半導体チップ13cへ信号が伝達される。半導体チップ13cの信号出力端子VRoから、電源供給回路12の信号入力端子VRinへ信号が伝達される。 FIG. 1 is a diagram showing a configuration of a power supply technology according to the first embodiment of the present invention. A power supply voltage VDD is supplied from a single power supply circuit 12 mounted on the printed circuit board 11 to a plurality of semiconductor chips 13a, 13b, and 13c. Signals are transmitted from the signal output terminals Ho and Lo of the semiconductor chip 13a to the signal input terminals Hin and Lin of the semiconductor chip 13b. Similarly, a signal is transmitted from the semiconductor chip 13b to the semiconductor chip 13c. A signal is transmitted from the signal output terminal VRo of the semiconductor chip 13 c to the signal input terminal VRin of the power supply circuit 12.
 半導体チップ13cの信号出力端子VRoは、電源供給回路12の出力電圧値VDDを指定する情報を出力する。電源供給回路12では、信号入力端子VRinの信号により出力電圧VDDを設定する。 The signal output terminal VRo of the semiconductor chip 13c outputs information specifying the output voltage value VDD of the power supply circuit 12. In the power supply circuit 12, the output voltage VDD is set by a signal from the signal input terminal VRin.
 図1において、信号端子Hin、Ho、Lin、Loを介して伝達される情報は、半導体チップ13aから順に、13b、13cへと送られ、最後の半導体チップ13cにおいてVDD設定回路29により処理される。このため、すべての半導体チップの電源電圧検出結果情報を総合的に判定して電源供給回路12の出力電圧を制御することが可能になる。 In FIG. 1, information transmitted via signal terminals Hin, Ho, Lin, Lo is sequentially sent from the semiconductor chip 13a to 13b, 13c, and is processed by the VDD setting circuit 29 in the last semiconductor chip 13c. . Therefore, it is possible to control the output voltage of the power supply circuit 12 by comprehensively determining the power supply voltage detection result information of all the semiconductor chips.
 次に、半導体チップ13a、13b、13cの信号端子Hin、Lin,Ho、Loの機能を図2を用いて説明する。 Next, functions of the signal terminals Hin, Lin, Ho, Lo of the semiconductor chips 13a, 13b, 13c will be described with reference to FIG.
 図2は、図1の実施例による半導体チップ13a、13b、13cの構成を示す図である。半導体チップ13には、チップ外部から電源電圧VDDが印加される。印加された電源電圧VDDは、電圧調整回路20により電源電圧VDDiに変換され、半導体チップ内の論理回路22へ供給される。 FIG. 2 is a diagram showing the configuration of the semiconductor chips 13a, 13b, and 13c according to the embodiment of FIG. A power supply voltage VDD is applied to the semiconductor chip 13 from the outside of the chip. The applied power supply voltage VDD is converted to the power supply voltage VDDi by the voltage adjustment circuit 20 and supplied to the logic circuit 22 in the semiconductor chip.
 電圧判定回路23は、指定された電源電圧仕様範囲の上限値に基づいて決定される上限参照電圧VrHと電源電圧VDDiを比較し、VDDiが上限参照電圧VrHよりも高い場合には端子25に論理“H”信号を出力する。これ以外の場合は端子25に論理”L”信号を出力する。端子25の信号は、チップ外から伝達される他の半導体チップの電源電圧判定結果情報とともに論理和回路27に入力される。論理和回路27は、自身の半導体チップの電源電圧VDDi、または端子Hinを介して伝達される他の半導体チップの電源電圧のいずれかが電源電圧仕様範囲を逸脱して高い場合に、論理“H”信号を信号出力端子Hoに伝達する。 The voltage determination circuit 23 compares the upper limit reference voltage VrH determined based on the upper limit value of the specified power supply voltage specification range with the power supply voltage VDDi. When VDDi is higher than the upper limit reference voltage VrH, the voltage determination circuit 23 applies a logic to the terminal 25. Outputs “H” signal. In other cases, a logic “L” signal is output to the terminal 25. The signal at the terminal 25 is input to the OR circuit 27 together with the power supply voltage determination result information of another semiconductor chip transmitted from outside the chip. The OR circuit 27 generates a logic “H” when either the power supply voltage VDDi of its own semiconductor chip or the power supply voltage of another semiconductor chip transmitted through the terminal Hin is high outside the power supply voltage specification range. "The signal is transmitted to the signal output terminal Ho.
 端子Hinにはプルダウン抵抗RHinを付加する。これにより図1における半導体チップ13aの信号入力端子Hinがオープン状態であっても、半導体チップ13a内の論理和回路27が正しく動作する。 ・ A pull-down resistor RHin is added to the terminal Hin. Thereby, even if the signal input terminal Hin of the semiconductor chip 13a in FIG. 1 is in an open state, the OR circuit 27 in the semiconductor chip 13a operates correctly.
 電圧判定回路24は、指定された電源電圧仕様範囲の下限値に基づいて決定される下限参照電圧VrLと電源電圧VDDiを比較し、VDDiが下限参照電圧VrLよりも低い場合には端子26に論理”H”信号を出力する。これ以外の場合は端子26に論理”L”信号を出力する。端子26の信号は、チップ外から伝達される他の半導体チップの電源電圧判定結果情報とともに論理積回路28に入力される。論理積回路28は、自身の半導体チップの電源電圧VDDi、および端子Linを介して伝達される他の半導体チップの電源電圧の両方が電源電圧仕様範囲を逸脱して低い場合に、論理“H”信号を信号出力端子Loに伝達する。 The voltage determination circuit 24 compares the lower limit reference voltage VrL determined based on the lower limit value of the specified power supply voltage specification range with the power supply voltage VDDi, and if VDDi is lower than the lower limit reference voltage VrL, the voltage is determined at the terminal 26. The “H” signal is output. In other cases, a logic “L” signal is output to the terminal 26. The signal of the terminal 26 is input to the AND circuit 28 together with the power supply voltage determination result information of another semiconductor chip transmitted from outside the chip. The AND circuit 28 outputs a logic “H” when both the power supply voltage VDDi of its own semiconductor chip and the power supply voltage of another semiconductor chip transmitted via the terminal Lin are low outside the power supply voltage specification range. The signal is transmitted to the signal output terminal Lo.
 端子Linにはプルアップ抵抗RLinを付加する。これにより図1における半導体チップ13aの信号入力端子Linがオープン状態であっても、半導体チップ13a内の論理積回路28が正しく動作する。 A pull-up resistor RLin is added to the terminal Lin. Thereby, even if the signal input terminal Lin of the semiconductor chip 13a in FIG. 1 is in an open state, the AND circuit 28 in the semiconductor chip 13a operates correctly.
 電圧調整量設定回路21は、端子25および端子26の情報から、電圧調整回路20の電圧調整値を決定する。詳細は図4を用いて説明する。 The voltage adjustment amount setting circuit 21 determines the voltage adjustment value of the voltage adjustment circuit 20 from the information of the terminals 25 and 26. Details will be described with reference to FIG.
 VDD設定回路29は、端子Hoおよび端子Loの情報から、信号出力端子VRoへ伝達する情報を決定する。詳細は図3を用いて説明する。 The VDD setting circuit 29 determines information to be transmitted to the signal output terminal VRo from the information of the terminal Ho and the terminal Lo. Details will be described with reference to FIG.
 図2において、電圧判定回路23、24は電圧判定部81を構成している。論理和回路27、論理積回路28は検出結果出力部82を構成している。VDD設定回路29は電源供給回路出力設定部83を構成している。電圧調整回路20と電圧調整量設定回路21は個別電圧調整部84を構成している。 2, the voltage determination circuits 23 and 24 constitute a voltage determination unit 81. The logical sum circuit 27 and the logical product circuit 28 constitute a detection result output unit 82. The VDD setting circuit 29 constitutes a power supply circuit output setting unit 83. The voltage adjustment circuit 20 and the voltage adjustment amount setting circuit 21 constitute an individual voltage adjustment unit 84.
 図3は、VDD設定回路29の処理手順を示すフローチャートである。図3のフローチャートに基づく動作は以下のとおりである。 FIG. 3 is a flowchart showing a processing procedure of the VDD setting circuit 29. The operation based on the flowchart of FIG. 3 is as follows.
 ステップ31:端子VRoへ、電源供給回路12の初期電圧設定値を出力する。具体的な電圧設定値の符号化方法は電源供給回路12の仕様により決定されるが、本発明の本質ではないので説明を割愛する。
  ステップ32:端子Hoの信号が論理“H”であれば、ステップ33、34、35を実行し、ステップ32に戻る。端子Hoの信号が論理“H”でなければ、ステップ36を実行する。
  ステップ33:現在のVRoの設定値を、電圧が下がる方向に変更する。変更量は、例えば上限参照電圧VrHと電源電圧VDDの仕様の中心値との差分の1/2から1/10程度などが考えられる。
  ステップ34:ステップ33で変更した設定値を新たなVRoの設定値として、記憶する。
  ステップ35:端子VRoに新たな設定値を出力する。
  ステップ36:端子Loの信号が論理“H”であれば、ステップ37、38、39を実行し、ステップ32に戻る。端子Loの信号が論理“H”でなければ、ステップ32に戻る。
  ステップ37:現在のVRoの設定値を、電圧が上がる方向に変更する。変更量は、例えば電源電圧VDDの仕様の中心値と下限参照電圧VrLとの差分の1/2から1/10程度などが考えられる。
  ステップ38:ステップ37で変更した設定値を新たなVRoの設定値として、記憶する。
  ステップ39:端子VRoに新たな設定値を出力する。
Step 31: Output the initial voltage setting value of the power supply circuit 12 to the terminal VRo. A specific method for encoding the voltage setting value is determined by the specification of the power supply circuit 12, but it is not the essence of the present invention, so the description is omitted.
Step 32: If the signal at the terminal Ho is logic “H”, execute Steps 33, 34 and 35, and return to Step 32. If the signal at terminal Ho is not logic “H”, step 36 is executed.
Step 33: The current setting value of VRo is changed in the direction in which the voltage decreases. For example, the amount of change may be about 1/2 to 1/10 of the difference between the upper limit reference voltage VrH and the center value of the specification of the power supply voltage VDD.
Step 34: The setting value changed in step 33 is stored as a new VRo setting value.
Step 35: A new set value is output to the terminal VRo.
Step 36: If the signal at the terminal Lo is logic “H”, execute Steps 37, 38 and 39 and return to Step 32. If the signal at the terminal Lo is not logic “H”, the process returns to step 32.
Step 37: The current setting value of VRo is changed to increase the voltage. The amount of change may be, for example, about 1/2 to 1/10 of the difference between the center value of the specification of the power supply voltage VDD and the lower limit reference voltage VrL.
Step 38: The setting value changed in step 37 is stored as a new VRo setting value.
Step 39: Output a new set value to the terminal VRo.
 以上説明した、ステップ32からステップ39までの動作を適切な時間間隔で実行することで、電源供給回路12の出力電圧VDDを調整する。 The output voltage VDD of the power supply circuit 12 is adjusted by executing the operations from step 32 to step 39 described above at appropriate time intervals.
 ステップ33または37において、現在の設定値が電源供給回路12の信号端子VRinに指定できる範囲の下限値または上限値に達した場合は、それ以上の変更はしない。 In step 33 or 37, when the current set value reaches the lower limit value or the upper limit value of the range that can be specified for the signal terminal VRin of the power supply circuit 12, no further change is made.
 図4は、電圧調整量設定回路21の処理手順を示すフローチャートである。図4のフローチャートに基づく動作は以下のとおりである。 FIG. 4 is a flowchart showing a processing procedure of the voltage adjustment amount setting circuit 21. The operation based on the flowchart of FIG. 4 is as follows.
 ステップ41:電圧調整回路20の初期電圧調整量を設定する。初期電圧調整量は、電源電圧VDDの初期設定値と半導体チップ13内の電源電圧VDDiの仕様範囲の中心値との差分電圧などが考えられる。
  ステップ42:端子25の信号が論理“H”であれば、ステップ43、44、45を実行し、ステップ42に戻る。端子25の信号が論理“H”でなければ、ステップ46を実行する。
  ステップ43:現在の電圧調整回路20の設定値を電圧が下がる方向に変更する。変更量は、例えば上限参照電圧VrHと電源電圧VDDiの仕様の中心値との差分の1/2から1/10程度などが考えられる。
  ステップ44:ステップ43で変更した設定値を新たな電圧調整回路20の設定値として、記憶する。
  ステップ45:電圧調整回路20の電圧降下量を調整する。
  ステップ46:端子26の信号が論理“H”であれば、ステップ47、48、49を実行し、ステップ42に戻る。端子26の信号が論理“H”でなければ、ステップ42に戻る。
  ステップ47:現在の電圧調整回路20の設定値を電圧が上がる方向に変更する。変更量は、例えば電源電圧VDDiの仕様の中心値と下限参照電圧VrLとの差分の1/2から1/10程度などが考えられる。
  ステップ48:ステップ47で変更した設定値を新たな電圧調整回路20の設定値として、記憶する。
  ステップ49:電圧調整回路20の電圧降下量を調整する。
Step 41: An initial voltage adjustment amount of the voltage adjustment circuit 20 is set. The initial voltage adjustment amount may be a differential voltage between the initial set value of the power supply voltage VDD and the center value of the specification range of the power supply voltage VDDi in the semiconductor chip 13.
Step 42: If the signal at the terminal 25 is logic “H”, execute Steps 43, 44 and 45, and return to Step 42. If the signal at terminal 25 is not logic "H", step 46 is executed.
Step 43: The current set value of the voltage adjustment circuit 20 is changed in the direction in which the voltage decreases. The amount of change may be, for example, about 1/2 to 1/10 of the difference between the upper limit reference voltage VrH and the center value of the specification of the power supply voltage VDDi.
Step 44: The setting value changed in step 43 is stored as a new setting value of the voltage adjustment circuit 20.
Step 45: The voltage drop amount of the voltage adjustment circuit 20 is adjusted.
Step 46: If the signal at the terminal 26 is logic "H", execute steps 47, 48 and 49, and return to step 42. If the signal at terminal 26 is not logic "H", the process returns to step 42.
Step 47: The current set value of the voltage adjustment circuit 20 is changed in the direction in which the voltage increases. The amount of change may be, for example, about 1/2 to 1/10 of the difference between the center value of the specification of the power supply voltage VDDi and the lower limit reference voltage VrL.
Step 48: The setting value changed in Step 47 is stored as a new setting value of the voltage adjustment circuit 20.
Step 49: The voltage drop amount of the voltage adjustment circuit 20 is adjusted.
 以上説明した、ステップ42からステップ49までの動作を適切な時間間隔で実行することで、電圧調整回路20の電圧低下量を調整する。この時間間隔は、図3で説明したフローチャートを実行する時間間隔と同じであっても、異なっていても良い。 The voltage drop amount of the voltage adjustment circuit 20 is adjusted by executing the operations from step 42 to step 49 described above at appropriate time intervals. This time interval may be the same as or different from the time interval for executing the flowchart described in FIG.
 ステップ43または47において、現在の設定値が電圧調整回路20電圧効果量に指定できる範囲の下限値または上限値に達した場合は、それ以上の変更はしない。 In step 43 or 47, if the current set value reaches the lower limit value or upper limit value of the range that can be specified for the voltage adjustment circuit 20 voltage effect amount, no further change is made.
 以上、図1から図4を用いて説明した電源供給回路12の出力電圧VDDの調整と、複数の半導体チップ13a、13b、13cのVDDiの調整を繰り返すことにより、すべての半導体チップの電源電圧VDDiが仕様範囲内に設定される。この効果は、それぞれの半導体チップの電源電圧値VDDiを観測してそれぞれの半導体チップ内で電源電圧を調整する第1の電圧制御ループと、それぞれの半導体チップの電源電圧VDDiの観測結果を総合的に判断して電源供給回路12の出力電圧を調整する第2の電圧制御ループを設け、第1のループと第2のループを同時に制御することから得られる。このため、本発明の目的である、一つの電源供給用回路から複数の半導体チップそれぞれに適切な電圧を供給することが可能である。 As described above, the adjustment of the output voltage VDD of the power supply circuit 12 described with reference to FIGS. 1 to 4 and the adjustment of the VDDi of the plurality of semiconductor chips 13a, 13b, and 13c are repeated, so that the power supply voltage VDDi of all the semiconductor chips. Is set within the specification range. This effect is obtained by observing the power supply voltage value VDDi of each semiconductor chip and adjusting the power supply voltage in each semiconductor chip, and the observation result of the power supply voltage VDDi of each semiconductor chip. This is obtained by providing a second voltage control loop for adjusting the output voltage of the power supply circuit 12 by controlling the first loop and the second loop at the same time. Therefore, it is possible to supply an appropriate voltage to each of a plurality of semiconductor chips from one power supply circuit, which is an object of the present invention.
 第1の実施例によれば、半導体チップ13a、13b、13cのいずれかの電源電圧VDDiがいずれかの上限参照電圧VrHを超えて高くなっていれば、電源供給回路12が出力電圧VDDを低下する。これは、半導体チップ13a、13b、13cのそれぞれの電圧検出結果25の論理和情報がチップ13cのVDD設定回路29で処理されるためである。 According to the first embodiment, if the power supply voltage VDDi of any one of the semiconductor chips 13a, 13b, 13c is higher than any upper reference voltage VrH, the power supply circuit 12 decreases the output voltage VDD. To do. This is because the logical sum information of the voltage detection results 25 of the semiconductor chips 13a, 13b, and 13c is processed by the VDD setting circuit 29 of the chip 13c.
 また、半導体チップ13a、13b、13cのすべての電源電圧VDDiがそれぞれの下限参照電圧VrLを超えてよりも低くなっている場合に限って、電源供給回路12の出力電圧VDDを上昇する。これは、半導体チップ13a、13b、13cのそれぞれの電圧検出結果26の論理積情報がチップ13cのVDD設定回路29で処理されるためである。 Also, the output voltage VDD of the power supply circuit 12 is increased only when all the power supply voltages VDDi of the semiconductor chips 13a, 13b, and 13c are lower than exceeding the respective lower limit reference voltages VrL. This is because the logical product information of the voltage detection results 26 of the semiconductor chips 13a, 13b, and 13c is processed by the VDD setting circuit 29 of the chip 13c.
 上記2つの場合以外は電源供給回路12の出力電圧VDDを変更しない。このため、図1において、半導体チップ13a、13b、13cに外部から印加される電圧VDDは極力低い状態に制御される。したがって、図2の論理回路22の電源電圧VDDiを電源電圧仕様範囲内に設定するために必要な電圧調整回路20の電圧降下量が小さくなり、電圧調整回路20で消費する電力が小さくなる。この効果も、上記2つの制御ループを同時に制御し、電源電圧VDDを極力低い状態に設定することから得られる。このため、本発明の目的である、低消費電力な電源給電技術を提供することが可能である。 Except for the above two cases, the output voltage VDD of the power supply circuit 12 is not changed. Therefore, in FIG. 1, the voltage VDD applied from the outside to the semiconductor chips 13a, 13b, and 13c is controlled to be as low as possible. Therefore, the voltage drop amount of the voltage adjustment circuit 20 necessary for setting the power supply voltage VDDi of the logic circuit 22 in FIG. 2 within the power supply voltage specification range is reduced, and the power consumed by the voltage adjustment circuit 20 is reduced. This effect can also be obtained by simultaneously controlling the two control loops and setting the power supply voltage VDD as low as possible. For this reason, it is possible to provide a power supply technology with low power consumption, which is an object of the present invention.
 図5は、本発明の第2の実施例の構成を示す図である。プリント基板51の上に、電源供給回路52が配置され、電源配線55を介して電源回路54a、54b、54cに電源電圧が供給される。電源回路54a、54b、54cはそれぞれ、半導体チップ53a、53b、53cに電源電圧を供給する。プリント基板51には、アナログデジタル変換回路を内蔵するマイコン57が搭載されている。半導体チップ53a、53b、53cの近傍の電源配線56a、56b、56cから、それぞれの半導体チップ53a、53b、53cに印加されている電源電圧をモニタして、マイコン57に伝える。マイコン57は電源供給回路52の信号入力端子VRinへ信号を伝達し、電源配線55の電圧値を調整する。 FIG. 5 is a diagram showing the configuration of the second embodiment of the present invention. A power supply circuit 52 is disposed on the printed circuit board 51, and a power supply voltage is supplied to the power supply circuits 54 a, 54 b and 54 c through the power supply wiring 55. The power supply circuits 54a, 54b, and 54c supply power supply voltages to the semiconductor chips 53a, 53b, and 53c, respectively. The printed circuit board 51 is equipped with a microcomputer 57 incorporating an analog-digital conversion circuit. The power supply voltages applied to the respective semiconductor chips 53a, 53b, and 53c are monitored from the power supply wirings 56a, 56b, and 56c in the vicinity of the semiconductor chips 53a, 53b, and 53c, and transmitted to the microcomputer 57. The microcomputer 57 transmits a signal to the signal input terminal VRin of the power supply circuit 52 and adjusts the voltage value of the power supply wiring 55.
 図6は、図5における電源回路54a、54b、54cの第1の構成例を示す図である。電源回路60には、電圧観測回路63,64、および上限参照電圧VrH、下限参照電圧VrLからなる電圧検出部80と、電圧調整回路20、および電圧調整量設定回路21からなる個別電圧調整部84が含まれる。電源回路60から外部に出力する電圧を上限参照電圧VrH,下限参照電圧VrLと比較し、仕様範囲から逸脱している場合は電圧調整量設定回路21および電圧調整回路20を介して、出力電圧が仕様範囲内になる様に調整する。 FIG. 6 is a diagram illustrating a first configuration example of the power supply circuits 54a, 54b, and 54c in FIG. The power supply circuit 60 includes voltage observation circuits 63 and 64, a voltage detection unit 80 including an upper limit reference voltage VrH and a lower limit reference voltage VrL, an individual voltage adjustment unit 84 including a voltage adjustment circuit 20 and a voltage adjustment amount setting circuit 21. Is included. The voltage output from the power supply circuit 60 to the outside is compared with the upper limit reference voltage VrH and the lower limit reference voltage VrL. If the voltage deviates from the specification range, the output voltage is set via the voltage adjustment amount setting circuit 21 and the voltage adjustment circuit 20. Adjust so that it is within the specification range.
 図7は、図5における電源回路54a、54b、54cの第2の構成例を示す図である。この構成例では、電源回路70は一般に市販されている電源供給ICを利用する。電源供給ICが一般的に有している電圧検出機能72と出力電圧調整機能71を利用し、電源回路70の出力電圧を仕様範囲内に調整する。電圧検出機能72は図6における電圧検出部80に対応する。出力電圧調整機能71は個別電圧調整部84に対応する。 FIG. 7 is a diagram illustrating a second configuration example of the power supply circuits 54a, 54b, and 54c in FIG. In this configuration example, the power supply circuit 70 uses a commercially available power supply IC. The voltage detection function 72 and the output voltage adjustment function 71 that the power supply IC generally has are used to adjust the output voltage of the power supply circuit 70 within the specification range. The voltage detection function 72 corresponds to the voltage detection unit 80 in FIG. The output voltage adjustment function 71 corresponds to the individual voltage adjustment unit 84.
 図8は、図5におけるマイコン57の機能構成を示すブロック図である。マイコン57には、プログラムで構成される電圧判定部81、検出結果出力部82、および電圧供給回路出力設定部83が含まれる。IC53a、53b、53cの近傍の電源電圧56a、56b、56cを電圧判定部81に入力し、それぞれのICの電源電圧が仕様範囲から逸脱しているかを検出する。それぞれの電源電圧の検出結果は検出結果出力部82で処理され、電源供給回路52の動作を決定する。検出結果出力部82の決定結果は電圧供給回路出力設定部83に送られ、図3で説明したフローチャートと同様の処理により、電源供給回路52の端子VRinへ伝送する信号を生成し、端子85から出力する。 FIG. 8 is a block diagram showing a functional configuration of the microcomputer 57 in FIG. The microcomputer 57 includes a voltage determination unit 81, a detection result output unit 82, and a voltage supply circuit output setting unit 83 configured by a program. The power supply voltages 56a, 56b, and 56c in the vicinity of the ICs 53a, 53b, and 53c are input to the voltage determination unit 81, and it is detected whether the power supply voltages of the respective ICs are out of the specification range. The detection result of each power supply voltage is processed by the detection result output unit 82 to determine the operation of the power supply circuit 52. The determination result of the detection result output unit 82 is sent to the voltage supply circuit output setting unit 83, and a signal to be transmitted to the terminal VRin of the power supply circuit 52 is generated by the same processing as the flowchart described in FIG. Output.
 図1における電源電圧VDDは、図5では電源配線55の電圧に対応する。図2における半導体チップ13内の電源電圧VDDiは、図5では電源電圧をモニタしている場所56a、56b、56cの電圧に対応する。 The power supply voltage VDD in FIG. 1 corresponds to the voltage of the power supply wiring 55 in FIG. The power supply voltage VDDi in the semiconductor chip 13 in FIG. 2 corresponds to the voltages at the locations 56a, 56b, and 56c where the power supply voltage is monitored in FIG.
 第2の実施例においても第1の実施例と同様の電源電圧制御方法を実現できる。 Also in the second embodiment, the same power supply voltage control method as in the first embodiment can be realized.
 この実施例によれば、本発明に必要な回路はすべてプリント基板51の上に実装されるため、半導体チップ53a、53b、53cの中に配置する必要がない。このため半導体チップ53a、53b、53cは一般に市販されている部品をそのまま使用することが可能になり、半導体チップの設計期間と製造コストの増加を防ぐことができる。 According to this embodiment, since all the circuits necessary for the present invention are mounted on the printed circuit board 51, it is not necessary to arrange them in the semiconductor chips 53a, 53b, 53c. Therefore, the semiconductor chips 53a, 53b, and 53c can use components that are generally commercially available as they are, and an increase in the design period and manufacturing cost of the semiconductor chip can be prevented.
 ここまで説明した第1および第2の実施例では、プリント基板上に電源供給回路と半導体チップを搭載する場合を例に取り説明したが、例えば1個の半導体チップの中にすべてを配置することも可能である。この構成では、図1における半導体チップ13a、13b、13cは1個の半導体チップ内の論理ブロックに対応する。 In the first and second embodiments described so far, the case where the power supply circuit and the semiconductor chip are mounted on the printed board has been described as an example. For example, all of them are arranged in one semiconductor chip. Is also possible. In this configuration, the semiconductor chips 13a, 13b, and 13c in FIG. 1 correspond to logic blocks in one semiconductor chip.
 また、複数のメモリチップとメモリコントローラチップを積層したHBM(High Bandwidth Memory)、HMC(Hybrid Memory Cube)に本発明を適用することも可能である。この構成では、図5における半導体チップ53a、53b、53cが積層された複数のメモリチップに対応する。電源供給回路52、電源回路54a、54b、54c、マイコン57に対応する機能をメモリコントローラチップに内蔵する構成などが考えられる。 Also, the present invention can be applied to HBM (High Bandwidth Memory) and HMC (Hybrid Memory Cube) in which a plurality of memory chips and a memory controller chip are stacked. This configuration corresponds to a plurality of memory chips in which the semiconductor chips 53a, 53b, and 53c in FIG. 5 are stacked. A configuration in which a function corresponding to the power supply circuit 52, the power supply circuits 54a, 54b, 54c, and the microcomputer 57 is built in the memory controller chip may be considered.
 また、第1および第2の実施例では、プリント基板上に電源供給回路と半導体チップを搭載する場合を例に説明したが、同じプリント基板上に搭載する必要はなく、この場合、複数の半導体チップに限らず、複数の回路ブロックであればよい。 In the first and second embodiments, the case where the power supply circuit and the semiconductor chip are mounted on the printed circuit board has been described as an example. However, it is not necessary to mount the power supply circuit and the semiconductor chip on the same printed circuit board. A plurality of circuit blocks are not limited to the chip.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 例えば、第1の実施例において、半導体チップはそれぞれ3個配置される構成を示しているが、半導体チップの個数は必ずしも3個に限定される必要はなく、他の個数であっても本発明の本質は変わらない。 For example, in the first embodiment, three semiconductor chips are arranged, but the number of semiconductor chips is not necessarily limited to three, and the present invention is not limited to three. The essence of is unchanged.
 また、第1の実施例において、電源供給回路12の前段に別の電源供給回路がある場合は、この電源供給回路に対しても、本発明の方法を用いて同様に出力電圧を制御することが可能である。この構成では、電源電圧を制御するループが3重になるが、本発明の本質は損なわれない。 Further, in the first embodiment, when there is another power supply circuit in the preceding stage of the power supply circuit 12, the output voltage is similarly controlled for this power supply circuit using the method of the present invention. Is possible. In this configuration, the loop for controlling the power supply voltage is tripled, but the essence of the present invention is not impaired.
 また、第1の実施例において、図2に示す上限参照電圧VrH、下限参照電圧VrLは、図1に示す半導体チップ13a、13b、13cで同一であっても良く、それぞれのチップごとに異なっていても良い。 In the first embodiment, the upper limit reference voltage VrH and the lower limit reference voltage VrL shown in FIG. 2 may be the same in the semiconductor chips 13a, 13b, and 13c shown in FIG. 1, and are different for each chip. May be.
11…プリント基板、12…電源供給回路、VDD…電源電圧、13a、13b、13c…半導体チップ、Hin、Lin、Ho、Lo…信号端子、13…半導体チップ、20…電圧調整回路、VDDi…電源電圧、21…電圧調整量設定回路、22…論理回路、23、24…電圧判定回路、27…論理和回路、28…論理積回路、29…VDD設定回路、VrH…上限参照電圧、VrL…下限参照電圧、51…プリント基板、52…電源供給回路、53a、53b、53c…半導体チップ、54a、54b、54c…電源回路、57…マイコン、60、70…電源回路、63、64…電圧観測回路、80…電圧検出部、81…電圧判定部、82…検出結果出力部、83…電圧供給回路出力設定部、84…個別電圧調整部 DESCRIPTION OF SYMBOLS 11 ... Printed circuit board, 12 ... Power supply circuit, VDD ... Power supply voltage, 13a, 13b, 13c ... Semiconductor chip, Hin, Lin, Ho, Lo ... Signal terminal, 13 ... Semiconductor chip, 20 ... Voltage adjustment circuit, VDDi ... Power supply Voltage, 21 ... Voltage adjustment amount setting circuit, 22 ... Logic circuit, 23, 24 ... Voltage determination circuit, 27 ... Logical sum circuit, 28 ... Logical product circuit, 29 ... VDD setting circuit, VrH ... Upper limit reference voltage, VrL ... Lower limit Reference voltage 51 ... Printed circuit board 52 ... Power supply circuit 53a, 53b, 53c ... Semiconductor chip 54a, 54b, 54c ... Power supply circuit 57 ... Microcomputer 60, 70 ... Power supply circuit 63, 64 ... Voltage observation circuit , 80 ... voltage detection unit, 81 ... voltage determination unit, 82 ... detection result output unit, 83 ... voltage supply circuit output setting unit, 84 ... individual voltage adjustment unit

Claims (14)

  1.  複数の回路ブロックと、当該複数の回路ブロックに電源を供給する電源供給回路を備えた電子機器であって、
     前記複数の回路ブロックのそれぞれの電源電圧を判定する電圧判定部と、
     前記電圧判定部のそれぞれの電源電圧判定結果を総合して検出結果を出力する検出結果出力部と、
     前記検出結果出力部の出力に基づいて、前記電源供給回路の出力電圧を決定する出力設定部と、
     それぞれの前記回路ブロック内の電源電圧を調整する個別電圧調整部と、を有し、
     前記複数の回路ブロックの電源電圧の判定結果を総合して前記電源供給回路の出力電圧を調整するとともに、前記個別電圧調整部により、それぞれの回路ブロックの電源電圧を調整することを特徴とする電子機器。
    An electronic device comprising a plurality of circuit blocks and a power supply circuit for supplying power to the plurality of circuit blocks,
    A voltage determination unit for determining a power supply voltage of each of the plurality of circuit blocks;
    A detection result output unit that outputs a detection result by combining the power supply voltage determination results of the voltage determination unit;
    An output setting unit for determining an output voltage of the power supply circuit based on an output of the detection result output unit;
    An individual voltage adjusting unit for adjusting a power supply voltage in each of the circuit blocks,
    The output voltage of the power supply circuit is adjusted by integrating the determination results of the power supply voltages of the plurality of circuit blocks, and the power supply voltage of each circuit block is adjusted by the individual voltage adjustment unit. machine.
  2.  請求項1に記載の電子機器において、
     前記個別電圧調整部は、前記電圧判定部の電源電圧判定結果に基づいて、回路ブロックの電源電圧を調整することを特徴とする電子機器。
    The electronic device according to claim 1,
    The said individual voltage adjustment part adjusts the power supply voltage of a circuit block based on the power supply voltage determination result of the said voltage determination part, The electronic device characterized by the above-mentioned.
  3.  請求項1に記載の電子機器において、
     前記回路ブロックは、半導体チップであることを特徴とする電子機器。
    The electronic device according to claim 1,
    The electronic device, wherein the circuit block is a semiconductor chip.
  4.  請求項3に記載の電子機器において、
     前記半導体チップ内に、少なくとも前記電圧判定部、前記検出結果出力部および前記個別電圧調整部が組み込まれていることを特徴とする電子機器。
    The electronic device according to claim 3,
    An electronic apparatus, wherein at least the voltage determination unit, the detection result output unit, and the individual voltage adjustment unit are incorporated in the semiconductor chip.
  5.  請求項1に記載の電子機器において、
     前記複数の回路ブロック、前記電源供給回路、前記電圧判定部、前記検出結果出力部、前記出力設定部および前記個別電圧調整部が、同一のプリント基板上に設けられていることを特徴とする電子機器。
    The electronic device according to claim 1,
    The plurality of circuit blocks, the power supply circuit, the voltage determination unit, the detection result output unit, the output setting unit, and the individual voltage adjustment unit are provided on the same printed circuit board. machine.
  6.  請求項1に記載の電子機器において、
     前記電圧判定部は、回路ブロックの電源電圧が予め設定した上限基準電圧より高いか、および、予め設定した下限基準電圧より低いかを判定し、
     前記出力設定部は、一つ以上の回路ブロックの電源電圧の判定結果が上限基準電圧より高い場合には前記電源供給回路の出力電圧を下げ、全ての回路ブロックの電源電圧の判定結果が下限基準電圧より低い場合には、前記電源供給回路の出力電圧を上げることを特徴とする電子機器
    The electronic device according to claim 1,
    The voltage determination unit determines whether the power supply voltage of the circuit block is higher than a preset upper limit reference voltage and lower than a preset lower limit reference voltage,
    The output setting unit lowers the output voltage of the power supply circuit when the determination result of the power supply voltage of one or more circuit blocks is higher than the upper limit reference voltage, and the determination result of the power supply voltage of all circuit blocks is the lower limit reference When the voltage is lower than the voltage, the output voltage of the power supply circuit is increased.
  7.  請求項6に記載の電子機器において、
     前記検出結果出力部は、予め設定した上限基準電圧より高いとの判定結果については複数の回路ブロックの判定結果の論理和をとり、予め設定した下限基準電圧より低いとの判定結果については複数の回路ブロックの判定結果の論理積をとって出力することを特徴とする電子機器。
    The electronic device according to claim 6,
    The detection result output unit logically sums the determination results of a plurality of circuit blocks for a determination result that is higher than a preset upper limit reference voltage, and a plurality of determination results that are lower than a preset lower limit reference voltage. An electronic apparatus that outputs a logical product of determination results of circuit blocks.
  8.  請求項1に記載の電子機器において、
     前記複数の回路ブロックのそれぞれは、少なくとも前記電圧判定部と前記検出結果出力部を備え、更に、
     他の回路ブロックからの電圧判定結果を受け取る端子、および、他の回路ブロックへ判定結果を出力する端子を有しており、
     前記検出結果出力部は、自身の回路ブロックの電源電圧判定結果と他の回路ブロックからの電源電圧判定結果を総合して他の回路ブロックへ出力することを特徴とする電子機器。
    The electronic device according to claim 1,
    Each of the plurality of circuit blocks includes at least the voltage determination unit and the detection result output unit, and
    It has a terminal that receives a voltage determination result from another circuit block, and a terminal that outputs the determination result to another circuit block.
    The detection result output unit combines the power supply voltage determination result of its own circuit block and the power supply voltage determination result from another circuit block, and outputs the result to another circuit block.
  9.  請求項8に記載の電子機器において、
     他の回路ブロックへの出力は、自身の回路ブロックの電源電圧判定結果と他の回路ブロックからの電源電圧判定結果との論理和または論理積により決定されることを特徴とする電子機器。
    The electronic device according to claim 8,
    An electronic device characterized in that an output to another circuit block is determined by a logical sum or a logical product of a power supply voltage determination result of its own circuit block and a power supply voltage determination result from another circuit block.
  10.  請求項1に記載の電子機器において、
     前記個別電圧調整部は、それぞれの回路ブロック毎に設けた個別電源回路で構成し、
     前記電圧判定部、前記検出結果出力部および前記出力設定部は、マイコンで構成したことを特徴とする電源給電回路。
    The electronic device according to claim 1,
    The individual voltage adjustment unit is configured by an individual power supply circuit provided for each circuit block,
    The voltage determination unit, the detection result output unit, and the output setting unit are configured by a microcomputer.
  11.  請求項10に記載の電子機器において、
     前記個別電源回路は、回路ブロックの電源電圧を検出する電圧検出部と、検出した電源電圧に基づいて電圧調整量を設定する電圧調整量設定回路と、設定された電圧調整量に基づいて電源電圧を調整する電圧調整回路で構成したことを特徴とする電源給電回路。
    The electronic device according to claim 10,
    The individual power supply circuit includes a voltage detection unit that detects a power supply voltage of the circuit block, a voltage adjustment amount setting circuit that sets a voltage adjustment amount based on the detected power supply voltage, and a power supply voltage based on the set voltage adjustment amount A power supply circuit comprising a voltage adjustment circuit for adjusting the voltage.
  12.  請求項11に記載の電子機器において、
     前記電圧検出部は、回路ブロックの電源電圧が予め設定した上限基準電圧より高いか、および、予め設定した下限基準電圧より低いかを検出し、
     前記電圧調整量設定回路は、回路ブロックの電源電圧の検出結果が上限基準電圧より高い場合には前記電圧調整回路の出力電圧を下げ、回路ブロックの電源電圧の検出結果が下限基準電圧より低い場合には、前記電圧調整回路の出力電圧を上げることを特徴とする電子機器
    The electronic device according to claim 11,
    The voltage detection unit detects whether the power supply voltage of the circuit block is higher than a preset upper limit reference voltage and lower than a preset lower limit reference voltage,
    When the detection result of the power supply voltage of the circuit block is higher than the upper limit reference voltage, the voltage adjustment amount setting circuit lowers the output voltage of the voltage adjustment circuit and when the detection result of the power supply voltage of the circuit block is lower than the lower limit reference voltage An electronic apparatus characterized by raising an output voltage of the voltage regulator circuit
  13.  請求項10に記載の電子機器において、
     前記電源供給回路と、前記個別電源回路と、前記マイコンは、汎用部品を用いたことを特徴とする電子機器。
    The electronic device according to claim 10,
    An electronic apparatus using general-purpose parts for the power supply circuit, the individual power supply circuit, and the microcomputer.
  14.  請求項10に記載の電子機器において、
     前記複数の回路ブロック、前記電源供給回路、前記個別電源回路および前記マイコンが、同一のプリント基板上に設けられていることを特徴とする電子機器。
    The electronic device according to claim 10,
    The electronic device, wherein the plurality of circuit blocks, the power supply circuit, the individual power supply circuit, and the microcomputer are provided on the same printed circuit board.
PCT/JP2015/065683 2015-05-29 2015-05-29 Electronic device WO2016194090A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065683 WO2016194090A1 (en) 2015-05-29 2015-05-29 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065683 WO2016194090A1 (en) 2015-05-29 2015-05-29 Electronic device

Publications (1)

Publication Number Publication Date
WO2016194090A1 true WO2016194090A1 (en) 2016-12-08

Family

ID=57441942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065683 WO2016194090A1 (en) 2015-05-29 2015-05-29 Electronic device

Country Status (1)

Country Link
WO (1) WO2016194090A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099166A (en) * 1998-09-21 2000-04-07 Toshiba Corp Method and device for controlling power source in information processing system
JP2001513976A (en) * 1997-02-25 2001-09-04 セクスタン アビオニク A device that supplies power to multiple electronic modules housed in a rack at low cost
US20040179417A1 (en) * 2003-03-14 2004-09-16 Gunther Lehmann Self trimming voltage generator
US20050046400A1 (en) * 2003-05-21 2005-03-03 Efraim Rotem Controlling operation of a voltage supply according to the activity of a multi-core integrated circuit component or of multiple IC components
JP2007172108A (en) * 2005-12-20 2007-07-05 Alaxala Networks Corp Power supply device, information processor, and voltage output setting method for output voltage variable power source
JP2010522403A (en) * 2007-03-29 2010-07-01 インテル・コーポレーション Dynamic power reduction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001513976A (en) * 1997-02-25 2001-09-04 セクスタン アビオニク A device that supplies power to multiple electronic modules housed in a rack at low cost
JP2000099166A (en) * 1998-09-21 2000-04-07 Toshiba Corp Method and device for controlling power source in information processing system
US20040179417A1 (en) * 2003-03-14 2004-09-16 Gunther Lehmann Self trimming voltage generator
US20050046400A1 (en) * 2003-05-21 2005-03-03 Efraim Rotem Controlling operation of a voltage supply according to the activity of a multi-core integrated circuit component or of multiple IC components
JP2007172108A (en) * 2005-12-20 2007-07-05 Alaxala Networks Corp Power supply device, information processor, and voltage output setting method for output voltage variable power source
JP2010522403A (en) * 2007-03-29 2010-07-01 インテル・コーポレーション Dynamic power reduction

Similar Documents

Publication Publication Date Title
US7957217B2 (en) Method of controlling internal voltage and multi-chip package memory prepared using the same
US7420387B2 (en) Semiconductor device capable of controlling OCD and ODT circuits and control method used by the semiconductor device
US10848147B2 (en) High performance I2C transmitter and bus supply independent receiver, supporting large supply voltage variations
US7088127B2 (en) Adaptive impedance output driver circuit
US7639038B2 (en) Terminating resistance adjusting method, semiconductor integrated circuit and semiconductor device
US9678111B2 (en) Current sensing with compensation for component variations
WO2013038583A1 (en) Semiconductor device and power supply system provided with same
US7590392B2 (en) Transmitter compensation
US7227376B2 (en) Dynamic impedance compensation circuit and method
US20080001668A1 (en) Impedance control device and impedance control method
JP2014230091A (en) Resistance adjustment circuit and resistance adjustment method
US9880572B2 (en) Semiconductor integrated circuit and power supply control system provided with a plurality of semiconductor integrated circuits
CN111034359A (en) Current controller for an output stage of LED driver circuitry
US7714600B2 (en) Load fluctuation correction circuit, electronic device, testing device, and timing generating circuit
WO2016194090A1 (en) Electronic device
US10348291B2 (en) Resistor array, output buffer, and manufacturing method for semiconductor device
US9465396B2 (en) AVS master slave
US8704410B2 (en) Semiconductor device
US20120119826A1 (en) Semiconductor integrated circuit for minimizing a deviation of an internal power supply from a desired value
US11209846B2 (en) Semiconductor device having plural power source voltage generators, and voltage supplying method
US10396648B2 (en) Voltage adjusting circuit and method for adjusting voltage
KR100695064B1 (en) Differential signalling circuit with passive common mode feedback circuit
US9069369B1 (en) Voltage regulator and a method to operate the voltage regulator
US8030958B2 (en) System for providing a reference voltage to a semiconductor integrated circuit
US20110102027A1 (en) Semiconductor integrated device and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP