WO2016192562A9 - Method and system of offline contactless mobile payment based on magnetic near field communication - Google Patents

Method and system of offline contactless mobile payment based on magnetic near field communication Download PDF

Info

Publication number
WO2016192562A9
WO2016192562A9 PCT/CN2016/083419 CN2016083419W WO2016192562A9 WO 2016192562 A9 WO2016192562 A9 WO 2016192562A9 CN 2016083419 W CN2016083419 W CN 2016083419W WO 2016192562 A9 WO2016192562 A9 WO 2016192562A9
Authority
WO
WIPO (PCT)
Prior art keywords
software
magnetic
smart phone
magnetic pulse
modulated signal
Prior art date
Application number
PCT/CN2016/083419
Other languages
French (fr)
Other versions
WO2016192562A1 (en
Inventor
Hsiongwei Hsu
Tiedang YANG
Original Assignee
Shanghai Wearapay, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Wearapay, Inc. filed Critical Shanghai Wearapay, Inc.
Publication of WO2016192562A1 publication Critical patent/WO2016192562A1/en
Publication of WO2016192562A9 publication Critical patent/WO2016192562A9/en

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F7/00Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
    • G07F7/08Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
    • G07F7/0873Details of the card reader
    • G07F7/088Details of the card reader the card reader being part of the point of sale [POS] terminal or electronic cash register [ECR] itself
    • G07F7/0886Details of the card reader the card reader being part of the point of sale [POS] terminal or electronic cash register [ECR] itself the card reader being portable for interacting with a POS or ECR in realizing a payment transaction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/08Payment architectures
    • G06Q20/20Point-of-sale [POS] network systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/32Payment architectures, schemes or protocols characterised by the use of specific devices or networks using wireless devices
    • G06Q20/327Short range or proximity payments by means of M-devices
    • G06Q20/3278RFID or NFC payments by means of M-devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/34Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
    • G06Q20/347Passive cards
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/401Transaction verification
    • G06Q20/4014Identity check for transactions
    • G06Q20/40145Biometric identity checks

Definitions

  • the present invention relates to the field of offline mobile payment, in particular to a method and system of offline contactless mobile payment based on magnetic Near Field Communication (mNFC) .
  • mNFC magnetic Near Field Communication
  • a magnetic card is a card shaped magnetic recording medium, which uses magnetic carrier to record alphanumeric information for identifying the cardholder’s identity or for other purposes.
  • Bank card credit or debit
  • a magnetic stripe is one type of the most common magnetic cards.
  • one side of a magnetic bank card is printed with illustrative and indicative information, the other side is arranged with a magnetic stripe.
  • the magnetic stripe generally has three tracks to record the personalized data, including the primary account number, expiration date and other information. Wherein, track 1 is an alphanumeric track, track 2 is a decimal track, and track 3 is a read/write track.
  • ISO 7811 and 7813 the encoding of magnetic stripe is described in detail.
  • the digital information is recorded in the magnetic stripe by a recording magnetic head.
  • the recording magnetic head is composed of an annular iron core with a narrow gap and a coil winding around the iron core.
  • the magnetic stripe moves relative to the recording magnetic head at a certain speed, or the recording magnetic head moves relative to the magnetic stripe at a certain speed, and the magnetic stripe has a contact with the gap inside the recording magnetic head.
  • recording current changing over time and in line with certain discipline, flowing through the coil of the recording magnetic head.
  • a magnetic field proportional to the recording current is generated at the gap, which magnetizes the piece of magnetic stripe moving across the gap.
  • remnant magnetism corresponding to the variation of recording current is left on the piece of magnetic stripe touching the gap. This way, the information is stored in the magnetic stripe in the form of remnant magnetism.
  • the magnetic card When using the magnetic card to pay at a POS terminal, for example, at a supermarket, the magnetic card moves against a coil of the reading magnetic head at a certain speed.
  • the magnetic lines of force triggered by the remnant magnetism of the magnetic stripe, cuts the coil of the reading magnetic head, generates induced electromotive force which is in turn recovered to a digital signal. Consequently, the transfer of digital data from the magnetic stripe to the reading magnetic head is completed.
  • the magnetic card is left near a magnetized object or a household electrical appliance with strong magnetic field, so that the magnetic medium of the card is damaged during the interaction with the magnetic field;
  • the China patent, Publication No. CN102256001A discloses a method of smart phone wireless payment, where the method involves using a smart card capable of running encryption algorithm on a smart phone without NFC port.
  • the smart phone downloads the digital certificate associated with a bank card into the smart card as payment credential, and installs mobile payment software in the smart phone’s memory or in the smart card’s memory.
  • the smart phone When the smart phone is placed close to the POS terminal, it initiates wireless communication (other than NFC) with the POS terminal, gets authorized from bank through the digital certificate inside the smart card, and makes the amount of the transaction displayed on both the POS terminal and the smart phone’s screen.
  • the user acknowledges mobile payment by sending the status to the POS terminal through wireless communication.
  • the smart phone and the POS terminal must have the matching wireless communication capabilities at both sides, where the wireless communication can be achieved by infrared, Bluetooth or WIFI. This also limits the application scope of the mobile payment. For example, when the wireless communication capabilities of the smart phone and the POS terminal don′t match, mobile payment cannot be accomplished. In addition, such a method needs to apply online banking and personal digital certificate in advance and to download the digital certificate to the smart card in advance, which is inconvenient to the users.
  • the United States patent which essentially converts digital signal (in the form of uncompressed multimedia audio data) to magnetic pulse signal
  • patent number US88,140,46B1 entitled “SYSTEM AND METHOD FOR A BASEBAND NEARFIELD MAGNETIC STRIPE DATA TRANSMITTER”
  • the system consists of a smart phone and a hardware magnetic stripe transmission device.
  • the hardware magnetic stripe transmission device which is a smart phone peripheral, includes a wave shaper, a driver and a loop induction device.
  • this peripheral With the help of this peripheral, one way communication between a smart phone and a POS terminal is established to transfer the bank card magnetic stripe data from the smart phone.
  • the core function units of the equipment including waveform generation and shaping units, are both realized by discrete components on a PCB.
  • This implementation is less flexible compared to a software based approach and consumes more power.
  • the hardware units consume more power than what can be supplied by the audio jack alone, which makes the peripheral not capable to serve as a passive equipment.
  • Website “ http: //www. instructables. com/id/Magnetic-stripe-card-spoofer/ ” discloses at least 6 years ago an implementation to use an electromagnet, a simple amplifier circuit, and a personal music player to induce a card’s digital signals into a magnetic stripe card reader, causing the card reader to think that a physical card has been swiped through it.
  • Website “ http: //www. instructables. com/id/Arduino-Magstripe-Emulator/ ” discloses at least 6 years ago an implementation of a simple magnetic stripe emulator which can be sticked into a magnetic card reader and emulate any stripe data.
  • This invention provides a magnetic Near Field Communication (mNFC) method to implement digital signal to magnetic pulse signal conversion, and a corresponding system to realize offline contactless mobile payment.
  • mNFC magnetic Near Field Communication
  • consumers can alternatively use a smart phone to make offline contactless mobile payment at the POS terminal based on mNFC.
  • This invention provides a method of offline contactless mobile payment based on mNFC, wherein comprising:
  • the disclosure may include one or more variations:
  • the software encoding unit and the software waveform modulation unit are part of a mobile payment APP in the smart phone.
  • the software encoding unit and the software waveform modulation unit run from a cloud sever, and the method further comprising having the smart phone download the software modulated signal, after it is generated, through mobile network.
  • the magnetic pulse transmitter sits in the smart phone, and the method further comprising storing the software modulated signal in the smart phone as a file, reading the stored file later on when payment is triggered, and outputting the software modulated signal to the magnetic pulse transmitter by the smart phone.
  • the magnetic pulse transmitter can be a peripheral of the smart phone, the method further comprising outputting the software modulated signal in real time to the magnetic pulse transmitter by the smart phone.
  • the payment message can be static, directly generated by TSP, or generated by TSP using biometric data, or generated by TSP using other unique object’s feature data.
  • the payment message can be dynamic, generated by TSP with a time factor, and valid for one time usage only.
  • the disclosure features a system of offline contactless mobile payment based on mNFC, comprising:
  • a software encoding unit using payment message, associated with bank card’s magnetic stripe information, as source data and encoding it as software pulse signal;
  • a software waveform modulation unit using the software pulse signal as input to generate software modulated signal
  • a smart phone receiving and outputting the software modulated signal
  • a magnetic pulse transmitter receiving the software modulated signal from the smart phone, converting the software modulated signal into magnetic pulse signal, and transmitting the magnetic pulse signal;
  • POS terminal using its magnetic head to receive the magnetic pulse signal from the magnetic pulse transmitter, recovering the magnetic pulse signal as payment message, and continuing the payment process without modifying the POS terminal.
  • POS Point of Sale
  • the software encoding unit and the software waveform modulation unit are integrated into the mobile payment APP in the smart phone.
  • the software encoding unit and the software waveform modulation unit are integrated in the cloud sever, and the smart phone downloads the software modulated signal via mobile network.
  • the magnetic pulse transmitter sits in the smart phone.
  • the magnetic pulse transmitter is a peripheral of the smart phone, and receives the software modulated signal via the audio jack of the smart phone.
  • the source data can be either static payment message or dynamic payment message, and is bound to the target bank card’s primary account number.
  • a smart phone can replace a magnetic bank card to pay at a POS terminal conveniently and efficiently.
  • the mobile payment is more secure than the magnetic bank card payment, with the former approach protected by various password, token and the dynamic field in payment message.
  • the risk of cloning static magnetic stripe information of a bank card with a card reader can be reduced, after changing the medium of personalized information storage, and using token or dynamic field in payment messages other than directly using primary account number.
  • the magnetic pulse transmitter can be a completely passive equipment when it is used as a peripheral connecting to a smart phone via the audio jack.
  • the software encoding and the software waveform modulation on the smart phone side makes the implementation highly flexible and consumes less power, compared to a discrete hardware components based approach.
  • FIG. 1.1 is a system view of all top layer components of the disclosure.
  • FIG. 1.2 is a diagram of binding biometric data or other unique object’s feature to a user’s account
  • FIG. 1.3 is a block diagram of offline contactless mobile payment system based on mNFC
  • FIG. 1.4 is a block diagram of a mobile payment system disclosed in the United States patent, patent number US88,140,46B1;
  • FIG. 2 is the top view of a smart phone used in offline contactless mobile payment based on mNFC;
  • FIG. 3 is the front view of a magnetic pulse transmitter
  • FIG. 4 is the top view of a transmitting component in the magnetic pulse transmitter shown in FIG. 3;
  • FIG. 5 is the front view of the transmitting component in the magnetic pulse transmitter shown in FIG. 3;
  • FIG. 6 demonstrates the magnetic field around the transmitting coil when current is flowing through
  • FIG. 7 is one of the embodiments of a magnetic pulse transmitter, plugged inside a card-like shell while not being used;
  • FIG. 8 is the cross-section view along the A-A direction in FIG. 7 of the card-like shell, with a hollow hole to hold the magnetic pulse transmitter;
  • FIG. 9 is one of the embodiments of a magnetic pulse transmitter, plugged inside a key-like shell while not being used;
  • FIG. 10 is the cross-section view of the key-like shell in FIG 9, with a hollow hole to hold the magnetic pulse transmitter;
  • FIG. 11 is the process flow diagram in one of the embodiments of offline contactless mobile payment based on mNFC.
  • a product based on the disclosures of the present invention can be either a smart phone peripheral manifested as a card, a key, a finger ring, a bracelet, a battery companion, or even other forms.
  • the implementation associated with the invention can be directly built on the PCB of a smart phone, which makes itself no longer a peripheral any more.
  • FIG 1.1 demonstrates the top layer components of offline contactless mobile payment system based on mNFC introduced by the current invention.
  • the system of offline contactless mobile payment based on mNFC includes a smart phone 10, a magnetic pulse transmitter 20, and a POS terminal 40.
  • the smart phone 10 has volume control key (s) 12 and an audio jack 11 on the side.
  • the magnetic pulse transmitter 20 can be inserted into the smart phone 10 via the audio jack 11.
  • the POS terminal 40 is equipped with a magnetic head 41.
  • the smart phone 10 outputs software modulated signal through its audio jack 11 to the magnetic pulse transmitter 20, which converts software modulated signal into magnetic pulse signal, and transmits magnetic pulse signal to the magnetic head of the POS terminal 40.
  • the method of offline contactless mobile payment based on mNFC comprises the following contents:
  • the software modulated signal which is generated after modulating the source data, is sent to the magnetic pulse transmitter 20 via the audio jack 11 of the smart phone 10;
  • the smart phone 10 supplies power to the magnetic pulse transmitter 20 via the audio jack 11, and the magnetic pulse transmitter 20 converts the software modulated signal to the magnetic pulse signal;
  • the magnetic pulse transmitter 20 transmits the magnetic pulse signal to the magnetic head 41 of the POS terminal 40 without physically contacting it;
  • the POS terminal 40 receives the magnetic pulse signal, and completes the offline payment by following the same procedures after swiping a magnetic bank card.
  • the format of source data conforms to format of the track 2 data adopted by the magnetic stripe of a magnetic bank card, but the content is not necessarily the same.
  • the content can be either static payment message or the dynamic payment message, and is bound to the target bank card’s primary account number.
  • the source data is a static payment message
  • the TSP generates static payment message by performing a one-to-one mapping to the bank card’s primary account number, or by using biometric data or other unique object’s feature data (e.g. a keepsake, a body ornament, or other special objects) .
  • the biometric data can be one of voiceprint feature data, fingerprint feature data, palmprint feature data, facial feature data, or other biometric data, or any combinations of them. The use of the biometric data enhances the security level of mobile payment.
  • FIG. 1.2 shows the process of binding biometric data or other unique object’s feature data to a user’s bank account: the biometric data or other unique object’s feature data is collected by the smart phone and further uploaded to the TSP; the TSP uses an appropriate algorithm to generate a token based on the uploaded data; the token generated herein has the same length as the user’s primary account number of the bank card, and establishes a one-to-one mapping to the primary account number.
  • biometric data such as fingerprint
  • the token inside the payment message plays the same role as the user’s primary account number.
  • the source data is a dynamic payment message
  • it is generated by the TSP and contains a time factor.
  • the dynamic payment message is valid for one time usage only, after it is provided by TSP via mobile network.
  • the software modulated signal can be generated by modulating the source data in the smart phone locally, or by modulating the source data in the cloud sever first and then downloading the modulated signal to the smart phone via mobile network.
  • the software modulated signal is generated by modulating the source data in the smart phone locally, a mobile payment APP massages the source data through the software encoding unit and the software waveform modulation unit in a sequential order; the resulting software modulated signal can be directly output to the magnetic pulse transmitter 20 in real-time via the audio jack 11 of the smart phone 10, or it is pre-stored as a file inside the data storage unit of the smart phone 10; the file is read when payment is triggered to output the software modulated signal to the magnetic pulse transmitter 20 via the audio jack 11 of the smart phone 10.
  • the software modulated signal is generated by modulating the source data in the cloud sever, a reliable connection session between the local smart phone 10 and the cloud server is established first.
  • the source data is massaged by the software encoding unit and the software waveform modulation unit at the cloud end in a sequential order, and the results are downloaded to the smart phone 10 for further manipulation.
  • the software modulated signal can be output by the smart phone 10 in several ways. Firstly, output to the magnetic pulse transmitter 20 in real-time by the mobile payment APP, via the audio jack 11 of the smart phone 10. Secondly, transcode the software modulated signals as a re-playable audio file in advance.
  • FIG. 1.3 presents an example of generating the software modulated signal by the smart phone.
  • the source data is the payment message (dynamic or static) , which is messaged by two waveform processing units, a software encoding unit and a software waveform modulation unit respectively.
  • the input of the software encoding unit is a payment message, and its output is encoded software pulse signal.
  • the software pulse signal is sent to the software waveform modulation unit, whose output is software modulated signal.
  • the software modulated signal is sent the audio jack of the smart phone.
  • the method of offline contactless mobile payment based on mNFC adopts a pure software approach to generate software modulated signal.
  • the software modulated signal is a stream of pulses, which expresses digital information to be transferred through the variation of period (frequency) and magnitude.
  • a modulated signal can be distorted square wave, which might have ripples at high voltage level and low voltage level, and have non-vertical rising and falling edges.
  • the magnitude of ripples and the slew rate of rising/falling edges of the modulated signal need to be controlled to the extent such that the shape of the magnetic pulse signal generated by the transmitting coil is good enough to be interpreted correctly by the magnetic head of the POS terminal.
  • the modulated signal can also adopt other forms.
  • FIG. 1.4 reveals one embodiment of a system and a method associated with near field magnetic stripe data transmission, disclosed in the US patent, patent number US88,140,46B1.
  • the data stream output from the smart phone contains digitized magnetic stripe data. After the data has been output from the smart phone, it still needs to be modulated by a hardware magnetic stripe transmission device (including a wave shaper, a driver and a loop induction device) before being transmitted to a POS terminal.
  • the audio jack of the smart phone merely plays the role of passing, instead of amplifying, or modulating, or driving, the encoded track 2 data stream from the smart phone to the hardware magnetic stripe transmission device.
  • FIG. 3 to FIG. 5 shows a magnetic pulse transmitter 20 used in mNFC.
  • the magnetic pulse transmitter 20 includes an audio connector 21, a magnetic pulse transmitting component 22, and a transmitter cover 23.
  • the magnetic pulse transmitter 20 may also include an energy acquisition module and other function modules (not shown) .
  • the magnetic pulse transmitting component 22 is composed of a magnetic core 221 and a transmitting coil 222 winding around the magnetic core 221, and is packaged inside the transmitter cover 23.
  • One end of the transmitting coil 222 is connected to the right channel pole of the audio connector 21, and the other end is connected to the common ground pole of the audio connector 21.
  • the diameter of the wire in the transmitting coil 222 is preferably 0.1 mm.
  • the audio connector 21 When the magnetic pulse transmitter 20 is functioning, the audio connector 21 is inserted into the audio jack 11 of the smart phone.
  • the energy acquisition module of the magnetic pulse transmitter 20 is electrically connected to the transmitting coil 222, to provide necessary power to other function modules of the magnetic pulse transmitter. Specifically, there exists voltage difference between the two ends of the transmitting coil 22, and the voltage difference is reflected at the input ends of the energy acquisition module as well.
  • the energy acquisition module coverts the input voltage difference to operable voltage required by the other function modules of the magnetic pulse transmitter, which may include but not limited to a key storage unit, an encryption/authentication unit, and a biometric data extraction/verification unit.
  • the adoption of the functional units depends on functional requirements and security requirements during productization of the present invention.
  • the magnetic core 221 is a paper-thin slice, and has rectangular, oval, or irregular shape.
  • the reason for slicing the magnetic core 221 into a paper-thin object is to reduce its volume for convenient packaging. Meanwhile, a sliced magnetic core 221 also increases the surface area when volume is limited, which results in a wider coverage of the magnetic field when there is current flowing through.
  • the thickness of the magnetic core 221 is preferably 0.1 mm.
  • the transmitter cover 23 can take a cylinder appearance, or any other appearance matching the shape of the magnetic core 221.
  • the magnetic core 221 is made of magnetic material, preferably soft magnetic material.
  • the number of turns of the copper wire winding on the transmitting coil 222 is determined by the type of magnetic material adopted by the magnetic core, and also determined by magnetic field intensity requirement when magnetic pulses are being transmitted. Those skilled in the art should know how to choose or design the transmitting coil and the magnetic core, so the corresponding details are omitted here.
  • the software modulated signal is manifested as modulated current via the audio jack 11 of the smart phone 10.
  • the modulated current may change its direction. Specifically, the modulated current flows through the right channel pole of the audio connector 21, to the transmitting coil 222, and to the common ground pole of the audio connector 21 in order if the modulated signal is positive, and in an opposite direction if the modulated signal is negative.
  • the magnetic pulse transmitter 22 when the modulated current flowing through the transmitting coil 222, the magnetic pulse transmitter 22 produces a varying magnetic field around, whose polarity, scope and magnetic induction intensity are closely related to the modulated current.
  • the varying magnetic field effectively enables the magnetic pulse transmitter 20 to emit magnetic pulse signal to the POS terminal.
  • the amplitude of the software modulated signal can be altered by adjusting the volume key (s) 12 of the smart phone 10, which in turn alters the intensity of the magnetic pulse signal 50 transmitted from the magnetic pulse transmitter 20 to the POS terminal 40.
  • the intensity of the magnetic pulse signal 50 can be set to the maximum value, if there is no intention to let a user control the volume key (s) 12.
  • the magnetic pulse transmitter 20 When the magnetic pulse transmitter 20 is placed close to the magnetic head 41 of the POS terminal 40, magnetic pulse signal 50 is received by the latter party. As the next step, the POS terminal 40 decodes the magnetic pulse signal 50 to restore source data (payment message) and accordingly completes the communication between the smart phone and the POS terminal.
  • the process to decode the magnetic pulse signal seen by the magnetic head of the POS terminal is exactly the same as the decoding process after swiping magnetic bank card at the POS terminal. Those skilled in the art should know how decoding process works, so the details are omitted here.
  • the magnetic pulse transmitter 20 can be designed to fit into a card-like shell or a key-like shell. As shown in FIG. 7 to FIG. 10. Both shells have a hanging hole 31 and a plugging-in hole 32. To carry the magnetic pulse transmitter, one can plug it into the plugging-in hole 32 of the shell first, and tie the shell to a rope or a key ring via hanging hole 31 afterwards.
  • FIG. 11 illustrates the process flow of offline contactless mobile payment based on the mNFC:
  • the user chooses the magnetic bank card from mobile payment APP’s UI, and loads the source data of the target bank card to mobile payment APP’s default card position.
  • the mobile payment APP applies dynamic payment message from the Token Service Provider (TSP) , via the mobile network.
  • TSP Token Service Provider
  • the mobile payment APP processes the payment message with a software encoding unit and a software waveform modulation unit sequentially, to generate the software modulated signal.
  • the magnetic pulse transmitter 20 receives the software modulated signal, and converts it into the magnetic pulse signal 50.
  • the user places the magnetic pulse transmitter 20 close to the magnetic head 41 of the POS terminal 40, so that the magnetic head 41 receives the magnetic pulse signal 50 transmitted by the magnetic pulse transmitter 20.
  • the POS terminal 40 converts the received magnetic pulse signal 50 into appropriate payment message associated with the magnetic bank card, and completes the mNFC based contactless communication.
  • users can directly use mobile payment APP in the smart phone, to output software modulated signal via the audio jack of the smart phone.
  • users can use a plug-in of the browser or other multimedia players installed in the smart phone to play pre-transcoded audio stream, which outputs modulated signal at the audio jack of the smart phone.
  • users can also use physical multimedia players, such as MP3 player, iPad, iPod and other real players, to play pre-transcoded audio stream, which outputs the modulated signal at the audio jack of the smart phone.
  • physical multimedia players such as MP3 player, iPad, iPod and other real players
  • Offline contactless mobile payment based on mNFC is achieved in all three embodiments.
  • software modulated signal is transcoded to compressed audio stream.
  • the transcoded result can be stored locally as a file for re-playing, or can be played on the fly.
  • playing real-time audio stream on the fly better protection is accomplished because of audio compressing and not knowing the full audio content during streaming play mode.
  • An audio stream can be compressed based on software modulated signal alone, so that a user can′t hear music when playing the audio files; the audio stream can also be compressed by embedding the software modulated signal into a snippet of true music, so that a user can hear the music when playing the audio stream.
  • a user is free to choose a preferred song to reveal his/her personality, while paying at a POS terminal.
  • the magnetic pulse transmitter exists as an independent entity, which relies on the audio connector and the audio jack to connect to the smart phone. It should be clear that the magnetic pulse transmitter, which contains mainly a magnetic core and a transmitting coil winding around the magnetic core, can be built inside of the smart phone without making itself a separate entity. In this case, the magnetic pulse transmitter is built inside the smart phone, receiving software modulated signal with wire (on PCB) or without wire (from Bluetooth, for example) . The integrated design can be more convenient and cost-effective.

Abstract

The method of offline contactless mobile payment based on mNFC comprises: feeding payment message, associated with bank card magnetic stripe information, as source data to a software based encoding unit and a software based waveform modulation unit; Transferring the software modulated signal from the smart phone to a magnetic pulse transmitter; Using the magnetic pulse transmitter to convert the software modulated signal into magnetic pulse signal, and sending the magnetic pulse signal to the magnetic head of a POS terminal; Using the POS terminal to recover the received magnetic pulse signal as the payment message, and continuing the payment process further without the need to modify the POS terminal.

Description

METHOD AND SYSTEM OF OFFLINE CONTACTLESS MOBILE PAYMENT BASED ON MAGNETIC NEAR FIELD COMMUNICATION
CROSS REFERENCE TO RELATED APPLICATIONS
The present application is based on and claims priority from Chinese application number CN201510289398.X, filed May 29, 2015, the disclosure of which is hereby incorporated by reference herein in its entirety.
FIELD
The present invention relates to the field of offline mobile payment, in particular to a method and system of offline contactless mobile payment based on magnetic Near Field Communication (mNFC) .
BACKGROUND
A magnetic card is a card shaped magnetic recording medium, which uses magnetic carrier to record alphanumeric information for identifying the cardholder’s identity or for other purposes. Bank card (credit or debit) , for example, is one type of the most common magnetic cards. In general, one side of a magnetic bank card is printed with illustrative and indicative information, the other side is arranged with a magnetic stripe. The magnetic stripe generally has three tracks to record the personalized data, including the primary account number, expiration date and other information. Wherein, track 1 is an alphanumeric track, track 2 is a decimal track, and track 3 is a read/write track. In the international standard ISO 7811 and 7813, the encoding of magnetic stripe is described in detail.
Generally, the digital information is recorded in the magnetic stripe by a recording magnetic head. The recording magnetic head is composed of an annular iron core with a narrow gap and a coil winding around the iron core. When recording data to the magnetic stripe, the magnetic stripe moves relative to the recording magnetic  head at a certain speed, or the recording magnetic head moves relative to the magnetic stripe at a certain speed, and the magnetic stripe has a contact with the gap inside the recording magnetic head. During the relative movement between the magnetic stripe and the recording magnetic head, there exists recording current, changing over time and in line with certain discipline, flowing through the coil of the recording magnetic head. As a result, a magnetic field proportional to the recording current is generated at the gap, which magnetizes the piece of magnetic stripe moving across the gap. After being magnetized, remnant magnetism corresponding to the variation of recording current is left on the piece of magnetic stripe touching the gap. This way, the information is stored in the magnetic stripe in the form of remnant magnetism.
When using the magnetic card to pay at a POS terminal, for example, at a supermarket, the magnetic card moves against a coil of the reading magnetic head at a certain speed. The magnetic lines of force, triggered by the remnant magnetism of the magnetic stripe, cuts the coil of the reading magnetic head, generates induced electromotive force which is in turn recovered to a digital signal. Consequently, the transfer of digital data from the magnetic stripe to the reading magnetic head is completed.
If the information stored in magnetic stripe is accidentally destroyed, when using bank card to make payment, the magnetic stripe’s remnant magnetism may not be able to be read correctly by a POS terminal. When failure happens, further information should be punched in with the keyboard of the POS terminal to continue or cancel the transaction. Nearly 2/3 of the magnetic stripe reading failures are caused by accidentally erasing the magnetic stripe information (demagnetization) . Usually, the following reasons will cause demagnetization:
1) The magnetic card is left near a magnetized object or a household electrical appliance with strong magnetic field, so that the magnetic medium of the card is damaged during the interaction with the magnetic field;
2) The magnetic card in a wallet is placed too close to the magnetic bag button of  the wallet, resulting in the demagnetization of the card;
3) Due to careless storage or usage, such as pressing, folding, scratching, and polluting of the magnetic card, the remnant magnetism on the magnetic stripe is lost because of external force;
4) Two magnetic cards are stored back to back unconsciously, leaving their magnetic mediums rub against and collide with each other so as to suffer damage.
In daily life, people usually carry many cards (e.g., credit cards, debit cards, transportation cards, membership cards, etc. ) in a wallet when travelling or shopping. Due to the space limitation, the risk of demagnetization rises as more cards are carried. In addition, the risk demagnetization also rises with the increase of a magnetic card’s usage.
Replacing physical magnetic card payment with mobile payment is a feasible approach to improve the offline payment user experience in the era of the internet finance, and to avoid the risk of demagnetization of physical magnetic cards. At present, the mobile payment is realized with short distance wireless communication technology such as Near Field Communication (NFC) between a smart phone and a POS terminal. To accomplish this, both the smart phone and the POS terminal need to support NFC communication. Unfortunately, most existing smart phones do not have built-in NFC port yet, and the upgrades of the POS terminal with NFC communication lead to enormous equipment cost, promotion cost, and training cost. The requirement for new NFC capable devices tremendously limits the application scope of NFC based mobile payment.
The China patent, Publication No. CN102256001A, discloses a method of smart phone wireless payment, where the method involves using a smart card capable of running encryption algorithm on a smart phone without NFC port. The smart phone downloads the digital certificate associated with a bank card into the smart card as payment credential, and installs mobile payment software in the smart phone’s memory or in the smart card’s memory. When the smart phone is placed close to the  POS terminal, it initiates wireless communication (other than NFC) with the POS terminal, gets authorized from bank through the digital certificate inside the smart card, and makes the amount of the transaction displayed on both the POS terminal and the smart phone’s screen. The user acknowledges mobile payment by sending the status to the POS terminal through wireless communication. In the technical solution adopted by the China patent above, the smart phone and the POS terminal must have the matching wireless communication capabilities at both sides, where the wireless communication can be achieved by infrared, Bluetooth or WIFI. This also limits the application scope of the mobile payment. For example, when the wireless communication capabilities of the smart phone and the POS terminal don′t match, mobile payment cannot be accomplished. In addition, such a method needs to apply online banking and personal digital certificate in advance and to download the digital certificate to the smart card in advance, which is inconvenient to the users.
The United States patent, patent number US4,734,897, entitled “CASSETTE ADAPTER FOR PLAYBACK DEVICE, SUCH AS A COMPACT DISK PLAYER” , discloses an adaptor device, which converts a digital audio stream into a sequence of magnetic pulse signal, and passes the magnetic pulse signal to the magnetic head of the cassette player. The effect of transmitting magnetic pulse signal which containing the content of the uncompressed audio data to the magnetic head of the cassette player is the same as moving an ordinary audio cassette’s magnetic tape at the magnetic head of the cassette player. The magnetic pulse signal transmitted by the cassette adaptor realizes another form of uncompressed audio data used to be stored by the magnetic tape.
Using the basic theory in the above United States patent, which essentially converts digital signal (in the form of uncompressed multimedia audio data) to magnetic pulse signal, the United States patent, patent number US88,140,46B1, entitled “SYSTEM AND METHOD FOR A BASEBAND NEARFIELD MAGNETIC STRIPE DATA TRANSMITTER” , further discloses an implementation to convert  digital signal (in the form of magnetic stripe data) to magnetic pulse signal. The system consists of a smart phone and a hardware magnetic stripe transmission device. In one embodiment of the patent, the hardware magnetic stripe transmission device, which is a smart phone peripheral, includes a wave shaper, a driver and a loop induction device. With the help of this peripheral, one way communication between a smart phone and a POS terminal is established to transfer the bank card magnetic stripe data from the smart phone. The core function units of the equipment, including waveform generation and shaping units, are both realized by discrete components on a PCB. This implementation, nevertheless, is less flexible compared to a software based approach and consumes more power. In addition, when the peripheral is connecting to the audio jack of to the mobile phone, the hardware units consume more power than what can be supplied by the audio jack alone, which makes the peripheral not capable to serve as a passive equipment.
Besides the above implementation to convert digital signal in the form of magnetic stripe data to magnetic pulse signal, there also exist other implementations based on the same basic theory described by US4,734,897 to convert digital signal to magnetic pulse signal. To name just a couple:
Website “http: //www. instructables. com/id/Magnetic-stripe-card-spoofer/” discloses at least 6 years ago an implementation to use an electromagnet, a simple amplifier circuit, and a personal music player to induce a card’s digital signals into a magnetic stripe card reader, causing the card reader to think that a physical card has been swiped through it.
Website “http: //www. instructables. com/id/Arduino-Magstripe-Emulator/” discloses at least 6 years ago an implementation of a simple magnetic stripe emulator which can be sticked into a magnetic card reader and emulate any stripe data.
SUMMARY
This invention provides a magnetic Near Field Communication (mNFC) method  to implement digital signal to magnetic pulse signal conversion, and a corresponding system to realize offline contactless mobile payment. In all scenarios capable to make a payment by swiping a magnetic bank card at a POS terminal, consumers can alternatively use a smart phone to make offline contactless mobile payment at the POS terminal based on mNFC.
This invention provides a method of offline contactless mobile payment based on mNFC, wherein comprising:
feeding payment message, associated with bank card magnetic stripe information, as source data to a software encoding unit and a software waveform modulation unit;
transferring the software modulated signal from the smart phone to a magnetic pulse transmitter;
using the magnetic pulse transmitter to convert the software modulated signal into magnetic pulse signal, and sending the magnetic pulse signal to the magnetic head of a POS terminal;
using the POS terminal to recover the received magnetic pulse signal as the payment message, and continuing the payment process without modifying the POS terminal.
The disclosure may include one or more variations:
In one embodiment, the software encoding unit and the software waveform modulation unit are part of a mobile payment APP in the smart phone.
In another embodiment, the software encoding unit and the software waveform modulation unit run from a cloud sever, and the method further comprising having the smart phone download the software modulated signal, after it is generated, through mobile network.
In one embodiment, the magnetic pulse transmitter sits in the smart phone, and the method further comprising storing the software modulated signal in the smart phone as a file, reading the stored file later on when payment is triggered, and outputting the software modulated signal to the magnetic pulse transmitter by the  smart phone.
In another embodiment, the magnetic pulse transmitter can be a peripheral of the smart phone, the method further comprising outputting the software modulated signal in real time to the magnetic pulse transmitter by the smart phone.
In one embodiment, the payment message can be static, directly generated by TSP, or generated by TSP using biometric data, or generated by TSP using other unique object’s feature data.
In another embodiment, the payment message can be dynamic, generated by TSP with a time factor, and valid for one time usage only.
The disclosure features a system of offline contactless mobile payment based on mNFC, comprising:
a software encoding unit: using payment message, associated with bank card’s magnetic stripe information, as source data and encoding it as software pulse signal;
a software waveform modulation unit: using the software pulse signal as input to generate software modulated signal;
a smart phone: receiving and outputting the software modulated signal;
a magnetic pulse transmitter: receiving the software modulated signal from the smart phone, converting the software modulated signal into magnetic pulse signal, and transmitting the magnetic pulse signal;
a Point of Sale (POS) terminal: using its magnetic head to receive the magnetic pulse signal from the magnetic pulse transmitter, recovering the magnetic pulse signal as payment message, and continuing the payment process without modifying the POS terminal.
In one embodiment, the software encoding unit and the software waveform modulation unit are integrated into the mobile payment APP in the smart phone.
In another embodiment, wherein the software encoding unit and the software waveform modulation unit are integrated in the cloud sever, and the smart phone downloads the software modulated signal via mobile network.
In one embodiment, the magnetic pulse transmitter sits in the smart phone.
In another embodiment, the magnetic pulse transmitter is a peripheral of the smart phone, and receives the software modulated signal via the audio jack of the smart phone.
In one embodiment, wherein the source data can be either static payment message or dynamic payment message, and is bound to the target bank card’s primary account number.
The methods and systems disclosed herein provide a number of advantages, for example:
1. Adopting the technical solutions of the invention, users’ personalized information stored in magnetic stripes magnetic cards, or stored in IC cards, two-dimensional code, bar code, can be manually typed or camera-scanned into a smart phone to enable mobile payment. The requirements to carry several cards can be avoided, so do the risk of losing or demagnetizing cards.
2. Adopting the technical solutions of the invention, a smart phone can replace a magnetic bank card to pay at a POS terminal conveniently and efficiently. The mobile payment is more secure than the magnetic bank card payment, with the former approach protected by various password, token and the dynamic field in payment message.
3. Adopting the technical solutions of the invention, the risk of cloning static magnetic stripe information of a bank card with a card reader can be reduced, after changing the medium of personalized information storage, and using token or dynamic field in payment messages other than directly using primary account number.
4. Adopting the technical solutions of the invention, there is no need to add new wireless communication chip (s) to exiting smart phones, or to upgrade the existing POS terminals with matching wireless communication capabilities. This not only maximizes the application scope of the mobile payment, but also saves upgrading cost considerably.
5. Adopting the technical solutions of the invention, the magnetic pulse transmitter can be a completely passive equipment when it is used as a peripheral connecting to a smart phone via the audio jack. In the process of generating magnetic pulse signals, the software encoding and the software waveform modulation on the smart phone side makes the implementation highly flexible and consumes less power, compared to a discrete hardware components based approach.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of methods, systems, and devices are illustrated by the accompany drawings which are meant to be exemplary and not restricted by their expressed forms.
FIG. 1.1 is a system view of all top layer components of the disclosure;
FIG. 1.2 is a diagram of binding biometric data or other unique object’s feature to a user’s account;
FIG. 1.3 is a block diagram of offline contactless mobile payment system based on mNFC;
FIG. 1.4 is a block diagram of a mobile payment system disclosed in the United States patent, patent number US88,140,46B1;
FIG. 2 is the top view of a smart phone used in offline contactless mobile payment based on mNFC;
FIG. 3 is the front view of a magnetic pulse transmitter;
FIG. 4 is the top view of a transmitting component in the magnetic pulse transmitter shown in FIG. 3;
FIG. 5 is the front view of the transmitting component in the magnetic pulse transmitter shown in FIG. 3;
FIG. 6 demonstrates the magnetic field around the transmitting coil when current is flowing through;
FIG. 7 is one of the embodiments of a magnetic pulse transmitter, plugged inside  a card-like shell while not being used;
FIG. 8 is the cross-section view along the A-A direction in FIG. 7 of the card-like shell, with a hollow hole to hold the magnetic pulse transmitter;
FIG. 9 is one of the embodiments of a magnetic pulse transmitter, plugged inside a key-like shell while not being used;
FIG. 10 is the cross-section view of the key-like shell in FIG 9, with a hollow hole to hold the magnetic pulse transmitter;
FIG. 11 is the process flow diagram in one of the embodiments of offline contactless mobile payment based on mNFC.
DETAILED DESCRIPTION
Detailed method and system embodiments of the present invention are disclosed herein. However, it should be known that the descriptions are exemplary rather than exhaustive variations associated with methods, systems, and devices disclosed by the present invention. There could exist many other embodiments without departing from the spirit and scope of the disclosure. Therefore, specific contents disclosed herein are not to be interpreted as limiting, but merely as a representative basis for the claims.
In addition, it also should be known to those skilled in the art that a product based on the disclosures of the present invention, can be either a smart phone peripheral manifested as a card, a key, a finger ring, a bracelet, a battery companion, or even other forms. Alternatively, the implementation associated with the invention can be directly built on the PCB of a smart phone, which makes itself no longer a peripheral any more.
FIG 1.1 demonstrates the top layer components of offline contactless mobile payment system based on mNFC introduced by the current invention. As shown in FIG. 1.1, the system of offline contactless mobile payment based on mNFC includes a smart phone 10, a magnetic pulse transmitter 20, and a POS terminal 40. As illustrated by FIG. 2, the smart phone 10 has volume control key (s) 12 and an audio jack 11 on  the side. The magnetic pulse transmitter 20 can be inserted into the smart phone 10 via the audio jack 11. The POS terminal 40 is equipped with a magnetic head 41. The smart phone 10 outputs software modulated signal through its audio jack 11 to the magnetic pulse transmitter 20, which converts software modulated signal into magnetic pulse signal, and transmits magnetic pulse signal to the magnetic head of the POS terminal 40. By using the system, the same effect of swiping a magnetic bank card at a POS terminal can be achieved, so that the offline contactless mobile payment is realized. The method of offline contactless mobile payment based on mNFC comprises the following contents:
S1. The software modulated signal, which is generated after modulating the source data, is sent to the magnetic pulse transmitter 20 via the audio jack 11 of the smart phone 10;
S2. The smart phone 10 supplies power to the magnetic pulse transmitter 20 via the audio jack 11, and the magnetic pulse transmitter 20 converts the software modulated signal to the magnetic pulse signal;
S3. The magnetic pulse transmitter 20 transmits the magnetic pulse signal to the magnetic head 41 of the POS terminal 40 without physically contacting it;
S4. The POS terminal 40 receives the magnetic pulse signal, and completes the offline payment by following the same procedures after swiping a magnetic bank card.
The format of source data conforms to format of the track 2 data adopted by the magnetic stripe of a magnetic bank card, but the content is not necessarily the same. The content can be either static payment message or the dynamic payment message, and is bound to the target bank card’s primary account number.
In scenarios where the source data is a static payment message, it may remain fixed for a long time but still gets updated on a regular basis. The TSP generates static payment message by performing a one-to-one mapping to the bank card’s primary account number, or by using biometric data or other unique object’s feature data (e.g. a keepsake, a body ornament, or other special objects) . The biometric data can be one  of voiceprint feature data, fingerprint feature data, palmprint feature data, facial feature data, or other biometric data, or any combinations of them. The use of the biometric data enhances the security level of mobile payment.
FIG. 1.2 shows the process of binding biometric data or other unique object’s feature data to a user’s bank account: the biometric data or other unique object’s feature data is collected by the smart phone and further uploaded to the TSP; the TSP uses an appropriate algorithm to generate a token based on the uploaded data; the token generated herein has the same length as the user’s primary account number of the bank card, and establishes a one-to-one mapping to the primary account number. In other words, when the user supplies biometric data (such as fingerprint) or other unique object’s feature data during payment, the token inside the payment message plays the same role as the user’s primary account number.
In scenarios where the source data is a dynamic payment message, it is generated by the TSP and contains a time factor. The dynamic payment message is valid for one time usage only, after it is provided by TSP via mobile network.
The software modulated signal can be generated by modulating the source data in the smart phone locally, or by modulating the source data in the cloud sever first and then downloading the modulated signal to the smart phone via mobile network.
1) if the software modulated signal is generated by modulating the source data in the smart phone locally, a mobile payment APP massages the source data through the software encoding unit and the software waveform modulation unit in a sequential order; the resulting software modulated signal can be directly output to the magnetic pulse transmitter 20 in real-time via the audio jack 11 of the smart phone 10, or it is pre-stored as a file inside the data storage unit of the smart phone 10; the file is read when payment is triggered to output the software modulated signal to the magnetic pulse transmitter 20 via the audio jack 11 of the smart phone 10.
2) if the software modulated signal is generated by modulating the source data in the cloud sever, a reliable connection session between the local smart phone 10 and  the cloud server is established first. The source data is massaged by the software encoding unit and the software waveform modulation unit at the cloud end in a sequential order, and the results are downloaded to the smart phone 10 for further manipulation. The software modulated signal can be output by the smart phone 10 in several ways. Firstly, output to the magnetic pulse transmitter 20 in real-time by the mobile payment APP, via the audio jack 11 of the smart phone 10. Secondly, transcode the software modulated signals as a re-playable audio file in advance. When payment is triggered, use a plug-in from a browser or other multimedia players to play the streaming media to the magnetic pulse transmitter 20 via audio jack 11 of the smart phone 10. Thirdly, store the software modulated signal as a file in the smart phone 10, and later on read the file when payment is triggered to output to the magnetic pulse transmitter 20 via audio jack 11 of the smart phone 10.
FIG. 1.3, presents an example of generating the software modulated signal by the smart phone. The source data is the payment message (dynamic or static) , which is messaged by two waveform processing units, a software encoding unit and a software waveform modulation unit respectively. The input of the software encoding unit is a payment message, and its output is encoded software pulse signal. The software pulse signal is sent to the software waveform modulation unit, whose output is software modulated signal. Finally, the software modulated signal is sent the audio jack of the smart phone.
It is apparent that the method of offline contactless mobile payment based on mNFC adopts a pure software approach to generate software modulated signal. There is no further need for additional modulation with other hardware inside or outside the smart phone 10. From FIG. 1.3, it can be seen that the software modulated signal is a stream of pulses, which expresses digital information to be transferred through the variation of period (frequency) and magnitude. A modulated signal can be distorted square wave, which might have ripples at high voltage level and low voltage level, and have non-vertical rising and falling edges. The magnitude of ripples and the slew  rate of rising/falling edges of the modulated signal need to be controlled to the extent such that the shape of the magnetic pulse signal generated by the transmitting coil is good enough to be interpreted correctly by the magnetic head of the POS terminal. Besides distorted square wave, the modulated signal can also adopt other forms.
FIG. 1.4 reveals one embodiment of a system and a method associated with near field magnetic stripe data transmission, disclosed in the US patent, patent number US88,140,46B1. The data stream output from the smart phone contains digitized magnetic stripe data. After the data has been output from the smart phone, it still needs to be modulated by a hardware magnetic stripe transmission device (including a wave shaper, a driver and a loop induction device) before being transmitted to a POS terminal. The audio jack of the smart phone merely plays the role of passing, instead of amplifying, or modulating, or driving, the encoded track 2 data stream from the smart phone to the hardware magnetic stripe transmission device.
FIG. 3 to FIG. 5 shows a magnetic pulse transmitter 20 used in mNFC. The magnetic pulse transmitter 20 includes an audio connector 21, a magnetic pulse transmitting component 22, and a transmitter cover 23. In addition, the magnetic pulse transmitter 20 may also include an energy acquisition module and other function modules (not shown) . As shown in FIG. 4 and FIG. 5, the magnetic pulse transmitting component 22 is composed of a magnetic core 221 and a transmitting coil 222 winding around the magnetic core 221, and is packaged inside the transmitter cover 23. One end of the transmitting coil 222 is connected to the right channel pole of the audio connector 21, and the other end is connected to the common ground pole of the audio connector 21. The diameter of the wire in the transmitting coil 222 is preferably 0.1 mm.
When the magnetic pulse transmitter 20 is functioning, the audio connector 21 is inserted into the audio jack 11 of the smart phone. The energy acquisition module of the magnetic pulse transmitter 20 is electrically connected to the transmitting coil 222, to provide necessary power to other function modules of the magnetic pulse  transmitter. Specifically, there exists voltage difference between the two ends of the transmitting coil 22, and the voltage difference is reflected at the input ends of the energy acquisition module as well. The energy acquisition module coverts the input voltage difference to operable voltage required by the other function modules of the magnetic pulse transmitter, which may include but not limited to a key storage unit, an encryption/authentication unit, and a biometric data extraction/verification unit. The adoption of the functional units depends on functional requirements and security requirements during productization of the present invention.
The magnetic core 221 is a paper-thin slice, and has rectangular, oval, or irregular shape. The reason for slicing the magnetic core 221 into a paper-thin object is to reduce its volume for convenient packaging. Meanwhile, a sliced magnetic core 221 also increases the surface area when volume is limited, which results in a wider coverage of the magnetic field when there is current flowing through. The thickness of the magnetic core 221 is preferably 0.1 mm. The transmitter cover 23 can take a cylinder appearance, or any other appearance matching the shape of the magnetic core 221.
The magnetic core 221 is made of magnetic material, preferably soft magnetic material. The number of turns of the copper wire winding on the transmitting coil 222 is determined by the type of magnetic material adopted by the magnetic core, and also determined by magnetic field intensity requirement when magnetic pulses are being transmitted. Those skilled in the art should know how to choose or design the transmitting coil and the magnetic core, so the corresponding details are omitted here.
The software modulated signal is manifested as modulated current via the audio jack 11 of the smart phone 10. The modulated current may change its direction. Specifically, the modulated current flows through the right channel pole of the audio connector 21, to the transmitting coil 222, and to the common ground pole of the audio connector 21 in order if the modulated signal is positive, and in an opposite direction if the modulated signal is negative.
As shown in FIG. 6, when the modulated current flowing through the transmitting coil 222, the magnetic pulse transmitter 22 produces a varying magnetic field around, whose polarity, scope and magnetic induction intensity are closely related to the modulated current. The varying magnetic field effectively enables the magnetic pulse transmitter 20 to emit magnetic pulse signal to the POS terminal. When the distance between the magnetic pulse transmitter 20 and the magnetic head 41 of the POS terminal 40 is fixed, the amplitude of the software modulated signal can be altered by adjusting the volume key (s) 12 of the smart phone 10, which in turn alters the intensity of the magnetic pulse signal 50 transmitted from the magnetic pulse transmitter 20 to the POS terminal 40. Alternatively, the intensity of the magnetic pulse signal 50 can be set to the maximum value, if there is no intention to let a user control the volume key (s) 12.
When the magnetic pulse transmitter 20 is placed close to the magnetic head 41 of the POS terminal 40, magnetic pulse signal 50 is received by the latter party. As the next step, the POS terminal 40 decodes the magnetic pulse signal 50 to restore source data (payment message) and accordingly completes the communication between the smart phone and the POS terminal. The process to decode the magnetic pulse signal seen by the magnetic head of the POS terminal, is exactly the same as the decoding process after swiping magnetic bank card at the POS terminal. Those skilled in the art should know how decoding process works, so the details are omitted here.
For the sake of portability, the magnetic pulse transmitter 20 can be designed to fit into a card-like shell or a key-like shell. As shown in FIG. 7 to FIG. 10. Both shells have a hanging hole 31 and a plugging-in hole 32. To carry the magnetic pulse transmitter, one can plug it into the plugging-in hole 32 of the shell first, and tie the shell to a rope or a key ring via hanging hole 31 afterwards.
FIG. 11 illustrates the process flow of offline contactless mobile payment based on the mNFC:
1) The user inserts the audio connector 21 of the magnetic pulse transmitter 20  into the audio jack 11 of the smart phone 10, and activates the smart phone via password/fingerprint
2) The user selects the mobile payment APP from the smart phone’s UI.
3) The user logs in the APP with appropriate user name and password.
4) The user chooses the magnetic bank card from mobile payment APP’s UI, and loads the source data of the target bank card to mobile payment APP’s default card position.
5) (Optional) The mobile payment APP applies dynamic payment message from the Token Service Provider (TSP) , via the mobile network.
6) The mobile payment APP processes the payment message with a software encoding unit and a software waveform modulation unit sequentially, to generate the software modulated signal.
7) The magnetic pulse transmitter 20 receives the software modulated signal, and converts it into the magnetic pulse signal 50.
8) The user places the magnetic pulse transmitter 20 close to the magnetic head 41 of the POS terminal 40, so that the magnetic head 41 receives the magnetic pulse signal 50 transmitted by the magnetic pulse transmitter 20. The POS terminal 40 converts the received magnetic pulse signal 50 into appropriate payment message associated with the magnetic bank card, and completes the mNFC based contactless communication.
In one embodiment, users can directly use mobile payment APP in the smart phone, to output software modulated signal via the audio jack of the smart phone.
In another embodiment, users can use a plug-in of the browser or other multimedia players installed in the smart phone to play pre-transcoded audio stream, which outputs modulated signal at the audio jack of the smart phone.
In yet another embodiment, users can also use physical multimedia players, such as MP3 player, iPad, iPod and other real players, to play pre-transcoded audio stream, which outputs the modulated signal at the audio jack of the smart phone.
Offline contactless mobile payment based on mNFC is achieved in all three embodiments. In latter two embodiments, where software modulated signal is transcoded to compressed audio stream. The transcoded result can be stored locally as a file for re-playing, or can be played on the fly. When playing real-time audio stream on the fly, better protection is accomplished because of audio compressing and not knowing the full audio content during streaming play mode.
An audio stream can be compressed based on software modulated signal alone, so that a user can′t hear music when playing the audio files; the audio stream can also be compressed by embedding the software modulated signal into a snippet of true music, so that a user can hear the music when playing the audio stream. In other words, a user is free to choose a preferred song to reveal his/her personality, while paying at a POS terminal.
In most descriptions of the disclosure, the magnetic pulse transmitter exists as an independent entity, which relies on the audio connector and the audio jack to connect to the smart phone. It should be clear that the magnetic pulse transmitter, which contains mainly a magnetic core and a transmitting coil winding around the magnetic core, can be built inside of the smart phone without making itself a separate entity. In this case, the magnetic pulse transmitter is built inside the smart phone, receiving software modulated signal with wire (on PCB) or without wire (from Bluetooth, for example) . The integrated design can be more convenient and cost-effective.
Although the methods, systems, and devices have been described and illustrated using certain embodiments, however, the disclosure is not limited by the precise details set forth above. Many variations and modifications will be evident to those skilled in the art and may be made without departing from the spirit and scope of the disclosure. Such variations and modifications are also subjects for intellectual property protection.

Claims (28)

  1. A method of offline contactless mobile payment based on mNFC, wherein comprising:
    feeding payment message, associated with bank card magnetic stripe information, as source data to a software encoding unit and a software waveform modulation unit in a smart phone;
    transferring the software modulated signal from the smart phone to a magnetic pulse transmitter;
    using the magnetic pulse transmitter to convert the software modulated signal into magnetic pulse signal, and sending the magnetic pulse signal to the magnetic head of a POS terminal;
    using the POS terminal to recover the received magnetic pulse signal into the payment message, and continuing the payment process without modifying the POS terminal.
  2. The method of claim 1, wherein the software encoding unit and the software waveform modulation unit are part of a mobile payment APP in the smart phone.
  3. The method of claim 1, wherein the software encoding unit and the software waveform modulation unit run from a cloud sever, and the method further comprising having the smart phone download the software modulated signal, after it is generated, through mobile network.
  4. The method of claim 2 or claim 3, wherein the magnetic pulse transmitter sits in the smart phone, and the method further comprising outputting the software modulated signal in real time to the magnetic pulse transmitter by the smart phone.
  5. The method of claim 2 or claim 3, wherein the magnetic pulse transmitter sits in the smart phone, and the method further comprising storing the software modulated signal in the smart phone as a file, reading the stored file later on when payment is triggered, and outputting the software modulated signal to the magnetic pulse transmitter by the smart phone.
  6. The method of claim 2 or claim 3, wherein the magnetic pulse transmitter is a peripheral of the smart phone, the method further comprising outputting the software  modulated signal in real time to the magnetic pulse transmitter by the smart phone.
  7. The method of claim 2 or claim 3, wherein the magnetic pulse transmitter is a peripheral of the smart phone, the method further comprising storing the software modulated signal in the smart phone as a file, reading the stored file later on when payment is triggered, and outputting the software modulated signal to the magnetic pulse transmitter by the smart phone.
  8. The method of claim 1, wherein the source data can be either static payment message or dynamic payment message, and is bound to the target bank card’s primary account number.
  9. The method of claim 8, wherein the static payment message is directly generated by Token Service Provider (TSP) , or generated by TSP using biometric data, or generated by TSP using other unique object’s feature data.
  10. The method of claim 9, wherein the biometric data is one of voiceprint feature data, fingerprint feature data, palmprint feature data, facial feature data, or other biometric data, or any combinations of them.
  11. The method of claim 10, wherein the dynamic payment message is generated by TSP and contains a time factor.
  12. The method of claim 11, wherein the dynamic payment message is valid for one time usage only, after it is provided by TSP via mobile network.
  13. A system of offline contactless mobile payment based on mNFC, wherein comprising:
    a software encoding unit: using payment message, associated with bank card’s magnetic stripe information, as source data and encoding it as software pulse signal;
    a software waveform modulation unit: using the software pulse signal as input to generate corresponding software modulated signal;
    a smart phone: receiving and outputting the software modulated signal;
    a magnetic pulse transmitter: receiving the software modulated signal from the smart phone, converting the software modulated signal to magnetic pulse signal, and transmitting the magnetic pulse signal;
    a Point of Sale (POS) terminal: using its magnetic head to receive the magnetic pulse signal from the magnetic pulse transmitter, recovering the magnetic pulse signal as payment message, and continuing the payment process without modifying the POS terminal.
  14. The system of claim 13, wherein the software encoding unit and the software waveform modulation unit are integrated into the mobile payment APP in the smart phone.
  15. The system of claim 13, wherein the software encoding unit and the software waveform modulation unit are integrated in the cloud sever, and the smart phone downloads the software modulated signal via mobile network.
  16. The system of claim 14 or claim 15, wherein the magnetic pulse transmitter sits in the smart phone.
  17. The system of claim 14 or claim 15, wherein the magnetic pulse transmitter is a peripheral of the smart phone, and receives the software modulated signal via the audio jack of the smart phone.
  18. The system of claim 14 or claim 15, wherein the source data can be either static payment message or dynamic payment message, and is bound to the target bank card’s primary account number.
  19. The system of claim 18, wherein the static payment message is directly generated by TSP, or generated by TSP using biometric data, or generated by TSP using other unique object’s feature data.
  20. The system of claim 19, wherein the biometric data is one of voiceprint feature data, fingerprint feature data, palmprint feature data, facial feature data, or other biometric data, or any combinations of them.
  21. The system of claim 18, wherein the dynamic payment message is generated by TSP and contains a time factor.
  22. The system of claim 21, wherein the dynamic payment message is valid for one time usage only, after it is provided by TSP via mobile network.
  23. The system of claim 16, wherein the magnetic pulse transmitter comprising:
    a magnetic pulse transmitting component, which consists of a magnetic core and a transmitting coil winding around the magnetic core, and has electrical connection to a smart phone interface outputting the software modulated signal.
  24. The system of claim 17, wherein the magnetic pulse transmitter comprising:
    a transmitter cover;
    an audio connector, used for inserting into the audio jack of the smart phone, and receiving the software modulated signal from the smart phone;
    a magnetic pulse transmitting component, built inside the transmitter cover, and consists of a magnetic core and a transmitting coil winding around the magnetic core, the function of the magnetic pulse transmitting component is to covert the software modulated signal to the magnetic pulse signal, one end of the transmitting coil is connected to the right channel pole of the audio connector and the other end is connected to the common ground pole of the audio connector.
  25.  The system of claim 13, wherein the magnetic pulse transmitter also includes function modules such as but not limited to a key storage unit, an encryption/authentication unit, and a biometric data extraction/recognition unit.
  26. The system of claim 25, wherein the magnetic pulse transmitter also includes a power acquisition module which is electrically connected with the transmitting coil and is used for supplying power to other function modules.
  27. The system of claim 23, wherein the magnetic core is a paper-thin slice, and has rectangle, oval, or irregular shape.
  28. The system of claim 24, wherein the magnetic core is a paper-thin slice, and has rectangle, oval, or irregular shape.
PCT/CN2016/083419 2015-05-29 2016-05-26 Method and system of offline contactless mobile payment based on magnetic near field communication WO2016192562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510289398.X 2015-05-29
CN201510289398.XA CN104867008B (en) 2015-05-29 2015-05-29 It is a kind of that method of payment and its system are moved down the line based on magnetic field impulse near-field communication

Publications (2)

Publication Number Publication Date
WO2016192562A1 WO2016192562A1 (en) 2016-12-08
WO2016192562A9 true WO2016192562A9 (en) 2017-05-18

Family

ID=53912827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083419 WO2016192562A1 (en) 2015-05-29 2016-05-26 Method and system of offline contactless mobile payment based on magnetic near field communication

Country Status (2)

Country Link
CN (1) CN104867008B (en)
WO (1) WO2016192562A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104867008B (en) * 2015-05-29 2019-02-19 上海易码信息科技有限公司 It is a kind of that method of payment and its system are moved down the line based on magnetic field impulse near-field communication
CN105512874A (en) * 2015-09-01 2016-04-20 上海易码信息科技有限公司 Online to offline mobile payment method for wearable devices
CN105335849A (en) * 2015-11-03 2016-02-17 上海易码信息科技有限公司 Mobile payment apparatus
CN105721025A (en) * 2016-03-14 2016-06-29 张培蕾 Device for simulating magnetic data transmission by mobile phone
CN106060019A (en) * 2016-05-20 2016-10-26 张宇川 Bank account management system and method based on intelligent client
CN106600243A (en) * 2016-08-30 2017-04-26 广州云融信息科技有限公司 Mobile payment method and system based on mixed mode
CN106845953A (en) * 2017-01-23 2017-06-13 上海讯联数据服务有限公司 Mobile payment information processor and method of mobile payment and system
CN106960339A (en) * 2017-03-15 2017-07-18 上海易码信息科技有限公司 A kind of SMD mobile payment device
CN111861431A (en) * 2020-06-08 2020-10-30 西安艾润物联网技术服务有限责任公司 Digital currency payment method and system
CN112464206B (en) * 2020-11-23 2023-06-13 支付宝(中国)网络技术有限公司 Data feedback system and method and information identification method and system
CN112543417B (en) * 2020-11-23 2022-03-18 支付宝(杭州)信息技术有限公司 Data feedback system and method
CN113240060A (en) * 2021-04-28 2021-08-10 浙江公羽电器有限公司 Magnetic communication receiving system and method based on magnetic force signal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120316950A1 (en) * 2011-06-10 2012-12-13 Jeffrey Laporte System and method for augmentation of retail pos data streams with transaction information
CN102855561A (en) * 2012-07-31 2013-01-02 长沙锐得信息科技有限公司 Mobile phone payment device and payment method based on security chips and sound carrier wave communication
CN103218713A (en) * 2013-05-13 2013-07-24 上海盛本通讯科技有限公司 Multifunctional POS (point-of-sale) terminal, system and payment method based on intelligent platform
CN104091261B (en) * 2014-07-29 2018-12-21 银联商务有限公司 financial payment terminal, mobile terminal, data transmission method and data processing method
CN104867008B (en) * 2015-05-29 2019-02-19 上海易码信息科技有限公司 It is a kind of that method of payment and its system are moved down the line based on magnetic field impulse near-field communication
CN204926176U (en) * 2015-05-29 2015-12-30 上海易码信息科技有限公司 Mobile payment system under line

Also Published As

Publication number Publication date
CN104867008A (en) 2015-08-26
CN104867008B (en) 2019-02-19
WO2016192562A1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
WO2016192562A9 (en) Method and system of offline contactless mobile payment based on magnetic near field communication
JP5781094B2 (en) Card reader device and method of use
CN104903913B (en) System and method for base band near field magnetic stripe data conveyer
CA2881463C (en) System and method for providing smart electronic wallet and reconfigurable transaction card thereof
JP6122182B2 (en) System and method for baseband near field magnetic stripe data transmitter
US20120234918A1 (en) Card reader device for a cell phone and method of use
US20150069126A1 (en) Method and apparatus for enabling communication between two devices using magnetic field generator and magnetic field detector
US8376239B1 (en) Method of use of a simulated magnetic stripe card system for use with magnetic stripe card reading terminals
US8313037B1 (en) Simulated magnetic stripe card system and method for use with magnetic stripe card reading terminals
US20110320314A1 (en) Optical contact loaded magnetic card
US20160019449A1 (en) Universal EMV Credit Card Chip and Mobile Application for Emulation
CN204926176U (en) Mobile payment system under line
CN105721025A (en) Device for simulating magnetic data transmission by mobile phone
KR101418817B1 (en) Card Payment Apparatus
KR101525565B1 (en) bidirectional hybrid card reader
US20150039520A1 (en) Personal secure information device (psid)
Gupta Using Mobile Phone’s Audio Interface for Making of a Magnetic Stripe Card Reader
WO2015163837A1 (en) Paybeam method for inductively transmitting digital data
WO2015163836A1 (en) Paybeam system for inductively transmitting digital data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802485

Country of ref document: EP

Kind code of ref document: A1