WO2016193457A1 - Transpondeur radiofrequence pour pneumatique - Google Patents

Transpondeur radiofrequence pour pneumatique Download PDF

Info

Publication number
WO2016193457A1
WO2016193457A1 PCT/EP2016/062694 EP2016062694W WO2016193457A1 WO 2016193457 A1 WO2016193457 A1 WO 2016193457A1 EP 2016062694 W EP2016062694 W EP 2016062694W WO 2016193457 A1 WO2016193457 A1 WO 2016193457A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
frequency transponder
antenna
primary antenna
electronic
Prior art date
Application number
PCT/EP2016/062694
Other languages
English (en)
Inventor
Julien DESTRAVES
Original Assignee
Compagnie Generale Des Etablissements Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin, Michelin Recherche Et Technique S.A. filed Critical Compagnie Generale Des Etablissements Michelin
Priority to EP16726612.1A priority Critical patent/EP3304748B1/fr
Priority to CN201680032233.7A priority patent/CN107683214B/zh
Priority to US15/578,531 priority patent/US10339435B2/en
Publication of WO2016193457A1 publication Critical patent/WO2016193457A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07758Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for adhering the record carrier to further objects or living beings, functioning as an identification tag
    • G06K19/07764Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for adhering the record carrier to further objects or living beings, functioning as an identification tag the adhering arrangement making the record carrier attachable to a tire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/0061Accessories, details or auxiliary operations not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0452Antenna structure, control or arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/22Circuits for receivers in which no local oscillation is generated
    • H04B1/24Circuits for receivers in which no local oscillation is generated the receiver comprising at least one semiconductor device having three or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/0061Accessories, details or auxiliary operations not otherwise provided for
    • B29D2030/0077Directly attaching monitoring devices to tyres before or after vulcanization, e.g. microchips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C2019/004Tyre sensors other than for detecting tyre pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2241Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in or for vehicle tyres

Definitions

  • the present invention relates to an electronic radio identification device or radio frequency transponder adapted to be fixed on an object to be identified undergoing, particularly in service, heavy thermo mechanical stresses such as a tire.
  • radio frequency transponders are conventionally used for the identification, tracking and management of objects. These devices allow automated management more reliable and faster.
  • radio frequency transponders generally consist of at least one electronic chip and an antenna formed by a magnetic loop or a radiating antenna that is fixed to the object to be identified.
  • the communication performance of the radio frequency transponder is expressed by the maximum communication distance of the radio frequency transponder with a radio frequency reader for the same signal communicated to or by the radio frequency reader.
  • a radio frequency transponder adapted to meet the needs of the tires.
  • This transponder consists of an electronic chip, a printed circuit on which an electronic chip is electrically connected and two metal coil springs connected mechanically and electrically to the printed circuit forming a dipole radiating antenna.
  • Communication with the radio frequency reader uses radio waves and in particular the UHF band, an acronym for Ultra High Frequencies.
  • the characteristics of the coil springs such as the wire diameter, the nature of the wire, the pitch of the helix and the length of the springs are adjusted to the chosen communication frequency.
  • radio frequency transponder has drawbacks. Although part of the radio frequency transponder is expandable by the geometry of its antenna, there are areas of mechanical weakness vis-à-vis high levels of stress in service. In particular, the mechanical connections of the coil springs with the printed circuit are rigid areas which constitute weak points for the endurance of the radio frequency transponder. In addition, the method of manufacturing such a radio frequency transponder is expensive. In fact, the attachment of the coil springs on the printed circuit is a delicate operation often manual, on the one hand to anchor the end of the coil springs. three-dimensional in the flat notch of the printed circuit and secondly to electrically connect the coil springs on the tracks of the electronic card. This latter operation can not be carried out using the conventional methods of the electronics industry.
  • the radio frequency transponder integral with the elastomeric materials constituting the tire.
  • the connection between the rigid parts of the transponder and the elastomeric products may require the use of specific adhesion promoters.
  • the present invention relates to a radio frequency transponder for improving the technical and economic performance of radio frequency transponders used among others in the tire industry. Description of the invention
  • the invention relates to a radio frequency transponder intended to be integrated with an object to be identified consisting of a highly extensible material such as a mixture or elastomer composition.
  • This radio frequency transponder comprises an electronic chip and a radiating antenna communicating with a radio frequency reader, and is characterized in that it is equipped with a primary antenna electrically connected to the electronic chip, in that the primary antenna is coupled electromagnetically magnetically with the radiating antenna and in that the radiating antenna is a single-stranded coil spring constituting an electric dipole.
  • the object to be identified may be, for example, a tire.
  • elastomer is used herein to mean all the elastomers including TPE (acronym for Thermo Plastic Elastomers), such as, for example, diene polymers, that is to say comprising diene units, silicones, polyurethanes and polyolefms.
  • TPE acronym for Thermo Plastic Elastomers
  • diene polymers that is to say comprising diene units, silicones, polyurethanes and polyolefms.
  • electrostatic coupling is used here to mean the coupling by electromagnetic radiation, that is to say the transfer without physical contact of energy between two systems including on the one hand the inductive coupling and the on the other hand the capacitive coupling.
  • the primary antenna is then preferentially included in the group comprising: a coil, a loop or a segment of wire or a combination of these conductive elements.
  • the absence of any mechanical connection between the radiating antenna and the electronic chip substantially improves the endurance performance of the radio frequency transponder according to an object of the invention relative to the radio frequency transponder of the cited document.
  • the radiating antenna being disconnected from any printed circuit, can be embedded and made integral in a mass of elastomeric mixtures using elastomeric / metal sticky solutions well known to those skilled in the art with or without the use of specific adhesion promoter. This reduces, at the same time, the cost of implementing such a radio frequency transponder in a mass of rubber such as a tire.
  • the primary antenna is a coil having at least one turn, that the turn is circular, square or rectangular.
  • the primary antenna having an axis of symmetry, is circumscribed in a circle whose axis of revolution is parallel to the axis of the primary antenna and whose diameter is greater or equal to one-third, and preferably half, or two-thirds of the inner diameter of the helical spring of the radiating antenna.
  • the distance between the two antennas will be smaller than the diameter of the primary antenna in the case where the primary antenna is located inside the radiating antenna.
  • the inductive coupling between the two antennas is optimized and thus the communication performance of the radio frequency transponder in transmission and reception.
  • the axis of revolution of the radiating antenna and the axis of symmetry of the primary antenna are substantially parallel.
  • substantially parallel means that the angle generated by the axial directions of each antenna is less than or equal to 30 degrees.
  • the electromagnetic coupling between the two antennas is optimal significantly improving the communication performance of the radio frequency transponder.
  • the median plane of the coil of the primary antenna is substantially superimposed on the median plane of the coil spring of the radiating antenna.
  • the median plane of the coil and the coil spring is a fictional plane separating the object into two equal parts.
  • this median plane is perpendicular to the axis of symmetry of each antenna and lies at the center of the length of each antenna.
  • the relative distance between the median planes is less than one-tenth of the length of the radiating antenna.
  • the intensity of the electric current being maximum in the center of a coil
  • the magnetic field induced by this current is also maximum in the center of the coil, it is thus ensured that the inductive coupling between the two antennas is optimal by improving this makes the communication performance of the radio frequency transponder.
  • the radiating antenna has a real peripheral surface S located opposite the primary antenna which has a real peripheral surface located opposite the antenna.
  • the ratio of S / s surfaces is between 3 and 8, preferably between 4 and 6.
  • the term "real peripheral surface” is understood to mean the surface of revolution about the axis of the antenna passing through at least one radial extremum of the coil of the antenna and extending axially to the right of the antenna. the turn on the entire length of the antenna. And here is meant by the term “turn”, the electrically conductive part of the turn.
  • the resulting surface is a cylinder of radius equal to the extremum of the antenna taken as a reference and of length equal to the axial distance of the antenna.
  • the radiating antenna it is a helical surface with an axis corresponding to the axis of the radiating antenna whose pitch corresponding to the pitch of the radiating antenna and radius corresponding to the radial distance from the radiating antenna. extremum taken in reference to the elementary turn of the radiating antenna.
  • the energy transfer between the two antennas of the radio frequency transponder according to the invention requires, for satisfactory radiocommunication performance, a minimum exchange surface between the two antennas.
  • the primary antenna being connected to the terminals of an electronic card comprising the electronic chip, the electrical impedance of the primary antenna is adapted to the electrical impedance of the electronic card of the radio frequency transponder.
  • the term electrical impedance of the electronic card the electrical impedance across the primary antenna which represents, the electrical impedance of the electronic card comprising at least one electronic chip and a printed circuit on which the electronic chip is connected.
  • the radio frequency transponder is optimized to the communication frequency by improving the gain and having a more selective form factor, a bandwidth. narrower, electronic card.
  • the communication performance of the radio frequency transponder is improved for the same amount of energy transmitted to the radio frequency transponder. This results in particular in an increase in the reading distance of the radio frequency transponder.
  • the radiating antenna which on the one hand must satisfy the impedance matching condition of the electronic part and on the other hand must satisfy the electrical resonance condition for the transmission of radio waves.
  • the impedance matching of the primary antenna is obtained by adjusting at least one of the geometric characteristics of the primary antenna, for example the diameter of the wire, the material of this wire, and the length of the wire.
  • the impedance matching of the primary antenna can also be obtained by adding an impedance transformation circuit consisting of additional electronic components between the primary antenna and the electronic circuit, for example Inductance and capacitance based filters and transmission lines.
  • the impedance matching of the primary antenna can also be obtained by combining the characteristics of the primary antenna and the characteristics of an impedance transformation circuit.
  • the electronic chip and at least a portion of the primary antenna are embedded in a rigid material and electrically insulating such as, for example, the high temperature epoxy type resin.
  • the assembly constitutes the electronic part of the radio frequency transponder.
  • a miniaturization of the electronic component comprising the primary antenna and the electronic chip can be envisaged by using, for example, a micro coil with turns as a primary antenna.
  • the portion of the primary antenna not embedded in the rigid mass is coated with an electrically insulating material.
  • the primary antenna is not entirely contained in the rigid and electrically insulating mass of the electronic part, it is useful to isolate it by means of a coating in an electrically insulating material such as a electrical cable insulation sheath.
  • the electronic part of the radio frequency transponder is located inside the radiating antenna.
  • the electromagnetic coupling is optimized since, firstly, the magnetic field generated by the radiating antenna is maximum and homogeneous inside the coil spring except for its ends.
  • the communication performance of the radio frequency transponder is improved in transmission and reception.
  • the geometry of the electronic part of the radiofrequency transponder is inscribed in a cylinder whose diameter is less than or equal to the inside diameter of the radiating antenna and whose axis of revolution is parallel or coaxial. relative to the axis of the primary antenna.
  • the electronic part thus formed allows in the case where it would be placed inside the radiating antenna to provide an optimized pre-positioning of the primary antenna relative to the radiating antenna to improve performance. of communication in reception / transmission of the radio frequency transponder. Indeed, it is mechanically ensured that the two antennas are parallel and that the distance between them generates an inductive coupling quality.
  • the electronic portion of the radio frequency transponder is located outside the radiating antenna.
  • the electromagnetic coupling is optimized since the magnetic field generated by the primary antenna is maximum and homogeneous inside the coil except for its ends.
  • the communication performance of the radio frequency transponder is improved in transmission to the radio frequency reader.
  • it is easier then to position additional electronic components on the printed circuit including the electronic chip found outside the radiating antenna.
  • the electronic portion of the radio frequency transponder has a cylindrical cavity adapted to receive the radiating antenna.
  • the diameter of the circle inscribed in the primary antenna is less than three times, preferably twice, the outside diameter of the radiating antenna.
  • the radiating antenna when the radiating antenna is placed inside the primary antenna, it is ensured that the electromagnetic coupling between the radiating antenna and the primary antenna is optimal by the relative positioning between the two antennas in terms of distance and parallelism.
  • the electronic chip being electrically connected to a printed circuit to form the electronic card, the circuit printed includes one or more passive or additional active electronic components.
  • These electronic components may be for example a microprocessor, a memory, a battery, a pressure sensor, a temperature sensor, an accelerometer. This enriches the functionality of the radio frequency transponder by multiplying the information it provides.
  • the invention also relates to an identification patch consisting of a radio frequency transponder embedded in a flexible mass and electrically insulating elastomeric mixtures.
  • an identification patch consisting of a radio frequency transponder embedded in a flexible mass and electrically insulating elastomeric mixtures.
  • electrically insulating that the electrical conductivity of the elastomer mixture is below the threshold of percolation conductive charges of the mixture.
  • an identification patch which facilitates the introduction of the radio frequency transponder in objects to be identified comprising parts of elastomeric base material.
  • a layer of bonding gum may be used if necessary, to secure the identification patch to the object to be identified as a tire.
  • the characteristics of rigidity and electrical conductivity of the elastomer mixture ensure mechanical insertion and quality electrical insulation of the radio frequency transponder within the components of the object to be identified. Thus the operation of the radio frequency transponder is not disturbed by the object to be identified.
  • the invention also relates to a method of manufacturing the radio frequency transponder which comprises the following steps: ⁇ a helical spring of dimension adapted to the radio frequency signaling frequency of the radio frequency transponder is produced in order to constitute the antenna radiating radio frequency transponder,
  • the primary antenna is electrically connected to the electronic card
  • At least part of the primary antenna and the electronic card are embedded in a rigid and electrically insulating mass such as a thermosetting resin in order to constitute the electronic part of the radio frequency transponder,
  • the electronic part and the radiating antenna are positioned by simple enfolding so that, the primary antenna having an axis of symmetry and a median plane and the radiating antenna an axis of revolution and a median plane, the axes of the two antennas are substantially parallel and the median planes of the two antennas are substantially superimposed.
  • the manufacture of the radio frequency transponder is simplified by separately realizing the electronic part and the radiating antenna of the radio frequency transponder.
  • the step of assembling the two components requires no mechanical or electrical connection between the two components which drastically reduces the manufacturing costs of the radio frequency transponder.
  • a manufacturing method comprises a step of producing a coil-type primary antenna having at least one turn and comprising an axis of symmetry which is circumscribed in a circle whose axis of revolution is parallel to the axis of symmetry and whose diameter is greater than or equal to one-third of the inside diameter of the radiating antenna.
  • a manufacturing method comprises a step of coating the non-embedded primary antenna part in the rigid and electrically insulating mass of an electrically insulating material.
  • a manufacturing method according to the invention comprises a step of adapting the electrical impedance of the primary antenna to the electrical impedance of the electronic card.
  • a manufacturing method comprises a step of adding one or more additional passive or active electronic components to the printed circuit equipped with the electronic chip in order to constitute the electronic card.
  • the functionality of the radio frequency transponder is improved by introducing this step purely related to the electronics industry from the design of the electronic card.
  • the invention also relates to a method of manufacturing the identification patch in which a radio frequency transponder is incorporated in a mass of at least one flexible elastomer mixture and electrically insulating by a method of injection, compression or extrusion.
  • the identification patch to an object to be identified, such as a tire, comprising elastomeric products using, if necessary, conventional elastomer / elastomer adhesion techniques.
  • This incorporation can take place either during the manufacturing phase of the object, such as for example in a green tire blank, and in particular before the crosslinking or the vulcanization of the elastomers or during a later step to the manufacturing process of the object to be identified, for example directly on the inner or outer faces of the tire.
  • FIG. 1 shows a detail view of a radiating antenna according to the invention
  • FIG. 2 presents a perspective view of the electronic part of a radio frequency transponder according to the invention in a configuration where the electronic part is intended to be positioned inside the radiating antenna;
  • FIG. 3 shows a perspective view of a radio frequency transponder according to the invention in a configuration in which the electronic part is located inside the radiating antenna;
  • FIG. 4 shows a perspective view of a radio frequency transponder according to the invention in a configuration in which the electronic part is situated outside the radiating antenna;
  • Figure 5 is an exploded view of an identification patch
  • FIG. 6 presents a graph of the electrical power transmitted to two radio frequency transponders according to the frequency band of observation
  • FIG. 7 is a block diagram of a method of manufacturing an identification patch comprising a radio frequency transponder according to the invention.
  • FIG. 1 shows a radiating antenna 10 consisting of a steel wire 12 which has been plastically deformed in order to form a helical spring having an axis of revolution 11.
  • the helical spring is defined first of all by a diameter d winding of the coated wire and a pitch of a helix.
  • the length of the spring 17 here corresponds to the half-wavelength of the transmission signal of the radio frequency transponder 1 in an elastomer mixture mass.
  • FIG. 2 shows the electronic part 20 of a radio frequency transponder 1 intended for a configuration where the electronic part 20 is located inside the radiating antenna 10.
  • the electronic part 20 comprises an electronic chip 22 and a primary antenna 24 electrically connected to the electronic chip 22 via a printed circuit 26.
  • the primary antenna is constituted by a micro-coil CMS (acronym for Surface Mounted Component) having an axis of symmetry 23.
  • the median plane 21 of the primary antenna defined by a normal parallel to the axis of symmetry 23 of the SMT coil and separating the coil into two equal parts.
  • the electrical connection between the components on the printed circuit is carried out using copper tracks terminated by copper pellets 27.
  • the electrical connection of the components on the printed circuit is carried out using the so-called "wire bonding" technique by gold wires 28 between the component and the pellets 27.
  • the assembly consisting of the printed circuit 26, the chip 22 and the primary antenna 24 is embedded in a rigid mass 29 of electrically insulating high temperature epoxy resin constituting the electronic part 20 of the radio frequency transponder 1.
  • FIG. 3 shows a radio frequency transponder 1 in a configuration where the electronic part 20 is located inside the radiating antenna 10.
  • the geometrical shape of the electronic part 20 is circumscribed in a cylinder whose diameter is smaller than or equal to the inner diameter 13 of the coil spring. The enfoldment of the electronic part 20 in the radiating antenna 10 is facilitated.
  • the median plane 21 of the primary antenna is substantially superimposed on the median plane 19 of the radiating antenna 10.
  • FIG. 4 shows a radiofrequency transponder 5 in a configuration where the electronic part 30 is outside the radiating antenna 10.
  • the geometrical shape of the electronic part 30 has a cylindrical cavity 35 of which the This diameter is greater than or equal to the outside diameter of the radiating antenna 10. This causes the radiating antenna 10 to become inflamed in the cylindrical cavity 35 of the electronic part.
  • the median plane of the primary antenna is substantially in the median plane of the radiating antenna 10.
  • FIG. 5 presents an identification patch 2 comprising a radio frequency transponder 1 embedded in a flexible mass 3 made of an insulating elastomeric material. electrically represented by the plates 3a and 3b.
  • the radio frequency transponder 1 is in a configuration where the electronic part 20 is located inside the radiating antenna 10.
  • FIG. 6 is a graph of the electrical power transmitted by a radiofrequency transponder located inside.
  • the measurement protocol used is ISO / IEC 18046-3 entitled "Electromagnetic Field Threshold and Frequency Peaks". The measurements were made for a wide frequency sweep and not punctually as usual.
  • the abscissa represents the frequency of the communication signal.
  • the ordinate axis is the electrical power received by the radiofrequency reader expressed in decibel relative to the maximum electrical power transmitted by a current radio frequency transponder of the state of the art.
  • Dotted curve 100 represents the response of a radio frequency transponder according to the document cited.
  • the continuous curve 200 represents the response of a transponder according to the invention for the same signal emitted by the radio frequency reader.
  • the gain remains of the order of at least one decibel over an enlarged frequency band around the communication frequency.
  • FIG. 7 is a block diagram of the method of manufacturing an identification patch 2 according to the invention.
  • Obtaining the identification patch 2 requires the initial manufacture of a radio frequency transponder 1, 5 according to the invention.
  • the various chronological stages of the manufacture of the radio frequency transponder 1, 5 then those identification patch 2 are identified.
  • the steps related to the telecommunications or electronics trades are clearly delineated from those of the assembly that can be performed by the tire manufacturer, for example for application on pneumatic tires.
  • Figure 7 showing a block diagram of an identification patch 2 there are three independent and successive phases.
  • the radiating antenna 10 which will ensure the transmission and reception of radio waves with the radiofrequency reader.
  • the first step consists in plastically deforming the steel wire 12 of external diameter of 200 micrometers to form a helical spring with a pitch of 1.5 mm using means adapted industrial devices such as a tower to wind the springs. This gives a continuous spring whose outer diameter is of the order of 1.6 millimeters which is small vis-à-vis the length 17 of the final radiating antenna between 40 to 60 millimeters that is desired for example 50 millimeters.
  • a heat treatment may be applied after this plastic deformation step, heating above 200 ° Celsius for at least 30 minutes, in order to relax the prestressing in the helical spring thus formed.
  • the second step is to cut the helical spring by laser cutting to the desired length corresponding to the half wavelength of the frequency of the radio communication signals taking into account the speed of propagation of these waves in an elastomeric medium. , about 50 millimeters.
  • the mechanical part thus obtained represents the radiating antenna 10 according to the invention.
  • the electronic part 20 of the radio frequency transponder 1 is made, which will interrogate and answer the electronic chip 22 to the radiating antenna 10.
  • the transmission of information between the radiating antenna 10 and the electronic part 20 is made by electromagnetic coupling using a primary antenna 24.
  • This electronic device, encapsulated in the rigid mass 29, is composed on the one hand of an electronic chip 22 and on the other hand of a primary antenna 24.
  • FIG. 3 A first embodiment of this electronic device is shown in FIG. 3 in the configuration where the electronic part 20 is intended to be located inside the radiating antenna 10.
  • the leadframe process in terms of electromechanical support to the primary antenna 24 and the electronic chip 22 representing the equivalent of a printed circuit 26. This method is particularly well suited in this configuration because of its ease of miniaturization.
  • the first step is to compose the electronic card.
  • the electronic chip 22 is first fixed to the grid or leadframe by means of a conductive adhesive, for example the H20E of the Tedella brand.
  • the wiring of the chip is performed by the wire-bonding technique, that is to say the realization of an electrical bridge via, for example, gold wire 28 with a diameter of 20 microns between the electronic chip 22 and the printed circuit 26 represented by the grid. It is then possible to measure the electrical impedance of the electronic board at the fixing points of the primary antenna 24 on the gate with the aid of an electrical device adapted as an impedance meter.
  • the second step is to achieve the primary antenna 24.
  • this antenna will consist of a coil with circular turns built directly on the grid (lead frame) by the technology. wire-bonding.
  • Another variant of a primary antenna not illustrated, consists in creating an antenna using two copper wire segments connected to the electronic card by means of a metal welding technique used in the electronics industry and oriented in opposite directions to form a dipole.
  • a gold wire of 20 micrometer diameter will be used, we could also use aluminum wire or palladium copper, to achieve the half-turns of the coil on the back side of the grid.
  • the diameter of the half turn is 400 micrometers, using the classical ultrasound technique in the semiconductor industry to electrically connect the golden threads on the rack. Then on the front side of the grid, the other half turn is made to obtain a cylindrical coil with 15 turns of diameter 400 micrometers.
  • the number of turns of the primary antenna 24 is determined so that the electrical impedance of the primary antenna 24 is adapted to the electrical impedance of the electronic card comprising at least the printed circuit 26 represented by the
  • the electrical impedance of the electronic chip 22 alone is a complex number having a value for example of (10-150) ohms.
  • a coil of 15 turns of diameter 400 micrometers corresponds to a good adaptation of the electrical impedance of the electronic card built on a grid of copper connections.
  • the last step of realization of the electronic part 20 is to encapsulate the printed circuit 26, the components connected to it and the primary antenna 24 with a high temperature epoxy resin, in a rigid mass 29
  • a rigid mass 29 For this, one uses the globtop technology well known to a person skilled in the art.
  • the rigid mass 29 forms a capsule protecting the electronic card of the radio frequency transponder 1.
  • the electronic device intended to be placed inside the radiating antenna 10 it first begins with the realization of the primary antenna 24 using a wire of 180 micron copper coated with an electrically insulating thermoplastic sheath.
  • This wire is wound on a rigid tubular core and electrically insulating by making a coil of about ten turns of outer diameter of 1 millimeter with a pitch of 0.2 millimeter helix ending in two uncoated ends. It is then possible to evaluate the actual peripheral surface s of the primary antenna 24 using the diameter of the copper wire, the outside diameter of the antenna, the pitch of the helix and the total number of turns. In this case, the radius of the helical surface is 500 micrometers since the primary antenna 24 is located inside the radiating antenna 10.
  • the electronic card is produced using a flexible support.
  • the electronic chip 22 is fixed using a conductive adhesive type ACP (acronym Anisotropic Conductive Paste) not requiring wiring between the chip 22 and the electronic card.
  • the electronic chip 22 is fixed using a non-conductive adhesive for mounting electronic components.
  • the wiring of the chip 22 to the electronic card is performed by the wire-bonding technique, that is to say the realization of an electrical bridge via, for example, gold wire 28 diameter 20 microns positioned between the electronic chip 22 and the flexible support representing the printed circuit 26.
  • the two uncoated ends of the primary antenna 24 are connected to the printed circuit 26 by urinating a conductive adhesive, for example the H20E from the Tedella brand.
  • a conductive adhesive for example the H20E from the Tedella brand.
  • the electronic card and the uncoated terminations of the primary antenna 24 are covered by a rigid and electrically insulating material of the high temperature epoxy resin type by the globtop technique well known to those skilled in the art.
  • the procedure is as follows. First of all, a part of the electronic card is produced.
  • the conventional ultrasonic technology of the microelectronics industry is connected to a flexible support constituting the printed circuit board 36 (electronic translation) and an electronic chip 32 and possibly additional components so to compose the electronic card.
  • the electrical impedance of the electronic card is measured by means of suitable electrical equipment such as an impedance meter at the terminals of the copper connections on the top face of the flexible printed circuit where the primary antenna will be connected.
  • suitable electrical equipment such as an impedance meter at the terminals of the copper connections on the top face of the flexible printed circuit where the primary antenna will be connected.
  • Each of the copper connections has a central cavity passing through the thickness of the flexible support to the underside of the support.
  • the primary antenna 34 is made around a tube 37 of electrically insulating resin whose inner diameter, delimiting the cylindrical cavity 35 of the electronic part, is greater than or equal to the outer diameter 15 of the spring.
  • helical of the radiating antenna 10 is of the order of 1.3 millimeters.
  • the thickness of this tube is about 0.5 millimeters.
  • Each end of the tube presents an extra thickness of 0.5 millimeters constituting a flange 38 of width less than or equal to 0.5 millimeters.
  • a 200 micron diameter copper wire is wound on the outer face of the tube 37, between the two flanges 38, in order to constitute a given number of turns, which makes it possible to produce a primary antenna 34 in the form of a cylindrical coil having an electrical impedance adapted to the impedance of the electronic card to which it will be electrically connected.
  • the flexible circuit board 36 of the electronic board made in the first step is fixed on the flanges 38 of the insulating resin tube 37 using a Tedena brand H20E type conductive glue. each of the ends of the copper wire of the primary antenna 34 between a rim 38 of the tube 37 and the flexible circuit board 36, the two parts to be assembled.
  • an electrical connection is made by brazing a copper-type conductive metal through the cavity passing through the flexible circuit board 36 at the level of the copper connections.
  • the electronic device is coated with a rigid mass 39 electrically insulating to a thickness of at least 1 millimeter in order to protect the electronic card and the primary antenna 34 various chemical attacks and protect mechanically electrical connections.
  • An injection technique is employed consisting of positioning the electronic device in a mold. However, in order to preserve the cylindrical cavity 35 of the initial resin tube, an elastomeric, airtight, flexible membrane is placed through the cylindrical cavity 35 which is pressurized to seal this cylindrical cavity 35 to the propagation of the protective resin.
  • This method allows a homogeneous diffusion of the resin over the entire electronic device with the exception of the cylindrical cavity 35. After opening the mold and stopping the pressurization of the flexible membrane, the device is extracted. still having the cylindrical cavity 35 but this time coated externally with a rigid mass 39 of electrically insulating resin.
  • the assembly represents the electronic part 30 of the radio frequency transponder 5.
  • the third phase of the realization of the radio frequency transponder 1 or 5 is to assemble the radiating antenna 10 made in the first step to the electronic part 20 or 30 made in the second step.
  • the electronic part 20 inscribed in a cylinder in the diameter is smaller than or equal to the inner diameter 13 of the radiating antenna 10 made at the first step, of the order of a millimeter.
  • the electronic part 20 is inserted inside the radiating antenna 10 by positioning the axis of symmetry 23 of the primary antenna in the direction of the axis of revolution 11 of the radiating antenna 10. Moreover, the electronic part 20 is pushed into the radiating antenna 10 until the median plane 21 of the primary antenna coincides with the median plane 19 of the radiating antenna. Then the electronic part 20 of the long nose pliers is released and the pliers are gently removed from the inside of the radiating antenna 10. [00103] Self centering, parallelism of the axes and relative position of the median planes between the radiating antenna 10 and the primary antenna 24 is thus made favorable to an inductive quality coupling between the two antennas.
  • the assembly thus constituted represents a radio frequency transponder 1 according to the invention.
  • the procedure is as follows.
  • the outside of the electronic part 30 made in the second phase is fixed using, for example, a vise.
  • the radiating antenna 10 made during the first phase is grasped with a long nose pliers by one of its ends.
  • the other end of the radiating antenna 10 is then inserted into the cylindrical cavity 35 of the electronic part 30 and the radiating antenna 10 is guided through the cylindrical cavity by means of the long-nose pliers. Until the median plane 19 of the radiating antenna 10 coincides with the median plane of the primary antenna 34.
  • the radiating antenna 10 is then released by opening the ends of the long-nose pliers.
  • the assembly thus constituted represents a radiofrequency transponder 5 according to the invention.
  • the last step, once the radiofrequency transponder 1 or 5 is achieved is obtaining an identification patch 2 to facilitate implementation of the radio frequency transponder 1 or 5 in objects to be identified in part consist of elastomer mixtures. Whatever the configuration of the radio frequency transponder 1 or 5, the procedure is as follows for this step.
  • the radio frequency transponder 1 or 5 constituted in the preceding step is placed in the center of a flexible mass 3.
  • the radio frequency transponder 1 is sandwiched between two plates 3a and 3b in FIG. raw elastomer material of dimensions depending on that of the radio frequency transponder 1 and a thickness of, for example, between 2 and 5 millimeters.
  • the longitudinal direction of the plates corresponds to the axis of the radiating antenna 10.
  • the assembly is located beforehand on the inner face of a metal matrix of a press tool of dimension adapted to the volume of elastomer mass.
  • a compression force is applied by means of a press tool, for example a pneumatic axial press, to the assembly in order to form a compact geometry.
  • a press tool for example a pneumatic axial press
  • radio frequency transponder 1, 5 into a mass of one or more elastomeric mixtures such as the extrusion or injection process.
  • adhesion promoters well known to those skilled in the art are used between the rigid mass 29, 39 made of high temperature epoxy resin encapsulating the electronic part 20, 30 of the radio frequency transponder 1, 5 and the elastomer mixture of the identification patch 2. This can improve the endurance of the radio frequency transponder in use.
  • a radio frequency transponder 1, 5 for an object to be identified as a tire may be performed according to at least two embodiments.
  • the radio frequency transponder 1, 5 or the identification patch 2 is geometrically placed between the various elastomer components of the raw green tire blank. Ideally, it is placed in a geographical area under acceptable levels of deformation so that the radiating antenna 10 is not plastically deformed.
  • the blank undergoes the various phases of manufacture of the tire including autoclave curing vulcanizing the various elastomeric mixtures and rendering integral the transponder or identification patch of the tire thus produced.
  • the radio frequency transponder 1, 5 is then ready for use.
  • Another preferred embodiment consists in freezing the elastomeric structure of the identification patch 2 by crosslinking or vulcanization during a step subsequent to the manufacture of the identification patch 2.
  • the device obtained as a result of this The operation is fixed on a tire receiving zone by a conventional elastomer / elastomer fastening technique known to those skilled in the art, such as, for example, the adhesion by cold crosslinking of a rubber bonding layer on. the inner rubber of the tire
  • the radio frequency transponder 1, 5 of the tire is then ready for use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Transpondeur radiofréquence (1, 5) correspondant à l'assemblage, sans connexion mécano-électrique, d'une antenne rayonnante (10) et d'une partie électronique (20, 30). L'antenne rayonnante (10) est un ressort hélicoïdal mono brin formant une antenne dipôle. La partie électronique (20, 30) est composée d'une puce électronique (22, 32) et d'une antenne primaire (24, 34), couplée électro magnétiquement à l'antenne rayonnante (10), encapsulées dans une masse rigide et isolante électriquement (29, 39).

Description

TRANSPONDEUR RADIOFREQUENCE POUR PNEUMATIQUE
Domaine de l'invention
[0001] La présente invention concerne un dispositif électronique de radio identification ou transpondeur radio fréquence apte à être fixé sur un objet à identifier subissant, en particulier en service, de fortes sollicitations thermo mécaniques comme un pneumatique.
Arrière plan technologique
[0002] Pour le domaine des dispositifs d'identification RFID (acronyme de Radio Frequency Identification), des transpondeurs radiofréquences sont classiquement utilisées pour l'identification, le suivi et la gestion d'objets. Ces dispositifs permettent une gestion automatisée plus fiable et plus rapide.
[0003] Ces transpondeurs radiofréquences sont constitués généralement d'au moins une puce électronique et une antenne formée par une boucle magnétique ou une antenne rayonnante que l'on fixe à l'objet à identifier. [0004] La performance de communication du transpondeur radiofréquence s'exprime par la distance maximale de communication du transpondeur radiofréquence avec un lecteur radiofréquence pour un même signal communiqué au ou par le lecteur radiofréquence.
[0005] Dans le cas des produits fortement extensibles comme par exemple les pneumatiques, un besoin existe d'identifier le produit tout au long de son existence depuis sa fabrication jusqu'à son retrait du marché et, en particulier, lors de son usage. Ensuite, afin de faciliter cette tâche, notamment en condition d'usage, une performance de communication élevée est requise qui s'exprime par la possibilité d'interroger le transpondeur radiofréquence à longue distance du produit, plusieurs mètres, par l'intermédiaire d'un lecteur radiofréquence. Enfin, on souhaite que le coût de fabrication d'un tel dispositif soit le plus compétitif possible.
[0006] On connaît dans l'état de la technique, notamment d'après le document WO 2009/134243 Al, un transpondeur radiofréquence apte à répondre aux besoins des pneumatiques. Ce transpondeur est constitué d'une puce électronique, d'un circuit imprimé sur lequel une puce électronique est électriquement connectée et deux ressorts hélicoïdaux métalliques reliés mécaniquement et électriquement au circuit imprimé formant une antenne rayonnante dipôle. La communication avec le lecteur radiofréquence utilise les ondes radioélectriques et en particulier la bande UHF, acronyme d'Ultra Hautes Fréquences. En conséquence, les caractéristiques des ressorts hélicoïdaux telles que le diamètre du fïl, la nature du fïl, le pas de l'hélice et la longueur des ressorts sont ajustées à la fréquence de communication choisie.
[0007] Cependant, un tel transpondeur radio fréquence présente des inconvénients. Bien qu'une partie du transpondeur radiofréquence soit extensible de par la géométrie de son antenne, il demeure des zones de fragilité mécanique vis-à-vis des forts niveaux de sollicitation en service. En particulier, les connexions mécaniques des ressorts hélicoïdaux avec le circuit imprimé sont des zones rigides qui constituent des points faibles pour l'endurance du transpondeur radiofréquence. [0008] De plus le procédé de fabrication d'un tel transpondeur radiofréquence est onéreux .En effet, l'accrochage des ressorts hélicoïdaux sur le circuit imprimé est une opération délicate souvent manuelle consistant d'une part à ancrer l'extrémité des ressorts hélicoïdaux tridimensionnels dans l'encoche plane du circuit imprimé et d'autre part à connecter électriquement les ressorts hélicoïdaux sur les pistes de la carte électronique. Cette dernière opération ne peut pas être effectuée à l'aide des procédés classiques de l'industrie électronique.
[0009] Enfin, il faut rendre solidaire le transpondeur radiofréquence avec les matériaux élastomères constituant le pneumatique. En particulier, la liaison entre les parties rigides du transpondeur et les produits élastomères peut nécessiter l'emploi de promoteurs d'adhésion spécifiques.
[0010] La présente invention porte sur un transpondeur radiofréquence visant à améliorer les performances technico économiques des transpondeurs radio fréquences employés entre autres dans l'industrie du pneumatique. Description de l'invention
[0011] L'invention porte sur un transpondeur radio fréquence destiné à être intégré à un objet à identifier constitué d'un matériau fortement extensible tel un mélange ou composition élastomère. Ce transpondeur radio fréquence comporte une puce électronique et une antenne rayonnante communiquant avec un lecteur radio fréquence, et est caractérisé en ce qu'il est équipé d'une antenne primaire connectée électriquement à la puce électronique, en ce que l'antenne primaire est couplée électro magnétiquement avec l'antenne rayonnante et en ce que l'antenne rayonnante est un ressort hélicoïdal mono brin constituant un dipôle électrique. L'objet à identifier peut être, par exemple, un pneumatique .
[0012] On entend ici par le terme « élastomère », l'ensemble des élastomères y compris les TPE (acronyme de Thermo Plastiques Elastomères), tels que par exemple les polymères diéniques, c'est-à-dire comprenant des unités diéniques, les silicones, les polyuréthanes et les polyoléfmes. [0013] On entend ici par le terme « couplage électromagnétique, », le couplage par rayonnement électromagnétique, c'est-à-dire le transfert sans contact physique d'énergie entre deux systèmes incluant d'une part le couplage inductif et d'autre part le couplage capacitif. L'antenne primaire est alors préférentiellement comprise dans le groupe comprenant : une bobine, une boucle ou un segment de fil ou une combinaison de ces éléments conducteurs.
[0014] Ainsi, l'absence de toute connexion mécanique entre l'antenne rayonnante et la puce électronique améliore sensiblement les performances d'endurance du transpondeur radiofréquence selon un objet de l'invention relativement au transpondeur radio fréquence du document cité. [0015] De plus, l'antenne rayonnante, étant déconnectée de tout circuit imprimé, peut être noyée et rendue solidaire dans une masse constituée de mélanges élastomères à l'aide de solutions collants élastomère/métal bien connues de l'homme du métier avec ou sans l'utilisation de promoteur d'adhésion spécifique. Cela réduit, par la même occasion, le coût de mise en œuvre d'un tel transpondeur radiofréquence dans une masse de gomme tel qu'un pneumatique. [0016] Enfin en ayant séparé la partie électronique du transpondeur radio fréquence (constitué de la carte électronique et de l'antenne primaire) et l'antenne rayonnante, il est possible de réaliser indépendamment chaque composant puis de les assembler ensemble lors d'une étape postérieure. Ainsi, on peut utiliser des procédés standards de chaque industrie, électronique et télécommunications ce qui réduit les coûts de fabrication d'un tel transpondeur radio fréquence...
[0017] De préférence, l'antenne primaire est une bobine possédant au moins une spire, que la spire soit de forme circulaire, carrée ou rectangulaire.
[0018] Pour les gammes de fréquences UHF, on choisira préférentiellement un couplage inductif par l'intermédiaire de deux bobines représentées d'une part le ressort hélicoïdal monobrin et d'autre part la bobine à spire.
[0019] Selon un mode de réalisation particulier, l'antenne primaire, ayant un axe de symétrie, est circonscrite dans un cercle dont l'axe de révolution est parallèle à l'axe de l'antenne primaire et dont le diamètre est supérieur ou égal au tiers, et de préférence à la moitié, ou les deux tiers du diamètre intérieur du ressort hélicoïdal de l'antenne rayonnante.
[0020] En imposant les dimensions relatives de la spire de l'antenne primaire par rapport aux caractéristiques du ressort hélicoïdal de l'antenne rayonnante, on assure que la distance entre les deux antennes sera inférieure au diamètre de l'antenne primaire dans le cas où l'antenne primaire se situe à l'intérieur de l'antenne rayonnante. Ainsi on optimise le couplage inductif entre les deux antennes et de ce fait la performance de communication du transpondeur radio fréquence en émission et réception.
[0021] Selon un mode de réalisation préférentiel, l'axe de révolution de l'antenne rayonnante et l'axe de symétrie de l'antenne primaire sont sensiblement parallèles. [0022] Ici, on entend par le terme sensiblement parallèle que l'angle généré par les directions axiales de chaque antenne est inférieur ou égal à 30 degrés. Dans ce cas, le couplage électromagnétique entre les deux antennes est optimal améliorant notablement les performances de communication du transpondeur radio fréquence. [0023] Préférentiellement, le plan médian de la bobine de l'antenne primaire est sensiblement superposé au plan médian du ressort hélicoïdal de l'antenne rayonnante.
[0024] Ici, il convient d'abord de définir le plan médian de la bobine et du ressort hélicoïdal. Par définition, c'est un plan fictif séparant l'objet en deux parties égales. Dans notre cas, ce plan médian est perpendiculaire à l'axe de symétrie de chaque antenne et se situe au centre de la longueur de chaque antenne. Enfin, on entend ici par sensiblement superposé que la distance relative entre les plans médians est inférieure au dixième de la longueur de l'antenne rayonnante.
[0025] Ainsi l'intensité du courant électrique étant maximal au centre d'une bobine, le champ magnétique induit par ce courant est aussi maximal au centre de la bobine, on assure ainsi que le couplage inductif entre les deux antennes est optimal améliorant de ce fait la performance de communication du transpondeur radio fréquence.
[0026] Selon un mode de réalisation préférentiel, l'antenne rayonnante présente une surface périphérique réelle S située en vis-à-vis de l'antenne primaire qui présente une surface périphérique réelle s située en vis-à-vis de l'antenne rayonnante, le rapport des surfaces S/s est compris entre 3 et 8, de préférence entre 4 et 6.
[0027] On entend ici par le terme « surface périphérique réelle », la surface de révolution autour de l'axe de l'antenne passant par au moins un extremum radial de la spire de l'antenne et s 'étendant axialement au droit de la spire sur la totalité de la longueur de l'antenne. Et on entend ici par le terme « spire », la partie électriquement conductrice de la spire.
[0028] Dans le cas d'une bobine à spires jointives, la surface résultante est un cylindre de rayon égal à l'extremum de l'antenne pris comme référence et de longueur égale à la distance axiale de l'antenne. Dans le cas de l'antenne rayonnante, c'est une surface hélicoïdale d'axe correspondant à l'axe de l'antenne rayonnante dont le pas correspondant au pas de l'antenne rayonnante et de rayon correspondant à la distance radiale de l'extremum pris en référence de la spire élémentaire de l'antenne rayonnante.
[0029] Enfin, il faut entendre que l'on ne prend que la surface intérieure ou extérieure réelle des antennes en fonction de la localisation de l'antenne rayonnante par rapport à Γ antenne primaire . [0030] Ainsi, le transfert d'énergie entre les deux antennes du transpondeur radio fréquence selon l'invention nécessite, pour obtenir une performance de radiocommunication satisfaisante, une surface d'échange minimale entre les deux antennes. [0031] De préférence, l'antenne primaire étant connectée aux bornes d'une carte électronique comprenant la puce électronique, l'impédance électrique de l'antenne primaire est adaptée à l'impédance électrique de la carte électronique du transpondeur radiofréquence.
[0032] On entend par le terme impédance électrique de la carte électronique, l'impédance électrique aux bornes de l'antenne primaire ce qui représente, l'impédance électrique de la carte électronique comprenant au moins une puce électronique et un circuit imprimé sur lequel la puce électronique est connectée.
[0033] En réalisant l'adaptation d'impédance de l'antenne primaire à celle de la carte électronique, on optimise le transpondeur radiofréquence à la fréquence de communication en améliorant le gain et en ayant un facteur de forme plus sélectif, une bande passante plus étroite, de la carte électronique. Ainsi les performances de communication du transpondeur radiofréquence sont améliorées pour une même quantité d'énergie transmise au transpondeur radiofréquence. Cela se traduit en particulier par une augmentation de la distance de lecture du transpondeur radiofréquence. Pour le transpondeur radiofréquence dans le document cité, il n'est pas aisé de concevoir l'antenne rayonnante qui d'une part doit satisfaire à la condition d'adaptation d'impédance de la partie électronique et d'autre part doit satisfaire à la condition de résonance électrique pour la transmission des ondes radioélectriques.
[0034] L'adaptation d'impédance de l'antenne primaire est obtenue par l'ajustement d'au moins l'une des caractéristiques géométriques de l'antenne primaire comme par exemple, le diamètre du fil, le matériau de ce fil et la longueur du fil.
[0035] L'adaptation d'impédance de l'antenne primaire peut être aussi obtenue par l'ajout d'un circuit de transformation d'impédance constitué de composants électroniques additionnels entre l'antenne primaire et le circuit électronique comme par exemple, des filtres à base d'inductance et de capacités et des lignes de transmission. [0036] L'adaptation d'impédance de l'antenne primaire peut aussi être obtenue par la combinaison des caractéristiques de l'antenne primaire et des caractéristiques d'un circuit de transformation d'impédance.
[0037] Selon un mode de réalisation particulier, la puce électronique et au moins une partie de l'antenne primaire sont noyées dans un matériau rigide et isolant électriquement tel que, par exemple, de la résine de type époxy haute température. L'ensemble constitue la partie électronique du transpondeur radio fréquence.
[0038] Ainsi, on rigidifïe la partie électronique comprenant au moins une partie de l'antenne primaire et la puce électronique connectée au circuit imprimé rendant plus fiable les connexions mécaniques entre ses composants vis-à-vis des sollicitations thermo mécaniques de l'objet à identifier.
[0039] Cela permet aussi l'industrialisation de la partie électronique du transpondeur radio fréquence indépendamment de l'antenne rayonnante ou de l'objet à identifier. Notamment une miniaturisation du composant électronique comprenant l'antenne primaire et la puce électronique peut être envisagée en utilisant par exemple une micro bobine à spires comme antenne primaire.
[0040] Selon un autre mode de réalisation, la partie de l'antenne primaire non noyée dans la masse rigide est revêtue d'un matériau isolant électriquement.
[0041] Ainsi, si l'antenne primaire n'est pas entièrement contenue dans la masse rigide et isolante électriquement de la partie électronique, il est utile de l'isoler par l'intermédiaire d'un revêtement dans un matériau isolant électriquement telle une gaine d'isolation de câble électrique.
[0042] Selon un mode de réalisation préférentiel, la partie électronique du transpondeur radio fréquence est située à l'intérieur de l'antenne rayonnante. [0043] Ainsi, le couplage électromagnétique est optimisé puisque, d'une part le champ magnétique généré par l'antenne rayonnante est maximal et homogène à l'intérieur du ressort hélicoïdal à l'exception de ses extrémités. De ce fait, la performance de communication du transpondeur radio fréquence est améliorée en émission et réception. [0044] Selon un mode de réalisation particulier, la géométrie de la partie électronique du transpondeur radiofréquence est inscrite dans un cylindre dont le diamètre est inférieur ou égal au diamètre intérieur de l'antenne rayonnante et dont l'axe de révolution est parallèle ou coaxial relativement à l'axe de l'antenne primaire. [0045] La partie électronique ainsi constituée permet dans le cas où celle-ci serait placée à l'intérieur de l'antenne rayonnante d'assurer un pré positionnement optimisé de l'antenne primaire par rapport à l'antenne rayonnante pour améliorer la performance de communication en réception/émission du transpondeur radiofréquence. En effet, on assure mécaniquement que les deux antennes sont parallèles et que la distance les séparant génère un couplage inductif de qualité.
[0046] Selon un autre mode de réalisation préférentiel, la partie électronique du transpondeur radiofréquence est située à l'extérieur de l'antenne rayonnante.
[0047] Ainsi, le couplage électromagnétique est optimisé puisque le champ magnétique généré par l'antenne primaire est maximal et homogène à l'intérieur de la bobine à l'exception de ses extrémités. La performance de communication du transpondeur radiofréquence est améliorée en émission vers le lecteur radiofréquence. De plus, il est plus aisé alors de positionner des composants électroniques additionnels sur le circuit imprimé comportant la puce électronique qui se retrouve à l'extérieur de l'antenne rayonnante. [0048] Selon un mode de réalisation particulier, la partie électronique du transpondeur radiofréquence présente une cavité cylindrique adaptée pour recevoir l'antenne rayonnante. Et, le diamètre du cercle inscrit dans l'antenne primaire est inférieur à trois fois, de préférence deux fois, le diamètre extérieur de l'antenne rayonnante.
[0049] Ainsi, lorsque l'antenne rayonnante est placée à l'intérieur de l'antenne primaire, on assure que le couplage électromagnétique entre l'antenne rayonnante et l'antenne primaire est optimal par le positionnement relatif entre les deux antennes en termes de distance et de parallélisme.
[0050] Selon un mode de réalisation particulier, la puce électronique étant connectée électriquement à un circuit imprimé pour constituer la carte électronique, le circuit imprimé comporte un ou plusieurs composants électroniques passifs ou actifs additionnels.
[0051] Ces composants électroniques peuvent être par exemple un microprocesseur, une mémoire, une batterie, un capteur de pression, un capteur de température, un accéléromètre. Cela permet d'enrichir les fonctionnalités du transpondeur radio fréquence en multipliant les informations qu'il procure.
[0052] L'invention a aussi pour objet un patch d'identification constitué d'un transpondeur radiofréquence noyé dans une masse souple et isolante électriquement de mélanges élastomères. [0053] On entend ici par le terme isolant électriquement que la conductivité électrique du mélange élastomère est en deçà du seuil de percolation des charges conductrices du mélange.
[0054] Ainsi, on constitue un patch d'identification qui facilite la mise en place du transpondeur radiofréquence dans des objets à identifier comprenant des parties en matériau de base élastomère. Une couche de gomme de liaison usuelle pourra être employée si nécessaire, pour solidariser le patch d'identification à l'objet à identifier tel un pneumatique.
[0055] De plus, les caractéristiques de rigidité et de conductivité électrique du mélange élastomère assurent une insertion mécanique et une isolation électrique de qualité du transpondeur radiofréquence au sein des composants de l'objet à identifier. Ainsi le fonctionnement du transpondeur radiofréquence n'est pas perturbé par l'objet à identifier.
[0056] L'invention a aussi pour objet, un procédé de fabrication du transpondeur radiofréquence qui comporte les étapes suivantes : · on réalise un ressort hélicoïdal de dimension adaptée à la fréquence de communication du signal radioélectrique du transpondeur radiofréquence afin de constituer l'antenne rayonnante du transpondeur radiofréquence,
• on connecte électriquement une puce électronique sur un circuit imprimé afin de constituer une carte électronique, • on réalise à l'aide d'un fil conducteur une antenne primaire,
• on connecte électriquement l'antenne primaire à la carte électronique,
• on noie au moins une partie de l'antenne primaire et la carte électronique dans une masse rigide et isolante électriquement telle une résine thermodurcissable afin de constituer la partie électronique du transpondeur radiofréquence,
• on positionne par simple enfîlement la partie électronique et l'antenne rayonnante de telle façon que, l'antenne primaire possédant un axe de symétrie et un plan médian et l'antenne rayonnante un axe de révolution et un plan médian, les axes des deux antennes sont sensiblement parallèles et les plans médians des deux antennes sont sensiblement superposés.
[0057] Ainsi, la fabrication du transpondeur radiofréquence est simplifiée en réalisant séparément la partie électronique et l'antenne rayonnante du transpondeur radiofréquence. De plus, l'étape d'assemblage des deux composants ne nécessite aucune connexion mécanique ou électrique entre les deux composants ce qui réduit drastiquement les coûts de fabrication du transpondeur radiofréquence.
[0058] Selon un mode de réalisation particulier un procédé de fabrication selon l'invention comprend une étape de réaliser une antenne primaire de type bobine possédant au moins une spire et comprenant un axe de symétrie qui est circonscrite dans un cercle dont l'axe de révolution est parallèle à l'axe de symétrie et dont le diamètre est supérieur ou égal au tiers du diamètre intérieur de l'antenne rayonnante .
[0059] Ces caractéristiques complémentaires concernent une variante de l'antenne primaire permettant un couplage inductif dans la gamme de fréquences des UHF.
[0060] Selon un mode de réalisation préférentiel un procédé de fabrication selon l'invention comprend une étape de revêtir la partie d'antenne primaire non noyée dans la masse rigide et isolante électriquement d'un matériau isolant électriquement.
[0061] Cette caractéristique est utile pour obtenir un couplage électromagnétique de qualité entre l'antenne rayonnante et l'antenne primaire en empêchant tout contact physique entre les parties conductrices des deux antennes. [0062] De préférence, un procédé de fabrication selon l'invention comprend une étape d'adapter l'impédance électrique de l'antenne primaire à l'impédance électrique de la carte électronique.
[0063] Cela permet d'améliorer l'efficacité de l'antenne primaire. [0064] Selon un mode de réalisation préférentiel, un procédé de fabrication comprend une étape d'ajouter un ou plusieurs composants électroniques passifs ou actifs additionnels sur le circuit imprimé équipé de la puce électronique afin de constituer la carte électronique.
[0065] Ainsi, les fonctionnalités du transpondeur radio fréquence se trouvent améliorées en introduisant cette étape purement liée à l'industrie électronique dès la conception de la carte électronique.
[0066] L'invention a aussi pour objet un procédé de fabrication du patch d'identification dans lequel un transpondeur radio fréquence est incorporé dans une masse d'au moins un mélange élastomère souple et isolant électriquement par un procédé d'injection, de compression ou d'extrusion.
[0067] Ainsi, quel que soit l'état de l'élastomère, cru ou réticulé, il est facile d'incorporer le patch d'identification à un objet à identifier, tel un pneumatique, comprenant des produits élastomères en employant si nécessaire des techniques classiques d'adhésion élastomère/élastomère. Cette incorporation peut avoir lieu soit lors de la phase de fabrication de l'objet, comme par exemple au sein d'une ébauche crue d'un pneumatique, et en particulier avant la réticulation ou la vulcanisation des élastomères soit lors d'une étape postérieure au procédé de fabrication de l'objet à identifier comme par exemple directement sur les faces interne ou externe du pneumatique. Description brève des dessins
[0068] L'invention sera mieux comprise à la lecture de la description qui va suivre dans le cas d'une application à des bandages pneumatiques. Cette application est donnée uniquement à titre d'exemple et faite en se référant aux figures annexées dans lesquelles : • La figure 1 présente une vue de détail d'une antenne rayonnante selon l'invention ;
• La figure 2 présente une vue en perspective de la partie électronique d'un transpondeur radio fréquence selon l'invention dans une configuration où la partie électronique est destinée à être positionnée à l'intérieur de l'antenne rayonnante ;
• La figure 3 présente une vue en perspective d'un transpondeur radio fréquence selon l'invention dans une configuration où la partie électronique est située à l'intérieur de l'antenne rayonnante ;
· La figure 4 présente une vue en perspective d'un transpondeur radio fréquence selon l'invention dans une configuration où la partie électronique est située à l'extérieur de l'antenne rayonnante ;
• La figure 5 est une vue éclatée d'un patch d'identification ;
• La figure 6 présente un graphe de la puissance électrique transmise à deux transpondeurs radiofréquences selon la bande de fréquence d'observation, et
• La figure 7 est un synoptique d'un procédé de fabrication d'un patch d'identification comprenant un transpondeur radiofréquence selon l'invention.
Description détaillée de modes de réalisation
[0069] Dans ce qui suit, les termes « pneumatique » et « bandage pneumatique » sont employés de façon équivalente et concernent tout type de bandage pneumatique ou non pneumatique (en anglais « tire », « pneumatic tire », « non-pneumatic tire »)
[0070] La figure 1 présente une antenne rayonnante 10 constituée d'un fil en acier 12 qui a été déformé plastiquement afin de former un ressort hélicoïdal présentant un axe de révolution 11. Le ressort hélicoïdal est défini tout d'abord par un diamètre d'enroulement du fil revêtu et un pas d'hélice. Ainsi, on détermine précisément des diamètres intérieur 13 et extérieur 15 du ressort hélicoïdal en prenant en comptant le diamètre du fil. La longueur du ressort 17 correspond ici à la demi- longueur d'onde du signal de transmission du transpondeur radiofréquence 1 dans une masse de mélange élastomère. Ainsi on peut définir un plan médian 19 au ressort hélicoïdal perpendiculaire à l'axe de révolution 11 séparant l'antenne rayonnante en deux parties égales. La surface périphérique réelle S de l'antenne rayonnante 10 sera évaluée à l'aide du pas d'hélice, du diamètre du fil d'acier 12, de la longueur 17 de l'antenne rayonnante 10 et, selon le cas, le diamètre intérieur 13 ou le diamètre extérieur 15 du ressort hélicoïdal. [0071] La figure 2 présente la partie électronique 20 d'un transpondeur radiofréquence 1 destiné à une configuration où la partie électronique 20 est située à l'intérieur de l'antenne rayonnante 10. La partie électronique 20 comprend une puce électronique 22 et une antenne primaire 24 connectée électriquement à la puce électronique 22 par l'intermédiaire d'un circuit imprimé 26. L'antenne primaire est ici constituée par une micro bobine CMS (acronyme de Composant Monté en Surface) présentant un axe de symétrie 23. On détermine le plan médian 21 de l'antenne primaire défini par une normale parallèle à l'axe de symétrie 23 de la bobine CMS et séparant la bobine en deux parties égales. La connexion électrique entre les composants sur le circuit imprimé est réalisée à l'aide de pistes en cuivre terminé par des pastilles 27 en cuivre. La connexion électrique des composants sur le circuit imprimé est réalisée à l'aide de la technique dite du « wire bonding » par des fils 28 en or entre le composant et les pastilles 27. L'ensemble constitué du circuit imprimé 26, de la puce électronique 22 et de l'antenne primaire 24 est noyé dans une masse rigide 29 en résine époxy haute température isolante électriquement constituant la partie électronique 20 du transpondeur radiofréquence 1.
[0072] La figure 3 présente un transpondeur radiofréquence 1 dans une configuration où la partie électronique 20 est située à l'intérieur de l'antenne rayonnante 10. La forme géométrique de la partie électronique 20 est circonscrite dans un cylindre dont le diamètre est inférieur ou égal au diamètre intérieur 13 du ressort hélicoïdal. L'enfîlement de la partie électronique 20 dans l'antenne rayonnante 10 s'en trouve facilité. Le plan médian 21 de l'antenne primaire se trouve sensiblement superposé au plan médian 19 de l'antenne rayonnante 10.
[0073] La figure 4 présente un transpondeur radiofréquence 5 dans une configuration où la partie électronique 30 se trouve à l'extérieur de l'antenne rayonnante 10. La forme géométrique de la partie électronique 30 présente une cavité cylindrique 35 dont le diamètre est supérieur ou égal au diamètre extérieur 15 de l'antenne rayonnante 10. L'enfïlement de l'antenne rayonnante 10 dans la cavité cylindrique 35 de la partie électronique s'en trouve ainsi facilité. Le plan médian de l'antenne primaire se trouve sensiblement dans le plan médian de l'antenne rayonnante 10. [0074] La figure 5 présente un patch d'identification 2 comprenant un transpondeur radiofréquence 1 noyé dans une masse souple 3 en matériau élastomère isolant électriquement représentée par les plaques 3a et 3b. Ici le transpondeur radiofréquence 1 est dans une configuration où la partie électronique 20 est située à l'intérieur de l'antenne rayonnante 10. [0075] La figure 6 est un graphe de la puissance électrique transmise par un transpondeur radiofréquence situé à l'intérieur d'une enveloppe pneumatique de marque Michelin XINCITY de dimension 275/70 R22.5 à un lecteur radiofréquence. Le protocole de mesure employé correspond à la norme ISO/IEC 18046-3 intitulé « Identification Electromagnetic Field Threshold and Frequency Peaks » . Les mesures ont été effectuées pour un balayage en fréquence large et non ponctuellement comme habituellement. L'axe des abscisses représente la fréquence du signal de communication. L'axe des ordonnées est la puissance électrique reçue par le lecteur radiofréquence exprimée en décibel relativement à la puissance électrique maximale transmis par un transpondeur radiofréquence actuel de l'état de l'art. La courbe en pointillé 100 représente la réponse d'un transpondeur radiofréquence selon le document cité. La courbe en continu 200 représente la réponse d'un transpondeur selon l'invention pour un même signal émis par le lecteur radiofréquence. On note un gain de deux décibels en faveur du transpondeur radiofréquence selon l'invention sur la fréquence centrale de communication du lecteur radiofréquence. Le gain reste de l'ordre d'au moins un décibel sur une bande de fréquence élargie autour de la fréquence de communication.
[0076] La figure 7 est un synoptique du procédé de fabrication d'un patch d'identification 2 selon l'invention. L'obtention du patch d'identification 2 nécessite la fabrication initiale d'un transpondeur radiofréquence 1, 5 selon l'invention. Les diverses étapes chronologiques de la fabrication du transpondeur radiofréquence 1, 5 puis celles du patch d'identification 2 sont identifiées. On délimite nettement les étapes liées aux métiers des télécommunications ou de l'électronique de celles de l'assemblage qui peut être réalisé par le manufacturier pneumatique par exemple pour une application sur des bandages pneumatiques. [0077] En s'appuyant sur la figure 7 représentant un synoptique de fabrication d'un patch d'identification 2, on distingue trois phases indépendantes et successives.
[0078] Dans une première phase, correspondant au métier des télécommunications, on constitue l'antenne rayonnante 10 qui assurera la transmission et la réception des ondes radioélectriques avec le lecteur radiofréquence. [0079] Selon un mode de réalisation spécifique, la première étape consiste à déformer plastiquement le fil d'acier 12 de diamètre externe de 200 micromètres pour former un ressort hélicoïdal avec un pas d'hélice de 1,5mm à l'aide de moyens industriels adaptés tel qu'un tour à enrouler les ressorts. On obtient ainsi un ressort continu dont le diamètre externe 15 est de l'ordre de 1,6 millimètres qui est petit vis-à-vis de la longueur 17 de l'antenne rayonnante finale comprise entre 40 à 60 millimètres que l'on souhaite, par exemple 50 millimètres. Un traitement thermique peut être appliqué après cette étape de déformation plastique, chauffage supérieure à 200°Celsius pendant au moins 30 minutes, afin de relaxer les précontraintes dans le ressort hélicoïdal ainsi formé. [0080] La seconde étape consiste à sectionner le ressort hélicoïdal par découpe laser à la longueur souhaitée correspondant à la demi longueur d'onde de la fréquence des signaux radioélectriques de communication en tenant compte de la vitesse de propagation de ces ondes dans un milieu élastomère, soit environ 50 millimètres. La pièce mécanique ainsi obtenue représente l'antenne rayonnante 10 selon l'invention. [0081] Dans une deuxième phase, on réalise la partie électronique 20 du transpondeur radiofréquence 1, qui assurera l'interrogation et la réponse de la puce électronique 22 vers l'antenne rayonnante 10. La transmission d'information entre l'antenne rayonnante 10 et la partie électronique 20 est réalisée par couplage électromagnétique à l'aide d'une antenne primaire 24. [0082] Ce dispositif électronique, encapsulé dans la masse rigide 29, est composé d'une part d'une puce électronique 22 et d'autre part d'une antenne primaire 24.
[0083] Un premier mode de réalisation de ce dispositif électronique est présenté à la figure 3 dans la configuration où la partie électronique 20 est destinée à se situer à l'intérieur de l'antenne rayonnante 10. Dans un mode de réalisation préférentielle, on emploie le procédé leadframe en terme de support électro mécanique à l'antenne primaire 24 et à la puce électronique 22 représentant l'équivalent d'un circuit imprimé 26. Ce procédé est particulièrement bien adapté dans cette configuration en raison de sa facilité de miniaturisation. [0084] La première étape consiste à composer la carte électronique. Pour cela on fixe, en premier lieu, sur la grille ou leadframe la puce électronique 22 à l'aide d'une colle conductrice par exemple la H20E de la marque Tedella. Et le câblage de la puce est effectué par la technique de wire-bonding, c'est à-dire la réalisation d'un pont électrique par l'intermédiaire, par exemple, de fils 28 en or de diamètre 20 micromètres entre la puce électronique 22 et le circuit imprimé 26 représenté par la grille. On peut alors mesurer l'impédance électrique de la carte électronique aux points de fixation de l'antenne primaire 24 sur la grille à l'aide d'un appareil électrique adaptée comme un impédancemètre.
[0085] La deuxième étape consiste à réaliser l'antenne primaire 24. Dans un mode de réalisation non représenté dans les figures annexées, cette antenne sera constituée d'une bobine à spires circulaires construite directement sur la grille (lead frame) par la technologie du câblage de fil (wire-bonding). Une autre variante d'antenne primaire, non illustrée, consiste à créer une antenne à l'aide de deux segments filaires de cuivre connectés à la carte électronique au moyen d'une technique de soudure métallique employée dans l'industrie électronique et orientés dans des directions opposées pour former un dipôle. Pour la construction de la bobine à spire sur la grille, un fil d'or de 20 micromètre de diamètre sera employé, on aurait pu employer aussi du fil d'aluminium ou de cuivre palladium, pour réaliser les demi-spires de la bobine sur la face verso de la grille. Le diamètre de la demi spire est de 400 micromètres, on emploie la technique des ultrasons classique dans l'industrie des semi-conducteurs pour connecter électriquement les fils d'or sur la grille. Ensuite sur la face recto de la grille, on réalise l'autre demi spire afin d'obtenir une bobine cylindrique à 15 spires de diamètre 400 micromètres.
[0086] Le nombre de spires de l'antenne primaire 24 est déterminé de telle sorte que l'impédance électrique de l'antenne primaire 24 soit adaptée à l'impédance électrique de la carte électronique comprenant au moins le circuit imprimé 26 représenté par la grille et la puce électronique 22. Dans notre cas, l'impédance électrique de la puce électronique 22 seule est un nombre complexe ayant une valeur par exemple de (10- j* 150) ohms. Ainsi une bobine de 15 spires de diamètre 400 micromètres correspond à une bonne adaptation de l'impédance électrique de la carte électronique construite sur une grille de connexions en cuivre.
[0087] La dernière étape de réalisation de la partie électronique 20 consiste à encapsuler le circuit imprimé 26, les composants qui lui sont connectés et l'antenne primaire 24 à l'aide d'une résine époxy haute température, dans une masse rigide 29. Pour cela, on utilise la technologie du globtop bien connue d'un homme du métier. La masse rigide 29 forme une capsule protégeant la carte électronique du transpondeur radio fréquence 1.
[0088] Dans un autre mode de réalisation du dispositif électronique destiné à être placé à l'intérieur de l'antenne rayonnante 10, on commence tout d'abord par la réalisation de l'antenne primaire 24 à l'aide d'un fil de cuivre de 180 micromètre revêtu d'une gaine thermoplastique isolante électriquement. On enroule ce fil sur un noyau tubulaire rigide et isolant électriquement en réalisant une bobine d'une dizaine de spires de diamètre extérieur de lmillimètre avec un pas d'hélice de 0,2 millimètre se terminant par deux extrémités non revêtues. Il est alors possible d'évaluer la surface périphérique réelle s de l'antenne primaire 24 à l'aide du diamètre du fil de cuivre, du diamètre extérieur de l'antenne, du pas d'hélice et du nombre total de spires. Dans ce cas, le rayon de la surface hélicoïdale est de 500 micromètres puisque l'antenne primaire 24 est située à l'intérieur de l'antenne rayonante 10.
[0089] On réalise la carte électronique à l'aide d'un support flexible. Dans une première variante, la puce électronique 22 est fixée à l'aide d'une colle conductrice de type ACP ( acronyme Anisotropic Conductive Paste) ne nécessitant pas de câblage électrique entre la puce 22 et la carte électronique. Dans une seconde variante, la puce électronique 22 est fixée à l'aide d'une colle non conductrice de montage de composants électroniques. Le câblage de la puce 22 à la carte électtronique est effectué par la technique de wire-bonding, c'est à-dire la réalisation d'un pont électrique par l'intermédiaire, par exemple, de fils 28 en or de diamètre 20 micromètres positionnés entre la puce électronique 22 et le support flexible représentant le circuit imprimé 26..
[0090] Ensuite on connecte les deux extrémités non revêtues de l'antenne primaire 24 au circuit imprimé 26 en urilisant une colle conductrice par exemple la H20E de la marque Tedella. [0091] Enfin on recouvre la carte électronique et les terminaisons non revêtues de l'antenne primaire 24 par un matériau rigide et isolant électriquement de type résine époxy haute température par la technique globtop bien connu des hommes du métier.
[0092] Dans un second mode de réalisation de la partie électronique 30 lorsque celle- ci est destinée à se situer à l'extérieur de l'antenne rayonnante 10, on procède de la manière suivante. On réalise en premier lieu une partie de la carte électronique.
[0093] Dans une première étape, on connecte par la technique des ultrasons classique de l'industrie microélectronique sur un support flexible constituant le circuit imprimé 36 (traduction en anglais « f ex PCB ») une puce électronique 32 et éventuellement des composants additionnels afin de composer la carte électronique. On mesure l'impédance électrique de la carte électronique par l'intermédiaire d'un appareillage électrique adapté tel un impédancemètre aux bornes des connexions en cuivre sur la face du dessus du circuit imprimé flexible où sera connectée l'antenne primaire. Chacune des connexions en cuivre présente une cavité centrale traversant l'épaisseur du support flexible jusqu'à la face du dessous du support. [0094] Dans une deuxième étape, l'antenne primaire 34 est réalisée autour d'un tube 37 en résine isolante électriquement dont le diamètre intérieur, délimitant la cavité cylindrique 35 de la partie électronique, est supérieur ou égal au diamètre externe 15 du ressort hélicoïdal de l'antenne rayonnante 10 soit de l'ordre de 1,3 millimètres. L'épaisseur de ce tube est d'environ 0,5 millimètre. Chaque extrémité du tube présente une surépaisseur de 0,5 millimètre constituant un rebord 38 de largeur inférieure ou égale à 0,5 millimètre.
[0095] On enroule un fil de cuivre de diamètre 200 micromètres sur la face externe du tube 37, entre les deux rebords 38, afin de constituer un nombre donné de spires ce qui permet de réaliser une antenne primaire 34 sous la forme d'une bobine cylindrique ayant une impédance électrique adaptée à l'impédance de la carte électronique à laquelle elle sera électriquement connectée.
[0096] On fixe le circuit imprimé 36 flexible de la carte électronique réalisé à la première étape sur les rebords 38 du tube 37 en résine isolante à l'aide d'une colle conductrice de type H20E de la marque Tedella .Préalablement on a inséré chacune des extrémités du fil de cuivre de l'antenne primaire 34 entre un rebord 38 du tube 37 et le circuit imprimé 36 flexible, les deux parties à assembler.
[0097] Enfin on réalise une connexion électrique par brasage d'un métal conducteur de type cuivre au travers de la cavité traversant le circuit imprimé 36 flexible au niveau des connexions en cuivre. Ainsi le dispositif électronique constitué de la carte électronique et de l'antenne primaire 34 est réalisé.
[0098] Lors de la dernière étape, on revêt le dispositif électronique d'une masse rigide 39 isolante électriquement sur une épaisseur d'au moins 1 millimètre afin de protéger la carte électronique et l'antenne primaire 34 des agressions chimiques diverses et protéger mécaniquement les connexions électriques. Une technique d'injection est employée consistant à positionner le dispositif électronique dans un moule. Cependant pour préserver la cavité cylindrique 35 du tube initial en résine, on place une membrane souple et imperméable à l'air en élastomère traversant la cavité cylindrique 35 que l'on met sous pression pour rendre hermétique cette cavité cylindrique 35 à la propagation de la résine de protection. L'injection sous pression, à une pression inférieure à celle de la membrane imperméable, à l'état liquide d'une résine époxy à haute température, comme la résine RESOLCOAT 1060ES7 de la marque RESOLTECH, est effectuée. Ce procédé permet une diffusion homogène de la résine sur l'ensemble du dispositif électronique à l'exception de la cavité cylindrique 35. Après l'ouverture du moule et l'arrêt de la mise sous pression de la membrane souple, on extrait le dispositif électronique présentant toujours la cavité cylindrique 35 mais cette fois ci revêtu extérieurement d'une masse rigide 39 en résine isolante électriquement. L'ensemble représente la partie électronique 30 du transpondeur radio fréquence 5.
[0099] La troisième phase de la réalisation du transpondeur radio fréquence 1 ou 5 consiste à assembler l'antenne rayonnante 10 réalisée à la première étape à la partie électronique 20 ou 30 réalisée à la deuxième étape.
[00100] Dans une première configuration où l'antenne primaire 24 est destinée à se situer à l'intérieur de l'antenne rayonnante 10, on procède de la manière suivante.
[00101] Tout d'abord on saisit à l'aide d'une pince à long bec adaptée la partie électronique 20 inscrite dans un cylindre dans le diamètre est inférieur ou égal au diamètre interne 13 de l'antenne rayonnante 10 réalisée à la première étape, soit de l'ordre du millimètre.
[00102] On insère la partie électronique 20 à l'intérieur de l'antenne rayonnante 10 en positionnant l'axe de symétrie 23 de l'antenne primaire dans la direction de l'axe de révolution 11 de l'antenne rayonnante 10. De plus, on enfonce la partie électronique 20 dans l'antenne rayonnante 10 jusqu'à ce que le plan médian 21 de l'antenne primaire coïncide avec le plan médian 19 de l'antenne rayonnante. Ensuite on libère la partie électronique 20 de la pince à long bec et retire délicatement la pince de l'intérieur de l'antenne rayonnante 10. [00103] Un auto centrage, parallélisme des axes et position relative des plans médians entre l'antenne rayonnante 10 et l'antenne primaire 24, est ainsi réalisé favorable à un couplage inductif de qualité entre les deux antennes.
[00104] L'ensemble ainsi constitué représente un transpondeur radio fréquence 1 selon l'invention. [00105] Dans une seconde configuration où la partie électronique 30 est destinée à se situer à l'extérieur de l'antenne rayonnante 10, on procède de la manière suivante.
[00106] On fixe l'extérieur de la partie électronique 30 réalisée à la deuxième phase à l'aide par exemple d'un étau. On saisit l'antenne rayonnante 10 réalisée lors de la première phase à l'aide d'une pince à long bec par une de ses extrémités. [00107] On insère alors l'autre extrémité de l'antenne rayonnante 10 dans la cavité cylindrique 35 de la partie électronique 30 et on guide à l'aide de la pince à long bec l'antenne rayonnante 10 au travers de la cavité cylindrique 35 jusqu' à ce que le plan médian 19 de l'antenne rayonnante 10 coïncide avec le plan médian de l'antenne primaire 34.
[00108] On libère alors l'antenne rayonnante 10 par l'ouverture des extrémités de la pince à long bec. L'ensemble ainsi constitué représente un transpondeur radiofréquence 5 selon l'invention.
[00109] La dernière étape, une fois le transpondeur radiofréquence 1 ou 5 réalisé est l'obtention d'un patch d'identification 2 pour faciliter une mise en application du transpondeur radiofréquence 1 ou 5 dans des objets à identifier en partie constitués par des mélanges élastomères. Quelle que soit la configuration du transpondeur radiofréquence 1 ou 5, on procède de la façon suivante pour cette étape.
[00110] On place le transpondeur radiofréquence 1 ou 5 constitué à l'étape précédente au centre d'une masse souple 3. Comme par exemple illustré dans la figure 5, le transpondeur radiofréquence 1 est pris en sandwich entre deux plaques 3a et 3b en matériau élastomère cru de dimensions fonction de celle du transpondeur radiofréquence 1 et une épaisseur comprise par exemple entre 2 et 5 millimètres. La direction longitudinale des plaques correspond à l'axe de l'antenne rayonnante 10. L'ensemble se situe au préalable sur la face interne d'une matrice métallique d'un outil de presse de dimension adaptée au volume de masse élastomère.
[00111] On applique à l'aide d'un poinçon métallique complémentaire de la matrice , un effort de compression au moyen d'un outil de presse, par exemple une presse uni axiale pneumatique, à l'ensemble afin de former une géométrie compacte présentant un axe de symétrie, de longueur par exemple de 60 millimètres, inscrit dans un cylindre de diamètre d'environ 20 millimètres correspondant à un patch d'identification 2 du transpondeur radiofréquence 1 ou 5 selon l'invention.
[00112] D'autres procédés peuvent être employés pour incorporer le transpondeur radiofréquence 1, 5 au sein d'une masse d'un ou plusieurs mélanges élastomères comme par exemple le procédé d'extrusion ou d'injection. [00113] Dans un mode de réalisation particulier, on emploie des promoteurs d'adhésion bien connus de l'homme du métier entre la masse rigide 29, 39 en résine époxy haute température encapsulant la partie électronique 20, 30 du transpondeur radio fréquence 1,5 et le mélange élastomère du patch d'identification 2. Cela peut améliorer l'endurance du transpondeur radio fréquence en service.
[00114] Finalement, la mise en œuvre industrielle d'un transpondeur radio fréquence 1 , 5 selon l'invention pour un objet à identifier tel un bandage pneumatique peut être effectuée selon au moins deux modes de réalisation. Dans un premier mode de réalisation préférentielle, il suffît d'incorporer le transpondeur radio fréquence 1, 5 ou le patch d'identification 2 en mélange élastomère cru dans l'ébauche du pneumatique lors de la confection du bandage pneumatique. On place géométriquement le transpondeur ou le patch d'identification 2 entre les divers composants élastomères de l'ébauche crue du bandage pneumatique. Idéalement, il est placé dans une zone géographique subissant des niveaux de déformations acceptables pour que l'antenne rayonnante 10 ne soit pas déformée plastiquement. L'ébauche subit les diverses phases de fabrication du pneumatique dont la cuisson en autoclave vulcanisant les différents mélanges élastomères et rendant solidaire le transpondeur ou le patch d'identification du bandage pneumatique ainsi réalisé. Le transpondeur radio fréquence 1 , 5 est alors prêt à l'emploi.
[00115] Un autre mode de réalisation préférentielle consiste à figer la structure élastomère du patch d'identification 2 par réticulation ou vulcanisation au cours d'une étape postérieure à la fabrication du patch d'identification 2. Le dispositif obtenu à la suite de cette opération est fixé sur une zone d'accueil du bandage pneumatique par une technique classique de fixation élastomère/élastomère connue de l'homme du métier comme par exemple l'adhésion par réticulation à froid d'une couche de gomme de liaison sur. la gomme intérieure du bandage pneumatique Le transpondeur radio fréquence 1 , 5 du pneumatique est alors prêt à l'emploi.

Claims

REVENDICATIONS
1. Transpondeur radio fréquence (1, 5) destiné à être intégré à une masse en mélange élastomère, comprenant :
- une puce électronique (22, 32),
une antenne rayonnante (10) communiquant avec un lecteur radio fréquence, caractérisé en ce que ledit transpondeur radio fréquence (1, 5) comporte en plus une antenne primaire (24, 34) connectée électriquement à la puce électronique (22, 32), en ce que l'antenne primaire (24, 34) est couplée électro magnétiquement à l'antenne rayonnante (10), et en ce que l'antenne rayonnante (10) est une antenne dipôle constituée d'un ressort hélicoïdal mono brin.
2. Transpondeur radio fréquence (1, 5) selon la revendication 1, dans lequel l'antenne primaire (24, 34) est une bobine possédant au moins une spire.
3. Transpondeur radio fréquence (1, 5) selon la revendication 2, dans lequel l'antenne primaire (24, 34) ayant un axe de symétrie (23) est circonscrite dans un cylindre dont l'axe de révolution est parallèle à l'axe de symétrie (23) de l'antenne primaire (24, 34) et dont le diamètre est supérieur ou égal au tiers du diamètre intérieur (13) du ressort hélicoïdal de l'antenne rayonnante (10).
4. Transpondeur radio fréquence (1, 5) selon l'une des revendications 1 à 3, dans lequel, l'antenne primaire (24, 34) ayant un axe de symétrie (23), ledit axe de symétrie (23) de l'antenne primaire (24, 34) et l'axe de révolution (11) de l'antenne rayonnante (10) sont sensiblement parallèles.
5. Transpondeur radio fréquence (1, 5) selon l'une des revendications 2 à 4, dans lequel le plan médian (21) de la bobine de ladite antenne primaire (24, 34) est sensiblement superposé au plan médian (19) du ressort hélicoïdal de ladite antenne rayonnante (10).
6. Transpondeur radio fréquence (1, 5) selon l'une des revendications de 2 à 5 dans lequel l'antenne rayonnante (10) présente une surface périphérique réelle S située en vis-à-vis de l'antenne primaire (24, 34) qui présente une surface périphérique réelle s située en vis-à-vis de l'antenne rayonnante (10), le rapport des surfaces S/s est compris entre 3 et 8.
7. Transpondeur radio fréquence (1, 5) selon l'une quelconque des revendications précédentes, dans lequel, l'antenne primaire (24, 34) étant connectée aux bornes d'une carte électronique comprenant ladite puce électronique (22, 32), l'impédance électrique de l'antenne primaire (24, 34) est adaptée à l'impédance électrique de la carte électronique dudit transpondeur radio fréquence (1, 5).
8. Transpondeur radio fréquence (1, 5) selon l'une des revendications 1 à 7, dans lequel la puce électronique (22, 32) et au moins une partie de l'antenne primaire (24, 34) sont noyées dans un masse rigide (29, 39) et isolante électriquement pour constituer la partie électronique (20, 30) dudit transpondeur radiofréquence (1, 5).
9. Transpondeur radiofréquence (1, 5) selon la revendication 8 dans lequel la au moins une partie de l'antenne primaire (24, 34) non noyée dans la masse rigide (29,39) est revêtue d'un matériau isolant électriquement.
10. Transpondeur radiofréquence (1, 5) selon l'une des revendications de 1 à 9, dans lequel la partie électronique (20) dudit transpondeur radiofréquence (1) est située à l'intérieur de l'antenne rayonnante (10).
11. Transpondeur radiofréquence (1, 5) selon la revendication 10, dans lequel la géométrie de la partie électronique (20) dudit transpondeur radiofréquence (1) est inscrite dans un cylindre dont le diamètre est inférieur ou égal au diamètre intérieur (13) de l'antenne rayonnante (10) et dont l'axe de révolution est parallèle ou coaxial relativement à l'axe de symétrie (23) de l'antenne primaire (24).
12. Transpondeur radio fréquence (5) selon l'une des revendications 1 à 9, dans lequel la partie électronique (30) dudit transpondeur radio fréquence (5) est située à l'extérieur de l'antenne rayonnante (10).
13. Transpondeur radio fréquence (5) selon la revendication 12, dans lequel la partie électronique (30) dudit transpondeur radio fréquence (5) présente une cavité cylindrique (35) adaptée pour recevoir l'antenne rayonnante (10).
14. Transpondeur radio fréquence (5) selon la revendication 13 dans lequel le diamètre du cercle inscrit dans l'antenne primaire (34) est inférieur à trois fois le diamètre extérieur (15) de l'antenne rayonnante (10).
15. Transpondeur radio fréquence (1, 5) selon l'une des revendications 1 à 14, dans lequel, la puce électronique (22, 32) étant connectée électriquement à un circuit imprimé (26, 36) pour constituer la carte électronique, ledit circuit imprimé (26, 36) comporte un ou plusieurs composants électroniques passifs ou actifs additionnels.
16. Patch d'identification (2) comportant un transpondeur radio fréquence (1, 5) selon l'une quelconque des revendications précédentes, dans lequel le transpondeur radio fréquence (1, 5) est noyé dans au moins un mélange élastomère (3) souple et isolant électriquement.
17. Procédé de fabrication d'un transpondeur radiofréquence (1, 5) dans lequel :
- on réalise un ressort hélicoïdal de dimension adaptée à la fréquence de communication du signal radioélectrique du transpondeur radiofréquence (1) afin de constituer l'antenne rayonnante (10) dudit transpondeur radiofréquence (1),
- on connecte électriquement une puce électronique (22, 32) sur un circuit imprimé (26, 36) afin de constituer une carte électronique,
- on réalise l'aide d'un fil conducteur une antenne primaire (24, 34),
- on connecte électriquement l'antenne primaire (24, 34) à la carte électronique, - on noie au moins une partie de l'antenne primaire (24, 34) et la carte électronique dans un masse rigide (29, 39) et isolante électriquement telle une résine thermodurcissable afin de constituer la partie électronique (20, 30) dudit transpondeur radio fréquence (1, 5),
- on positionne par simple enfîlement la partie électronique (20, 30) et l'antenne rayonnante (10) de telle façon que, l'antenne primaire (24, 34) possédant un axe de symétrie (23) et un plan médian (21) et l'antenne rayonnante (10) un axe de révolution (11) et un plan médian (19), les axes des deux antennes sont sensiblement parallèles, et les plans médians des deux antennes sont sensiblement superposés.
18. Procédé de fabrication d'un transpondeur radio fréquence (1, 5) selon la revendication 17 comprenant une étape de réaliser une antenne primaire (24, 34) de type bobine possédant au moins une spire et comprenant un axe de symétrie (23), circonscrite dans un cercle dont l'axe de révolution est parallèle à l'axe de symétrie (23) et dont le diamètre est supérieur ou égal au tiers du diamètre intérieur de l'antenne rayonnante (10).
19. Procédé de fabrication d'un transpondeur radio fréquence (1, 5) selon les revendications 17 et 18 comprenant une étape de revêtir la partie d'antenne primaire (24, 34) non noyée dans la masse rigide (29, 39) et isolante électriquement d'un matériau isolant électriquement.
20. Procédé de fabrication d'un transpondeur radio fréquence (1, 5) selon les revendications 17 à 19 comprenant une étape d'adapter l'impédance de ladite antenne primaire (24, 34) à l'impédance électrique de ladite carte électronique.
21. Procédé de fabrication d'un transpondeur radio fréquence (1, 5) selon les revendications 17 à 20 comprenant une étape d'ajouter un ou plusieurs composants électroniques passifs ou actifs additionnels sur le circuit imprimé (26, 36) équipé de la dite puce électronique (22, 32) afin de constituer la carte électronique.
22. Procédé de fabrication d'un patch d'identification (2) dans lequel un transpondeur radio fréquence (1, 5) selon l'une des revendications de 1 à 16, est incorporé dans une masse d'au moins un mélange élastomère souple (3) et isolante électriquement par un procédé d'injection, d'extrusion ou de compression.
PCT/EP2016/062694 2015-06-03 2016-06-03 Transpondeur radiofrequence pour pneumatique WO2016193457A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16726612.1A EP3304748B1 (fr) 2015-06-03 2016-06-03 Transpondeur radiofrequence pour pneumatique
CN201680032233.7A CN107683214B (zh) 2015-06-03 2016-06-03 用于轮胎的射频应答器
US15/578,531 US10339435B2 (en) 2015-06-03 2016-06-03 Radiofrequency transponder for a tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1555048A FR3037200B1 (fr) 2015-06-03 2015-06-03 Transpondeur radiofrequence pour pneumatique
FR1555048 2015-06-03

Publications (1)

Publication Number Publication Date
WO2016193457A1 true WO2016193457A1 (fr) 2016-12-08

Family

ID=54478101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/062694 WO2016193457A1 (fr) 2015-06-03 2016-06-03 Transpondeur radiofrequence pour pneumatique

Country Status (5)

Country Link
US (1) US10339435B2 (fr)
EP (1) EP3304748B1 (fr)
CN (1) CN107683214B (fr)
FR (1) FR3037200B1 (fr)
WO (1) WO2016193457A1 (fr)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104619A1 (fr) * 2016-12-05 2018-06-14 Compagnie Generale Des Etablissements Michelin Enveloppe pneumatique équipée d'un organe électronique
WO2019134766A1 (fr) * 2018-01-05 2019-07-11 Continental Reifen Deutschland Gmbh Composant de pneumatique pour un pneumatique cru
WO2019170998A1 (fr) * 2018-03-07 2019-09-12 Compagnie Generale Des Etablissements Michelin Pneumatique equipe d'un module de communication radiofrequence
WO2019180357A1 (fr) * 2018-03-20 2019-09-26 Compagnie Generale Des Etablissements Michelin Pneumatique poids-lourd equipe d'un module de communication radiofrequence
WO2019180358A1 (fr) * 2018-03-22 2019-09-26 Compagnie Generale Des Etablissements Michelin Pneumatique poids-lourd equipe d'un module de communication radiofrequence
WO2019186067A1 (fr) 2018-03-30 2019-10-03 Compagnie Generale Des Etablissements Michelin Transpondeur radiofrequence pour pneumatique
WO2019186068A1 (fr) 2018-03-30 2019-10-03 Compagnie Generale Des Etablissements Michelin Transpondeur radiofrequence pour pneumatique
WO2019186066A1 (fr) 2018-03-30 2019-10-03 Compagnie Generale Des Etablissements Michelin Transpondeur radiofrequence pour pneumatique
WO2019220063A2 (fr) 2018-05-17 2019-11-21 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'un pneumatique equipe d'un module de communication radiofrequence
WO2019229389A1 (fr) * 2018-05-29 2019-12-05 Compagnie Generale Des Etablissements Michelin Enveloppe pneumatique equipee d'un systeme de mesure et methode de communication d'un tel assemblage
EP3578395A1 (fr) * 2018-06-08 2019-12-11 Continental Reifen Deutschland GmbH Dispositif d'émission et de réception électromagnétique
WO2019220064A3 (fr) * 2018-05-17 2020-01-09 Compagnie Generale Des Etablissements Michelin Pneumatique poids-lourd equipe d'un module de communication radiofrequence
CN110770050A (zh) * 2017-06-22 2020-02-07 米其林集团总公司 设置有电子单元的适用于失压续跑的轮胎
WO2020108833A1 (fr) 2018-11-29 2020-06-04 Continental Reifen Deutschland Gmbh Pneumatique de véhicule
CN111344164A (zh) * 2017-11-17 2020-06-26 法国大陆汽车公司 具有连接到共有天线的至少两个收发单元的系统
IT201900002337A1 (it) * 2019-02-18 2020-08-18 Bridgestone Europe Nv Sa Dispositivo rfid perfezionato per pneumatici
FR3101170A1 (fr) 2019-09-25 2021-03-26 Compagnie Generale Des Etablissements Michelin pneumatique EQUIPE d’un Transpondeur radiofréquence
FR3101171A1 (fr) 2019-09-25 2021-03-26 Compagnie Generale Des Etablissements Michelin pneumatique EQUIPE d’un Transpondeur radiofréquence
FR3101019A1 (fr) 2019-09-25 2021-03-26 Compagnie Generale Des Etablissements Michelin pneumatique EQUIPE d’un Transpondeur radiofréquence
US10974553B2 (en) 2016-12-05 2021-04-13 Compagnie Generale Des Etablissements Michelin Pneumatic tire equipped with an electronic member
US11018406B2 (en) 2016-12-05 2021-05-25 Compagnie Generale Des Etablissements Michelin Radiofrequency communication module for a tire
US20210237521A1 (en) * 2018-04-27 2021-08-05 Bridgestone Europe Nv/Sa Pneumatic tire equipped with a transponder
US11152684B2 (en) 2016-12-05 2021-10-19 Compagnie Generale Des Etablissements Michelin Radiofrequency communication module for a tire
US11505011B2 (en) 2016-12-07 2022-11-22 Compagnie Generale Des Etablissements Michelin Tire suitable for running flat equipped with an electronic member
US11618288B2 (en) 2016-12-05 2023-04-04 Compagnie Generale Des Etablissements Michelin Method for manufacturing a patch equipped with a radiofrequency transponder
RU2796701C2 (ru) * 2019-02-18 2023-05-29 Бриджстоун Юроп Нв/Са Улучшенное устройство rfid для шин
IT202200003290A1 (it) 2022-02-22 2023-08-22 Pearfid Soc A Responsabilita Limitata Semplificata Metodo di realizzazione di dispositivi a radiofrequenza
JP7364820B1 (ja) 2023-06-19 2023-10-18 マルホ発條工業株式会社 コイル付きモジュール製造装置およびコイル付きモジュール製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080117027A1 (en) * 2006-11-16 2008-05-22 Zih Corporation Systems, methods, and associated rfid antennas for processing a plurality of transponders
JP6737273B2 (ja) * 2015-07-17 2020-08-05 ソニー株式会社 アンテナ装置及びモジュール装置
FR3041285B1 (fr) 2015-09-18 2017-10-27 Michelin & Cie Pneumatique possedant un transpondeur passif et procede de communication d'un tel pneumatique
FR3067975B1 (fr) * 2017-06-22 2019-07-26 Compagnie Generale Des Etablissements Michelin Pneumatique adapte pour roulage a plat equipe d'un organe electronique
DE102017006450B4 (de) * 2017-07-07 2019-05-23 Ses Rfid Solutions Gmbh RFID-Transponder für eine kontaktlose Kommunikation mit Plastikgehäuse
DE102017216043A1 (de) * 2017-09-12 2019-03-14 Robert Bosch Gmbh System, umfassend einen metallischen Körper und eine Sensorvorrichtung mit einer optimierten Antenneneinheit
IT201800004925A1 (it) * 2018-04-27 2019-10-27 Pneumatico provvisto di un transponder
JP6582105B1 (ja) * 2018-10-03 2019-09-25 Toyo Tire株式会社 タイヤの製造方法
FR3104069B1 (fr) 2019-12-04 2024-03-29 Michelin & Cie Pneumatique equipe d’un transpondeur radiofrequence
CN115136143A (zh) * 2019-12-28 2022-09-30 艾利丹尼森零售信息服务有限公司 适用于轮胎的射频识别系统
DE102020206803A1 (de) 2020-05-29 2021-12-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Elektrische Komponente für das Verfahren zur Herstellung derselben
EP4179465B1 (fr) 2020-07-07 2024-05-15 Dätwyler Schweiz AG Composant de capteur élastomère doté d'un module de capteur intégré
WO2022236472A1 (fr) * 2021-05-08 2022-11-17 Confidex Oy Transpondeur rfid pour pneumatique
DE102022210359A1 (de) * 2022-09-29 2024-04-04 Contitech Techno-Chemie Gmbh Funktransponder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196845A (en) * 1988-10-24 1993-03-23 Compagnie Generale Des Etablissements Michelin Antenna for tire monitoring device
WO2009134243A1 (fr) 2008-04-29 2009-11-05 Michelin Recherche Et Technique S.A. Antenne rfid plane
US20150083811A1 (en) * 2008-10-20 2015-03-26 Compagnie Generale Des Etablissements Michelin Power component and instrumented tyre

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827837B2 (ja) * 2005-04-26 2011-11-30 三洋電機株式会社 タイヤセンサシステム及びこれに用いるタイヤ
KR20080046816A (ko) * 2006-11-23 2008-05-28 한국타이어 주식회사 타이어 내에 장착되는 rfid 태그 구조
EP2611631B1 (fr) * 2010-08-30 2016-07-20 MICHELIN Recherche et Technique S.A. Carte rfid orientée par ressort
JP5716891B2 (ja) * 2010-11-10 2015-05-13 横浜ゴム株式会社 情報取得装置
FR2983609B1 (fr) * 2011-12-02 2014-02-07 Michelin Soc Tech Ensemble electronique destine a etre integre dans un pneumatique
FR3013870B1 (fr) 2013-11-27 2016-01-01 Michelin & Cie Systeme de lecture dynamique de donnees de transpondeurs
FR3013907B1 (fr) 2013-11-27 2016-01-01 Michelin & Cie Systeme de lecture dynamique de donnees de transpondeurs
FR3029832B1 (fr) 2014-12-15 2017-10-20 Michelin & Cie Procede de pose de support pour module electronique de pneumatique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196845A (en) * 1988-10-24 1993-03-23 Compagnie Generale Des Etablissements Michelin Antenna for tire monitoring device
WO2009134243A1 (fr) 2008-04-29 2009-11-05 Michelin Recherche Et Technique S.A. Antenne rfid plane
US20150083811A1 (en) * 2008-10-20 2015-03-26 Compagnie Generale Des Etablissements Michelin Power component and instrumented tyre

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11618288B2 (en) 2016-12-05 2023-04-04 Compagnie Generale Des Etablissements Michelin Method for manufacturing a patch equipped with a radiofrequency transponder
WO2018104619A1 (fr) * 2016-12-05 2018-06-14 Compagnie Generale Des Etablissements Michelin Enveloppe pneumatique équipée d'un organe électronique
US11548331B2 (en) 2016-12-05 2023-01-10 Compagnie Generale Des Etablissements Michelin Pneumatic tire equipped with an electronic member
US11018406B2 (en) 2016-12-05 2021-05-25 Compagnie Generale Des Etablissements Michelin Radiofrequency communication module for a tire
US10974553B2 (en) 2016-12-05 2021-04-13 Compagnie Generale Des Etablissements Michelin Pneumatic tire equipped with an electronic member
US11152684B2 (en) 2016-12-05 2021-10-19 Compagnie Generale Des Etablissements Michelin Radiofrequency communication module for a tire
US11505011B2 (en) 2016-12-07 2022-11-22 Compagnie Generale Des Etablissements Michelin Tire suitable for running flat equipped with an electronic member
CN110770050B (zh) * 2017-06-22 2022-05-13 米其林集团总公司 设置有电子单元的适用于失压续跑的轮胎
CN110770050A (zh) * 2017-06-22 2020-02-07 米其林集团总公司 设置有电子单元的适用于失压续跑的轮胎
CN111344164A (zh) * 2017-11-17 2020-06-26 法国大陆汽车公司 具有连接到共有天线的至少两个收发单元的系统
US11811151B2 (en) 2017-11-17 2023-11-07 Continental Automotive France System of at least two transmitting and/or receiving units connected to a common antenna
CN111344164B (zh) * 2017-11-17 2022-06-24 法国大陆汽车公司 具有连接到共有天线的至少两个收发单元的系统
US11458780B2 (en) 2018-01-05 2022-10-04 Continental Reifen Deutschland Gmbh Tire component for a green tire
WO2019134766A1 (fr) * 2018-01-05 2019-07-11 Continental Reifen Deutschland Gmbh Composant de pneumatique pour un pneumatique cru
WO2019170998A1 (fr) * 2018-03-07 2019-09-12 Compagnie Generale Des Etablissements Michelin Pneumatique equipe d'un module de communication radiofrequence
US20210016612A1 (en) * 2018-03-20 2021-01-21 Compagnie Generale Des Etablissements Michelin Heavy goods vehicle pneumatic tire provided with a radiofrequency communication module
WO2019180357A1 (fr) * 2018-03-20 2019-09-26 Compagnie Generale Des Etablissements Michelin Pneumatique poids-lourd equipe d'un module de communication radiofrequence
CN112105513A (zh) * 2018-03-22 2020-12-18 米其林集团总公司 装配有射频通信模块的重型货物车辆轮胎
WO2019180358A1 (fr) * 2018-03-22 2019-09-26 Compagnie Generale Des Etablissements Michelin Pneumatique poids-lourd equipe d'un module de communication radiofrequence
JP2021520168A (ja) * 2018-03-30 2021-08-12 コンパニー ゼネラール デ エタブリッスマン ミシュラン タイヤ用無線周波数トランスポンダ
WO2019186066A1 (fr) 2018-03-30 2019-10-03 Compagnie Generale Des Etablissements Michelin Transpondeur radiofrequence pour pneumatique
CN112203873A (zh) * 2018-03-30 2021-01-08 米其林集团总公司 轮胎的射频转发器
CN112203873B (zh) * 2018-03-30 2022-09-30 米其林集团总公司 轮胎的射频转发器
CN112218770A (zh) * 2018-03-30 2021-01-12 米其林集团总公司 轮胎的射频转发器
JP7437375B2 (ja) 2018-03-30 2024-02-22 コンパニー ゼネラール デ エタブリッスマン ミシュラン タイヤ用無線周波数トランスポンダ
CN112203872B (zh) * 2018-03-30 2022-09-27 米其林集团总公司 轮胎的射频转发器
CN112203872A (zh) * 2018-03-30 2021-01-08 米其林集团总公司 轮胎的射频转发器
WO2019186068A1 (fr) 2018-03-30 2019-10-03 Compagnie Generale Des Etablissements Michelin Transpondeur radiofrequence pour pneumatique
US11295193B2 (en) 2018-03-30 2022-04-05 Compagnie Generale Des Etablissements Michelin Radiofrequency transponder for tire
US11264698B2 (en) 2018-03-30 2022-03-01 Compagnie Generale Des Etablissements Michelin Radio-frequency transponder for tire
WO2019186067A1 (fr) 2018-03-30 2019-10-03 Compagnie Generale Des Etablissements Michelin Transpondeur radiofrequence pour pneumatique
CN112218770B (zh) * 2018-03-30 2022-09-30 米其林集团总公司 轮胎的射频转发器
US11932059B2 (en) * 2018-04-27 2024-03-19 Bridgestone Europe Nv/Sa Pneumatic tire equipped with a transponder
US20210237521A1 (en) * 2018-04-27 2021-08-05 Bridgestone Europe Nv/Sa Pneumatic tire equipped with a transponder
WO2019220063A3 (fr) * 2018-05-17 2020-02-27 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'un pneumatique equipe d'un module de communication radiofrequence
WO2019220064A3 (fr) * 2018-05-17 2020-01-09 Compagnie Generale Des Etablissements Michelin Pneumatique poids-lourd equipe d'un module de communication radiofrequence
WO2019220063A2 (fr) 2018-05-17 2019-11-21 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'un pneumatique equipe d'un module de communication radiofrequence
US11679571B2 (en) 2018-05-17 2023-06-20 Compagnie Generale Des Etablissements Michelin Method for producing a tire provided with a radiofrequency communications module
WO2019229389A1 (fr) * 2018-05-29 2019-12-05 Compagnie Generale Des Etablissements Michelin Enveloppe pneumatique equipee d'un systeme de mesure et methode de communication d'un tel assemblage
FR3081774A1 (fr) * 2018-05-29 2019-12-06 Compagnie Generale Des Etablissements Michelin Enveloppe pneumatique equipee d'un systeme de mesure et methode de communication d'un tel assemblage
CN112203875A (zh) * 2018-05-29 2021-01-08 米其林集团总公司 装有测量系统的外胎和用于这种组件的通信方法
EP3578395A1 (fr) * 2018-06-08 2019-12-11 Continental Reifen Deutschland GmbH Dispositif d'émission et de réception électromagnétique
WO2020108833A1 (fr) 2018-11-29 2020-06-04 Continental Reifen Deutschland Gmbh Pneumatique de véhicule
RU2796701C2 (ru) * 2019-02-18 2023-05-29 Бриджстоун Юроп Нв/Са Улучшенное устройство rfid для шин
WO2020170057A1 (fr) * 2019-02-18 2020-08-27 Bridgestone Europe Nv/Sa Dispositif rfid amélioré pour pneus
IT201900002337A1 (it) * 2019-02-18 2020-08-18 Bridgestone Europe Nv Sa Dispositivo rfid perfezionato per pneumatici
FR3101171A1 (fr) 2019-09-25 2021-03-26 Compagnie Generale Des Etablissements Michelin pneumatique EQUIPE d’un Transpondeur radiofréquence
FR3101170A1 (fr) 2019-09-25 2021-03-26 Compagnie Generale Des Etablissements Michelin pneumatique EQUIPE d’un Transpondeur radiofréquence
WO2021058904A1 (fr) 2019-09-25 2021-04-01 Compagnie Generale Des Etablissements Michelin Pneumatique equipe d'un transpondeur radiofrequence
FR3101019A1 (fr) 2019-09-25 2021-03-26 Compagnie Generale Des Etablissements Michelin pneumatique EQUIPE d’un Transpondeur radiofréquence
CN114450178A (zh) * 2019-09-25 2022-05-06 米其林集团总公司 包括射频转发器的轮胎
CN114450178B (zh) * 2019-09-25 2023-11-10 米其林集团总公司 包括射频转发器的轮胎
WO2021058905A1 (fr) 2019-09-25 2021-04-01 Compagnie Generale Des Etablissements Michelin Pneumatique equipe d'un transpondeur radiofrequence
WO2021058903A1 (fr) 2019-09-25 2021-04-01 Compagnie Generale Des Etablissements Michelin Pneumatique equipe d'un transpondeur radiofrequence
US11981166B2 (en) 2019-09-25 2024-05-14 Compagnie Generale Des Etablissements Michelin Tire comprising a radiofrequency transponder
IT202200003290A1 (it) 2022-02-22 2023-08-22 Pearfid Soc A Responsabilita Limitata Semplificata Metodo di realizzazione di dispositivi a radiofrequenza
JP7364820B1 (ja) 2023-06-19 2023-10-18 マルホ発條工業株式会社 コイル付きモジュール製造装置およびコイル付きモジュール製造方法

Also Published As

Publication number Publication date
EP3304748B1 (fr) 2021-10-06
CN107683214A (zh) 2018-02-09
US20180174015A1 (en) 2018-06-21
FR3037200A1 (fr) 2016-12-09
FR3037200B1 (fr) 2017-05-26
EP3304748A1 (fr) 2018-04-11
CN107683214B (zh) 2019-12-13
US10339435B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
EP3304748B1 (fr) Transpondeur radiofrequence pour pneumatique
EP3774401B1 (fr) Transpondeur radiofrequence pour pneumatique
EP3774402B1 (fr) Transpondeur radiofrequence pour pneumatique
EP3548314B1 (fr) Enveloppe pneumatique équipée d'un organe électronique
EP3548312B1 (fr) Module de communication radiofréquence pour pneumatique
EP3548316B1 (fr) Module de communication radiofréquence pour pneumatique
EP3548313B1 (fr) Enveloppe pneumatique équipée d'un organe électronique
EP3613076B1 (fr) Dispositif d'emission reception radiofrequence
EP4035073A1 (fr) Pneumatique equipe d'un transpondeur radiofrequence
FR2721733A1 (fr) Procédé de fabrication d'une carte sans contact par surmoulage et carte sans contact obtenue par un tel procédé.
EP3774400B1 (fr) Transpondeur radiofrequence pour pneumatique
WO2021058904A1 (fr) Pneumatique equipe d'un transpondeur radiofrequence
WO2021058905A1 (fr) Pneumatique equipe d'un transpondeur radiofrequence
FR3073094A1 (fr) Systeme de mesure de parametre d'un ensemble monte
EP3802161A1 (fr) Enveloppe pneumatique equipee d'un systeme de mesure et methode de communication d'un tel assemblage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16726612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15578531

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017026084

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017026084

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171204