WO2016189995A1 - Communication system, smart meter, gateway device, and communication program - Google Patents

Communication system, smart meter, gateway device, and communication program Download PDF

Info

Publication number
WO2016189995A1
WO2016189995A1 PCT/JP2016/062009 JP2016062009W WO2016189995A1 WO 2016189995 A1 WO2016189995 A1 WO 2016189995A1 JP 2016062009 W JP2016062009 W JP 2016062009W WO 2016189995 A1 WO2016189995 A1 WO 2016189995A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
communication
synchronization
smart meter
gateway device
Prior art date
Application number
PCT/JP2016/062009
Other languages
French (fr)
Japanese (ja)
Inventor
肇夫 西田
雅一 白川
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2016189995A1 publication Critical patent/WO2016189995A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to, for example, a communication system, a smart meter, a gateway device, and a communication program that connect a network that acquires data from the outside and another network.
  • the smart meter communication device regularly transmits meter reading data such as the power consumption of each consumer to the outside.
  • the transmission destination of meter reading data from the communication device is a head end system (hereinafter referred to as HES).
  • the HES is called a line concentrator and manages meter reading data from a large number of smart meters.
  • the HES has a function of transmitting various commands and remotely controlling the smart meter. For example, there are a command for resetting the communication device remotely and a command for downloading software. There is also a command for requesting retransmission when periodic meter reading data is not received, and a command for forcibly turning off the power when the resident is absent.
  • the smart meter communication device periodically transmits meter reading data. For example, there is a mode in which meter reading data is transmitted every 30 minutes to a computer of a meter data management system (hereinafter referred to as MDMS).
  • a network that transmits meter reading data to the outside in this way is called an A route.
  • a network that transmits / receives meter reading data to / from a management device provided in the house is called a B route.
  • a network that collects data other than power to such a network related to transmission and reception of power meter reading data.
  • An example of such a network is a sensor network in which terminals with sensors that detect various parameters are connected to each other.
  • the smart meter needs to receive these data from the network and transmit various commands for operating devices connected to the network to the network.
  • a gateway device serving as a window of a network for collecting data is battery-powered, and the CPU is activated at regular intervals to transmit / receive data only during activation in order to save power consumption.
  • the channel being used cannot be used for communication with the gateway device. For this reason, communication is not possible even if the gateway device is activated.
  • An object of the present invention is to provide a communication system, a smart meter, a gateway device, and a communication program that can ensure communication between a device and a smart meter that is always activated.
  • a communication system has been proposed in order to achieve the above-described object, and includes a first connection unit that performs connection with a power supply that constantly supplies power, and detection from the outside.
  • a detection data acquisition unit that acquires data; a first communication unit that transmits and receives detection data acquired by the detection data acquisition unit via a first network; and a first relay unit that connects to a relay network; , Having a smart meter.
  • the second connection unit that connects to a constant-capacity power source, the second communication unit that communicates via a second network, and the first network via the relay network Sleep in which the second relay unit connected to the relay unit, the second communication unit, and the second relay unit are in a start-up state in which power consumption is high and communication is possible, or power consumption is low and communication is not performed And a start-up control unit that controls whether to enter a state.
  • the first relay unit and the second relay unit include an asynchronous communication unit that performs communication in an asynchronous mode in which communication is always possible between the gateway device and the smart meter, and the gateway device and the smart meter.
  • the synchronization control unit that establishes and maintains synchronization by transmitting and receiving a synchronization signal and a synchronization confirmation signal between the gateway device and the smart meter, and is in the activated state and established synchronization
  • a synchronous communication unit that performs communication in a synchronous mode in which communication is performed at a predetermined timing according to the standard.
  • it can also be grasped as a program for causing a computer to execute the functions of the above-described units.
  • it can also be comprised as a smart meter and gateway apparatus which have said each part as another aspect.
  • 1 is a configuration diagram of a communication system to which an embodiment is applied. It is a block diagram which shows a smart meter and a gateway apparatus. It is a block diagram which shows a 1st relay part and a 2nd relay part. It is a sequence diagram which shows the establishment process of a synchronization. It is a sequence diagram which shows an intermittent window process. It is a sequence diagram which shows an extended window process. It is a sequence diagram which shows the return process from a synchronization loss. It is a sequence diagram which shows the downlink communication in channel switching communication. It is a sequence diagram which shows the resending process of downlink communication. It is a sequence diagram which shows the uplink communication in channel switching communication. It is a sequence diagram which shows the resending process of uplink communication. It is a sequence diagram which shows the resending process of uplink communication. It is a sequence diagram which shows channel control.
  • FIG. 1 shows a configuration example of the communication system S of the present embodiment.
  • the communication system S includes a smart meter 100 and a gateway device 200 that are connected via a relay network N3.
  • Information communicated by the communication system S includes various data and commands.
  • Smart meter 100 is, for example, a power meter. Each smart meter 100 is installed in each customer C.
  • the smart meter 100 is a device that collects detection data of each customer C and transmits it to the outside.
  • the detection data is data related to power, and includes, for example, the power usage of each customer C.
  • the detection data is detected by the detection device.
  • the detection device includes a current sensor and a voltage sensor connected to the power equipment of each customer C.
  • the detection data includes the detection value itself and data calculated based on the detection value.
  • a communication path for collecting detection data in this way is called a B route.
  • the B route includes a HEMS (Home Energy Management System) 700.
  • the HEMS 700 is a system that collects and controls the power consumption of individual power consuming devices in each customer C.
  • the smart meter 100 is connected to a power management system via a first network N1, a WAN (Wide Area Network) 400, and the like.
  • a first network N1 for example, a public network such as 3G / LTE, wireless multi-hop using a 920 MHz band, PLC using a power line, or the like can be applied.
  • the first network N1 constitutes a communication path called A route in a general smart meter communication system.
  • a public network such as an optical line or 3G / LTE can be used.
  • HES Head end system
  • MDMS Method Data System 600
  • the HES 500 is a server group that collects detection data from a large number of smart meters 100 and centrally manages them.
  • the HES 500 transmits / receives information to / from an MDMS (Meter Data Management System) 600.
  • the MDMS 600 is a system that analyzes detection data collected from the smart meter 100 and provides information regarding efficient energy use to the customer C, such as setting of a power charge.
  • the gateway device 200 is a device that collects various data via the second network N2.
  • the second network N2 is a network different from the first network N1 constituting the A route. Data collected via the second network N2 may be data related to power or data other than power.
  • An example of the second network N2 is a sensor network including the above-described sensor as a node.
  • the gateway device 200 relays various commands transmitted from the first network N1 and used to operate devices connected to the second network N2.
  • the smart meter 100 and the gateway device 200 transmit and receive data via the relay network N3. That is, the gateway device 200 is a communication device that connects different networks.
  • the data transmitted / received via the relay network N3 may be data related to power or data other than power.
  • the above commands are also sent and received.
  • the smart meter 100 and the gateway device 200 can be realized by controlling a computer such as a microprocessor including a CPU, a memory, an interface, and the like with a predetermined program. That is, the following processing units are configured by the CPU executing a program read from the memory at the time of startup.
  • the program in this case implements various processes shown below by physically utilizing computer hardware. For this reason, the following description uses a functional block diagram in which functions for realizing various processes are virtually blocked.
  • the smart meter 100 includes a first connection unit 110, a detection data acquisition unit 120, a first communication unit 130, and a first relay unit 140.
  • the first connection unit 110 is a processing unit that performs connection with a power supply that constantly supplies power.
  • the first connection unit 110 supplies power from the connected power source to the smart meter 100.
  • the first connection unit 110 is connected to an AC power supply via an AC power line.
  • the first connection unit 110 includes an AC / DC conversion circuit, a regulator, and the like.
  • the detection data acquisition unit 120 is a processing unit that acquires detection data from the outside.
  • the detection data acquisition part 120 is connected to the detection part which detects the data of the electric power equipment of each consumer C.
  • the detection unit includes a current sensor that measures current, a detection device such as a voltage sensor that measures voltage, a power calculation unit that calculates power usage from detection data, and the like.
  • the detection data acquisition unit 120 controls the arrangement and storage of the detection data input from the detection unit.
  • the detection data acquisition unit 120 is a processing unit that performs communication via the B route communication path. For this reason, the detection data acquisition part 120 may be made to be able to transmit / receive various commands between the electric power equipment of each customer C, HEMS, etc.
  • the first communication unit 130 is a processing unit that transmits and receives the detection data acquired by the detection data acquisition unit 120 via the first network N1. That is, the first communication unit 130 is a processing unit that performs communication via the communication route of the A route. For this reason, the first communication unit 130 transmits and receives data and commands by various protocols applied according to the first network N1, for example, programs according to 3G / LTE, wireless multi-hop, and PLC. Can do.
  • the first relay unit 140 is a processing unit that connects to the relay network N3.
  • the first relay unit 140 transmits / receives information to / from the gateway device 200 via the relay network N3.
  • Information transmitted / received includes commands from the smart meter 100, data collected by the gateway device 200, and the like.
  • the first relay unit 140 includes a channel setting unit that sets a channel used for communication with the first network N1.
  • This channel setting unit sets one specific channel when there are a plurality of usable channels. For example, when wireless multi-hop communication is performed, a channel that periodically arrives is used for communication with each smart meter 100 among a plurality of channels.
  • the channel setting unit sets such a channel.
  • the first relay unit 140 includes an asynchronous communication unit 141, a channel setting unit 142, a synchronization control unit 143, and a synchronous communication unit 144.
  • the asynchronous communication unit 140 is a processing unit that performs communication in an asynchronous mode in which communication with the gateway device 200 is always possible.
  • the asynchronous communication unit 140 performs communication in the asynchronous mode when the synchronization control unit 143 cannot receive the synchronization confirmation signal.
  • the channel setting unit 142 is a processing unit that sets a specific channel as a channel used for communication with the gateway device 200. For example, the channel setting unit 142 sets one specific channel when there are a plurality of usable channels. This channel may be configured to use a channel different from the channel used by the first communication unit 130 for communication, or the same channel may be used.
  • the channel setting part 142 can set one channel which comes periodically among several channels as a channel used for communication. That is, when the first communication unit 130 uses a plurality of channels by periodically switching it, the first communication unit 130 can use it only during a time period when the channel is not used. In this case, the channel setting unit 142 sets the channel that is not used by the first communication unit 130 among any one of the channels that arrive periodically, or the same channel on the assumption that the time zone is used separately. Set.
  • the channel used for communication with the gateway apparatus 200 is called a home channel. In this case, the home channel also arrives periodically.
  • the synchronization control unit 143 is a processing unit that establishes and maintains synchronization with the gateway apparatus 200 by transmitting and receiving a synchronization signal and a synchronization confirmation signal. As shown in FIG. 3, the synchronization control unit 143 includes a synchronization setting unit 143a, a synchronization establishment unit 143b, a retransmission control unit 143c, and a correction unit 143d.
  • the synchronization setting unit 143a is a processing unit that sets the synchronization signal including the start timing of the intermittent window, the duration of the intermittent window, and the number of times the intermittent window is repeated.
  • the intermittent window secures a communication circuit for a certain time so that data can be transmitted and received in a predetermined unit.
  • the synchronization establishment unit 143b is a processing unit that establishes synchronization with the gateway device 200 based on the setting content set by the synchronization setting unit 143a. More specifically, the synchronization establishment unit 143b establishes synchronization by transmitting the synchronization signal set by the synchronization setting unit 143a and receiving the synchronization confirmation signal.
  • the retransmission control unit 143c is a processing unit that controls retransmission of a synchronization signal or data when synchronization cannot be established or data cannot be transmitted. For example, if the synchronization signal can be retransmitted in the same intermittent window as the intermittent window in which the synchronization confirmation signal for the synchronization signal could not be received, the retransmission control unit 143c retransmits the intermittent signal in the intermittent window. When the window has passed, retransmission is performed in the subsequent intermittent windows.
  • the correction unit 143d is a processing unit that corrects the start timing of the next intermittent window by adding or subtracting a predetermined offset value to or from the transmission time or reception time of the synchronization signal. For example, in the case of retransmission by the retransmission control unit 143c, the correction unit 143d corrects the start timing of the next intermittent window.
  • the synchronous communication unit 144 is a processing unit that communicates with the gateway device 200 in a synchronous mode in which the gateway device 200 is in an activated state and communicates at a predetermined timing according to the established synchronization.
  • the synchronous communication unit 144 includes an intermittent communication unit 144a and an extended communication unit 144b.
  • the intermittent communication unit 144a is a processing unit that performs communication by an intermittent window that opens at predetermined intervals according to established synchronization.
  • the extended communication unit 144b is a processing unit that transmits and receives data using an extended window that collectively transmits and receives data that exceeds the amount of data that can be received in one intermittent window.
  • the gateway device 200 includes a second connection unit 210, a second communication unit 220, a second relay unit 230, an activation control unit 240, an activation setting unit 250, and an accumulation unit 260.
  • the second connection unit 210 is a processing unit that performs connection with a constant-capacity power source.
  • the second connection unit 210 supplies power from the power source to the gateway device 200.
  • the power source connected to the second connection unit 210 is a battery.
  • the battery includes a primary battery and a secondary battery.
  • the second communication unit 220 is a processing unit that communicates via the second network N2. In order for the second communication unit 220 to transmit and receive data via the second network N2, it is necessary to perform the activation control unit 240 described later at a timing when the gateway device 200 is activated.
  • the second relay unit 230 is a processing unit connected to the first relay unit 140 of the smart meter 100 via the relay network N3.
  • the second relay unit 230 includes an asynchronous communication unit 231, a channel setting unit 232, a synchronization control unit 233, and a synchronous communication unit 234.
  • the asynchronous communication unit 231 is a processing unit that performs communication in an asynchronous mode in which communication with the smart meter 100 is always possible. Further, the asynchronous communication unit 231 performs communication in the asynchronous mode when the synchronization control unit 233 of the second relay unit 230 cannot receive the synchronization signal.
  • the channel setting unit 232 is a processing unit that sets a specific channel as a channel used for communication with the smart meter 100.
  • This channel is, for example, a specific channel on the smart meter 100 side. That is, it is adjusted to a specific channel set by the channel setting unit 142 of the smart meter 100.
  • the channel setting part 232 can set one channel which comes periodically among several channels as a channel used for communication.
  • the channel set by the channel setting unit 232 is a home channel.
  • the synchronization control unit 233 is a processing unit that establishes and maintains synchronization with the smart meter 100 by transmitting and receiving a synchronization signal and a synchronization confirmation signal. As shown in FIG. 3, the synchronization control unit 233 includes a synchronization setting unit 233a, a synchronization establishment unit 233b, a retransmission control unit 233c, and a correction unit 233d.
  • the synchronization setting unit 233a is a processing unit that sets the intermittent window start timing, the intermittent window duration, and the number of times the intermittent window is repeated based on the synchronization signal received from the smart meter 100.
  • the intermittent window is a buffer that ensures that data can be transmitted and received in a predetermined unit.
  • the synchronization establishment unit 233b is a processing unit that establishes synchronization with the smart meter 100 based on the setting content set by the synchronization setting unit 233a. More specifically, the synchronization establishment unit 233b establishes synchronization by receiving a synchronization signal and transmitting a synchronization confirmation signal corresponding thereto.
  • the retransmission control unit 233c is a processing unit that controls retransmission of a synchronization confirmation signal or data when synchronization cannot be established or data cannot be transmitted. For example, when retransmission is possible within the same intermittent window as the intermittent window for which the synchronization confirmation signal could not be transmitted, the retransmission control unit 233c retransmits within the intermittent window, and when the intermittent window has elapsed Then, retransmission is performed in the next intermittent window.
  • the correction unit 233d is a processing unit that corrects the start timing of the next intermittent window by adding or subtracting a predetermined offset value to or from the transmission time or reception time of the synchronization signal. For example, the correction unit 233d corrects the start timing of the next intermittent window when the retransmission of the synchronization signal is performed by the retransmission control unit 143c of the first relay unit 140.
  • the synchronous communication unit 234 is a processing unit that communicates with the smart meter 100 in a synchronous mode in which the gateway device 200 is in an activated state and communicates at a predetermined timing according to established synchronization.
  • the synchronous communication unit 234 includes an intermittent communication unit 234a and an extended communication unit 234b.
  • the intermittent communication unit 234a is a processing unit that performs communication using an intermittent window that opens at predetermined intervals according to established synchronization.
  • the extended communication unit 234b is a processing unit that transmits and receives data using an extended window that collectively transmits and receives data exceeding the amount of data that can be received in one intermittent window.
  • the activation control unit 240 sets the gateway device 200, that is, the second communication unit 220 and the second relay unit 230 to an activation state in which power consumption is high and communication is possible, or a sleep state in which power consumption is low and communication is not performed. It is a processing unit that controls whether to do.
  • the sleep state widely includes a state in which power consumption is suppressed in order to save battery power.
  • the activation setting unit 250 is a processing unit that sets an activation condition as to whether the activation control unit 240 is to be activated or sleep. For example, the activation setting unit 250 sets in advance the timing for receiving data from the second network N2. When this timing arrives, when the activation control unit 240 activates the gateway device 200 and receives data, the activation control unit 240 enters the sleep state again. This timing is not related to the timing of the intermittent window.
  • the activation control unit 240 is activated in order for the second communication unit 220 to receive information, the next predetermined timing has arrived, and the accumulation unit 260 described later accumulates. Until the information is transmitted, the activation condition by the activation control unit 240 is set so as to continue the activation state.
  • the activation setting unit 250 has entered the sleep state until the next predetermined timing comes after the activation control unit 240 has entered the activation state in order for the second communication unit 220 to receive information.
  • the activation condition by the activation control unit 240 is set so that the information accumulated by the accumulation unit 260 is transmitted as the activation state.
  • the accumulation unit 260 is a processing unit that accumulates data received until the next predetermined timing after the activation control unit 240 is in an activated state so that the second communication unit 220 receives information.
  • the predetermined timing here is a timing of an intermittent window for performing communication in the synchronous mode.
  • the smart meter 100 and the gateway device 200 have a storage unit.
  • the storage unit is a processing unit that stores various types of information necessary for processing of the smart meter 100 and the gateway device 200.
  • a semiconductor memory or the like can be used as the storage unit.
  • a storage medium that is detachable from the smart meter 100 and the gateway device 200 may be configured as a storage unit.
  • the storage unit includes a main memory for storing programs and the like, a cache memory used as a temporary storage area, a buffer memory, a register, and the like. Storage area for information such as data and commands input via the detection device, the first network N1, the second network N2, and the relay network N3, and a storage area for absorbing differences in processing timing among the units Can also be regarded as a storage unit.
  • the information stored in the storage unit includes information generated by each unit of the smart meter 100 and the gateway device 200 in addition to the above data and commands.
  • Various settings such as a channel, timing, synchronization signal, activation condition, ID, authentication key, and timeout time are also included in the information stored in the storage unit.
  • the smart meter 100 and the gateway device 200 have a system time setting unit for setting a system time indicating the current time. For example, when the program is started, the system time is set on the memory with reference to the built-in hardware clock. This system time becomes a time information source of the smart meter 100 and the gateway device 200.
  • the system time setting unit adjusts the time at a predetermined timing. For example, the system time is synchronized once a day by SNTP (Simple network time protocol). Further, the system time setting unit can also synchronize even when the system time is determined not to be large and effective due to the SNTP. The synchronized time may be reflected in the hardware clock.
  • SNTP Simple network time protocol
  • SM is the smart meter 100
  • GW is the gateway 200.
  • the smart meter 100 is basically activated at all times, and the asynchronous communication unit 141 in the first relay unit 140 is in a state where it can always communicate with the outside.
  • the gateway device 200 is activated
  • the asynchronous communication unit 231 of the second relay unit 230 is in a state where it can always communicate with the outside.
  • the smart meter 100 and the gateway device 200 are in a state of not recognizing each other when the gateway device 200 is activated.
  • the asynchronous communication unit 141 and the asynchronous communication unit 231 perform connection authentication with each other.
  • connection authentication for example, PANA can be used. That is, the asynchronous communication unit 231 transmits an extended beacon request (EBR: Enhanced Beacon Req).
  • EBR extended Beacon Req
  • ID an ID for identifying the gateway device 200 given from the system for managing power is registered. This ID is an ID that identifies which gateway device 200 is to communicate with.
  • the authentication key and the like are also registered in the storage unit of the smart meter 100.
  • the asynchronous communication unit 231 of the smart meter 100 that registers the ID included in the extended beacon request (EBR) transmitted from the gateway device 200 side transmits the extended beacon to the gateway device 200. To do. That is, any one of the plurality of smart meters 100 is in a position to communicate with the gateway device 200.
  • EBR extended beacon request
  • the channel setting units 142 and 232 set the home channel. That is, the channel setting unit 142 of the smart meter 100 waits on a specific channel that is not used by the first communication unit 130. Alternatively, it is possible to wait on the same channel as the channel used by the first communication unit 130 by preventing the use time from overlapping.
  • the channel setting unit 232 of the gateway device 200 switches the channel and searches sequentially until there is a response to the EBR. When there is a response, the channel setting unit 232 sets the channel as the home channel.
  • the asynchronous communication unit 231 of the gateway device 200 that has received the extended beacon as a response to the extended beacon request (EBR) exchanges PCI, PAR, and PAN signals with the asynchronous communication unit 141 of the smart meter 100 that has transmitted the extended beacon.
  • EBR extended beacon request
  • the synchronization establishment unit 143b in the smart meter 100 transmits a synchronization signal to the determined gateway device 200.
  • the synchronization establishment unit 233b in the gateway device 200 transmits a synchronization confirmation signal to the smart meter 100.
  • the synchronization establishment unit 233b of the gateway device 200 that has transmitted the synchronization confirmation signal and the synchronization establishment unit 143b of the smart meter 100 that has received the synchronization confirmation signal start synchronous communication with the smart meter 100 with the contents set by the synchronization signal. That is, the asynchronous mode is changed to the synchronous mode. Messages after the establishment of synchronization are encrypted at the MAC layer.
  • FIG. 5 illustrates a process in which the intermittent communication unit 144a of the smart meter 100 and the intermittent communication unit 234a of the gateway device 200 perform intermittent communication in the downward direction from the smart meter 100 to the gateway device 200 after the synchronization is established as described above.
  • the smart meter 100 is always activated. Therefore, uplink communication from the gateway device 200 to the smart meter 100 can be transmitted at any time when the gateway device 200 is activated. That is, after synchronization is established, bidirectional transmission in the upstream and downstream directions is possible.
  • the intermittent communication unit 144a of the smart meter 100 opens an intermittent window of several hundred milliseconds every few seconds after synchronization is established. This intermittent window is a transmission window for transmission.
  • the intermittent communication unit 234a of the gateway device 200 opens a slightly longer intermittent window at the same interval as the intermittent window from the synchronization establishment time. This intermittent window is a reception window for reception. The reason for the longer time on the receiving side is to absorb a timing shift due to a clock error between the smart meter 100 and the gateway device 200.
  • the intermittent communication unit 144a of the smart meter 100 transmits information such as downlink data or commands during the time when the transmission window and the reception window are open.
  • the intermittent communication unit 234a of the gateway device 200 transmits a response message such as MAC ACK.
  • Such transmission / reception between the smart meter 100 and the gateway device 200 is repeated each time a transmission window and a reception window arrive.
  • the intermittent communication unit 144a of the smart meter 100 holds the data in the storage unit while waiting for transmission while the transmission window is closed.
  • the activation control unit 240 of the gateway device 200 saves the battery as a power source by setting the sleep state while the reception window is closed.
  • the CPU clocks of the smart meter 100 and the gateway device 200 are slightly different. For this reason, when time elapses from the start of synchronous communication, a shift that is out of synchronization occurs. Therefore, the synchronization establishment unit 143b of the smart meter 100 and the synchronization establishment unit 233b of the gateway device 200 maintain synchronization by exchanging the synchronization signal and the synchronization confirmation signal at a constant period of about several minutes to 10 minutes.
  • the first communication unit 130 of the smart meter 100 transmits a block data request with a flag indicating that block data including a plurality of units of data is going to be transmitted as the downlink data 1, and the downlink data 2 is the block data.
  • the extended communication unit 144b of the smart meter 100 transmits a block data request to the gateway 200 and opens an extended window.
  • This extended window is a continuous transmission window.
  • the extended communication unit 234b of the gateway device 200 receives the block data request, it opens an extended window so that it can always be received.
  • This extended window is a continuous reception window. That is, the extended communication unit 144b and the extended communication unit 234b perform window control ignoring the timing of the transmission window and reception window of intermittent communication.
  • the extended communication unit 144b transmits a general-purpose message indicating the end of the block data.
  • the extended communication unit 144b closes the extended window.
  • the extended communication unit 234b of the gateway device 200 closes the extended window when receiving the general message that is the last of the block data.
  • the activation control unit 240 of the gateway device 200 maintains the activation state while the continuous reception window is open.
  • the blocking may be realized by an appropriate protocol between the smart meter 100 and the extended communication units 144b and 234b of the gateway 200.
  • the blocking is performed in the MAC layer, the network layer, or the application layer. It is not limited.
  • the synchronization establishment unit 143b of the smart meter 100 retransmits after several seconds if the synchronization confirmation cannot be received even though the synchronization signal is transmitted. If the synchronization establishing unit 143b does not receive the synchronization confirmation signal within a few seconds after the retransmission, the synchronization establishing unit 143b determines that the synchronization is lost and stops transmission of the synchronization signal.
  • the synchronization establishment unit 233b of the gateway apparatus 200 determines that the synchronization has been lost when the synchronization signal cannot be received even if the period arrives a plurality of times. To do. For example, in FIG. 7, loss of synchronization is detected when reception is not possible twice.
  • the synchronization establishment unit 233b that has determined that the synchronization is lost transmits a synchronization request. For example, in FIG. 7, a synchronization request based on the current PANA session information is transmitted. Since the smart meter 100 is always activated as described above, the synchronization establishment unit 143b can receive it whenever the synchronization establishment unit 233b transmits a synchronization request.
  • the asynchronous communication unit 231 of the gateway device 200 performs asynchronous communication. That is, the continuous reception waiting state in which the reception of the synchronization signal is continuously waited for a predetermined time is repeated a plurality of times to wait for the synchronization signal. Within this time, the synchronization establishment unit 143b of the smart meter 100 may transmit a synchronization signal corresponding to the synchronization request. In this case, when the synchronization establishment unit 233b of the gateway apparatus 200 receives the transmitted synchronization signal and transmits a synchronization confirmation signal, synchronization is established again and intermittent communication is resumed. Therefore, after that, synchronous communication resumes.
  • the synchronization establishment unit 233b of the gateway device 200 transmits a synchronization request with the new PANA session information. Then, the synchronization is established again after receiving the synchronization signal from the synchronization establishment unit 143b of the smart meter 100 and the transmission of the synchronization confirmation signal from the synchronization establishment unit 233b of the gateway device 200. After that, synchronous communication resumes.
  • the upper row shows opening and closing of the reception window along the time axis of the smart meter 100.
  • the lower part shows the transition of the reception window (upper side) along the time axis of the gateway device 200 and the activation state (lower side) for transmission. Since smart meter 100 is always activated, transmission can be performed at a timing that matches the reception window of gateway device 200 regardless of its own reception window.
  • the above example is a case where communication in the A route among communication by the first communication unit 130 of the smart meter 100 is always connected like a line using a public network such as 3G / LTE.
  • a public network such as 3G / LTE.
  • the first communication unit 130 uses wireless multihop as the A route, communication is performed while switching a plurality of channels by hopping.
  • the first relay unit 140 can use only the home channel for communication with the gateway device 200, but the first communication unit 130 uses this home channel. It is also possible to use channels. Since the home channel also arrives periodically, the timing at which data can be transmitted arrives intermittently. For this reason, the first relay unit 140 of the smart meter 100 is not always able to receive data because of the relationship with the gateway device 200, and performs intermittent communication.
  • the gateway device 200 is set to use channel 1 fixedly, communication cannot be performed on the second and third channels.
  • the asynchronous communication unit 141 of the gateway device 200 transmits an extended beacon request while changing the channel. As for the channel to be switched, the same channel returns at regular intervals.
  • the asynchronous communication unit 141 of the smart meter 100 receives an extended beacon request on the home channel, communication on the home channel is determined by transmitting the extended beacon. Subsequent connection authentication is as described above.
  • the synchronous establishment part 143b of the smart meter 100 transmits a synchronous signal to the gateway apparatus 200 for every fixed time Tsync.
  • the synchronization signal includes information indicating when the smart meter 100 returns to the home channel.
  • T0 is the timing when the next home channel arrives.
  • T0 takes a variable value for each transmission timing of the synchronization signal.
  • T1 is a certain period when the home channel arrives.
  • N is the number of times that the synchronization of the home channel returns is considered to be maintained.
  • the number obtained by dividing the maximum number of seconds that can be communicated even if the clock is shifted by the channel period T1 is N.
  • the synchronization establishment unit 143b of the smart meter 100 transmits a new synchronization signal. After synchronization by a new synchronization signal, it is considered that synchronization is maintained until N times are counted.
  • the synchronization establishment unit 233b of the gateway device 200 that has received the synchronization signal transmits a synchronization confirmation signal at the next timing. Then, the intermittent communication unit 234 of the gateway device 200 opens the intermittent window for a predetermined time Tr every predetermined time Tp. This intermittent window is a reception window. When the reception window is open, the intermittent communication unit 144a of the smart meter 100 transmits data. A sync signal is also sent when the receive window is open. When the synchronization establishment unit 143b of the smart meter 100 cannot receive the synchronization confirmation, the retransmission control unit 143c retransmits the synchronization signal to the next reception window.
  • the CCA error is an error indicating that the channel is busy and data cannot be output in the free channel determination.
  • the MAC ACK error is an error that data is transmitted but ACK that is a response from the transmission partner cannot be received.
  • the retransmission control unit 143c retransmits the synchronization signal if it can be retransmitted within the same reception window. If retransmission cannot be performed within the same reception window, retransmission is performed when the next reception window opens.
  • the start timing of the reception window in the synchronization signal is corrected.
  • the correction unit 233d recalculates and determines the start timing of the next reception window by adding or subtracting the offset value as follows.
  • the reception end timing of transmission data and the packet length including the header to be transmitted are known.
  • the reception end timing of transmission data is the reception timing (time) of the last octet of transmission data.
  • the packet length is the length of the PHY header (SHR, PHR) and the PHY payload (PSDU).
  • SHR, PHR the reception timing
  • PSDU the PHY payload
  • a value obtained by adding a drift margin indicating a clock shift to the reception end timing and subtracting the packet length and the reception window interval Tp is obtained as the next reception window start timing.
  • the correction unit 143d recalculates and determines the start timing of the next reception window.
  • Uplink communication for channel switching communication A case where uplink communication from the gateway device 200 to the smart meter 100 is performed in the above-described channel switching communication will be described with reference to FIG. As described above, the synchronization establishment unit 143b of the smart meter 100 notifies the gateway device 200 of the timing of the home channel using the synchronization signal.
  • the activation control unit 240 of the gateway device 200 sets the gateway device 200 in an activated state so that the second communication unit 220 receives data from the second network N2 at a timing according to the setting of the activation setting unit 250. .
  • the activation control unit 240 waits in the activated state until the next home channel timing and transmits the data to the sleep state.
  • the activation control unit 240 may be transmitted in the activated state at the timing of the next home channel after temporarily entering the sleep state. Details of the timing control of this aspect will be described later.
  • the intermittent communication unit 234a of the synchronous communication unit 234 performs back-off with a waiting time even when transmitting uplink data, even in the case of initial transmission.
  • the intermittent communication unit 234a further performs back-off when a carrier is detected on the relay network N3. Further, when the carrier is detected continuously, retransmission is performed at the timing of the next home channel. As shown in FIG. 12, even in the case of a MAC ACK error, retransmission is performed at the timing of the next home channel.
  • the upper stage shows the transition of the reception channel used by the smart meter 100 in time series.
  • each square is an individual reception channel.
  • the other channels are any channels used by the first communication unit 130 in the A route. The use of any one of these channels and the cycle thereof are determined for each smart meter 100.
  • the lower part shows the time series transition of the activation state and the sleep state of the gateway device 200.
  • the activation control unit 240 of the gateway device 200 periodically activates the gateway device 200 and then enters a sleep state at a timing in accordance with the period at which the home channel of the smart meter 100 arrives. It is a method to repeat. For example, it starts at the timing of No. 1, No. 21, No. 41,. If there is data to be transmitted to the smart meter 100 at the time of startup, the data is transmitted. If there is no transmission data, no data is transmitted. In addition to the regular activation, the activation control unit 240 activates the gateway device 200 to receive data from the second network N2, and receives data. This timing is set in the activation setting unit 250 as a periodical reception timing of data from the second network N2 on the gateway device 200 side.
  • the following activation conditions are also set in advance in the activation setting unit 250.
  • the received data is accumulated in the accumulating unit 260, and then the activation control unit 240 enters a sleep state.
  • the accumulated data is transmitted to the smart meter 100 at regular startup.
  • the activation control unit 240 of the gateway device 200 does not periodically activate. Then, when the gateway device 200 is activated to receive data from the second network N2, the activation control unit 240 is in a sleep state after transmitting data to the smart meter 100 as being activated until the home channel timing. And In this case, it is necessary to wait for the activation to continue until data transmission to the smart meter 100, but since there is no periodic activation without data transmission, power consumption can be further saved. This is effective when the data is relatively small.
  • the transmission method 3 is the same as the transmission method 2 in that the activation control unit 240 of the gateway device 200 does not periodically activate. However, when the gateway device 200 is activated to receive data from the second network N2, the activation control unit 240 enters a sleep state after receiving the data. Then, the activation control unit 240 activates again when the timing of the next home channel arrives, transmits data to the smart meter 100, and again enters the sleep state. In this case, since it is not necessary to wait until the data is transmitted to the smart meter 100, power consumption can be further saved.
  • the communication system S of the present embodiment is acquired by the first connection unit 110 with a power supply that constantly supplies power, the detection data acquisition unit 120 that acquires detection data from the outside, and the detection data acquisition unit 120
  • the smart meter 100 includes a first communication unit 130 that transmits / receives the detected data via the first network N1 and a first relay unit 140 that connects to the relay network N3.
  • the second connection unit 210 with a constant capacity power source the second communication unit 220 communicating via the second network N2, and the first relay unit 140 via the relay network N3 are connected.
  • the second relay unit 230, the second communication unit 220, and the second relay unit 230 are in a start state in which power consumption is high and communication is possible, or in a sleep state in which power consumption is low and communication is not performed
  • a start-up control unit 240 that controls the gateway device 200.
  • first relay unit 140 and the second relay unit 230 include the asynchronous communication units 141 and 231 that perform communication in the asynchronous mode in which communication is always possible between the gateway device 200 and the smart meter 100, and the gateway device 200.
  • the synchronization control units 143 and 233 that establish and maintain synchronization by transmitting and receiving a synchronization signal and a synchronization confirmation signal between the gateway device 200 and the smart meter 100 are in an activated state.
  • synchronous communication units 144 and 234 that perform communication in a synchronous mode in which communication is performed at a predetermined timing according to established synchronization.
  • the gateway device 200 does not communicate when the activation control unit 240 is in the sleep state, but communicates with the smart meter in the synchronous mode when it is in the activation state, thus saving power consumption of a constant capacity power supply, Communication between the gateway device 200 that is not always activated and the smart meter 100 that is always activated can be secured.
  • the synchronous communication units 144 and 234 in the first relay unit 140 and the second relay unit 230 have intermittent communication units 144a and 234a that perform communication using intermittent windows that are opened at predetermined intervals according to the established synchronization. Have.
  • the synchronous communication units 144 and 234 in the first relay unit 140 and the second relay unit 230 perform communication using an extended window that collectively transmits and receives information exceeding the capacity that can be communicated in one intermittent window.
  • the extended communication units 144b and 234b are included.
  • the asynchronous communication unit 141 in the first relay unit 140 and the second relay unit 230 is used when the synchronization control unit 143 of the first relay unit 140 cannot receive the synchronization confirmation signal or the second relay unit 230 When the synchronization control unit 233 cannot receive the synchronization signal, communication in the asynchronous mode is performed.
  • the synchronization control units 143 and 233 include correction units 143d and 233d that correct the start timing of the next intermittent window by adding or subtracting a predetermined offset value to the transmission time or reception time of the synchronization signal.
  • the start timing can be accurately set by correcting the start timing in consideration of various factors such as a clock shift and the amount of information to be transmitted and received.
  • the synchronization control unit 143 in the first relay unit 140 includes a synchronization setting unit 143a that sets the synchronization signal including the start timing of the intermittent window, the duration of the intermittent window, and the number of times the intermittent window is repeated.
  • a synchronization establishment unit 143b that establishes synchronization with the gateway device 200 based on the setting content set by the unit 143a.
  • synchronization can be established by notifying the smart meter 100 side to the gateway device 200 side of minimum information necessary for synchronization.
  • the synchronization control unit 143 in the first relay unit 140 when the synchronization signal can be retransmitted in the same intermittent window as the intermittent window in which the synchronization confirmation signal for the synchronization signal could not be received, A retransmission control unit 143c that performs retransmission in the next and subsequent intermittent windows when retransmission is performed within the window and the intermittent window has passed.
  • the gateway device 230 includes an accumulation unit 260 that accumulates the received information until a predetermined timing when the activation control unit 240 is activated in order for the second communication unit 220 to receive information.
  • the gateway device 230 transmits the information accumulated by the accumulation unit 260 at the next predetermined timing after the activation control unit 240 enters the activated state so that the second communication unit 220 receives the information. Until then, the activation setting unit 250 for setting activation conditions by the activation control unit 240 is provided so as to keep the activation state.
  • the gateway device 230 is in the sleep state until the next predetermined timing comes after the activation control unit 240 is activated so that the second communication unit 220 receives the information, and the timing has arrived.
  • the activation setting unit 250 sets activation conditions by the activation control unit 240 so that the information accumulated by the accumulation unit 260 is transmitted as the activation state.
  • the second relay unit 230 includes a channel setting unit 232 that sets, as a channel used for communication, one channel that periodically arrives among a plurality of channels.
  • the second relay unit 230 also controls the window accordingly. By doing so, consistency between different networks can be achieved.
  • the present embodiment is not limited to the above aspect.
  • the above embodiment is an application example of a smart meter for electric power.
  • the information transmitted / received by the smart meter and the gateway device is not limited to the information exemplified above.
  • any network that can be used at present or in the future can be used as long as the network can transmit and receive information.
  • the above communication methods and protocols are examples, and it does not matter what communication method or protocol is used, whether wired or wireless.
  • the above is determined to include the value as follows, or the value is not included as greater, greater than, greater than, less than, or less than It is free to set whether to judge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Selective Calling Equipment (AREA)
  • Telephonic Communication Services (AREA)
  • Communication Control (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided are a communication system, a smart meter, a gateway device, and a communication program, with which it is possible to ensure communication between the gateway device, which in order to conserve power consumption may not always be started up, and the smart meter, which is always started up. The present invention has: asynchronous communication units 141, 231, with which a first relay unit 140 of the smart meter 100 and a second relay unit 230 of the gateway device can communicate in an asynchronous mode, in which normal communication is possible, between the gateway device 200 and the smart meter 100; synchronization control units 143, 233 for establishing and maintaining synchronization by transmitting and receiving synchronization signals and synchronization confirmation signals between the gateway device 200 and the smart meter 100; and synchronization communication units 144, 234 for communicating between the gateway device 200 and the smart meter 100 in a startup state and in a synchronization mode for communicating at a prescribed timing conforming to the established synchronization.

Description

通信システム、スマートメータ、ゲートウェイ装置及び通信プログラムCommunication system, smart meter, gateway device, and communication program
 本発明の実施形態は、例えば、外部からデータを取得するネットワークと他のネットワークとを接続する通信システム、スマートメータ、ゲートウェイ装置及び通信プログラムに関する。 Embodiments of the present invention relate to, for example, a communication system, a smart meter, a gateway device, and a communication program that connect a network that acquires data from the outside and another network.
 スマートメータの通信装置は、各需要家の電力使用量等の検針データを、定期的に外部に送信する。通信装置からの検針データの送信先は、ヘッドエンドシステム(以下、HESとする)である。HESは、集線装置と呼ばれ、多数のスマートメータからの検針データを管理する。HESは、各種コマンドを送信してスマートメータをリモートで制御する機能などを持つ。例えば、通信装置をリモートでリセットするコマンド、ソフトウェアをダウンロードさせるコマンドがある。また、定期的な検針データが受信できていない場合、再送を要求するコマンド、居住者が不在になった場合、強制的に電源を切るコマンドもある。 The smart meter communication device regularly transmits meter reading data such as the power consumption of each consumer to the outside. The transmission destination of meter reading data from the communication device is a head end system (hereinafter referred to as HES). The HES is called a line concentrator and manages meter reading data from a large number of smart meters. The HES has a function of transmitting various commands and remotely controlling the smart meter. For example, there are a command for resetting the communication device remotely and a command for downloading software. There is also a command for requesting retransmission when periodic meter reading data is not received, and a command for forcibly turning off the power when the resident is absent.
特開2011-61690号公報JP 2011-61690 A
 上記のように、スマートメータの通信装置は、検針データを定期的に送信する。例えば、メーターデータマネージメントシステム(以下、MDMSとする)のコンピュータに、30分ごとに検針データを送信する態様が存在する。このように、検針データを外部に送信するネットワークを、Aルートと呼ぶ。また、検針データを宅内に設けられた管理装置と送受するネットワークを、Bルートと呼ぶ。 As described above, the smart meter communication device periodically transmits meter reading data. For example, there is a mode in which meter reading data is transmitted every 30 minutes to a computer of a meter data management system (hereinafter referred to as MDMS). A network that transmits meter reading data to the outside in this way is called an A route. A network that transmits / receives meter reading data to / from a management device provided in the house is called a B route.
 さらに、将来的には、このような電力の検針データの送受信に関するネットワークに、電力以外のデータを収集するネットワークを接続して、より多様なデータに基づくエネルギー管理をすることが好ましい。このようなネットワークの例としては、種々のパラメータを検出するセンサ付端末を互いに接続したセンサネットワークがある。この場合、スマートメータは、これらのデータをネットワークから受信することと、ネットワークに接続された機器を操作するための各種のコマンドを当該ネットワークへ送信する必要がある。 Furthermore, in the future, it is preferable to perform energy management based on more diverse data by connecting a network that collects data other than power to such a network related to transmission and reception of power meter reading data. An example of such a network is a sensor network in which terminals with sensors that detect various parameters are connected to each other. In this case, the smart meter needs to receive these data from the network and transmit various commands for operating devices connected to the network to the network.
 但し、他のデータを収集するネットワークを構成する通信装置には、スマートメータのように常時起動させることができない装置も存在する。例えば、データを収集するネットワークの窓口となるゲートウェイ装置が電池駆動であって、消費電力の節約のために、一定時間ごとにCPUが起動して、起動中だけデータを送受信している場合がある。 However, there are devices that cannot be activated at all times, such as smart meters, among communication devices that constitute a network that collects other data. For example, there is a case where a gateway device serving as a window of a network for collecting data is battery-powered, and the CPU is activated at regular intervals to transmit / receive data only during activation in order to save power consumption. .
 すると、スマートメータが、Aルート側での通信のために常時起動していたとしても、データの送受信のタイミングを合わせることができない場合がある。特に、スマートメータがコマンドを送信しようとしても、ゲートウェイ装置が起動していない場合には、送信できない。 Then, even if the smart meter is always activated for communication on the A route side, there are cases where the timing of data transmission / reception cannot be synchronized. In particular, even if the smart meter tries to send a command, it cannot be sent if the gateway device is not activated.
 さらに、無線マルチホップにおいて、スマートメータが、複数のチャネルを切り替えて他のスマートメータと通信を行う方式の場合、使用中のチャネルはゲートウェイ装置との通信に使用できない。このため、たとえゲートウェイ装置が起動していても、通信はできない。 Furthermore, in the wireless multi-hop method, when the smart meter switches between a plurality of channels and communicates with other smart meters, the channel being used cannot be used for communication with the gateway device. For this reason, communication is not possible even if the gateway device is activated.
 本発明の実施形態は、上記のような従来技術の問題点を解決するために提案されたものであり、その目的は、消費電力の節約のために、常時起動しているとは限らないゲートウェイ装置と、常時起動しているスマートメータとの間での通信を確保できる通信システム、スマートメータ、ゲートウェイ装置及び通信プログラムを提供することにある。 The embodiments of the present invention have been proposed to solve the above-described problems of the prior art, and the purpose thereof is a gateway that is not always activated to save power consumption. An object of the present invention is to provide a communication system, a smart meter, a gateway device, and a communication program that can ensure communication between a device and a smart meter that is always activated.
 本発明の実施形態である通信システムは、上記のような目的を達成するために提案されたものであり、常時電力を供給する電源との接続を行う第1の接続部と、外部からの検出データを取得する検出データ取得部と、前記検出データ取得部が取得した検出データを第1のネットワークを介して送受信する第1の通信部と、中継ネットワークとの接続を行う第1の中継部と、を有するスマートメータを有する。また、本実施形態は、定容量の電源との接続を行う第2の接続部と、第2のネットワークを介して通信する第2の通信部と、前記中継ネットワークを介して、前記第1の中継部に接続された第2の中継部と、前記第2の通信部及び前記第2の中継部を、消費電力が高く通信が可能な起動状態とするか、消費電力が低く通信をしないスリープ状態とするかを制御する起動制御部と、を有するゲートウェイ装置を有する。 A communication system according to an embodiment of the present invention has been proposed in order to achieve the above-described object, and includes a first connection unit that performs connection with a power supply that constantly supplies power, and detection from the outside. A detection data acquisition unit that acquires data; a first communication unit that transmits and receives detection data acquired by the detection data acquisition unit via a first network; and a first relay unit that connects to a relay network; , Having a smart meter. In the present embodiment, the second connection unit that connects to a constant-capacity power source, the second communication unit that communicates via a second network, and the first network via the relay network Sleep in which the second relay unit connected to the relay unit, the second communication unit, and the second relay unit are in a start-up state in which power consumption is high and communication is possible, or power consumption is low and communication is not performed And a start-up control unit that controls whether to enter a state.
 さらに、前記第1の中継部及び前記第2の中継部は、前記ゲートウェイ装置と前記スマートメータとの間で常時通信可能な非同期モードで通信を行う非同期通信部と、前記ゲートウェイ装置と前記スマートメータとの間で、同期信号及び同期確認信号の送受信により、同期の確立及び維持を行う同期制御部と、前記ゲートウェイ装置と前記スマートメータとの間で、前記起動状態であり、且つ確立された同期に従った所定のタイミングで通信する同期モードで通信を行う同期通信部と、を有する。 Furthermore, the first relay unit and the second relay unit include an asynchronous communication unit that performs communication in an asynchronous mode in which communication is always possible between the gateway device and the smart meter, and the gateway device and the smart meter. The synchronization control unit that establishes and maintains synchronization by transmitting and receiving a synchronization signal and a synchronization confirmation signal between the gateway device and the smart meter, and is in the activated state and established synchronization And a synchronous communication unit that performs communication in a synchronous mode in which communication is performed at a predetermined timing according to the standard.
 なお、他の態様として、上記の各部の機能をコンピュータに実行させるプログラムとして捉えることもできる。また、他の態様として、上記の各部を有するスマートメータ、ゲートウェイ装置として構成することもできる。 In addition, as another aspect, it can also be grasped as a program for causing a computer to execute the functions of the above-described units. Moreover, it can also be comprised as a smart meter and gateway apparatus which have said each part as another aspect.
実施形態を適用した通信システムの構成図である。1 is a configuration diagram of a communication system to which an embodiment is applied. スマートメータ及びゲートウェイ装置を示すブロック図である。It is a block diagram which shows a smart meter and a gateway apparatus. 第1の中継部、第2の中継部を示すブロック図である。It is a block diagram which shows a 1st relay part and a 2nd relay part. 同期の確立処理を示すシーケンス図である。It is a sequence diagram which shows the establishment process of a synchronization. 間欠ウィンドウ処理を示すシーケンス図である。It is a sequence diagram which shows an intermittent window process. 拡張ウィンドウ処理を示すシーケンス図である。It is a sequence diagram which shows an extended window process. 同期外れからの復帰処理を示すシーケンス図である。It is a sequence diagram which shows the return process from a synchronization loss. チャネル切替通信における下り通信を示すシーケンス図である。It is a sequence diagram which shows the downlink communication in channel switching communication. 下り通信の再送処理を示すシーケンス図である。It is a sequence diagram which shows the resending process of downlink communication. チャネル切替通信における上り通信を示すシーケンス図である。It is a sequence diagram which shows the uplink communication in channel switching communication. 上り通信の再送処理を示すシーケンス図である。It is a sequence diagram which shows the resending process of uplink communication. 上り通信の再送処理を示すシーケンス図である。It is a sequence diagram which shows the resending process of uplink communication. チャネル制御を示すシーケンス図である。It is a sequence diagram which shows channel control.
[実施形態の構成]
[概要]
 まず、図1に、本実施形態の通信システムSの構成例を示す。通信システムSは、中継ネットワークN3を介して接続されたスマートメータ100とゲートウェイ装置200とを有する。通信システムSが通信する情報は、各種のデータ及びコマンド等を含む。
[Configuration of the embodiment]
[Overview]
First, FIG. 1 shows a configuration example of the communication system S of the present embodiment. The communication system S includes a smart meter 100 and a gateway device 200 that are connected via a relay network N3. Information communicated by the communication system S includes various data and commands.
 スマートメータ100は、例えば、電力メータである。各スマートメータ100は、各需要家Cに設置されている。スマートメータ100は、各需要家Cの検出データを収集し、外部に送信する装置である。検出データは、電力に関するデータであり、例えば、各需要家Cの電力使用量を含む。検出データは、検出装置が検出する。検出装置は、各需要家Cの電力設備に接続された電流センサ、電圧センサを含む。検出データは、検出値そのもの及び検出値に基づいて演算されたデータを含む。このように検出データを収集する通信経路は、Bルートと呼ばれる。なお、Bルートには、HEMS(Home Energy Management System)700が含まれる。HEMS700は、各需要家Cにおける個々の電力消費機器の電力消費量を収集、制御するシステムである。 Smart meter 100 is, for example, a power meter. Each smart meter 100 is installed in each customer C. The smart meter 100 is a device that collects detection data of each customer C and transmits it to the outside. The detection data is data related to power, and includes, for example, the power usage of each customer C. The detection data is detected by the detection device. The detection device includes a current sensor and a voltage sensor connected to the power equipment of each customer C. The detection data includes the detection value itself and data calculated based on the detection value. A communication path for collecting detection data in this way is called a B route. The B route includes a HEMS (Home Energy Management System) 700. The HEMS 700 is a system that collects and controls the power consumption of individual power consuming devices in each customer C.
 スマートメータ100は、第1のネットワークN1、WAN(Wide Area Network)400等を介して、電力を管理するシステムに接続されている。第1のネットワークN1としては、例えば、3G/LTE等の公衆網、920MHz帯を利用した無線マルチホップ、電力線を使ったPLC等を適用することができる。なお、第1のネットワークN1は、一般的なスマートメータ通信システムにおいて、Aルートと呼ばれる通信経路を構成している。 The smart meter 100 is connected to a power management system via a first network N1, a WAN (Wide Area Network) 400, and the like. As the first network N1, for example, a public network such as 3G / LTE, wireless multi-hop using a 920 MHz band, PLC using a power line, or the like can be applied. Note that the first network N1 constitutes a communication path called A route in a general smart meter communication system.
 WAN400としては、例えば、光回線、3G/LTE等の公衆網を用いることができる。電力を管理するシステムとしては、HES(Head end system)500、MDMS(Meter Data Management System)600がある。HES500は、多数のスマートメータ100からの検出データを収集し、一元管理するサーバ群である。HES500は、MDMS(Meter Data Management System)600との情報の送受信を行う。MDMS600は、スマートメータ100から収集した検出データを分析し、電力料金の設定等、需要家Cに対して効率的なエネルギー利用に関する情報を提供するシステムである。 As the WAN 400, for example, a public network such as an optical line or 3G / LTE can be used. As systems for managing power, there are HES (Head end system) 500 and MDMS (Meter Data System) 600. The HES 500 is a server group that collects detection data from a large number of smart meters 100 and centrally manages them. The HES 500 transmits / receives information to / from an MDMS (Meter Data Management System) 600. The MDMS 600 is a system that analyzes detection data collected from the smart meter 100 and provides information regarding efficient energy use to the customer C, such as setting of a power charge.
 ゲートウェイ装置200は、第2のネットワークN2を介して、各種のデータを収集する装置である。第2のネットワークN2は、Aルートを構成する第1のネットワークN1とは別のネットワークである。第2のネットワークN2を介して収集されるデータは、電力に関するデータであっても、電力以外のデータであってもよい。第2のネットワークN2の一例は、上述のセンサをノードとして含むセンサネットワークである。また、ゲートウェイ装置200は、第1のネットワークN1から送信され、第2のネットワークN2に接続された機器を操作するための各種のコマンドを中継する。 The gateway device 200 is a device that collects various data via the second network N2. The second network N2 is a network different from the first network N1 constituting the A route. Data collected via the second network N2 may be data related to power or data other than power. An example of the second network N2 is a sensor network including the above-described sensor as a node. The gateway device 200 relays various commands transmitted from the first network N1 and used to operate devices connected to the second network N2.
 スマートメータ100とゲートウェイ装置200は、中継ネットワークN3を介してデータを送受信する。つまり、ゲートウェイ装置200は、異なるネットワークを接続する通信装置である。中継ネットワークN3を介して送受信されるデータは、電力に関するデータであっても、電力以外のデータであってもよい。上記のコマンドも送受信される。 The smart meter 100 and the gateway device 200 transmit and receive data via the relay network N3. That is, the gateway device 200 is a communication device that connects different networks. The data transmitted / received via the relay network N3 may be data related to power or data other than power. The above commands are also sent and received.
 スマートメータ100、ゲートウェイ装置200は、CPU、メモリ、インタフェース等を含むマイクロプロセッサ等のコンピュータを、所定のプログラムで制御することによって実現できる。つまり、起動時にメモリから読み出されるプログラムを、CPUが実行することによって、以下に示す各種の処理部が構成される。この場合のプログラムは、コンピュータのハードウェアを物理的に活用することで、以下に示す各種の処理を実現する。このため、以下の説明では、各種の処理を実現するための機能を仮想的にブロック化した機能ブロック図を用いる。 The smart meter 100 and the gateway device 200 can be realized by controlling a computer such as a microprocessor including a CPU, a memory, an interface, and the like with a predetermined program. That is, the following processing units are configured by the CPU executing a program read from the memory at the time of startup. The program in this case implements various processes shown below by physically utilizing computer hardware. For this reason, the following description uses a functional block diagram in which functions for realizing various processes are virtually blocked.
 共通のCPU、メモリ等が作動する機能であっても、別の処理部として観念できる機能については、別個のブロックで示している。例えば、通信処理については、異なるプロトコルに基いて処理を行う機能や異なるネットワークと接続する機能について、別個の処理部として捉えている。 Even if a common CPU, memory, and the like operate, functions that can be considered as separate processing units are shown in separate blocks. For example, regarding communication processing, functions for performing processing based on different protocols and functions for connecting to different networks are regarded as separate processing units.
 但し、ハードウェアで処理する範囲、プログラムを含むソフトウェアで処理する範囲をどのように設定するかは、特定の態様には限定されない。たとえば、以下に述べる各処理部のいずれかを、それぞれの処理を実現する回路として構成することも可能である。 However, how to set the range to be processed by hardware and the range to be processed by software including a program is not limited to a specific mode. For example, any of the processing units described below can be configured as a circuit that realizes each processing.
 さらに、以下に述べる各処理部の処理を実行する方法、プログラム及びプログラムを記録した記録媒体も、実施形態の一態様である。 Furthermore, a method, a program, and a recording medium storing the program for executing processing of each processing unit described below are also one aspect of the embodiment.
[スマートメータの構成]
 スマートメータ100は、図2に示すように、第1の接続部110、検出データ取得部120、第1の通信部130、第1の中継部140を有する。
[Smart meter configuration]
As illustrated in FIG. 2, the smart meter 100 includes a first connection unit 110, a detection data acquisition unit 120, a first communication unit 130, and a first relay unit 140.
[第1の接続部]
 第1の接続部110は、常時電力を供給する電源との接続を行う処理部である。第1の接続部110は、接続された電源からの電力を、スマートメータ100に供給する。例えば、第1の接続部110は、交流電力線を介して交流電源に接続されている。この場合、第1の接続部110は、交直変換回路、レギュレータ等を含む。
[First connection section]
The first connection unit 110 is a processing unit that performs connection with a power supply that constantly supplies power. The first connection unit 110 supplies power from the connected power source to the smart meter 100. For example, the first connection unit 110 is connected to an AC power supply via an AC power line. In this case, the first connection unit 110 includes an AC / DC conversion circuit, a regulator, and the like.
[検出データ取得部]
 検出データ取得部120は、外部からの検出データを取得する処理部である。検出データ取得部120は、各需要家Cの電力設備のデータを検出する検出部に接続されている。検出部は、電流を計測する電流センサ、電圧を計測する電圧センサ等の検出装置、検出データから電力使用量を演算する電力演算部等を含む。検出データ取得部120は、検出部から入力された検出データの整理、記憶を制御する。
[Detection data acquisition unit]
The detection data acquisition unit 120 is a processing unit that acquires detection data from the outside. The detection data acquisition part 120 is connected to the detection part which detects the data of the electric power equipment of each consumer C. The detection unit includes a current sensor that measures current, a detection device such as a voltage sensor that measures voltage, a power calculation unit that calculates power usage from detection data, and the like. The detection data acquisition unit 120 controls the arrangement and storage of the detection data input from the detection unit.
 なお、検出データ取得部120は、Bルートの通信経路を介した通信を行う処理部である。このため、検出データ取得部120は、各需要家Cの電力設備、HEMS等との間で、各種のコマンドを送受信できるようにしてもよい。 Note that the detection data acquisition unit 120 is a processing unit that performs communication via the B route communication path. For this reason, the detection data acquisition part 120 may be made to be able to transmit / receive various commands between the electric power equipment of each customer C, HEMS, etc.
[第1の通信部]
 第1の通信部130は、検出データ取得部120が取得した検出データを、第1のネットワークN1を介して送受信する処理部である。つまり、第1の通信部130は、Aルートの通信経路を介した通信を行う処理部である。このため、第1の通信部130は、第1のネットワークN1に応じて適用される各種のプロトコル、例えば、3G/LTE、無線マルチホップ、PLCに従ったプログラムにより、データ及びコマンドを送受信することができる。
[First communication unit]
The first communication unit 130 is a processing unit that transmits and receives the detection data acquired by the detection data acquisition unit 120 via the first network N1. That is, the first communication unit 130 is a processing unit that performs communication via the communication route of the A route. For this reason, the first communication unit 130 transmits and receives data and commands by various protocols applied according to the first network N1, for example, programs according to 3G / LTE, wireless multi-hop, and PLC. Can do.
[第1の中継部]
 第1の中継部140は、中継ネットワークN3との接続を行う処理部である。第1の中継部140は、中継ネットワークN3を介して、ゲートウェイ装置200との間で情報の送受信を行う。送受信される情報には、スマートメータ100からのコマンド、ゲートウェイ装置200が収集したデータ等が含まれる。なお、第1の中継部140は、図示はしないが、第1のネットワークN1との通信に使用するチャネルを設定するチャネル設定部を有する。このチャネル設定部は、使用可能なチャネルが複数ある場合に、特定の1つのチャネルを設定する。例えば、無線マルチホップによる通信を行う場合、複数のチャネルのうち、各スマートメータ100との通信に、それぞれ周期的に到来するチャネルを使用する。チャネル設定部は、このようなチャネルを設定する。
[First relay section]
The first relay unit 140 is a processing unit that connects to the relay network N3. The first relay unit 140 transmits / receives information to / from the gateway device 200 via the relay network N3. Information transmitted / received includes commands from the smart meter 100, data collected by the gateway device 200, and the like. Although not shown, the first relay unit 140 includes a channel setting unit that sets a channel used for communication with the first network N1. This channel setting unit sets one specific channel when there are a plurality of usable channels. For example, when wireless multi-hop communication is performed, a channel that periodically arrives is used for communication with each smart meter 100 among a plurality of channels. The channel setting unit sets such a channel.
 この第1の中継部140は、非同期通信部141、チャネル設定部142、同期制御部143、同期通信部144を有する。非同期通信部140は、ゲートウェイ装置200との間で常時通信可能な非同期モードで通信を行う処理部である。また、非同期通信部140は、同期制御部143が同期確認信号を受信できない場合に、非同期モードでの通信を行う。 The first relay unit 140 includes an asynchronous communication unit 141, a channel setting unit 142, a synchronization control unit 143, and a synchronous communication unit 144. The asynchronous communication unit 140 is a processing unit that performs communication in an asynchronous mode in which communication with the gateway device 200 is always possible. The asynchronous communication unit 140 performs communication in the asynchronous mode when the synchronization control unit 143 cannot receive the synchronization confirmation signal.
 チャネル設定部142は、特定のチャネルをゲートウェイ装置200との通信に使用するチャネルとして設定する処理部である。例えば、チャネル設定部142は、使用可能なチャネルが複数ある場合に、特定の1つのチャネルを設定する。このチャネルは、第1の通信部130が通信に使用しているチャネルと異なるチャネルを使用するように構成してもよいし、同じチャネルを用いることもできる。 The channel setting unit 142 is a processing unit that sets a specific channel as a channel used for communication with the gateway device 200. For example, the channel setting unit 142 sets one specific channel when there are a plurality of usable channels. This channel may be configured to use a channel different from the channel used by the first communication unit 130 for communication, or the same channel may be used.
 なお、チャネル設定部142は、複数のチャネルのうち、周期的に到来する1つのチャネルを、通信に使用するチャネルとして設定することができる。つまり、第1の通信部130が複数のチャネルを周期的に切り替えて使用している場合、第1の通信部130がそのチャネルを使用していない時間帯に限って、使用することができる。この場合、チャネル設定部142は、周期的に到来するいずれか1つのチャネルのうち、第1の通信部130が使用しないチャネルを設定するか、時間帯を分けて使用することを前提に同じチャネルを設定する。このように、ゲートウェイ装置200との通信に使用するチャネルを、ホームチャネルと呼ぶ。この場合、ホームチャネルも周期的に到来する。 In addition, the channel setting part 142 can set one channel which comes periodically among several channels as a channel used for communication. That is, when the first communication unit 130 uses a plurality of channels by periodically switching it, the first communication unit 130 can use it only during a time period when the channel is not used. In this case, the channel setting unit 142 sets the channel that is not used by the first communication unit 130 among any one of the channels that arrive periodically, or the same channel on the assumption that the time zone is used separately. Set. Thus, the channel used for communication with the gateway apparatus 200 is called a home channel. In this case, the home channel also arrives periodically.
 同期制御部143は、ゲートウェイ装置200との間で、同期信号及び同期確認信号の送受信により、同期の確立及び維持を行う処理部である。この同期制御部143は、図3に示すように、同期設定部143a、同期確立部143b、再送制御部143c、補正部143dを有する。 The synchronization control unit 143 is a processing unit that establishes and maintains synchronization with the gateway apparatus 200 by transmitting and receiving a synchronization signal and a synchronization confirmation signal. As shown in FIG. 3, the synchronization control unit 143 includes a synchronization setting unit 143a, a synchronization establishment unit 143b, a retransmission control unit 143c, and a correction unit 143d.
 同期設定部143aは、同期信号に、間欠ウィンドウの開始タイミング、間欠ウィンドウの継続時間、間欠ウィンドウを繰り返す回数を含めて設定する処理部である。間欠ウィンドウは、データを所定の単位で送受信できるように一定時間通信回路を確保する。 The synchronization setting unit 143a is a processing unit that sets the synchronization signal including the start timing of the intermittent window, the duration of the intermittent window, and the number of times the intermittent window is repeated. The intermittent window secures a communication circuit for a certain time so that data can be transmitted and received in a predetermined unit.
 同期確立部143bは、同期設定部143aにより設定された設定内容に基いて、ゲートウェイ装置200との同期を確立する処理部である。より具体的には、同期確立部143bは、同期設定部143aが設定した同期信号の送信とこれに対する同期確認信号の受信により同期を確立する。 The synchronization establishment unit 143b is a processing unit that establishes synchronization with the gateway device 200 based on the setting content set by the synchronization setting unit 143a. More specifically, the synchronization establishment unit 143b establishes synchronization by transmitting the synchronization signal set by the synchronization setting unit 143a and receiving the synchronization confirmation signal.
 再送制御部143cは、同期が確立できない場合やデータが送信できない場合に、同期信号又はデータの再送を制御する処理部である。例えば、再送制御部143cは、同期信号に対する同期確認信号が受信できなかった間欠ウィンドウと同一の間欠ウィンドウ内で、同期信号の再送が可能な場合には、当該間欠ウィンドウ内で再送し、当該間欠ウィンドウを経過した場合には、次回以降の間欠ウィンドウで再送を行う。 The retransmission control unit 143c is a processing unit that controls retransmission of a synchronization signal or data when synchronization cannot be established or data cannot be transmitted. For example, if the synchronization signal can be retransmitted in the same intermittent window as the intermittent window in which the synchronization confirmation signal for the synchronization signal could not be received, the retransmission control unit 143c retransmits the intermittent signal in the intermittent window. When the window has passed, retransmission is performed in the subsequent intermittent windows.
 補正部143dは、次回の間欠ウィンドウの開始タイミングを、同期信号の送信時刻又は受信時刻に、所定のオフセット値を加算又は減算して補正する処理部である。補正部143dは、例えば、再送制御部143cによる再送の場合に、次回の間欠ウィンドウの開始タイミングを補正する。 The correction unit 143d is a processing unit that corrects the start timing of the next intermittent window by adding or subtracting a predetermined offset value to or from the transmission time or reception time of the synchronization signal. For example, in the case of retransmission by the retransmission control unit 143c, the correction unit 143d corrects the start timing of the next intermittent window.
 同期通信部144は、ゲートウェイ装置200との間で、ゲートウェイ装置200が起動状態であり、且つ確立された同期に従った所定のタイミングで通信する同期モードで通信を行う処理部である。 The synchronous communication unit 144 is a processing unit that communicates with the gateway device 200 in a synchronous mode in which the gateway device 200 is in an activated state and communicates at a predetermined timing according to the established synchronization.
 同期通信部144は、間欠通信部144a、拡張通信部144bを有する。間欠通信部144aは、確立された同期に従った所定の間隔で開く間欠ウィンドウによって通信を行う処理部である。拡張通信部144bは、1回の間欠ウィンドウで受信できるデータ量を超えるデータをまとめて送受信する拡張ウィンドウによって、データを送受信する処理部である。 The synchronous communication unit 144 includes an intermittent communication unit 144a and an extended communication unit 144b. The intermittent communication unit 144a is a processing unit that performs communication by an intermittent window that opens at predetermined intervals according to established synchronization. The extended communication unit 144b is a processing unit that transmits and receives data using an extended window that collectively transmits and receives data that exceeds the amount of data that can be received in one intermittent window.
[ゲートウェイ装置の構成]
 ゲートウェイ装置200は、図2に示すように、第2の接続部210、第2の通信部220、第2の中継部230、起動制御部240、起動設定部250、蓄積部260を有する。
[Gateway device configuration]
As illustrated in FIG. 2, the gateway device 200 includes a second connection unit 210, a second communication unit 220, a second relay unit 230, an activation control unit 240, an activation setting unit 250, and an accumulation unit 260.
[第2の接続部]
 第2の接続部210は、定容量の電源との接続を行う処理部である。第2の接続部210は、電源からの電力をゲートウェイ装置200に供給する。第2の接続部210に接続される電源は、電池である。電池としては、一次電池、二次電池を含む。
[Second connection section]
The second connection unit 210 is a processing unit that performs connection with a constant-capacity power source. The second connection unit 210 supplies power from the power source to the gateway device 200. The power source connected to the second connection unit 210 is a battery. The battery includes a primary battery and a secondary battery.
[第2の通信部]
 第2の通信部220は、第2のネットワークN2を介して通信する処理部である。第2の通信部220が、第2のネットワークN2を介したデータを送受信するには、後述する起動制御部240が、ゲートウェイ装置200を起動しているタイミングで行う必要がある。
[Second communication section]
The second communication unit 220 is a processing unit that communicates via the second network N2. In order for the second communication unit 220 to transmit and receive data via the second network N2, it is necessary to perform the activation control unit 240 described later at a timing when the gateway device 200 is activated.
[第2の中継部]
 第2の中継部230は、中継ネットワークN3を介してスマートメータ100の第1の中継部140に接続された処理部である。第2の中継部230は、非同期通信部231、チャネル設定部232、同期制御部233、同期通信部234を有する。非同期通信部231は、スマートメータ100との間で常時通信可能な非同期モードで通信を行う処理部である。また、非同期通信部231は、第2の中継部230の同期制御部233が同期信号を受信できない場合に、非同期モードでの通信を行う。
[Second relay unit]
The second relay unit 230 is a processing unit connected to the first relay unit 140 of the smart meter 100 via the relay network N3. The second relay unit 230 includes an asynchronous communication unit 231, a channel setting unit 232, a synchronization control unit 233, and a synchronous communication unit 234. The asynchronous communication unit 231 is a processing unit that performs communication in an asynchronous mode in which communication with the smart meter 100 is always possible. Further, the asynchronous communication unit 231 performs communication in the asynchronous mode when the synchronization control unit 233 of the second relay unit 230 cannot receive the synchronization signal.
 チャネル設定部232は、特定のチャネルをスマートメータ100との通信に使用するチャネルとして設定する処理部である。このチャネルは、例えば、スマートメータ100側が待ち受けている特定のチャネルとする。つまり、スマートメータ100のチャネル設定部142が設定した特定のチャネルに合わせる。 The channel setting unit 232 is a processing unit that sets a specific channel as a channel used for communication with the smart meter 100. This channel is, for example, a specific channel on the smart meter 100 side. That is, it is adjusted to a specific channel set by the channel setting unit 142 of the smart meter 100.
 なお、チャネル設定部232は、複数のチャネルのうち、周期的に到来する1つのチャネルを、通信に使用するチャネルとして設定することができる。スマートメータ100の第1の通信部130が複数のチャネルを周期的に切り替えて使用している場合、チャネル設定部232が設定するチャネルは、ホームチャネルである。 In addition, the channel setting part 232 can set one channel which comes periodically among several channels as a channel used for communication. When the first communication unit 130 of the smart meter 100 periodically uses a plurality of channels, the channel set by the channel setting unit 232 is a home channel.
 同期制御部233は、スマートメータ100との間で、同期信号及び同期確認信号の送受信により、同期の確立及び維持を行う処理部である。同期制御部233は、図3に示すように、同期設定部233a、同期確立部233b、再送制御部233c、補正部233dを有する。 The synchronization control unit 233 is a processing unit that establishes and maintains synchronization with the smart meter 100 by transmitting and receiving a synchronization signal and a synchronization confirmation signal. As shown in FIG. 3, the synchronization control unit 233 includes a synchronization setting unit 233a, a synchronization establishment unit 233b, a retransmission control unit 233c, and a correction unit 233d.
 同期設定部233aは、スマートメータ100から受信した同期信号に基いて、間欠ウィンドウの開始タイミング、間欠ウィンドウの継続時間、間欠ウィンドウを繰り返す回数を設定する処理部である。間欠ウィンドウは、上記のように、データを所定の単位で送受信できるように確保するバッファである。 The synchronization setting unit 233a is a processing unit that sets the intermittent window start timing, the intermittent window duration, and the number of times the intermittent window is repeated based on the synchronization signal received from the smart meter 100. As described above, the intermittent window is a buffer that ensures that data can be transmitted and received in a predetermined unit.
 同期確立部233bは、同期設定部233aにより設定された設定内容に基いて、スマートメータ100との同期を確立する処理部である。より具体的には、同期確立部233bは、同期信号の受信とこれに対する同期確認信号の送信により同期を確立する。 The synchronization establishment unit 233b is a processing unit that establishes synchronization with the smart meter 100 based on the setting content set by the synchronization setting unit 233a. More specifically, the synchronization establishment unit 233b establishes synchronization by receiving a synchronization signal and transmitting a synchronization confirmation signal corresponding thereto.
 再送制御部233cは、同期が確立できない場合やデータが送信できない場合に、同期確認信号又はデータの再送を制御する処理部である。例えば、再送制御部233cは、同期確認信号が送信できなかった間欠ウィンドウと同一の間欠ウィンドウ内で再送が可能な場合には、当該間欠ウィンドウ内で再送し、当該間欠ウィンドウを経過した場合には、次回以降の間欠ウィンドウで再送を行う。 The retransmission control unit 233c is a processing unit that controls retransmission of a synchronization confirmation signal or data when synchronization cannot be established or data cannot be transmitted. For example, when retransmission is possible within the same intermittent window as the intermittent window for which the synchronization confirmation signal could not be transmitted, the retransmission control unit 233c retransmits within the intermittent window, and when the intermittent window has elapsed Then, retransmission is performed in the next intermittent window.
 補正部233dは、次回の間欠ウィンドウの開始タイミングを、同期信号の送信時刻又は受信時刻に、所定のオフセット値を加算又は減算して補正する処理部である。補正部233dは、例えば、第1の中継部140の再送制御部143cによる同期信号の再送の場合に、次回の間欠ウィンドウの開始タイミングを補正する。 The correction unit 233d is a processing unit that corrects the start timing of the next intermittent window by adding or subtracting a predetermined offset value to or from the transmission time or reception time of the synchronization signal. For example, the correction unit 233d corrects the start timing of the next intermittent window when the retransmission of the synchronization signal is performed by the retransmission control unit 143c of the first relay unit 140.
 同期通信部234は、スマートメータ100との間で、ゲートウェイ装置200が起動状態であり、且つ確立された同期に従った所定タイミングで通信する同期モードで通信を行う処理部である。 The synchronous communication unit 234 is a processing unit that communicates with the smart meter 100 in a synchronous mode in which the gateway device 200 is in an activated state and communicates at a predetermined timing according to established synchronization.
 同期通信部234は、間欠通信部234a、拡張通信部234bを有する。間欠通信部234aは、確立された同期に従った所定の間隔で開く間欠ウィンドウによって通信を行う処理部である。拡張通信部234bは、1回の間欠ウィンドウで受信できるデータ量を超えるデータをまとめて送受信する拡張ウィンドウによって、データを送受信する処理部である。 The synchronous communication unit 234 includes an intermittent communication unit 234a and an extended communication unit 234b. The intermittent communication unit 234a is a processing unit that performs communication using an intermittent window that opens at predetermined intervals according to established synchronization. The extended communication unit 234b is a processing unit that transmits and receives data using an extended window that collectively transmits and receives data exceeding the amount of data that can be received in one intermittent window.
[起動制御部]
 起動制御部240は、ゲートウェイ装置200、つまり第2の通信部220及び第2の中継部230を、消費電力が高く通信が可能な起動状態とするか、消費電力が低く通信をしないスリープ状態とするかを制御する処理部である。スリープ状態には、電池の節約のために、消費電力を抑えた状態を広く含む。
[Startup control unit]
The activation control unit 240 sets the gateway device 200, that is, the second communication unit 220 and the second relay unit 230 to an activation state in which power consumption is high and communication is possible, or a sleep state in which power consumption is low and communication is not performed. It is a processing unit that controls whether to do. The sleep state widely includes a state in which power consumption is suppressed in order to save battery power.
[起動設定部]
 起動設定部250は、起動制御部240を起動状態、スリープ状態とするかの起動条件を設定する処理部である。起動設定部250は、例えば、第2のネットワークN2からのデータを受信するタイミングを、あらかじめ設定する。このタイミングが到来したら、起動制御部240がゲートウェイ装置200を起動して、データを受信すると、再度、スリープ状態とする。このタイミングは、上記の間欠ウィンドウのタイミングとは関連付けられていない。
[Startup setting section]
The activation setting unit 250 is a processing unit that sets an activation condition as to whether the activation control unit 240 is to be activated or sleep. For example, the activation setting unit 250 sets in advance the timing for receiving data from the second network N2. When this timing arrives, when the activation control unit 240 activates the gateway device 200 and receives data, the activation control unit 240 enters the sleep state again. This timing is not related to the timing of the intermittent window.
 例えば、起動設定部250は、起動制御部240が、第2の通信部220が情報を受信するために起動状態としてから、次回の所定のタイミングが到来して、後述する蓄積部260が蓄積した情報を送信するまで、継続して起動状態とするように、起動制御部240による起動条件を設定する。 For example, in the activation setting unit 250, the activation control unit 240 is activated in order for the second communication unit 220 to receive information, the next predetermined timing has arrived, and the accumulation unit 260 described later accumulates. Until the information is transmitted, the activation condition by the activation control unit 240 is set so as to continue the activation state.
 また、起動設定部250は、起動制御部240が、第2の通信部220が情報を受信するために起動状態としてから、次回の所定のタイミングが到来するまでスリープ状態として、当該タイミングが到来した場合に起動状態として蓄積部260が蓄積した情報を送信するように、起動制御部240による起動条件を設定する。 In addition, the activation setting unit 250 has entered the sleep state until the next predetermined timing comes after the activation control unit 240 has entered the activation state in order for the second communication unit 220 to receive information. In this case, the activation condition by the activation control unit 240 is set so that the information accumulated by the accumulation unit 260 is transmitted as the activation state.
[蓄積部]
 蓄積部260は、起動制御部240が、第2の通信部220が情報を受信するために起動状態としてから、次回の所定のタイミングまで受信したデータを蓄積する処理部である。ここでいう所定のタイミングは、同期モードで通信を行う間欠ウィンドウのタイミングである。
[Storage unit]
The accumulation unit 260 is a processing unit that accumulates data received until the next predetermined timing after the activation control unit 240 is in an activated state so that the second communication unit 220 receives information. The predetermined timing here is a timing of an intermittent window for performing communication in the synchronous mode.
 なお、スマートメータ100、ゲートウェイ装置200は、記憶部を有する。記憶部は、スマートメータ100、ゲートウェイ装置200の処理に必要な各種の情報を記憶する処理部である。記憶部としては、半導体メモリ等を使用できる。スマートメータ100、ゲートウェイ装置200に着脱自在な記憶媒体を記憶部として構成してもよい。 The smart meter 100 and the gateway device 200 have a storage unit. The storage unit is a processing unit that stores various types of information necessary for processing of the smart meter 100 and the gateway device 200. A semiconductor memory or the like can be used as the storage unit. A storage medium that is detachable from the smart meter 100 and the gateway device 200 may be configured as a storage unit.
 記憶部には、プログラム等を格納する主メモリ、一時的な記憶領域として使用されるキャッシュメモリ、バッファメモリ、レジスタ等も含まれる。検出装置、第1のネットワークN1、第2のネットワークN2、中継ネットワークN3を介して入力されるデータ、コマンド等の情報の記憶領域、各部の間での処理タイミングの相違を吸収するための記憶領域も、記憶部として捉えることができる。 The storage unit includes a main memory for storing programs and the like, a cache memory used as a temporary storage area, a buffer memory, a register, and the like. Storage area for information such as data and commands input via the detection device, the first network N1, the second network N2, and the relay network N3, and a storage area for absorbing differences in processing timing among the units Can also be regarded as a storage unit.
 記憶部に記憶される情報は、上記のデータ、コマンドの他、スマートメータ100、ゲートウェイ装置200の各部により生成される情報が含まれる。また、チャネル、タイミング、同期信号、起動条件、ID、認証鍵、タイムアウトの時間等の各種の設定も、記憶部に記憶される情報に含まれる。 The information stored in the storage unit includes information generated by each unit of the smart meter 100 and the gateway device 200 in addition to the above data and commands. Various settings such as a channel, timing, synchronization signal, activation condition, ID, authentication key, and timeout time are also included in the information stored in the storage unit.
 さらに、スマートメータ100、ゲートウェイ装置200は、現在時刻を示すシステム時刻を設定するシステム時刻設定部を有している。例えば、プログラムの起動時に、内蔵されたハードウェアクロックを参照して、システム時刻をメモリ上に設定する。このシステム時刻が、スマートメータ100、ゲートウェイ装置200の時間情報源となる。 Furthermore, the smart meter 100 and the gateway device 200 have a system time setting unit for setting a system time indicating the current time. For example, when the program is started, the system time is set on the memory with reference to the built-in hardware clock. This system time becomes a time information source of the smart meter 100 and the gateway device 200.
 システム時刻設定部は、所定のタイミングで時刻合わせを行う。例えば、1日に1回、SNTP(Simple network time protocol)によりシステム時刻とを同期させる。また、システム時刻設定部は、システム時刻が、SNTPによりずれが大きく有効でないと判定した場合にも同期させることができる。同期させた時刻を、ハードウェアクロックに反映させてもよい。 The system time setting unit adjusts the time at a predetermined timing. For example, the system time is synchronized once a day by SNTP (Simple network time protocol). Further, the system time setting unit can also synchronize even when the system time is determined not to be large and effective due to the SNTP. The synchronized time may be reflected in the hardware clock.
[作用]
 以上のような本実施形態の作用を、図4~図13を参照して説明する。なお、図中、SMは、スマートメータ100、GWは、ゲートウェイ200である。
(同期の確立)
 まず、同期を確立する処理を、図4を参照して説明する。スマートメータ100は、基本的には常時起動しており、第1の中継部140における非同期通信部141が常時外部と通信できる状態にある。そして、ゲートウェイ装置200の起動時には、第2の中継部230の非同期通信部231が、常時外部と通信できる状態となる。但し、スマートメータ100とゲートウェイ装置200は、ゲートウェイ装置200の起動時には、お互いを認識していない状態である。
[Action]
The operation of the present embodiment as described above will be described with reference to FIGS. In the figure, SM is the smart meter 100, and GW is the gateway 200.
(Establishing synchronization)
First, the process for establishing synchronization will be described with reference to FIG. The smart meter 100 is basically activated at all times, and the asynchronous communication unit 141 in the first relay unit 140 is in a state where it can always communicate with the outside. When the gateway device 200 is activated, the asynchronous communication unit 231 of the second relay unit 230 is in a state where it can always communicate with the outside. However, the smart meter 100 and the gateway device 200 are in a state of not recognizing each other when the gateway device 200 is activated.
 この状態から、非同期通信部141と非同期通信部231とは、互いの接続認証を行う。この接続認証には、例えば、PANAを用いることができる。つまり、非同期通信部231は、拡張ビーコンリクエスト(EBR:Enhanced Beacon Req)を送信する。各スマートメータ100の記憶部には、電力を管理するシステムから付与されたゲートウェイ装置200を識別できるIDが登録されている。このIDは、どのゲートウェイ装置200と通信するかを特定するIDである。認証鍵等も、スマートメータ100の記憶部に登録されている。 From this state, the asynchronous communication unit 141 and the asynchronous communication unit 231 perform connection authentication with each other. For this connection authentication, for example, PANA can be used. That is, the asynchronous communication unit 231 transmits an extended beacon request (EBR: Enhanced Beacon Req). In the storage unit of each smart meter 100, an ID for identifying the gateway device 200 given from the system for managing power is registered. This ID is an ID that identifies which gateway device 200 is to communicate with. The authentication key and the like are also registered in the storage unit of the smart meter 100.
 多数のスマートメータ100のうち、ゲートウェイ装置200側から送信される拡張ビーコンリクエスト(EBR)に含まれるIDを登録しているスマートメータ100の非同期通信部231は、拡張ビーコンを当該ゲートウェイ装置200に送信する。つまり、複数のスマートメータ100のうちのいずれか1つが、ゲートウェイ装置200と通信する地位にある。 Among the many smart meters 100, the asynchronous communication unit 231 of the smart meter 100 that registers the ID included in the extended beacon request (EBR) transmitted from the gateway device 200 side transmits the extended beacon to the gateway device 200. To do. That is, any one of the plurality of smart meters 100 is in a position to communicate with the gateway device 200.
 なお、スマートメータ100における第1の通信部130が、無線マルチホップ等により、複数のチャネルを周期的に切り替えながら通信を行う場合には、チャネル設定部142、232がホームチャネルの設定を行う。つまり、スマートメータ100のチャネル設定部142は、第1の通信部130が使用しない特定のチャネルで待ち受ける。あるいは使用時間が重複しないようにすることで、第1の通信部130が使用するチャネルと同じチャネルで待ち受けることも可能である。ゲートウェイ装置200のチャネル設定部232は、EBRに対する応答があるまで、チャネルを切り替えて順次サーチする。応答があった場合に、チャネル設定部232は、そのチャネルをホームチャネルに設定する。 Note that when the first communication unit 130 in the smart meter 100 performs communication while periodically switching a plurality of channels by wireless multi-hop or the like, the channel setting units 142 and 232 set the home channel. That is, the channel setting unit 142 of the smart meter 100 waits on a specific channel that is not used by the first communication unit 130. Alternatively, it is possible to wait on the same channel as the channel used by the first communication unit 130 by preventing the use time from overlapping. The channel setting unit 232 of the gateway device 200 switches the channel and searches sequentially until there is a response to the EBR. When there is a response, the channel setting unit 232 sets the channel as the home channel.
 拡張ビーコンリクエスト(EBR)に対する応答である拡張ビーコンを受信したゲートウェイ装置200の非同期通信部231は、拡張ビーコンを送信したスマートメータ100の非同期通信部141と、PCI、PAR、PANの信号をやり取りすることにより、接続認証を行い、暗号鍵を共有する。このようにして、ゲートウェイ装置200と通信するスマートメータ100が1対1で決まる。 The asynchronous communication unit 231 of the gateway device 200 that has received the extended beacon as a response to the extended beacon request (EBR) exchanges PCI, PAR, and PAN signals with the asynchronous communication unit 141 of the smart meter 100 that has transmitted the extended beacon. Thus, connection authentication is performed and the encryption key is shared. In this way, the smart meter 100 communicating with the gateway device 200 is determined on a one-to-one basis.
 スマートメータ100における同期確立部143bは、決定したゲートウェイ装置200に対して同期信号を送信する。ゲートウェイ装置200における同期確立部233bは、同期確認信号を、スマートメータ100に送信する。同期確認信号を送信したゲートウェイ装置200の同期確立部233b、同期確認信号を受信したスマートメータ100の同期確立部143bは、同期信号で設定された内容で、スマートメータ100と同期通信を開始する。つまり、非同期モードから同期モードへ遷移する。なお、同期確立以降のメッセージは、MAC層で暗号化される。 The synchronization establishment unit 143b in the smart meter 100 transmits a synchronization signal to the determined gateway device 200. The synchronization establishment unit 233b in the gateway device 200 transmits a synchronization confirmation signal to the smart meter 100. The synchronization establishment unit 233b of the gateway device 200 that has transmitted the synchronization confirmation signal and the synchronization establishment unit 143b of the smart meter 100 that has received the synchronization confirmation signal start synchronous communication with the smart meter 100 with the contents set by the synchronization signal. That is, the asynchronous mode is changed to the synchronous mode. Messages after the establishment of synchronization are encrypted at the MAC layer.
(間欠ウィンドウ制御)
 以上のような同期確立後に、スマートメータ100の間欠通信部144aと、ゲートウェイ装置200の間欠通信部234aが、スマートメータ100からゲートウェイ装置200への下り方向の間欠通信を行う処理を、図5を参照して説明する。なお、基本的にはスマートメータ100は常時起動している。このため、ゲートウェイ装置200からスマートメータ100への上り方向の通信については、ゲートウェイ装置200が起動している時に、いつでも送信可能である。つまり、同期を確立した後は、上り方向と下り方向の双方向の送受信が可能となる。
(Intermittent window control)
FIG. 5 illustrates a process in which the intermittent communication unit 144a of the smart meter 100 and the intermittent communication unit 234a of the gateway device 200 perform intermittent communication in the downward direction from the smart meter 100 to the gateway device 200 after the synchronization is established as described above. The description will be given with reference. Basically, the smart meter 100 is always activated. Therefore, uplink communication from the gateway device 200 to the smart meter 100 can be transmitted at any time when the gateway device 200 is activated. That is, after synchronization is established, bidirectional transmission in the upstream and downstream directions is possible.
 スマートメータ100の間欠通信部144aは、同期確立時から、数秒ごとに、数百ミリ秒の間欠ウィンドウを開く。この間欠ウィンドウは、送信用の送信ウィンドウである。また、ゲートウェイ装置200の間欠通信部234aは、同期確立時から、間欠ウィンドウと同じ間隔で、やや長めの間欠ウィンドウを開く。この間欠ウィンドウは、受信用の受信ウィンドウである。受信側が長めの時間となるのはスマートメータ100とゲートウェイ装置200間のクロック誤差によるタイミングずれを吸収するためである。 The intermittent communication unit 144a of the smart meter 100 opens an intermittent window of several hundred milliseconds every few seconds after synchronization is established. This intermittent window is a transmission window for transmission. In addition, the intermittent communication unit 234a of the gateway device 200 opens a slightly longer intermittent window at the same interval as the intermittent window from the synchronization establishment time. This intermittent window is a reception window for reception. The reason for the longer time on the receiving side is to absorb a timing shift due to a clock error between the smart meter 100 and the gateway device 200.
 スマートメータ100の間欠通信部144aは、この送信ウィンドウ及び受信ウィンドウが開いている時間に、下り方向のデータ又はコマンド等の情報を送信する。ゲートウェイ装置200の間欠通信部234aは、データを受信すると、MAC ACK等の応答メッセージを送信する。このようなスマートメータ100とゲートウェイ装置200との間の送受信を、送信ウィンドウ及び受信ウィンドウが到来する度に繰り返し行う。 The intermittent communication unit 144a of the smart meter 100 transmits information such as downlink data or commands during the time when the transmission window and the reception window are open. When receiving intermittent data, the intermittent communication unit 234a of the gateway device 200 transmits a response message such as MAC ACK. Such transmission / reception between the smart meter 100 and the gateway device 200 is repeated each time a transmission window and a reception window arrive.
 スマートメータ100の間欠通信部144aは、送信ウィンドウを閉じている間は、データを記憶部に保持して送信を待っている送信待機中とする。ゲートウェイ装置200の起動制御部240は、受信ウィンドウを閉じている間は、スリープ状態とすることにより、電源である電池の節約をする。 The intermittent communication unit 144a of the smart meter 100 holds the data in the storage unit while waiting for transmission while the transmission window is closed. The activation control unit 240 of the gateway device 200 saves the battery as a power source by setting the sleep state while the reception window is closed.
 スマートメータ100、ゲートウェイ装置200のCPUのクロックは若干の相違がある。このため、同期通信開始から時間が経過すると、同期が外れる程度のズレが生じる。そこで、スマートメータ100の同期確立部143b、ゲートウェイ装置200の同期確立部233bは、数分~10分程度の一定周期で、同期信号と同期確認信号をやり取りすることにより、同期を維持する。 The CPU clocks of the smart meter 100 and the gateway device 200 are slightly different. For this reason, when time elapses from the start of synchronous communication, a shift that is out of synchronization occurs. Therefore, the synchronization establishment unit 143b of the smart meter 100 and the synchronization establishment unit 233b of the gateway device 200 maintain synchronization by exchanging the synchronization signal and the synchronization confirmation signal at a constant period of about several minutes to 10 minutes.
(拡張ウィンドウ処理)
 上記のような間欠通信においては、送信ウィンドウ及び受信ウィンドウが開く数秒おきに、一定の単位のデータを送信することしかできない。そこで、同期通信中に拡張通信を行う場合を、図6を参照して説明する。スマートメータ100の第1の通信部130は、下りデータ1として、複数単位のデータをまとめたブロックデータが行くことを示すフラグが立ったブロックデータ要求を送信し、下りデータ2として、ブロックデータである汎用メッセージを送信する。
(Extended window processing)
In the intermittent communication as described above, only a certain unit of data can be transmitted every few seconds when the transmission window and the reception window are opened. A case where extended communication is performed during synchronous communication will be described with reference to FIG. The first communication unit 130 of the smart meter 100 transmits a block data request with a flag indicating that block data including a plurality of units of data is going to be transmitted as the downlink data 1, and the downlink data 2 is the block data. Send a generic message.
 すると、スマートメータ100の拡張通信部144bは、ブロックデータ要求をゲートウェイ200に送信して、拡張ウィンドウを開く。この拡張ウィンドウは、連続送信ウィンドウである。ゲートウェイ装置200の拡張通信部234bは、ブロックデータ要求を受信すると、拡張ウィンドウを開き、常時受信できる状態とする。この拡張ウィンドウは、連続受信ウィンドウである。つまり、拡張通信部144b、拡張通信部234bは、間欠通信の送信ウィンドウ、受信ウィンドウのタイミングを無視したウィンドウ制御をする。 Then, the extended communication unit 144b of the smart meter 100 transmits a block data request to the gateway 200 and opens an extended window. This extended window is a continuous transmission window. When the extended communication unit 234b of the gateway device 200 receives the block data request, it opens an extended window so that it can always be received. This extended window is a continuous reception window. That is, the extended communication unit 144b and the extended communication unit 234b perform window control ignoring the timing of the transmission window and reception window of intermittent communication.
 拡張通信部144bは、ブロックデータの最後であることを示す汎用メッセージを送信する。送信を終えると、拡張通信部144bは、拡張ウィンドウを閉じる。ゲートウェイ装置200の拡張通信部234bは、ブロックデータの最後である汎用メッセージを受信し終えると、拡張ウィンドウを閉じる。ゲートウェイ装置200の起動制御部240は、連続受信ウィンドウが開いている間は、起動状態を維持する。なお、スマートメータ100の拡張通信部144bが、ブロックデータ要求を送信した後、データの送信がなくなってから所定時間が経過すると、タイムアウトとなり、間欠通信部144a、間欠通信部234aによる間欠通信に戻る。 The extended communication unit 144b transmits a general-purpose message indicating the end of the block data. When the transmission is finished, the extended communication unit 144b closes the extended window. The extended communication unit 234b of the gateway device 200 closes the extended window when receiving the general message that is the last of the block data. The activation control unit 240 of the gateway device 200 maintains the activation state while the continuous reception window is open. After the extended communication unit 144b of the smart meter 100 transmits a block data request, if a predetermined time elapses after the transmission of data is terminated, a timeout occurs and the intermittent communication unit 144a and the intermittent communication unit 234a return to intermittent communication. .
 なお、ブロック化については、スマートメータ100とゲートウェイ200の拡張通信部144b、234b間で適切なプロトコルによって実現されればよく、例えば、MAC層で行うか、ネットワーク層で行うか、アプリケーション層で行うかは限定されない。 The blocking may be realized by an appropriate protocol between the smart meter 100 and the extended communication units 144b and 234b of the gateway 200. For example, the blocking is performed in the MAC layer, the network layer, or the application layer. It is not limited.
(同期外れからの復帰処理)
 同期外れをした場合の復帰処理を、図7を参照して説明する。まず、同期外れの検出処理を説明する。スマートメータ100の同期確立部143bは、同期信号を送信しているにもかかわらず、同期確認を受信できないと、数秒後に再送する。同期確立部143bは、再送から数秒後までに、同期確認信号を受信しない場合、同期が外れたと判断して、同期信号の送信を止める。
(Return processing from out of sync)
The return process when the synchronization is lost will be described with reference to FIG. First, the out-of-synchronization detection process will be described. The synchronization establishment unit 143b of the smart meter 100 retransmits after several seconds if the synchronization confirmation cannot be received even though the synchronization signal is transmitted. If the synchronization establishing unit 143b does not receive the synchronization confirmation signal within a few seconds after the retransmission, the synchronization establishing unit 143b determines that the synchronization is lost and stops transmission of the synchronization signal.
 同期信号には、同期信号を受信する周期が含まれているため、ゲートウェイ装置200の同期確立部233bは、その周期が複数回到来しても同期信号を受信できない場合に、同期が外れたと判断する。例えば、図7では、2回受信できない場合に、同期外れを検出している。 Since the synchronization signal includes a period for receiving the synchronization signal, the synchronization establishment unit 233b of the gateway apparatus 200 determines that the synchronization has been lost when the synchronization signal cannot be received even if the period arrives a plurality of times. To do. For example, in FIG. 7, loss of synchronization is detected when reception is not possible twice.
 次に、同期外れから同期状態に復帰させる再引き込み処理を説明する。同期が外れたと判断した同期確立部233bは、同期要求を送信する。例えば、図7では、現在のPANAセッション情報に基づく同期要求を送信する。スマートメータ100は、上記のように常時起動しているため、同期確立部233bが同期要求をいつ送信しても、同期確立部143bが受信できる。 Next, the re-drawing process for returning from the out-of-synchronization to the synchronized state will be described. The synchronization establishment unit 233b that has determined that the synchronization is lost transmits a synchronization request. For example, in FIG. 7, a synchronization request based on the current PANA session information is transmitted. Since the smart meter 100 is always activated as described above, the synchronization establishment unit 143b can receive it whenever the synchronization establishment unit 233b transmits a synchronization request.
 ゲートウェイ装置200の非同期通信部231は、非同期通信を行う。つまり、所定時間連続して同期信号の受信待ちする連続受信待ち状態を、複数回繰り返して、同期信号を待つ。この時間内に、スマートメータ100の同期確立部143bが、同期要求に応じた同期信号を送信する場合がある。この場合、送信された同期信号をゲートウェイ装置200の同期確立部233bが受信して、同期確認信号を送信すると、再度、同期が確立され、間欠通信が再開する。よって、それ以降は、同期通信が再開する。 The asynchronous communication unit 231 of the gateway device 200 performs asynchronous communication. That is, the continuous reception waiting state in which the reception of the synchronization signal is continuously waited for a predetermined time is repeated a plurality of times to wait for the synchronization signal. Within this time, the synchronization establishment unit 143b of the smart meter 100 may transmit a synchronization signal corresponding to the synchronization request. In this case, when the synchronization establishment unit 233b of the gateway apparatus 200 receives the transmitted synchronization signal and transmits a synchronization confirmation signal, synchronization is established again and intermittent communication is resumed. Therefore, after that, synchronous communication resumes.
 しかし、これによっても同期信号が受信できない場合には、新たなPANAセッション情報で、ゲートウェイ装置200の同期確立部233bは、同期要求を送信する。そして、スマートメータ100の同期確立部143bからの同期信号の受信、ゲートウェイ装置200の同期確立部233bからの同期確認信号の送信を経て、再度同期が確立する。それ以降は、同期通信が再開する。 However, if the synchronization signal cannot be received due to this, the synchronization establishment unit 233b of the gateway device 200 transmits a synchronization request with the new PANA session information. Then, the synchronization is established again after receiving the synchronization signal from the synchronization establishment unit 143b of the smart meter 100 and the transmission of the synchronization confirmation signal from the synchronization establishment unit 233b of the gateway device 200. After that, synchronous communication resumes.
(チャネル切替通信の場合の下り通信)
 次に、チャネル切替通信の場合の処理を、図8~図12を参照して説明する。なお、図8~図12において、上段はスマートメータ100の時間軸に沿った受信ウィンドウの開閉を示す。下段はゲートウェイ装置200の時間軸に沿った受信ウィンドウ(上側)と、送信のための起動状態(下側)の変遷を示す。なお、スマートメータ100は常時起動状態であるため、自らの受信ウィンドウとは関係なく、ゲートウェイ装置200の受信ウィンドウに合わせたタイミングで送信ができる。
(Downlink communication for channel switching communication)
Next, processing in the case of channel switching communication will be described with reference to FIGS. 8 to 12, the upper row shows opening and closing of the reception window along the time axis of the smart meter 100. The lower part shows the transition of the reception window (upper side) along the time axis of the gateway device 200 and the activation state (lower side) for transmission. Since smart meter 100 is always activated, transmission can be performed at a timing that matches the reception window of gateway device 200 regardless of its own reception window.
 上記の例は、スマートメータ100の第1の通信部130による通信のうち、Aルートにおける通信が、3G/LTE等の公衆網を利用した回線のように、常時接続状態にある場合である。但し、例えば、第1の通信部130が、Aルートとして、無線マルチホップを利用している場合、ホッピングにより複数のチャネルを切り替えながら通信している。 The above example is a case where communication in the A route among communication by the first communication unit 130 of the smart meter 100 is always connected like a line using a public network such as 3G / LTE. However, for example, when the first communication unit 130 uses wireless multihop as the A route, communication is performed while switching a plurality of channels by hopping.
 この場合、上記のように、第1の中継部140は、ゲートウェイ装置200との通信には、ホームチャネルのみを用いることができるが、このホームチャネルとして第1の通信部130が使用しているチャネルを使用することも可能である。ホームチャネルも周期的に到来するため、データを送信できるタイミングは間欠的に到来する。このため、スマートメータ100の第1の中継部140も、ゲートウェイ装置200との関係では、いつでもデータを受信できるわけではなく、間欠通信をすることになる。 In this case, as described above, the first relay unit 140 can use only the home channel for communication with the gateway device 200, but the first communication unit 130 uses this home channel. It is also possible to use channels. Since the home channel also arrives periodically, the timing at which data can be transmitted arrives intermittently. For this reason, the first relay unit 140 of the smart meter 100 is not always able to receive data because of the relationship with the gateway device 200, and performs intermittent communication.
 例えば、スマートメータ100側で、1番、2番、3番、…とチャネルを切り替えて通信している場合に、他のスマートメータ100との通信のために2番、3番のチャネルを使用していると、ゲートウェイ装置200側でチャネル1番を固定的に使用するように設定されていると、2番、3番のチャネルでは通信できない。 For example, when the smart meter 100 is communicating with the channels 1, 2, 3,..., The channels 2 and 3 are used for communication with other smart meters 100. In this case, if the gateway device 200 is set to use channel 1 fixedly, communication cannot be performed on the second and third channels.
 スマートメータ100との通信に用いるホームチャネルを決めるために、ゲートウェイ装置200の非同期通信部141は、チャネルを変化させながら拡張ビーコンリクエストを送信する。切り替わるチャネルは、一定時間ごとに同じチャネルが戻ってくる。スマートメータ100の非同期通信部141が、ホームチャネルで拡張ビーコンリクエストを受信した場合に、拡張ビーコンを送信すると、ホームチャネルでの通信が決まる。その後の接続認証は、上記の通りである。 In order to determine the home channel used for communication with the smart meter 100, the asynchronous communication unit 141 of the gateway device 200 transmits an extended beacon request while changing the channel. As for the channel to be switched, the same channel returns at regular intervals. When the asynchronous communication unit 141 of the smart meter 100 receives an extended beacon request on the home channel, communication on the home channel is determined by transmitting the extended beacon. Subsequent connection authentication is as described above.
 そして、図8に示すように、スマートメータ100の同期確立部143bは、一定時間Tsyncごとに、同期信号をゲートウェイ装置200に送信する。同期信号には、スマートメータ100がどのタイミングで、ホームチャネルに戻るかを示す情報が含まれる。 And as shown in FIG. 8, the synchronous establishment part 143b of the smart meter 100 transmits a synchronous signal to the gateway apparatus 200 for every fixed time Tsync. The synchronization signal includes information indicating when the smart meter 100 returns to the home channel.
 この情報は、例えば、T0、T1、Nである。T0は、次のホームチャネルが到来するタイミングである。T0は、同期信号の送信タイミング毎に可変値をとる。T1は、ホームチャネルが到来する一定の周期である。Nは、ホームチャネルが戻ってくる周期が何回分まで同期が維持されていると考えるかの回数である。クロックがずれても通信できる最大秒を、チャネルの周期T1で割った数がNとなる。周期T1ごとにN回カウントすると、同期が維持できる最大時間になる。すると、T0、T1として通知した情報は、期限切れとなるので、スマートメータ100の同期確立部143bは、新しい同期信号を送信する。新たな同期信号により同期した後は、N回カウントするまでは、同期が維持されているものとみなされる。 This information is, for example, T0, T1, and N. T0 is the timing when the next home channel arrives. T0 takes a variable value for each transmission timing of the synchronization signal. T1 is a certain period when the home channel arrives. N is the number of times that the synchronization of the home channel returns is considered to be maintained. The number obtained by dividing the maximum number of seconds that can be communicated even if the clock is shifted by the channel period T1 is N. When N times are counted for each period T1, the maximum time during which synchronization can be maintained is reached. Then, since the information notified as T0 and T1 expires, the synchronization establishment unit 143b of the smart meter 100 transmits a new synchronization signal. After synchronization by a new synchronization signal, it is considered that synchronization is maintained until N times are counted.
 同期信号を受信したゲートウェイ装置200の同期確立部233bは、同期確認信号を、次のタイミングで送信する。そして、ゲートウェイ装置200の間欠通信部234は、所定の時間Tpごとに、一定時間Tr、間欠ウィンドウを開く。この間欠ウィンドウは受信ウィンドウである。この受信ウィンドウが開いているときに、スマートメータ100の間欠通信部144aは、データを送信する。同期信号も、受信ウィンドウが開いているときに送信する。スマートメータ100の同期確立部143bが、同期確認を受信できない場合、再送制御部143cは、次の受信ウィンドウに同期信号を再送する。 The synchronization establishment unit 233b of the gateway device 200 that has received the synchronization signal transmits a synchronization confirmation signal at the next timing. Then, the intermittent communication unit 234 of the gateway device 200 opens the intermittent window for a predetermined time Tr every predetermined time Tp. This intermittent window is a reception window. When the reception window is open, the intermittent communication unit 144a of the smart meter 100 transmits data. A sync signal is also sent when the receive window is open. When the synchronization establishment unit 143b of the smart meter 100 cannot receive the synchronization confirmation, the retransmission control unit 143c retransmits the synchronization signal to the next reception window.
(エラー時の再送処理)
 スマートメータ100側の同期確立部143bが、同期信号を送信するときにCCA(Clear Channel Assessment)エラーとなった場合、又は同期信号を送信したがMAC ACK受信エラーとなった場合の再送処理について、図9を参照して説明する。CCAエラーは、空きチャネル判定で、チャネルがビジーでデータを出せなかったというエラーである。MAC ACKエラーは、データを送信したが、送信相手からの応答であるACKが受信できなかったというエラーである。
(Retransmission process in case of error)
About the retransmission processing when the synchronization establishment unit 143b on the smart meter 100 side generates a CCA (Clear Channel Assessment) error when transmitting a synchronization signal, or when a synchronization signal is transmitted but a MAC ACK reception error occurs. This will be described with reference to FIG. The CCA error is an error indicating that the channel is busy and data cannot be output in the free channel determination. The MAC ACK error is an error that data is transmitted but ACK that is a response from the transmission partner cannot be received.
 上記のようなエラーとなった場合、再送制御部143cは、同じ受信ウィンドウ内で再送できるタイミングであれば、同期信号の再送を行う。また、同じ受信ウィンドウ内で再送できない場合には、次の受信ウィンドウが開くタイミングで、再送を行う。 If an error such as that described above occurs, the retransmission control unit 143c retransmits the synchronization signal if it can be retransmitted within the same reception window. If retransmission cannot be performed within the same reception window, retransmission is performed when the next reception window opens.
 いずれの再送の場合にも、同期信号における受信ウィンドウの開始タイミングを補正する。まず、ゲートウェイ装置200における同期確立部233bが同期信号を受信した時には、補正部233dは、次の受信ウィンドウの開始タイミングを、以下のようにオフセット値を加減することにより再計算して求める。 In any retransmission, the start timing of the reception window in the synchronization signal is corrected. First, when the synchronization establishing unit 233b in the gateway apparatus 200 receives a synchronization signal, the correction unit 233d recalculates and determines the start timing of the next reception window by adding or subtracting the offset value as follows.
 送信データの受信終了タイミングと、送信すべきヘッダを含むパケット長は把握されている。送信データの受信終了タイミングは、送信データの最終オクテットの受信タイミング(時刻)である。パケット長は、PHYヘッダ(SHR、PHR)及びPHYペイロード(PSDU)の長さである。この受信終了タイミングに、クロックのずれを示すドリフトマージンを加えて、パケット長と受信ウィンドウ間隔Tpを引いた値を、次の受信ウィンドウ開始タイミングとして求める。同様に、スマートメータ100における同期確立部143bも、同期確認信号を受信した時には、補正部143dが、次の受信ウィンドウの開始タイミングを再計算して求める。 The reception end timing of transmission data and the packet length including the header to be transmitted are known. The reception end timing of transmission data is the reception timing (time) of the last octet of transmission data. The packet length is the length of the PHY header (SHR, PHR) and the PHY payload (PSDU). A value obtained by adding a drift margin indicating a clock shift to the reception end timing and subtracting the packet length and the reception window interval Tp is obtained as the next reception window start timing. Similarly, when the synchronization establishment unit 143b in the smart meter 100 receives the synchronization confirmation signal, the correction unit 143d recalculates and determines the start timing of the next reception window.
(チャネル切替通信の場合の上り通信)
 上記のチャネル切替通信で、ゲートウェイ装置200からスマートメータ100への上り通信を行う場合を、図10を参照して説明する。スマートメータ100の同期確立部143bは、上記のように、同期信号によって、ホームチャネルのタイミングをゲートウェイ装置200に通知している。
(Uplink communication for channel switching communication)
A case where uplink communication from the gateway device 200 to the smart meter 100 is performed in the above-described channel switching communication will be described with reference to FIG. As described above, the synchronization establishment unit 143b of the smart meter 100 notifies the gateway device 200 of the timing of the home channel using the synchronization signal.
 ゲートウェイ装置200の起動制御部240は、起動設定部250の設定に従ったタイミングで、第2のネットワークN2から第2の通信部220がデータを受信するために、ゲートウェイ装置200を起動状態とする。このとき、さらに、データをスマートメータ100に送信するためには、起動制御部240は、次のホームチャネルのタイミングまで起動状態で待って送信してからスリープ状態とする。若しくは、起動制御部240は、一旦スリープ状態としてから、次のホームチャネルのタイミングで起動状態として送信してもよい。この態様のタイミング制御の詳細については、後述する。 The activation control unit 240 of the gateway device 200 sets the gateway device 200 in an activated state so that the second communication unit 220 receives data from the second network N2 at a timing according to the setting of the activation setting unit 250. . At this time, in order to further transmit data to the smart meter 100, the activation control unit 240 waits in the activated state until the next home channel timing and transmits the data to the sleep state. Alternatively, the activation control unit 240 may be transmitted in the activated state at the timing of the next home channel after temporarily entering the sleep state. Details of the timing control of this aspect will be described later.
(上り通信の再送制御)
 図11に示すように、同期通信部234の間欠通信部234aは、上りデータを送信する場合、初回送信の場合でも、待ち時間を経るバックオフを行う。間欠通信部234aは、中継ネットワークN3上にキャリアを検出した場合には、さらにバックオフを行う。さらに連続してキャリアを検出した場合には、次のホームチャネルのタイミングで再送を行う。図12に示すように、MAC ACKエラーの場合にも、次のホームチャネルのタイミングで再送を行う。
(Uplink retransmission control)
As shown in FIG. 11, the intermittent communication unit 234a of the synchronous communication unit 234 performs back-off with a waiting time even when transmitting uplink data, even in the case of initial transmission. The intermittent communication unit 234a further performs back-off when a carrier is detected on the relay network N3. Further, when the carrier is detected continuously, retransmission is performed at the timing of the next home channel. As shown in FIG. 12, even in the case of a MAC ACK error, retransmission is performed at the timing of the next home channel.
(チャネル制御の具体例)
 さらに、上述のチャネル制御の具体例を、図13を参照して説明する。送信方法1~3は、それぞれ上段がスマートメータ100が使用する受信チャネルの時系列での変遷を示す。上段は、個々のマス目が個々の受信チャネルである。例えば、受信チャネルは、20チャネル周期でホームチャネルが到来するものとする。その他のチャネルは、第1の通信部130が、Aルートで使用するいずれかのチャネルである。このいずれかのチャネルを使用するか及びその周期は、スマートメータ100毎に決まっている。下段がゲートウェイ装置200の起動状態、スリープ状態の時系列での変遷を示す。
(Specific example of channel control)
Furthermore, a specific example of the above-described channel control will be described with reference to FIG. In the transmission methods 1 to 3, the upper stage shows the transition of the reception channel used by the smart meter 100 in time series. In the upper stage, each square is an individual reception channel. For example, it is assumed that the reception channel arrives at the home channel in a cycle of 20 channels. The other channels are any channels used by the first communication unit 130 in the A route. The use of any one of these channels and the cycle thereof are determined for each smart meter 100. The lower part shows the time series transition of the activation state and the sleep state of the gateway device 200.
 まず、送信方法1は、スマートメータ100のホームチャネルが到来する周期に合わせたタイミングで、ゲートウェイ装置200の起動制御部240が、定期的にゲートウェイ装置200を起動した後、スリープ状態とすることを繰り返す方法である。例えば、1番、21番、41番、…といったタイミングで起動する。起動時に、スマートメータ100への送信データがある場合には、データを送信する。送信データが無い場合には、データを送信しない。また、起動制御部240は、定期的な起動の他に、第2のネットワークN2からのデータを受信するためにもゲートウェイ装置200を起動して、データを受信する。このタイミングは、ゲートウェイ装置200側の第2のネットワークN2からのデータの定期的な受信タイミングとして、起動設定部250に設定されている。なお、以下の起動条件も、起動設定部250にあらかじめ設定されている。受信したデータは、蓄積部260が蓄積し、その後、起動制御部240はスリープ状態とする。蓄積したデータは、定期的な起動の際に、スマートメータ100に送信する。 First, in the transmission method 1, the activation control unit 240 of the gateway device 200 periodically activates the gateway device 200 and then enters a sleep state at a timing in accordance with the period at which the home channel of the smart meter 100 arrives. It is a method to repeat. For example, it starts at the timing of No. 1, No. 21, No. 41,. If there is data to be transmitted to the smart meter 100 at the time of startup, the data is transmitted. If there is no transmission data, no data is transmitted. In addition to the regular activation, the activation control unit 240 activates the gateway device 200 to receive data from the second network N2, and receives data. This timing is set in the activation setting unit 250 as a periodical reception timing of data from the second network N2 on the gateway device 200 side. The following activation conditions are also set in advance in the activation setting unit 250. The received data is accumulated in the accumulating unit 260, and then the activation control unit 240 enters a sleep state. The accumulated data is transmitted to the smart meter 100 at regular startup.
 この送信方法1の場合、起動は間欠的であるため、ゲートウェイ装置200の電源の消費電力を節約できる。但し、送信データが少ない場合、起動しても送信がないケースが多くなる。 In the case of this transmission method 1, since the activation is intermittent, the power consumption of the power supply of the gateway device 200 can be saved. However, when there is little transmission data, there are many cases where there is no transmission even if it is activated.
 次に、送信方法2では、ゲートウェイ装置200の起動制御部240は、定期的な起動はしない。そして、起動制御部240は、第2のネットワークN2からデータを受信するためにゲートウェイ装置200を起動した場合に、ホームチャネルのタイミングまで起動した状態として、データをスマートメータ100に送信した後にスリープ状態とする。この場合、スマートメータ100へのデータ送信まで起動を継続する待ち時間が必要になるが、データ送信しない定期的な起動がなくなるため、消費電力をより節約できる。これは、データが比較的少ない場合に有効である。 Next, in the transmission method 2, the activation control unit 240 of the gateway device 200 does not periodically activate. Then, when the gateway device 200 is activated to receive data from the second network N2, the activation control unit 240 is in a sleep state after transmitting data to the smart meter 100 as being activated until the home channel timing. And In this case, it is necessary to wait for the activation to continue until data transmission to the smart meter 100, but since there is no periodic activation without data transmission, power consumption can be further saved. This is effective when the data is relatively small.
 さらに、送信方法3は、ゲートウェイ装置200の起動制御部240は、定期的な起動をしない点は、送信方法2と同様である。但し、起動制御部240は、第2のネットワークN2からデータを受信するためにゲートウェイ装置200を起動した場合、データ受信後はスリープ状態とする。そして、起動制御部240は、次のホームチャネルのタイミングが来たら再度起動して、データをスマートメータ100に送信した後に再度スリープ状態とする。この場合、スマートメータ100へのデータ送信まで起動を継続する待ち時間も不要になるので、消費電力をより一層節約できる。 Furthermore, the transmission method 3 is the same as the transmission method 2 in that the activation control unit 240 of the gateway device 200 does not periodically activate. However, when the gateway device 200 is activated to receive data from the second network N2, the activation control unit 240 enters a sleep state after receiving the data. Then, the activation control unit 240 activates again when the timing of the next home channel arrives, transmits data to the smart meter 100, and again enters the sleep state. In this case, since it is not necessary to wait until the data is transmitted to the smart meter 100, power consumption can be further saved.
[効果]
(1)本実施形態の通信システムSは、常時電力を供給する電源との第1の接続部110と、外部からの検出データを取得する検出データ取得部120と、検出データ取得部120が取得した検出データを第1のネットワークN1を介して送受信する第1の通信部130と、中継ネットワークN3との接続を行う第1の中継部140と、を有するスマートメータ100を有する。
[effect]
(1) The communication system S of the present embodiment is acquired by the first connection unit 110 with a power supply that constantly supplies power, the detection data acquisition unit 120 that acquires detection data from the outside, and the detection data acquisition unit 120 The smart meter 100 includes a first communication unit 130 that transmits / receives the detected data via the first network N1 and a first relay unit 140 that connects to the relay network N3.
 また、定容量の電源との第2の接続部210と、第2のネットワークN2を介して通信する第2の通信部220と、中継ネットワークN3を介して、第1の中継部140に接続された第2の中継部230と、第2の通信部220及び第2の中継部230を、消費電力が高く通信が可能な起動状態とするか、消費電力が低く通信をしないスリープ状態とするかを制御する起動制御部240と、を有するゲートウェイ装置200を有する。 Further, the second connection unit 210 with a constant capacity power source, the second communication unit 220 communicating via the second network N2, and the first relay unit 140 via the relay network N3 are connected. Whether the second relay unit 230, the second communication unit 220, and the second relay unit 230 are in a start state in which power consumption is high and communication is possible, or in a sleep state in which power consumption is low and communication is not performed And a start-up control unit 240 that controls the gateway device 200.
 さらに、第1の中継部140及び第2の中継部230は、ゲートウェイ装置200とスマートメータ100との間で、常時通信可能な非同期モードで通信を行う非同期通信部141、231と、ゲートウェイ装置200とスマートメータ100との間で、同期信号及び同期確認信号の送受信により、同期の確立及び維持を行う同期制御部143、233と、ゲートウェイ装置200とスマートメータ100との間で、起動状態であり、且つ確立された同期に従った所定のタイミングで通信する同期モードで通信を行う同期通信部144、234と、を有する。 Further, the first relay unit 140 and the second relay unit 230 include the asynchronous communication units 141 and 231 that perform communication in the asynchronous mode in which communication is always possible between the gateway device 200 and the smart meter 100, and the gateway device 200. The synchronization control units 143 and 233 that establish and maintain synchronization by transmitting and receiving a synchronization signal and a synchronization confirmation signal between the gateway device 200 and the smart meter 100 are in an activated state. And synchronous communication units 144 and 234 that perform communication in a synchronous mode in which communication is performed at a predetermined timing according to established synchronization.
 このため、ゲートウェイ装置200は、起動制御部240がスリープ状態のときには通信をせずに、起動状態の時にスマートメータと同期モードで通信を行うので、定容量の電源の消費電力を節約しつつ、常時起動しているとは限らないゲートウェイ装置200と、常時起動しているスマートメータ100との通信を確保できる。 For this reason, the gateway device 200 does not communicate when the activation control unit 240 is in the sleep state, but communicates with the smart meter in the synchronous mode when it is in the activation state, thus saving power consumption of a constant capacity power supply, Communication between the gateway device 200 that is not always activated and the smart meter 100 that is always activated can be secured.
(2)第1の中継部140及び第2の中継部230における同期通信部144、234は、確立された同期に従った所定の間隔で開く間欠ウィンドウによって通信を行う間欠通信部144a、234aを有する。 (2) The synchronous communication units 144 and 234 in the first relay unit 140 and the second relay unit 230 have intermittent communication units 144a and 234a that perform communication using intermittent windows that are opened at predetermined intervals according to the established synchronization. Have.
 このように、間欠ウィンドウによって通信を行うので、データの大小にかかわらず、送受信の機会を必ず確保できるとともに、間欠ウィンドウ以外の時間をスリープ状態として消費電力を節約できる。 As described above, since communication is performed using the intermittent window, transmission / reception opportunities can be ensured regardless of the size of the data, and power consumption can be saved by setting the time other than the intermittent window to the sleep state.
(3)第1の中継部140及び前記第2の中継部230における同期通信部144、234は、1回の間欠ウィンドウで通信できる容量を超える情報を、まとめて送受信する拡張ウィンドウによって通信を行う拡張通信部144b、234bを有する。 (3) The synchronous communication units 144 and 234 in the first relay unit 140 and the second relay unit 230 perform communication using an extended window that collectively transmits and receives information exceeding the capacity that can be communicated in one intermittent window. The extended communication units 144b and 234b are included.
 このため、間欠ウィンドウによって送受信の機会を確保しつつ、大容量の情報については、拡張ウィンドウによって速やかに送受信することができる。 For this reason, it is possible to quickly transmit and receive large-capacity information through the extended window while securing an opportunity for transmission and reception through the intermittent window.
(4)第1の中継部140及び第2の中継部230における非同期通信部141は、第1の中継部140の同期制御部143が同期確認信号を受信できない場合又は第2の中継部230の同期制御部233が同期信号を受信できない場合に、非同期モードでの通信を行う。 (4) The asynchronous communication unit 141 in the first relay unit 140 and the second relay unit 230 is used when the synchronization control unit 143 of the first relay unit 140 cannot receive the synchronization confirmation signal or the second relay unit 230 When the synchronization control unit 233 cannot receive the synchronization signal, communication in the asynchronous mode is performed.
 このため、同期が確立できない場合に、互いに常時通信可能な状態として、必要な通信を確保することができる。 For this reason, when synchronization cannot be established, necessary communication can be ensured as a state in which communication with each other is always possible.
(5)同期制御部143、233は、次回の間欠ウィンドウの開始タイミングを、同期信号の送信時刻又は受信時刻に、所定のオフセット値を加算又は減算して補正する補正部143d、233dを有する。 (5) The synchronization control units 143 and 233 include correction units 143d and 233d that correct the start timing of the next intermittent window by adding or subtracting a predetermined offset value to the transmission time or reception time of the synchronization signal.
 このため、クロックのずれや送受信する情報量等、種々の要素を考慮して、開始タイミングを補正することにより、開始タイミングを正確に設定することができる。 For this reason, the start timing can be accurately set by correcting the start timing in consideration of various factors such as a clock shift and the amount of information to be transmitted and received.
(6)第1の中継部140における同期制御部143は、同期信号に、間欠ウィンドウの開始タイミング、間欠ウィンドウの継続時間、間欠ウィンドウを繰り返す回数を含めて設定する同期設定部143aと、同期設定部143aにより設定された設定内容に基いて、ゲートウェイ装置200との同期を確立する同期確立部143bと、を有する。 (6) The synchronization control unit 143 in the first relay unit 140 includes a synchronization setting unit 143a that sets the synchronization signal including the start timing of the intermittent window, the duration of the intermittent window, and the number of times the intermittent window is repeated. A synchronization establishment unit 143b that establishes synchronization with the gateway device 200 based on the setting content set by the unit 143a.
 このため、スマートメータ100側からゲートウェイ装置200側へ、同期に必要な最低限の情報を通知することにより、同期を確立することができる。 Therefore, synchronization can be established by notifying the smart meter 100 side to the gateway device 200 side of minimum information necessary for synchronization.
(7)第1の中継部140における同期制御部143は、同期信号に対する同期確認信号が受信できなかった間欠ウィンドウと同一の間欠ウィンドウ内で、同期信号の再送が可能な場合には、当該間欠ウィンドウ内で再送し、当該間欠ウィンドウを経過した場合には、次回以降の間欠ウィンドウで再送を行う再送制御部143cを有する。 (7) The synchronization control unit 143 in the first relay unit 140, when the synchronization signal can be retransmitted in the same intermittent window as the intermittent window in which the synchronization confirmation signal for the synchronization signal could not be received, A retransmission control unit 143c that performs retransmission in the next and subsequent intermittent windows when retransmission is performed within the window and the intermittent window has passed.
 このため、送信の機会を有効利用して、高速に且つ確実にデータを送信することができる。 For this reason, it is possible to transmit data at high speed and reliably by effectively using the opportunity of transmission.
(8)ゲートウェイ装置230は、起動制御部240が、第2の通信部220が情報を受信するために起動状態とした場合に、所定のタイミングまで受信した情報を蓄積する蓄積部260を有する。 (8) The gateway device 230 includes an accumulation unit 260 that accumulates the received information until a predetermined timing when the activation control unit 240 is activated in order for the second communication unit 220 to receive information.
 このため、受信した情報を蓄積しておき、状況に応じた種々のタイミングで情報を送信することができる。 For this reason, it is possible to store the received information and transmit the information at various timings according to the situation.
(9)ゲートウェイ装置230は、起動制御部240が、第2の通信部220が情報を受信するために起動状態としてから、次回の所定のタイミングが到来して蓄積部260が蓄積した情報を送信するまで、継続して起動状態とするように、起動制御部240による起動条件を設定する起動設定部250を有する。 (9) The gateway device 230 transmits the information accumulated by the accumulation unit 260 at the next predetermined timing after the activation control unit 240 enters the activated state so that the second communication unit 220 receives the information. Until then, the activation setting unit 250 for setting activation conditions by the activation control unit 240 is provided so as to keep the activation state.
 このため、蓄積した情報がある場合のみ、次回の所定のタイミングを待って起動して送信することにより、消費電力を節約できる。 Therefore, only when there is accumulated information, it is possible to save power consumption by starting and transmitting after waiting for the next predetermined timing.
(10)ゲートウェイ装置230は、起動制御部240が、第2の通信部220が情報を受信するために起動状態としてから、次回の所定のタイミングが到来するまでスリープ状態として、当該タイミングが到来した場合に起動状態として蓄積部260が蓄積した情報を送信するように、起動制御部240による起動条件を設定する起動設定部250を有する。 (10) The gateway device 230 is in the sleep state until the next predetermined timing comes after the activation control unit 240 is activated so that the second communication unit 220 receives the information, and the timing has arrived. In this case, the activation setting unit 250 sets activation conditions by the activation control unit 240 so that the information accumulated by the accumulation unit 260 is transmitted as the activation state.
 このため、データを受信して蓄積部に蓄積したデータを、それに次ぐ所定のタイミングが到来するまでスリープ状態とするので、消費電力をより一層節約できる。 Therefore, since the data received and stored in the storage unit is put into a sleep state until a predetermined timing comes next, power consumption can be further saved.
(11)第2の中継部230は、複数のチャネルのうち、周期的に到来する1つのチャネルを、通信に使用するチャネルとして設定するチャネル設定部232を有する。 (11) The second relay unit 230 includes a channel setting unit 232 that sets, as a channel used for communication, one channel that periodically arrives among a plurality of channels.
 このため、スマートメータ100が、第1の通信部130により、複数のチャネルを周期的に利用してデータを送受信している場合に、第2の中継部230も、これに合わせてウィンドウを制御することにより、異なるネットワーク同士の整合性を図ることができる。 Therefore, when the smart meter 100 uses the first communication unit 130 to transmit and receive data periodically using a plurality of channels, the second relay unit 230 also controls the window accordingly. By doing so, consistency between different networks can be achieved.
[他の実施形態]
 本実施形態は、上記の態様には限定されない。
(1)上記の実施形態は、電力用のスマートメータの適用例である。但し、スマートメータ及びゲートウェイ装置が送受信する情報は、上記で例示したものには限定されない。
[Other Embodiments]
The present embodiment is not limited to the above aspect.
(1) The above embodiment is an application example of a smart meter for electric power. However, the information transmitted / received by the smart meter and the gateway device is not limited to the information exemplified above.
(2)情報の送受信用のネットワークは、情報の送受信が可能なネットワークであれば、現在又は将来において利用可能なあらゆるネットワークを利用可能である。上記の通信方式、プロトコルは例示であり、有線か無線か、どのような通信方式、プロトコルを用いるかは問わない。 (2) As a network for transmitting and receiving information, any network that can be used at present or in the future can be used as long as the network can transmit and receive information. The above communication methods and protocols are examples, and it does not matter what communication method or protocol is used, whether wired or wireless.
(3)上記の処理手順は一例であり、本実施形態の技術思想に反しない限り、処理の省略、追加、順序の変更は可能である。また、実施形態に用いられる情報の具体的な内容、値は自由であり、特定の内容、数値には限定されない。 (3) The above processing procedure is an example, and the processing can be omitted, added, or changed in order as long as it is not contrary to the technical idea of the present embodiment. In addition, the specific contents and values of the information used in the embodiment are free and are not limited to specific contents and numerical values.
(4)実施形態において、値に対する大小判断、一致不一致の判断等において、以上、以下として値を含めるように判断するか、より大きい、上回る、超える、より小さい、下回るとして値を含めないように判断するかの設定も自由である。 (4) In the embodiment, in the determination of the magnitude of the value, the determination of mismatch, etc., the above is determined to include the value as follows, or the value is not included as greater, greater than, greater than, less than, or less than It is free to set whether to judge.
(5)以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。 (5) Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalent scope thereof.
100 スマートメータ
110 第1の接続部
120 検出データ取得部
130 第1の通信部
140 第1の中継部
141 非同期通信部
142 チャネル設定部
143 同期制御部
143a 同期設定部
143b 同期確立部
143c 再送制御部
143d 補正部
144 同期通信部
144a 間欠通信部
144b 拡張通信部
200 ゲートウェイ
210 第2の接続部
220 第2の通信部
230 第2の中継部
231 非同期通信部
232 チャネル設定部
233 同期制御部
233a 同期設定部
233b 同期確立部
233c 再送制御部
233d 補正部
234 同期通信部
234a 間欠通信部
234b 拡張通信部
240 起動制御部
250 起動設定部
260 蓄積部
400 WAN
500 HES
600 MDMS
700 HEMS
N1 第1のネットワーク
N2 第2のネットワーク
N3 中継ネットワーク
S 通信システム
100 smart meter 110 first connection unit 120 detection data acquisition unit 130 first communication unit 140 first relay unit 141 asynchronous communication unit 142 channel setting unit 143 synchronization control unit 143a synchronization setting unit 143b synchronization establishment unit 143c retransmission control unit 143d Correction unit 144 Synchronous communication unit 144a Intermittent communication unit 144b Extended communication unit 200 Gateway 210 Second connection unit 220 Second communication unit 230 Second relay unit 231 Asynchronous communication unit 232 Channel setting unit 233 Synchronization control unit 233a Synchronization setting Unit 233b synchronization establishment unit 233c retransmission control unit 233d correction unit 234 synchronous communication unit 234a intermittent communication unit 234b extended communication unit 240 activation control unit 250 activation setting unit 260 accumulation unit 400 WAN
500 HES
600 MDMS
700 HEMS
N1 First network N2 Second network N3 Relay network S Communication system

Claims (15)

  1.  常時電力を供給する電源との接続を行う第1の接続部と、
     外部からの検出データを取得する検出データ取得部と、
     前記検出データ取得部が取得した検出データを第1のネットワークを介して送受信する第1の通信部と、
     中継ネットワークとの接続を行う第1の中継部と、
     を有するスマートメータと、
     定容量の電源との接続を行う第2の接続部と、
     第2のネットワークを介して通信する第2の通信部と、
     前記中継ネットワークを介して、前記第1の中継部に接続された第2の中継部と、
     前記第2の通信部及び前記第2の中継部を、消費電力が高く通信が可能な起動状態とするか、消費電力が低く通信をしないスリープ状態とするかを制御する起動制御部と、
     を有するゲートウェイ装置と、
     を有し、
     前記第1の中継部及び前記第2の中継部は、
     前記ゲートウェイ装置と前記スマートメータとの間で常時通信可能な非同期モードで通信を行う非同期通信部と、
     前記ゲートウェイ装置と前記スマートメータとの間で、同期信号及び同期確認信号の送受信により、同期の確立及び維持を行う同期制御部と、
     前記ゲートウェイ装置と前記スマートメータとの間で、前記起動状態であり、且つ確立された同期に従った所定のタイミングで通信する同期モードで通信を行う同期通信部と、
     を有する通信システム。
    A first connection for connection to a power supply that constantly supplies power;
    A detection data acquisition unit for acquiring detection data from the outside;
    A first communication unit that transmits and receives detection data acquired by the detection data acquisition unit via a first network;
    A first relay unit for connecting to a relay network;
    A smart meter having
    A second connection for connecting to a constant capacity power supply;
    A second communication unit that communicates via a second network;
    A second relay unit connected to the first relay unit via the relay network;
    An activation control unit that controls whether the second communication unit and the second relay unit are in an activated state in which power consumption is high and communication is possible, or in a sleep state in which power consumption is low and communication is not performed;
    A gateway device having
    Have
    The first relay unit and the second relay unit are
    An asynchronous communication unit that performs communication in an asynchronous mode capable of continuous communication between the gateway device and the smart meter;
    A synchronization control unit that establishes and maintains synchronization between the gateway device and the smart meter by transmitting and receiving a synchronization signal and a synchronization confirmation signal;
    A synchronous communication unit that communicates in a synchronous mode in which the gateway device and the smart meter are in the activated state and communicate at a predetermined timing in accordance with established synchronization;
    A communication system.
  2.  前記第1の中継部及び前記第2の中継部における同期通信部は、確立された同期に従った所定の間隔で開く間欠ウィンドウによって通信を行う間欠通信部を有する請求項1記載の通信システム。 The communication system according to claim 1, wherein the synchronous communication unit in the first relay unit and the second relay unit includes an intermittent communication unit that performs communication by an intermittent window that opens at predetermined intervals according to established synchronization.
  3.  前記第1の中継部及び前記第2の中継部における同期通信部は、1回の間欠ウィンドウで通信できる容量を超えるデータを、まとめて送受信する拡張ウィンドウによって通信を行う拡張通信部を有する請求項2記載の通信システム。 The synchronous communication unit in the first relay unit and the second relay unit includes an extended communication unit that performs communication using an extended window that collectively transmits and receives data exceeding a capacity that can be communicated in one intermittent window. 2. The communication system according to 2.
  4.  前記第1の中継部及び前記第2の中継部における前記非同期通信部は、前記第1の中継部の同期制御部が同期確認信号を受信できない場合又は前記第2の中継部の同期制御部が同期信号を受信できない場合に、非同期モードでの通信を行う請求項1~3のいずれか1項に記載の通信システム。 The asynchronous communication unit in the first relay unit and the second relay unit is configured such that the synchronization control unit of the first relay unit cannot receive a synchronization confirmation signal or the synchronization control unit of the second relay unit The communication system according to any one of claims 1 to 3, wherein communication in an asynchronous mode is performed when a synchronization signal cannot be received.
  5.  前記同期制御部は、次回の間欠ウィンドウの開始タイミングを、前記同期信号の送信時刻又は受信時刻に、所定のオフセット値を加算又は減算して補正する補正部を有する請求項2又は請求項3記載の通信システム。 The said synchronous control part has a correction | amendment part which corrects the start timing of the next intermittent window by adding or subtracting a predetermined offset value to the transmission time or reception time of the said synchronous signal. Communication system.
  6.  常時電力を供給する電源との接続を行う第1の接続部と、
     外部からの検出データを取得する検出データ取得部と、
     前記検出データ取得部が取得した検出データを第1のネットワークを介して送受信する第1の通信部と、
     中継ネットワークとの接続を行う第1の中継部と、
     を有し、
     前記第1の中継部は、
     前記中継ネットワークを介して、ゲートウェイ装置と常時データを通信可能な非同期モードで通信を行う非同期通信部と、
     同期信号及び同期確認信号の送受信により、前記ゲートウェイ装置と同期の確立及び維持を行う同期制御部と、
     前記ゲートウェイ装置との間で、前記起動状態であり、且つ確立された同期に従った所定のタイミングで通信する同期モードで通信を行う同期通信部と、
     を有するスマートメータ。
    A first connection for connection to a power supply that constantly supplies power;
    A detection data acquisition unit for acquiring detection data from the outside;
    A first communication unit that transmits and receives detection data acquired by the detection data acquisition unit via a first network;
    A first relay unit for connecting to a relay network;
    Have
    The first relay unit is
    An asynchronous communication unit that performs communication in an asynchronous mode capable of always communicating data with the gateway device via the relay network;
    A synchronization control unit that establishes and maintains synchronization with the gateway device by transmitting and receiving a synchronization signal and a synchronization confirmation signal;
    A synchronous communication unit that communicates with the gateway device in a synchronous mode that is in the activated state and communicates at a predetermined timing according to the established synchronization;
    Having a smart meter.
  7.  前記同期通信部は、確立された同期に従った所定の間隔で開く間欠ウィンドウによって通信を行う間欠通信部を有し、
     前記同期制御部は、同期信号に、間欠ウィンドウの開始タイミング、間欠ウィンドウの継続時間、間欠ウィンドウを繰り返す回数を含めて設定する同期設定部と、
     前記同期設定部により設定された設定内容に基いて、前記ゲートウェイ装置との同期を確立する同期確立部と、
     を有する請求項6記載のスマートメータ。
    The synchronous communication unit has an intermittent communication unit that performs communication by an intermittent window that opens at predetermined intervals according to established synchronization,
    The synchronization control unit is configured to set the synchronization signal including the start timing of the intermittent window, the duration of the intermittent window, and the number of times the intermittent window is repeated,
    A synchronization establishment unit that establishes synchronization with the gateway device based on the setting content set by the synchronization setting unit;
    The smart meter according to claim 6.
  8.  前記同期制御部は、同期信号に対する同期確認信号が受信できなかった間欠ウィンドウと同一の間欠ウィンドウ内で、同期信号の再送が可能な場合には、当該間欠ウィンドウ内で再送し、当該間欠ウィンドウを経過した場合には、次回以降の間欠ウィンドウで再送を行う再送制御部を有する請求項6又は請求項7記載のスマートメータ。 If the synchronization signal can be retransmitted within the same intermittent window as the intermittent window in which the synchronization confirmation signal for the synchronization signal could not be received, the synchronization control unit retransmits the intermittent window and transmits the intermittent window. The smart meter according to claim 6 or 7, further comprising a retransmission control unit configured to perform retransmission in an intermittent window from the next time onward.
  9.  定容量の電源との接続を行う第2の接続部と、
     第2のネットワークを介して通信する第2の通信部と、
     前記中継ネットワークを介して、スマートメータに接続された第2の中継部と、
     前記第2の通信部及び前記第2の中継部を、消費電力が高く通信が可能な起動状態とするか、消費電力が低く通信をしないスリープ状態とするかを制御する起動制御部と、
     を有し、
     前記第2の中継部は、
     前記中継ネットワークを介して、前記スマートメータと常時通信可能な非同期モードで通信を行う非同期通信部と、
     前記スマートメータとの間で、同期信号及び同期確認信号の送受信により、同期の確立及び維持を行う同期制御部と、
     前記スマートメータとの間で、前記起動状態であり、且つ確立された同期に従った所定のタイミングで通信する同期モードで通信を行う同期通信部と、
     を有するゲートウェイ装置。
    A second connection for connecting to a constant capacity power supply;
    A second communication unit that communicates via a second network;
    A second relay unit connected to the smart meter via the relay network;
    An activation control unit that controls whether the second communication unit and the second relay unit are in an activated state in which power consumption is high and communication is possible, or in a sleep state in which power consumption is low and communication is not performed;
    Have
    The second relay unit is
    An asynchronous communication unit that communicates in an asynchronous mode capable of always communicating with the smart meter via the relay network;
    A synchronization control unit that establishes and maintains synchronization by transmitting and receiving a synchronization signal and a synchronization confirmation signal to and from the smart meter;
    A synchronous communication unit that communicates with the smart meter in a synchronous mode that is in the activated state and communicates at a predetermined timing according to the established synchronization;
    A gateway device.
  10.  前記起動制御部が、前記第2の通信部が情報を受信するために起動状態とした場合に、前記所定のタイミングまで受信した情報を蓄積する蓄積部を有する請求項9記載のゲートウェイ装置。 10. The gateway apparatus according to claim 9, wherein the activation control unit includes an accumulation unit that accumulates information received until the predetermined timing when the second communication unit is activated to receive information.
  11.  前記起動制御部が、前記第2の通信部が情報を受信するために起動状態としてから、次回の所定のタイミングが到来して前記蓄積部が蓄積した情報を送信するまで、継続して起動状態とするように、起動制御部による起動条件を設定する起動設定部を有する請求項10記載のゲートウェイ装置。 The activation control unit continuously activates until the second predetermined communication timing is reached after the second communication unit receives the information until the next predetermined timing arrives and the accumulation unit transmits the accumulated information. The gateway device according to claim 10, further comprising an activation setting unit that sets an activation condition by the activation control unit.
  12.  前記起動制御部が、前記第2の通信部が情報を受信するために起動状態としてから、次回の所定のタイミングが到来するまでスリープ状態として、当該タイミングが到来した場合に起動状態として前記蓄積部が蓄積した情報を送信するように、起動制御部による起動条件を設定する起動設定部を有する請求項10記載の通信システム。 The activation control unit enters the sleep state until the next predetermined timing comes after the second communication unit is activated to receive information, and the storage unit is activated when the timing arrives. The communication system according to claim 10, further comprising an activation setting unit configured to set an activation condition by the activation control unit so as to transmit the accumulated information.
  13.  前記第2の中継部は、複数のチャネルのうち、周期的に到来する1つのチャネルを、通信に使用するチャネルとして設定するチャネル設定部を有する請求項9~12のいずれか1項に記載のゲートウェイ装置。 The channel relay unit according to any one of claims 9 to 12, wherein the second relay unit includes a channel setting unit that sets, as a channel used for communication, one channel that periodically arrives among a plurality of channels. Gateway device.
  14.  常時電力を供給する電源に接続との接続を行う第1の接続部と、
     外部からの検出データを取得する検出データ取得部と、
     前記検出データ取得部が取得したデータを第1のネットワークを介して送受信する第1の通信部と、
     中継ネットワークとの接続を行う第1の中継部と、
     を有するコンピュータに、
     前記中継ネットワークを介して、ゲートウェイ装置と常時データを通信可能な非同期モードで通信を行う非同期通信処理と、
     同期信号及び同期確認信号の送受信により、前記ゲートウェイ装置と同期の確立及び維持を行う同期制御処理と、
     前記ゲートウェイ装置との間で、前記起動状態であり、且つ確立された同期に従った所定のタイミングで通信する同期モードで通信を行う同期通信処理と、
     を実行させる通信プログラム。
    A first connection for connecting to a power supply that constantly supplies power;
    A detection data acquisition unit for acquiring detection data from the outside;
    A first communication unit that transmits and receives data acquired by the detection data acquisition unit via a first network;
    A first relay unit for connecting to a relay network;
    On a computer with
    Asynchronous communication processing for performing communication in an asynchronous mode capable of always communicating data with the gateway device via the relay network;
    A synchronization control process for establishing and maintaining synchronization with the gateway device by transmitting and receiving a synchronization signal and a synchronization confirmation signal;
    Synchronous communication processing for communicating with the gateway device in a synchronous mode that is in the activated state and communicates at a predetermined timing according to established synchronization;
    Communication program that executes
  15.  定容量の電源との接続を行う第2の接続部と、
     第2のネットワークを介して通信する第2の通信部と、
     前記中継ネットワークを介して、スマートメータに接続された第2の中継部と、
     前記第2の通信部及び前記第2の中継部を、消費電力が高く通信が可能な起動状態とするか、消費電力が低く通信をしないスリープ状態とするかを制御する起動制御部と、
     を有するコンピュータに、
     前記中継ネットワークを介して、スマートメータと常時通信可能な非同期モードで通信を行う非同期通信部と、
     前記スマートメータとの間で、同期信号及び同期確認信号の送受信により、同期の確立及び維持を行う同期制御部と、
     前記スマートメータとの間で、前記起動状態であり、且つ確立された同期に従った所定のタイミングで通信する同期モードで通信を行う同期通信部と、
     を有する通信プログラム。
    A second connection for connecting to a constant capacity power supply;
    A second communication unit that communicates via a second network;
    A second relay unit connected to the smart meter via the relay network;
    An activation control unit that controls whether the second communication unit and the second relay unit are in an activated state in which power consumption is high and communication is possible, or in a sleep state in which power consumption is low and communication is not performed;
    On a computer with
    An asynchronous communication unit that performs communication in an asynchronous mode capable of always communicating with the smart meter via the relay network;
    A synchronization control unit that establishes and maintains synchronization by transmitting and receiving a synchronization signal and a synchronization confirmation signal to and from the smart meter;
    A synchronous communication unit that communicates with the smart meter in a synchronous mode that is in the activated state and communicates at a predetermined timing according to the established synchronization;
    A communication program.
PCT/JP2016/062009 2015-05-26 2016-04-14 Communication system, smart meter, gateway device, and communication program WO2016189995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-106017 2015-05-26
JP2015106017A JP6570879B2 (en) 2015-05-26 2015-05-26 Communication system, smart meter, gateway device, and communication program

Publications (1)

Publication Number Publication Date
WO2016189995A1 true WO2016189995A1 (en) 2016-12-01

Family

ID=57393963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062009 WO2016189995A1 (en) 2015-05-26 2016-04-14 Communication system, smart meter, gateway device, and communication program

Country Status (2)

Country Link
JP (1) JP6570879B2 (en)
WO (1) WO2016189995A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3579624A1 (en) * 2018-06-08 2019-12-11 Diehl Metering Systems GmbH Method for operating a wireless transmission system, and arrangement of a wireless transmission system
CN110581756A (en) * 2018-06-08 2019-12-17 代傲表计系统有限公司 Method for operating a radio transmission system and device for a radio transmission system
JP2020014183A (en) * 2018-07-21 2020-01-23 ソフトバンク株式会社 Communication system
CN112703744A (en) * 2018-11-08 2021-04-23 中国电力株式会社 Information processing apparatus and abnormality visualization system
US20220086778A1 (en) * 2020-09-16 2022-03-17 Kabushiki Kaisha Toshiba Electronic apparatus, system, and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6891512B2 (en) * 2017-01-26 2021-06-18 富士フイルムビジネスイノベーション株式会社 Information processing equipment and communication system
KR101966427B1 (en) * 2017-11-15 2019-08-13 한전케이디엔주식회사 Detachable power monitoring apparatus for home appliances
JP6614403B1 (en) * 2018-07-23 2019-12-04 三菱電機株式会社 COMMUNICATION DEVICE, COMMUNICATION SYSTEM, AND SYNCHRONIZATION CONTROL METHOD
JP7107335B2 (en) * 2020-06-25 2022-07-27 沖電気工業株式会社 Communication device, communication program and communication method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923185A (en) * 1995-07-05 1997-01-21 Tokyo Gas Co Ltd Radio communication system
JPH0936969A (en) * 1995-07-14 1997-02-07 Matsushita Electric Ind Co Ltd Radio communication system
JP2002150461A (en) * 2000-11-10 2002-05-24 Toyo Keiki Co Ltd Wireless device for automatic meter-reading system
JP2009290718A (en) * 2008-05-30 2009-12-10 Sharp Corp Wireless data communication system
JP2012010143A (en) * 2010-06-25 2012-01-12 Mega Chips Corp Terminal device, communication system, and operation method of terminal device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923185A (en) * 1995-07-05 1997-01-21 Tokyo Gas Co Ltd Radio communication system
JPH0936969A (en) * 1995-07-14 1997-02-07 Matsushita Electric Ind Co Ltd Radio communication system
JP2002150461A (en) * 2000-11-10 2002-05-24 Toyo Keiki Co Ltd Wireless device for automatic meter-reading system
JP2009290718A (en) * 2008-05-30 2009-12-10 Sharp Corp Wireless data communication system
JP2012010143A (en) * 2010-06-25 2012-01-12 Mega Chips Corp Terminal device, communication system, and operation method of terminal device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3579624A1 (en) * 2018-06-08 2019-12-11 Diehl Metering Systems GmbH Method for operating a wireless transmission system, and arrangement of a wireless transmission system
CN110581756A (en) * 2018-06-08 2019-12-17 代傲表计系统有限公司 Method for operating a radio transmission system and device for a radio transmission system
US10826675B2 (en) 2018-06-08 2020-11-03 Diehl Metering Systems Gmbh Method for operating a radio transmission system, and arrangement of a radio transmission system
EP4187992A1 (en) * 2018-06-08 2023-05-31 Diehl Metering Systems GmbH Method for operating a radio transmission system and arrangement of a radio transmission system
CN110581756B (en) * 2018-06-08 2024-04-09 代傲表计系统有限公司 Method for operating a radio transmission system and device for a radio transmission system
JP2020014183A (en) * 2018-07-21 2020-01-23 ソフトバンク株式会社 Communication system
CN112703744A (en) * 2018-11-08 2021-04-23 中国电力株式会社 Information processing apparatus and abnormality visualization system
CN112703744B (en) * 2018-11-08 2023-12-29 中国电力株式会社 Information processing apparatus and abnormality visualization system
US20220086778A1 (en) * 2020-09-16 2022-03-17 Kabushiki Kaisha Toshiba Electronic apparatus, system, and method
US11678286B2 (en) * 2020-09-16 2023-06-13 Kabushiki Kaisha Toshiba Electronic apparatus, system, and method

Also Published As

Publication number Publication date
JP6570879B2 (en) 2019-09-04
JP2016220155A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6570879B2 (en) Communication system, smart meter, gateway device, and communication program
US8588119B2 (en) Asynchronous low-power multi-channel media access control
TWI487329B (en) Operation method in heterogenous networks and gateway and wireless communication device using the same
US8619789B2 (en) Timing re-synchronization with reduced communication energy in frequency hopping communication networks
ES2455547T3 (en) Data transmission device and procedure for the activation of a data transmission
US9204465B2 (en) Wireless communication system and wireless communication device
CN101557606B (en) Media access control (MAC) method applicable to wireless sensor network
KR101174406B1 (en) A Low Power MAC Architecture for Wireless Sensor Network with Wireless Power Transfer
Suzuki et al. Low-power, end-to-end reliable collection using glossy for wireless sensor networks
Liu et al. LEB-MAC: Load and energy balancing MAC protocol for energy harvesting powered wireless sensor networks
US20140105063A1 (en) Duty cycle control method and apparatus to mitigate latency for duty cycle-based wireless low-power mac
Mazloum et al. DCW-MAC: An energy efficient medium access scheme using duty-cycled low-power wake-up receivers
KR101643070B1 (en) Radio communication system, transmission-source radio communication apparatus, destination radio communication apparatus, and radio communication method
WO2015085793A1 (en) Low power consumption networking method of 802.15.4e wireless device that takes power based on 4-20ma loop
Liendo et al. Efficient bluetooth low energy operation for low duty cycle applications
JP5409191B2 (en) Wireless communication method and wireless communication device
Park et al. RIX-MAC: an energy-efficient receiver-initiated wakeup MAC protocol for WSNs
CN104780597A (en) Low-power communication receiving and sending control method of wireless security protection and monitoring system
CN109413706B (en) Method for realizing synchronous RM-MAC protocol of reserved multi-hop node
Panta et al. Efficient asynchronous low power listening for wireless sensor networks
KR101046991B1 (en) How to Improve Time Synchronization Performance of Superframe Structure
CN102917467B (en) Asynchronous reservation channel access method of wireless sensor network
Brzozowski et al. Completely distributed low duty cycle communication for long-living sensor networks
KR101118788B1 (en) Wireless communication system using multiple wakeup frames
Zhao et al. Providing reliable data services in hybrid wsns with transmit-only nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799703

Country of ref document: EP

Kind code of ref document: A1