WO2016190104A1 - Variable displacement swash plate-type hydraulic rotating machine - Google Patents

Variable displacement swash plate-type hydraulic rotating machine Download PDF

Info

Publication number
WO2016190104A1
WO2016190104A1 PCT/JP2016/063987 JP2016063987W WO2016190104A1 WO 2016190104 A1 WO2016190104 A1 WO 2016190104A1 JP 2016063987 W JP2016063987 W JP 2016063987W WO 2016190104 A1 WO2016190104 A1 WO 2016190104A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
sliding
sliding surface
groove
piston
Prior art date
Application number
PCT/JP2016/063987
Other languages
French (fr)
Japanese (ja)
Inventor
力 松尾
尚也 横町
祐規 上田
峰志 宇野
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2016190104A1 publication Critical patent/WO2016190104A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/22Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating

Definitions

  • the present invention relates to a variable capacity swash plate type hydraulic rotating machine.
  • variable displacement swash plate type hydraulic rotating machine is used as, for example, a hydraulic pump mounted on an engine-type forklift or a hydraulic motor.
  • the variable displacement swash plate type hydraulic rotating machine can vary the discharge capacity of hydraulic oil (working fluid), and when used as a hydraulic motor, the rotational speed and torque can be varied.
  • a rotating shaft is rotatably supported in the housing of such a variable capacity swash plate type hydraulic rotating machine.
  • the rotating shaft is provided with a cylinder block that rotates integrally with the rotating shaft. In the cylinder block, a plurality of cylinder bores are formed around the rotation shaft.
  • a piston is accommodated in each cylinder bore.
  • a shoe is provided at each piston end. Each shoe is held by a retainer plate.
  • the housing houses a swash plate capable of changing the tilt angle (tilt angle) with respect to the direction orthogonal to the axis of the rotation axis.
  • the surface of the swash plate that faces the cylinder block is a flat sliding surface on which each shoe slides.
  • the swash plate has a pair of sliding parts.
  • the sliding portion has an arcuately curved sliding surface that bulges toward the opposite side of the cylinder block.
  • the housing also includes a swash plate holding part that holds the swash plate while allowing the tilt angle of the swash plate to be changed.
  • the swash plate holding portion has a sliding surface that extends along the sliding surfaces of the pair of sliding portions and on which the sliding surfaces slide. And the inclination angle of a swash plate is changed because the sliding surface of a pair of sliding part slides the sliding surface of a swash plate holding
  • Patent Document 1 discloses that a groove is formed on the sliding surface of the sliding portion and hydraulic oil is supplied into the groove. According to this, the force of pushing back the swash plate toward the piston is generated by the pressure of the hydraulic oil supplied into the groove (the oil pocket in Patent Document 1), and between the sliding surface and the sliding surface. By forming the oil film, the surface pressure between the sliding surface and the sliding surface is reduced, and the friction between the sliding surface and the sliding surface due to the change in the inclination angle of the swash plate is reduced.
  • variable displacement type piston pump of Patent Document 1 in order to form a groove on the sliding surface of the sliding portion, if the groove processing is performed on the sliding surface, the manufacturing is complicated by the amount of the groove processing. It will be a thing. Therefore, it is conceivable to form the sliding portion having the groove by forging, which is relatively easy to manufacture as compared with the case where the groove is machined on the sliding surface. However, since the surface of the sliding part formed by forging is rough, it is necessary to finish the surface of the sliding part. At this time, the opening edge of the groove continuous with the sliding surface formed by finishing may be a pin angle. When the opening edge of the groove becomes a pin angle, the opening edge of the groove slides on the sliding surface of the swash plate holding portion, which causes a problem that the sliding surface of the swash plate holding portion is damaged.
  • An object of the present invention is to provide a variable capacity swash plate type hydraulic rotating machine capable of suppressing damage to a sliding surface of a swash plate holding portion while facilitating manufacture.
  • a variable capacity swash plate type hydraulic rotating machine that achieves the above object is formed in a housing, a rotary shaft rotatably supported by the housing, a cylinder block that rotates integrally with the rotary shaft, and the cylinder block.
  • a swash plate holding portion that holds the swash plate while allowing a change in the tilt angle of the swash plate.
  • the swash plate includes a slidable contact surface on which the shoe slidably contacts and a sliding portion having an arcuately curved sliding surface that bulges toward the opposite side of the cylinder block.
  • the swash plate holding portion includes a sliding surface that extends along the sliding surface and on which the sliding surface slides.
  • a groove for supplying hydraulic oil is formed in the sliding surface.
  • the cylinder block rotates with the rotation of the rotation shaft, and the respective pistons move around the rotation shaft in the circumferential direction of the rotation shaft while the shoes slide in contact with the sliding contact surface.
  • a variable displacement swash plate type hydraulic rotating machine is configured such that the piston reciprocates at a stroke corresponding to the inclination angle of the swash plate.
  • the sliding portion is formed by forging.
  • the sliding surface is formed by grinding the surface of the sliding portion and finishing it.
  • a chamfered portion formed by forging is provided at the opening edge of the groove continuous with the sliding surface.
  • FIG. 4 is a sectional view taken along line 4-4 in FIG. (A) is sectional drawing which shows the relationship between a bush and a sliding part, (b) And (c) is the elements on larger scale of Fig.5 (a).
  • variable displacement piston pump can be used as a hydraulic pump mounted on an engine-type forklift.
  • variable displacement piston pump 10 includes a housing 11 and a rotating shaft 12 that is rotatably supported by the housing 11.
  • the housing 11 includes a bottomed cylindrical first housing 13 and a bottomed cylindrical second housing 14 connected to the opening end of the first housing 13.
  • the bottom wall 13a of the first housing 13 is formed with an insertion hole 13h into which the portion on the right side of FIG.
  • the right portion of the rotary shaft 12 is rotatably supported by the bottom wall 13 a of the first housing 13 via a bearing 15.
  • the bottom wall 14a of the second housing 14 is formed with an insertion hole 14h into which the portion on the left side in FIG.
  • the left portion of the rotary shaft 12 is rotatably supported by the bottom wall 14 a of the second housing 14 via a bearing 16.
  • the left end of the rotary shaft 12 protrudes from the second housing 14 to the outside.
  • the left end of the rotating shaft 12 is connected to an engine as an external drive source via a power transmission mechanism (not shown).
  • the rotating shaft 12 rotates by driving the engine.
  • the cylinder block 17 and the swash plate 18 are accommodated in the first housing 13.
  • the cylinder block 17 is disposed closer to the bottom wall 13 a of the first housing 13 than the swash plate 18.
  • the cylinder block 17 is formed with a through hole 17a through which the rotary shaft 12 passes.
  • the cylinder block 17 includes a small diameter portion 171 and a large diameter portion 172 having a larger hole diameter than the small diameter portion 171.
  • the small diameter portion 171 is located closer to the second housing 14 than the large diameter portion 172.
  • the cylinder block 17 rotates integrally with the rotating shaft 12 by the spline fitting of the small diameter portion 171 with the rotating shaft 12.
  • a biasing spring 19 is interposed between the small diameter portion 171 and the bearing 15.
  • the cylinder block 17 has a plurality of cylinder bores 17h formed around the rotary shaft 12.
  • the plurality of cylinder bores 17h are arranged at regular intervals on a circle.
  • a piston 20 is housed so as to be able to reciprocate.
  • a shoe 21 is provided at an end of the piston 20 adjacent to the swash plate 18.
  • the piston 20 is formed with a through hole 20 h that penetrates in the axial direction of the piston 20.
  • the shoe 21 is formed with a through hole 21 h that communicates with the through hole 20 h and penetrates the shoe 21.
  • Each shoe 21 is held by an annular retainer plate 22.
  • a pivot 23 that is fixed to the retainer plate 22 is provided inside the retainer plate 22.
  • the urging spring 19 urges the pivot 23 toward the swash plate 18 via a pin (not shown). Thereby, the retainer plate 22 is urged toward the swash plate 18, and each shoe 21 is in close contact with the surface of the swash plate 18 facing the cylinder block 17.
  • the swash plate 18 includes a plate-like main body 31 having an insertion hole 18h through which the rotary shaft 12 is inserted.
  • the swash plate 18 is attached to the rotating shaft 12 by inserting the rotating shaft 12 into the insertion hole 18 h.
  • the swash plate 18 can change the inclination angle (inclination angle) with respect to the direction orthogonal to the axis L of the rotating shaft 12.
  • each piston 20 slides around the surface of the swash plate 18 facing the cylinder block 17, and each piston 20 surrounds the rotating shaft 12. Is moved along the circumferential direction of the rotary shaft 12. As a result, each piston 20 reciprocates in the cylinder bore 17h with a stroke corresponding to the inclination angle of the swash plate 18 as the cylinder block 17 rotates. Therefore, the surface of the swash plate 18 facing the cylinder block 17 is a flat sliding contact surface 18a with which the shoe 21 slides.
  • the swash plate 18 includes first and second sliding portions 32 ⁇ / b> A and 32 ⁇ / b> B that make a pair at positions sandwiching the main body portion 31 from both sides.
  • the sliding portions 32A and 32B are formed integrally with the main body portion 31.
  • a part of each of the sliding portions 32A and 32B protrudes from the surface of the main body portion 31 opposite to the cylinder block 17 and bulges toward the opposite side of the cylinder block 17, and is curved in an arc shape.
  • the sliding surface 32 a bulges away from the cylinder block 17.
  • the first sliding portion 32A is located on the side corresponding to the piston 20 during the discharge stroke
  • the second sliding portion 32B is located on the side corresponding to the piston 20 during the suction stroke.
  • the piston 20 during the intake stroke refers to the piston 20 moving from the top dead center toward the bottom dead center.
  • the “piston 20 during the discharge stroke” refers to the piston 20 moving from the bottom dead center toward the top dead center.
  • a bush 25 is provided on the inner wall of the second housing 14 as a swash plate holding portion that holds the swash plate 18 while allowing the inclination angle of the swash plate 18 to be changed.
  • the bush 25 has a plate shape curved in an arc shape, and includes a sliding surface 25a that extends along the sliding surface 32a and on which the sliding surface 32a slides. And the inclination angle of the swash plate 18 is changed because the sliding surfaces 32a of the pair of sliding portions 32A and 32B slide on the sliding surface 25a.
  • the swash plate 18 includes a pressed portion 33 that extends outward from an edge corresponding to the top dead center of the piston 20 in the main body 31.
  • An accommodation recess 33 a is formed on the surface of the pressed portion 33 that faces the cylinder block 17.
  • a cylindrical contact member 34a is accommodated in the accommodating recess 33a.
  • a part of the contact member 34 a protrudes from a surface of the pressed portion 33 facing the cylinder block 17 in a state where the contact member 34 a is stored in the storage recess 33 a.
  • An accommodation recess 33 b is formed on the surface of the pressed part 33 opposite to the cylinder block 17.
  • a cylindrical contact member 34b is accommodated in the accommodating recess 33b.
  • a part of the contact member 34 b protrudes from the surface of the pressed portion 33 opposite to the cylinder block 17 in the state of being accommodated in the accommodation recess 33 b.
  • a suction port 26 and a discharge port 27 are formed on the bottom wall 13 a of the first housing 13.
  • the suction port 26 and the discharge port 27 are formed in a semicircular arc shape extending along the circumferential direction of the rotating shaft 12.
  • the suction port 26 is provided on the bottom wall 13a at a position where it can communicate with each cylinder bore 17h in which the piston 20 in the suction stroke is housed.
  • the discharge port 27 is provided on the bottom wall 13a at a position where it can communicate with each cylinder bore 17h in which the piston 20 during the discharge stroke is housed.
  • a valve seat 28 is provided between the cylinder block 17 and the bottom wall 13 a of the first housing 13.
  • the valve seat 28 is formed with a communication hole 28a that communicates the suction port 26 and the cylinder bore 17h, and a communication hole 28b that communicates the discharge port 27 and the cylinder bore 17h.
  • a piston housing recess 35 is formed on the radially outer side of the rotary shaft 12 with respect to the cylinder block 17 in the first housing 13.
  • a control piston 36 is housed in the piston housing recess 35.
  • a control pressure chamber 35 a is defined by the piston housing recess 35 and the control piston 36.
  • a part of the hydraulic oil discharged from the discharge port 27 is supplied to the control pressure chamber 35a.
  • the amount of hydraulic oil supplied to the control pressure chamber 35a is controlled by a control valve (not shown).
  • An end face of the control piston 36 facing the swash plate 18 is in contact with the contact member 34a.
  • a bottomed cylindrical spring receiving concave member 37 is attached to the bottom wall 14 a of the second housing 14 by a screw 38.
  • the spring receiving concave member 37 opens toward the swash plate 18.
  • a hollow piston 39 is inserted into the spring receiving concave member 37.
  • An inclination angle increasing spring 39 a is accommodated in the hollow piston 39.
  • the hollow piston 39 is urged in a direction away from the bottom of the spring receiving concave member 37 by the urging force of the inclination increasing spring 39a.
  • the end face of the hollow piston 39 facing the swash plate 18 is in contact with the contact member 34b.
  • variable displacement piston pump 10 configured as described above, when the amount of hydraulic oil supplied to the control pressure chamber 35a increases, the pressure in the control pressure chamber 35a increases and the control piston 36 moves toward the swash plate 18. . Then, the control piston 36 presses the swash plate 18 via the contact member 34a so as to reduce the tilt angle of the swash plate 18 against the biasing force of the tilt angle increasing spring 39a. Thereby, the inclination angle of the swash plate 18 is reduced, the stroke of the piston 20 is reduced, and the discharge capacity is reduced.
  • a groove 40 for supplying hydraulic oil is formed in the sliding surface 32a of each sliding portion 32A, 32B.
  • the size of the groove 40 formed on the sliding surface 32a of the first sliding portion 32A is larger than the size of the groove 40 formed on the sliding surface 32a of the second sliding portion 32B.
  • the swash plate 18 is formed by forging. Therefore, the pair of sliding portions 32A and 32B are formed by forging.
  • the sliding surface 32a is formed by grinding the surfaces of the sliding portions 32A and 32B and performing a finishing process.
  • the machining allowance H1 for finishing the surfaces of the sliding portions 32A and 32B is 1 mm.
  • a chamfered portion 41 formed by forging is provided on the entire periphery of the opening edge of the groove 40 continuous with the sliding surface 32a.
  • the chamfered portion 41 is rounded.
  • the radius r1 of the chamfered portion 41 formed by forging is 3 mm.
  • both side surfaces 40a of the groove 40 positioned in the bending direction of the sliding surface 32a include straight portions 42 that are continuous with the chamfered portion 41. .
  • the angle ⁇ 1 on the groove 40 side formed by the straight portion 42 and the tangent L2 to the sliding surface 32a passing through the intersection P1 between the extension line L1 of the straight portion 42 and the sliding surface 32a is an acute angle.
  • the hydraulic oil in the cylinder bore 17h in which the piston 20 during the discharge stroke is accommodated is formed on the sliding surface 32a of the first sliding portion 32A.
  • a supply hole 43 for supplying the groove 40 is formed. One end of the supply hole 43 opens into the groove 40 and the other end opens into the sliding contact surface 18a.
  • the supply hole 43 can communicate with the through hole 21 h of each shoe 21.
  • An orifice 43 a is provided at the other end of the supply hole 43. The orifice 43a adjusts the supply amount of hydraulic oil supplied into the groove 40 from the cylinder bore 17h in which the piston 20 in the discharge stroke is accommodated.
  • the hydraulic oil present in the housing 11 is supplied into the groove 40 formed in the sliding surface 32a of the second sliding portion 32B. And the force of pushing back the swash plate 18 toward the piston 20 is generated by the pressure of the hydraulic oil supplied into the groove 40, and the sliding surface 32a of the second sliding portion 32B and the sliding surface 25a By forming an oil film therebetween, the surface pressure between the sliding surface 32a of the second sliding portion 32B and the sliding surface 25a is reduced. Thereby, the friction between the sliding surface 32a and the sliding surface 25a accompanying the change of the inclination angle of the swash plate 18 is reduced.
  • the swash plate 18 having the above-described configuration, even if the sliding surface 32a is formed by cutting the surfaces of the sliding portions 32A and 32B and finishing it, the entire periphery of the opening edge of the groove 40 continuous to the sliding surface 32a is formed. Since the chamfered portion 41 formed by forging is provided, the opening edge of the groove 40 does not have a pin angle even when the sliding portions 32A and 32B are formed by forging. Therefore, compared with the case where the opening edge of the groove 40 is a pin angle, the sliding surface 25a of the bush 25 is suppressed from being damaged.
  • the opening edge of the groove 40 is larger when the sliding surface 32a and the sliding surface 25a slide. It becomes difficult to slide on the sliding surface 25a.
  • the sliding portions 32A and 32B are formed by forging, and the sliding surface 32a is formed by cutting the surfaces of the sliding portions 32A and 32B and performing a finishing process.
  • a chamfered portion 41 formed by forging is provided at the opening edge of the groove 40 continuing to the sliding surface 32a. According to this, even if the sliding surface 32a is formed by scraping the surfaces of the sliding portions 32A and 32B and performing the finishing process, it is formed on the opening edge of the groove 40 continuous to the sliding surface 32a by forging. Since the chamfered portion 41 is provided, the opening edge of the groove 40 does not have a pin angle even if the sliding portions 32A and 32B are formed by forging.
  • the sliding portions 32A and 32B having the groove 40 can be formed by forging, which is relatively easy to manufacture compared to the case where the groove is formed on the sliding surface 32a, and the opening edge of the groove 40 has a pin angle. Compared with the case where it is, it can suppress that the to-be-slided surface 25a of the bush 25 is damaged. Therefore, damage to the sliding surface 25a of the bush 25 can be suppressed while facilitating manufacture.
  • Both side surfaces 40a of the groove 40 positioned in the bending direction of the sliding surface 32a include a straight portion 42 continuous with the chamfered portion 41, and the straight portion 42, the extension line L1 of the straight portion 42, and the sliding surface 32a.
  • the angle ⁇ 1 on the groove 40 side formed by the tangent L2 to the sliding surface 32a passing through the intersection P1 is an acute angle.
  • the sliding surface 32a of the sliding portion 32 and the sliding surface 25a of the bush 25 are slid compared with the case where the angle ⁇ 1 on the groove 40 side formed by the straight portion 42 and the tangent L2 is an obtuse angle.
  • the groove 40 is formed at least on the sliding surface 32a of the first sliding portion 32A. According to this, the force of pushing back the swash plate 18 toward the piston 20 is generated by the pressure of the hydraulic oil supplied into the groove 40 formed in the sliding surface 32a of the first sliding portion 32A. By forming an oil film between the sliding surface 32a of the first sliding portion 32A and the sliding surface 25a, the surface between the sliding surface 32a and the sliding surface 25a of the first sliding portion 32A The pressure is reduced. As a result, it becomes difficult for a local load to act on the sliding surface 25a of the bush 25, and the inclination angle of the swash plate 18 can be changed smoothly.
  • the bottom surface 40e of the groove 40 is curved in an arc shape so as to extend along the sliding surface 32a, and both side surfaces 40a of the groove 40 positioned in the bending direction of the sliding surface 32a.
  • a linear portion 42 continuous with the chamfered portion 41 is included. Since the groove 40 has such a shape that the depth of the groove 40 is extremely deep or the shape of the groove 40 is abruptly changed, the groove 40 can be easily formed by forging. .
  • the bush 25 may not be provided on the inner wall of the second housing 14, and a swash plate holding portion that holds the swash plate 18 is formed on a part of the inner wall of the second housing 14. Also good.
  • the groove 40 is formed on the sliding surface 32a of the first sliding portion 32A located at least on the side corresponding to the piston 20 during the discharge stroke, and corresponds to the piston 20 during the suction stroke.
  • the groove 40 does not have to be formed on the sliding surface 32a of the second sliding portion 32B located on the side to be moved.
  • channel 40 may be formed in flat surface shape, for example.
  • the supply hole 43 may not be formed in the swash plate 18. In this case, hydraulic oil present in the housing 11 is supplied into the groove 40.
  • the size of the groove 40 formed on the sliding surface 32a of the first sliding portion 32A is the same as the size of the groove 40 formed on the sliding surface 32a of the second sliding portion 32B. It may be.
  • the angle ⁇ 1 on the groove 40 side formed by the straight line portion 42 and the tangent L2 may be 90 degrees or an obtuse angle.
  • the straight portions 42 that are continuous with the chamfered portion 41 are not formed on both side surfaces 40a of the groove 40 that is positioned in the bending direction of the sliding surface 32a, and the entire side surfaces 40a are curved, for example, in an arc shape. It may extend so that.
  • the dimension of the machining allowance H1 and the radius of the chamfered portion 41 are not particularly limited.
  • the sliding surface 32a is formed by grinding the surfaces of the sliding portions 32A and 32B and finishing, and the chamfered portion 41 formed by forging at the opening edge of the groove 40 continuous to the sliding surface 32a. Is provided, the dimensions of the machining allowance H1 and the radius of the chamfered portion 41 may be changed as appropriate.
  • the chamfered portion 41 may have a tapered shape (C chamfered shape) extending linearly in a direction oblique to the sliding surface 32a.
  • the main body portion 31 and the pair of sliding portions 32A, 32B may be separate members, and each sliding portion 32A, 32B is attached to the main body portion 31 with a fastener such as a bolt. It may be.
  • variable capacity swash plate type hydraulic rotating machine may be used as a hydraulic motor for rotating the rotating shaft 12 via the cylinder block 17 by hydraulic oil supplied to the cylinder bore 17h.
  • variable displacement swash plate type hydraulic rotating machine makes the rotation speed and torque variable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)

Abstract

This variable displacement swash plate-type hydraulic rotating machine has a swash plate of which the inclination can be altered. The swash plate is provided with a slide-contact surface against which a shoe slides, and a sliding part having a sliding surface curved into an arc. A groove into which working oil is supplied is formed in the sliding surface. The sliding part is formed by forging. The sliding surface is formed by shaving down and finishing the surface of the sliding part. An open edge of the groove, which is continuous with the sliding surface, is provided with a chamfered part formed by forging.

Description

可変容量型斜板式液圧回転機Variable capacity swash plate type hydraulic rotating machine
 本発明は、可変容量型斜板式液圧回転機に関する。 The present invention relates to a variable capacity swash plate type hydraulic rotating machine.
 可変容量型斜板式液圧回転機は、例えば、エンジン式のフォークリフトに搭載される油圧ポンプや、油圧モータとして使用されている。可変容量型斜板式液圧回転機は、油圧ポンプとして使用される場合には、作動油(作動流体)の吐出容量を可変とし、油圧モータとして使用される場合には、回転速度やトルクを可変とする。このような可変容量型斜板式液圧回転機のハウジング内には回転軸が回転可能に支持されている。回転軸には、回転軸と一体的に回転するシリンダブロックが設けられている。シリンダブロックには、複数のシリンダボアが回転軸の周囲に形成されている。各シリンダボア内にはピストンが収納されている。各ピストンの端部にはシューがそれぞれ設けられている。各シューは、リテーナプレートによって保持されている。 The variable displacement swash plate type hydraulic rotating machine is used as, for example, a hydraulic pump mounted on an engine-type forklift or a hydraulic motor. When used as a hydraulic pump, the variable displacement swash plate type hydraulic rotating machine can vary the discharge capacity of hydraulic oil (working fluid), and when used as a hydraulic motor, the rotational speed and torque can be varied. And A rotating shaft is rotatably supported in the housing of such a variable capacity swash plate type hydraulic rotating machine. The rotating shaft is provided with a cylinder block that rotates integrally with the rotating shaft. In the cylinder block, a plurality of cylinder bores are formed around the rotation shaft. A piston is accommodated in each cylinder bore. A shoe is provided at each piston end. Each shoe is held by a retainer plate.
 ハウジング内には、回転軸の軸線に直交する方向に対する傾斜角度(傾角)の変更が可能な斜板が収容されている。斜板におけるシリンダブロックと対向する面は、各シューが摺接する平坦面状の摺接面になっている。そして、回転軸が回転してシリンダブロックが回転軸と一体的に回転すると、各シューが斜板の摺接面を摺接しながら、各ピストンが回転軸の周囲を回転軸の周方向に沿って移動する。これにより、各ピストンは、シリンダブロックの回転に伴って斜板の傾角に応じたストロークでシリンダボア内を往復動する。 The housing houses a swash plate capable of changing the tilt angle (tilt angle) with respect to the direction orthogonal to the axis of the rotation axis. The surface of the swash plate that faces the cylinder block is a flat sliding surface on which each shoe slides. When the rotation shaft rotates and the cylinder block rotates integrally with the rotation shaft, each piston slides around the sliding contact surface of the swash plate and each piston moves around the rotation shaft along the circumferential direction of the rotation shaft. Moving. Thereby, each piston reciprocates in the cylinder bore with a stroke corresponding to the inclination angle of the swash plate as the cylinder block rotates.
 斜板は、一対の摺動部を備えている。摺動部は、シリンダブロックとは反対側に向けて膨出する弧状に湾曲した摺動面を有する。また、ハウジングは、斜板の傾角の変更を許容しつつ、且つ斜板を保持する斜板保持部を備えている。斜板保持部は、一対の摺動部の摺動面に沿って延びるとともに摺動面が摺動する被摺動面を有する。そして、一対の摺動部の摺動面が斜板保持部の被摺動面を摺動することで、斜板の傾角が変更される。 The swash plate has a pair of sliding parts. The sliding portion has an arcuately curved sliding surface that bulges toward the opposite side of the cylinder block. The housing also includes a swash plate holding part that holds the swash plate while allowing the tilt angle of the swash plate to be changed. The swash plate holding portion has a sliding surface that extends along the sliding surfaces of the pair of sliding portions and on which the sliding surfaces slide. And the inclination angle of a swash plate is changed because the sliding surface of a pair of sliding part slides the sliding surface of a swash plate holding | maintenance part.
 ところで、斜板の傾角の変更に伴って、摺動部の摺動面が斜板保持部の被摺動面を摺動するため、摺動面と被摺動面との間では摩擦が生じる。そこで、摺動部の摺動面に溝を形成し、溝内に作動油を供給しているものが、例えば特許文献1に開示されている。これによれば、溝(特許文献1では油ポケット)内に供給された作動油の圧力によって、斜板をピストンに向けて押し返す力が発生し、摺動面と被摺動面との間に油膜が形成されることで、摺動面と被摺動面との間の面圧が低減され、斜板の傾角の変更に伴う摺動面と被摺動面との間の摩擦が低減される。 By the way, since the sliding surface of the sliding portion slides on the sliding surface of the swash plate holding portion with the change of the inclination angle of the swash plate, friction occurs between the sliding surface and the sliding surface. . Therefore, for example, Patent Document 1 discloses that a groove is formed on the sliding surface of the sliding portion and hydraulic oil is supplied into the groove. According to this, the force of pushing back the swash plate toward the piston is generated by the pressure of the hydraulic oil supplied into the groove (the oil pocket in Patent Document 1), and between the sliding surface and the sliding surface. By forming the oil film, the surface pressure between the sliding surface and the sliding surface is reduced, and the friction between the sliding surface and the sliding surface due to the change in the inclination angle of the swash plate is reduced. The
実開平4-32272号公報Japanese Utility Model Publication No. 4-32272
 しかしながら、特許文献1の可変容量型ピストンポンプのように、摺動部の摺動面に溝を形成するために、摺動面に溝加工を施すと、溝加工を施す分だけ製造が煩雑なものとなる。そこで、摺動面に溝加工を施す場合に比べて製造が比較的容易である鍛造によって、溝を有する摺動部を形成することが考えられる。しかし、鍛造によって形成された摺動部の表面は粗いため、摺動部の表面を削って仕上げ加工を施す必要がある。このとき、仕上げ加工されることで形成された摺動面に連続する溝の開口縁がピン角になる場合がある。
溝の開口縁がピン角になると、溝の開口縁が斜板保持部の被摺動面に摺動することで、斜板保持部の被摺動面が損傷してしまうという問題がある。
However, as in the variable displacement type piston pump of Patent Document 1, in order to form a groove on the sliding surface of the sliding portion, if the groove processing is performed on the sliding surface, the manufacturing is complicated by the amount of the groove processing. It will be a thing. Therefore, it is conceivable to form the sliding portion having the groove by forging, which is relatively easy to manufacture as compared with the case where the groove is machined on the sliding surface. However, since the surface of the sliding part formed by forging is rough, it is necessary to finish the surface of the sliding part. At this time, the opening edge of the groove continuous with the sliding surface formed by finishing may be a pin angle.
When the opening edge of the groove becomes a pin angle, the opening edge of the groove slides on the sliding surface of the swash plate holding portion, which causes a problem that the sliding surface of the swash plate holding portion is damaged.
 本発明の目的は、製造を容易なものとしつつも、斜板保持部の被摺動面の損傷を抑制することができる可変容量型斜板式液圧回転機を提供することにある。 An object of the present invention is to provide a variable capacity swash plate type hydraulic rotating machine capable of suppressing damage to a sliding surface of a swash plate holding portion while facilitating manufacture.
 上記目的を達成する可変容量型斜板式液圧回転機は、ハウジングと、前記ハウジングに回転可能に支持される回転軸と、前記回転軸と一体的に回転するシリンダブロックと、前記シリンダブロックに形成される複数のシリンダボアと、各シリンダボア内に収納されるピストンと、前記各ピストンの端部に設けられるシューと、前記ハウジング内に収容されるとともに前記回転軸の軸線に直交する方向に対する傾角の変更が可能な斜板と、前記斜板の傾角の変更を許容しつつ、且つ前記斜板を保持する斜板保持部と、を備える。前記斜板は、前記シューが摺接する摺接面と、前記シリンダブロックとは反対側に向けて膨出する弧状に湾曲した摺動面を有する摺動部と、を備える。前記斜板保持部は、前記摺動面に沿って延びるとともに前記摺動面が摺動する被摺動面を備える。前記摺動面には、内部に作動油が供給される溝が形成されている。前記回転軸の回転に伴って前記シリンダブロックが回転して、各シューが前記摺接面に摺接しながら、各ピストンが前記回転軸の周囲を前記回転軸の周方向に移動することで、前記ピストンが前記斜板の傾角に応じたストロークで往復動するように可変容量型斜板式液圧回転機が構成されている。前記摺動部は鍛造によって形成されている。前記摺動面は、前記摺動部の表面を削って仕上げ加工を施すことで形成されている。前記摺動面に連続する前記溝の開口縁には、鍛造によって形成された面取り部が設けられている。 A variable capacity swash plate type hydraulic rotating machine that achieves the above object is formed in a housing, a rotary shaft rotatably supported by the housing, a cylinder block that rotates integrally with the rotary shaft, and the cylinder block. A plurality of cylinder bores, a piston housed in each cylinder bore, a shoe provided at an end of each piston, and a change in tilt angle with respect to a direction housed in the housing and perpendicular to the axis of the rotary shaft And a swash plate holding portion that holds the swash plate while allowing a change in the tilt angle of the swash plate. The swash plate includes a slidable contact surface on which the shoe slidably contacts and a sliding portion having an arcuately curved sliding surface that bulges toward the opposite side of the cylinder block. The swash plate holding portion includes a sliding surface that extends along the sliding surface and on which the sliding surface slides. A groove for supplying hydraulic oil is formed in the sliding surface. The cylinder block rotates with the rotation of the rotation shaft, and the respective pistons move around the rotation shaft in the circumferential direction of the rotation shaft while the shoes slide in contact with the sliding contact surface. A variable displacement swash plate type hydraulic rotating machine is configured such that the piston reciprocates at a stroke corresponding to the inclination angle of the swash plate. The sliding portion is formed by forging. The sliding surface is formed by grinding the surface of the sliding portion and finishing it. A chamfered portion formed by forging is provided at the opening edge of the groove continuous with the sliding surface.
実施形態における可変容量型ピストンポンプを示す側断面図。A side sectional view showing a variable capacity type piston pump in an embodiment. 斜板の斜視図。The perspective view of a swash plate. (a)は斜板の一部分を示す縦断面図であり、(b)は図3(a)の部分拡大図。(A) is a longitudinal cross-sectional view which shows a part of swash plate, (b) is the elements on larger scale of Fig.3 (a). 図3(a)における4-4線断面図。FIG. 4 is a sectional view taken along line 4-4 in FIG. (a)はブッシュと摺動部との関係を示す断面図であり、(b)及び(c)は図5(a)の部分拡大図。(A) is sectional drawing which shows the relationship between a bush and a sliding part, (b) And (c) is the elements on larger scale of Fig.5 (a).
 以下、可変容量型斜板式液圧回転機を可変容量型ピストンポンプに具体化した一実施形態を図1~図5(c)にしたがって説明する。なお、可変容量型ピストンポンプは、エンジン式のフォークリフトに搭載される油圧ポンプとして使用され得る。 Hereinafter, an embodiment in which a variable displacement swash plate type hydraulic rotating machine is embodied as a variable displacement piston pump will be described with reference to FIGS. 1 to 5C. The variable displacement piston pump can be used as a hydraulic pump mounted on an engine-type forklift.
 図1に示すように、可変容量型ピストンポンプ10は、ハウジング11と、ハウジング11に回転可能に支持される回転軸12とを備えている。ハウジング11は、有底筒状の第1ハウジング13と、第1ハウジング13の開口端に連結される有底筒状の第2ハウジング14とを有する。 As shown in FIG. 1, the variable displacement piston pump 10 includes a housing 11 and a rotating shaft 12 that is rotatably supported by the housing 11. The housing 11 includes a bottomed cylindrical first housing 13 and a bottomed cylindrical second housing 14 connected to the opening end of the first housing 13.
 第1ハウジング13の底壁13aには、回転軸12における図1の右側の部位が挿入される挿入孔13hが形成されている。そして、回転軸12における右側の部位は、軸受15を介して第1ハウジング13の底壁13aに回転可能に支持されている。 The bottom wall 13a of the first housing 13 is formed with an insertion hole 13h into which the portion on the right side of FIG. The right portion of the rotary shaft 12 is rotatably supported by the bottom wall 13 a of the first housing 13 via a bearing 15.
 第2ハウジング14の底壁14aには、回転軸12における図1の左側の部位が挿入される挿入孔14hが形成されている。そして、回転軸12における左側の部位は、軸受16を介して第2ハウジング14の底壁14aに回転可能に支持されている。 The bottom wall 14a of the second housing 14 is formed with an insertion hole 14h into which the portion on the left side in FIG. The left portion of the rotary shaft 12 is rotatably supported by the bottom wall 14 a of the second housing 14 via a bearing 16.
 回転軸12における左側の端部は、第2ハウジング14から外部に突出している。回転軸12における左側の端部は、図示しない動力伝達機構を介して外部駆動源としてのエンジンに連結されている。回転軸12は、エンジンの駆動により回転する。 The left end of the rotary shaft 12 protrudes from the second housing 14 to the outside. The left end of the rotating shaft 12 is connected to an engine as an external drive source via a power transmission mechanism (not shown). The rotating shaft 12 rotates by driving the engine.
 第1ハウジング13内には、シリンダブロック17及び斜板18が収容されている。シリンダブロック17は、斜板18よりも第1ハウジング13の底壁13a寄りに配置されている。シリンダブロック17には、回転軸12が貫通する貫通孔17aが形成されている。シリンダブロック17は、小径部171と、小径部171よりも孔径が大きい大径部172とを有する。小径部171は、大径部172よりも第2ハウジング14寄りに位置する。シリンダブロック17は、小径部171が回転軸12とスプライン嵌合されることにより回転軸12と一体的に回転する。小径部171と軸受15との間には付勢ばね19が介在されている。 The cylinder block 17 and the swash plate 18 are accommodated in the first housing 13. The cylinder block 17 is disposed closer to the bottom wall 13 a of the first housing 13 than the swash plate 18. The cylinder block 17 is formed with a through hole 17a through which the rotary shaft 12 passes. The cylinder block 17 includes a small diameter portion 171 and a large diameter portion 172 having a larger hole diameter than the small diameter portion 171. The small diameter portion 171 is located closer to the second housing 14 than the large diameter portion 172. The cylinder block 17 rotates integrally with the rotating shaft 12 by the spline fitting of the small diameter portion 171 with the rotating shaft 12. A biasing spring 19 is interposed between the small diameter portion 171 and the bearing 15.
 シリンダブロック17には、シリンダボア17hが回転軸12の周囲に複数形成されている。複数のシリンダボア17hは、一円上に等間隔置きに配列されている。各シリンダボア17h内には、ピストン20が往復動可能にそれぞれ収納されている。ピストン20における斜板18に隣接する端部には、シュー21が設けられている。ピストン20には、ピストン20の軸方向に貫通する貫通孔20hが形成されている。シュー21には、貫通孔20hに連通するとともにシュー21を貫通する貫通孔21hが形成されている。 The cylinder block 17 has a plurality of cylinder bores 17h formed around the rotary shaft 12. The plurality of cylinder bores 17h are arranged at regular intervals on a circle. In each cylinder bore 17h, a piston 20 is housed so as to be able to reciprocate. A shoe 21 is provided at an end of the piston 20 adjacent to the swash plate 18. The piston 20 is formed with a through hole 20 h that penetrates in the axial direction of the piston 20. The shoe 21 is formed with a through hole 21 h that communicates with the through hole 20 h and penetrates the shoe 21.
 各シュー21は、円環状のリテーナプレート22に保持されている。リテーナプレート22の内側には、リテーナプレート22に固定されるピボット23が設けられている。付勢ばね19は、図示しないピンを介してピボット23を斜板18に向けて付勢している。これにより、リテーナプレート22が斜板18に向けて付勢され、各シュー21が斜板18におけるシリンダブロック17と対向する面に密着している。 Each shoe 21 is held by an annular retainer plate 22. A pivot 23 that is fixed to the retainer plate 22 is provided inside the retainer plate 22. The urging spring 19 urges the pivot 23 toward the swash plate 18 via a pin (not shown). Thereby, the retainer plate 22 is urged toward the swash plate 18, and each shoe 21 is in close contact with the surface of the swash plate 18 facing the cylinder block 17.
 図1及び図2に示すように、斜板18は、回転軸12が挿通される挿通孔18hが形成された板状の本体部31を備えている。そして、回転軸12が挿通孔18hに挿通されることにより、斜板18が回転軸12に取り付けられている。斜板18は、回転軸12の軸線Lに直交する方向に対する傾斜角度(傾角)の変更が可能である。 As shown in FIGS. 1 and 2, the swash plate 18 includes a plate-like main body 31 having an insertion hole 18h through which the rotary shaft 12 is inserted. The swash plate 18 is attached to the rotating shaft 12 by inserting the rotating shaft 12 into the insertion hole 18 h. The swash plate 18 can change the inclination angle (inclination angle) with respect to the direction orthogonal to the axis L of the rotating shaft 12.
 回転軸12が回転してシリンダブロック17が回転軸12と一体的に回転すると、各シュー21が斜板18におけるシリンダブロック17と対向する面を摺接しながら、各ピストン20が回転軸12の周囲を回転軸12の周方向に沿って移動する。これにより、各ピストン20は、シリンダブロック17の回転に伴って斜板18の傾角に応じたストロークでシリンダボア17h内を往復動する。よって、斜板18におけるシリンダブロック17と対向する面は、シュー21が摺接する平坦面状の摺接面18aになっている。 When the rotating shaft 12 rotates and the cylinder block 17 rotates integrally with the rotating shaft 12, each piston 20 slides around the surface of the swash plate 18 facing the cylinder block 17, and each piston 20 surrounds the rotating shaft 12. Is moved along the circumferential direction of the rotary shaft 12. As a result, each piston 20 reciprocates in the cylinder bore 17h with a stroke corresponding to the inclination angle of the swash plate 18 as the cylinder block 17 rotates. Therefore, the surface of the swash plate 18 facing the cylinder block 17 is a flat sliding contact surface 18a with which the shoe 21 slides.
 図2に示すように、斜板18は、本体部31を両側から挟む位置に対をなす第1及び第2の摺動部32A,32Bを備えている。摺動部32A,32Bは本体部31と一体的に形成されている。摺動部32A,32Bは、その一部が本体部31におけるシリンダブロック17とは反対側の面よりも突出し、シリンダブロック17とは反対側に向けて膨出する弧状に湾曲した摺動面32aを有する。即ち、摺動面32aは、シリンダブロック17から離間する方向へ膨出している。第1の摺動部32Aは、吐出行程中のピストン20に対応する側に位置するとともに、第2の摺動部32Bは、吸入行程中のピストン20に対応する側に位置している。ここで、「吸入行程中のピストン20」とは上死点から下死点に向けて移動しているピストン20のことを言う。また、「吐出行程中のピストン20」とは、下死点から上死点に向けて移動しているピストン20のことを言う。 As shown in FIG. 2, the swash plate 18 includes first and second sliding portions 32 </ b> A and 32 </ b> B that make a pair at positions sandwiching the main body portion 31 from both sides. The sliding portions 32A and 32B are formed integrally with the main body portion 31. A part of each of the sliding portions 32A and 32B protrudes from the surface of the main body portion 31 opposite to the cylinder block 17 and bulges toward the opposite side of the cylinder block 17, and is curved in an arc shape. Have That is, the sliding surface 32 a bulges away from the cylinder block 17. The first sliding portion 32A is located on the side corresponding to the piston 20 during the discharge stroke, and the second sliding portion 32B is located on the side corresponding to the piston 20 during the suction stroke. Here, “the piston 20 during the intake stroke” refers to the piston 20 moving from the top dead center toward the bottom dead center. The “piston 20 during the discharge stroke” refers to the piston 20 moving from the bottom dead center toward the top dead center.
 図1に示すように、第2ハウジング14の内壁には、斜板18の傾角の変更を許容しつつ、且つ斜板18を保持する斜板保持部としてのブッシュ25が設けられている。ブッシュ25は弧状に湾曲した板状であり、摺動面32aに沿って延びるとともに摺動面32aが摺動する被摺動面25aを備えている。そして、一対の摺動部32A,32Bの摺動面32aが被摺動面25aを摺動することで、斜板18の傾角が変更される。 As shown in FIG. 1, a bush 25 is provided on the inner wall of the second housing 14 as a swash plate holding portion that holds the swash plate 18 while allowing the inclination angle of the swash plate 18 to be changed. The bush 25 has a plate shape curved in an arc shape, and includes a sliding surface 25a that extends along the sliding surface 32a and on which the sliding surface 32a slides. And the inclination angle of the swash plate 18 is changed because the sliding surfaces 32a of the pair of sliding portions 32A and 32B slide on the sliding surface 25a.
 斜板18は、本体部31におけるピストン20の上死点に対応する縁部から外方に延設される被押圧部33を備えている。被押圧部33におけるシリンダブロック17と対向する面には収容凹部33aが形成されている。収容凹部33aには円柱状の接触部材34aが収容されている。接触部材34aは、収容凹部33aに収容された状態において、その一部が被押圧部33におけるシリンダブロック17と対向する面から突出している。また、被押圧部33におけるシリンダブロック17とは反対側の面には収容凹部33bが形成されている。収容凹部33bには円柱状の接触部材34bが収容されている。接触部材34bは、収容凹部33bに収容された状態において、その一部が被押圧部33におけるシリンダブロック17とは反対側の面から突出している。 The swash plate 18 includes a pressed portion 33 that extends outward from an edge corresponding to the top dead center of the piston 20 in the main body 31. An accommodation recess 33 a is formed on the surface of the pressed portion 33 that faces the cylinder block 17. A cylindrical contact member 34a is accommodated in the accommodating recess 33a. A part of the contact member 34 a protrudes from a surface of the pressed portion 33 facing the cylinder block 17 in a state where the contact member 34 a is stored in the storage recess 33 a. An accommodation recess 33 b is formed on the surface of the pressed part 33 opposite to the cylinder block 17. A cylindrical contact member 34b is accommodated in the accommodating recess 33b. A part of the contact member 34 b protrudes from the surface of the pressed portion 33 opposite to the cylinder block 17 in the state of being accommodated in the accommodation recess 33 b.
 第1ハウジング13の底壁13aには、吸入ポート26及び吐出ポート27が形成されている。吸入ポート26及び吐出ポート27は、回転軸12の周方向に沿って延びる半円弧状に形成されている。吸入ポート26は、底壁13aにおいて、吸入行程中のピストン20が収納された各シリンダボア17hにそれぞれ連通可能な位置に設けられている。吐出ポート27は、底壁13aにおいて、吐出行程中のピストン20が収納された各シリンダボア17hにそれぞれ連通可能な位置に設けられている。 A suction port 26 and a discharge port 27 are formed on the bottom wall 13 a of the first housing 13. The suction port 26 and the discharge port 27 are formed in a semicircular arc shape extending along the circumferential direction of the rotating shaft 12. The suction port 26 is provided on the bottom wall 13a at a position where it can communicate with each cylinder bore 17h in which the piston 20 in the suction stroke is housed. The discharge port 27 is provided on the bottom wall 13a at a position where it can communicate with each cylinder bore 17h in which the piston 20 during the discharge stroke is housed.
 シリンダブロック17と第1ハウジング13の底壁13aとの間には、バルブシート28が設けられている。バルブシート28には、吸入ポート26とシリンダボア17hとを連通する連通孔28aが形成されるとともに、吐出ポート27とシリンダボア17hとを連通する連通孔28bが形成されている。そして、ピストン20の往復動に伴って、作動油が吸入ポート26から連通孔28aを介して吸入行程中のピストン20が収納された各シリンダボア17hに吸入されるとともに、吐出行程中のピストン20が収納された各シリンダボア17h内の作動油が連通孔28bを介して吐出ポート27から吐出される。 A valve seat 28 is provided between the cylinder block 17 and the bottom wall 13 a of the first housing 13. The valve seat 28 is formed with a communication hole 28a that communicates the suction port 26 and the cylinder bore 17h, and a communication hole 28b that communicates the discharge port 27 and the cylinder bore 17h. As the piston 20 reciprocates, the hydraulic oil is sucked into the cylinder bores 17h in which the piston 20 in the suction stroke is housed from the suction port 26 through the communication hole 28a, and the piston 20 in the discharge stroke is The hydraulic oil in each of the stored cylinder bores 17h is discharged from the discharge port 27 through the communication hole 28b.
 第1ハウジング13におけるシリンダブロック17よりも回転軸12の径方向外側には、ピストン収納凹部35が形成されている。ピストン収納凹部35には、コントロールピストン36が収納されている。そして、ピストン収納凹部35とコントロールピストン36とによって制御圧室35aが区画されている。制御圧室35aには、吐出ポート27から吐出された作動油の一部が供給される。制御圧室35aに供給される作動油の供給量は、図示しない制御弁によって制御される。コントロールピストン36における斜板18と対向する端面は、接触部材34aに当接している。 A piston housing recess 35 is formed on the radially outer side of the rotary shaft 12 with respect to the cylinder block 17 in the first housing 13. A control piston 36 is housed in the piston housing recess 35. A control pressure chamber 35 a is defined by the piston housing recess 35 and the control piston 36. A part of the hydraulic oil discharged from the discharge port 27 is supplied to the control pressure chamber 35a. The amount of hydraulic oil supplied to the control pressure chamber 35a is controlled by a control valve (not shown). An end face of the control piston 36 facing the swash plate 18 is in contact with the contact member 34a.
 第2ハウジング14の底壁14aには、有底筒状のバネ受け凹状部材37が螺子38によって取り付けられている。バネ受け凹状部材37は、斜板18に向けて開口している。バネ受け凹状部材37内には、中空ピストン39が挿入されている。中空ピストン39の内部には、傾角増大ばね39aが収容されている。中空ピストン39は、傾角増大ばね39aの付勢力によって、バネ受け凹状部材37の底部から離間する方向へ付勢されている。そして、中空ピストン39における斜板18と対向する端面は、接触部材34bに当接している。 A bottomed cylindrical spring receiving concave member 37 is attached to the bottom wall 14 a of the second housing 14 by a screw 38. The spring receiving concave member 37 opens toward the swash plate 18. A hollow piston 39 is inserted into the spring receiving concave member 37. An inclination angle increasing spring 39 a is accommodated in the hollow piston 39. The hollow piston 39 is urged in a direction away from the bottom of the spring receiving concave member 37 by the urging force of the inclination increasing spring 39a. The end face of the hollow piston 39 facing the swash plate 18 is in contact with the contact member 34b.
 上記構成の可変容量型ピストンポンプ10において、制御圧室35aに供給される作動油の供給量が増大すると、制御圧室35aの圧力が高くなり、コントロールピストン36が斜板18に向けて移動する。すると、コントロールピストン36は、傾角増大ばね39aの付勢力に抗して、斜板18の傾角を減少させるように接触部材34aを介して斜板18を押圧する。これにより、斜板18の傾角が減少して、ピストン20のストロークが小さくなり、吐出容量が減少する。一方、制御圧室35aに供給される作動油の供給量が減少すると、制御圧室35aの圧力が低くなり、傾角増大ばね39aの付勢力によって、中空ピストン39が、斜板18の傾角を増大させるように接触部材34bを介して斜板18を押圧する。これにより、斜板18の傾角が増大して、ピストン20のストロークが大きくなり、吐出容量が増大する。 In the variable displacement piston pump 10 configured as described above, when the amount of hydraulic oil supplied to the control pressure chamber 35a increases, the pressure in the control pressure chamber 35a increases and the control piston 36 moves toward the swash plate 18. . Then, the control piston 36 presses the swash plate 18 via the contact member 34a so as to reduce the tilt angle of the swash plate 18 against the biasing force of the tilt angle increasing spring 39a. Thereby, the inclination angle of the swash plate 18 is reduced, the stroke of the piston 20 is reduced, and the discharge capacity is reduced. On the other hand, when the amount of hydraulic oil supplied to the control pressure chamber 35a decreases, the pressure in the control pressure chamber 35a decreases, and the hollow piston 39 increases the tilt angle of the swash plate 18 by the biasing force of the tilt angle increasing spring 39a. The swash plate 18 is pressed through the contact member 34b. As a result, the inclination angle of the swash plate 18 increases, the stroke of the piston 20 increases, and the discharge capacity increases.
 図2に示すように、各摺動部32A,32Bの摺動面32aには、内部に作動油が供給される溝40が形成されている。第1の摺動部32Aの摺動面32aに形成された溝40の大きさは、第2の摺動部32Bの摺動面32aに形成された溝40の大きさよりも大きい。 As shown in FIG. 2, a groove 40 for supplying hydraulic oil is formed in the sliding surface 32a of each sliding portion 32A, 32B. The size of the groove 40 formed on the sliding surface 32a of the first sliding portion 32A is larger than the size of the groove 40 formed on the sliding surface 32a of the second sliding portion 32B.
 図3(a)に示すように、斜板18は鍛造によって形成されている。したがって、一対の摺動部32A,32Bは鍛造によって形成されている。そして、摺動面32aは、摺動部32A,32Bの表面を削って仕上げ加工を施すことで形成されている。本実施形態では、摺動部32A,32Bの表面に対する仕上げ加工の加工代H1は、1mmである。また、摺動面32aに連続する溝40の開口縁全周には、鍛造によって形成された面取り部41が設けられている。面取り部41はアール形状になっている。本実施形態では、鍛造によって形成された面取り部41の半径r1は、3mmである。 As shown in FIG. 3A, the swash plate 18 is formed by forging. Therefore, the pair of sliding portions 32A and 32B are formed by forging. The sliding surface 32a is formed by grinding the surfaces of the sliding portions 32A and 32B and performing a finishing process. In the present embodiment, the machining allowance H1 for finishing the surfaces of the sliding portions 32A and 32B is 1 mm. Further, a chamfered portion 41 formed by forging is provided on the entire periphery of the opening edge of the groove 40 continuous with the sliding surface 32a. The chamfered portion 41 is rounded. In this embodiment, the radius r1 of the chamfered portion 41 formed by forging is 3 mm.
 図4及び図5(a)に示すように、摺動面32aの湾曲方向(図4及び図5(a)に示す矢印R1の方向)において、溝40の底面40eは、摺動面32aに沿って延びるように弧状に湾曲している。また、図5(b)及び図5(c)において拡大して示すように、摺動面32aの湾曲方向に位置する溝40の両側面40aは、面取り部41に連続する直線部42を含む。直線部42と、直線部42の延長線L1と摺動面32aとの交点P1を通過する摺動面32aに対する接線L2とがなす溝40側の角度θ1が鋭角である。 As shown in FIGS. 4 and 5A, the bottom surface 40e of the groove 40 is in contact with the sliding surface 32a in the bending direction of the sliding surface 32a (the direction of the arrow R1 shown in FIGS. 4 and 5A). It is curved in an arc shape so as to extend along. 5B and 5C, both side surfaces 40a of the groove 40 positioned in the bending direction of the sliding surface 32a include straight portions 42 that are continuous with the chamfered portion 41. . The angle θ1 on the groove 40 side formed by the straight portion 42 and the tangent L2 to the sliding surface 32a passing through the intersection P1 between the extension line L1 of the straight portion 42 and the sliding surface 32a is an acute angle.
 図3(a)に示すように、斜板18には、吐出行程中のピストン20が収納されたシリンダボア17h内の作動油を、第1の摺動部32Aの摺動面32aに形成された溝40内に供給する供給孔43が形成されている。供給孔43の一端は溝40内に開口するとともに他端は摺接面18aに開口している。そして、供給孔43は、各シュー21の貫通孔21hに連通可能になっている。供給孔43の他端部にはオリフィス43aが設けられている。オリフィス43aは、吐出行程中のピストン20が収納されたシリンダボア17h内から溝40内に供給される作動油の供給量を調節する。 As shown in FIG. 3A, the hydraulic oil in the cylinder bore 17h in which the piston 20 during the discharge stroke is accommodated is formed on the sliding surface 32a of the first sliding portion 32A. A supply hole 43 for supplying the groove 40 is formed. One end of the supply hole 43 opens into the groove 40 and the other end opens into the sliding contact surface 18a. The supply hole 43 can communicate with the through hole 21 h of each shoe 21. An orifice 43 a is provided at the other end of the supply hole 43. The orifice 43a adjusts the supply amount of hydraulic oil supplied into the groove 40 from the cylinder bore 17h in which the piston 20 in the discharge stroke is accommodated.
 次に、本実施形態の作用について説明する。
 第1の摺動部32Aの摺動面32aに形成された溝40内には、吐出行程中のピストン20が収納されたシリンダボア17h内から貫通孔20h,21h及び供給孔43を介して作動油が供給される。そして、溝40内に供給された作動油の圧力によって、斜板18をピストン20に向けて押し返す力が発生し、第1の摺動部32Aの摺動面32aと被摺動面25aとの間に油膜が形成されることで、第1の摺動部32Aの摺動面32aと被摺動面25aとの間の面圧が低減される。これにより、斜板18の傾角の変更に伴う摺動面32aと被摺動面25aとの間の摩擦が低減される。
Next, the operation of this embodiment will be described.
In the groove 40 formed in the sliding surface 32a of the first sliding portion 32A, hydraulic oil is supplied from the cylinder bore 17h in which the piston 20 during the discharge stroke is accommodated through the through holes 20h and 21h and the supply hole 43. Is supplied. And the force which pushes back the swash plate 18 toward the piston 20 by the pressure of the hydraulic oil supplied in the groove 40 is generated, and the sliding surface 32a of the first sliding portion 32A and the sliding surface 25a By forming an oil film therebetween, the surface pressure between the sliding surface 32a of the first sliding portion 32A and the sliding surface 25a is reduced. Thereby, the friction between the sliding surface 32a and the sliding surface 25a accompanying the change of the inclination angle of the swash plate 18 is reduced.
 第2の摺動部32Bの摺動面32aに形成された溝40内には、ハウジング11内に存在する作動油が供給される。そして、溝40内に供給された作動油の圧力によって、斜板18をピストン20に向けて押し返す力が発生し、第2の摺動部32Bの摺動面32aと被摺動面25aとの間に油膜が形成されることで、第2の摺動部32Bの摺動面32aと被摺動面25aとの間の面圧が低減される。これにより、斜板18の傾角の変更に伴う摺動面32aと被摺動面25aとの間の摩擦が低減される。 The hydraulic oil present in the housing 11 is supplied into the groove 40 formed in the sliding surface 32a of the second sliding portion 32B. And the force of pushing back the swash plate 18 toward the piston 20 is generated by the pressure of the hydraulic oil supplied into the groove 40, and the sliding surface 32a of the second sliding portion 32B and the sliding surface 25a By forming an oil film therebetween, the surface pressure between the sliding surface 32a of the second sliding portion 32B and the sliding surface 25a is reduced. Thereby, the friction between the sliding surface 32a and the sliding surface 25a accompanying the change of the inclination angle of the swash plate 18 is reduced.
 上記構成の斜板18では、摺動部32A,32Bの表面を削って仕上げ加工を施すことで摺動面32aを形成しても、摺動面32aに連続する溝40の開口縁全周に、鍛造によって形成された面取り部41が設けられているため、摺動部32A,32Bを鍛造によって形成しても溝40の開口縁がピン角になっていない。よって、溝40の開口縁がピン角である場合に比べると、ブッシュ25の被摺動面25aが損傷してしまうことが抑制される。また、直線部42と接線L2とがなす溝40側の角度θ1が鈍角である場合に比べると、摺動面32aと被摺動面25aとが摺動する際に、溝40の開口縁が被摺動面25aに摺動し難くなる。 In the swash plate 18 having the above-described configuration, even if the sliding surface 32a is formed by cutting the surfaces of the sliding portions 32A and 32B and finishing it, the entire periphery of the opening edge of the groove 40 continuous to the sliding surface 32a is formed. Since the chamfered portion 41 formed by forging is provided, the opening edge of the groove 40 does not have a pin angle even when the sliding portions 32A and 32B are formed by forging. Therefore, compared with the case where the opening edge of the groove 40 is a pin angle, the sliding surface 25a of the bush 25 is suppressed from being damaged. Further, as compared with the case where the angle θ1 on the groove 40 side formed by the straight portion 42 and the tangent line L2 is an obtuse angle, the opening edge of the groove 40 is larger when the sliding surface 32a and the sliding surface 25a slide. It becomes difficult to slide on the sliding surface 25a.
 上記実施形態では以下の効果を得ることができる。
 (1)摺動部32A,32Bは鍛造によって形成され、摺動面32aは、摺動部32A,32Bの表面を削って仕上げ加工を施すことで形成されている。摺動面32aに連続する溝40の開口縁には、鍛造によって形成された面取り部41が設けられている。これによれば、摺動部32A,32Bの表面を削って仕上げ加工を施すことで摺動面32aを形成しても、摺動面32aに連続する溝40の開口縁に、鍛造によって形成された面取り部41が設けられているため、摺動部32A,32Bを鍛造によって形成しても溝40の開口縁がピン角になっていない。よって、摺動面32aに溝加工を施す場合に比べて製造が比較的容易である鍛造によって、溝40を有する摺動部32A,32Bを形成することができ、溝40の開口縁がピン角である場合に比べると、ブッシュ25の被摺動面25aが損傷してしまうことを抑制することができる。したがって、製造を容易なものとしつつも、ブッシュ25の被摺動面25aの損傷を抑制することができる。
In the above embodiment, the following effects can be obtained.
(1) The sliding portions 32A and 32B are formed by forging, and the sliding surface 32a is formed by cutting the surfaces of the sliding portions 32A and 32B and performing a finishing process. A chamfered portion 41 formed by forging is provided at the opening edge of the groove 40 continuing to the sliding surface 32a. According to this, even if the sliding surface 32a is formed by scraping the surfaces of the sliding portions 32A and 32B and performing the finishing process, it is formed on the opening edge of the groove 40 continuous to the sliding surface 32a by forging. Since the chamfered portion 41 is provided, the opening edge of the groove 40 does not have a pin angle even if the sliding portions 32A and 32B are formed by forging. Therefore, the sliding portions 32A and 32B having the groove 40 can be formed by forging, which is relatively easy to manufacture compared to the case where the groove is formed on the sliding surface 32a, and the opening edge of the groove 40 has a pin angle. Compared with the case where it is, it can suppress that the to-be-slided surface 25a of the bush 25 is damaged. Therefore, damage to the sliding surface 25a of the bush 25 can be suppressed while facilitating manufacture.
 (2)摺動面32aの湾曲方向に位置する溝40の両側面40aは、面取り部41に連続する直線部42を含み、直線部42と、直線部42の延長線L1と摺動面32aとの交点P1を通過する摺動面32aに対する接線L2とがなす溝40側の角度θ1が鋭角である。これによれば、直線部42と接線L2とがなす溝40側の角度θ1が鈍角である場合に比べると、摺動部32の摺動面32aとブッシュ25の被摺動面25aとが摺動する際に、溝40の開口縁が被摺動面25aに摺動し難くなるため、ブッシュ25の被摺動面25aの損傷をさらに抑制することができる。 (2) Both side surfaces 40a of the groove 40 positioned in the bending direction of the sliding surface 32a include a straight portion 42 continuous with the chamfered portion 41, and the straight portion 42, the extension line L1 of the straight portion 42, and the sliding surface 32a. The angle θ1 on the groove 40 side formed by the tangent L2 to the sliding surface 32a passing through the intersection P1 is an acute angle. According to this, the sliding surface 32a of the sliding portion 32 and the sliding surface 25a of the bush 25 are slid compared with the case where the angle θ1 on the groove 40 side formed by the straight portion 42 and the tangent L2 is an obtuse angle. When moving, the opening edge of the groove 40 becomes difficult to slide on the sliding surface 25a, so that the sliding surface 25a of the bush 25 can be further prevented from being damaged.
 (3)可変容量型ピストンポンプ10においては、ピストン20の吐出行程によって作動油を吐出する際に作動油からピストン20に作用する反力がピストン20及びシュー21を介して斜板18に作用し、摺動部32A,32Bの摺動面32aとブッシュ25の被摺動面25aとの間の面圧が高くなる。よって、摺動面32aと被摺動面25aとの間において、吐出行程中のピストン20に対応する側の面圧は、吸入行程中のピストン20に対応する側の面圧よりも高くなっており、被摺動面25aに局所的な負荷が作用することになるため、斜板18の傾角の変更がスムーズに行われ難い。そこで、少なくとも第1の摺動部32Aの摺動面32aに溝40を形成する。これによれば、第1の摺動部32Aの摺動面32aに形成された溝40内に供給された作動油の圧力によって、斜板18をピストン20に向けて押し返す力が発生し、第1の摺動部32Aの摺動面32aと被摺動面25aとの間に油膜が形成されることで、第1の摺動部32Aの摺動面32aと被摺動面25aとの面圧が低減される。その結果、ブッシュ25の被摺動面25aに局所的な負荷が作用し難くなり、斜板18の傾角の変更をスムーズに行うことができる。 (3) In the variable displacement piston pump 10, a reaction force acting on the piston 20 from the working oil acts on the swash plate 18 via the piston 20 and the shoe 21 when the working oil is discharged by the discharge stroke of the piston 20. The surface pressure between the sliding surface 32a of the sliding portions 32A and 32B and the sliding surface 25a of the bush 25 increases. Therefore, between the sliding surface 32a and the sliding surface 25a, the surface pressure on the side corresponding to the piston 20 during the discharge stroke is higher than the surface pressure on the side corresponding to the piston 20 during the suction stroke. In addition, since a local load acts on the sliding surface 25a, it is difficult to change the inclination angle of the swash plate 18 smoothly. Therefore, the groove 40 is formed at least on the sliding surface 32a of the first sliding portion 32A. According to this, the force of pushing back the swash plate 18 toward the piston 20 is generated by the pressure of the hydraulic oil supplied into the groove 40 formed in the sliding surface 32a of the first sliding portion 32A. By forming an oil film between the sliding surface 32a of the first sliding portion 32A and the sliding surface 25a, the surface between the sliding surface 32a and the sliding surface 25a of the first sliding portion 32A The pressure is reduced. As a result, it becomes difficult for a local load to act on the sliding surface 25a of the bush 25, and the inclination angle of the swash plate 18 can be changed smoothly.
 (4)斜板18には、吐出行程中のピストン20が収納されたシリンダボア17h内の作動油を、第1の摺動部32Aの摺動面32aに形成された溝40内に供給する供給孔43が形成されている。吐出行程中のピストン20が収納されたシリンダボア17h内の作動油の圧力は、吸入行程中のピストン20が収納されたシリンダボア17h内の作動油の圧力よりも高くなっている。よって、供給孔43を介して第1の摺動部32Aの摺動面32aに形成された溝40内に供給された作動油の圧力によって、斜板18をピストン20に向けて押し返す力を発生させ易くすることができる。 (4) Supply to the swash plate 18 that supplies hydraulic oil in the cylinder bore 17h in which the piston 20 during the discharge stroke is accommodated into the groove 40 formed in the sliding surface 32a of the first sliding portion 32A. A hole 43 is formed. The pressure of the hydraulic oil in the cylinder bore 17h in which the piston 20 is accommodated during the discharge stroke is higher than the pressure of the hydraulic oil in the cylinder bore 17h in which the piston 20 is accommodated during the intake stroke. Therefore, a force for pushing back the swash plate 18 toward the piston 20 is generated by the pressure of the hydraulic oil supplied into the groove 40 formed in the sliding surface 32a of the first sliding portion 32A through the supply hole 43. It can be made easy.
 (5)摺動面32aの湾曲方向において、溝40の底面40eを、摺動面32aに沿って延びるように弧状に湾曲させ、摺動面32aの湾曲方向に位置する溝40の両側面40aに、面取り部41に連続する直線部42を含むようにした。このような溝40の形状は、溝40の深さが極端に深くなる部分や、溝40の形状が急激に変化している部分が少ないため、鍛造によって溝40を容易に形成することができる。 (5) In the bending direction of the sliding surface 32a, the bottom surface 40e of the groove 40 is curved in an arc shape so as to extend along the sliding surface 32a, and both side surfaces 40a of the groove 40 positioned in the bending direction of the sliding surface 32a. In addition, a linear portion 42 continuous with the chamfered portion 41 is included. Since the groove 40 has such a shape that the depth of the groove 40 is extremely deep or the shape of the groove 40 is abruptly changed, the groove 40 can be easily formed by forging. .
 なお、上記実施形態は以下のように変更してもよい。
 ○ 実施形態において、第2ハウジング14の内壁に、ブッシュ25が設けられていなくてもよく、第2ハウジング14の内壁の一部に、斜板18を保持する斜板保持部が形成されていてもよい。
In addition, you may change the said embodiment as follows.
In the embodiment, the bush 25 may not be provided on the inner wall of the second housing 14, and a swash plate holding portion that holds the swash plate 18 is formed on a part of the inner wall of the second housing 14. Also good.
 ○ 実施形態において、少なくとも吐出行程中のピストン20に対応する側に位置する第1の摺動部32Aの摺動面32aに溝40が形成されていればよく、吸入行程中のピストン20に対応する側に位置する第2の摺動部32Bの摺動面32aに溝40が形成されていなくてもよい。 In the embodiment, it is sufficient that the groove 40 is formed on the sliding surface 32a of the first sliding portion 32A located at least on the side corresponding to the piston 20 during the discharge stroke, and corresponds to the piston 20 during the suction stroke. The groove 40 does not have to be formed on the sliding surface 32a of the second sliding portion 32B located on the side to be moved.
 ○ 実施形態において、溝40の底面40eが、例えば、平坦面状に形成されていてもよい。
 ○ 実施形態において、斜板18に供給孔43が形成されていなくてもよい。この場合、溝40内には、ハウジング11内に存在する作動油が供給される。
In embodiment, the bottom face 40e of the groove | channel 40 may be formed in flat surface shape, for example.
In the embodiment, the supply hole 43 may not be formed in the swash plate 18. In this case, hydraulic oil present in the housing 11 is supplied into the groove 40.
 ○ 実施形態において、第1の摺動部32Aの摺動面32aに形成された溝40の大きさと、第2の摺動部32Bの摺動面32aに形成された溝40の大きさとが同じであってもよい。 In the embodiment, the size of the groove 40 formed on the sliding surface 32a of the first sliding portion 32A is the same as the size of the groove 40 formed on the sliding surface 32a of the second sliding portion 32B. It may be.
 ○ 実施形態において、直線部42と接線L2とがなす溝40側の角度θ1が90度、又は鈍角であってもよい。
 ○ 実施形態において、摺動面32aの湾曲方向に位置する溝40の両側面40aに、面取り部41に連続する直線部42が形成されておらず、両側面40a全体が、例えば、弧状に湾曲するように延びていてもよい。
In the embodiment, the angle θ1 on the groove 40 side formed by the straight line portion 42 and the tangent L2 may be 90 degrees or an obtuse angle.
In the embodiment, the straight portions 42 that are continuous with the chamfered portion 41 are not formed on both side surfaces 40a of the groove 40 that is positioned in the bending direction of the sliding surface 32a, and the entire side surfaces 40a are curved, for example, in an arc shape. It may extend so that.
 ○ 実施形態において、加工代H1の寸法、及び面取り部41の半径は、特に限定されるものではない。要は、摺動部32A,32Bの表面を削って仕上げ加工を施すことで摺動面32aが形成され、摺動面32aに連続する溝40の開口縁に、鍛造によって形成された面取り部41が設けられていれば、加工代H1の寸法、及び面取り部41の半径は、適宜変更してもよい。 In the embodiment, the dimension of the machining allowance H1 and the radius of the chamfered portion 41 are not particularly limited. The point is that the sliding surface 32a is formed by grinding the surfaces of the sliding portions 32A and 32B and finishing, and the chamfered portion 41 formed by forging at the opening edge of the groove 40 continuous to the sliding surface 32a. Is provided, the dimensions of the machining allowance H1 and the radius of the chamfered portion 41 may be changed as appropriate.
 ○ 実施形態において、面取り部41は、摺動面32aに対して斜交する方向に直線状に延びるテーパ形状(C面取り形状)であってもよい。
 ○ 実施形態において、本体部31と、一対の摺動部32A,32Bとが別部材であってもよく、各摺動部32A,32Bが本体部31に対してボルト等の締結具によって取り付けられていてもよい。
In the embodiment, the chamfered portion 41 may have a tapered shape (C chamfered shape) extending linearly in a direction oblique to the sliding surface 32a.
In the embodiment, the main body portion 31 and the pair of sliding portions 32A, 32B may be separate members, and each sliding portion 32A, 32B is attached to the main body portion 31 with a fastener such as a bolt. It may be.
 ○ 実施形態において、可変容量型斜板式液圧回転機を、シリンダボア17hへ供給される作動油によって、シリンダブロック17を介して回転軸12を回転させる油圧モータとして使用してもよい。可変容量型斜板式液圧回転機は、油圧モータとして使用される場合には、回転速度やトルクを可変とする。 In the embodiment, the variable capacity swash plate type hydraulic rotating machine may be used as a hydraulic motor for rotating the rotating shaft 12 via the cylinder block 17 by hydraulic oil supplied to the cylinder bore 17h. When used as a hydraulic motor, the variable displacement swash plate type hydraulic rotating machine makes the rotation speed and torque variable.

Claims (4)

  1.  ハウジングと、
     前記ハウジングに回転可能に支持される回転軸と、
     前記回転軸と一体的に回転するシリンダブロックと、
     前記シリンダブロックに形成される複数のシリンダボアと、
     各シリンダボア内に収納されるピストンと、
     前記各ピストンの端部に設けられるシューと、
     前記ハウジング内に収容されるとともに前記回転軸の軸線に直交する方向に対する傾角の変更が可能な斜板と、
     前記斜板の傾角の変更を許容しつつ、且つ前記斜板を保持する斜板保持部と、を備え、
     前記斜板は、前記シューが摺接する摺接面と、前記シリンダブロックとは反対側に向けて膨出する弧状に湾曲した摺動面を有する摺動部と、を備え、
     前記斜板保持部は、前記摺動面に沿って延びるとともに前記摺動面が摺動する被摺動面を備え、
     前記摺動面には、内部に作動油が供給される溝が形成されており、
     前記回転軸の回転に伴って前記シリンダブロックが回転して、各シューが前記摺接面に摺接しながら、各ピストンが前記回転軸の周囲を前記回転軸の周方向に移動することで、前記ピストンが前記斜板の傾角に応じたストロークで往復動するように可変容量型斜板式液圧回転機が構成され、
     前記摺動部は鍛造によって形成され、
     前記摺動面は、前記摺動部の表面を削って仕上げ加工を施すことで形成され、
     前記摺動面に連続する前記溝の開口縁には、鍛造によって形成された面取り部が設けられている可変容量型斜板式液圧回転機。
    A housing;
    A rotating shaft rotatably supported by the housing;
    A cylinder block that rotates integrally with the rotating shaft;
    A plurality of cylinder bores formed in the cylinder block;
    A piston housed in each cylinder bore;
    A shoe provided at an end of each piston;
    A swash plate accommodated in the housing and capable of changing an inclination angle with respect to a direction orthogonal to the axis of the rotating shaft;
    A swash plate holding part that holds the swash plate while allowing a change in the inclination angle of the swash plate,
    The swash plate includes a sliding contact surface on which the shoe slides, and a sliding portion having an arc-shaped curved sliding surface that bulges toward the opposite side of the cylinder block,
    The swash plate holding portion includes a sliding surface that extends along the sliding surface and on which the sliding surface slides,
    The sliding surface is formed with a groove through which hydraulic oil is supplied.
    The cylinder block rotates with the rotation of the rotation shaft, and the respective pistons move around the rotation shaft in the circumferential direction of the rotation shaft while the shoes slide in contact with the sliding contact surface. A variable displacement swash plate type hydraulic rotating machine is configured such that the piston reciprocates with a stroke corresponding to the inclination angle of the swash plate,
    The sliding part is formed by forging,
    The sliding surface is formed by scraping the surface of the sliding portion to give a finishing process,
    A variable capacity swash plate type hydraulic rotating machine provided with a chamfered portion formed by forging at an opening edge of the groove continuous with the sliding surface.
  2.  前記摺動面の湾曲方向に位置する前記溝の両側面は、前記面取り部に連続する直線部を含み、
     前記直線部と、前記直線部の延長線と前記摺動面との交点を通過する前記摺動面に対する接線とがなす前記溝側の角度が鋭角である請求項1に記載の可変容量型斜板式液圧回転機。
    Both side surfaces of the groove located in the bending direction of the sliding surface include a straight portion continuous to the chamfered portion,
    2. The variable capacitance type oblique angle according to claim 1, wherein an angle on the groove side formed by the straight portion and a tangent to the sliding surface passing through an intersection of the linear portion and the sliding surface is an acute angle. Plate type hydraulic rotating machine.
  3.  前記斜板は、前記摺動部として対をなす第1の摺動部及び第2の摺動部を備え、
     前記第1の摺動部は、吐出行程中のピストンに対応する側に位置するとともに、前記第2の摺動部は、吸入行程中のピストンに対応する側に位置しており、
     前記溝は、少なくとも前記第1の摺動部の摺動面に形成されている請求項1又は請求項2に記載の可変容量型斜板式液圧回転機。
    The swash plate includes a first sliding portion and a second sliding portion that form a pair as the sliding portion,
    The first sliding part is located on the side corresponding to the piston during the discharge stroke, and the second sliding part is located on the side corresponding to the piston during the suction stroke,
    The variable capacity swash plate type hydraulic rotating machine according to claim 1 or 2, wherein the groove is formed at least on a sliding surface of the first sliding portion.
  4.  前記斜板には、前記吐出行程中のピストンが収納された前記シリンダボア内の作動油を、前記第1の摺動部の摺動面に形成された前記溝内に供給する供給孔が形成されている請求項3に記載の可変容量型斜板式液圧回転機。 The swash plate is formed with a supply hole for supplying hydraulic oil in the cylinder bore in which the piston during the discharge stroke is accommodated into the groove formed on the sliding surface of the first sliding portion. The variable capacity swash plate type hydraulic rotating machine according to claim 3.
PCT/JP2016/063987 2015-05-27 2016-05-11 Variable displacement swash plate-type hydraulic rotating machine WO2016190104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015107680A JP6387327B2 (en) 2015-05-27 2015-05-27 Variable capacity swash plate type hydraulic rotating machine
JP2015-107680 2015-05-27

Publications (1)

Publication Number Publication Date
WO2016190104A1 true WO2016190104A1 (en) 2016-12-01

Family

ID=57392744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063987 WO2016190104A1 (en) 2015-05-27 2016-05-11 Variable displacement swash plate-type hydraulic rotating machine

Country Status (2)

Country Link
JP (1) JP6387327B2 (en)
WO (1) WO2016190104A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233596A (en) * 2021-12-11 2022-03-25 江苏汇智高端工程机械创新中心有限公司 Supporting structure of plunger pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432272U (en) * 1990-07-12 1992-03-16
JPH06234037A (en) * 1993-02-09 1994-08-23 Toyota Motor Corp Device for machining valve shaft of power steering
JPH08114174A (en) * 1994-10-19 1996-05-07 Yanmar Diesel Engine Co Ltd Axial piston pump
JP2005256860A (en) * 2004-03-09 2005-09-22 Taiho Kogyo Co Ltd Sliding mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432272U (en) * 1990-07-12 1992-03-16
JPH06234037A (en) * 1993-02-09 1994-08-23 Toyota Motor Corp Device for machining valve shaft of power steering
JPH08114174A (en) * 1994-10-19 1996-05-07 Yanmar Diesel Engine Co Ltd Axial piston pump
JP2005256860A (en) * 2004-03-09 2005-09-22 Taiho Kogyo Co Ltd Sliding mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233596A (en) * 2021-12-11 2022-03-25 江苏汇智高端工程机械创新中心有限公司 Supporting structure of plunger pump

Also Published As

Publication number Publication date
JP6387327B2 (en) 2018-09-05
JP2016223306A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
EP3366919B1 (en) Variable displacement pump
EP3339642B1 (en) Hydraulic pump
JP6031301B2 (en) Hydraulic rotating machine
JP6444166B2 (en) Variable displacement pump
WO2016190104A1 (en) Variable displacement swash plate-type hydraulic rotating machine
KR101896742B1 (en) Hydraulic rotation machine
JP6447362B2 (en) Variable capacity swash plate type hydraulic rotating machine
JP2006070777A (en) Swash plate type variable displacement piston pump
JP4888123B2 (en) Variable displacement piston pump / motor
JP6206513B2 (en) Variable displacement swash plate type piston pump
KR102348899B1 (en) Swash plate type hydraulic motor apparatus system
EP3351794A1 (en) Hydraulic rotary machine
JPH04203279A (en) Slant plate type hydraulic rotary machine
WO2018088487A1 (en) Cylinder block, and swashplate type hydraulic rotating device provided with same
JP6756290B2 (en) Manufacturing method of variable capacity type swash plate type piston pump and variable capacity type swash plate type piston pump
JP6572764B2 (en) Swash plate type piston pump
JP7118810B2 (en) Swash plate, swash plate with shaft member and hydraulic system
WO2021145352A1 (en) Variable displacement pump manufacturing method and variable displacement pump
WO2023188816A1 (en) Rotary swash plate-type hydraulic pump
JP7374638B2 (en) Fluid machinery and construction machinery
JP6929516B2 (en) Slanted plate type variable capacity piston pump
JP2003206869A (en) Pump device
JP2023178382A (en) Hydraulic pump and construction machine
JPH0754625Y2 (en) Axial piston pump
JPH09170567A (en) Piston type hydraulic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799812

Country of ref document: EP

Kind code of ref document: A1