WO2016190562A1 - Heat exchanger for evaporative cooler for desiccant cooling - Google Patents

Heat exchanger for evaporative cooler for desiccant cooling Download PDF

Info

Publication number
WO2016190562A1
WO2016190562A1 PCT/KR2016/004694 KR2016004694W WO2016190562A1 WO 2016190562 A1 WO2016190562 A1 WO 2016190562A1 KR 2016004694 W KR2016004694 W KR 2016004694W WO 2016190562 A1 WO2016190562 A1 WO 2016190562A1
Authority
WO
WIPO (PCT)
Prior art keywords
wet channel
fin
channel
pin
heat exchanger
Prior art date
Application number
PCT/KR2016/004694
Other languages
French (fr)
Korean (ko)
Inventor
진원재
한재현
이동근
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Publication of WO2016190562A1 publication Critical patent/WO2016190562A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations

Definitions

  • the present invention relates to a heat exchanger of a dehumidification cooling evaporative cooler, and more particularly, to a heat exchanger of a dehumidification cooling evaporative cooler capable of preventing water condensation on a fin provided in a wet channel.
  • An air conditioner which is a commonly used cooling and dehumidifying device, uses a refrigerant and is recognized as a major culprit of ozone layer destruction and global warming due to leakage of the refrigerant.
  • energy ventilators have been developed to reduce the ventilation load through the sensible and latent heat transfer between indoor exhaust and outdoor intake air.
  • the conventional ventilators have a problem that the latent heat recovery rate is significantly lower than the sensible heat recovery rate and cannot cope with an increase in cooling load.
  • regenerative evaporative cooling technology has been developed.
  • Regenerative evaporative cooling technology lowers the temperature of the air by using the evaporative cooling effect of water, and solves the problems of the existing air conditioner because it does not use a refrigerant other than water, and has the advantage of sufficiently reducing the cooling load. have.
  • Such an evaporative cooler continuously forms the wet channel and the dry channel, and has a configuration of supplying cooled air to the room through the dry channel through heat exchange by evaporation in the wet channel, and increasing the contact area.
  • a repeatedly bent fin (fin) In order to use a repeatedly bent fin (fin).
  • the prior art includes a unit module in which the dry channel unit and the wet channel unit are repeatedly arranged and bonded, and a wet channel guide duct formed at an outlet side of the wet channel unit to separate the air duct and the indoor air. It is characterized in that it further comprises a coupling portion to fit inside or outside the wet channel portion.
  • the dry channel part and the wet channel part are provided with a dry channel pin and a wet channel pin having a cross-section.
  • the wet channel pin is hydrophilic coated to allow evaporated water to spread well, In order to supply the evaporated water is supplied 6 to 7 times more than the amount of evaporated water, and the remaining water that is not evaporated passes through the wet channel part is collected in the tank and then recycled.
  • the evaporation area is increased to improve the performance of the evaporative cooler, but the residual water that has not evaporated flows down the surface of the wet channel pins and then wets. At the end of the channel pin, the phenomenon occurs due to surface tension.
  • the present invention has been made to solve the above-mentioned problems, to provide a heat exchanger of the dehumidification cooling evaporative cooler that can improve the heat exchange performance by preventing water condensation due to residual water in the wet channel fins. There is this.
  • the heat exchanger of the dehumidification cooling evaporative cooler having at least one dry channel and at least one wet channel, the heat exchange between the dry channel and the wet channel
  • the wet channel is provided with a wet channel fin (70) to form a flow path space through which air flows, and evaporation occurs by contact with the supplied evaporated water
  • the wet channel pins 70, 170, and 270 may include a pair of pin bodies 71, 72; 171, 172; 271 and 272 facing each other, and a pin connecting upper ends of the pair of pin bodies 71, 72, 171, 172, 271 and 272 to each other.
  • Unit pin units (71, 72, 73; 171, 172, 173; 271, 272, 273) consisting of the body connection portion (73, 173, 273), but any one of the pair of pin bodies (71, 72; 171, 172; 271, 272) is in the pin body (72, 172, 272)
  • the incisions 75, 175, and 275 of the cut shape are formed at the end positioned at the end of the flow path of the air.
  • the wet channel pins 70, 170, 270 are connected to a plurality of unit pin units 71, 72, 73; 171, 172, 173; 271, 272, 273 in a direction parallel to the longitudinal direction thereof, and thus, the unit pin units 71, 72, 73 are connected.
  • 171, 172, 173; 271, 272, 273 may have a waveform in a direction perpendicular to the longitudinal direction.
  • the cutouts 75, 175, and 275 may have a round or polygonal shape.
  • the fin bodies 171 and 172 of the wet channel pin 170 may have irregularities 174a and 175a formed to have a cross section of a waveform along a longitudinal direction.
  • a plurality of louvers 274a and 274b are formed in the fin bodies 271 and 272 of the wet channel fins 270 along the longitudinal direction, so that the air passes through the cutouts 274c and 274d of the louvers 274a and 274b. It may be flowing.
  • the fin bodies 71 and 72 of the wet channel are formed with a plurality of slits 74a and 74b at regular intervals along the longitudinal direction, and the fin bodies adjacent to each other with the slits 74a and 74b therebetween ( 71a, 71b and 72a, 72b may protrude in opposite directions as directions perpendicular to the longitudinal direction, such that the air flows through the slits 74a and 74b.
  • the wet channel may include a pair of barrier plates 20 and 30 facing each other;
  • the wet channel pins (70) positioned between the pair of partition plates (20, 30) and located in the center portion; Located at the edge of the pair of barrier plates 20 and 30, it may be composed of flow path guides (60a, 60b) for determining the flow direction of the air.
  • the slit is formed in the wet channel fins, and the fin bodies adjacent to each other based on the slit are protruded in the opposite directions as the directions perpendicular to the longitudinal direction of the wet panel fins, thereby increasing the flow path of air to improve heat exchange performance. You can.
  • wet channel fins are formed with irregularities or louvers along the longitudinal direction, thereby increasing heat transfer area, thereby improving heat exchange performance.
  • FIG. 1 is a perspective view showing a heat exchanger according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the heat exchanger of FIG.
  • FIG. 3 is a view showing the configuration of the wet channel in the heat exchanger of FIG.
  • FIG. 4 is a perspective view showing the wet panel pin shown in FIG.
  • FIG. 5 is an enlarged perspective view showing the wet channel pins shown in FIG. 4 from different angles;
  • FIG. 6 is a front view showing the wet channel pins shown in FIG.
  • FIG. 7 is a plan view showing the wet channel pin shown in FIG.
  • FIG. 8 is a view showing a wet channel pin according to another embodiment of the present invention.
  • FIG. 9 is a view showing a wet channel pin according to another embodiment of the present invention.
  • 174a, 174b Unevenness 274a, 274b, 274-1a, 274-1b: Louver body
  • the heat exchanger 100 may include the first to fourth partition plates 10, 20, 30, and 40, between the first partition plate 10 and the second partition plate 20, and the third partition plate 30. It is formed between the fourth partition plate 40, the dry channel (DC), the indoor air flows, formed between the second partition plate 20 and the third partition plate 30, the additional air flows and at the same time evaporated water It consists of a wet channel (WC) where evaporation takes place.
  • DC dry channel
  • WC wet channel
  • the first to fourth partition plate (10, 20, 30, 40) is made of a thin plate-like, the overall shape is made of an octagonal shape in which a vertex portion is cut in a rhombus shape.
  • the first partition 11 includes a plurality of first projections 11, the second partition 20 includes a plurality of second projections 21, and the third partition 30 has a plurality of third projections 31. ), A plurality of third protrusions 41 are formed in the fourth partition plate 40.
  • Some of the plurality of first protrusions 11 of the first barrier plate 10 protrude in the right direction from the right side of the first barrier plate 10, and the other of the plurality of first protrusions 11 is the first barrier rib. It protrudes from the left side of the board 10 to a left direction.
  • Some of the plurality of second protrusions 21 of the second barrier plate 10 protrude in the right direction from the right side of the second barrier plate 20, and the other of the plurality of second protrusions 21 is the second barrier rib. It protrudes from the left side of the board 20 to the left direction.
  • protrusions 31 and 41 of the third and fourth barrier plates 30 and 40 also protrude in the right direction from the right side of each of the barrier plates 30 and 40, and the protrusions 31 and 41. The rest of) is protruded in the left direction from the left side of each partition plate (30, 40).
  • the parts may be configured to be in contact with each other, and the protrusions 21, 31, and 41 that face each other of the remaining partition plates 20, 30, and 40 may also be configured to be in contact with each other.
  • the protrusions 11, 21, 31, and 41 are configured to be in contact with each other, the flow of air can be guided and adjacent partition walls 10 and 20 are supported by each other, thereby providing The deformation can be prevented.
  • the third partition plate 30 has the same shape as the first partition plate 10
  • the fourth partition plate 40 has the same shape as the second partition plate 20.
  • the gun channel DC has a pair of first flow guides 50a positioned to face the edges of the first partition plate 10 and the second partition wall 20 so as to guide the flow direction of indoor air. 50b), a gun channel pin 80 is disposed between the pair of first flow guides 50a and 50b.
  • the first flow guides 50a and 50b prevent the air passing through the gun channel DC from leaking to the outside of the heat exchanger, and the air flows to the left lower direction of the gun channel fin 80 (refer to FIG. 2). ) Guides to the upper right side of the gun channel pin 80.
  • the gun channel pin 80 may be formed in a shape in which a cross section is formed in a wave shape to increase a surface area so that a smooth heat exchange may be performed.
  • the air introduced into the dry channel DC passes through the dry channel pin 80 upwards from the lower side, and heat exchanges with the wet channel WC to decrease the temperature and flow into the room.
  • the wet channel (WC) is a heat exchange with the air passing through the dry channel (DC) while the addition and the evaporated water is introduced, so as to face the edges of the second partition plate 20 and the third partition plate (30).
  • a pair of second channel guides 60a and 60b positioned therein and a wet channel pin 70 positioned between the pair of second channel guides 60a and 60b are provided.
  • the second flow guides 60a and 60b prevent the air passing through the wet channel WC from leaking to the outside of the heat exchanger, and the additional air flows from the left upper direction WCI of the wet channel fin 70. After passing through the wet channel pin 70 in the downward direction and flows to the right downward direction (WCO) of the wet channel pin 70 is discharged to the outside.
  • WCO right downward direction
  • a wet channel pin according to the present invention will be described with reference to FIGS. 4 to 7.
  • the wet channel pins 70 of the present invention are provided with unit pin units 71, 72, 73, 74, 75 having a cross-sectional shape having a ⁇ or ⁇ shape, and one unit pin unit 71, 72, 73, 74.
  • Other unit pin units 71-1, 72-2, 73-1, 74-1, 75-1 neighboring to 75 are adjacently connected in a direction perpendicular to the flow direction of air, as shown in FIG. 6. As shown, it consists of the shape of the waveform.
  • the unit pin units 71, 72, 73, 74, and 75 form a flow path space through which air flows, and a pair of first pins facing each other such that evaporation occurs by contact with supplied evaporated water.
  • Body 71 and the second pin body 72, the pin body connecting portion 73 for connecting the upper ends of the pair of pin body (71, 72), the first pin body 71 and the second pin body A plurality of slits 74 formed at a predetermined interval along the longitudinal direction in the 72, 72, the cut portion 75 formed in the shape cut to the end located at the end of the flow path of air in the second pin body (72). .
  • the first pin body 71 is formed in a predetermined length in the direction of flow of air (in the direction of the arrow in FIG. 4) to guide the flow of air, and the second pin body 72 is the first pin body 71. It is formed to face each other as the same shape as.
  • the first fin body 71 is formed with a plurality of slits 74a spaced apart in the longitudinal direction thereof, and the first fin body 71 is formed along the longitudinal direction due to the formation of the slits 74a.
  • a plurality of pin bodies 71a and 71b are separated.
  • the slit 74a is formed by cutting the first pin body 71 in the height direction, and one pin body 71a and the pin body 71b adjacent to each other with the slit 74a interposed therebetween in the longitudinal direction. It consists of the shape (deviated shape) which protruded in the opposite direction (left-right direction in FIGS. 4 and 6) as a perpendicular direction with respect to each other. That is, in FIG. 4, one pin body 71a is positioned at the right side with respect to the slit 74a, and the other pin body 71b is positioned at the left side with respect to the slit 74a. Therefore, the slit 74a has an open shape, and air flows through the open portion.
  • the cutout 75 is formed in the pin body 72a, which is an end portion located at the end of the flow path of air as the second pin body 72.
  • the cutout 75 is formed in a round shape and cut in a semicircular shape.
  • the evaporated water injected into the wet channel fins 70 is spread along the surfaces of the first fin body 71 and the second fin body 72, and the evaporated water remaining without evaporation is the surface of the wet panel fin 70. Along the flow in the same direction as the air flow direction (downward in FIGS. 4 and 7).
  • the evaporated water flowing down is formed between the first pin body 71 and the pin bodies 71a and 72a located at the bottom of the second pin body 72 at a position close to the pin body connection portion 73a.
  • the incision portion 75 is formed in the second pin body 72a, a portion corresponding to the first pin body 71a in the second pin body 72a close to the pin body connection portion 73a. Since this is cut out, condensation is prevented in the space between the pin bodies 71a and 72a.
  • the air can flow smoothly through the space between the first fin body 71 and the second fin body 72, thereby preventing a decrease in heat exchange performance.
  • the cutout 75 is illustrated as being formed in the second pin body 72, but may also be configured to be formed in the first pin body 71.
  • air flowing from the upper side to the lower side flows through a space between the first pin body 71 and the second pin body 72.
  • one fin body 71a and the adjacent fin body 71b are shifted from each other and slits 74a and 74b are formed therebetween, air flows in a zigzag form while passing through the slits 74a and 74b. Done. This flow of air can improve heat exchange efficiency.
  • the cutout 75 is illustrated as being cut in a semicircle shape as a round shape, but may be modified in a polygonal shape such as a triangle or a square.
  • a wet channel pin according to another embodiment of the present invention will be described with reference to FIG. 8.
  • the wet channel pin 170 includes a pair of pin bodies 171 and 172 facing each other, and a pin body connecting portion 173 connecting upper ends of the pair of pin bodies 171 and 172 to each other. It includes a pin unit (171, 172, 173), the unit pin unit (171, 172, 173) is composed of a plurality of contiguous adjacent in the direction perpendicular to the flow direction of the air.
  • the pair of pin bodies 171 and 172 form a flow path space through which air flows, and a pair of first pin bodies 171 and a second facing each other so that evaporation occurs by contact with supplied evaporated water. Consists of a pin body 172, the first pin body 171 and the second pin body 172 is formed with concave-convex (174a, 174b) to form a cross section of the waveform along the longitudinal direction, respectively.
  • the cutout portion 175 of the cut shape is formed at the end located at the end of the flow path of air to prevent the formation of evaporated water that has not evaporated, This can improve the heat exchange performance by preventing the flow of air to be disturbed.
  • a wet channel pin according to another embodiment of the present invention will be described with reference to FIG. 9.
  • This embodiment has a different configuration compared to the embodiment shown in FIG. 8, and the plurality of louvers 274a, 274b, 274c and 274d along the longitudinal direction of the fin bodies 271 and 272 of the wet channel pin 270. There is a difference in that it is formed.
  • louvers 274a, 274b, 274c and 274d form openings 274c and 274d by opening portions of the first pin body 271 and the second pin body 272, and the louver bodies 274a and 274b. Is bent to be inclined with respect to the air flow direction.
  • the louver body 274a and the louver body 274-1a adjacent to the louver body 274a formed along the longitudinal direction of the first pin body 271 are inclined in a direction in which the inclination direction is symmetrical with respect to the air flow direction.
  • the louver body 274b and the louver body 274-1b neighboring the louver body 274b formed along the longitudinal direction of the second fin body 272 are inclined in a direction in which the inclination direction thereof is symmetrical with respect to the air flow direction.
  • the louver bodies 274a and the other louver bodies 274b facing each other are also inclined in a direction in which the inclined direction thereof is symmetrical with respect to the flow direction of air.
  • the air flows through the openings 274c and 274d to increase the heat transfer area, thereby improving heat exchange performance.
  • the second fin body 272 is formed at the end of the flow path of the air in the cut portion 275 of the cut shape is formed in the same shape as the first embodiment, to prevent the formation of evaporated water not evaporated, This can improve the heat exchange performance by preventing the flow of air to be disturbed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The aim of the present invention is to provide a heat exchanger for an evaporative cooler for desiccant cooling, whereby it is possible to improve the heat-exchange performance by preventing the phenomenon of water condensation due to residual water on a wet-channel fin. In order to achieve the above aim, the present invention concerns a heat exchanger for an evaporative cooler for desiccant cooling which has at least one dry channel and at least one wet channel and in which the heat exchange takes place between the dry channel and the wet channel, wherein: the wet channel has a wet-channel fin which is formed so as to have a flow-path space where air flows, and on which evaporation takes place by means of contact with evaporation water that has been supplied thereto; and the wet channel fin comprises a unitary fin unit incorporating a pair of fin bodies that face each other, and a fin-body-linking section for linking together the upper end parts of the pair of fin bodies, and, formed in one or other of the fin bodies in the pair of fin bodies, there is a cut-away section in the shape of a cut-away in an edge part thereof located at the end of a flow pathway for the air.

Description

제습 냉방용 증발식 냉각기의 열교환기Heat exchanger of evaporative cooler for dehumidification cooling
본 발명은 제습 냉방용 증발식 냉각기의 열교환기에 관한 것으로, 보다 상세하게는 습채널에 구비된 핀에 물 맺힘을 방지할 수 있는 제습 냉방용 증발식 냉각기의 열교환기에 관한 것이다.The present invention relates to a heat exchanger of a dehumidification cooling evaporative cooler, and more particularly, to a heat exchanger of a dehumidification cooling evaporative cooler capable of preventing water condensation on a fin provided in a wet channel.
일반적으로 사용되는 냉방 및 제습 장치인 에어컨은 냉매를 사용하며, 냉매의 누설에 의한 오존층 파괴와 지구 온난화의 문제의 주범으로 인식되고 있다. 이러한 냉매 사용의 문제점을 감안하여 실내 배기와 실외 흡입 공기 사이의 현열 및 잠열 전달을 통해 환기부하를 경감시키는 에너지 환기장치들이 개발되었다.An air conditioner, which is a commonly used cooling and dehumidifying device, uses a refrigerant and is recognized as a major culprit of ozone layer destruction and global warming due to leakage of the refrigerant. In consideration of the problem of using the refrigerant, energy ventilators have been developed to reduce the ventilation load through the sensible and latent heat transfer between indoor exhaust and outdoor intake air.
그러나 종래 환기장치들은 잠열회수율이 현열회수율에 비하여 현저히 낮아 냉방부하 증가에 대응할 수 없는 문제점이 있었다. 이러한 종래 에너지 환기장치의 문제점을 고려하여 재생 증발식 냉방기술이 개발되었다.However, the conventional ventilators have a problem that the latent heat recovery rate is significantly lower than the sensible heat recovery rate and cannot cope with an increase in cooling load. In consideration of the problems of the conventional energy ventilator, regenerative evaporative cooling technology has been developed.
재생 증발식 냉방기술은 물의 증발 냉각 효과를 이용하여 공기의 온도를 낮추는 것으로, 물 이외의 냉매를 사용하지 않기 때문에 기존의 에어컨이 가지는 문제점을 해결할 수 있으며, 냉방부하를 충분히 감소시킬 수 있는 장점이 있다. Regenerative evaporative cooling technology lowers the temperature of the air by using the evaporative cooling effect of water, and solves the problems of the existing air conditioner because it does not use a refrigerant other than water, and has the advantage of sufficiently reducing the cooling load. have.
이와 같은 증발식 냉각기는, 습채널과 건채널을 연속 반복적으로 형성하고, 습채널에서의 증발에 의한 열교환을 통해 건채널을 통해 실내로 냉각된 공기를 공급하는 구성을 가지게 되며, 접촉면적의 증가를 위하여 반복적으로 다수회 절곡된 핀(fin)을 사용하게 된다.Such an evaporative cooler continuously forms the wet channel and the dry channel, and has a configuration of supplying cooled air to the room through the dry channel through heat exchange by evaporation in the wet channel, and increasing the contact area. In order to use a repeatedly bent fin (fin).
이와 같은 증발식 냉각기가 나타난 종래기술로서 대한민국 등록특허 10-1055668(재생증발식 냉방기의 코어 모듈 및 그 제작방법, 2011년 8월 3일 등록)가 있다.As a prior art in which such an evaporative cooler appeared, there is a Republic of Korea Patent No. 10-1055668 (Core module of regenerative evaporative cooler and its manufacturing method, registered on August 3, 2011).
상기 종래기술은 건채널부와 습채널부가 반복적으로 배열되어 접합되는 단위모듈과, 습채널부의 출구측에 형성되어 추기와 실내공기를 분리시키는 습채널 안내 덕트를 포함하여 구성되는 것으로, 상기 안내 덕트를 습채널부의 내측 또는 외측에 끼우는 결합부를 더 포함하는 특징이 있는 것이다.The prior art includes a unit module in which the dry channel unit and the wet channel unit are repeatedly arranged and bonded, and a wet channel guide duct formed at an outlet side of the wet channel unit to separate the air duct and the indoor air. It is characterized in that it further comprises a coupling portion to fit inside or outside the wet channel portion.
상기 건채널부와 습채널부에는 단면이 파형인 건채널핀과 습채널핀이 구비되어 있는데, 상기 습채널핀에는 증발수가 잘 퍼지도록 하기 위해서 친수코팅이 되어 있기는 하지만, 습채널핀 전면적에 증발수를 공급하기 위하여 증발량보다 6~7배 이상의 증발수를 공급하게 되며, 증발되지 않은 잔류수는 습채널부를 통과한 후 탱크에 집수된 후 재순환 과정을 거치게 된다.The dry channel part and the wet channel part are provided with a dry channel pin and a wet channel pin having a cross-section. The wet channel pin is hydrophilic coated to allow evaporated water to spread well, In order to supply the evaporated water is supplied 6 to 7 times more than the amount of evaporated water, and the remaining water that is not evaporated passes through the wet channel part is collected in the tank and then recycled.
그러나 상기 습채널핀의 경우 파형이 촘촘하게 되도록 습채널핀을 절곡시키면 증발면적이 증가되어 증발식 냉각기의 성능을 향상시킬 수 있으나, 증발이 되지 않은 잔류수가 습채널핀의 표면을 따라 흘러내린 후 습채널핀의 끝단에서 표면장력에 의해 맺히는 현상이 발생한다.However, in the case of the wet channel pins, when the wet channel pins are bent so that the waveform becomes dense, the evaporation area is increased to improve the performance of the evaporative cooler, but the residual water that has not evaporated flows down the surface of the wet channel pins and then wets. At the end of the channel pin, the phenomenon occurs due to surface tension.
이와 같이 잔류수의 물맺힘 현상이 발생하면 습채널부를 통과하는 공기의 유동을 방해하게 되어 증발식 냉각기의 열교환 성능을 저하시키는 문제점이 있었다.As such, when water condensation occurs in the residual water, it hinders the flow of air passing through the wet channel part, thereby degrading the heat exchange performance of the evaporative cooler.
본 발명은 상술한 제반 문제점을 해결하기 위해 안출된 것으로, 습채널핀에 잔류수에 의한 물맺힘 현상을 방지하여 열교환 성능을 향상시킬 수 있는 제습 냉방용 증발식 냉각기의 열교환기를 제공하고자 함에 그 목적이 있다.The present invention has been made to solve the above-mentioned problems, to provide a heat exchanger of the dehumidification cooling evaporative cooler that can improve the heat exchange performance by preventing water condensation due to residual water in the wet channel fins. There is this.
상기 목적을 달성하기 위한 본 발명의 제습 냉방용 증발식 냉각기는, 적어도 하나의 건채널과 적어도 하나의 습채널을 구비하고, 상기 건채널과 습채널 사이에 열교환이 이루어지는 제습 냉방용 증발 냉각기의 열교환기에 있어서, 상기 습채널에는 공기가 유동하는 유로공간을 형성시키고, 공급된 증발수와의 접촉에 의해 증발이 일어나는 습채널핀(70)이 구비되고; 상기 습채널핀(70,170,270)은, 서로 마주보는 한 쌍의 핀몸체(71,72;171,172;271,272)와, 상기 한 쌍의 핀몸체(71,72;171,172;271,272)의 상단부를 서로 연결하는 핀몸체연결부(73,173,273)로 이루어진 단위 핀유닛(71,72,73;171,172,173;271,272,273)을 포함하되, 상기 한 쌍의 핀몸체(71,72;171,172;271,272) 중 어느 하나의 핀몸체(72,172,272)에는 상기 공기의 유동경로 끝단에 위치한 단부에 절개된 형상의 절개부(75,175,275)가 형성된 것을 특징으로 한다.Dehumidification cooling evaporative cooler of the present invention for achieving the above object, the heat exchanger of the dehumidification cooling evaporative cooler having at least one dry channel and at least one wet channel, the heat exchange between the dry channel and the wet channel Here, the wet channel is provided with a wet channel fin (70) to form a flow path space through which air flows, and evaporation occurs by contact with the supplied evaporated water; The wet channel pins 70, 170, and 270 may include a pair of pin bodies 71, 72; 171, 172; 271 and 272 facing each other, and a pin connecting upper ends of the pair of pin bodies 71, 72, 171, 172, 271 and 272 to each other. Unit pin units (71, 72, 73; 171, 172, 173; 271, 272, 273) consisting of the body connection portion (73, 173, 273), but any one of the pair of pin bodies (71, 72; 171, 172; 271, 272) is in the pin body (72, 172, 272) The incisions 75, 175, and 275 of the cut shape are formed at the end positioned at the end of the flow path of the air.
상기 습채널핀(70,170,270)은 상기 단위 핀유닛(71,72,73;171,172,173;271,272,273)이 그 길이방향에 수평한 방향으로 인접하여 복수 개가 연결되어 있어, 상기 단위 핀유닛(71,72,73;171,172,173;271,272,273)의 길이방향에 수직한 방향의 단면이 파형으로 이루어질 수 있다.The wet channel pins 70, 170, 270 are connected to a plurality of unit pin units 71, 72, 73; 171, 172, 173; 271, 272, 273 in a direction parallel to the longitudinal direction thereof, and thus, the unit pin units 71, 72, 73 are connected. 171, 172, 173; 271, 272, 273 may have a waveform in a direction perpendicular to the longitudinal direction.
상기 절개부(75,175,275)는 라운드 형상 또는 다각형 형상으로 이루어질 수 있다.The cutouts 75, 175, and 275 may have a round or polygonal shape.
상기 습채널핀(170)의 핀몸체(171,172)에는 길이방향을 따라 파형의 단면이 되도록 요철(174a,175a)이 형성된 것일 수 있다.The fin bodies 171 and 172 of the wet channel pin 170 may have irregularities 174a and 175a formed to have a cross section of a waveform along a longitudinal direction.
상기 습채널핀(270)의 핀몸체(271,272)에는 길이방향을 따라 복수의 루버(274a,274b)가 형성되어, 상기 루버(274a,274b)의 절개부(274c,274d)를 통해 상기 공기가 유동하는 것일 수 있다.A plurality of louvers 274a and 274b are formed in the fin bodies 271 and 272 of the wet channel fins 270 along the longitudinal direction, so that the air passes through the cutouts 274c and 274d of the louvers 274a and 274b. It may be flowing.
상기 습채널의 핀몸체(71,72)에는 길이방향을 따라 일정 간격으로 복수의 슬릿(74a,74b)이 형성되어 있고, 상기 슬릿(74a,74b)을 사이에 두고 서로 이웃하는 핀몸체들(71a,71b; 72a,72b)은 상기 길이방향에 수직한 방향으로서 서로 반대방향으로 돌출되어, 상기 슬릿(74a,74b)을 통해 상기 공기가 유동하는 것일 수 있다.The fin bodies 71 and 72 of the wet channel are formed with a plurality of slits 74a and 74b at regular intervals along the longitudinal direction, and the fin bodies adjacent to each other with the slits 74a and 74b therebetween ( 71a, 71b and 72a, 72b may protrude in opposite directions as directions perpendicular to the longitudinal direction, such that the air flows through the slits 74a and 74b.
상기 습채널은, 서로 마주보는 한 쌍의 격벽판(20,30); 상기 한 쌍의 격벽판(20,30) 사이에 위치하되, 중앙부에 위치된 상기 습채널핀(70); 상기 한 쌍의 격벽판(20,30)의 가장자리에 위치하되, 상기 공기의 흐름 방향을 결정하는 유로가이드(60a,60b)로 이루어진 것일 수 있다.The wet channel may include a pair of barrier plates 20 and 30 facing each other; The wet channel pins (70) positioned between the pair of partition plates (20, 30) and located in the center portion; Located at the edge of the pair of barrier plates 20 and 30, it may be composed of flow path guides (60a, 60b) for determining the flow direction of the air.
본 발명에 의하면, 습채널핀의 단부에 절개부를 형성하여 잔류수의 물맺힘을 방지하여 열교환 성능을 향상시킬 수 있다.According to the present invention, it is possible to improve the heat exchange performance by forming a cutout at the end of the wet channel fin to prevent the build-up of residual water.
또한 습채널핀에는 슬릿을 형성하고, 상기 슬릿을 기준으로 서로 이웃하는 핀몸체는 습패널핀의 길이방향에 수직한 방향으로서 서로 반대방향으로 돌출되도록 하여 공기의 유동 경로를 길게함으로써 열교환 성능을 향상시킬 수 있다.In addition, the slit is formed in the wet channel fins, and the fin bodies adjacent to each other based on the slit are protruded in the opposite directions as the directions perpendicular to the longitudinal direction of the wet panel fins, thereby increasing the flow path of air to improve heat exchange performance. You can.
또한 습채널핀에는 길이방향을 따라 요철 또는 루버가 형성되어 있어 전열면적을 증가시켜 열교환 성능을 향상시킬 수 있다.In addition, the wet channel fins are formed with irregularities or louvers along the longitudinal direction, thereby increasing heat transfer area, thereby improving heat exchange performance.
도 1은 본 발명의 실시예에 의한 열교환기를 보여주는 사시도1 is a perspective view showing a heat exchanger according to an embodiment of the present invention
도 2는 도 1의 열교환기의 분해 사시도2 is an exploded perspective view of the heat exchanger of FIG.
도 3은 도 1의 열교환기에서 습채널의 구성을 보여주는 도면3 is a view showing the configuration of the wet channel in the heat exchanger of FIG.
도 4는 도 3에 나타난 습패널핀을 보여주는 사시도 4 is a perspective view showing the wet panel pin shown in FIG.
도 5는 도 4에 나타난 습채널핀을 다른 각도에서 보여주는 확대 사시도5 is an enlarged perspective view showing the wet channel pins shown in FIG. 4 from different angles;
도 6은 도 4에 나타난 습채널핀을 보여주는 정면도6 is a front view showing the wet channel pins shown in FIG.
도 7은 도 4에 나타난 습채널핀을 보여주는 평면도7 is a plan view showing the wet channel pin shown in FIG.
도 8은 본 발명의 다른 실시예에 의한 습채널핀을 보여주는 도면8 is a view showing a wet channel pin according to another embodiment of the present invention.
도 9는 본 발명의 또 다른 실시예에 의한 습채널핀을 보여주는 도면9 is a view showing a wet channel pin according to another embodiment of the present invention.
** 부호의 설명 **** Explanation of Codes **
10,20,30,40 : 격벽판 11,21,31,41 : 돌출부10, 20, 30, 40: partition plate 11, 21, 31, 41: protrusion
50a,50b : 제1유로가이드 60a,60b : 제2유로가이드50a, 50b: first euro guide 60a, 60b: second euro guide
70,170,270 : 습채널핀 71,171,271 : 제1핀몸체70,170,270: Wet channel pin 71,171,271: First pin body
72,172,272 : 제2핀몸체 73,173,273 : 핀몸체연결부72,172,272: second pin body 73,173,273: pin body connection
74a,74b : 슬릿 75,175,275 : 절개부74a, 74b: Slit 75,175,275: Incision
80 : 건채널핀 100 : 열교환기80: dry channel fin 100: heat exchanger
174a,174b : 요철 274a,274b,274-1a,274-1b : 루버몸체174a, 174b: Unevenness 274a, 274b, 274-1a, 274-1b: Louver body
274c,274d : 개구부 DC : 건채널274c, 274d: Opening DC: Gun Channel
WC : 습채널WC: Wet Channel
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시 예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1 내지 도 3을 참조하여 본 발명의 제습 냉방용 증발식 냉각기의 열교환기의 전체 구성에 대해 설명한다.1 to 3 will be described the overall configuration of the heat exchanger of the dehumidification cooling evaporative cooler of the present invention.
열교환기(100)는, 제1 내지 제4격벽판(10,20,30,40), 상기 제1격벽판(10)과 제2격벽판(20) 사이 및 제3격벽판(30)과 제4격벽판(40) 사이에 형성되어 실내공기가 유동하는 건채널(DC), 상기 제2격벽판(20)과 제3격벽판(30) 사이에 형성되어 추기가 유동함과 동시에 증발수의 증발이 일어나는 습채널(WC)로 이루어진다.The heat exchanger 100 may include the first to fourth partition plates 10, 20, 30, and 40, between the first partition plate 10 and the second partition plate 20, and the third partition plate 30. It is formed between the fourth partition plate 40, the dry channel (DC), the indoor air flows, formed between the second partition plate 20 and the third partition plate 30, the additional air flows and at the same time evaporated water It consists of a wet channel (WC) where evaporation takes place.
상기 제1 내지 제4격벽판(10,20,30,40)은 두께가 얇은 판상으로 이루어지고, 전체적으로 마름모 형상에서 꼭지점 부분이 절개된 팔각형의 형상으로 이루어져 있다. The first to fourth partition plate (10, 20, 30, 40) is made of a thin plate-like, the overall shape is made of an octagonal shape in which a vertex portion is cut in a rhombus shape.
상기 제1격벽판(10)에는 복수의 제1돌출부(11), 제2격벽판(20)에는 복수의 제2돌출부(21), 제3격벽판(30)에는 복수의 제3돌출부(31), 제4격벽판(40)에는 복수의 제3돌출부(41)가 각각 형성되어 있다.The first partition 11 includes a plurality of first projections 11, the second partition 20 includes a plurality of second projections 21, and the third partition 30 has a plurality of third projections 31. ), A plurality of third protrusions 41 are formed in the fourth partition plate 40.
상기 제1격벽판(10)의 복수의 제1돌출부(11) 중 일부는 제1격벽판(10)의 우측면에서 우측방향으로 돌출되고, 복수의 제1돌출부(11) 중 나머지는 제1격벽판(10)의 좌측면에서 좌측방향으로 돌출된다.Some of the plurality of first protrusions 11 of the first barrier plate 10 protrude in the right direction from the right side of the first barrier plate 10, and the other of the plurality of first protrusions 11 is the first barrier rib. It protrudes from the left side of the board 10 to a left direction.
상기 제2격벽판(10)의 복수의 제2돌출부(21) 중 일부는 제2격벽판(20)의 우측면에서 우측방향으로 돌출되고, 복수의 제2돌출부(21) 중 나머지는 제2격벽판(20)의 좌측면에서 좌측방향으로 돌출된다.Some of the plurality of second protrusions 21 of the second barrier plate 10 protrude in the right direction from the right side of the second barrier plate 20, and the other of the plurality of second protrusions 21 is the second barrier rib. It protrudes from the left side of the board 20 to the left direction.
이와 마찬가지로 제3격벽판(30)과 제4격벽판(40)의 각 돌출부(31,41)도 일부는 각 격벽판(30,40)의 우측면에서 우측방향으로 돌출되고, 돌출부(31,41) 중 나머지는 각 격벽판(30,40)의 좌측면에서 좌측방향으로 돌출된다.Similarly, some of the protrusions 31 and 41 of the third and fourth barrier plates 30 and 40 also protrude in the right direction from the right side of each of the barrier plates 30 and 40, and the protrusions 31 and 41. The rest of) is protruded in the left direction from the left side of each partition plate (30, 40).
이 경우 제1격벽판(10)의 제1돌출부(11)와 제2격벽판(20)의 제2돌출부(21) 중 서로 마주보는 방향으로 돌출된 일부의 돌출부(11,21)는 마주보는 부분이 서로 접하도록 구성될 수 있고, 나머지 격벽판(20,30,40)의 서로 마주보는 돌출부(21,31,41)도 서로 접하도록 구성될 수 있다. 이와 같이 돌출부(11,21,31,41)끼리 서로 접하도록 구성되면, 공기의 유동을 가이드할 수 있을 뿐만 아니라 이웃하는 격벽판(10,20)끼리 서로 지지됨으로써 격벽판(10,20)의 변형을 방지할 수 있다.In this case, some of the protrusions 11 and 21 which protrude in a direction facing each other among the first protrusion 11 of the first barrier plate 10 and the second protrusion 21 of the second barrier plate 20 face each other. The parts may be configured to be in contact with each other, and the protrusions 21, 31, and 41 that face each other of the remaining partition plates 20, 30, and 40 may also be configured to be in contact with each other. When the protrusions 11, 21, 31, and 41 are configured to be in contact with each other, the flow of air can be guided and adjacent partition walls 10 and 20 are supported by each other, thereby providing The deformation can be prevented.
상기 제3격벽판(30)은 제1격벽판(10)과 동일한 형상이고, 제4격벽판(40)은 제2격벽판(20)과 동일한 형상이다.The third partition plate 30 has the same shape as the first partition plate 10, and the fourth partition plate 40 has the same shape as the second partition plate 20.
상기 건채널(DC)에는 실내공기의 유동방향을 가이드하기 위해, 제1격벽판(10)과 제2격벽판(20)의 가장자리에 서로 대향하도록 위치하는 한 쌍의 제1유로가이드(50a,50b), 상기 한 쌍의 제1유로가이드(50a,50b) 사이에 위치하는 건채널핀(80)이 구비되어 있다.The gun channel DC has a pair of first flow guides 50a positioned to face the edges of the first partition plate 10 and the second partition wall 20 so as to guide the flow direction of indoor air. 50b), a gun channel pin 80 is disposed between the pair of first flow guides 50a and 50b.
상기 제1유로가이드(50a,50b)는 건채널(DC)을 통과하는 공기가 열교환기의 외부로 누설되는 것을 방지하고, 공기의 유동을 건채널핀(80)의 좌측 하방향(도 2 기준)에서 건채널핀(80)의 우측 상방향으로 가이드하게 된다.The first flow guides 50a and 50b prevent the air passing through the gun channel DC from leaking to the outside of the heat exchanger, and the air flows to the left lower direction of the gun channel fin 80 (refer to FIG. 2). ) Guides to the upper right side of the gun channel pin 80.
상기 건채널핀(80)은 원활한 열교환이 이루어질 수 있도록 일례로, 단면이 파형의 형상으로 이루어져 표면적을 증가시킨 형상으로 이루어질 수 있다. 건채널(DC)로 유입된 공기는 상기 건채널핀(80)을 하측에서 상방향으로 통과하면서 습채널(WC)과의 사이에 열교환이 이루어져 온도가 하락한 후 실내로 유동한다.For example, the gun channel pin 80 may be formed in a shape in which a cross section is formed in a wave shape to increase a surface area so that a smooth heat exchange may be performed. The air introduced into the dry channel DC passes through the dry channel pin 80 upwards from the lower side, and heat exchanges with the wet channel WC to decrease the temperature and flow into the room.
상기 습채널(WC)은 추기와 증발수가 유입되면서 건채널(DC)을 통과하는 공기와의 열교환이 이루어지는 것으로서, 제2격벽판(20)과 제3격벽판(30)의 가장자리에 서로 대향하도록 위치하는 한 쌍의 제2유로가이드(60a,60b), 상기 한 쌍의 제2유로가이드(60a,60b) 사이에 위치하는 습채널핀(70)이 구비되어 있다.The wet channel (WC) is a heat exchange with the air passing through the dry channel (DC) while the addition and the evaporated water is introduced, so as to face the edges of the second partition plate 20 and the third partition plate (30). A pair of second channel guides 60a and 60b positioned therein and a wet channel pin 70 positioned between the pair of second channel guides 60a and 60b are provided.
상기 제2유로가이드(60a,60b)는 습채널(WC)을 통과하는 공기가 열교환기의 외부로 누설되는 것을 방지하고, 추기는 습채널핀(70)의 좌측 상방향(WCI)에서 유입되어 습채널핀(70)을 상측에서 하방향으로 통과한 후 습채널핀(70)의 우측 하방향(WCO)으로 유동한 후 외부로 배출된다.The second flow guides 60a and 60b prevent the air passing through the wet channel WC from leaking to the outside of the heat exchanger, and the additional air flows from the left upper direction WCI of the wet channel fin 70. After passing through the wet channel pin 70 in the downward direction and flows to the right downward direction (WCO) of the wet channel pin 70 is discharged to the outside.
도 4 내지 도 7을 참조하여 본 발명에 의한 습채널핀에 대해 설명한다.A wet channel pin according to the present invention will be described with reference to FIGS. 4 to 7.
본 발명의 습채널핀(70)은 단면 형상이 ∩ 또는 ∧ 형상으로 이루어진 단위 핀유닛(71,72,73,74,75)이 구비되고, 하나의 단위 핀유닛(71,72,73,74,75)에 이웃하는 다른 단위 핀유닛(71-1,72-2,73-1,74-1,75-1)이 공기의 유동방향에 대하여 수직한 방향으로 인접하게 연결되어 도 6에 도시된 바와 같이 파형의 형상으로 이루어져 있다. The wet channel pins 70 of the present invention are provided with unit pin units 71, 72, 73, 74, 75 having a cross-sectional shape having a ∩ or ∧ shape, and one unit pin unit 71, 72, 73, 74. Other unit pin units 71-1, 72-2, 73-1, 74-1, 75-1 neighboring to 75 are adjacently connected in a direction perpendicular to the flow direction of air, as shown in FIG. 6. As shown, it consists of the shape of the waveform.
하나의 단위 핀유닛(71,72,73,74,75)과 이웃하는 단위 핀유닛(71-1,72-2,73-1,74-1,75-1)은 동일한 구성으로 이루어져 있으므로, 이하 동일한 설명의 반복은 생략한다.Since one unit pin unit 71, 72, 73, 74, 75 and the neighboring unit pin unit 71-1, 72-2, 73-1, 74-1, 75-1 have the same configuration, The same description will be omitted below.
상기 단위 핀유닛(71,72,73,74,75)은, 공기가 유동하는 유로공간을 형성시킴과 아울러 공급된 증발수와의 접촉에 의해 증발이 일어나도록 서로 마주보는 한 쌍의 제1핀몸체(71)와 제2핀몸체(72), 상기 한 쌍의 핀몸체(71,72)의 상단부를 서로 연결하는 핀몸체연결부(73), 상기 제1핀몸체(71)와 제2핀몸체(72)에 그 길이방향을 따라 일정 간격으로 복수 개 형성된 슬릿(74), 상기 제2핀몸체(72)에서 공기의 유동경로 끝단에 위치한 단부에 절개된 형상으로 형성된 절개부(75)로 이루어진다.The unit pin units 71, 72, 73, 74, and 75 form a flow path space through which air flows, and a pair of first pins facing each other such that evaporation occurs by contact with supplied evaporated water. Body 71 and the second pin body 72, the pin body connecting portion 73 for connecting the upper ends of the pair of pin body (71, 72), the first pin body 71 and the second pin body A plurality of slits 74 formed at a predetermined interval along the longitudinal direction in the 72, 72, the cut portion 75 formed in the shape cut to the end located at the end of the flow path of air in the second pin body (72). .
상기 제1핀몸체(71)는 공기의 유동을 가이드하기 위하여 공기의 유동방향(도 4의 화살표 방향)으로 소정의 길이로 형성되고, 제2핀몸체(72)는 제1핀몸체(71)와 동일한 형상으로서 서로 마주보도록 형성된다.The first pin body 71 is formed in a predetermined length in the direction of flow of air (in the direction of the arrow in FIG. 4) to guide the flow of air, and the second pin body 72 is the first pin body 71. It is formed to face each other as the same shape as.
상기 제1핀몸체(71)에는 그 길이방향을 따라 이격된 복수의 슬릿(74a)이 형성되어 있고, 상기 슬릿(74a)이 형성됨으로 인해 상기 제1핀몸체(71)는 그 길이방향을 따라 복수의 핀몸체(71a,71b)로 분리되어 있다.The first fin body 71 is formed with a plurality of slits 74a spaced apart in the longitudinal direction thereof, and the first fin body 71 is formed along the longitudinal direction due to the formation of the slits 74a. A plurality of pin bodies 71a and 71b are separated.
상기 슬릿(74a)은 제1핀몸체(71)를 높이 방향으로 절개하여 형성되고, 상기 슬릿(74a)을 사이에 두고 하나의 핀몸체(71a)와 이웃하는 핀몸체(71b)는 길이방향에 대하여 수직한 방향으로서 서로 반대방향(도 4 및 도 6에서 좌우방향)으로 각각 돌출된 형상(어긋난 형상)으로 이루어져 있다. 즉, 도 4에서 하나의 핀몸체(71a)는 슬릿(74a)을 기준으로 우측방향에 위치하고, 다른 핀몸체(71b)는 슬릿(74a)을 기준으로 좌측방향에 위치한다. 따라서 상기 슬릿(74a)은 개구된 형상이 되어 그 개구된 부분을 통해 공기가 유동하게 된다.The slit 74a is formed by cutting the first pin body 71 in the height direction, and one pin body 71a and the pin body 71b adjacent to each other with the slit 74a interposed therebetween in the longitudinal direction. It consists of the shape (deviated shape) which protruded in the opposite direction (left-right direction in FIGS. 4 and 6) as a perpendicular direction with respect to each other. That is, in FIG. 4, one pin body 71a is positioned at the right side with respect to the slit 74a, and the other pin body 71b is positioned at the left side with respect to the slit 74a. Therefore, the slit 74a has an open shape, and air flows through the open portion.
상기 절개부(75)는 제2핀몸체(72)로서 공기의 유동경로 끝단에 위치한 단부인 핀몸체(72a)에 형성되어 있다. 상기 절개부(75)는 라운드 형상으로서 반원 모양으로 절개한 형상으로 이루어진다.The cutout 75 is formed in the pin body 72a, which is an end portion located at the end of the flow path of air as the second pin body 72. The cutout 75 is formed in a round shape and cut in a semicircular shape.
상기 습채널핀(70)에 주수된 증발수는 제1핀몸체(71)와 제2핀몸체(72)의 표면을 따라 퍼지는데, 증발되지 않고 남은 증발수는 습패널핀(70)의 표면을 따라 공기유동방향과 동일한 방향(도 4 및 도 7에서 하방향)으로 흘러내린다. The evaporated water injected into the wet channel fins 70 is spread along the surfaces of the first fin body 71 and the second fin body 72, and the evaporated water remaining without evaporation is the surface of the wet panel fin 70. Along the flow in the same direction as the air flow direction (downward in FIGS. 4 and 7).
이와 같이 흘러내린 증발수는 제1핀몸체(71)와 제2핀몸체(72)의 가장 하측에 위치한 핀몸체(71a,72a) 사이로서 핀몸체연결부(73a)에 가까운 위치에 맺히게 된다.The evaporated water flowing down is formed between the first pin body 71 and the pin bodies 71a and 72a located at the bottom of the second pin body 72 at a position close to the pin body connection portion 73a.
본 발명의 경우 제2핀몸체(72a)에 절개부(75)가 형성되어 있음으로 인해 핀몸체연결부(73a)에 가까운 제2핀몸체(72a)에는 제1핀몸체(71a)에 대응되는 부분이 절개되어 있으므로, 핀몸체(71a,72a) 사이의 공간에 물맺힘이 방지된다.In the case of the present invention, because the incision portion 75 is formed in the second pin body 72a, a portion corresponding to the first pin body 71a in the second pin body 72a close to the pin body connection portion 73a. Since this is cut out, condensation is prevented in the space between the pin bodies 71a and 72a.
따라서 공기는 제1핀몸체(71)와 제2핀몸체(72) 사이의 공간을 통해 원활하게 유동할 수 있어 열교환 성능 저하를 방지할 수 있다.Therefore, the air can flow smoothly through the space between the first fin body 71 and the second fin body 72, thereby preventing a decrease in heat exchange performance.
본 실시예에서는 절개부(75)가 제2핀몸체(72)에 형성된 것으로 예시하였으나, 제1핀몸체(71)에 형성되는 것으로 구성할 수도 있다.In the present embodiment, the cutout 75 is illustrated as being formed in the second pin body 72, but may also be configured to be formed in the first pin body 71.
도 7을 참조하면, 상측에서 하측으로 유동하는 공기는 제1핀몸체(71)와 제2핀몸체(72)의 사이 공간을 통해 유동한다. 이 경우 하나의 핀몸체(71a)와 이웃하는 핀몸체(71b)가 서로 어긋나 있고 그 사이에 슬릿(74a,74b)이 형성되어 있으므로, 공기는 슬릿(74a,74b)을 통과하면서 지그재그 형태로 유동하게 된다. 이러한 공기의 유동으로 인해 열교환 효율을 향상시킬 수 있다.Referring to FIG. 7, air flowing from the upper side to the lower side flows through a space between the first pin body 71 and the second pin body 72. In this case, since one fin body 71a and the adjacent fin body 71b are shifted from each other and slits 74a and 74b are formed therebetween, air flows in a zigzag form while passing through the slits 74a and 74b. Done. This flow of air can improve heat exchange efficiency.
본 실시예에서 상기 절개부(75)는 라운드 형상으로서 반원모양으로 절개한 것으로 예시하였으나, 삼각형 또는 사각형 등 다각형 형상으로 변형 실시 가능하다.In the present embodiment, the cutout 75 is illustrated as being cut in a semicircle shape as a round shape, but may be modified in a polygonal shape such as a triangle or a square.
도 8을 참조하여 본 발명의 다른 실시예에 의한 습채널핀에 대해 설명한다.A wet channel pin according to another embodiment of the present invention will be described with reference to FIG. 8.
본 실시예에 의한 습채널핀(170)은, 서로 마주보는 한 쌍의 핀몸체(171,172)와, 상기 한 쌍의 핀몸체(171,172)의 상단부를 서로 연결하는 핀몸체연결부(173)로 이루어진 단위 핀유닛(171,172,173)을 포함하고, 이러한 단위 핀유닛(171,172,173)이 공기의 유동방향에 대하여 수직한 방향으로 인접하게 복수 개 연결된 구성으로 이루어진다.The wet channel pin 170 according to the present embodiment includes a pair of pin bodies 171 and 172 facing each other, and a pin body connecting portion 173 connecting upper ends of the pair of pin bodies 171 and 172 to each other. It includes a pin unit (171, 172, 173), the unit pin unit (171, 172, 173) is composed of a plurality of contiguous adjacent in the direction perpendicular to the flow direction of the air.
상기 한 쌍의 핀몸체(171,172)는 공기가 유동하는 유로공간을 형성시킴과 아울러 공급된 증발수와의 접촉에 의해 증발이 일어나도록 서로 마주보는 한 쌍의 제1핀몸체(171)와 제2핀몸체(172)로 이루어지고, 상기 제1핀몸체(171)와 제2핀몸체(172)에는 길이방향을 따라 파형의 단면이 되도록 요철(174a,174b)이 각각 형성되어 있다.The pair of pin bodies 171 and 172 form a flow path space through which air flows, and a pair of first pin bodies 171 and a second facing each other so that evaporation occurs by contact with supplied evaporated water. Consists of a pin body 172, the first pin body 171 and the second pin body 172 is formed with concave-convex (174a, 174b) to form a cross section of the waveform along the longitudinal direction, respectively.
상기 요철(174a,174b)의 형상으로 인해 전열면적이 넓어져 열교환 성능을 향상시킬 수 있다.Due to the shape of the concave-convex (174a, 174b) it is possible to increase the heat transfer area to improve the heat exchange performance.
상기 제2핀몸체(172)에서 공기의 유동경로 끝단에 위치한 단부에는 절개된 형상의 절개부(175)가 제1실시예와 동일한 형상으로 형성되어 있어, 증발되지 않은 증발수가 맺히는 것을 방지하고, 그로 인해 공기의 유동이 방해받는 것을 방지하여 열교환 성능을 향상시킬 수 있다.In the second fin body 172, the cutout portion 175 of the cut shape is formed at the end located at the end of the flow path of air to prevent the formation of evaporated water that has not evaporated, This can improve the heat exchange performance by preventing the flow of air to be disturbed.
도 9를 참조하여 본 발명의 또 다른 실시예에 의한 습채널핀에 대해 설명한다.A wet channel pin according to another embodiment of the present invention will be described with reference to FIG. 9.
본 실시예는 도 8에 도시된 실시예와 비교하여 다른 구성은 동일하고, 습채널핀(270)의 핀몸체(271,272)에는 길이방향을 따라 복수의 루버(274a,274b,274c,274d)가 형성되어 있다는 점에서 차이가 있다.This embodiment has a different configuration compared to the embodiment shown in FIG. 8, and the plurality of louvers 274a, 274b, 274c and 274d along the longitudinal direction of the fin bodies 271 and 272 of the wet channel pin 270. There is a difference in that it is formed.
상기 루버(274a,274b,274c,274d)는 제1핀몸체(271)와 제2핀몸체(272)의 일부를 따내 개구부(274c,274d)를 형성시키고, 그 따낸 루버몸체(274a,274b)를 공기의 유동 방향에 대하여 경사지도록 절곡시킨 형상으로 이루어져 있다. The louvers 274a, 274b, 274c and 274d form openings 274c and 274d by opening portions of the first pin body 271 and the second pin body 272, and the louver bodies 274a and 274b. Is bent to be inclined with respect to the air flow direction.
이 경우 제1핀몸체(271)에 길이방향을 따라 형성된 루버몸체(274a)와 그에 이웃하는 루버몸체(274-1a)는 그 경사방향이 공기의 유동방향에 대하여 대칭되는 방향으로 경사져 있다. 또한 제2핀몸체(272)에 길이방향을 따라 형성된 루버몸체(274b)와 그에 이웃하는 루버몸체(274-1b)는 그 경사방향이 공기의 유동방향에 대하여 대칭되는 방향으로 경사져 있다. 또한 서로 마주보는 루버몸체(274a)와 다른 루버몸체(274b)도 그 경사방향이 공기의 유동방향에 대하여 대칭되는 방향으로 경사져 있다.In this case, the louver body 274a and the louver body 274-1a adjacent to the louver body 274a formed along the longitudinal direction of the first pin body 271 are inclined in a direction in which the inclination direction is symmetrical with respect to the air flow direction. In addition, the louver body 274b and the louver body 274-1b neighboring the louver body 274b formed along the longitudinal direction of the second fin body 272 are inclined in a direction in which the inclination direction thereof is symmetrical with respect to the air flow direction. In addition, the louver bodies 274a and the other louver bodies 274b facing each other are also inclined in a direction in which the inclined direction thereof is symmetrical with respect to the flow direction of air.
이러한 구성으로 인해 공기는 도 9에 나타난 바와 같이, 개구부(274c,274d)를 통해 유동함으로써 전열면적이 넓어져 열교환 성능을 향상시킬 수 있다.Due to this configuration, as shown in FIG. 9, the air flows through the openings 274c and 274d to increase the heat transfer area, thereby improving heat exchange performance.
상기 제2핀몸체(272)에서 공기의 유동경로 끝단에 위치한 단부에는 절개된 형상의 절개부(275)가 제1실시예와 동일한 형상으로 형성되어 있어, 증발되지 않은 증발수가 맺히는 것을 방지하고, 그로 인해 공기의 유동이 방해받는 것을 방지하여 열교환 성능을 향상시킬 수 있다.The second fin body 272 is formed at the end of the flow path of the air in the cut portion 275 of the cut shape is formed in the same shape as the first embodiment, to prevent the formation of evaporated water not evaporated, This can improve the heat exchange performance by preventing the flow of air to be disturbed.

Claims (7)

  1. 적어도 하나의 건채널과 적어도 하나의 습채널을 구비하고, 상기 건채널과 습채널 사이에 열교환이 이루어지는 제습 냉방용 증발 냉각기의 열교환기에 있어서,In the heat exchanger of the dehumidification cooling evaporative cooler having at least one dry channel and at least one wet channel, the heat exchange between the dry channel and the wet channel,
    상기 습채널에는 공기가 유동하는 유로공간을 형성시키고, 공급된 증발수와의 접촉에 의해 증발이 일어나는 습채널핀(70)이 구비되고;The wet channel is provided with a wet channel fin (70) to form a flow path space through which air flows and to evaporate by contact with the supplied evaporated water;
    상기 습채널핀(70,170,270)은, 서로 마주보는 한 쌍의 핀몸체(71,72;171,172;271,272)와, 상기 한 쌍의 핀몸체(71,72;171,172;271,272)의 상단부를 서로 연결하는 핀몸체연결부(73,173,273)로 이루어진 단위 핀유닛(71,72,73;171,172,173;271,272,273)을 포함하되, 상기 한 쌍의 핀몸체(71,72;171,172;271,272) 중 어느 하나의 핀몸체(72,172,272)에는 상기 공기의 유동경로 끝단에 위치한 단부에 절개된 형상의 절개부(75,175,275)가 형성된 것을 특징으로 하는 제습 냉방용 증발 냉각기의 열교환기The wet channel pins 70, 170, and 270 may include a pair of pin bodies 71, 72; 171, 172; 271 and 272 facing each other, and a pin connecting upper ends of the pair of pin bodies 71, 72, 171, 172, 271 and 272 to each other. Unit pin units (71, 72, 73; 171, 172, 173; 271, 272, 273) consisting of the body connection portion (73, 173, 273), but any one of the pair of pin bodies (71, 72; 171, 172; 271, 272) is in the pin body (72, 172, 272) Heat exchanger of the evaporative cooler for dehumidification cooling characterized in that the cut portion (75, 175, 275) of the cut shape is formed at the end located at the end of the flow path of the air
  2. 제1항에 있어서,The method of claim 1,
    상기 습채널핀(70,170,270)은 상기 단위 핀유닛(71,72,73;171,172,173;271,272,273)이 그 길이방향에 수평한 방향으로 인접하여 복수 개가 연결되어 있어, 상기 단위 핀유닛(71,72,73;171,172,173;271,272,273)의 길이방향에 수직한 방향의 단면이 파형으로 이루어진 것을 특징으로 하는 제습 냉방용 증발 냉각기의 열교환기The wet channel pins 70, 170, 270 are connected to a plurality of unit pin units 71, 72, 73; 171, 172, 173; 271, 272, 273 in a direction parallel to the longitudinal direction thereof, and thus, the unit pin units 71, 72, 73 are connected. ; 171,172,173; 271,272,273 The heat exchanger of the evaporative cooler for dehumidification cooling characterized in that the cross section perpendicular to the longitudinal direction is made of a wave shape.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 절개부(75,175,275)는 라운드 형상 또는 다각형 형상으로 이루어진 것을 특징으로 하는 제습 냉방용 증발 냉각기의 열교환기The cutouts 75, 175, and 275 are heat exchangers of the evaporative cooler for dehumidification cooling, characterized in that the round or polygonal shape.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 습채널핀(170)의 핀몸체(171,172)에는 길이방향을 따라 파형의 단면이 되도록 요철(174a,175a)이 형성된 것을 특징으로 하는 제습 냉방용 증발 냉각기의 열교환기The heat exchanger of the evaporative cooler for dehumidification cooling characterized in that the concave-convex (174a, 175a) is formed in the fin bodies (171,172) of the wet channel fin (170) so as to have a corrugated cross section along the longitudinal direction.
  5. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 습채널핀(270)의 핀몸체(271,272)에는 길이방향을 따라 복수의 루버(274a,274b)가 형성되어, 상기 루버(274a,274b)의 절개부(274c,274d)를 통해 상기 공기가 유동하는 것을 특징으로 하는 제습 냉방용 증발 냉각기의 열교환기A plurality of louvers 274a and 274b are formed in the fin bodies 271 and 272 of the wet channel fins 270 along the longitudinal direction, so that the air passes through the cutouts 274c and 274d of the louvers 274a and 274b. Heat exchanger of the evaporative cooler for dehumidification cooling characterized in that the flow
  6. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 습채널의 핀몸체(71,72)에는 길이방향을 따라 일정 간격으로 복수의 슬릿(74a,74b)이 형성되어 있고, 상기 슬릿(74a,74b)을 사이에 두고 서로 이웃하는 핀몸체들(71a,71b; 72a,72b)은 상기 길이방향에 수직한 방향으로서 서로 반대방향으로 돌출되어, 상기 슬릿(74a,74b)을 통해 상기 공기가 유동하는 것을 특징으로 하는 제습 냉방용 증발 냉각기의 열교환기The fin bodies 71 and 72 of the wet channel are formed with a plurality of slits 74a and 74b at regular intervals along the longitudinal direction, and the fin bodies adjacent to each other with the slits 74a and 74b therebetween ( The heat exchanger of the evaporative cooler for dehumidification cooling characterized in that the air flows through the slits (74a, 74b) protruding in opposite directions as a direction perpendicular to the longitudinal direction, 71a, 71b;
  7. 제1항에 있어서,The method of claim 1,
    상기 습채널은, The wet channel,
    서로 마주보는 한 쌍의 격벽판(20,30);A pair of partition walls 20 and 30 facing each other;
    상기 한 쌍의 격벽판(20,30) 사이에 위치하되, 중앙부에 위치된 상기 습채널핀(70);The wet channel pins (70) positioned between the pair of partition plates (20, 30) and located in the center portion;
    상기 한 쌍의 격벽판(20,30)의 가장자리에 위치하되, 상기 공기의 흐름 방향을 결정하는 유로가이드(60a,60b);Flow path guides (60a, 60b) positioned at the edges of the pair of partition plates (20, 30) to determine the flow direction of the air;
    로 이루어진 것을 특징으로 하는 제습 냉방용 증발 냉각기의 열교환기Heat exchanger of the evaporative cooler for dehumidification cooling, characterized in that consisting of
PCT/KR2016/004694 2015-05-27 2016-05-04 Heat exchanger for evaporative cooler for desiccant cooling WO2016190562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0073566 2015-05-27
KR1020150073566A KR20160141016A (en) 2015-05-27 2015-05-27 Heat exchanger of evaporative cooler for dehumidified cooling

Publications (1)

Publication Number Publication Date
WO2016190562A1 true WO2016190562A1 (en) 2016-12-01

Family

ID=57392852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004694 WO2016190562A1 (en) 2015-05-27 2016-05-04 Heat exchanger for evaporative cooler for desiccant cooling

Country Status (2)

Country Link
KR (1) KR20160141016A (en)
WO (1) WO2016190562A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756436B2 (en) * 1990-11-27 1995-06-14 グリツツ・インコーポレイテツド Tower packing with louvers
KR200173073Y1 (en) * 1999-09-17 2000-03-15 주식회사경인기계 Filler for Cooling Tower to improve capability of water distribution and to enhance strength
JP2001194086A (en) * 2000-01-13 2001-07-17 Tokyo Roki Co Ltd Fin for heat exchanger
JP2002130973A (en) * 2000-10-25 2002-05-09 Zexel Valeo Climate Control Corp Heat exchanger
KR20080021298A (en) * 2006-09-04 2008-03-07 한라공조주식회사 A louver fin for a heat-exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756436B2 (en) * 1990-11-27 1995-06-14 グリツツ・インコーポレイテツド Tower packing with louvers
KR200173073Y1 (en) * 1999-09-17 2000-03-15 주식회사경인기계 Filler for Cooling Tower to improve capability of water distribution and to enhance strength
JP2001194086A (en) * 2000-01-13 2001-07-17 Tokyo Roki Co Ltd Fin for heat exchanger
JP2002130973A (en) * 2000-10-25 2002-05-09 Zexel Valeo Climate Control Corp Heat exchanger
KR20080021298A (en) * 2006-09-04 2008-03-07 한라공조주식회사 A louver fin for a heat-exchanger

Also Published As

Publication number Publication date
KR20160141016A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
US7322401B2 (en) Ventilator
WO2012169713A1 (en) Air conditioner with a cooling module
US20090126913A1 (en) Vertical counterflow evaporative cooler
WO2017018594A1 (en) Heat exchanger module unit
WO2014133261A1 (en) Combustion apparatus having intake air/exhaust air heat exchanger
WO2020139004A1 (en) Cooling tower for reducing white smoke
WO2018151488A1 (en) Dehumidifier
WO2012144845A2 (en) Heat exchanger
WO2012011681A2 (en) Heat exchanger
WO2012002698A2 (en) Heat exchanger
WO2016148508A1 (en) Vehicle heat exchanger
WO2016190562A1 (en) Heat exchanger for evaporative cooler for desiccant cooling
US6182747B1 (en) Plate-type crossflow air-to-air heat-exchanger comprising side-by-side-multiple small-plates
WO2010058978A2 (en) Regenerative evaporative cooler, cooling system and core module thereof
KR20220010817A (en) Slim type heat exchange moudle installed in heat energy recovery ventilation system
WO2013062176A1 (en) Desiccant rotor cassette
WO2016010389A1 (en) Heat exchanger and heat pump having same
WO2021177737A1 (en) Plate-type heat exchanger
WO2022014779A1 (en) Method for manufacturing counter-flow total heat exchanger
WO2021177612A1 (en) Plate-type heat exchanger
WO2016144138A1 (en) Dehumidifying air conditioner
KR20140113023A (en) Heat recovery ventilation system with counter-flow heat exchanger
JPS61110831A (en) Ventilator with heat exchanger
EP3850292A1 (en) Heat exchanger and air conditioner having the same
WO2012020907A1 (en) Air handling unit using cooling/dehumidifying heat recovery technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800202

Country of ref document: EP

Kind code of ref document: A1