WO2016190166A1 - Immersion-type hollow-fiber-membrane module, and forward-osmosis water treatment method in which same is used - Google Patents

Immersion-type hollow-fiber-membrane module, and forward-osmosis water treatment method in which same is used Download PDF

Info

Publication number
WO2016190166A1
WO2016190166A1 PCT/JP2016/064583 JP2016064583W WO2016190166A1 WO 2016190166 A1 WO2016190166 A1 WO 2016190166A1 JP 2016064583 W JP2016064583 W JP 2016064583W WO 2016190166 A1 WO2016190166 A1 WO 2016190166A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
hollow
membrane
type semipermeable
water
Prior art date
Application number
PCT/JP2016/064583
Other languages
French (fr)
Japanese (ja)
Inventor
崇人 中尾
綾乃 檜垣
昌男 東
北河 享
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2017520638A priority Critical patent/JP6477872B2/en
Publication of WO2016190166A1 publication Critical patent/WO2016190166A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/033Specific distribution of fibres within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a submerged hollow fiber membrane module and a forward osmosis water treatment method using the same.
  • Forward osmosis is a solution with high concentration (high osmotic pressure) in the low concentration (low osmotic pressure) treated water (feed solution) side through a semipermeable membrane (draw solution) It is a phenomenon that moves toward.
  • a water treatment method using reverse osmosis RO
  • Reverse osmosis is a phenomenon in which water moves from a high-concentration treatment target water to a low-concentration solution side through a semipermeable membrane, contrary to normal osmosis, by artificially applying high pressure to the treatment-target water. It is.
  • Patent Document 2 JP-A-2014-512951 discloses a polyglycol copolymer as a draw solution. It is disclosed to use a high viscosity solution.
  • the inner diameter is larger than the conventional one (for example, the inner diameter is more than 250 ⁇ m and more than 700 ⁇ m) in order to suppress a decrease in the efficiency of forward osmosis water treatment. It is considered desirable to use a hollow fiber type semipermeable membrane.
  • the scale component is concentrated on the surface of the hollow fiber type semipermeable membrane in a part of the housing due to stagnation in the flow of the water to be treated in a part of the housing like a sealed hollow fiber membrane module. This is because, since the adhesion is suppressed, clogging of the hollow fiber type semipermeable membrane can be suppressed with respect to the water to be treated containing a large amount of scale components.
  • the present invention allows a high-viscosity draw solution to flow into the hollow portion of a hollow fiber type semipermeable membrane against water to be treated containing a large amount of scale components in contact with the outside of the hollow fiber type semipermeable membrane.
  • the immersion type hollow fiber membrane module capable of improving the efficiency of the forward osmosis water treatment while suppressing clogging of the hollow fiber type semipermeable membrane, and using the same It is an object of the present invention to provide an immersion type forward osmosis water treatment method.
  • a hollow fiber membrane element in which a plurality of linear hollow fiber type semipermeable membranes having a hollow portion are arranged in parallel at predetermined intervals;
  • a fixing resin for fixing the plurality of hollow fiber type semipermeable membranes at predetermined intervals at both ends of the hollow fiber membrane element;
  • An inflow port communicating with the hollow part of the plurality of hollow fiber type semipermeable membranes at one end of the hollow fiber membrane element, and the hollow part of the plurality of hollow fiber type semipermeable membranes at the other end of the hollow fiber membrane element And an outlet that communicates with The plurality of hollow fiber type semipermeable membranes are exposed,
  • An immersion type hollow fiber membrane module for forward osmosis, wherein the material of the hollow fiber type semipermeable membrane is a material containing at least one of a cellulose resin and a sulfonated polysulfone resin.
  • the end portion filling rate which is the ratio of the total cross-sectional area of the outer diameter of the hollow fiber type semipermeable membrane to the area of the circle formed by the outer periphery of the hollow fiber membrane element, is 40% or more and 70% or less.
  • a forward osmosis water treatment method using the immersion type hollow fiber membrane module according to [1] The immersion type hollow fiber membrane module is immersed in a treatment target water containing water in the treatment tank and components other than water, and the treatment target water is brought into contact with the outer peripheral surface of the hollow fiber type semipermeable membrane.
  • a draw solution containing a draw solute into the hollow portion of the hollow fiber type semipermeable membrane, water contained in the water to be treated passes through the hollow fiber type semipermeable membrane from the outer peripheral surface side into the hollow portion.
  • a forward osmosis water treatment method including a forward osmosis step for movement.
  • forward osmosis water is obtained by flowing a high-viscosity draw solution into the hollow portion of the hollow fiber type semipermeable membrane with respect to the water to be treated containing a large amount of scale components in contact with the outside of the hollow fiber type semipermeable membrane.
  • an immersion type hollow fiber membrane module capable of improving the efficiency of forward osmosis water treatment while suppressing clogging of the hollow fiber type semipermeable membrane, and an immersion type positive membrane using the same
  • An immersion type hollow fiber membrane module capable of providing an osmotic water treatment method and an immersion type forward osmosis water treatment method using the same can be provided.
  • the hollow fiber type semipermeable membrane 1 used for the immersion type hollow fiber membrane module 100 of this embodiment is a thread-like semipermeable membrane which has a hollow part.
  • the hollow fiber type semipermeable membrane 1 used in the present embodiment for flowing the draw solution into the hollow part is a hollow fiber type semipermeable membrane having an opening at both ends and having openings that communicate with the hollow part at both ends. Is preferred.
  • the inner diameter (diameter of the cross section of the hollow portion) of the hollow fiber type semipermeable membrane 1 is preferably more than 250 ⁇ m and less than 700 ⁇ m, more preferably more than 250 ⁇ m and less than 650 ⁇ m, still more preferably more than 250 ⁇ m and less than 600 ⁇ m, most preferably more than 250 ⁇ m. 500 ⁇ m or less.
  • the pressure loss due to the hollow fiber type semipermeable membrane 1 is reduced by making the inner diameter of the hollow fiber type semipermeable membrane 1 in the range of more than 250 ⁇ m and 700 ⁇ m or less, which is larger than the conventional normal inner diameter. Therefore, the flow rate of the draw solution flowing in the hollow portion can be increased. As a result, a flow rate required to maintain a sufficient effective osmotic pressure difference between the inside and outside of the hollow fiber type semipermeable membrane 1 can be secured, and a highly viscous draw solution is allowed to flow in the hollow portion of the hollow fiber type semipermeable membrane 1. However, it can suppress that the efficiency of forward osmosis water treatment falls.
  • the material constituting the hollow fiber type semipermeable membrane 1 is not particularly limited, and examples thereof include cellulose resins, sulfonated polysulfone resins, polyamide resins, and the like.
  • the hollow fiber type semipermeable membrane 1 is preferably made of a material containing at least one of a cellulose resin and a sulfonated polysulfone resin.
  • the cellulose resin is preferably a cellulose acetate resin.
  • Cellulose acetate resin is resistant to chlorine, which is a bactericidal agent, and has a feature that it can suppress the growth of microorganisms.
  • the cellulose acetate resin is preferably cellulose acetate, and more preferably cellulose triacetate from the viewpoint of durability.
  • the sulfonated polysulfone resin is preferably a sulfonated polyethersulfone resin.
  • a membrane having a single layer structure which is entirely composed of a cellulose resin or a sulfonated polysulfone resin.
  • the single-layer structure here does not need to be a uniform film as a whole, for example, as disclosed in Patent Document 1, a dense layer is provided in the vicinity of the outer peripheral surface, and this dense layer is substantially In particular, it is preferably a separation active layer that defines the pore diameter of the hollow fiber type semipermeable membrane.
  • a specific hollow fiber type semipermeable membrane is a membrane having a two-layer structure having a separation active layer on the outer peripheral surface of a support membrane having a pore size comparable to that of an ultrafiltration membrane.
  • a material which comprises a support membrane Polysulfone, polyether sulfone, polyphenylene oxide, polyvinylidene fluoride, polyether ketone, polyimide, polybenzimidazole, polyester, etc. are mentioned.
  • the material constituting the separation active layer is not particularly limited, and examples thereof include sulfonated polysulfone resin, polyamide resin, cellulose resin, and polyvinyl alcohol resin.
  • the thickness of the dense layer is preferably 0.05 to 5 ⁇ m. It is preferable that the dense layer has a small thickness because water permeability resistance is small. For this reason, the thickness of the dense layer is more preferably 3 ⁇ m or less, and further preferably 1 ⁇ m or less. However, if the dense layer is too thin, potential defects in the membrane structure are likely to be manifested, and for example, it becomes difficult to suppress leakage of monovalent ions, or the durability of the membrane is reduced. Problems are likely to occur. For this reason, the thickness of the dense layer is more preferably 0.1 ⁇ m or more, and further preferably 0.3 ⁇ m or more.
  • the outer diameter of the hollow fiber type semipermeable membrane is preferably 300 to 1000 ⁇ m, more preferably 400 to 950 ⁇ m.
  • the total thickness of the hollow fiber type semipermeable membrane is preferably 50 to 200 ⁇ m, more preferably 60 to 170 ⁇ m.
  • the film thickness can be calculated by (outer diameter ⁇ inner diameter) / 2.
  • the hollow ratio [(inner diameter / outer diameter) 2 ⁇ 100 (%)] of the hollow fiber type semipermeable membrane is preferably 24 to 51%.
  • a hollow rate is a ratio of the area of the hollow part in the cross section of a hollow fiber type semipermeable membrane.
  • the hollow ratio is less than 24%, the water permeation resistance of the hollow fiber type semipermeable membrane is increased, which may cause a problem that desired treatment efficiency cannot be obtained.
  • the hollow ratio is more than 51%, the strength of the hollow fiber type semipermeable membrane may be insufficient and the hollow fiber type semipermeable membrane may be broken.
  • the effective length of the hollow fiber type semipermeable membrane is not particularly limited, but is preferably 0.3 to 3.0 m, more preferably 0.5 to 2.0 m.
  • the effective length is the length of the hollow fiber type semipermeable membrane bundle having a function as a semipermeable membrane which is a portion excluding the fixed resin portion.
  • the diameter (pore diameter) of the plurality of fine pores of the hollow fiber type semipermeable membrane is preferably 2 nm or less.
  • a hollow fiber type semipermeable membrane for example, a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane), a forward osmosis membrane (FO membrane: Forward Osmosis Membrane), a nanofiltration membrane (NF membrane: Nanofiltration Membrane), and What is called.
  • the pore size of the RO membrane and the FO membrane is about 2 nm or less.
  • the NF membrane has a relatively low blocking rate of ions and salts among the RO membrane, and the pore size of the NF membrane is usually about 1 to 2 nm.
  • the hollow fiber membrane element 10 of this embodiment is a hollow fiber membrane element called a straight type (as opposed to a crosswind type), and a plurality of linear hollow fiber type semipermeable membranes 1 having hollow portions are arranged in parallel. Are bundles of hollow fiber type semipermeable membranes 1 arranged at predetermined intervals.
  • linear means that a portion that is intentionally wound, bent, curved, or the like is excluded, and mathematical linearity is not required. That is, for example, the hollow fiber type semipermeable membrane 1 may be disposed in a loose state, and in that case, the hollow fiber type semipermeable membrane 1 may have a slight curvature.
  • “with a predetermined interval” means that a plurality of hollow fiber type semipermeable membranes 1 need not be in contact with each other at least at both ends of the hollow fiber type semipermeable membrane 1.
  • a predetermined interval means that a plurality of hollow fiber type semipermeable membranes 1 need not be in contact with each other at least at both ends of the hollow fiber type semipermeable membrane 1.
  • the hollow fiber type semipermeable membrane 1 is placed in a relaxed state, even if some of the hollow fiber type semipermeable membranes 1 are in contact with each other at portions other than both ends of the hollow fiber type semipermeable membrane 1. Good. Even in such a state, in the state immersed in the treatment target water in the treatment tank, the treatment target water flows between the plurality of hollow fiber type semipermeable membranes 1 due to the flow in the treatment tank or the like. Therefore, the effective membrane area of the hollow fiber type semipermeable membrane is not reduced.
  • the water to be treated in the water tank hardly permeates from the outside in the radial direction of the hollow fiber membrane element to the center side.
  • the processing efficiency tends to decrease due to the reduction of the effective membrane area.
  • the treatment target water in the water tank is centered in the radial direction of the hollow fiber membrane element 10 by using a straight hollow fiber membrane module. Easy to reach to the side, processing efficiency is high.
  • the outer diameter of the hollow fiber membrane element 10 is preferably 5 cm or more and 60 cm or less.
  • the outer diameter of the hollow fiber membrane element 10 is in such a range, in particular, penetration of water to be treated into the radial center of the hollow fiber membrane element 10 Therefore, in order to increase the efficiency of the forward osmosis treatment, it is effective to use a straight hollow fiber membrane element as in this embodiment.
  • the ratio of the total cross-sectional area of the outer diameter of the hollow fiber type semipermeable membrane 1 to the area of the circle formed by the outer periphery of the hollow fiber membrane element 10 (hollow fiber type semipermeable membrane bundle) (fixed resin end area) is the end.
  • the end filling rate is preferably 40% or more and 70% or less.
  • the hollow fiber membrane element In the case of using a hollow fiber membrane element in which a plurality of hollow fiber type semipermeable membranes 1 are arranged at relatively narrow intervals, in which the end portion filling rate of the hollow fiber membrane element 10 is in such a range, in particular, the hollow fiber membrane element In order to increase the efficiency of forward osmosis treatment, it is effective to use a straight-type hollow fiber membrane element as in this embodiment. .
  • the diameter of a circle circumscribing a plurality of hollow fiber type semipermeable membranes located on the outermost periphery of the hollow fiber type semipermeable membrane bundle (hollow fiber membrane element) on the fixed resin end surface is measured using a caliper. And measure 5 points (maximum, large, medium, small, minimal). At this time, the hollow fiber type semipermeable membrane is excluded from a case where it is extremely off the circumferential portion. Using the average value of the diameters, the fixed resin end area (the area of a circle formed by the outer periphery of the hollow fiber membrane element) is calculated.
  • the cross-sectional area based on the outer diameter of each hollow fiber type semipermeable membrane is calculated. Multiply this by the number of yarns (hollow fiber type semipermeable membrane) contained in the end face of the fixed resin to obtain the area of the hollow fiber type semipermeable membrane part (see the following formula).
  • Hollow fiber type semipermeable membrane area ⁇ ⁇ (outer diameter of hollow fiber type semipermeable membrane / 2) 2 ⁇ number of hollow fiber type semipermeable membranes and hollow fiber type semipermeable membrane area with respect to the fixed resin end area
  • the end filling rate (%), which is the ratio of End filling ratio (%) Hollow fiber type semipermeable membrane area / Fixed resin edge area ⁇ 100 Ask from.
  • an immersion type hollow fiber membrane module 100 includes the straight type hollow fiber membrane element 10 (a bundle of hollow fiber type semipermeable membranes 1). Further, the immersion type hollow fiber membrane module 100 includes fixing resins 21 and 22 for fixing the plurality of hollow fiber type semipermeable membranes 1 at predetermined intervals at both ends of the hollow fiber membrane element 10. In order to maintain the overall shape of the submerged hollow fiber membrane module 100, the two fixing resins 21 and 22 may be connected to each other by a support (not shown).
  • the fixing resin 21 is connected to a distribution chamber 21 a having an internal space communicating with the hollow portions of the plurality of hollow fiber type semipermeable membranes 1 through an opening at one end of the hollow fiber type semipermeable membrane 1.
  • the distribution chamber 21a has an inlet 21b that communicates with the internal space. Therefore, the inflow port 21 b communicates with the hollow portions of the plurality of hollow fiber type semipermeable membranes 1 at one end of the hollow fiber membrane element 10.
  • the fixing resin 22 is connected to an assembly chamber 22 a having an internal space communicating with the hollow portions of the plurality of hollow fiber type semipermeable membranes 1 through the opening at the other end of the hollow fiber type semipermeable membrane 1. .
  • the collecting chamber 22a has an outlet 22b communicating with the internal space. Accordingly, the outlet 22 b communicates with the hollow portions of the plurality of hollow fiber type semipermeable membranes 1 at the other end of the hollow fiber membrane element 10.
  • a plurality of hollow fiber type semipermeable membranes 1 are exposed.
  • the plurality of hollow fiber type semipermeable membranes 1 only need to have at least a part of the outer surface exposed.
  • the part is covered with resin and not exposed, but the other part of the hollow fiber type semipermeable membrane 1 is exposed.
  • the fixing resins 21 and 22, the distribution chamber 21 a, and the collecting chamber 22 a are drawn through, but it is not necessarily transparent.
  • Such a straight type immersion type hollow fiber membrane module can be manufactured by a conventionally known method, for example, by a method as disclosed in JP-A-10-192661.
  • the forward osmosis water treatment method of this embodiment is a method of separating and collecting water from the treatment target water by forward osmosis using the above-described immersion type hollow fiber membrane module.
  • the water to be treated is a liquid containing water and components other than water.
  • the water to be treated include salt water such as sea water, river water, lake water, and industrial waste water.
  • the evaporation residue concentration (TDS) of the treatment target water is preferably 20% by mass or less, more preferably 15% by mass or less.
  • the immersion type hollow fiber membrane module 100 is immersed in the water to be treated (FS) supplied into the treatment tank 3. Thereby, water to be treated is brought into contact with the outer peripheral surfaces of the plurality of hollow fiber type semipermeable membranes 1.
  • the pump 4 causes a draw solution (DS) containing a draw solute to flow into the hollow portion of the hollow fiber type semipermeable membrane 1, thereby allowing water contained in the water to be treated to pass through the hollow fiber type semipermeable membrane 1 to the outer periphery. Move from the surface side into the hollow part (draw solution side).
  • the draw solution diluted in the hollow portion of the hollow fiber type semipermeable membrane 1 by the forward osmosis step is sent to the reconcentration step by the pump 4.
  • the reconcentration step a part of the water is recovered from the draw solution, and the draw solution concentrated thereby is sent to the hollow fiber type semipermeable membrane 1 and again subjected to the forward osmosis step.
  • bubbles 5 are introduced into the water to be treated by an air outlet (not shown) provided at the top of the bottom wall of the treatment tank 3. It may be generated. Accordingly, the bubbles 5 are brought into contact with the plurality of hollow fiber type semipermeable membranes 1, thereby suppressing the scale from adhering to the outer surface of the hollow fiber type semipermeable membranes 1. Clogging can be prevented.
  • the viscosity of the draw solution is preferably 0.10 Pa ⁇ s or more, more preferably 0.15 Pa ⁇ s or more.
  • the draw solution is effective to use the hollow fiber type semipermeable membrane of the present embodiment having an inner diameter larger than that of the conventional because the efficiency of the forward osmosis treatment is particularly likely to decrease. is there.
  • the osmotic pressure of the draw solution is preferably 0.5 to 20 MPa, although it depends on the molecular weight of the solute.
  • the draw solute include saccharides, proteins, and synthetic polymers.
  • Stimulation-responsive polymers are preferable from the viewpoint of easy recovery and regeneration.
  • the stimulus responsive polymer include a temperature responsive polymer, a pH responsive polymer, a photoresponsive polymer, and a magnetic responsive polymer.
  • the temperature-responsive polymer is a polymer having a characteristic (temperature responsiveness) in which hydrophilicity changes with a predetermined temperature as a critical point.
  • the temperature responsiveness is a characteristic that becomes hydrophilic or hydrophobic depending on the temperature.
  • the change in hydrophilicity is preferably reversible.
  • the temperature-responsive polymer can be dissolved in water or phase-separated from water by adjusting the temperature.
  • the temperature-responsive polymer is a polymer composed of a plurality of structural units derived from a monomer, and preferably has a hydrophilic group in the side chain.
  • LCST lower critical solution temperature
  • UCST upper critical solution temperature
  • the semi-permeable membrane is in contact with the semi-permeable membrane by a temperature-responsive polymer dissolved in low-temperature water.
  • the conducting polymer is preferably LCST type.
  • a UCST type can be used in addition to the LCST type.
  • hydrophilic group examples include a hydroxyl group, a carboxyl group, an acetyl group, an aldehyde group, an ether bond, and an ester bond.
  • the hydrophilic group is preferably at least one selected from these.
  • the temperature-responsive polymer preferably has at least one hydrophilic group in at least some or all of the structural units. Moreover, the temperature-responsive polymer may have a hydrophobic group in some structural units while having a hydrophilic group. In addition, it is considered that the balance between the hydrophilic group and the hydrophobic group contained in the molecule is important for the temperature responsive polymer to have temperature responsiveness.
  • Specific temperature-responsive polymers include, for example, polyvinyl ether polymers, polyvinyl acetate polymers, (meth) acrylic acid polymers, and the like.
  • the hollow fiber type in the case of using a hollow fiber type semipermeable membrane as the forward osmosis membrane as in the forward osmosis water treatment method of the present embodiment, the hollow fiber type from the viewpoint that the pressure resistance of the hollow fiber type semipermeable membrane and the high pressure pump is not required.
  • the pressure of the fluid flowing in the hollow portion of the mold semipermeable membrane is desirably 0.5 MPa or less. Therefore, in the forward osmosis step, the pressure for flowing the draw solution is preferably 0.5 MPa or less, more preferably 0.2 MPa or less.
  • the pressure for flowing the draw solution is preferably 0.01 MPa or more, more preferably Is 0.05 MPa or more.
  • the draw solute contained in the draw solution can be separated from water by changing the temperature of the draw solution.
  • the draw solute temperature-responsive polymer
  • the draw solute can be easily separated from the water and recovered simply by changing the temperature of the draw solution.
  • the draw solution concentrated by collecting water in this way is a solution having the same components as the original draw solution, the temperature is returned to the original, and the concentration is adjusted as necessary. It can be used as a draw solution in the forward osmosis process.
  • 1 hollow fiber type semipermeable membrane 10 hollow fiber membrane element, 100 immersion type hollow fiber membrane module, 21, 22 fixing resin, 21a distribution chamber, 21b inlet, 22a collecting chamber, 22b outlet, 3 treatment tank, 4 pump 5, bubbles.

Abstract

An immersion-type hollow-fiber-membrane module provided with: hollow-fiber-membrane elements in which a plurality of linear hollow-fiber-type semipermeable membranes having hollow sections are laid parallel to each other at a prescribed spacing; a securing resin whereby the plurality of hollow-fiber-type semipermeable membranes are secured at the prescribed spacing at both ends of the hollow-fiber-membrane element; an inflow port that communicates with the hollow sections of the plurality of hollow-fiber-type semipermeable membranes at one end of the hollow-fiber-membrane element; and an outflow port that communicates with the hollow sections of the plurality of hollow-fiber-type semipermeable membranes at the other end of the hollow-fiber-membrane element. The plurality of hollow-fiber-type semipermeable membranes are exposed, and the material of the hollow-fiber-type semipermeable membranes includes a cellulose resin and/or a polysulfone resin.

Description

浸漬型中空糸膜モジュール、および、それを用いる正浸透水処理方法Immersion type hollow fiber membrane module and forward osmosis water treatment method using the same
 本発明は、浸漬型中空糸膜モジュール、および、それを用いる正浸透水処理方法に関する。 The present invention relates to a submerged hollow fiber membrane module and a forward osmosis water treatment method using the same.
 正浸透(FO:forward osmosis)とは、半透膜を介して、低濃度(低浸透圧)の処理対象水(フィード溶液)側の水が高濃度(高浸透圧)の溶液(ドロー溶液)に向かって移動する現象のことである。一方、水処理分野においては、逆浸透(RO:reverse osmosis)を用いる水処理方法が従来から知られている。逆浸透とは、処理対象水に人為的に高い圧力を加えることにより、正浸透とは逆に、高濃度の処理対象水から半透膜を介して低濃度の溶液側に水が移動する現象である。 Forward osmosis (FO: forward osmosis) is a solution with high concentration (high osmotic pressure) in the low concentration (low osmotic pressure) treated water (feed solution) side through a semipermeable membrane (draw solution) It is a phenomenon that moves toward. On the other hand, in the field of water treatment, a water treatment method using reverse osmosis (RO) is conventionally known. Reverse osmosis is a phenomenon in which water moves from a high-concentration treatment target water to a low-concentration solution side through a semipermeable membrane, contrary to normal osmosis, by artificially applying high pressure to the treatment-target water. It is.
 しかし、逆浸透は高い圧力を必要とするため、エネルギー消費量が極めて多く、エネルギー効率が低い。そこで、近年、水処理のエネルギー効率を高めるために、人為的に圧力を加える必要のない正浸透現象を利用した正浸透水処理システムが提案されている(例えば、国際公開第2013/118859号(特許文献1)など)。また、正浸透水処理システムに用いられるドロー溶液としては種々のものが知られているが、例えば、特表2014-512951号公報(特許文献2)には、ドロー溶液としてポリグリコール共重合体などの高粘度溶液を用いることが開示されている。 However, since reverse osmosis requires high pressure, energy consumption is extremely high and energy efficiency is low. Therefore, in recent years, a forward osmosis water treatment system using a forward osmosis phenomenon that does not need to be manually applied to increase the energy efficiency of water treatment has been proposed (for example, International Publication No. 2013/118859 ( Patent Document 1) etc.). Various draw solutions for use in the forward osmosis water treatment system are known. For example, JP-A-2014-512951 (Patent Document 2) discloses a polyglycol copolymer as a draw solution. It is disclosed to use a high viscosity solution.
国際公開第2013/118859号International Publication No. 2013/118859 特表2014-512951号公報Special table 2014-512951 gazette 特表2013-509298号公報Special table 2013-509298 gazette
 特許文献1に記載されるような既存の正浸透用の中空糸型半透膜(内径50~250μm)に、高粘度のドロー溶液を流す場合、圧力損失が大きいため、中空糸型半透膜の内外での十分な有効浸透圧差を維持するために必要な流量を確保し難く、正浸透水処理の効率が低下し易い。このため、中空糸型半透膜の中空部内に高粘度のドロー溶液を流す場合は、正浸透水処理の効率低下を抑制するために、内径が従来よりも大きい(例えば、内径が250μm超700μm以下である)中空糸型半透膜を用いることが望ましいと考えられる。 When a high-viscosity draw solution is allowed to flow through an existing forward osmosis hollow fiber semipermeable membrane (inner diameter 50 to 250 μm) as described in Patent Document 1, the pressure loss is large, so the hollow fiber semipermeable membrane It is difficult to secure a flow rate necessary to maintain a sufficient effective osmotic pressure difference between the inside and outside, and the efficiency of forward osmosis water treatment tends to be reduced. For this reason, when a high-viscosity draw solution is allowed to flow through the hollow part of the hollow fiber type semipermeable membrane, the inner diameter is larger than the conventional one (for example, the inner diameter is more than 250 μm and more than 700 μm) in order to suppress a decrease in the efficiency of forward osmosis water treatment. It is considered desirable to use a hollow fiber type semipermeable membrane.
 一方、スケール成分を多く含む(ファウリングが発生し易い)処理対象水に対して、ハウジング内に中空糸膜エレメントが収容された密閉型の中空糸膜モジュールを用いると、中空糸型半透膜が目詰まりを起こし易いため、正浸透処理による水の回収効率が低下し易い。このため、膜分離活性汚泥法(MBR)で使用されているような中空糸膜エレメント(中空糸型半透膜)が露出した開放型の中空糸膜モジュール(浸漬型中空糸膜モジュール)を水槽(処理槽)内の処理対象水に浸漬する方法を用いる必要性がある。これにより、密閉型の中空糸膜モジュールのように、ハウジング内の一部で処理対象水の流れに滞留が生じることにより、その部分において集中的に中空糸型半透膜の表面にスケール成分が付着することが抑制されるため、スケール成分を多く含む処理対象水に対して、中空糸型半透膜の目詰まりを抑制することができるからである。 On the other hand, when a sealed hollow fiber membrane module in which a hollow fiber membrane element is accommodated in a housing is used for water to be treated containing a large amount of scale components (fouling is likely to occur), a hollow fiber type semipermeable membrane is used. However, the water recovery efficiency by the forward osmosis treatment tends to decrease. Therefore, an open-type hollow fiber membrane module (immersion-type hollow fiber membrane module) in which a hollow fiber membrane element (hollow fiber type semipermeable membrane) used in the membrane separation activated sludge method (MBR) is exposed is used as a water tank. There is a need to use a method of immersing in water to be treated in the (treatment tank). As a result, the scale component is concentrated on the surface of the hollow fiber type semipermeable membrane in a part of the housing due to stagnation in the flow of the water to be treated in a part of the housing like a sealed hollow fiber membrane module. This is because, since the adhesion is suppressed, clogging of the hollow fiber type semipermeable membrane can be suppressed with respect to the water to be treated containing a large amount of scale components.
 ここで、中空糸膜モジュールとしては、いわゆるストレート型とクロスワインド型のものが存在するが、密閉型の中空糸膜モジュールを用いる通常の正浸透処理では、クロスワインド型の中空糸膜モジュールが多く用いられている。密閉型の中空糸膜モジュールにおいて、中空糸膜エレメント(中空糸型半透膜の束)の径方向の中心に配置された芯管(多数の孔を有する有孔分配管)から径方向の外側に向かって処理対象水を流す場合には、ストレート型よりもクロスワインド型の中空糸膜モジュールの方が、モジュール内で処理対象水が全体に均一に拡散され易く、有効膜面積の増大により処理効率が向上するためである。 Here, there are so-called straight type and crosswind type hollow fiber membrane modules. However, in the normal forward osmosis treatment using a sealed hollow fiber membrane module, there are many crosswind type hollow fiber membrane modules. It is used. In a sealed hollow fiber membrane module, radially outward from a core tube (a perforated pipe having a large number of holes) arranged at the radial center of a hollow fiber membrane element (bundle of hollow fiber type semipermeable membranes) When the water to be treated is flowed toward the surface, the cross-wind type hollow fiber membrane module is more likely to be uniformly diffused throughout the module than the straight type, and the treatment is performed by increasing the effective membrane area. This is because the efficiency is improved.
 しかしながら、開放型の中空糸膜モジュールを用いる浸漬型正浸透法では、このようなクロスワインド型の中空糸膜モジュールでは、水槽内の処理対象水が、中空糸膜エレメントの径方向の外側から中心側まで浸透し難く、有効膜面積の減少により処理効率が低下してしまうという問題があった。特に、内径の大きい中空糸型半透膜を用いる場合、有効膜面積を大きくして所望の処理効率を得るためには、中空糸膜エレメントの外径を大きくする必要があり、この場合、中空糸膜エレメントの径方向の中心側への処理対象水の浸透がさらに難しくなるため、このような問題が顕著になる。 However, in the immersion forward osmosis method using an open-type hollow fiber membrane module, in such a cross-wind type hollow fiber membrane module, the water to be treated in the water tank is centered from the outside in the radial direction of the hollow fiber membrane element. There is a problem that the treatment efficiency is lowered due to the reduction of the effective membrane area. In particular, when using a hollow fiber type semipermeable membrane having a large inner diameter, it is necessary to increase the outer diameter of the hollow fiber membrane element in order to increase the effective membrane area and obtain a desired treatment efficiency. Such a problem becomes conspicuous because it becomes more difficult for the water to be treated to penetrate into the center side in the radial direction of the yarn membrane element.
 本発明は、上記の課題に鑑み、中空糸型半透膜の外側に接するスケール成分を多く含む処理対象水に対して、中空糸型半透膜の中空部内に高粘度のドロー溶液を流すことにより正浸透水処理を実施する場合において、中空糸型半透膜の目詰まりを抑制しつつ、正浸透水処理の効率を向上させることのできる浸漬型中空糸膜モジュール、および、それを用いた浸漬型の正浸透水処理方法を提供することを目的とする。 In view of the above problems, the present invention allows a high-viscosity draw solution to flow into the hollow portion of a hollow fiber type semipermeable membrane against water to be treated containing a large amount of scale components in contact with the outside of the hollow fiber type semipermeable membrane. In the case where the forward osmosis water treatment is carried out, the immersion type hollow fiber membrane module capable of improving the efficiency of the forward osmosis water treatment while suppressing clogging of the hollow fiber type semipermeable membrane, and using the same It is an object of the present invention to provide an immersion type forward osmosis water treatment method.
[1]
 中空部を有する直線状の複数の中空糸型半透膜を並列的に所定の間隔を開けて配置してなる中空糸膜エレメントと、
 前記中空糸膜エレメントの両端において、前記複数の中空糸型半透膜を所定の間隔を開けて固定するための固定樹脂と、
 前記中空糸膜エレメントの一端において前記複数の中空糸型半透膜の前記中空部に連通する流入口と、前記中空糸膜エレメントの他端において前記複数の中空糸型半透膜の前記中空部に連通する流出口と、を備え、
 前記複数の中空糸型半透膜は露出しており、
 前記中空糸型半透膜の素材が、セルロース系樹脂およびスルホン化ポリスルホン系樹脂の少なくともいずれかを含む材料である、正浸透用の浸漬型中空糸膜モジュール。
[2]
 前記中空糸型半透膜の内径が250μm超700μm以下である、[1]に記載の浸漬型中空糸膜モジュール。
[3]
 前記中空糸膜エレメントの外径が5cm以上60cm以下である、[1]または[2]に記載の浸漬型中空糸膜モジュール。
[4]
 前記中空糸膜エレメントの外周が形成する円の面積に対する前記中空糸型半透膜の外径の横断面積の合計の比率である端部充填率が、40%以上70%以下である、[1]~[3]のいずれかに記載の浸漬型中空糸膜モジュール。
[5]
 [1]に記載の浸漬型中空糸膜モジュールを用いる正浸透水処理方法であって、
 前記浸漬型中空糸膜モジュールを、処理槽内の水と水以外の成分とを含む処理対象水の中に浸漬して、前記中空糸型半透膜の外周面に前記処理対象水を接触させると共に、前記中空糸型半透膜の中空部内にドロー溶質を含むドロー溶液を流すことで、前記処理対象水中に含まれる水を前記中空糸型半透膜を通して前記外周面側から前記中空部内に移動させる正浸透工程を含む、正浸透水処理方法。
[1]
A hollow fiber membrane element in which a plurality of linear hollow fiber type semipermeable membranes having a hollow portion are arranged in parallel at predetermined intervals;
A fixing resin for fixing the plurality of hollow fiber type semipermeable membranes at predetermined intervals at both ends of the hollow fiber membrane element;
An inflow port communicating with the hollow part of the plurality of hollow fiber type semipermeable membranes at one end of the hollow fiber membrane element, and the hollow part of the plurality of hollow fiber type semipermeable membranes at the other end of the hollow fiber membrane element And an outlet that communicates with
The plurality of hollow fiber type semipermeable membranes are exposed,
An immersion type hollow fiber membrane module for forward osmosis, wherein the material of the hollow fiber type semipermeable membrane is a material containing at least one of a cellulose resin and a sulfonated polysulfone resin.
[2]
The immersion type hollow fiber membrane module according to [1], wherein an inner diameter of the hollow fiber type semipermeable membrane is more than 250 μm and 700 μm or less.
[3]
The immersion type hollow fiber membrane module according to [1] or [2], wherein an outer diameter of the hollow fiber membrane element is 5 cm or more and 60 cm or less.
[4]
The end portion filling rate, which is the ratio of the total cross-sectional area of the outer diameter of the hollow fiber type semipermeable membrane to the area of the circle formed by the outer periphery of the hollow fiber membrane element, is 40% or more and 70% or less. ] The submerged hollow fiber membrane module according to any one of [3] to [3].
[5]
A forward osmosis water treatment method using the immersion type hollow fiber membrane module according to [1],
The immersion type hollow fiber membrane module is immersed in a treatment target water containing water in the treatment tank and components other than water, and the treatment target water is brought into contact with the outer peripheral surface of the hollow fiber type semipermeable membrane. In addition, by flowing a draw solution containing a draw solute into the hollow portion of the hollow fiber type semipermeable membrane, water contained in the water to be treated passes through the hollow fiber type semipermeable membrane from the outer peripheral surface side into the hollow portion. A forward osmosis water treatment method including a forward osmosis step for movement.
 本発明によれば、中空糸型半透膜の外側に接するスケール成分を多く含む処理対象水に対して、中空糸型半透膜の中空部内に高粘度のドロー溶液を流すことにより正浸透水処理を実施する場合において、中空糸型半透膜の目詰まりを抑制しつつ、正浸透水処理の効率を向上させることのできる浸漬型中空糸膜モジュール、および、それを用いた浸漬型の正浸透水処理方法を提供することのできる浸漬型中空糸膜モジュール、および、それを用いた浸漬型の正浸透水処理方法を提供することができる。 According to the present invention, forward osmosis water is obtained by flowing a high-viscosity draw solution into the hollow portion of the hollow fiber type semipermeable membrane with respect to the water to be treated containing a large amount of scale components in contact with the outside of the hollow fiber type semipermeable membrane. When carrying out the treatment, an immersion type hollow fiber membrane module capable of improving the efficiency of forward osmosis water treatment while suppressing clogging of the hollow fiber type semipermeable membrane, and an immersion type positive membrane using the same An immersion type hollow fiber membrane module capable of providing an osmotic water treatment method and an immersion type forward osmosis water treatment method using the same can be provided.
本発明の実施形態における浸漬型中空糸膜モジュールの構成を概略的に示す部分透過斜視図である。It is a partial permeation | transmission perspective view which shows schematically the structure of the immersion type hollow fiber membrane module in embodiment of this invention. 本発明の実施形態における正浸透処理方法を説明するための模式図である。It is a schematic diagram for demonstrating the forward osmosis processing method in embodiment of this invention.
 (中空糸型半透膜)
 図1を参照して、本実施形態の浸漬型中空糸膜モジュール100に用いられる中空糸型半透膜1は、中空部を有する糸状の半透過膜である。なお、中空部内にドロー溶液を流すために、本実施形態に用いられる中空糸型半透膜1は、両端に中空部と連通する開口を有する両端開口型の中空糸型半透膜であることが好ましい。
(Hollow fiber type semipermeable membrane)
With reference to FIG. 1, the hollow fiber type semipermeable membrane 1 used for the immersion type hollow fiber membrane module 100 of this embodiment is a thread-like semipermeable membrane which has a hollow part. The hollow fiber type semipermeable membrane 1 used in the present embodiment for flowing the draw solution into the hollow part is a hollow fiber type semipermeable membrane having an opening at both ends and having openings that communicate with the hollow part at both ends. Is preferred.
 中空糸型半透膜1の内径(中空部の横断面の直径)は、好ましくは250μm超700μm以下であり、より好ましくは250μm超650μm以下、さらに好ましくは250μm超600μm以下、最も好ましくは250μm超500μm以下である。 The inner diameter (diameter of the cross section of the hollow portion) of the hollow fiber type semipermeable membrane 1 is preferably more than 250 μm and less than 700 μm, more preferably more than 250 μm and less than 650 μm, still more preferably more than 250 μm and less than 600 μm, most preferably more than 250 μm. 500 μm or less.
 一般に、中空糸型半透膜1の中空部内を流れるドロー溶液の流量が少なくなると、ドロー溶液が中空部内を流れる間にドロー溶液側へ透過する水の量が多くなる。これにより、中空部内を流れるドロー溶液の全体的な浸透圧が低下し、ドロー溶液と処理対象水(フィード溶液)との間の浸透圧差が小さくなるため、水の回収効率が低下してしまう。 Generally, when the flow rate of the draw solution flowing in the hollow portion of the hollow fiber type semipermeable membrane 1 is reduced, the amount of water that permeates to the draw solution side while the draw solution flows in the hollow portion increases. As a result, the overall osmotic pressure of the draw solution flowing in the hollow portion is reduced, and the osmotic pressure difference between the draw solution and the water to be treated (feed solution) is reduced, so that the water recovery efficiency is lowered.
 これに対して、本実施形態においては、中空糸型半透膜1の内径を従来の通常の内径より大きい250μm超700μm以下の範囲にすることで、中空糸型半透膜1による圧力損失が低下するため、中空部内を流れるドロー溶液の流量を多くすることができる。これにより、中空糸型半透膜1の内外での十分な有効浸透圧差を維持するために必要な流量を確保でき、中空糸型半透膜1の中空部内に高粘度のドロー溶液を流す場合でも、正浸透水処理の効率が低下することを抑制できる。 On the other hand, in the present embodiment, the pressure loss due to the hollow fiber type semipermeable membrane 1 is reduced by making the inner diameter of the hollow fiber type semipermeable membrane 1 in the range of more than 250 μm and 700 μm or less, which is larger than the conventional normal inner diameter. Therefore, the flow rate of the draw solution flowing in the hollow portion can be increased. As a result, a flow rate required to maintain a sufficient effective osmotic pressure difference between the inside and outside of the hollow fiber type semipermeable membrane 1 can be secured, and a highly viscous draw solution is allowed to flow in the hollow portion of the hollow fiber type semipermeable membrane 1. However, it can suppress that the efficiency of forward osmosis water treatment falls.
 中空糸型半透膜1を構成する材料としては、特に限定されないが、例えば、セルロース系樹脂、スルホン化ポリスルホン系樹脂、ポリアミド系樹脂などが挙げられる。中空糸型半透膜1は、セルロース系樹脂およびスルホン化ポリスルホン系樹脂の少なくともいずれかを含む材料から構成されることが好ましい。 The material constituting the hollow fiber type semipermeable membrane 1 is not particularly limited, and examples thereof include cellulose resins, sulfonated polysulfone resins, polyamide resins, and the like. The hollow fiber type semipermeable membrane 1 is preferably made of a material containing at least one of a cellulose resin and a sulfonated polysulfone resin.
 セルロース系樹脂は、好ましくは酢酸セルロース系樹脂である。酢酸セルロース系樹脂は、殺菌剤である塩素に対する耐性があり、微生物の増殖を抑制できる特徴を有している。酢酸セルロース系樹脂は、好ましくは酢酸セルロースであり、耐久性の点から、より好ましくは三酢酸セルロースである。 The cellulose resin is preferably a cellulose acetate resin. Cellulose acetate resin is resistant to chlorine, which is a bactericidal agent, and has a feature that it can suppress the growth of microorganisms. The cellulose acetate resin is preferably cellulose acetate, and more preferably cellulose triacetate from the viewpoint of durability.
 スルホン化ポリスルホン系樹脂は、好ましくはスルホン化ポリエーテルスルホン系樹脂である。 The sulfonated polysulfone resin is preferably a sulfonated polyethersulfone resin.
 具体的な中空糸型半透膜の一例としては、全体がセルロース系樹脂、もしくはスルホン化ポリスルホン系樹脂から構成されている単層構造の膜が挙げられる。ただし、ここでいう単層構造とは、層全体が均一な膜である必要はなく、例えば、特許文献1に開示されるように、外周表面近傍に緻密層を有し、この緻密層が実質的に中空糸型半透膜の孔径を規定する分離活性層となっていることが好ましい。 As an example of a specific hollow fiber type semipermeable membrane, there is a membrane having a single layer structure which is entirely composed of a cellulose resin or a sulfonated polysulfone resin. However, the single-layer structure here does not need to be a uniform film as a whole, for example, as disclosed in Patent Document 1, a dense layer is provided in the vicinity of the outer peripheral surface, and this dense layer is substantially In particular, it is preferably a separation active layer that defines the pore diameter of the hollow fiber type semipermeable membrane.
 具体的な中空糸型半透膜の別の例としては、限外ろ過膜程度の孔径を有する支持膜の外周表面に分離活性層を有する2層構造の膜が挙げられる。支持膜を構成する材料としては特に限定されないが、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキサイド、ポリフッ化ビニリデン、ポリエーテルケトン、ポリイミド、ポリベンズイミダゾール、ポリエステル等が挙げられる。分離活性層を構成する材料としては、特に限定されないが、スルホン化ポリスルホン系樹脂、ポリアミド系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂が挙げられる。 Another example of a specific hollow fiber type semipermeable membrane is a membrane having a two-layer structure having a separation active layer on the outer peripheral surface of a support membrane having a pore size comparable to that of an ultrafiltration membrane. Although it does not specifically limit as a material which comprises a support membrane, Polysulfone, polyether sulfone, polyphenylene oxide, polyvinylidene fluoride, polyether ketone, polyimide, polybenzimidazole, polyester, etc. are mentioned. The material constituting the separation active layer is not particularly limited, and examples thereof include sulfonated polysulfone resin, polyamide resin, cellulose resin, and polyvinyl alcohol resin.
 上記の緻密層(分離活性層)の厚みは、好ましくは0.05~5μmである。緻密層の厚みは薄い方が、透水抵抗が小さくなるため好ましい。このため、緻密層の厚みは、3μm以下がより好ましく、1μm以下がさらに好ましい。ただし、緻密層が薄すぎると、潜在的な膜構造の欠陥が顕在化しやすくなり、例えば、1価イオンの漏出を抑えることが困難になったり、膜の耐久性が低下になったりするなどの問題が発生し易くなる。このため、緻密層の厚みは、0.1μm以上がより好ましく、0.3μm以上がさらに好ましい。 The thickness of the dense layer (separation active layer) is preferably 0.05 to 5 μm. It is preferable that the dense layer has a small thickness because water permeability resistance is small. For this reason, the thickness of the dense layer is more preferably 3 μm or less, and further preferably 1 μm or less. However, if the dense layer is too thin, potential defects in the membrane structure are likely to be manifested, and for example, it becomes difficult to suppress leakage of monovalent ions, or the durability of the membrane is reduced. Problems are likely to occur. For this reason, the thickness of the dense layer is more preferably 0.1 μm or more, and further preferably 0.3 μm or more.
 なお、中空糸型半透膜の外径は、好ましくは300~1000μmであり、より好ましくは400~950μmである。また、中空糸型半透膜の膜全体の厚みは、好ましくは50~200μmであり、より好ましくは60~170μmである。なお、膜厚は(外径-内径)/2で算出できる。 The outer diameter of the hollow fiber type semipermeable membrane is preferably 300 to 1000 μm, more preferably 400 to 950 μm. The total thickness of the hollow fiber type semipermeable membrane is preferably 50 to 200 μm, more preferably 60 to 170 μm. The film thickness can be calculated by (outer diameter−inner diameter) / 2.
 また、中空糸型半透膜の中空率〔(内径/外径)×100(%)〕は、好ましくは24~51%である。なお、中空率は、中空糸型半透膜の横断面における中空部の面積の割合である。中空率が24%未満である場合、中空糸型半透膜の透水抵抗が大きくなることから、所望の処理効率が得られないといった問題が生じる可能性がある。中空率が51%超である場合、中空糸型半透膜の強度が不足して中空糸型半透膜の破れ等が生じる可能性がある。 The hollow ratio [(inner diameter / outer diameter) 2 × 100 (%)] of the hollow fiber type semipermeable membrane is preferably 24 to 51%. In addition, a hollow rate is a ratio of the area of the hollow part in the cross section of a hollow fiber type semipermeable membrane. When the hollow ratio is less than 24%, the water permeation resistance of the hollow fiber type semipermeable membrane is increased, which may cause a problem that desired treatment efficiency cannot be obtained. When the hollow ratio is more than 51%, the strength of the hollow fiber type semipermeable membrane may be insufficient and the hollow fiber type semipermeable membrane may be broken.
 中空糸型半透膜の有効長は、特に限定されないが、好ましくは0.3~3.0mであり、より好ましくは0.5~2.0mである。なお、有効長とは、固定樹脂部を除いた部分である半透膜としての機能を有する中空糸型半透膜束の長さである。 The effective length of the hollow fiber type semipermeable membrane is not particularly limited, but is preferably 0.3 to 3.0 m, more preferably 0.5 to 2.0 m. The effective length is the length of the hollow fiber type semipermeable membrane bundle having a function as a semipermeable membrane which is a portion excluding the fixed resin portion.
 中空糸型半透膜が有する複数の微細の孔の径(孔径)は、2nm以下であることが好ましい。このような中空糸型半透膜としては、例えば、逆浸透膜(RO膜:Reverse Osmosis Membrane)、正浸透膜(FO膜:Forward Osmosis Membrane)、ナノろ過膜(NF膜:Nanofiltration Membrane)、と呼ばれているものが挙げられる。 The diameter (pore diameter) of the plurality of fine pores of the hollow fiber type semipermeable membrane is preferably 2 nm or less. As such a hollow fiber type semipermeable membrane, for example, a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane), a forward osmosis membrane (FO membrane: Forward Osmosis Membrane), a nanofiltration membrane (NF membrane: Nanofiltration Membrane), and What is called.
 通常、RO膜およびFO膜の孔径は約2nm以下である。NF膜は、RO膜のうちイオンや塩類の阻止率が比較的低いものであり、通常、NF膜の孔径は約1~2nmである。 Usually, the pore size of the RO membrane and the FO membrane is about 2 nm or less. The NF membrane has a relatively low blocking rate of ions and salts among the RO membrane, and the pore size of the NF membrane is usually about 1 to 2 nm.
 (中空糸膜エレメント)
 本実施形態の中空糸膜エレメント10は、(クロスワインド型に対して)ストレート型などと呼ばれる中空糸膜エレメントであり、中空部を有する複数の直線状の中空糸型半透膜1を並列的に所定の間隔を開けて配置してなる、中空糸型半透膜1の束である。
(Hollow fiber membrane element)
The hollow fiber membrane element 10 of this embodiment is a hollow fiber membrane element called a straight type (as opposed to a crosswind type), and a plurality of linear hollow fiber type semipermeable membranes 1 having hollow portions are arranged in parallel. Are bundles of hollow fiber type semipermeable membranes 1 arranged at predetermined intervals.
 なお、ここでいう「直線状」とは、意図的に巻回されたり、屈曲、湾曲等が形成されたものを除く意味であり、数学的な直線性は必要とされない。すなわち、例えば、中空糸型半透膜1を緩んだ状態で配置してもよく、その場合、中空糸型半透膜1は若干の湾曲を有していてもよい。 In addition, the term “linear” as used herein means that a portion that is intentionally wound, bent, curved, or the like is excluded, and mathematical linearity is not required. That is, for example, the hollow fiber type semipermeable membrane 1 may be disposed in a loose state, and in that case, the hollow fiber type semipermeable membrane 1 may have a slight curvature.
 また、「所定の間隔を開けて」とは、少なくとも中空糸型半透膜1の両端において、複数の中空糸型半透膜1が互いに接していなければよい。例えば、中空糸型半透膜1を緩んだ状態で配置する場合は、中空糸型半透膜1の両端以外の部分において、一部の中空糸型半透膜1同士が接触していてもよい。なお、このような状態であっても、処理槽内の処理対象水に浸漬された状態では、処理槽内の流れ等によって、複数の中空糸型半透膜1の間を処理対象水が流れることができるため、中空糸型半透膜の有効膜面積は減少しない。 Further, “with a predetermined interval” means that a plurality of hollow fiber type semipermeable membranes 1 need not be in contact with each other at least at both ends of the hollow fiber type semipermeable membrane 1. For example, when the hollow fiber type semipermeable membrane 1 is placed in a relaxed state, even if some of the hollow fiber type semipermeable membranes 1 are in contact with each other at portions other than both ends of the hollow fiber type semipermeable membrane 1. Good. Even in such a state, in the state immersed in the treatment target water in the treatment tank, the treatment target water flows between the plurality of hollow fiber type semipermeable membranes 1 due to the flow in the treatment tank or the like. Therefore, the effective membrane area of the hollow fiber type semipermeable membrane is not reduced.
 なお、浸漬型の正浸透水処理方法において、クロスワインド型の中空糸膜モジュールを用いた場合は、水槽内の処理対象水が、中空糸膜エレメントの径方向の外側から中心側まで浸透し難く、有効膜面積の減少により処理効率が低下し易い。特に、内径の大きい中空糸型半透膜を用いる場合、有効膜面積を大きくして所望の処理効率を得るためには、中空糸膜エレメントの外径を大きくする必要があり、この場合、中空糸膜エレメントの径方向の中心側への浸透がさらに難しくなる。 In the immersion type forward osmosis water treatment method, when a cross-wind type hollow fiber membrane module is used, the water to be treated in the water tank hardly permeates from the outside in the radial direction of the hollow fiber membrane element to the center side. The processing efficiency tends to decrease due to the reduction of the effective membrane area. In particular, when using a hollow fiber type semipermeable membrane having a large inner diameter, it is necessary to increase the outer diameter of the hollow fiber membrane element in order to increase the effective membrane area and obtain a desired treatment efficiency. It becomes more difficult to penetrate the thread membrane element into the radial center.
 これに対して、本実施形態では、浸漬型の正浸透水処理方法において、ストレート型の中空糸膜モジュールを用いることで、水槽内の処理対象水が、中空糸膜エレメント10の径方向の中心側まで行き渡り易く、処理効率が高くなる。 On the other hand, in this embodiment, in the immersion type forward osmosis water treatment method, the treatment target water in the water tank is centered in the radial direction of the hollow fiber membrane element 10 by using a straight hollow fiber membrane module. Easy to reach to the side, processing efficiency is high.
 中空糸膜エレメント10の外径は、好ましくは5cm以上60cm以下である。中空糸膜エレメント10の外径がこのような範囲にある、比較的外径の大きい中空糸膜エレメントを用いる場合、特に、中空糸膜エレメント10の径方向の中心側への処理対象水の浸透が難しくなるため、正浸透処理の効率を高めるためには、本実施形態のようなストレート型の中空糸膜エレメントを用いることが有効である。 The outer diameter of the hollow fiber membrane element 10 is preferably 5 cm or more and 60 cm or less. In the case of using a hollow fiber membrane element having a relatively large outer diameter in which the outer diameter of the hollow fiber membrane element 10 is in such a range, in particular, penetration of water to be treated into the radial center of the hollow fiber membrane element 10 Therefore, in order to increase the efficiency of the forward osmosis treatment, it is effective to use a straight hollow fiber membrane element as in this embodiment.
 また、中空糸膜エレメント10(中空糸型半透膜束)の外周が形成する円の面積(固定樹脂端面積)に対する中空糸型半透膜1の外径の横断面積の合計の比率を端部充填率としたとき、端部充填率は、好ましくは40%以上70%以下である。中空糸膜エレメント10の端部充填率がこのような範囲にある、比較的狭い間隔で複数の中空糸型半透膜1が配置された中空糸膜エレメントを用いる場合、特に、中空糸膜エレメント10の径方向の中心側への処理対象水の浸透が難しくなるため、正浸透処理の効率を高めるためには、本実施形態のようなストレート型の中空糸膜エレメントを用いることが有効である。 Further, the ratio of the total cross-sectional area of the outer diameter of the hollow fiber type semipermeable membrane 1 to the area of the circle formed by the outer periphery of the hollow fiber membrane element 10 (hollow fiber type semipermeable membrane bundle) (fixed resin end area) is the end. When the part filling rate is used, the end filling rate is preferably 40% or more and 70% or less. In the case of using a hollow fiber membrane element in which a plurality of hollow fiber type semipermeable membranes 1 are arranged at relatively narrow intervals, in which the end portion filling rate of the hollow fiber membrane element 10 is in such a range, in particular, the hollow fiber membrane element In order to increase the efficiency of forward osmosis treatment, it is effective to use a straight-type hollow fiber membrane element as in this embodiment. .
 なお、固定樹脂端面積は、固定樹脂端面において中空糸型半透膜束(中空糸膜エレメント)の最も外周に位置する複数の中空糸型半透膜に外接する円の直径を、ノギスを用いて5点(極大、大、中、小、極小)測定する。このとき、中空糸型半透膜が極端に円周部より外れているようなものは除く。この直径の平均値を用いて、固定樹脂端面積(中空糸膜エレメントの外周が形成する円の面積)を算出する。 For the fixed resin end area, the diameter of a circle circumscribing a plurality of hollow fiber type semipermeable membranes located on the outermost periphery of the hollow fiber type semipermeable membrane bundle (hollow fiber membrane element) on the fixed resin end surface is measured using a caliper. And measure 5 points (maximum, large, medium, small, minimal). At this time, the hollow fiber type semipermeable membrane is excluded from a case where it is extremely off the circumferential portion. Using the average value of the diameters, the fixed resin end area (the area of a circle formed by the outer periphery of the hollow fiber membrane element) is calculated.
 一方、1本当たりの中空糸型半透膜の外径基準の断面積を算出する。これに固定樹脂端面中に含有される糸(中空糸型半透膜)の本数を乗じて、中空糸型半透膜部面積を求める(下式参照)。 On the other hand, the cross-sectional area based on the outer diameter of each hollow fiber type semipermeable membrane is calculated. Multiply this by the number of yarns (hollow fiber type semipermeable membrane) contained in the end face of the fixed resin to obtain the area of the hollow fiber type semipermeable membrane part (see the following formula).
  中空糸型半透膜部面積=π×(中空糸型半透膜の外径/2)×中空糸型半透膜本数
 そして、上記の固定樹脂端面積に対する中空糸型半透膜部面積の割合である端部充填率(%)を次式:
  端部充填率(%)=中空糸型半透膜部面積/固定樹脂端面積×100
から求める。
Hollow fiber type semipermeable membrane area = π × (outer diameter of hollow fiber type semipermeable membrane / 2) 2 × number of hollow fiber type semipermeable membranes and hollow fiber type semipermeable membrane area with respect to the fixed resin end area The end filling rate (%), which is the ratio of
End filling ratio (%) = Hollow fiber type semipermeable membrane area / Fixed resin edge area × 100
Ask from.
 (浸漬型中空糸膜モジュール)
 図1を参照して、浸漬型中空糸膜モジュール100は、上記のストレート型の中空糸膜エレメント10(中空糸型半透膜1の束)を備えている。また、浸漬型中空糸膜モジュール100は、中空糸膜エレメント10の両端において、複数の中空糸型半透膜1を所定の間隔を開けて固定するための固定樹脂21,22を備えている。なお、浸漬型中空糸膜モジュール100の全体形状を維持するために、2つの固定樹脂21,22は、図示しない支持体によって相互に連結されていてもよい。
(Immersion type hollow fiber membrane module)
Referring to FIG. 1, an immersion type hollow fiber membrane module 100 includes the straight type hollow fiber membrane element 10 (a bundle of hollow fiber type semipermeable membranes 1). Further, the immersion type hollow fiber membrane module 100 includes fixing resins 21 and 22 for fixing the plurality of hollow fiber type semipermeable membranes 1 at predetermined intervals at both ends of the hollow fiber membrane element 10. In order to maintain the overall shape of the submerged hollow fiber membrane module 100, the two fixing resins 21 and 22 may be connected to each other by a support (not shown).
 固定樹脂21は、中空糸型半透膜1の一端の開口を介して、複数の中空糸型半透膜1の中空部に連通する内部空間を有する分配室21aに接続されている。分配室21aは、その内部空間に連通する流入口21bを有している。したがって、流入口21bは、中空糸膜エレメント10の一端において複数の中空糸型半透膜1の中空部に連通している。 The fixing resin 21 is connected to a distribution chamber 21 a having an internal space communicating with the hollow portions of the plurality of hollow fiber type semipermeable membranes 1 through an opening at one end of the hollow fiber type semipermeable membrane 1. The distribution chamber 21a has an inlet 21b that communicates with the internal space. Therefore, the inflow port 21 b communicates with the hollow portions of the plurality of hollow fiber type semipermeable membranes 1 at one end of the hollow fiber membrane element 10.
 また、固定樹脂22は、中空糸型半透膜1の他端の開口を介して、複数の中空糸型半透膜1の中空部に連通する内部空間を有する集合室22aに接続されている。集合室22aは、その内部空間に連通する流出口22bを有している。したがって、流出口22bは、中空糸膜エレメント10の他端において複数の中空糸型半透膜1の中空部に連通している。 Further, the fixing resin 22 is connected to an assembly chamber 22 a having an internal space communicating with the hollow portions of the plurality of hollow fiber type semipermeable membranes 1 through the opening at the other end of the hollow fiber type semipermeable membrane 1. . The collecting chamber 22a has an outlet 22b communicating with the internal space. Accordingly, the outlet 22 b communicates with the hollow portions of the plurality of hollow fiber type semipermeable membranes 1 at the other end of the hollow fiber membrane element 10.
 図1に示されるように、本実施形態の浸漬型中空糸膜モジュール100において、複数の中空糸型半透膜1は露出している。なお、複数の中空糸型半透膜1は少なくともその一部の外表面が露出していればよく、図1では、固定樹脂21,22内に描かれた中空糸型半透膜1の一部は樹脂で覆われており露出していないが、中空糸型半透膜1の他の部分が露出している。なお、図1において、固定樹脂21,22、分配室21a、および、集合室22aを透過させて描いているが、実際に透明である必要はない。 As shown in FIG. 1, in the immersion type hollow fiber membrane module 100 of the present embodiment, a plurality of hollow fiber type semipermeable membranes 1 are exposed. The plurality of hollow fiber type semipermeable membranes 1 only need to have at least a part of the outer surface exposed. In FIG. The part is covered with resin and not exposed, but the other part of the hollow fiber type semipermeable membrane 1 is exposed. In FIG. 1, the fixing resins 21 and 22, the distribution chamber 21 a, and the collecting chamber 22 a are drawn through, but it is not necessarily transparent.
 このようなストレート型の浸漬型中空糸膜モジュールは、従来公知の方法を用いて製造することができ、例えば、特開平10-192661号公報に開示されるような方法により製造することができる。 Such a straight type immersion type hollow fiber membrane module can be manufactured by a conventionally known method, for example, by a method as disclosed in JP-A-10-192661.
 (正浸透水処理方法)
 本実施形態の正浸透水処理方法は、処理対象水から上記の浸漬型中空糸膜モジュールを用いた正浸透により、処理対象水から水を分離および回収する方法である。
(Normal osmosis water treatment method)
The forward osmosis water treatment method of this embodiment is a method of separating and collecting water from the treatment target water by forward osmosis using the above-described immersion type hollow fiber membrane module.
 なお、処理対象水とは、水と水以外の成分を含む液体である。処理対象水としては、例えば、海水などの塩水、および、河川水、湖沼水、工業廃水などが挙げられる。なお、処理対象水が、高濃度の塩水である場合、処理対象水の蒸発残留物濃度(TDS)は、好ましくは20質量%以下であり、より好ましくは15質量%以下である。 Note that the water to be treated is a liquid containing water and components other than water. Examples of the water to be treated include salt water such as sea water, river water, lake water, and industrial waste water. When the treatment target water is high-concentration salt water, the evaporation residue concentration (TDS) of the treatment target water is preferably 20% by mass or less, more preferably 15% by mass or less.
 図2を参照して、本実施形態の正浸透水処理方法において、浸漬型中空糸膜モジュール100は、処理槽3内に供給された処理対象水(FS)の中に浸漬される。これにより、複数の中空糸型半透膜1の外周面に処理対象水を接触させる。この状態で、ポンプ4によって、中空糸型半透膜1の中空部内にドロー溶質を含むドロー溶液(DS)を流すことで、処理対象水中に含まれる水を中空糸型半透膜1を通して外周面側から中空部内(ドロー溶液側)に移動させる。 Referring to FIG. 2, in the forward osmosis water treatment method of the present embodiment, the immersion type hollow fiber membrane module 100 is immersed in the water to be treated (FS) supplied into the treatment tank 3. Thereby, water to be treated is brought into contact with the outer peripheral surfaces of the plurality of hollow fiber type semipermeable membranes 1. In this state, the pump 4 causes a draw solution (DS) containing a draw solute to flow into the hollow portion of the hollow fiber type semipermeable membrane 1, thereby allowing water contained in the water to be treated to pass through the hollow fiber type semipermeable membrane 1 to the outer periphery. Move from the surface side into the hollow part (draw solution side).
 上記の正浸透工程により中空糸型半透膜1の中空部内において希釈されたドロー溶液は、ポンプ4によって再濃縮工程に送られる。再濃縮工程では、ドロー溶液から一部の水が回収され、それにより濃縮されたドロー溶液は、中空糸型半透膜1へ送られ、再度、正浸透工程に供される。 The draw solution diluted in the hollow portion of the hollow fiber type semipermeable membrane 1 by the forward osmosis step is sent to the reconcentration step by the pump 4. In the reconcentration step, a part of the water is recovered from the draw solution, and the draw solution concentrated thereby is sent to the hollow fiber type semipermeable membrane 1 and again subjected to the forward osmosis step.
 なお、本実施形態の正浸透処理方法においては、図2に示されるように、処理槽3の底壁の上部に設けられたエア吹出し口(図示せず)により、処理対象水中に気泡5を発生させてもよい。これにより、気泡5が複数の中空糸型半透膜1に接触することで、中空糸型半透膜1の外表面にスケールが付着することを抑制し、中空糸型半透膜1の目詰まりを防止することができる。 In the forward osmosis treatment method of this embodiment, as shown in FIG. 2, bubbles 5 are introduced into the water to be treated by an air outlet (not shown) provided at the top of the bottom wall of the treatment tank 3. It may be generated. Accordingly, the bubbles 5 are brought into contact with the plurality of hollow fiber type semipermeable membranes 1, thereby suppressing the scale from adhering to the outer surface of the hollow fiber type semipermeable membranes 1. Clogging can be prevented.
 ドロー溶液の粘度は、好ましくは0.10Pa・s以上であり、より好ましくは0.15Pa・s以上である。ドロー溶液として、このような高粘度の溶液を用いる場合において、特に正浸透処理の効率が低下しやすいため、従来よりも内径が大きい本実施形態の中空糸型半透膜を用いることが有効である。 The viscosity of the draw solution is preferably 0.10 Pa · s or more, more preferably 0.15 Pa · s or more. When such a highly viscous solution is used as the draw solution, it is effective to use the hollow fiber type semipermeable membrane of the present embodiment having an inner diameter larger than that of the conventional because the efficiency of the forward osmosis treatment is particularly likely to decrease. is there.
 ドロー溶液の浸透圧は、溶質の分子量等にもよるが、0.5~20MPaが好ましい。
 ドロー溶質としては、例えば、糖類、タンパク質、合成高分子などが挙げられるが、回収および再生のしやすさといった点から、刺激応答性高分子が好ましい。刺激応答性高分子としては、温度応答性高分子、pH応答性高分子、光応答性高分子、磁気応答性高分子などが挙げられる。
The osmotic pressure of the draw solution is preferably 0.5 to 20 MPa, although it depends on the molecular weight of the solute.
Examples of the draw solute include saccharides, proteins, and synthetic polymers. Stimulation-responsive polymers are preferable from the viewpoint of easy recovery and regeneration. Examples of the stimulus responsive polymer include a temperature responsive polymer, a pH responsive polymer, a photoresponsive polymer, and a magnetic responsive polymer.
 温度応答性高分子とは、所定の温度を臨界点として親水性が変化する特性(温度応答性)を有する高分子である。温度応答性とは、言い換えれば、温度に応じて親水性になったり疎水性になったりする特性である。ここで、親水性の変化は可逆的であることが好ましい。この場合、温度応答性高分子は、温度を調整することで、水に溶解させたり、水と相分離させたりすることができる。 The temperature-responsive polymer is a polymer having a characteristic (temperature responsiveness) in which hydrophilicity changes with a predetermined temperature as a critical point. In other words, the temperature responsiveness is a characteristic that becomes hydrophilic or hydrophobic depending on the temperature. Here, the change in hydrophilicity is preferably reversible. In this case, the temperature-responsive polymer can be dissolved in water or phase-separated from water by adjusting the temperature.
 温度応答性高分子は、モノマーに由来する複数の構造単位からなるポリマーであり、側鎖に親水性基を有していることが好ましい。 The temperature-responsive polymer is a polymer composed of a plurality of structural units derived from a monomer, and preferably has a hydrophilic group in the side chain.
 温度応答性高分子には、下限臨界共溶温度(LCST)タイプと上限臨界共溶温度(UCST)タイプがある。LCSTタイプでは、低温の水に溶解している高分子が、高分子に固有の温度(LCST)以上の温度になると、水と相分離する。逆に、UCSTタイプでは、高温の水に溶解している高分子が、高分子に固有の温度(UCST)以下になると、水と相分離する(杉原ら、「環境応答性高分子の組織体への展開」、SEN’I GAKKAISHI(繊維と工業)、Vol.62,No.8,2006参照)。半透過膜は、高温で劣化し易い素材を用いる場合においては、低温の水に溶解している温度応答性高分子が半透膜に接触している方が望ましいため、本発明に用いる温度応答性高分子はLCSTタイプであることが好ましい。また、高温で劣化しにくい素材で構成された半透過膜を用いる場合は、LCSTタイプの他,UCSTタイプも用いることができる。 There are two types of temperature-responsive polymers: the lower critical solution temperature (LCST) type and the upper critical solution temperature (UCST) type. In the LCST type, when a polymer dissolved in low-temperature water reaches a temperature higher than the temperature inherent to the polymer (LCST), it is phase-separated from water. On the other hand, in the UCST type, when the polymer dissolved in high-temperature water falls below the temperature inherent to the polymer (UCST), it is phase-separated from water (Sugihara et al., “Environment-responsive polymer tissue "Development to", SEN'I GAKKAISHI (Fiber and Industry), Vol. 62, No. 8, 2006). In the case of using a material that easily deteriorates at a high temperature, it is desirable that the semi-permeable membrane is in contact with the semi-permeable membrane by a temperature-responsive polymer dissolved in low-temperature water. The conducting polymer is preferably LCST type. In addition, in the case of using a semi-permeable membrane made of a material that does not easily deteriorate at high temperatures, a UCST type can be used in addition to the LCST type.
 親水性基としては、例えば、水酸基、カルボキシル基、アセチル基、アルデヒド基、エーテル結合、エステル結合が挙げられる。親水性基は、これらから選択される少なくとも1種類であることが好ましい。 Examples of the hydrophilic group include a hydroxyl group, a carboxyl group, an acetyl group, an aldehyde group, an ether bond, and an ester bond. The hydrophilic group is preferably at least one selected from these.
 温度応答性高分子は、少なくとも一部または全部の構造単位において少なくとも1つの親水性基を有することが好ましい。また、温度応答性高分子は、親水性基を有しつつ、一部の構造単位において疎水性基を有していてもよい。なお、温度応答性高分子が、温度応答性を有するためには、分子中に含まれる親水性基と疎水性基のバランスが重要であると考えられている。 The temperature-responsive polymer preferably has at least one hydrophilic group in at least some or all of the structural units. Moreover, the temperature-responsive polymer may have a hydrophobic group in some structural units while having a hydrophilic group. In addition, it is considered that the balance between the hydrophilic group and the hydrophobic group contained in the molecule is important for the temperature responsive polymer to have temperature responsiveness.
 具体的な温度応答性高分子としては、例えば、ポリビニルエーテル系ポリマー、ポリ酢酸ビニル系ポリマー、(メタ)アクリル酸系ポリマーなどが挙げられる。 Specific temperature-responsive polymers include, for example, polyvinyl ether polymers, polyvinyl acetate polymers, (meth) acrylic acid polymers, and the like.
 本実施形態の正浸透水処理方法のように、中空糸型半透膜を正浸透膜として用いる場合、中空糸型半透膜の耐圧性や、高圧ポンプを必要としないといった観点から、中空糸型半透膜の中空部内に流す流体の圧力は0.5MPa以下にすることが望ましい。したがって、正浸透工程において、ドロー溶液を流す圧力は、好ましくは0.5MPa以下であり、より好ましくは0.2MPa以下である。一方、中空糸型半透膜の内外での十分な有効浸透圧差を維持するために必要な流量を確保する観点からは、ドロー溶液を流す圧力は、好ましくは0.01MPa以上であり、より好ましくは0.05MPa以上である。 In the case of using a hollow fiber type semipermeable membrane as the forward osmosis membrane as in the forward osmosis water treatment method of the present embodiment, the hollow fiber type from the viewpoint that the pressure resistance of the hollow fiber type semipermeable membrane and the high pressure pump is not required. The pressure of the fluid flowing in the hollow portion of the mold semipermeable membrane is desirably 0.5 MPa or less. Therefore, in the forward osmosis step, the pressure for flowing the draw solution is preferably 0.5 MPa or less, more preferably 0.2 MPa or less. On the other hand, from the viewpoint of securing a flow rate necessary to maintain a sufficient effective osmotic pressure difference inside and outside the hollow fiber type semipermeable membrane, the pressure for flowing the draw solution is preferably 0.01 MPa or more, more preferably Is 0.05 MPa or more.
 上記の再濃縮工程において、例えば、ドロー溶質が温度応答性高分子である場合、ドロー溶液の温度を変化させることで、ドロー溶液に含まれるドロー溶質を水と分離させることができる。この場合、ドロー溶液の温度を変化させるだけで、ドロー溶質(温度応答性高分子)を容易に水から分離させ、回収することができる。また、このようにして水を回収することにより濃縮されたドロー溶液は、元のドロー溶液と同じ成分の溶液であるため、温度を元に戻し、必要に応じて濃度調整することで、再度、ドロー溶液として正浸透工程に使用することが可能である。 In the above re-concentration step, for example, when the draw solute is a temperature-responsive polymer, the draw solute contained in the draw solution can be separated from water by changing the temperature of the draw solution. In this case, the draw solute (temperature-responsive polymer) can be easily separated from the water and recovered simply by changing the temperature of the draw solution. In addition, since the draw solution concentrated by collecting water in this way is a solution having the same components as the original draw solution, the temperature is returned to the original, and the concentration is adjusted as necessary. It can be used as a draw solution in the forward osmosis process.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 中空糸型半透膜、10 中空糸膜エレメント、100 浸漬型中空糸膜モジュール、21,22 固定樹脂、21a 分配室、21b 流入口、22a 集合室、22b 排出口、3 処理槽、4 ポンプ、5 気泡。 1 hollow fiber type semipermeable membrane, 10 hollow fiber membrane element, 100 immersion type hollow fiber membrane module, 21, 22 fixing resin, 21a distribution chamber, 21b inlet, 22a collecting chamber, 22b outlet, 3 treatment tank, 4 pump 5, bubbles.

Claims (5)

  1.  中空部を有する直線状の複数の中空糸型半透膜を並列的に所定の間隔を開けて配置してなる中空糸膜エレメントと、
     前記中空糸膜エレメントの両端において、前記複数の中空糸型半透膜を所定の間隔を開けて固定するための固定樹脂と、
     前記中空糸膜エレメントの一端において前記複数の中空糸型半透膜の前記中空部に連通する流入口と、前記中空糸膜エレメントの多端において前記複数の中空糸型半透膜の前記中空部に連通する流出口と、を備え、
     前記複数の中空糸型半透膜は露出しており、
     前記中空糸型半透膜の素材が、セルロース系樹脂およびスルホン化ポリスルホン系樹脂の少なくともいずれかを含む材料である、正浸透用の浸漬型中空糸膜モジュール。
    A hollow fiber membrane element in which a plurality of linear hollow fiber type semipermeable membranes having a hollow portion are arranged in parallel at predetermined intervals;
    A fixing resin for fixing the plurality of hollow fiber type semipermeable membranes at predetermined intervals at both ends of the hollow fiber membrane element;
    An inlet that communicates with the hollow portion of the plurality of hollow fiber membranes at one end of the hollow fiber membrane element, and a hollow portion of the plurality of hollow fiber membranes at the multiple ends of the hollow fiber membrane element. And an outflow port that communicates,
    The plurality of hollow fiber type semipermeable membranes are exposed,
    An immersion type hollow fiber membrane module for forward osmosis, wherein the material of the hollow fiber type semipermeable membrane is a material containing at least one of a cellulose resin and a sulfonated polysulfone resin.
  2.  前記中空糸型半透膜の内径が250μm超700μm以下である、請求項1に記載の浸漬型中空糸膜モジュール。 The immersion type hollow fiber membrane module according to claim 1, wherein an inner diameter of the hollow fiber type semipermeable membrane is more than 250 µm and 700 µm or less.
  3.  前記中空糸膜エレメントの外径が5cm以上60cm以下である、請求項1または2に記載の浸漬型中空糸膜モジュール。 The immersion type hollow fiber membrane module according to claim 1 or 2, wherein an outer diameter of the hollow fiber membrane element is 5 cm or more and 60 cm or less.
  4.  前記中空糸膜エレメントの外周が形成する円の面積に対する前記中空糸型半透膜の外径の横断面積の合計の比率である端部充填率が、40%以上70%以下である、請求項1~3のいずれか1項に記載の浸漬型中空糸膜モジュール。 The end filling rate, which is the ratio of the total cross-sectional area of the outer diameter of the hollow fiber type semipermeable membrane to the area of a circle formed by the outer periphery of the hollow fiber membrane element, is 40% or more and 70% or less. 4. The immersion type hollow fiber membrane module according to any one of 1 to 3.
  5.  請求項1に記載の浸漬型中空糸膜モジュールを用いる正浸透水処理方法であって、
     前記浸漬型中空糸膜モジュールを、処理槽内の水と水以外の成分とを含む処理対象水の中に浸漬して、前記中空糸型半透膜の外周面に前記処理対象水を接触させると共に、前記中空糸型半透膜の中空部内にドロー溶質を含むドロー溶液を流すことで、前記処理対象水中に含まれる水を前記中空糸型半透膜を通して前記外周面側から前記中空部内に移動させる正浸透工程を含む、正浸透水処理方法。
    A forward osmosis water treatment method using the submerged hollow fiber membrane module according to claim 1,
    The immersion type hollow fiber membrane module is immersed in a treatment target water containing water in the treatment tank and components other than water, and the treatment target water is brought into contact with the outer peripheral surface of the hollow fiber type semipermeable membrane. In addition, by flowing a draw solution containing a draw solute into the hollow portion of the hollow fiber type semipermeable membrane, water contained in the water to be treated passes through the hollow fiber type semipermeable membrane from the outer peripheral surface side into the hollow portion. A forward osmosis water treatment method including a forward osmosis step for movement.
PCT/JP2016/064583 2015-05-28 2016-05-17 Immersion-type hollow-fiber-membrane module, and forward-osmosis water treatment method in which same is used WO2016190166A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017520638A JP6477872B2 (en) 2015-05-28 2016-05-17 Immersion type hollow fiber membrane module and forward osmosis water treatment method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-108459 2015-05-28
JP2015108459 2015-05-28

Publications (1)

Publication Number Publication Date
WO2016190166A1 true WO2016190166A1 (en) 2016-12-01

Family

ID=57393363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064583 WO2016190166A1 (en) 2015-05-28 2016-05-17 Immersion-type hollow-fiber-membrane module, and forward-osmosis water treatment method in which same is used

Country Status (2)

Country Link
JP (1) JP6477872B2 (en)
WO (1) WO2016190166A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021062320A (en) * 2019-10-10 2021-04-22 株式会社クラレ Filtration module operation method and filtration device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208119A (en) * 1991-10-22 1993-08-20 Cogia Method for removing at least part of water from material containing water and device therefor
JP2013212456A (en) * 2012-04-02 2013-10-17 Jfe Engineering Corp Hollow fiber membrane module
WO2014125405A1 (en) * 2013-02-15 2014-08-21 Kelada Maher Apparatus and methods for harnessing osmotic potential and methods of making and using same
JP2014184402A (en) * 2013-03-25 2014-10-02 Jfe Engineering Corp Hollow fiber membrane module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418739B1 (en) * 2012-02-09 2014-02-19 東洋紡株式会社 Hollow fiber type semipermeable membrane, manufacturing method and module thereof, and water treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208119A (en) * 1991-10-22 1993-08-20 Cogia Method for removing at least part of water from material containing water and device therefor
JP2013212456A (en) * 2012-04-02 2013-10-17 Jfe Engineering Corp Hollow fiber membrane module
WO2014125405A1 (en) * 2013-02-15 2014-08-21 Kelada Maher Apparatus and methods for harnessing osmotic potential and methods of making and using same
JP2014184402A (en) * 2013-03-25 2014-10-02 Jfe Engineering Corp Hollow fiber membrane module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021062320A (en) * 2019-10-10 2021-04-22 株式会社クラレ Filtration module operation method and filtration device
JP7351704B2 (en) 2019-10-10 2023-09-27 株式会社クラレ How to operate the filtration module and filtration equipment

Also Published As

Publication number Publication date
JPWO2016190166A1 (en) 2018-02-08
JP6477872B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6521077B2 (en) Water treatment method and water treatment system
CN112867554B (en) Hollow fiber membrane element, hollow fiber membrane module, and forward osmosis water treatment method
JP6222237B2 (en) Hollow fiber membrane element and membrane module for forward osmosis
JP6593542B2 (en) Flat hollow fiber membrane module and membrane separation unit
JP6365542B2 (en) Hollow fiber membrane element and membrane module for forward osmosis
JP6477872B2 (en) Immersion type hollow fiber membrane module and forward osmosis water treatment method using the same
JP6558199B2 (en) Reverse osmosis water treatment method
JP6862935B2 (en) Concentration system and concentration method
JP6583416B2 (en) Hollow fiber membrane element, hollow fiber membrane module, and forward osmosis water treatment method
JP6264938B2 (en) Hollow fiber membrane module
JP6565898B2 (en) Hollow fiber membrane element and hollow fiber membrane module
JP6374291B2 (en) Hollow fiber membrane module
JP6743810B2 (en) Hollow fiber type semipermeable membrane, hollow fiber membrane module and forward osmosis water treatment method
WO2020184097A1 (en) Hollow fiber membrane module
JP2004344851A (en) Membrane filtration module
JP6341353B1 (en) Hollow fiber membrane module
JP2015226864A (en) Forward osmosis hollow fiber membrane module
JP2021526970A (en) Filtration system and how to filter water
WO2021261324A1 (en) Hollow fiber membrane module
JP2023119191A (en) Hollow fiber membrane module and hollow fiber membrane module manufacturing method
JP2023032372A (en) Forward osmosis treatment method and forward osmosis treatment device
JP2021102194A (en) Hollow fiber membrane module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799872

Country of ref document: EP

Kind code of ref document: A1