WO2016190350A1 - Conveyor belt for paper sheets - Google Patents

Conveyor belt for paper sheets Download PDF

Info

Publication number
WO2016190350A1
WO2016190350A1 PCT/JP2016/065445 JP2016065445W WO2016190350A1 WO 2016190350 A1 WO2016190350 A1 WO 2016190350A1 JP 2016065445 W JP2016065445 W JP 2016065445W WO 2016190350 A1 WO2016190350 A1 WO 2016190350A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
belt
paper sheet
rubber
thermoplastic elastomer
Prior art date
Application number
PCT/JP2016/065445
Other languages
French (fr)
Japanese (ja)
Inventor
秀久 川村
学 山崎
将史 城尾
彰 竹中
謙介 齊藤
Original Assignee
ニッタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッタ株式会社 filed Critical ニッタ株式会社
Publication of WO2016190350A1 publication Critical patent/WO2016190350A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/02Feeding articles separated from piles; Feeding articles to machines by belts or chains, e.g. between belts or chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/12Delivering or advancing articles from machines; Advancing articles to or into piles by means of the nip between two, or between two sets of, moving tapes or bands or rollers

Definitions

  • the present invention relates to a paper sheet conveying belt, particularly a mail sorting machine belt.
  • the endless belt is used as a paper sheet conveying belt for conveying paper sheets such as banknotes and tickets (see Patent Document 1).
  • the shape of the belt is maintained by a shape-retaining rubber layer, and a surface layer made of a thermoplastic elastomer is provided on the conveying surface in place of the conventional seamless woven fabric layer to prevent meandering of the endless belt.
  • the shape-retaining rubber layer further has a function of maintaining the tension of the belt.
  • Patent Document 1 a polyamide-based thermoplastic elastomer is recommended as the thermoplastic elastomer constituting the surface layer.
  • the friction coefficient can be reduced by using a polyamide-based thermoplastic elastomer for the surface layer, and the slack of the belt due to the difference in the winding length around the direction change guide pulley can be reliably prevented. Thereby, conveyance is performed smoothly.
  • changes in the wear resistance and friction coefficient with time are reduced, and the running performance of the belt is further stabilized.
  • the conveying belt may be stretched by receiving a tensile load during use in the paper sheet conveying apparatus.
  • a tensile load during use in the paper sheet conveying apparatus.
  • paper sheets being transported by the transport belt may be jammed in the transport path. Paper jams cause tearing of the conveyor belt. When the conveyance belt has poor tear resistance, vertical cracks occur even during short-term operation, and the conveyance belt needs to be replaced.
  • the transport belt In a mail sorting machine among paper sheet transport apparatuses, the transport belt is often twisted to change the direction of the top of the transported mail. Twisting also causes tearing of the conveying belt, so that the conveying belt is required to have sufficient tear resistance.
  • an object of the present invention is to provide a paper sheet conveying belt having a large tension at the time of extension and excellent in tear resistance.
  • the paper sheet conveying belt according to the present invention is provided on a core layer containing a polyurethane-based thermoplastic elastomer, a rubber layer provided on one surface of the core layer, and on the other surface of the core layer. And a conductive resin layer.
  • the core of the paper sheet conveying belt is made of a polyurethane-based thermoplastic elastomer. Since the polyurethane-based thermoplastic elastomer is less stretchable than other elastic materials, the paper sheet transport belt has a large tension at the time of extension. Moreover, since the core layer responsible for tear resistance is made of a polyurethane-based thermoplastic elastomer, the paper sheet conveying belt is also excellent in tear resistance.
  • 3 is a load-elongation curve obtained from a tensile test of a sample of a polyurethane-based thermoplastic elastomer.
  • 3 is a load-elongation rate curve obtained from a tensile test of a belt of an example. It is a figure which shows the sample for a tear test. It is a graph which shows the result of a tear test.
  • 1. 1 is a core layer 12, a rubber layer 14 provided on one surface 12a of the core layer 12, and a second surface 12b of the core layer 12. And a conductive resin layer 16.
  • the core layer 12 occupies most of the thickness of the paper sheet conveying belt 10 and maintains the tension when the paper sheet conveying belt 10 is extended. Furthermore, the core body layer 12 bears the tear resistance of the paper sheet conveying belt 10.
  • the core layer 12 in the present embodiment is made of a polyurethane-based thermoplastic elastomer.
  • the polyurethane-based thermoplastic elastomer is not particularly limited, and any polyurethane-based thermoplastic elastomer such as a polyester type, a polyether type, or a polycarbonate type can be used.
  • the paper sheet conveying belt 10 having a higher tensile strength and tear resistance can be obtained.
  • the polyurethane thermoplastic elastomer preferably has a hardness (JIS-A) of about 80 to 98 °, more preferably 90 to 98 °.
  • the hardness of the polyurethane thermoplastic elastomer is determined according to JIS K6301.
  • the core body layer 12 may contain various additives such as pigments, antibacterial and antifungal agents, antioxidants, ultraviolet absorbers, and flame retardants as long as the effects of the present invention are not impaired.
  • the thickness t 1 of the core body layer 12 can be appropriately set according to the thickness t 0 and the configuration of the entire sheet transport belt 10, but the thickness t 0 of the entire sheet transport belt 10. It is preferably about 70 to 90%. For example, when the thickness t 0 of the entire sheet transport belt 10 is about 1.0 to 1.7 mm, the thickness t 1 of the core layer 12 is about 0.9 to 1.2 mm. be able to.
  • the rubber layer 14 is provided on the one surface 12 a of the core body layer 12 and serves as a conveyance surface layer of the paper sheet conveyance belt 10. Due to the presence of the rubber layer 14, it is possible to secure the conveyance force of the paper sheet with the friction coefficient of the conveyance surface within an appropriate range.
  • Rubber materials constituting the rubber layer 14 include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene rubber, chloroprene rubber, chlorinated polyethylene, epichlorohydrin rubber, nitrile rubber (NBR), acrylic rubber, urethane rubber, and the like. You can choose from. These rubber materials may be used alone or in combination of two or more. NBR is preferable as the rubber material because it can be fixed to the core layer 12 by a simple method and good adhesion can be obtained. When NBR is used, the friction coefficient of the surface of the rubber layer 14 against the conveyed paper sheet can be about 0.7 to 1.1.
  • additives such as pigments, flame retardants, and antibacterial / antifungal agents can be added to the rubber layer 14 as long as the effects of the present invention are not impaired.
  • the thickness t 2 of the rubber layer 14 may be appropriately set according to the thickness t 0 and configuration of the entire paper sheet transfer belt 10. For example, when the thickness t 0 of the entire sheet conveying belt 10 is about 1.0 to 1.7 mm, the thickness t 2 of the rubber layer 14 is about 0.1 to 0.6 mm. Can do.
  • the conductive resin layer 16 is provided on the other surface 12 b of the core body layer 12 and serves as a running surface layer of the paper sheet transport belt 10.
  • the conductive resin layer 16 is composed of a conductive resin composition obtained by adding a conductivity imparting agent to a thermoplastic elastomer.
  • the thermoplastic elastomer can be selected from polyurethane elastomers, polyester elastomers, polyamide elastomers, polyolefin elastomers, and the like. These thermoplastic elastomers may be used alone or in combination of two or more.
  • the conductivity-imparting agent examples include carbon-based conductivity imparting agents such as carbon black, graphite, and carbon fiber, and metal-based conductivity imparting agents such as fine powders of various metals such as copper, iron, and aluminum. .
  • carbon-based conductivity imparting agents such as carbon black, graphite, and carbon fiber
  • metal-based conductivity imparting agents such as fine powders of various metals such as copper, iron, and aluminum.
  • the conductivity imparting agent is contained in an amount of about 10% or more with respect to the thermoplastic elastomer, the conductivity is imparted and an antistatic effect is obtained.
  • the conductive resin layer 16 has a stabilizer, a stabilizing aid, an antioxidant, a light stabilizer, a nucleating agent, a lubricant, a flame retardant, a plasticizer, a pigment, and an antibacterial agent as long as the effects of the present invention are not impaired.
  • Various additives such as a fungicide may be contained.
  • the thickness t 3 of the conductive resin layer 16 can be set as appropriate according to the thickness t 0 and the configuration of the entire sheet transport belt 10. For example, when the thickness t 0 of the entire sheet transport belt 10 is about 1.0 to 1.7 mm, the thickness t 3 of the conductive resin layer 16 is about 0.03 to 0.1 mm. can do.
  • the paper sheet transport belt 10 is manufactured by any method as long as the core layer 12 and the rubber layer 14 and the core layer 12 and the conductive resin layer 16 are fixed and do not peel off. can do.
  • the core layer 12 is produced using a polyurethane-based thermoplastic elastomer.
  • the core body layer 12 can be manufactured by using a predetermined raw material to prepare a sheet having a predetermined thickness by, for example, extrusion molding, and cutting the obtained sheet into a predetermined dimension.
  • the rubber layer 14 is prepared by applying a predetermined rubber material on the canvas by calendering or the like to produce a sheet-like rubber material, and transferring the obtained sheet-like rubber material to one surface 12 a of the core layer 12. Can be arranged.
  • the conductive resin layer 16 is prepared by applying a predetermined conductive resin composition onto a canvas by knife coating or the like to produce a sheet-like conductive resin composition. It can be transferred to the other surface 12 b of the core body layer 12 and arranged.
  • a laminated body having a sheet-like rubber material and a sheet-like conductive resin composition disposed on each surface of the core body layer 12 and having a canvas on the outermost surface obtain.
  • the laminated body is squeezed and vulcanized under heat and pressure conditions to be processed into a predetermined thickness.
  • the thickness after the press vulcanization can be set to, for example, about 1.0 to 1.7 mm.
  • the outermost canvas is peeled off, and the core layer 12, the rubber layer 14 provided on one surface 12a of the core layer 12, and the conductive resin layer 16 provided on the other surface 12b of the core body layer 12, Is obtained.
  • the surface of the rubber layer 14 and the conductive resin layer 16 has irregularities due to the traces of the canvas.
  • the paper sheet transport belt 10 obtained in this way can have a desired size according to the apparatus to be applied.
  • the width can be about 10 to 400 mm, and the length can be about 400 to 100,000 mm.
  • the rubber layer 14 side is used as a conveying surface
  • the conductive resin layer 16 side is used as a running surface.
  • the sheet conveying belt 10 of the present embodiment can be made endless by joining both ends with finger joints so that the rubber layer 14 becomes the conveying surface.
  • the core layer 12 is made of a polyurethane-based thermoplastic elastomer.
  • Polyurethane thermoplastic elastomers are less prone to stretch than other elastic materials such as rubber and polyamide thermoplastic elastomers. Since such a polyurethane-based thermoplastic elastomer is used for the core body layer 12, the paper sheet conveying belt 10 according to the present embodiment has a high tensile tension.
  • the paper sheet conveying belt 10 since the core layer 12 is made of a polyurethane-based thermoplastic elastomer, the paper sheet conveying belt 10 according to this embodiment also has improved tear resistance. For example, as compared with the case where a polyamide-based thermoplastic elastomer is used for the core layer, the paper sheet conveying belt 10 according to this embodiment has a tear strength improved by about twice.
  • the paper sheet conveying belt 10 has high tear resistance, so that occurrence of tearing due to paper sheet jamming or twisting of the belt itself is suppressed. As a result, it is possible to reduce the possibility of the belt being damaged in a short period.
  • the paper sheet conveying belt 10 according to this embodiment in which the core layer 12 is made of the polyurethane-based thermoplastic elastomer has a restoring force with respect to elongation of about 5%. Is expensive.
  • the paper sheet conveying belt 10 according to the present embodiment is particularly preferably used for a mail sorting machine in a paper sheet conveying apparatus.
  • the rubber layer 14 and the conductive resin layer 16 are fixed to the core body layer 12 by vulcanization adhesion, but may be bonded using an adhesive.
  • an adhesive In order to adhere the rubber layer 14 to the core body layer 12, for example, a urethane-based adhesive can be used. In order to adhere the conductive resin layer 16 to the core body layer 12, for example, a urethane-based adhesive can be used.
  • the range of selection of the rubber used for the rubber layer 14 and the thermoplastic elastomer used for the conductive resin layer 16 is expanded. Prior to bonding, the rubber layer 14 and the conductive resin layer 16 can be vulcanized in advance.
  • both ends of the belt are processed into a taper shape, the taper surfaces are bonded with an adhesive, and joined together by a sky bar joint.
  • an adhesive for example, a urethane-based adhesive can be used as the adhesive.
  • a flat belt is produced using a polyurethane-based thermoplastic elastomer having a hardness of 95 ° as a material for the core layer.
  • Example 3 ⁇ Preparation of core layer> A sheet having a thickness of 1.05 mm was produced by extrusion molding using the above-mentioned polyurethane-based thermoplastic elastomer having a hardness of 95 °. This sheet was cut into predetermined dimensions (width 400 mm, length 100000 mm) to obtain a core layer.
  • a conductive resin composition was prepared by adding a conductivity-imparting agent to the thermoplastic elastomer. The addition amount of the conductivity imparting agent was about 60 wt% with respect to the entire conductive resin composition. This conductive resin composition was applied to a canvas with a thickness of 0.15 mm by knife coating to obtain a sheet-like conductive resin composition supported on the canvas.
  • the rubber layer and the conductive resin layer are fixed to the front and back surfaces of the core layer made of a polyurethane thermoplastic elastomer having a thickness of 1.05 mm by vulcanization adhesion.
  • the rubber layer has a thickness of 0.25 mm
  • the conductive resin layer has a thickness of 0.15 mm.
  • the surface of the rubber layer and the conductive resin layer had a concavo-convex pattern due to the traces of the peeled canvas.
  • FIG. 3 shows the load-elongation rate curve obtained from the test results by calculating the elongation rate in the same manner as described above.
  • the flat belt of the example has a tension at 5% elongation of 2.37 N / mm.
  • the flat belt of the example was cut into a width of 10 mm and a length of 60 mm to prepare three tear test samples. As shown in FIG. 4, the sample 20 was provided with a notch 22 of 30 mm along the longitudinal direction from the upper end.
  • the commercially available belt has a core layer made of a polyamide-based thermoplastic elastomer having a thickness of 0.75 mm, an NBR layer having a thickness of 0.35 mm that covers the surface of the core layer, and a thickness that covers the back surface of the core layer. It is composed of a 0.35 mm NBR layer.
  • the tear strength of the sample at each temperature obtained by the tear test is shown in FIG. As shown in FIG. 5, the tear strength at 0 ° C. is 76.0 N / mm in the sample of the example, whereas it is 39.7 N / mm in the commercially available sample. Even at 10 ° C., the tear strength of the sample of the example is not changed to 76.0 N / mm, but the sample of the commercial product is reduced to 29.1 N / mm. At 20 ° C., the tear strength of the example sample is slightly reduced, but it is still 59.8 N / mm. The tear strength of the example sample at 20 ° C. is nearly three times as large as 20.0 N / mm of the commercially available sample.
  • the belt of the example including the polyurethane-based thermoplastic elastomer in the core layer had higher tear strength than the commercially available belt including the polyamide-based thermoplastic elastomer in the core layer regardless of the environmental temperature. It was done.
  • the belt of the example also has a tension at 5% elongation that is improved over the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Belt Conveyors (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)

Abstract

Provided is a conveyor belt for paper sheets, which is characterized by being provided with: a core layer (12) that contains a polyurethane-based thermoplastic elastomer; a rubber layer (14) that is provided on one surface (12a) of the core layer (12); and a conductive resin layer (16) that is provided on the other surface (12b) of the core layer (12). This conveyor belt for paper sheets has a high tension at elongation and excellent tear resistance.

Description

紙葉類搬送用ベルトPaper sheet conveyor belt
 本発明は、紙葉類搬送用ベルト、特に郵便物仕分け機械用ベルトに関する。 The present invention relates to a paper sheet conveying belt, particularly a mail sorting machine belt.
 無端ベルトは、紙幣、切符等の紙葉類を搬送するための紙葉類搬送用ベルトとして使用されている(特許文献1参照)。特許文献1には、保形ゴム層によりベルトの形状を保ち、従来のシームレス織布層に換えて熱可塑性エラストマーからなる表面層を搬送面に設けることによって、無端ベルトの蛇行を防止して総合的な走行特性の向上を図っている。保形ゴム層は、さらにベルトの張力の維持等の機能を有することが記載されている。 The endless belt is used as a paper sheet conveying belt for conveying paper sheets such as banknotes and tickets (see Patent Document 1). In Patent Document 1, the shape of the belt is maintained by a shape-retaining rubber layer, and a surface layer made of a thermoplastic elastomer is provided on the conveying surface in place of the conventional seamless woven fabric layer to prevent meandering of the endless belt. To improve the driving performance. It is described that the shape-retaining rubber layer further has a function of maintaining the tension of the belt.
 また、特許文献1においては、表面層を構成する熱可塑性エラストマーとしてポリアミド系熱可塑性エラストマーが推奨されている。特許文献1によれば、表面層にポリアミド系熱可塑性エラストマーを用いることによって摩擦係数を低減でき、方向転換用ガイドプーリへの巻き付け長さの差に起因するベルトの弛みを確実に防止できる。これによって、搬送がスムーズに行われる。加えて、耐摩耗性および摩擦係数の経時変化が少なくなってベルトの走行性がより安定化する。 In Patent Document 1, a polyamide-based thermoplastic elastomer is recommended as the thermoplastic elastomer constituting the surface layer. According to Patent Document 1, the friction coefficient can be reduced by using a polyamide-based thermoplastic elastomer for the surface layer, and the slack of the belt due to the difference in the winding length around the direction change guide pulley can be reliably prevented. Thereby, conveyance is performed smoothly. In addition, changes in the wear resistance and friction coefficient with time are reduced, and the running performance of the belt is further stabilized.
特開平6-144626号公報JP-A-6-144626
 搬送用ベルトは、紙葉類搬送装置での使用中に引張り荷重を受けて伸びが生じることがある。引張り荷重を受けた際の搬送用ベルトの伸びを制限するためには、紙葉類搬送用ベルトは、伸張時張力(例えば5%伸張時張力)が大きいことが望まれる。 The conveying belt may be stretched by receiving a tensile load during use in the paper sheet conveying apparatus. In order to limit the elongation of the conveying belt when subjected to a tensile load, it is desirable that the paper sheet conveying belt has a large tension at the time of extension (for example, a tension at 5% elongation).
 また、紙葉類搬送装置においては、搬送用ベルトで搬送中の紙葉類が搬送経路中で詰まることがある。紙葉類の詰まりは、搬送用ベルトの引裂きを発生させる原因となる。搬送用ベルトの耐引裂き性が乏しい場合には、短期間の運転でも縦割れが生じて搬送用ベルトは交換が必要となる。 Also, in the paper sheet transport apparatus, paper sheets being transported by the transport belt may be jammed in the transport path. Paper jams cause tearing of the conveyor belt. When the conveyance belt has poor tear resistance, vertical cracks occur even during short-term operation, and the conveyance belt needs to be replaced.
 紙葉類搬送装置のなかでも郵便物仕分け機械においては、搬送される郵便物の天地の向きを変えるために、搬送用ベルトは捩じられることが多い。捩じりもまた、搬送用ベルトの引裂きを発生させる原因となることから、搬送用ベルトは十分な耐引裂き性を備えていることが要求される。 In a mail sorting machine among paper sheet transport apparatuses, the transport belt is often twisted to change the direction of the top of the transported mail. Twisting also causes tearing of the conveying belt, so that the conveying belt is required to have sufficient tear resistance.
 そこで本発明は、大きな伸張時張力を有するとともに耐引裂き性の優れた紙葉類搬送用ベルトを提供することを目的とする。 Therefore, an object of the present invention is to provide a paper sheet conveying belt having a large tension at the time of extension and excellent in tear resistance.
 本発明に係る紙葉類搬送用ベルトは、ポリウレタン系熱可塑性エラストマーを含む芯体層と、前記芯体層の一表面に設けられたゴム層と、前記芯体層の他表面に設けられた導電性樹脂層とを備えることを特徴とする。 The paper sheet conveying belt according to the present invention is provided on a core layer containing a polyurethane-based thermoplastic elastomer, a rubber layer provided on one surface of the core layer, and on the other surface of the core layer. And a conductive resin layer.
 本発明によれば、紙葉類搬送用ベルトは、芯体層がポリウレタン系熱可塑性エラストマーにより構成されている。ポリウレタン系熱可塑性エラストマーは、他の弾性材料より伸びにくいので、紙葉類搬送用ベルトは大きな伸張時張力を有する。しかも、耐引裂き性を担う芯体層がポリウレタン系熱可塑性エラストマーにより構成されていることから、紙葉類搬送用ベルトは耐引裂き性も優れている。 According to the present invention, the core of the paper sheet conveying belt is made of a polyurethane-based thermoplastic elastomer. Since the polyurethane-based thermoplastic elastomer is less stretchable than other elastic materials, the paper sheet transport belt has a large tension at the time of extension. Moreover, since the core layer responsible for tear resistance is made of a polyurethane-based thermoplastic elastomer, the paper sheet conveying belt is also excellent in tear resistance.
本実施形態に係る紙葉類搬送用ベルトの断面図である。It is sectional drawing of the paper sheet conveyance belt which concerns on this embodiment. ポリウレタン系熱可塑性エラストマーのサンプルの引張り試験から得られた荷重-伸張率曲線である。3 is a load-elongation curve obtained from a tensile test of a sample of a polyurethane-based thermoplastic elastomer. 実施例のベルトの引張り試験から得られた荷重-伸張率曲線である。3 is a load-elongation rate curve obtained from a tensile test of a belt of an example. 引裂き試験用のサンプルを示す図である。It is a figure which shows the sample for a tear test. 引裂き試験の結果を示すグラフ図である。It is a graph which shows the result of a tear test.
 以下、図面を参照して本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1.全体構成
 図1に示す紙葉類搬送用ベルト10は、芯体層12と、芯体層12の一表面12aに設けられたゴム層14と、芯体層12の他表面12bに設けられた導電性樹脂層16とを備える。
1. 1 is a core layer 12, a rubber layer 14 provided on one surface 12a of the core layer 12, and a second surface 12b of the core layer 12. And a conductive resin layer 16.
<芯体層>
 芯体層12は、紙葉類搬送用ベルト10の厚さの大部分を占め、紙葉類搬送用ベルト10の伸張時張力を維持する。さらに、芯体層12は、紙葉類搬送用ベルト10の耐引裂き性を担う。こうした機能を果たすため、本実施形態における芯体層12は、ポリウレタン系熱可塑性エラストマーにより構成される。ポリウレタン系熱可塑性エラストマーは特に限定されず、ポリエステルタイプ、ポリエーテルタイプ、ポリカーボネートタイプ等の任意のポリウレタン系熱可塑性エラストマーを用いることができる。
<Core layer>
The core layer 12 occupies most of the thickness of the paper sheet conveying belt 10 and maintains the tension when the paper sheet conveying belt 10 is extended. Furthermore, the core body layer 12 bears the tear resistance of the paper sheet conveying belt 10. In order to fulfill such a function, the core layer 12 in the present embodiment is made of a polyurethane-based thermoplastic elastomer. The polyurethane-based thermoplastic elastomer is not particularly limited, and any polyurethane-based thermoplastic elastomer such as a polyester type, a polyether type, or a polycarbonate type can be used.
 硬度(JIS-A)のより大きなポリウレタン系熱可塑性エラストマーを用いて芯体層12を形成することによって、伸張時張力および耐引裂き性のより優れた紙葉類搬送用ベルト10が得られる。ポリウレタン系熱可塑性エラストマーは、硬度(JIS-A)が80~98°程度であることが好ましく、90~98°であることがより好ましい。ポリウレタン系熱可塑性エラストマーの硬度は、JIS K6301に準拠して求められる。 By forming the core layer 12 using a polyurethane-based thermoplastic elastomer having a higher hardness (JIS-A), the paper sheet conveying belt 10 having a higher tensile strength and tear resistance can be obtained. The polyurethane thermoplastic elastomer preferably has a hardness (JIS-A) of about 80 to 98 °, more preferably 90 to 98 °. The hardness of the polyurethane thermoplastic elastomer is determined according to JIS K6301.
 芯体層12には、本発明の効果を阻害しない範囲で、顔料、抗菌防カビ剤、酸化防止剤、紫外線吸収剤、難燃剤などの各種添加剤が含有されていてもよい。 The core body layer 12 may contain various additives such as pigments, antibacterial and antifungal agents, antioxidants, ultraviolet absorbers, and flame retardants as long as the effects of the present invention are not impaired.
 芯体層12の厚さt1は、紙葉類搬送用ベルト10全体の厚さt0および構成に応じて適宜設定することができるが、紙葉類搬送用ベルト10全体の厚さt0の70~90%程度であることが好ましい。例えば、紙葉類搬送用ベルト10全体の厚さt0が1.0~1.7mm程度の場合には、芯体層12の厚さt1は、0.9~1.2mm程度とすることができる。 The thickness t 1 of the core body layer 12 can be appropriately set according to the thickness t 0 and the configuration of the entire sheet transport belt 10, but the thickness t 0 of the entire sheet transport belt 10. It is preferably about 70 to 90%. For example, when the thickness t 0 of the entire sheet transport belt 10 is about 1.0 to 1.7 mm, the thickness t 1 of the core layer 12 is about 0.9 to 1.2 mm. be able to.
<ゴム層>
 ゴム層14は、芯体層12の一表面12aに設けられ、紙葉類搬送用ベルト10の搬送面層となる。ゴム層14が存在することによって、搬送面の摩擦係数を適切な範囲として、紙葉類の搬送力を確保することができる。
<Rubber layer>
The rubber layer 14 is provided on the one surface 12 a of the core body layer 12 and serves as a conveyance surface layer of the paper sheet conveyance belt 10. Due to the presence of the rubber layer 14, it is possible to secure the conveyance force of the paper sheet with the friction coefficient of the conveyance surface within an appropriate range.
 ゴム層14を構成するゴム材料は、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンゴム、クロロプレンゴム、塩素化ポリエチレン、エピクロルヒドリンゴム、ニトリルゴム(NBR)、アクリルゴム、およびウレタンゴム等から選択することができる。これらのゴム材料は、単独でも2種以上を組み合わせて用いてもよい。簡便な手法で芯体層12に固着でき、良好な接着が得られることから、ゴム材料としてはNBRが好ましい。NBRを用いた場合には、搬送される紙葉類に対するゴム層14表面の摩擦係数は、0.7~1.1程度とすることができる。 Rubber materials constituting the rubber layer 14 include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene rubber, chloroprene rubber, chlorinated polyethylene, epichlorohydrin rubber, nitrile rubber (NBR), acrylic rubber, urethane rubber, and the like. You can choose from. These rubber materials may be used alone or in combination of two or more. NBR is preferable as the rubber material because it can be fixed to the core layer 12 by a simple method and good adhesion can be obtained. When NBR is used, the friction coefficient of the surface of the rubber layer 14 against the conveyed paper sheet can be about 0.7 to 1.1.
 ゴム層14には、本発明の効果を阻害しない範囲で、顔料、難燃剤、抗菌防カビ剤などの各種添加剤を添加することができる。 Various additives such as pigments, flame retardants, and antibacterial / antifungal agents can be added to the rubber layer 14 as long as the effects of the present invention are not impaired.
 ゴム層14の厚さt2は、紙葉類搬送用ベルト10全体の厚さt0および構成に応じて適宜設定することができる。例えば、紙葉類搬送用ベルト10全体の厚さt0が1.0~1.7mm程度の場合には、ゴム層14の厚さt2は、0.1~0.6mm程度とすることができる。 The thickness t 2 of the rubber layer 14 may be appropriately set according to the thickness t 0 and configuration of the entire paper sheet transfer belt 10. For example, when the thickness t 0 of the entire sheet conveying belt 10 is about 1.0 to 1.7 mm, the thickness t 2 of the rubber layer 14 is about 0.1 to 0.6 mm. Can do.
<導電性樹脂層>
 導電性樹脂層16は、芯体層12の他表面12bに設けられ、紙葉類搬送用ベルト10の走行面層となる。導電性樹脂層16は、熱可塑性エラストマーに導電性付与剤を添加してなる導電性樹脂組成物から構成される。熱可塑性エラストマーは、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、およびポリオレフィン系エラストマー等から選択することができる。これらの熱可塑性エラストマーは、単独でも2種以上を組み合わせて用いてもよい。
<Conductive resin layer>
The conductive resin layer 16 is provided on the other surface 12 b of the core body layer 12 and serves as a running surface layer of the paper sheet transport belt 10. The conductive resin layer 16 is composed of a conductive resin composition obtained by adding a conductivity imparting agent to a thermoplastic elastomer. The thermoplastic elastomer can be selected from polyurethane elastomers, polyester elastomers, polyamide elastomers, polyolefin elastomers, and the like. These thermoplastic elastomers may be used alone or in combination of two or more.
 導電性付与剤としては、例えば、カーボンブラック、黒鉛、炭素繊維などのカーボン系の導電性付与剤、銅、鉄、アルミニウムなど各種金属の微粉末などの金属系の導電性付与剤などが挙げられる。導電性付与剤は、一般的には熱可塑性エラストマーに対して10%程度以上の量で含まれていれば、導電性を付与して帯電防止の効果が得られる。 Examples of the conductivity-imparting agent include carbon-based conductivity imparting agents such as carbon black, graphite, and carbon fiber, and metal-based conductivity imparting agents such as fine powders of various metals such as copper, iron, and aluminum. . In general, when the conductivity imparting agent is contained in an amount of about 10% or more with respect to the thermoplastic elastomer, the conductivity is imparted and an antistatic effect is obtained.
 導電性樹脂層16には、本発明の効果を阻害しない範囲で、安定剤、安定化助剤、酸化防止剤、光安定剤、造核剤、滑剤、難燃剤、可塑剤、顔料、抗菌剤、防カビ剤などの各種添加剤が含有されていてもよい。 The conductive resin layer 16 has a stabilizer, a stabilizing aid, an antioxidant, a light stabilizer, a nucleating agent, a lubricant, a flame retardant, a plasticizer, a pigment, and an antibacterial agent as long as the effects of the present invention are not impaired. Various additives such as a fungicide may be contained.
 導電性樹脂層16の厚さt3は、紙葉類搬送用ベルト10全体の厚さt0および構成に応じて適宜設定することができる。例えば、紙葉類搬送用ベルト10全体の厚さt0が1.0~1.7mm程度の場合には、導電性樹脂層16の厚さt3は、0.03~0.1mm程度とすることができる。 The thickness t 3 of the conductive resin layer 16 can be set as appropriate according to the thickness t 0 and the configuration of the entire sheet transport belt 10. For example, when the thickness t 0 of the entire sheet transport belt 10 is about 1.0 to 1.7 mm, the thickness t 3 of the conductive resin layer 16 is about 0.03 to 0.1 mm. can do.
2.製造方法
 紙葉類搬送用ベルト10は、芯体層12とゴム層14、および芯体層12と導電性樹脂層16とが固着して剥離しないような方法であれば、任意の方法により製造することができる。
2. Manufacturing Method The paper sheet transport belt 10 is manufactured by any method as long as the core layer 12 and the rubber layer 14 and the core layer 12 and the conductive resin layer 16 are fixed and do not peel off. can do.
 まず、ポリウレタン系熱可塑性エラストマーを用いて、芯体層12を作製する。芯体層12は、所定の原料を用いて、例えば押出し成形により所定の厚さのシートを作製し、得られたシートを所定の寸法に切断して作製することができる。 First, the core layer 12 is produced using a polyurethane-based thermoplastic elastomer. The core body layer 12 can be manufactured by using a predetermined raw material to prepare a sheet having a predetermined thickness by, for example, extrusion molding, and cutting the obtained sheet into a predetermined dimension.
 ゴム層14は、カレンダー加工等により、所定のゴム材料を帆布上に塗布してシート状のゴム材料を作製し、得られたシート状のゴム材料を芯体層12の一表面12aに転写して配置することができる。 The rubber layer 14 is prepared by applying a predetermined rubber material on the canvas by calendering or the like to produce a sheet-like rubber material, and transferring the obtained sheet-like rubber material to one surface 12 a of the core layer 12. Can be arranged.
 導電性樹脂層16は、ナイフコート等により、所定の導電性樹脂組成物を帆布上に塗布してシート状の導電性樹脂組成物を作製し、得られたシート状の導電性樹脂組成物を芯体層12の他表面12bに転写して配置することができる。 The conductive resin layer 16 is prepared by applying a predetermined conductive resin composition onto a canvas by knife coating or the like to produce a sheet-like conductive resin composition. It can be transferred to the other surface 12 b of the core body layer 12 and arranged.
 ゴム層14および導電性樹脂層16の転写にあたっては、シート状のゴム材料およびシート状の導電性樹脂組成物を芯体層12の各表面に配置して、最表面に帆布を有する積層体を得る。この積層体に対して加熱加圧条件下で圧搾加硫を行って、所定の厚さに加工する。圧搾加硫の後の厚さは、例えば1.0~1.7mm程度とすることができる。圧搾加硫によって、芯体層12の一表面12aには、ゴム層14が加硫接着によって固着され、芯体層12の他表面12bには、導電性樹脂層16が加硫接着によって固着される。 In transferring the rubber layer 14 and the conductive resin layer 16, a laminated body having a sheet-like rubber material and a sheet-like conductive resin composition disposed on each surface of the core body layer 12 and having a canvas on the outermost surface. obtain. The laminated body is squeezed and vulcanized under heat and pressure conditions to be processed into a predetermined thickness. The thickness after the press vulcanization can be set to, for example, about 1.0 to 1.7 mm. By compression vulcanization, the rubber layer 14 is fixed to one surface 12a of the core body layer 12 by vulcanization adhesion, and the conductive resin layer 16 is fixed to the other surface 12b of the core body layer 12 by vulcanization adhesion. The
 最表面の帆布を剥離して、芯体層12と、芯体層12の一表面12aに設けられたゴム層14と、芯体層12の他表面12bに設けられた導電性樹脂層16とを備えた本実施形態の紙葉類搬送用ベルト10が得られる。ゴム層14および導電性樹脂層16の表面には、帆布の布目の痕による凹凸が生じる。 The outermost canvas is peeled off, and the core layer 12, the rubber layer 14 provided on one surface 12a of the core layer 12, and the conductive resin layer 16 provided on the other surface 12b of the core body layer 12, Is obtained. The surface of the rubber layer 14 and the conductive resin layer 16 has irregularities due to the traces of the canvas.
 このようにして得られた紙葉類搬送用ベルト10は、適用される装置等に応じて所望の寸法とすることができる。例えば、幅は10~400mm程度、長さは400~100000mm程度とすることができる。本実施形態の紙葉類搬送用ベルト10は、ゴム層14側が搬送面として用いられ、導電性樹脂層16側が走行面として用いられる。本実施形態の紙葉類搬送用ベルト10は、ゴム層14が搬送面となるように両端部をフィンガー継手により継ぎ合せて無端状とすることができる。 The paper sheet transport belt 10 obtained in this way can have a desired size according to the apparatus to be applied. For example, the width can be about 10 to 400 mm, and the length can be about 400 to 100,000 mm. In the paper sheet conveying belt 10 of this embodiment, the rubber layer 14 side is used as a conveying surface, and the conductive resin layer 16 side is used as a running surface. The sheet conveying belt 10 of the present embodiment can be made endless by joining both ends with finger joints so that the rubber layer 14 becomes the conveying surface.
3.作用及び効果
 本実施形態に係る紙葉類搬送用ベルト10においては、芯体層12は、ポリウレタン系熱可塑性エラストマーによって構成されている。ポリウレタン系熱可塑性エラストマーは、ゴムやポリアミド系熱可塑性エラストマーのような他の弾性材料よりも伸びにくい。こうしたポリウレタン系熱可塑性エラストマーが芯体層12に用いられているので、本実施形態に係る紙葉類搬送用ベルト10は、伸張時張力が大きい。
3. Action and Effect In the paper sheet conveying belt 10 according to the present embodiment, the core layer 12 is made of a polyurethane-based thermoplastic elastomer. Polyurethane thermoplastic elastomers are less prone to stretch than other elastic materials such as rubber and polyamide thermoplastic elastomers. Since such a polyurethane-based thermoplastic elastomer is used for the core body layer 12, the paper sheet conveying belt 10 according to the present embodiment has a high tensile tension.
 しかも、芯体層12がポリウレタン系熱可塑性エラストマーにより構成されたことによって、本実施形態に係る紙葉類搬送用ベルト10は耐引裂き性も高められる。例えば、ポリアミド系熱可塑性エラストマーを芯体層に用いた場合と比較すると、本実施形態に係る紙葉類搬送用ベルト10は引裂き強度が2倍程度に向上する。 Moreover, since the core layer 12 is made of a polyurethane-based thermoplastic elastomer, the paper sheet conveying belt 10 according to this embodiment also has improved tear resistance. For example, as compared with the case where a polyamide-based thermoplastic elastomer is used for the core layer, the paper sheet conveying belt 10 according to this embodiment has a tear strength improved by about twice.
 本実施形態に係る紙葉類搬送用ベルト10は、高い耐引裂き性を備えていることによって、紙葉類の詰まりやベルト自体の捩じりによる引裂きの発生が抑制される。その結果、短期間でベルトが破損するおそれを低減することができる。 The paper sheet conveying belt 10 according to the present embodiment has high tear resistance, so that occurrence of tearing due to paper sheet jamming or twisting of the belt itself is suppressed. As a result, it is possible to reduce the possibility of the belt being damaged in a short period.
 上述したとおり、ポリウレタン系熱可塑性エラストマーは伸びにくいので、芯体層12がポリウレタン系熱可塑性エラストマーにより構成された本実施形態に係る紙葉類搬送用ベルト10は、5%程度の伸びに対する復元力が高い。 As described above, since the polyurethane-based thermoplastic elastomer is difficult to stretch, the paper sheet conveying belt 10 according to this embodiment in which the core layer 12 is made of the polyurethane-based thermoplastic elastomer has a restoring force with respect to elongation of about 5%. Is expensive.
 本実施形態に係る紙葉類搬送用ベルト10は、紙葉類搬送装置のなかでも郵便物仕分け機械用として、特に好適に使用される。 The paper sheet conveying belt 10 according to the present embodiment is particularly preferably used for a mail sorting machine in a paper sheet conveying apparatus.
4.変形例
 本発明は、ここに記載された実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
4). Modifications The present invention is not limited to the embodiments described herein, and can be modified as appropriate within the scope of the gist of the present invention.
 例えば、紙葉類搬送用ベルト10を製造するにあたって、ゴム層14および導電性樹脂層16は、加硫接着により芯体層12に固着したが、接着剤を用いて接着してもよい。ゴム層14を芯体層12に接着するには、例えばウレタン系接着剤を用いることができる。導電性樹脂層16を芯体層12に接着するには、例えばウレタン系接着剤を用いることができる。接着剤により接着する場合には、ゴム層14に用いるゴム、および導電性樹脂層16に用いる熱可塑性エラストマーの選択の幅が広がる。接着に先立って、ゴム層14および導電性樹脂層16は予め加硫させておくことができる。 For example, in manufacturing the paper sheet transport belt 10, the rubber layer 14 and the conductive resin layer 16 are fixed to the core body layer 12 by vulcanization adhesion, but may be bonded using an adhesive. In order to adhere the rubber layer 14 to the core body layer 12, for example, a urethane-based adhesive can be used. In order to adhere the conductive resin layer 16 to the core body layer 12, for example, a urethane-based adhesive can be used. When bonding with an adhesive, the range of selection of the rubber used for the rubber layer 14 and the thermoplastic elastomer used for the conductive resin layer 16 is expanded. Prior to bonding, the rubber layer 14 and the conductive resin layer 16 can be vulcanized in advance.
 また、本実施形態の紙葉類搬送用ベルト10を無端状にするにあたっては、ベルトの両端部をテーパー状に加工し、テーパー面同士を接着剤によって接着して、スカイバー継手により継ぎ合せてもよい。接着剤としては、例えばウレタン系接着剤を用いることができる。 Further, in making the paper sheet conveying belt 10 of the present embodiment endless, both ends of the belt are processed into a taper shape, the taper surfaces are bonded with an adhesive, and joined together by a sky bar joint. Good. For example, a urethane-based adhesive can be used as the adhesive.
5.実施例
 以下、実施例として平ベルトを例に挙げて本発明の紙葉類搬送用ベルトを詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。
5. Examples Hereinafter, although a flat belt will be described as an example and the paper sheet conveying belt of the present invention will be described in detail, the present invention is not limited to the following examples.
[予備試験]
 硬度(JIS-A)の異なる2種類のポリウレタン系熱可塑性エラストマーからなるサンプルを用意し、引張り試験機((株)島津製作所:AG2000B)によりJIS K7311に準拠して引張り試験を行った。ポリウレタン系熱可塑性エラストマーとしては、サンプルA(硬度95°)とサンプルB(硬度85°)とを用いた。サンプルのサイズは、幅20mm、長さ500mm、厚さ0.8mmとした。
[Preliminary test]
Samples made of two types of polyurethane-based thermoplastic elastomers having different hardness (JIS-A) were prepared, and a tensile test was conducted according to JIS K7311 using a tensile tester (Shimadzu Corporation: AG2000B). Sample A (hardness 95 °) and sample B (hardness 85 °) were used as the polyurethane-based thermoplastic elastomer. The sample size was 20 mm wide, 500 mm long, and 0.8 mm thick.
 引張り試験においては、サンプルが破断するまで荷重を印加し、初期長さLと破断時の長さLとを用いて、伸張率((L-L)/L×100)を求めた。試験結果から得られた荷重-伸張率曲線を図2に示す。図2中、曲線Aおよび曲線Bは、それぞれサンプルAおよびサンプルBについての結果である。図2のグラフに示されるように、同じ大きさの伸張率で比較すると、サンプルAの荷重はサンプルBの荷重の2倍程度である。例えば、伸張率が5%の際の荷重(5%伸張時張力)は、サンプルBでは1.1N/mmであるのに対し、サンプルAでは2.5N/mmである。 In the tensile test, a load is applied until the sample breaks, and the elongation ((L 1 −L 0 ) / L 0 × 100) is calculated using the initial length L 0 and the length L 1 at break. Asked. The load-elongation rate curve obtained from the test results is shown in FIG. In FIG. 2, curve A and curve B are the results for sample A and sample B, respectively. As shown in the graph of FIG. 2, the load of the sample A is about twice the load of the sample B when compared with the same expansion ratio. For example, the load when the stretch rate is 5% (5% stretch tension) is 1.1 N / mm for sample B, and 2.5 N / mm for sample A.
 ポリウレタン系熱可塑性エラストマーのなかでも、硬度の大きなものは伸張時張力がより大きい。このような材質を、ベルトの厚さの大部分を占める芯体層として用いることによって、ベルトとしての伸張時張力をより大きくすることができる。したがって、実施例においては、硬度が95°のポリウレタン系熱可塑性エラストマーを芯体層の材料として用いて平ベルトを作製する。 Among the polyurethane-based thermoplastic elastomers, those with high hardness have a higher tensile tension. By using such a material as a core layer that occupies most of the thickness of the belt, the tension at the time of extension as the belt can be further increased. Therefore, in the examples, a flat belt is produced using a polyurethane-based thermoplastic elastomer having a hardness of 95 ° as a material for the core layer.
[実施例]
<芯体層の作製>
 前述の硬度95°のポリウレタン系熱可塑性エラストマーを用いて、押出し成形により厚さ1.05mmのシートを作製した。このシートを所定寸法(幅400mm、長さ100000mm)に切断して、芯体層を得た。
[Example]
<Preparation of core layer>
A sheet having a thickness of 1.05 mm was produced by extrusion molding using the above-mentioned polyurethane-based thermoplastic elastomer having a hardness of 95 °. This sheet was cut into predetermined dimensions (width 400 mm, length 100000 mm) to obtain a core layer.
<ゴム層の準備>
 ゴム材料としてのNBRを、カレンダー加工により0.25mmの厚さで帆布に塗布して、帆布に支持されたシート状のゴム材料を得た。
<Preparation of rubber layer>
NBR as a rubber material was applied to the canvas with a thickness of 0.25 mm by calendaring to obtain a sheet-like rubber material supported by the canvas.
<導電性樹脂層の準備>
 熱可塑性エラストマーに導電性付与剤を加えて、導電性樹脂組成物を調製した。導電性付与剤の添加量は、導電性樹脂組成物全体に対して約60wt%とした。この導電性樹脂組成物を、ナイフコートにより0.15mmの厚さで帆布に塗布して、帆布に支持されたシート状の導電性樹脂組成物を得た。
<Preparation of conductive resin layer>
A conductive resin composition was prepared by adding a conductivity-imparting agent to the thermoplastic elastomer. The addition amount of the conductivity imparting agent was about 60 wt% with respect to the entire conductive resin composition. This conductive resin composition was applied to a canvas with a thickness of 0.15 mm by knife coating to obtain a sheet-like conductive resin composition supported on the canvas.
<ベルトの作製>
 芯体層の表面にシート状のゴム材料を配置し、裏面にはシート状の導電性樹脂組成物を配置して、最表面に帆布を有する積層体を得た。この積層体に対して、常法により圧搾加硫を行った後、両表面から帆布を剥離して、厚さ1.45mmの実施例の平ベルトが得られた。
<Production of belt>
A sheet-like rubber material was placed on the surface of the core layer, and a sheet-like conductive resin composition was placed on the back surface to obtain a laminate having a canvas on the outermost surface. After pressing and vulcanizing this laminated body by a conventional method, the canvas was peeled from both surfaces to obtain a flat belt of an example having a thickness of 1.45 mm.
 実施例の平ベルトにおいては、厚さ1.05mmのポリウレタン系熱可塑性エラストマーからなる芯体層の表面および裏面に、ゴム層および導電性樹脂層が加硫接着により固着されている。ゴム層の厚さは0.25mmであり、導電性樹脂層の厚さは0.15mmである。ゴム層および導電性樹脂層の表面には、剥離された帆布の痕による凹凸模様が生じていた。 In the flat belt of the example, the rubber layer and the conductive resin layer are fixed to the front and back surfaces of the core layer made of a polyurethane thermoplastic elastomer having a thickness of 1.05 mm by vulcanization adhesion. The rubber layer has a thickness of 0.25 mm, and the conductive resin layer has a thickness of 0.15 mm. The surface of the rubber layer and the conductive resin layer had a concavo-convex pattern due to the traces of the peeled canvas.
<引張り強度>
 実施例の平ベルトについて、前述と同様にして引張り試験を行った。前述と同様にして伸張率を算出し、試験結果から得られた荷重-伸張率曲線を図3に示す。実施例の平ベルトは、5%伸張時張力は2.37N/mmである。
<Tensile strength>
About the flat belt of the Example, the tension test was done like the above. FIG. 3 shows the load-elongation rate curve obtained from the test results by calculating the elongation rate in the same manner as described above. The flat belt of the example has a tension at 5% elongation of 2.37 N / mm.
<5%伸張時張力>
 実施例の平ベルトの両端部を熱融着により接合して、フィンガー継手を有する無端ベルトを作製した。得られた無端ベルトを社内製作の試験機に搭載して200時間走行させた後には、5%伸張時張力は1.1N/mmであった。
<Tension at 5% extension>
Both ends of the flat belt of the example were joined by heat fusion to produce an endless belt having finger joints. After the obtained endless belt was mounted on an in-house manufactured testing machine and allowed to run for 200 hours, the tension at 5% elongation was 1.1 N / mm.
<引裂き強度>
 実施例の平ベルトを、幅10mm、長さ60mmに切断して、引裂き試験用サンプルを3つ作製した。図4に示すように、サンプル20には、上端から長手方向に沿って30mmの切込み22を入れた。
<Tear strength>
The flat belt of the example was cut into a width of 10 mm and a length of 60 mm to prepare three tear test samples. As shown in FIG. 4, the sample 20 was provided with a notch 22 of 30 mm along the longitudinal direction from the upper end.
 また、厚さ1.45mmの市販品のベルトを用いて、同等の寸法のサンプルを3つ作製した。市販品のベルトは、厚さ0.75mmのポリアミド系熱可塑性エラストマーからなる芯体層と、芯体層の表面を覆う厚さ0.35mmのNBR層と、芯体層の裏面を覆う厚さ0.35mmのNBR層とから構成される。 In addition, three samples having the same dimensions were prepared using a commercially available belt having a thickness of 1.45 mm. The commercially available belt has a core layer made of a polyamide-based thermoplastic elastomer having a thickness of 0.75 mm, an NBR layer having a thickness of 0.35 mm that covers the surface of the core layer, and a thickness that covers the back surface of the core layer. It is composed of a 0.35 mm NBR layer.
 これらのサンプルについて、引張り試験機(島津製作所(株):AG2000B)を用いて引裂き強度を測定した。具体的には、サンプル20の切込み22により分けられた2か所の端部24a、24bをつかみ具でそれぞれ締め付けて、端部を締め付けたつかみ具を互いに逆方向に200mm/minで引っ張った。切込み22がサンプル20の下端まで達してサンプル20が2つに引裂かれたときの強さを、引裂き強度として求めた。環境温度は0℃、10℃、20℃として、各環境温度に30分間放置した後のサンプルについて測定を行った。 These samples were measured for tear strength using a tensile tester (Shimadzu Corporation: AG2000B). Specifically, the two end portions 24a and 24b divided by the notch 22 of the sample 20 were each tightened with a gripping tool, and the gripping tools with the end tightened were pulled in opposite directions at 200 mm / min. The strength when the notch 22 reached the lower end of the sample 20 and the sample 20 was torn into two was determined as the tear strength. The environmental temperature was set to 0 ° C., 10 ° C., and 20 ° C., and the measurement was performed on samples after being left at each environmental temperature for 30 minutes.
 引裂き試験により得られた各温度におけるサンプルの引裂き強度を、図5に示す。図5に示すように、0℃における引裂き強度は、実施例のサンプルでは76.0N/mmであるのに対して、市販品のサンプルでは39.7N/mmである。10℃においても、実施例のサンプルの引裂き強度は76.0N/mmと変わらないものの、市販品のサンプルでは、29.1N/mmに低下している。20℃では、実施例のサンプルの引裂き強度は若干低下するが、それでも59.8N/mmである。20℃における実施例のサンプルの引裂き強度は、市販品のサンプルの20.0N/mmの3倍近く大きい。 The tear strength of the sample at each temperature obtained by the tear test is shown in FIG. As shown in FIG. 5, the tear strength at 0 ° C. is 76.0 N / mm in the sample of the example, whereas it is 39.7 N / mm in the commercially available sample. Even at 10 ° C., the tear strength of the sample of the example is not changed to 76.0 N / mm, but the sample of the commercial product is reduced to 29.1 N / mm. At 20 ° C., the tear strength of the example sample is slightly reduced, but it is still 59.8 N / mm. The tear strength of the example sample at 20 ° C. is nearly three times as large as 20.0 N / mm of the commercially available sample.
 このように、ポリウレタン系熱可塑性エラストマーを芯体層に含む実施例のベルトは、環境温度によらず、ポリアミド系熱可塑性エラストマーを芯体層に含む市販品のベルトより引裂き強度が高いことが確認された。しかも、実施例のベルトは、5%伸張時張力も従来より向上している。 As described above, it was confirmed that the belt of the example including the polyurethane-based thermoplastic elastomer in the core layer had higher tear strength than the commercially available belt including the polyamide-based thermoplastic elastomer in the core layer regardless of the environmental temperature. It was done. In addition, the belt of the example also has a tension at 5% elongation that is improved over the prior art.
 10  紙葉類搬送用ベルト
 12  芯体層
 14  ゴム層
 16  導電性樹脂層
DESCRIPTION OF SYMBOLS 10 Paper sheet conveyance belt 12 Core body layer 14 Rubber layer 16 Conductive resin layer

Claims (4)

  1.  ポリウレタン系熱可塑性エラストマーを含む芯体層と、
     前記芯体層の一表面に設けられたゴム層と、
     前記芯体層の他表面に設けられた導電性樹脂層と
    を備えることを特徴とする紙葉類搬送用ベルト。
    A core layer containing a polyurethane-based thermoplastic elastomer;
    A rubber layer provided on one surface of the core layer;
    A paper sheet conveying belt comprising a conductive resin layer provided on the other surface of the core layer.
  2.  前記芯体層は、硬度(JIS-A)が90~98°であることを特徴とする請求項1記載の紙葉類搬送用ベルト。 The paper sheet conveying belt according to claim 1, wherein the core layer has a hardness (JIS-A) of 90 to 98 °.
  3.  前記芯体層の厚さは、前記紙葉類搬送用ベルト全体の厚さの70~90%であることを特徴とする請求項1または2記載の紙葉類搬送用ベルト。 3. The paper sheet conveying belt according to claim 1, wherein a thickness of the core layer is 70 to 90% of a thickness of the entire paper sheet conveying belt.
  4.  両端を熱融着により接合して、無端状にされていることを特徴とする請求項1~3のいずれか1項記載の紙葉類搬送用ベルト。 The paper sheet conveying belt according to any one of claims 1 to 3, wherein both ends are joined by heat fusion so as to be endless.
PCT/JP2016/065445 2015-05-25 2016-05-25 Conveyor belt for paper sheets WO2016190350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-105551 2015-05-25
JP2015105551A JP2016216239A (en) 2015-05-25 2015-05-25 Belt for conveying paper sheet

Publications (1)

Publication Number Publication Date
WO2016190350A1 true WO2016190350A1 (en) 2016-12-01

Family

ID=57393428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065445 WO2016190350A1 (en) 2015-05-25 2016-05-25 Conveyor belt for paper sheets

Country Status (2)

Country Link
JP (1) JP2016216239A (en)
WO (1) WO2016190350A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223263A (en) * 1994-02-10 1995-08-22 Fuji Xerox Co Ltd Method for joining of sheets by ultrasonic welding
JP2000168989A (en) * 1998-12-01 2000-06-20 Sumitomo Rubber Ind Ltd Conductive seamless belt
JP2001027851A (en) * 1999-07-14 2001-01-30 Canon Inc Transfer member, production of transfer member and image forming device
JP2001215817A (en) * 2000-12-15 2001-08-10 Seiko Epson Corp Transfer belt and method of its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223263A (en) * 1994-02-10 1995-08-22 Fuji Xerox Co Ltd Method for joining of sheets by ultrasonic welding
JP2000168989A (en) * 1998-12-01 2000-06-20 Sumitomo Rubber Ind Ltd Conductive seamless belt
JP2001027851A (en) * 1999-07-14 2001-01-30 Canon Inc Transfer member, production of transfer member and image forming device
JP2001215817A (en) * 2000-12-15 2001-08-10 Seiko Epson Corp Transfer belt and method of its manufacture

Also Published As

Publication number Publication date
JP2016216239A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
US3221869A (en) Conveyor belt
JPH0760877A (en) Wide belt
EP3448667B1 (en) Method of manufacturing a multiply thermoplastic conveyor belt
EP3263947B1 (en) Method for for manufacturing reinforcing fabric for a transmission belt
US20200238653A1 (en) Multi-layered seamless belt and production method thereof
WO2016190350A1 (en) Conveyor belt for paper sheets
TWI794384B (en) Conveyor belt
EP3222563B1 (en) Conveyor belt
JP2018058338A (en) Transmission belt and manufacturing method of transmission belt
WO2015111486A1 (en) Flat belt
AU2013205918B2 (en) Belt for conveyor system
US4745023A (en) Endless flexible belt or band
CN107614400B (en) Conveyor belt
EP3041767A1 (en) Conveyor system having improved temperature resistance
WO2016072251A1 (en) Flat belt
JP4478600B2 (en) Conveyor flat belt
CN106364077B (en) Rubber laminate
JP2016060557A (en) Endless flat belt and method for manufacturing endless flat belt
CN203543262U (en) Flat belt
JP2016038010A (en) Endless belt
JP6471634B2 (en) Rubber laminate
JP2020033160A (en) Conveyor belt
JP2019064829A (en) Connection v belt
CN106224437B (en) PVK conveyer belt joint process
JP2018141556A (en) Rapped v belt and process of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800054

Country of ref document: EP

Kind code of ref document: A1