WO2016189727A1 - Travel control device and method - Google Patents

Travel control device and method Download PDF

Info

Publication number
WO2016189727A1
WO2016189727A1 PCT/JP2015/065395 JP2015065395W WO2016189727A1 WO 2016189727 A1 WO2016189727 A1 WO 2016189727A1 JP 2015065395 W JP2015065395 W JP 2015065395W WO 2016189727 A1 WO2016189727 A1 WO 2016189727A1
Authority
WO
WIPO (PCT)
Prior art keywords
travel
vehicle
target
travel area
avoidance target
Prior art date
Application number
PCT/JP2015/065395
Other languages
French (fr)
Japanese (ja)
Inventor
教彰 藤木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/065395 priority Critical patent/WO2016189727A1/en
Publication of WO2016189727A1 publication Critical patent/WO2016189727A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle travel control apparatus and method.
  • a target route is generated using multiple types of maps (wide area map, middle area map, local map) with different recognition ranges for the purpose of suppressing the computational load required to generate the target path.
  • maps wide area map, middle area map, local map
  • the target route may not be generated unless the travel area is expanded.
  • the host vehicle since the travel area is not expanded, the host vehicle may have to stop before the avoidance target.
  • the problem to be solved by the present invention is to provide a travel control device and method capable of generating a target route that travels while avoiding an avoidance target regardless of the relationship between the set travel region and the avoidance target. .
  • the present invention sets a reference travel region in which the host vehicle can travel, and when there is an avoidance target to be avoided in the reference travel region, generates a travel region that extends the reference travel region around the avoidance target,
  • the above-described problem is solved by generating a target route in the travel area.
  • the avoidance target is avoided regardless of the relationship between the set travel area and the avoidance target. It is possible to generate a target route to be generated.
  • FIG. 4 is a plan view showing a travel scene in which the line-of-sight distance from the host vehicle in FIG. 3 is L m [m]. It is a flowchart for demonstrating the process which expands the reference
  • FIG. 4 is a plan view showing a travel scene in which the line-of-sight distance from the host vehicle in FIG. 3 is L m [m].
  • FIG. 4 is a plan view illustrating a relationship among the own vehicle, the avoidance target, and the reference travel area in FIG. 3. It is a graph which shows the relationship between the speed of the own vehicle, and the distance of the own vehicle and an avoidance object. It is a graph which shows the relationship between the speed of the own vehicle which does not give a passenger
  • FIG. 2 is a plan view showing a traveling scene in which the relative distance between the host vehicle of FIG. 1 and another vehicle is L 0 [m]. It is a flowchart for demonstrating the process which expands the reference
  • Recognition distance from the vehicle of FIG. 1 is a plan view showing a running scene as a L 1 [m].
  • FIG. 3 is a plan view for explaining processing executed by the control unit in FIG. 2 when the host vehicle in FIG. 1 travels in an overtaking prohibited lane. It is a functional block diagram of the control apparatus which concerns on 2nd Embodiment of this invention. It is a flowchart for demonstrating the production
  • a vehicle travel control apparatus for automatically driving or driving support a vehicle according to a target route generated by an input of a driver.
  • the control is started according to the driver's input, and the vehicle is driven according to the target route without the driver's accelerator operation, brake operation, and steering wheel operation.
  • the automatic driving control or driving support control is stopped or temporarily interrupted, and various operations by the driver are given priority.
  • FIG. 1 is a plan view showing a hardware configuration of a vehicle 1 to which a travel control device according to a first embodiment of the present invention is applied.
  • a vehicle 1 includes a GPS (Global Positioning System) receiver 2, a navigation unit 3, a vehicle speed sensor 4, a control device 100, a power train controller 6, an engine / drive system 7, A brake controller 8, a brake unit 9, a yaw rate sensor 10, an acceleration sensor 11, a camera 12A, and a steering motor controller 13 are provided.
  • GPS Global Positioning System
  • the GPS receiver 2 detects the absolute position coordinates (latitude / longitude) of the host vehicle and transmits a reception signal to the navigation unit 3 and the control device 100.
  • the navigation unit 3 includes a map database 5 (see FIG. 2), an information processing device, and a display device.
  • the map database 5 also includes road shape and slope information.
  • the information processing apparatus sets a travel route from the current position to the destination and displays it on the display device.
  • the information processing apparatus transmits travel route information to the control apparatus 100.
  • the vehicle speed sensor 4 measures the vehicle speed of the host vehicle and transmits a measurement signal to the control device 100.
  • a rotary encoder attached to a wheel can be used as the vehicle speed sensor 4. This rotary encoder measures the vehicle speed based on a pulse signal generated in proportion to the rotation speed of the wheel.
  • the control device 100 is an integrated circuit such as a microprocessor, and includes an A / D conversion circuit, a D / A conversion circuit, a central processing unit (CPU, Central Processing Unit), a ROM (Read Only Memory), and a RAM (Read Access Memory). ) Etc.
  • the control device 100 processes information input from sensors such as an accelerator pedal sensor and a brake pedal sensor in accordance with a program stored in a ROM to calculate a target vehicle speed, and calculates a required driving force according to the target vehicle speed as a powertrain. While transmitting to the controller 6, the required braking force according to the target vehicle speed is transmitted to the brake controller 8.
  • the control device 100 processes the steering angle information input from the steering angle sensor according to a program stored in the ROM to calculate a target steering angle, and supplies the steering amount corresponding to the target steering angle to the steering motor controller 13. Send.
  • the power train controller 6 controls the engine / drive system 7 so as to realize the required driving force transmitted from the control device 100.
  • vehicle provided only with an engine (internal combustion engine) as a travel drive source was taken as an example, an electric vehicle (including a fuel cell vehicle) using only an electric motor as a travel drive source, or a combination of an engine and an electric motor. You may apply to the hybrid vehicle etc. which make it a driving source.
  • the brake controller 8 controls the brake unit 9 provided on the wheel so as to realize the required braking force transmitted from the control device 100.
  • the steering motor controller 13 controls a steering motor (not shown) of the steering mechanism so as to realize the target steering angle transmitted from the control device 100.
  • This steering motor is a steering actuator attached to the column shaft of the steering.
  • the yaw rate sensor 10 measures the yaw rate of the host vehicle and outputs a measurement signal to the control device 100.
  • the acceleration sensor 11 measures the acceleration of the host vehicle and outputs a measurement signal to the control device 100.
  • the camera 12A is an image pickup apparatus including an image pickup device such as a CCD, and is installed in the front part of the host vehicle, and images the front of the host vehicle and acquires image data.
  • the external information recognizing unit 12 (see FIG. 2), which will be described later, moves from the image data acquired by the camera 12A to the position of an “avoidance target” such as another vehicle or curb in front of the host vehicle, or to move the other vehicle or the like.
  • the speed or the like of “avoidance target” is calculated by image processing and is output to the control device 100.
  • the external information recognition unit 12 of the present embodiment may include a radar device instead of the camera 12A.
  • a radar apparatus a known system such as a laser range finder, a millimeter wave radar, a laser radar, or an ultrasonic radar can be used.
  • the “avoidance target” in the present embodiment is an object that the host vehicle should travel while avoiding itself (so as not to approach too much).
  • the external information recognition unit 12 detects an object present in a reference travel area described later and outputs it to the control device 100.
  • the avoidance target” in this embodiment includes a stationary object and a moving object.
  • Stationary objects include other vehicles that are obstacles to vehicle travel, such as other vehicles parked and stopped, road installations such as signs and power poles, road objects such as fallen objects and snow removed, and stationary people. included.
  • Examples of moving objects include other vehicles running at low speed and people walking.
  • Other vehicles include motorcycles such as bicycles and motorcycles, large vehicles such as buses and trucks, special vehicles such as trailers and crane vehicles, emergency vehicles such as ambulances, fire engines, and police cars, and ordinary vehicles.
  • the avoidance targets include objects that the host vehicle should avoid, such as a construction site, a damaged area of a road surface, and a puddle, although there is no object.
  • FIG. 2 is a functional block diagram of the control device 100.
  • the control device 100 includes a reference travel area setting unit 101, a travel area expansion unit 102, and a target route target speed generation unit 103.
  • the control device 100 executes each function in cooperation with software for realizing these functions and the hardware described above.
  • the reference travel area setting unit 101 inputs travel route information from the navigation unit 3, inputs map information from the map database 5, and inputs absolute position information of the host vehicle from the GPS receiver 2.
  • the travel area expanding unit 102 inputs the absolute position information of the host vehicle from the GPS receiver 2, inputs the vehicle speed information of the host vehicle from the vehicle speed sensor 4, inputs the yaw rate information of the host vehicle from the yaw rate sensor 10, and receives the acceleration sensor. 11, acceleration information of the host vehicle is input, and information such as the position and speed of an “avoidance target” such as another vehicle in front of the host vehicle is input from the external information recognition unit 12.
  • the travel area expanding unit 102 inputs information on the reference travel area from the reference travel area setting unit 101.
  • the reference travel region setting unit 101 sets a reference travel region (hereinafter referred to as a reference travel region) that is determined regardless of whether or not there is an avoidance target. To do.
  • the area setting unit 101 extracts a point sequence from the current position of the host vehicle to a predetermined distance from the map information and sets it to the left and right boundaries of the reference travel area.
  • the left and right boundaries f l (k) and f r (k) of the reference travel area are curbs and white lines (the distance between the own lane and the opposite lane) extending along the travel route of the own vehicle. This is a point sequence of coordinates such as (boundary line).
  • the predetermined distance may be set sufficiently long, for example, a distance that can travel for several seconds at a speed limit.
  • the speed limit for each part of the travel route is stored in the map information, and the speed limit around the current value of the host vehicle may be searched from the map information.
  • the left and right boundaries f l (k) and f r (k) of the reference travel area may be extracted from the map information stored in advance, but the camera 12A, laser range finder, etc. You may set based on the result which the apparatus of recognized.
  • the travel area expanding unit 102 When the avoidance target exists in the reference travel area in front of the host vehicle, the travel area expanding unit 102 generates the travel area by expanding the width of the reference travel area around the avoidance target.
  • the travel area expanding unit 102 determines the expansion amount and the expansion method of the reference travel area according to the travel scene.
  • the driving scene as shown in FIG. 4, the road becomes a curve at the tip of the avoidance target existing in front of the host vehicle, and there is an obstacle such as a building or a wall on the right road side.
  • the process of extending the reference travel area will be described using such a scene as an example.
  • FIG. 5 is a flowchart for explaining the process of extending the reference travel area.
  • the travel area expanding unit 102 calculates a line-of-sight distance L m [m] (step S101).
  • the line-of-sight distance L m [m] is a distance from the own vehicle to the intersection of the tangent and the curb when a tangent is drawn from the own vehicle to the curb on the inner circumference side of the curve. Should be calculated.
  • the line-of-sight distance L m [m] may be obtained with reference to map information, or may be obtained based on the result recognized by a device such as the camera 12A or the laser range finder.
  • the traveling area expansion unit 102 relates the speed V t [m / s] of the host vehicle according to the line-of-sight distance L m [m] and the distance l d [m] between the avoidance target and the host vehicle. Is calculated (step S102). In this step, if it is assumed that there is another vehicle on the opposite lane ahead of the curve where the blind spot is present, and this other vehicle has traveled from the front position by the line-of-sight distance L m [m], The above V t [m / s] and the distance l d can be maintained so that the host vehicle and the other vehicle can maintain a safe distance before the vehicle avoids the side to be avoided and returns to the host lane. Calculate the relationship with [m].
  • the relationship with [s] is as shown in the following equation (1).
  • the predetermined lateral acceleration a y [m / s 2 ] may be set to such an extent that the occupant does not feel uncomfortable.
  • Travel distance L [m] when traveling along the own lane while moving at the speed V t [m / s] for time t [s] and moving in the lateral direction with acceleration a y [m / s 2 ] l [m] ] Is represented by the following formula (2) when the above formula (1) is used.
  • the host vehicle when the host vehicle is traveling in the center of the host lane (hereinafter, unless otherwise specified, the host vehicle basically operates in the center of the reference driving region and the expanded reference driving region. shall be controlled so as to run), the distance l d between the own right end and avoidance of the right end of the vehicle when the vehicle passes through the side of the avoidance is the width of the own lane d r, avoidance
  • the distance between the right end of the object and the own lane boundary line is d and the width of the own vehicle is W, the following expression (5) is given.
  • FIG. 7A shows the distance l d [m] between the right end of the own vehicle and the right end of the avoidance target when the own vehicle passes the side of the avoidance target, and the speed V t [m / s] of the own vehicle. It is a graph which shows the relationship with].
  • a range filled with gray in the graph is a range satisfying the above-described expression (4).
  • the own vehicle can return to the own lane while avoiding the avoidance target without interfering with the other vehicle on the oncoming lane.
  • the travel area expanding unit 102 gives anxiety to the relationship between the speed V t [m / s] and the distance l d [m] corresponding to the line-of-sight distance L m [m] set in step S102.
  • the relationship between the non-speed V t [m / s] and the distance l d [m] is compared (step S103). As shown in FIG.
  • the relationship between the speed V t [m / s] of the host vehicle that does not cause unease to the occupant and the distance l d [m] between the right end of the avoidance target and the right end of the host vehicle is The larger the distance is, the larger the distance ld is, and the occupant cannot generally wipe away the feeling of anxiety unless the vehicle is separated from the avoidance target. Therefore, the distance l d [m] is proportional to the speed V t [m / s]. ] Is set to increase.
  • the slope of the increase in the distance l d [m] with respect to the increase in the velocity V t [m / s] is evaluated by conducting an experiment in advance and stored in the control database as a control map.
  • the travel area expanding unit 102 superimposes the graph of FIG. 7A and the graph of FIG. 7B, and the speed V t [m / s] and the distance l d [m] at the intersection of both graphs.
  • the travel area extending unit 102 calculates the extension amount of the reference travel area so as to realize the target distance l d ′ [m] calculated in step S103 (step S104).
  • the left boundary f l (k) of the reference travel area is expanded so that the avoidance target is not included in the travel area.
  • right boundary f r of the reference drive area (k) is extended to an offset from the left boundary f l (k) by a distance d r.
  • the length of the traveling direction that offsets the right boundary f r (k) is (2L + L vl ) / 2 before and after the traveling direction around the center position of the traveling direction of the avoidance target, for a total distance of 2L + L vl
  • 2L + L vl 2L + L vl
  • the travel area extending unit 102 increases the distance l d [m] between the host vehicle and the avoidance target as the line-of-sight distance L m [m] increases, that is, extends the reference travel area more greatly.
  • the travel area expanding unit 102 increases the left boundary f l (k) of the reference travel area with a large separation distance from the avoidance target. Expand to the side that becomes.
  • the object to be avoided is a vehicle and the direction of the vehicle is inclined to the right side with respect to the lane (the front of the vehicle faces right front)
  • the external information recognition unit 12 The left boundary f l (k) of the reference travel area is avoided compared to the case where the vehicle direction is parallel to the lane or inclined to the left with respect to the lane. What is necessary is just to expand greatly to the side (right side) where the separation distance from becomes large.
  • the traveling area expansion unit 102 determines whether the avoidance target and the lane direction are Regardless of the relationship, the left boundary f l (k) of the reference travel area is expanded more greatly. Thereby, even when the avoidance target suddenly moves in a direction that is not predicted when the own vehicle passes the side of the avoidance target, a safer distance between the own vehicle and the avoidance target can be secured.
  • the travel area expansion unit 102 determines that the own lane is an overtaking prohibited lane based on the map information or the recognition result of the external information recognition unit 12, an action to avoid the avoidance target through the expanded reference travel area If the vehicle is overtaking, the reference travel area is not expanded (prohibited).
  • step S105 the travel area expanding unit 102 expands the reference travel area according to the expansion amount calculated in step S104 (step S105).
  • the example in which the left and right boundaries f l (k) and f r (k) of the reference travel area are extended to the right side to avoid the avoidance target existing on the left side of the own lane has been described.
  • the left and right boundaries f l (k) and f r (k) of the reference travel area may be extended to the left side.
  • the target route target speed generation unit 103 generates a target route that passes through the travel region generated by the travel region extension unit 102, and sets a target speed for the target route.
  • the generation of the target route may be performed by a well-known method, but it may be analyzed as an optimization problem, for example, and an evaluation function may be set as in, for example, the following equation (6).
  • the first term W u u (s) 2 of the integrand on the right side of the above equation (1) is a penalty function for the curvature change rate u as an input
  • the second term W k k (s) is also the same.
  • 2 is a penalty function for the curvature k of the path as an input.
  • L is the length of the route, and may be set sufficiently long, for example, a length that allows the vehicle to travel for several seconds at the current speed.
  • the path can be obtained by solving and integrating the following equation (7) that satisfies the following equation (8) and the function (9).
  • P (X (s)) in the above equation (9) is a function that expresses the distance between the boundary defined by the white line, curbstone, etc. and the path, and is a constraint for preventing the path from protruding the boundary. Set as a condition. By satisfying this constraint condition and minimizing the evaluation function of the above formula (6), a smooth target route passing through the travel region can be generated.
  • the target route target speed generation unit 103 calculates a steering target for causing the host vehicle to follow the generated target route, and outputs it to the steering motor controller 13.
  • the calculation of the steering target may be performed by a known method such as a method using a forward gaze model.
  • the forward gaze model is a model that assumes that the amount of operation of the driver is proportional to the forward deviation, which is a deviation from the target course at the forward gaze point, and when such a model is used, the forward deviation is 0 [m. It is only necessary to calculate a target value that enables control to converge to.
  • the target route target speed generation unit 103 sets a target speed V r of the host vehicle that travels on the generated target route.
  • the target speed V r may be set based on the following equation (10) so that the lateral acceleration and yaw rate of the host vehicle at each point on the target route are equal to or less than a threshold value.
  • R is the radius of curvature at each point on the target path
  • a ymax is the acceleration
  • ⁇ max is the angular velocity.
  • the target speed V r obtained by the above equation (10) may be smoothed by applying a gradient limiter, FIR (Finite Impulse Response) filter, or the like to the target speed V r .
  • FIG. 10 is a flowchart for explaining the processing of the control device 100.
  • the following steps S201 to S204 are repeated every calculation cycle.
  • the reference travel area setting unit 101 sets a reference travel area (step S201).
  • the travel area expanding unit 102 determines whether the avoidance target exists in the reference travel area (step S202).
  • the target route target speed generation unit 103 generates a target route that passes through the reference travel area and a target speed for the target route (step S204).
  • the travel area expanding unit 102 expands the reference travel area (step S203). Note that the travel area expanding unit 102 determines that the reference lane is determined when the own lane is an overtaking prohibited lane based on the map information or the recognition result of the external information recognition unit 12 and the act of avoiding the avoidance target corresponds to the overtaking. Do not extend (prohibit) area expansion.
  • the target route target speed generation unit 103 sets a target route that passes through the travel region obtained by expanding the reference travel region and the target route. A target speed is generated (step S204).
  • FIG. 12 is a flowchart for explaining a process of extending the reference travel area.
  • the travel area expanding unit 102 calculates the speed V 0 of the other vehicle on the opposite lane recognized by the external information recognition unit 12 and the relative distance L 0 [m] between the other vehicle and the host vehicle (step S301). ).
  • the traveling area expanding unit 102 calculates the speed V t [m / s] of the host vehicle and the distance l d [m] between the avoidance target and the host vehicle according to the relative distance L 0 [m]. The relationship is calculated (step S302).
  • the range painted in gray in the graph of FIG. 7A is a range that satisfies the above-described expression (11). Therefore, by setting the target value of the speed V t and the distance l d within this grayed out range, the oncoming vehicle at the speed V 0 from the position in front of the relative distance of the host vehicle L 0 [m] When the vehicle has traveled, the host vehicle can return to the host lane while avoiding the avoidance target without interfering with the oncoming vehicle in the oncoming lane.
  • the travel area expanding unit 102 gives anxiety to the relationship between the speed V t [m / s] and the distance l d [m] corresponding to the relative distance L 0 [m] set in step S302.
  • the relationship between the non-speed V t [m / s] and the distance l d [m] is compared (step S303).
  • the processing in this step is the same as that in step S103 of FIG. 5 described above.
  • the travel area expanding unit 102 superimposes the graph of FIG. 7A and the graph of FIG.
  • the travel area extending unit 102 calculates the extension amount of the reference travel area so as to realize the target distance l d ′ [m] calculated in step S303 (step S304). Finally, the travel area expanding unit 102 expands the reference travel area according to the expansion amount calculated in step S304 (step S305).
  • the travel area expanding unit 102 increases the distance l d [m] between the host vehicle and the avoidance target as the time becomes longer (that is, as the relative distance L 0 [m] becomes longer), that is, as the reference travel. Extend the region more greatly.
  • the distance in which the front of the external information recognizing unit 12 can be recognized is L 1 [m], and a traveling scene in which no other vehicle traveling in the oncoming lane exists within this recognized distance.
  • a process for extending the reference travel area will be described with reference to FIG.
  • FIG. 14 is a flowchart for explaining a process of extending the reference travel area.
  • the travel area extending unit 102 reads the recognition distance L 1 [m] of the external information recognition unit 12 from the ROM (step S401).
  • the travel area expanding unit 102 determines the vehicle speed V t [m / s] corresponding to the recognition distance L 1 [m] of the external information recognition unit 12 and the distance l d between the avoidance target and the host vehicle. The relationship with [m] is calculated (step S402).
  • the grayed out range in the graph of FIG. 7A is a range that satisfies the above equation (12). Therefore, by setting the target values of the speed V t and distance l d within the grayed out range, the other vehicle travels at the speed V 0 from the front position by the recognition distance L 1 [m] from the own vehicle. In this case, the host vehicle can return to the host lane while avoiding the avoidance target without interfering with other vehicles in the oncoming lane.
  • the travel area expanding unit 102 gives anxiety to the occupant and the relationship between the speed V t [m / s] and the distance l d [m] corresponding to the recognition distance L 1 [m] set in step S402.
  • the relationship between the non-speed V t [m / s] and the distance l d [m] is compared (step S403).
  • the processing in this step is the same as that in step S103 described above.
  • the travel area expanding unit 102 superimposes the graph of FIG. 7A and the graph of FIG.
  • intersection speed V t [m / s] and the distance l d [m] are determined based on the target vehicle speed V t ⁇ [m / s] and the target distance l d ⁇ [m] when the host vehicle passes the side to be avoided. ] Is set.
  • the travel area extending unit 102 calculates the extension amount of the reference travel area so as to realize the target distance l d ′ [m] calculated in step S403 (step S404). Finally, the travel area expanding unit 102 expands the reference travel area according to the expansion amount calculated in step S404 (step S405).
  • the travel area expansion unit 102 determines the area that becomes the blind spot ahead of the avoidance target in step S104 in FIG. 5, S304 in FIG. 12, and S404 in FIG.
  • the left boundary f l (k) is set according to the size.
  • the travel area expanding unit 102 calculates the size of the area that becomes a blind spot according to the relative position between the first avoidance target and the host vehicle and the size of the first avoidance target, and becomes a blind spot. As the region becomes larger, the left boundary f l (k) is greatly expanded to the side where the separation distance from the first avoidance target becomes larger.
  • the 2nd avoidance object It becomes easy to secure a safer distance between the vehicle and the own vehicle.
  • the time required to avoid the first avoidance target and return to the own lane is shortened, the blind spot ahead of the first avoidance target is small, and other vehicles in the opposite lane are traveling It becomes easier to secure the distance between the host vehicle and the other vehicle.
  • a reference travel area in which the host vehicle can travel is set, and when there is an avoidance target to be avoided in the reference travel area, a reference around the avoidance target A travel area is generated by expanding the travel area, and a target route that avoids the avoidance target is generated in the travel area.
  • a preset reference travel area is expanded, and thereafter, a target route for the host vehicle to travel within the obtained travel area is generated. For this reason, compared with the case where a target route that avoids the avoidance target is generated from the beginning without setting the reference travel region, the region for generating the target route is limited. It becomes easy, and the effect of shortening the time for generating the target route and reducing the calculation load for generating the target route can be obtained.
  • sight distance L m on the opposite lane is largely extend longer reference travel region. That is, when the oncoming lane can be seen farther, by generating a travel area in which the reference travel area is greatly expanded, it is possible to generate a target route that has a greater distance from the avoidance target and can avoid the avoidance target more safely.
  • recognizable distance L 1 from the vehicle greatly extend the longer reference travel region by the external information recognition unit 12. That is, when the external information recognition unit 12 can recognize the oncoming lane farther, by generating a travel area that is a larger extension of the reference travel area, the distance to the avoidance target is greater and the avoidance target is safer. A target route that can be avoided can be generated.
  • the reference travel area is greatly expanded as the range of the blind spot ahead of the first avoidance target in the external information recognition unit 12 is wider. That is, the second avoidance target is more likely to pop out from the blind spot of the first avoidance target recognized by the external information recognition unit 12, thereby generating a travel area that is a larger extension of the reference travel area. It is possible to generate a target route that is larger in distance to the avoidance target and that can avoid the second avoidance target more safely.
  • the reference travel region when the avoidance target exists on the left side of the reference travel region, the reference travel region is expanded to the right side, and when the avoidance target exists on the right side of the reference travel region. Expands the reference travel area to the left. As a result, it is necessary to overextend the reference travel area and meander the target route excessively, as in the case of extending the reference travel area to the right side to avoid the avoidance target existing on the right side of the reference travel area. Without being limited, the amount of expansion of the reference travel area and the amount of meandering of the target route can be suppressed.
  • the reference travel range is greatly expanded compared to the avoidance target that is not likely to move.
  • the amount of expansion of the reference travel area is varied according to the type of the avoidance target.
  • a target route that can be avoided more safely by avoiding the avoidance target with a greater distance to the avoidance target. Can be generated.
  • the method of extending the reference travel region is made different according to the direction of the vehicle to be avoided with respect to the traveling direction. For example, when a vehicle parked on the left side of the reference traveling area is inclined to the right with respect to the traveling direction, the vehicle is parallel to the traveling direction or inclined to the left with respect to the traveling direction. Compared to the case, the reference travel area is greatly expanded to the right. As a result, the reference travel area can be expanded corresponding to the direction in which the vehicle that is the avoidance target may move, and a target route that can increase the distance to the vehicle and avoid the vehicle more safely can be generated.
  • the reference travel area is not expanded. Different methods of extending the reference travel area (expansion method and amount). Accordingly, as shown in FIG. 16, when the lane in which the host vehicle is traveling is an overtaking prohibited lane, and the act of avoiding the avoidance object corresponds to the overtaking action, the own vehicle is stopped before the avoidance target or Since the vehicle follows the avoidance target, it is possible to prevent a violation of the law.
  • FIG. 17 is a functional block diagram of a travel control apparatus according to the second embodiment of the present invention.
  • symbol is attached
  • the travel control device of the present embodiment has a configuration in which an avoidance target selection unit 104 is added to the travel control device of the first embodiment.
  • the avoidance target selection unit 104 inputs information on the reference travel region from the reference travel region setting unit 101 and inputs information on the recognized object from the external information recognition unit 12. Then, the avoidance target selection unit 104 determines whether to select an object recognized by the external information recognition unit 12 in the reference travel area as an avoidance target, and outputs the determination result to the travel area expansion unit 102.
  • the travel area extending unit 102 extends the reference travel area according to the recognition result of the object in the reference travel area by the external information recognition unit 12. At that time, the travel area expansion unit 102 first compares the coordinates of the object with the left and right boundaries f l (k) and f r (k) of the reference travel area, but the avoidance target selection unit 104 selects the avoidance target. This is performed only for the object that has been removed.
  • the avoidance target selection unit 104 determines whether to select an object recognized in the reference travel area as an avoidance target, for example, when the speed of the object recognized in the reference travel area is equal to or less than a threshold value. May be selected as the avoidance target.
  • the speed threshold value may be set to a value at which it can be determined that the object recognized in the reference travel area is stopped, for example. Thereby, the reference travel area can be expanded to avoid only the objects that are stopped in the reference travel area. Further, the speed threshold may be set to a value at which it can be determined that the speed of the object recognized in the reference travel area is sufficiently lower than the speed of the host vehicle. As a result, the reference travel area can be expanded to avoid only an object that moves at a low speed or stops in the reference travel area.
  • the avoidance target selection unit 104 determines whether to select an object recognized in the reference travel area as an avoidance target, for example, the width dimension of the object recognized in the reference travel area is equal to or greater than a threshold value.
  • the object may be selected as an avoidance target.
  • the threshold value of the width dimension of the object may be set to a value that is larger than the width of the reference travel area, for example, so that it can be determined that the host vehicle cannot pass the side of the object through the reference travel area. .
  • the reference travel area can be expanded to avoid the object only when the vehicle cannot pass the side of the object through the reference travel area.
  • FIG. 18 is a flowchart for explaining the processing of the control device 100.
  • the following steps S501 to S505 are repeated every calculation cycle.
  • the reference travel area setting unit 101 sets a reference travel area (step S501).
  • the avoidance target selection unit 104 determines whether the object recognized in front of the host vehicle by the external information recognition unit 12 is an avoidance target (step S502).
  • the travel area expanding unit 102 determines whether or not an object determined as an avoidance target exists in the reference travel area (step S503).
  • the travel area expanding unit 102 expands the reference travel area (step S504).
  • a negative determination is made in steps S502 and S503 the process proceeds to step S505.
  • step S505 the target route target speed generation unit 103 generates a target route in the travel area and sets a target speed for the target route.
  • the generation of the target route and the setting of the target speed are as described in the first embodiment.
  • the travel control device of the present embodiment it is determined based on the relative speed between the host vehicle and the object whether or not the object existing in the reference travel region corresponds to the avoidance target.
  • the object is determined as an avoidance target
  • the relative speed exceeds the predetermined threshold
  • the object is determined as a non-evasion target.
  • the reference travel area is expanded, and when it is determined that the object corresponds to the non-evasion target, the reference travel area expansion process is prohibited.
  • the travel control device of the present embodiment it is determined based on the width dimension of the object whether or not the object existing in the reference travel region corresponds to the avoidance target.
  • the width dimension is equal to or greater than a predetermined threshold
  • the object is determined as an avoidance target
  • the width dimension is less than the predetermined threshold
  • the object is determined as a non-evasion target.
  • the reference travel area is expanded, and when it is determined that the object corresponds to the non-evasion target, the reference travel area expansion process is prohibited.
  • the control device 100 corresponds to a travel control device according to the present invention
  • the reference travel region setting unit 101 corresponds to a reference travel region setting means according to the present invention
  • the travel region expansion unit 102 travels according to the present invention.
  • the target route target speed generation unit 103 corresponds to a target route generation unit according to the present invention
  • the avoidance target selection unit 104 corresponds to a determination unit according to the present invention
  • the external information recognition unit Reference numeral 12 corresponds to external information recognition means according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Traffic Control Systems (AREA)

Abstract

A travel control device is provided with: a reference travel area setting unit (101) for setting a reference travel area in which it is possible for a vehicle to travel; a travel area expansion unit (102) for generating a travel area in which the reference travel area around an object to be avoided is expanded when an object to be avoided is present in the reference travel area; and a target route generation unit (103) for generating a target route that avoids the object to be avoided within the travel area generated by the travel area expansion unit (102).

Description

走行制御装置及び方法Travel control apparatus and method
 本発明は、車両の走行制御装置及び方法に関するものである。 The present invention relates to a vehicle travel control apparatus and method.
 従来、運転支援装置として、目標経路の生成に要する演算負荷を抑制することを目的として、認識範囲の異なる複数種類のマップ(広域マップ、中域マップ、局所マップ)を用いて、目標経路を生成するものが知られている(特許文献1参照)。 Conventionally, as a driving support device, a target route is generated using multiple types of maps (wide area map, middle area map, local map) with different recognition ranges for the purpose of suppressing the computational load required to generate the target path. Is known (see Patent Document 1).
国際公開第2012/014280号International Publication No. 2012/014280
 ところで、自車両の前方に存在する回避対象を回避して進行するような目標経路を生成する際、先行して設定している走行領域と該走行領域内の回避対象との関係によっては、該走行領域を拡張しない限り、上記目標経路を生成できない場合がある。しかしながら、特許文献1に記載の運転支援装置では、上記走行領域の拡張は実施されないので、自車両が回避対象の手前で停車せざるを得ない可能性がある。 By the way, when generating a target route that travels while avoiding an avoidance target existing ahead of the host vehicle, depending on the relationship between the previously set travel area and the avoidance target in the travel area, The target route may not be generated unless the travel area is expanded. However, in the driving support device described in Patent Document 1, since the travel area is not expanded, the host vehicle may have to stop before the avoidance target.
 本発明が解決しようとする課題は、設定している走行領域と回避対象との関係にかかわらず、回避対象を回避して進行する目標経路を生成できる走行制御装置及び方法を提供することである。 The problem to be solved by the present invention is to provide a travel control device and method capable of generating a target route that travels while avoiding an avoidance target regardless of the relationship between the set travel region and the avoidance target. .
 本発明は、自車両が走行可能な基準走行領域を設定し、該基準走行領域に回避すべき回避対象が存在する場合に、回避対象の周囲の基準走行領域を拡張した走行領域を生成し、該走行領域の中で目標経路を生成することによって上記課題を解決する。 The present invention sets a reference travel region in which the host vehicle can travel, and when there is an avoidance target to be avoided in the reference travel region, generates a travel region that extends the reference travel region around the avoidance target, The above-described problem is solved by generating a target route in the travel area.
 本発明によれば、目標経路の生成に先行して設定されている基準走行領域が拡張されるので、設定している走行領域と回避対象との関係にかかわらず、回避対象を回避して進行する目標経路を生成できるという効果を奏する。 According to the present invention, since the reference travel area set prior to the generation of the target route is expanded, the avoidance target is avoided regardless of the relationship between the set travel area and the avoidance target. It is possible to generate a target route to be generated.
本発明の第1実施形態に係る走行制御装置及び方法を適用した車両のハードウェア構成を示す平面図である。It is a top view which shows the hardware constitutions of the vehicle to which the traveling control apparatus and method which concern on 1st Embodiment of this invention are applied. 図1の制御装置の機能ブロック図である。It is a functional block diagram of the control apparatus of FIG. 図2の基準走行領域設定部で実行される基準走行領域の設定処理を説明するための平面図である。It is a top view for demonstrating the setting process of the reference | standard driving | running | working area | region performed by the reference | standard driving | running | working area setting part of FIG. 図3の自車両からの見通し距離がLm[m]であるような走行シーンを示す平面図である。FIG. 4 is a plan view showing a travel scene in which the line-of-sight distance from the host vehicle in FIG. 3 is L m [m]. 図2の走行領域拡張部で実行される基準走行領域を拡張する処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process which expands the reference | standard driving | running | working area | region performed by the driving | running | working area expansion part of FIG. 図3の自車両と回避対象と基準走行領域との関係を示す平面図である。FIG. 4 is a plan view illustrating a relationship among the own vehicle, the avoidance target, and the reference travel area in FIG. 3. 自車両の速度と、自車両と回避対象との距離との関係を示すグラフである。It is a graph which shows the relationship between the speed of the own vehicle, and the distance of the own vehicle and an avoidance object. 乗員に不安を与えない、自車両の速度と、自車両と回避対象との距離との関係を示すグラフである。It is a graph which shows the relationship between the speed of the own vehicle which does not give a passenger | crew anxiety, and the distance of the own vehicle and an avoidance object. 図7Aと図7Bとのグラフを重畳したグラフである。It is the graph which superimposed the graph of FIG. 7A and FIG. 7B. 図2の走行領域拡張部で実行される基準走行領域の拡張処理を説明するための平面図である。It is a top view for demonstrating the expansion process of the reference | standard driving | running | working area | region performed by the driving | running | working area expansion part of FIG. 図2の走行領域拡張部で実行される基準走行領域の拡張処理を説明するための平面図である。It is a top view for demonstrating the expansion process of the reference | standard driving | running | working area | region performed by the driving | running | working area expansion part of FIG. 図2の制御装置で実行される目標経路、目標速度の生成処理を説明するためのフローチャートである。It is a flowchart for demonstrating the production | generation process of the target path | route and target speed which are performed with the control apparatus of FIG. 図1の自車両と他車両との相対距離がL0[m]であるような走行シーンを示す平面図である。FIG. 2 is a plan view showing a traveling scene in which the relative distance between the host vehicle of FIG. 1 and another vehicle is L 0 [m]. 図2の基準走行領域拡張部で実行される基準走行領域を拡張する処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process which expands the reference | standard driving | running | working area | region performed by the reference | standard driving | running | working area expansion part of FIG. 図1の自車両からの認識距離がL1[m]であるような走行シーンを示す平面図である。Recognition distance from the vehicle of FIG. 1 is a plan view showing a running scene as a L 1 [m]. 図2の走行領域拡張部で実行される基準走行領域を拡張する処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process which expands the reference | standard driving | running | working area | region performed by the driving | running | working area expansion part of FIG. 第1の回避対象の前方に図1の自車両から認識できない第2の回避対象が存在するような走行シーンを示す平面図である。It is a top view which shows the driving | running | working scene where the 2nd avoidance object which cannot be recognized from the own vehicle of FIG. 1 exists ahead of the 1st avoidance object. 図1の自車両が追い越し禁止車線で走行する場合における図2の制御部が実行する処理を説明するための平面図である。FIG. 3 is a plan view for explaining processing executed by the control unit in FIG. 2 when the host vehicle in FIG. 1 travels in an overtaking prohibited lane. 本発明の第2実施形態に係る制御装置の機能ブロック図である。It is a functional block diagram of the control apparatus which concerns on 2nd Embodiment of this invention. 図17の制御装置で実行される目標経路、目標速度の生成処理を説明するためのフローチャートである。It is a flowchart for demonstrating the production | generation process of the target path | route and target speed which are performed with the control apparatus of FIG.
 以下、本発明の実施形態を図面に基づいて説明する。以下の実施形態に係る車両の走行制御装置は、ドライバの入力により生成された目標経路にしたがって車両を自動運転又は運転支援するものである。本実施形態の車両の自動運転又は運転支援は、ドライバの入力にしたがって制御が開始され、ドライバのアクセル操作、ブレーキ操作及びハンドル操作がなくても目標経路にしたがって車両を走行させるものである。ただし、ドライバのアクセル操作、ブレーキ操作又はハンドル操作がされると、当該自動運転制御又は運転支援制御が停止又は一時的に中断され、ドライバによる各種操作が優先される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. A vehicle travel control apparatus according to the following embodiment is for automatically driving or driving support a vehicle according to a target route generated by an input of a driver. In the automatic driving or driving support of the vehicle according to the present embodiment, the control is started according to the driver's input, and the vehicle is driven according to the target route without the driver's accelerator operation, brake operation, and steering wheel operation. However, when the driver's accelerator operation, brake operation, or steering wheel operation is performed, the automatic driving control or driving support control is stopped or temporarily interrupted, and various operations by the driver are given priority.
《第1実施形態》
 図1は、本発明の第1実施形態に係る走行制御装置を適用した車両1のハードウェア構成を示す平面図である。この図に示すように、車両1は、GPS(Global Positioning System)受信機2と、ナビゲーションユニット3と、車速センサ4と、制御装置100と、パワートレインコントローラ6と、エンジン・駆動系7と、ブレーキコントローラ8と、ブレーキユニット9と、ヨーレートセンサ10と、加速度センサ11と、カメラ12Aと、操舵モータコントローラ13とを備えている。
<< First Embodiment >>
FIG. 1 is a plan view showing a hardware configuration of a vehicle 1 to which a travel control device according to a first embodiment of the present invention is applied. As shown in this figure, a vehicle 1 includes a GPS (Global Positioning System) receiver 2, a navigation unit 3, a vehicle speed sensor 4, a control device 100, a power train controller 6, an engine / drive system 7, A brake controller 8, a brake unit 9, a yaw rate sensor 10, an acceleration sensor 11, a camera 12A, and a steering motor controller 13 are provided.
 GPS受信機2は、自車両の絶対位置座標(緯度・経度)を検出して受信信号をナビゲーションユニット3及び制御装置100へ送信する。ナビゲーションユニット3は、地図データベース5(図2参照)、情報処理装置及び表示装置を備える。地図データベース5には道路の形状や勾配の情報も含まれている。このナビゲーションユニット3では、乗員により目的地が設定されると、情報処理装置が、現在地から目的地までの走行ルートを設定して表示装置に表示させる。また、情報処理装置は、走行ルート情報を制御装置100へ送信する。 The GPS receiver 2 detects the absolute position coordinates (latitude / longitude) of the host vehicle and transmits a reception signal to the navigation unit 3 and the control device 100. The navigation unit 3 includes a map database 5 (see FIG. 2), an information processing device, and a display device. The map database 5 also includes road shape and slope information. In this navigation unit 3, when the destination is set by the occupant, the information processing apparatus sets a travel route from the current position to the destination and displays it on the display device. In addition, the information processing apparatus transmits travel route information to the control apparatus 100.
 車速センサ4は、自車両の車速を計測して計測信号を制御装置100へ送信する。車速センサ4としては、ホイールに取り付けられたロータリーエンコーダ等が利用可能である。このロータリーエンコーダは、ホイールの回転数に比例して発生するパルス信号に基づいて車速を計測する。 The vehicle speed sensor 4 measures the vehicle speed of the host vehicle and transmits a measurement signal to the control device 100. As the vehicle speed sensor 4, a rotary encoder attached to a wheel can be used. This rotary encoder measures the vehicle speed based on a pulse signal generated in proportion to the rotation speed of the wheel.
 制御装置100は、マイクロプロセッサ等の集積回路であり、A/D変換回路、D/A変換回路、中央演算処理装置(CPU、Central Processing Unit)、ROM(Read Only Memory)及びRAM(Read Access Memory)等を備える。この制御装置100は、アクセルペダルセンサやブレーキペダルセンサ等のセンサから入力された情報を、ROMに格納されたプログラムに従って処理して目標車速を算出し、目標車速に応じた要求駆動力をパワートレインコントローラ6に送信すると共に、目標車速に応じた要求制動力をブレーキコントローラ8に送信する。また、制御装置100は、操舵角センサから入力された操舵角情報を、ROMに格納されたプログラムに従って処理して目標操舵角を算出し、目標操舵角に応じた操舵量を操舵モータコントローラ13へ送信する。 The control device 100 is an integrated circuit such as a microprocessor, and includes an A / D conversion circuit, a D / A conversion circuit, a central processing unit (CPU, Central Processing Unit), a ROM (Read Only Memory), and a RAM (Read Access Memory). ) Etc. The control device 100 processes information input from sensors such as an accelerator pedal sensor and a brake pedal sensor in accordance with a program stored in a ROM to calculate a target vehicle speed, and calculates a required driving force according to the target vehicle speed as a powertrain. While transmitting to the controller 6, the required braking force according to the target vehicle speed is transmitted to the brake controller 8. In addition, the control device 100 processes the steering angle information input from the steering angle sensor according to a program stored in the ROM to calculate a target steering angle, and supplies the steering amount corresponding to the target steering angle to the steering motor controller 13. Send.
 パワートレインコントローラ6は、制御装置100から送信された要求駆動力を実現するようにエンジン・駆動系7を制御する。なお、エンジン(内燃機関)のみを走行駆動源として備える車両を例に挙げたが、電動モータのみを走行駆動源とする電気自動車(燃料電池車を含む)や、エンジンと電動モータとの組み合わせを走行駆動源とするハイブリッド車等に適用してもよい。 The power train controller 6 controls the engine / drive system 7 so as to realize the required driving force transmitted from the control device 100. In addition, although the vehicle provided only with an engine (internal combustion engine) as a travel drive source was taken as an example, an electric vehicle (including a fuel cell vehicle) using only an electric motor as a travel drive source, or a combination of an engine and an electric motor. You may apply to the hybrid vehicle etc. which make it a driving source.
 ブレーキコントローラ8は、制御装置100から送信された要求制動力を実現するように車輪に設けられたブレーキユニット9を制御する。操舵モータコントローラ13は、制御装置100から送信された目標操舵角を実現するように操舵機構の操舵モータ(図示省略)を制御する。この操舵モータは、ステアリングのコラムシャフトに取り付けられたステアリングアクチュエータである。 The brake controller 8 controls the brake unit 9 provided on the wheel so as to realize the required braking force transmitted from the control device 100. The steering motor controller 13 controls a steering motor (not shown) of the steering mechanism so as to realize the target steering angle transmitted from the control device 100. This steering motor is a steering actuator attached to the column shaft of the steering.
 ヨーレートセンサ10は、自車両のヨーレートを計測して計測信号を制御装置100へ出力する。加速度センサ11は、自車両の加速度を計測して計測信号を制御装置100へ出力する。 The yaw rate sensor 10 measures the yaw rate of the host vehicle and outputs a measurement signal to the control device 100. The acceleration sensor 11 measures the acceleration of the host vehicle and outputs a measurement signal to the control device 100.
 カメラ12Aは、例えばCCD等の撮像素子を備える撮像装置であり、自車両の前部に設置され、自車両の前方を撮像して画像データを取得する。後述の外部情報認識部12(図2参照)は、カメラ12Aで取得された画像データから、自車両の前方の他車両や縁石等の「回避対象」の位置や、他車両等の移動する「回避対象」の速度等を、画像処理により算出して制御装置100へ出力する。 The camera 12A is an image pickup apparatus including an image pickup device such as a CCD, and is installed in the front part of the host vehicle, and images the front of the host vehicle and acquires image data. The external information recognizing unit 12 (see FIG. 2), which will be described later, moves from the image data acquired by the camera 12A to the position of an “avoidance target” such as another vehicle or curb in front of the host vehicle, or to move the other vehicle or the like. The speed or the like of “avoidance target” is calculated by image processing and is output to the control device 100.
 なお、本実施形態の外部情報認識部12は、カメラ12Aに代えてレーダ装置を備えてもよい。この場合、レーダ装置としては、レーザレンジファインダ、ミリ波レーダ、レーザーレーダ、超音波レーダ等の周知の方式のものを用いることができる。 Note that the external information recognition unit 12 of the present embodiment may include a radar device instead of the camera 12A. In this case, as the radar apparatus, a known system such as a laser range finder, a millimeter wave radar, a laser radar, or an ultrasonic radar can be used.
 本実施形態における「回避対象」は、自車両がそのものを避けて(接近し過ぎないように)走行するべき物体である。外部情報認識部12は、後述の基準走行領域に存在する物体を検出して制御装置100へ出力する。 The “avoidance target” in the present embodiment is an object that the host vehicle should travel while avoiding itself (so as not to approach too much). The external information recognition unit 12 detects an object present in a reference travel area described later and outputs it to the control device 100.
 本実施形態における「回避対象」は、静止物と移動物を含む。静止物としては、駐停車中の他車両、標識,電柱などの道路設置物、落下物や除雪された雪などの道路の載置物、立ち止まっている人など、車両の走行の障害となる物体が含まれる。移動物としては、低速走行中の他車両、歩行中の人が含まれる。他車両としては、自転車、バイクなどの二輪車、バス,トラックなどの大型車両、トレーラ、クレーン車などの特殊車両、救急車、消防車、警察車などの緊急車両、普通自動車が含まれる。さらに、回避対象としては、工事現場、路面の損傷エリア、水溜りなど、物体が存在しないものの自車両が回避すべき対象を含む。 “The avoidance target” in this embodiment includes a stationary object and a moving object. Stationary objects include other vehicles that are obstacles to vehicle travel, such as other vehicles parked and stopped, road installations such as signs and power poles, road objects such as fallen objects and snow removed, and stationary people. included. Examples of moving objects include other vehicles running at low speed and people walking. Other vehicles include motorcycles such as bicycles and motorcycles, large vehicles such as buses and trucks, special vehicles such as trailers and crane vehicles, emergency vehicles such as ambulances, fire engines, and police cars, and ordinary vehicles. Further, the avoidance targets include objects that the host vehicle should avoid, such as a construction site, a damaged area of a road surface, and a puddle, although there is no object.
 図2は、制御装置100の機能ブロック図である。この図に示すように、制御装置100は、基準走行領域設定部101と、走行領域拡張部102と、目標経路目標速度生成部103とを備える。制御装置100は、これらの機能を実現するためのソフトウェアと、上述したハードウェアとの協働により各機能を実行する。 FIG. 2 is a functional block diagram of the control device 100. As shown in this figure, the control device 100 includes a reference travel area setting unit 101, a travel area expansion unit 102, and a target route target speed generation unit 103. The control device 100 executes each function in cooperation with software for realizing these functions and the hardware described above.
 基準走行領域設定部101は、ナビゲーションユニット3から走行ルート情報を入力し、地図データベース5から地図情報を入力し、GPS受信機2から自車両の絶対位置情報を入力する。走行領域拡張部102は、GPS受信機2から自車両の絶対位置情報を入力し、車速センサ4から自車両の車速情報を入力し、ヨーレートセンサ10から自車両のヨーレート情報を入力し、加速度センサ11から自車両の加速度情報を入力し、外部情報認識部12から自車両の前方の他車両等の「回避対象」の位置や速度等の情報を入力する。また、走行領域拡張部102は、基準走行領域設定部101から基準走行領域の情報を入力する。 The reference travel area setting unit 101 inputs travel route information from the navigation unit 3, inputs map information from the map database 5, and inputs absolute position information of the host vehicle from the GPS receiver 2. The travel area expanding unit 102 inputs the absolute position information of the host vehicle from the GPS receiver 2, inputs the vehicle speed information of the host vehicle from the vehicle speed sensor 4, inputs the yaw rate information of the host vehicle from the yaw rate sensor 10, and receives the acceleration sensor. 11, acceleration information of the host vehicle is input, and information such as the position and speed of an “avoidance target” such as another vehicle in front of the host vehicle is input from the external information recognition unit 12. In addition, the travel area expanding unit 102 inputs information on the reference travel area from the reference travel area setting unit 101.
 基準走行領域設定部101は、走行ルート情報と地図情報と自車両の絶対位置情報とに基づいて、回避対象の存否によらずに決まる基準となる走行領域(以下、基準走行領域という)を設定する。基準走行領域の左右(幅方向両側)の境界は、座標の点列(fl(k)、 fr(k) k=1,2,…n)で地図情報に記憶されており、基準走行領域設定部101は、自車両の現在位置から所定距離までの点列を地図情報から抽出して基準走行領域の左右の境界に設定する。 Based on the travel route information, the map information, and the absolute position information of the host vehicle, the reference travel region setting unit 101 sets a reference travel region (hereinafter referred to as a reference travel region) that is determined regardless of whether or not there is an avoidance target. To do. The left and right (both sides in the width direction) boundaries of the reference travel area are stored in the map information as coordinate point sequences (f l (k), f r (k) k = 1, 2, ... n). The area setting unit 101 extracts a point sequence from the current position of the host vehicle to a predetermined distance from the map information and sets it to the left and right boundaries of the reference travel area.
 ここで、図3に示すように、基準走行領域の左右の境界fl(k)、 fr(k)は、自車両の走行ルートに沿って延びる縁石や白線(自車線と対向車線との境界線)等の座標の点列である。また、上記所定距離は、例えば、制限速度で数秒間走行できる距離等、十分に長く設定すればよい。この場合、地図情報に走行ルートの各所の制限速度を記憶しておき、自車両の現在値周辺の制限速度を地図情報から探索すればよい。 Here, as shown in FIG. 3, the left and right boundaries f l (k) and f r (k) of the reference travel area are curbs and white lines (the distance between the own lane and the opposite lane) extending along the travel route of the own vehicle. This is a point sequence of coordinates such as (boundary line). The predetermined distance may be set sufficiently long, for example, a distance that can travel for several seconds at a speed limit. In this case, the speed limit for each part of the travel route is stored in the map information, and the speed limit around the current value of the host vehicle may be searched from the map information.
 なお、上述したように、基準走行領域の左右の境界fl(k)、 fr(k)は、予め地図情報に記憶させたものを抽出してもよいが、カメラ12Aやレーザレンジファインダ等の機器が認識した結果に基づいて設定してもよい。 As described above, the left and right boundaries f l (k) and f r (k) of the reference travel area may be extracted from the map information stored in advance, but the camera 12A, laser range finder, etc. You may set based on the result which the apparatus of recognized.
 走行領域拡張部102は、自車両の前方の基準走行領域内に回避対象が存在する場合、回避対象の周囲の基準走行領域の幅を拡張することにより走行領域を生成する。ここで、走行領域拡張部102は、走行シーンに応じて、基準走行領域の拡張量、拡張方法を決定する。走行シーンの一例として、図4に示すように、自車両の前方に存在する回避対象の先で道路がカーブになり、右路側に建築物や壁などの何らかの障害物があることにより、カーブの先が自車両のドライバにとって死角となり、その結果、対向車線を見通せる距離がLm[m]であるようなシーンが挙げられる。以下、かかるシーンを例にとって基準走行領域を拡張する処理を説明する。 When the avoidance target exists in the reference travel area in front of the host vehicle, the travel area expanding unit 102 generates the travel area by expanding the width of the reference travel area around the avoidance target. Here, the travel area expanding unit 102 determines the expansion amount and the expansion method of the reference travel area according to the travel scene. As an example of the driving scene, as shown in FIG. 4, the road becomes a curve at the tip of the avoidance target existing in front of the host vehicle, and there is an obstacle such as a building or a wall on the right road side. There is a scene in which the distance to the driver of the host vehicle becomes a blind spot, and as a result, the distance through which the oncoming lane can be seen is L m [m]. Hereinafter, the process of extending the reference travel area will be described using such a scene as an example.
 図5は、基準走行領域を拡張する処理を説明するためのフローチャートである。まず、走行領域拡張部102は、見通し距離Lm[m]を算出する(ステップS101)。図4に示すように、見通し距離Lm[m]は、自車両からカーブの内周側の縁石に対して接線を引いた場合に、自車両から該接線と該縁石との交点までの距離を計算すればよい。なお、見通し距離Lm[m]は、地図情報を参照して求めてもよく、カメラ12Aやレーザレンジファインダ等の機器が認識した結果に基づいて求めてもよい。 FIG. 5 is a flowchart for explaining the process of extending the reference travel area. First, the travel area expanding unit 102 calculates a line-of-sight distance L m [m] (step S101). As shown in FIG. 4, the line-of-sight distance L m [m] is a distance from the own vehicle to the intersection of the tangent and the curb when a tangent is drawn from the own vehicle to the curb on the inner circumference side of the curve. Should be calculated. The line-of-sight distance L m [m] may be obtained with reference to map information, or may be obtained based on the result recognized by a device such as the camera 12A or the laser range finder.
 次に、走行領域拡張部102は、見通し距離Lm[m]に応じた、自車両の速度Vt[m/s]と、回避対象と自車両との距離ld[m]との関係を算出する(ステップS102)。本ステップでは、現在死角となっているカーブの先の対向車線に他車両があり、この他車両が自車両から見通し距離Lm[m]だけ前方の位置から走行してきたと仮定した場合に、自車両が回避対象の側方を回避して自車線に戻るまでの間に、自車両と他車両とが安全な距離を保つことができるように、上記Vt[m/s]と距離ld[m]との関係を算出する。 Next, the traveling area expansion unit 102 relates the speed V t [m / s] of the host vehicle according to the line-of-sight distance L m [m] and the distance l d [m] between the avoidance target and the host vehicle. Is calculated (step S102). In this step, if it is assumed that there is another vehicle on the opposite lane ahead of the curve where the blind spot is present, and this other vehicle has traveled from the front position by the line-of-sight distance L m [m], The above V t [m / s] and the distance l d can be maintained so that the host vehicle and the other vehicle can maintain a safe distance before the vehicle avoids the side to be avoided and returns to the host lane. Calculate the relationship with [m].
 そこでまず、図6に示す自車両の横方向の移動量l[m]と、所定の横加速度ay[m/s2]と、横方向にl[m]だけ移動するのに要する時間t[s]との関係は、下記(1)式で示すようになる。なお、所定の横加速度ay[m/s2]は、乗員が不快に感じない程度に設定すればよい。
Figure JPOXMLDOC01-appb-M000001
Therefore, first, the travel amount l [m] in the lateral direction of the host vehicle shown in FIG. 6, the predetermined lateral acceleration a y [m / s 2 ], and the time t required to travel in the lateral direction by l [m]. The relationship with [s] is as shown in the following equation (1). The predetermined lateral acceleration a y [m / s 2 ] may be set to such an extent that the occupant does not feel uncomfortable.
Figure JPOXMLDOC01-appb-M000001
 自車線に沿った速度Vt[m/s]で時間t[s]だけ、横方向に加速度ay[m/s2]でl[m]移動しながら走行した場合の走行距離L[m]は、上記(1)式を用いると下記(2)式で表される。
Figure JPOXMLDOC01-appb-M000002
Travel distance L [m] when traveling along the own lane while moving at the speed V t [m / s] for time t [s] and moving in the lateral direction with acceleration a y [m / s 2 ] l [m] ] Is represented by the following formula (2) when the above formula (1) is used.
Figure JPOXMLDOC01-appb-M000002
 ここで、自車両が、進行方向の長さがLvlの回避対象を対向車線にはみ出して回避して自車線に戻る場合、その間に自車両は、走行距離2L+Lvlだけ走行することになる(図8参照)。従って、自車両から見通し距離Lm[m]だけ前方の位置(以下、単に見通し距離Lm[m]の位置という)から速度Vm(対向車線の制限速度)で対向車が走行してきた場合、自車両が対向車線で他車両と干渉せずに自車線に戻るためには、下記(3)式の不等式を満足すればよいことになる。
Figure JPOXMLDOC01-appb-M000003
Here, when the own vehicle protrudes from the opposite lane by avoiding the avoidance target whose length in the traveling direction is L vl and returns to the own lane, the own vehicle travels for the travel distance 2L + L vl during that time. (See FIG. 8). Therefore, when an oncoming vehicle travels at a speed V m (the speed limit of the opposite lane) from a position ahead of the vehicle by a line-of-sight distance L m [m] (hereinafter simply referred to as the position of the line-of-sight distance L m [m]). In order for the own vehicle to return to the own lane without interfering with other vehicles in the oncoming lane, the following inequality (3) may be satisfied.
Figure JPOXMLDOC01-appb-M000003
 ここで、上記(2)、(3)式より、横移動量lと速度Vtとの関係は、下記(4)式で表される。
Figure JPOXMLDOC01-appb-M000004
Here, the (2), (3) from the relationship between the lateral movement amount l and the speed V t is represented by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
 図6及び図8に示すように、自車両が自車線の中央を走行している場合に(以下、特記しない限り、自車両は基本的に基準走行領域及び拡張された基準走行領域の中央を走行するように制御されるものとする)、自車両が回避対象の側方を通過するときの自車両の右端と回避対象の右端との距離ldは、自車線の幅をdr、回避対象の右端と自車線境界線との距離をd、自車両の幅をWとすると、下記(5)式で表される。
Figure JPOXMLDOC01-appb-M000005
As shown in FIG. 6 and FIG. 8, when the host vehicle is traveling in the center of the host lane (hereinafter, unless otherwise specified, the host vehicle basically operates in the center of the reference driving region and the expanded reference driving region. shall be controlled so as to run), the distance l d between the own right end and avoidance of the right end of the vehicle when the vehicle passes through the side of the avoidance is the width of the own lane d r, avoidance When the distance between the right end of the object and the own lane boundary line is d and the width of the own vehicle is W, the following expression (5) is given.
Figure JPOXMLDOC01-appb-M000005
 図7Aは、自車両が回避対象の側方を通過するときの自車両の右端と回避対象の右端との距離ld[m]と、自車両の自車線方向の速度Vt[m/s]との関係を示すグラフである。グラフ中の灰色で塗りつぶしている範囲が、上記(4)式を満たす範囲である。そのため、この灰色で塗りつぶしている範囲で速度Vt[m/s]と距離ld[m]との目標値を設定することにより、見通し距離Lm[m]の位置から速度Vm[m/s]で対向車線の他車両が走行してきた場合、自車両は、対向車線で他車両と干渉せずに回避対象を回避して自車線に戻ることができる。 FIG. 7A shows the distance l d [m] between the right end of the own vehicle and the right end of the avoidance target when the own vehicle passes the side of the avoidance target, and the speed V t [m / s] of the own vehicle. It is a graph which shows the relationship with]. A range filled with gray in the graph is a range satisfying the above-described expression (4). Therefore, by setting the target value of the speed V t [m / s] and the distance l d [m] in the range in which filled in the gray speed from the position of the sight distance L m [m] V m [ m When another vehicle in the oncoming lane travels at / s], the own vehicle can return to the own lane while avoiding the avoidance target without interfering with the other vehicle on the oncoming lane.
 次に、走行領域拡張部102は、ステップS102で設定した見通し距離Lm[m]に応じた速度Vt[m/s]と距離ld[m]との関係と、乗員に不安を与えない速度Vt[m/s]と距離ld[m]との関係とを比較する(ステップS103)。図7Bに示すように、乗員に不安を与えない自車両の速度Vt[m/s]と、回避対象の右端と自車両の右端との距離ld[m]との関係については、速度が大きいほど距離ldを大きくして自車両を回避対象から離さないと乗員は不安感を拭えないのが一般的であるから、速度Vt[m/s]に比例して距離ld[m]が増加するように設定する。ここで、この速度Vt[m/s]の増加に対する距離ld[m]の増加の傾きは、事前に実験を実施して評価し、制御マップとして制御データベースに記憶させている。そして、走行領域拡張部102は、図7Cに示すように、図7Aのグラフと図7Bのグラフとを重畳し、両グラフの交点の速度Vt[m/s]及び距離ld[m]を、自車両が回避対象の側方を通過するときの目標車速Vt´[m/s]及び目標距離ld´[m]に設定する。 Next, the travel area expanding unit 102 gives anxiety to the relationship between the speed V t [m / s] and the distance l d [m] corresponding to the line-of-sight distance L m [m] set in step S102. The relationship between the non-speed V t [m / s] and the distance l d [m] is compared (step S103). As shown in FIG. 7B, the relationship between the speed V t [m / s] of the host vehicle that does not cause unease to the occupant and the distance l d [m] between the right end of the avoidance target and the right end of the host vehicle is The larger the distance is, the larger the distance ld is, and the occupant cannot generally wipe away the feeling of anxiety unless the vehicle is separated from the avoidance target. Therefore, the distance l d [m] is proportional to the speed V t [m / s]. ] Is set to increase. Here, the slope of the increase in the distance l d [m] with respect to the increase in the velocity V t [m / s] is evaluated by conducting an experiment in advance and stored in the control database as a control map. Then, as shown in FIG. 7C, the travel area expanding unit 102 superimposes the graph of FIG. 7A and the graph of FIG. 7B, and the speed V t [m / s] and the distance l d [m] at the intersection of both graphs. Are set to the target vehicle speed V t ′ [m / s] and the target distance l d ′ [m] when the host vehicle passes the side to be avoided.
 次に、走行領域拡張部102は、ステップS103で算出した目標距離ld´[m]を実現するように基準走行領域の拡張量を算出する(ステップS104)。図8に示すように、基準走行領域の左側境界fl(k)は、回避対象が走行領域に含まれないように拡張する。また、基準走行領域の右側境界fr(k)は、左側境界fl(k)から距離drだけオフセットするように拡張する。右境界fr(k)をオフセットさせる進行方向の長さは、回避対象の進行方向の中心位置を中心として進行方向の前後にそれぞれ(2L+Lvl)/2、合計で距離2L+Lvlとする。 Next, the travel area extending unit 102 calculates the extension amount of the reference travel area so as to realize the target distance l d ′ [m] calculated in step S103 (step S104). As shown in FIG. 8, the left boundary f l (k) of the reference travel area is expanded so that the avoidance target is not included in the travel area. Also, right boundary f r of the reference drive area (k) is extended to an offset from the left boundary f l (k) by a distance d r. The length of the traveling direction that offsets the right boundary f r (k) is (2L + L vl ) / 2 before and after the traveling direction around the center position of the traveling direction of the avoidance target, for a total distance of 2L + L vl And
 ここで、見通し距離Lm[m]が長くなるほど、図4の認識できない領域(見通し距離Lm[m]の位置)から他車両が出現してから、該他車両と自車両とがすれ違うまでの時間が長くなる。そのため、見通し距離Lm[m]が長くなるほど、自車両は回避対象を余裕を持って、即ち自車両と回避対象との距離ld[m]をより長く自車両の速度Vt[m/s]をより低くしても回避できることになる。そこで、走行領域拡張部102は、見通し距離Lm[m]が長くなるほど、自車両と回避対象との距離ld[m]をより長く、即ち、基準走行領域をより大きく拡張する。 Here, as the sight distance L m [m] increases, the other vehicle from emerging from the region can not be recognized in Fig. 4 (position of the sight distance L m [m]), until the pass each other and said other vehicle and the host vehicle The time will be longer. For this reason, the longer the line-of-sight distance L m [m], the more the own vehicle has a margin for avoidance, that is, the longer the distance l d [m] between the own vehicle and the avoidance target and the speed V t [m / Even if s] is lowered, it can be avoided. Therefore, the travel area extending unit 102 increases the distance l d [m] between the host vehicle and the avoidance target as the line-of-sight distance L m [m] increases, that is, extends the reference travel area more greatly.
 なお、例えば車両のように回避対象が動く可能性のあるものである場合には、走行領域拡張部102は、基準走行領域の左側境界fl(k)を、回避対象からの離隔距離が大きくなる側により大きく拡張する。この場合、図9に示すように、回避対象が車両であり、その車両の向きが車線に対して右側に傾斜している(車両のフロントが右前方を向いている)と外部情報認識部12により認識された場合には、基準走行領域の左側境界fl(k)を、車両の向きが車線に対して平行、あるいは車線に対して左側に傾斜している場合に比して、回避対象からの離隔距離が大きくなる側(右側)に大きく拡張すればよい。即ち、回避対象たる車両の向きが車線に対して右側に傾斜している場合は、当該車両が右側へ動く可能性があると予測して、基準走行領域の左側境界fl(k)を右側に、より大きく拡張すればよい。これにより、自車両が回避対象たる車両の側方を通過する際に当該車両が急に右前方へ動いた場合でも、自車両と当該車両とのより安全な距離を確保できる。 For example, when the avoidance target is likely to move like a vehicle, the travel area expanding unit 102 increases the left boundary f l (k) of the reference travel area with a large separation distance from the avoidance target. Expand to the side that becomes. In this case, as shown in FIG. 9, if the object to be avoided is a vehicle and the direction of the vehicle is inclined to the right side with respect to the lane (the front of the vehicle faces right front), the external information recognition unit 12. The left boundary f l (k) of the reference travel area is avoided compared to the case where the vehicle direction is parallel to the lane or inclined to the left with respect to the lane. What is necessary is just to expand greatly to the side (right side) where the separation distance from becomes large. That is, when the direction of the vehicle to be avoided is inclined to the right with respect to the lane, it is predicted that the vehicle may move to the right and the left boundary f l (k) of the reference travel area is set to the right Furthermore, it should be expanded more greatly. Thereby, even when the vehicle suddenly moves rightward when the vehicle passes the side of the vehicle to be avoided, a safer distance between the vehicle and the vehicle can be secured.
 また、回避対象が人のように移動方向を特定できない特性のものであると外部情報認識部12により認識された場合には、走行領域拡張部102は、回避対象の向きと車線の方向との関係にかかわらず、基準走行領域の左側境界fl(k)をより大きく拡張する。これにより、自車両が回避対象の側方を通過する際に回避対象が急に予測しない方向へ動いた場合でも、自車両と回避対象とのより安全な距離を確保できる。 In addition, when the external information recognition unit 12 recognizes that the avoidance target has a characteristic such as a person that cannot specify the moving direction, the traveling area expansion unit 102 determines whether the avoidance target and the lane direction are Regardless of the relationship, the left boundary f l (k) of the reference travel area is expanded more greatly. Thereby, even when the avoidance target suddenly moves in a direction that is not predicted when the own vehicle passes the side of the avoidance target, a safer distance between the own vehicle and the avoidance target can be secured.
 また、走行領域拡張部102は、地図情報もしくは外部情報認識部12の認識結果により、自車線を追い越し禁止の車線と判断した場合には、拡張した基準走行領域を通って回避対象を回避する行為が追い越しにあたるのであれば、基準走行領域の拡張を実施しない(禁止する)。 In addition, when the travel area expansion unit 102 determines that the own lane is an overtaking prohibited lane based on the map information or the recognition result of the external information recognition unit 12, an action to avoid the avoidance target through the expanded reference travel area If the vehicle is overtaking, the reference travel area is not expanded (prohibited).
 図5に戻り、次に、走行領域拡張部102は、ステップS104で算出した拡張量に従って基準走行領域を拡張する(ステップS105)。 Returning to FIG. 5, next, the travel area expanding unit 102 expands the reference travel area according to the expansion amount calculated in step S104 (step S105).
 なお、本実施形態では、自車線の左側に存在する回避対象を回避するために、基準走行領域の左右境界fl(k)、fr(k)を右側に拡張する例について説明した。しかし、回避対象が自車線の右側に存在する場合には、基準走行領域の左右境界fl(k)、fr(k)を左側に拡張すればよい。また、本実施形態では、道路交通法規において車両が左側走行するものと定められていることを前提にしているが、車両が右側走行するものと定められている場合には、本実施形態の手法を左右逆に適用すればよい。 In the present embodiment, the example in which the left and right boundaries f l (k) and f r (k) of the reference travel area are extended to the right side to avoid the avoidance target existing on the left side of the own lane has been described. However, when the avoidance target exists on the right side of the own lane, the left and right boundaries f l (k) and f r (k) of the reference travel area may be extended to the left side. Further, in the present embodiment, it is assumed that the vehicle is determined to run on the left side according to road traffic regulations, but if the vehicle is determined to travel on the right side, the method of the present embodiment is used. May be applied in the opposite direction.
 目標経路目標速度生成部103は、走行領域拡張部102が生成した走行領域の中を通る目標経路を生成し、その目標経路に対する目標速度を設定する。目標経路の生成は、周知の方法により実施すればよいが、例えば最適化問題として解析すればよく、例えば下記(6)式のように評価関数を設定すればよい。
Figure JPOXMLDOC01-appb-M000006
The target route target speed generation unit 103 generates a target route that passes through the travel region generated by the travel region extension unit 102, and sets a target speed for the target route. The generation of the target route may be performed by a well-known method, but it may be analyzed as an optimization problem, for example, and an evaluation function may be set as in, for example, the following equation (6).
Figure JPOXMLDOC01-appb-M000006
 ここで、上記(1)式の右辺の被積分式の第1項Wuu(s)2は、入力である曲率変化率uに対するペナルティ関数であり、同じく第2項Wkk(s)2は、入力である経路の曲率kに対するペナルティ関数である。Lは経路の長さであり、例えば、自車両の現在の速度で数秒間走行できる長さ等、十分に長く設定すればよい。 Here, the first term W u u (s) 2 of the integrand on the right side of the above equation (1) is a penalty function for the curvature change rate u as an input, and the second term W k k (s) is also the same. 2 is a penalty function for the curvature k of the path as an input. L is the length of the route, and may be set sufficiently long, for example, a length that allows the vehicle to travel for several seconds at the current speed.
 なお、経路は、下記(8)の状態方程式及び下記(9)の関数を満たす下記(7)式を解き、積分することにより求めることができる。
Figure JPOXMLDOC01-appb-M000007
The path can be obtained by solving and integrating the following equation (7) that satisfies the following equation (8) and the function (9).
Figure JPOXMLDOC01-appb-M000007
 ここで、Xは状態ベクトルであり、経路中の座標(x,y)および進行方向の角度θ、曲率kを要素として、X=(x y θ k)Tで構成される。また、上記(9)式のP(X(s))は、白線や縁石等で規定される境界と経路との距離を表す関数で、経路が境界をはみ出すことがないようにするための制約条件として設定される。この制約条件を満たすと共に上記(6)式の評価関数が最小になるようにすることにより、走行領域を通る滑らかな目標経路を生成することができる。 Here, X is a state vector, and is composed of X = (x y θ k) T with the coordinates (x, y) in the path, the angle θ in the traveling direction, and the curvature k as elements. In addition, P (X (s)) in the above equation (9) is a function that expresses the distance between the boundary defined by the white line, curbstone, etc. and the path, and is a constraint for preventing the path from protruding the boundary. Set as a condition. By satisfying this constraint condition and minimizing the evaluation function of the above formula (6), a smooth target route passing through the travel region can be generated.
 目標経路目標速度生成部103は、生成した目標経路に自車両を追従させるための操舵目標を演算し、操舵モータコントローラ13へ出力する。ここで、操舵目標の演算は、例えば、前方注視モデル等を用いた方法等の周知の方法により実施すればよい。なお、前方注視モデルとは、ドライバの操作量が、前方注視点における目標コースからのずれである前方偏差に比例することを仮定したモデルであり、かかるモデルを用いる場合、前方偏差を0[m]に収束させる制御を可能にする目標値を算出すればよい。 The target route target speed generation unit 103 calculates a steering target for causing the host vehicle to follow the generated target route, and outputs it to the steering motor controller 13. Here, the calculation of the steering target may be performed by a known method such as a method using a forward gaze model. The forward gaze model is a model that assumes that the amount of operation of the driver is proportional to the forward deviation, which is a deviation from the target course at the forward gaze point, and when such a model is used, the forward deviation is 0 [m. It is only necessary to calculate a target value that enables control to converge to.
 目標経路目標速度生成部103は、生成した目標経路で走行する自車両の目標速度Vrを設定する。例えば、目標速度Vrは下記(10)式に基づいて、目標経路上の各点における自車両の横加速度とヨーレートとが閾値以下になるように設定すればよい。
Figure JPOXMLDOC01-appb-M000008
The target route target speed generation unit 103 sets a target speed V r of the host vehicle that travels on the generated target route. For example, the target speed V r may be set based on the following equation (10) so that the lateral acceleration and yaw rate of the host vehicle at each point on the target route are equal to or less than a threshold value.
Figure JPOXMLDOC01-appb-M000008
 ここで、Rは、目標経路上の各点での曲率半径であり、aymaxは加速度であり、ωmaxは角速度である。なお、上記(10)式で得られた目標速度Vrに勾配リミッタやFIR(Finite Impulse Response)フィルタ等をかけることにより、目標速度Vrの波形を滑らかにするようにしてもよい。 Here, R is the radius of curvature at each point on the target path, a ymax is the acceleration, and ω max is the angular velocity. The target speed V r obtained by the above equation (10) may be smoothed by applying a gradient limiter, FIR (Finite Impulse Response) filter, or the like to the target speed V r .
 図10は、制御装置100の処理を説明するためのフローチャートである。制御装置100では、以下のステップS201~S204の処理が演算周期毎に繰り返される。 FIG. 10 is a flowchart for explaining the processing of the control device 100. In the control device 100, the following steps S201 to S204 are repeated every calculation cycle.
 まず、基準走行領域設定部101は、基準走行領域を設定する(ステップS201)。次に、走行領域拡張部102は、回避対象が基準走行領域の中に存在するか否かを判定する(ステップS202)。ステップS202において否定判定がされた場合には、目標経路目標速度生成部103が、基準走行領域の中を通る目標経路及び該目標経路に対する目標速度を生成する(ステップS204)。 First, the reference travel area setting unit 101 sets a reference travel area (step S201). Next, the travel area expanding unit 102 determines whether the avoidance target exists in the reference travel area (step S202). When a negative determination is made in step S202, the target route target speed generation unit 103 generates a target route that passes through the reference travel area and a target speed for the target route (step S204).
 一方、ステップS202において肯定判定がされた場合には、走行領域拡張部102は、基準走行領域を拡張する(ステップS203)。なお、走行領域拡張部102は、地図情報もしくは外部情報認識部12の認識結果から自車線が追い越し禁止の車線であり、回避対象を回避する行為が追い越しに該当すると判定した場合には、基準走行領域の拡張を実施しない(禁止する)。 On the other hand, when an affirmative determination is made in step S202, the travel area expanding unit 102 expands the reference travel area (step S203). Note that the travel area expanding unit 102 determines that the reference lane is determined when the own lane is an overtaking prohibited lane based on the map information or the recognition result of the external information recognition unit 12 and the act of avoiding the avoidance target corresponds to the overtaking. Do not extend (prohibit) area expansion.
 走行領域拡張部102によって基準走行領域が拡張された場合には、目標経路目標速度生成部103は、基準走行領域が拡張されて得られた走行領域の中を通る目標経路と、該目標経路に対する目標速度とを生成する(ステップS204)。 When the reference travel area is expanded by the travel area expansion unit 102, the target route target speed generation unit 103 sets a target route that passes through the travel region obtained by expanding the reference travel region and the target route. A target speed is generated (step S204).
 次に、図11に示すように、自車両と対向車線で走行する他車両との相対距離がL0[m]であるような走行シーンを例にとって基準走行領域を拡張する処理を説明する。 Next, as shown in FIG. 11, a process for extending the reference travel area will be described taking a travel scene in which the relative distance between the host vehicle and another vehicle traveling on the opposite lane is L 0 [m] as an example.
 図12は、基準走行領域を拡張する処理を説明するためのフローチャートである。まず、走行領域拡張部102は、外部情報認識部12により認識されている対向車線の他車両の速度V0及び当該他車両と自車両との相対距離L0[m]を算出する(ステップS301)。次に、走行領域拡張部102は、上記相対距離L0[m]に応じた、自車両の速度Vt[m/s]と、回避対象と自車両との距離ld[m]との関係を算出する(ステップS302)。ここで、上記(4)式の見通し距離Lm[m]を上記相対距離L0[m]に置換し、上記(4)式の速度Vmを対向車の速度V0に置換した下記(11)式により、横移動量lと速度Vtとの関係が表される。
Figure JPOXMLDOC01-appb-M000009
FIG. 12 is a flowchart for explaining a process of extending the reference travel area. First, the travel area expanding unit 102 calculates the speed V 0 of the other vehicle on the opposite lane recognized by the external information recognition unit 12 and the relative distance L 0 [m] between the other vehicle and the host vehicle (step S301). ). Next, the traveling area expanding unit 102 calculates the speed V t [m / s] of the host vehicle and the distance l d [m] between the avoidance target and the host vehicle according to the relative distance L 0 [m]. The relationship is calculated (step S302). Here, the line-of-sight distance L m [m] in equation (4) is replaced with the relative distance L 0 [m], and the speed V m in equation (4) is replaced with the speed V 0 of the oncoming vehicle ( by 11), the relationship between the lateral movement amount l and the speed V t is represented.
Figure JPOXMLDOC01-appb-M000009
 本ステップでは、図7Aのグラフ中の灰色で塗りつぶしている範囲が、上記(11)式を満たす範囲となる。そのため、この灰色で塗りつぶしている範囲で速度Vtと距離ldとの目標値を設定することにより、自車両との相対距離がL0[m]の前方の位置から速度V0で対向車が走行してきた場合、自車両は、対向車線で対向車と干渉せずに回避対象を回避して自車線に戻ることができる。 In this step, the range painted in gray in the graph of FIG. 7A is a range that satisfies the above-described expression (11). Therefore, by setting the target value of the speed V t and the distance l d within this grayed out range, the oncoming vehicle at the speed V 0 from the position in front of the relative distance of the host vehicle L 0 [m] When the vehicle has traveled, the host vehicle can return to the host lane while avoiding the avoidance target without interfering with the oncoming vehicle in the oncoming lane.
 次に、走行領域拡張部102は、ステップS302で設定した相対距離L0[m]に応じた速度Vt[m/s]と距離ld[m]との関係と、乗員に不安を与えない速度Vt[m/s]と距離ld[m]との関係とを比較する(ステップS303)。本ステップの処理は、上述の図5のステップS103と同様であり、最終的に、走行領域拡張部102は、図7Cに示すように、図7Aのグラフと図7Bのグラフとを重畳し、両グラフの交点の速度Vt[m/s]及び距離ld[m]を、自車両が回避対象の側方を通過するときの目標車速Vt´[m/s]及び目標距離ld´[m]に設定する。 Next, the travel area expanding unit 102 gives anxiety to the relationship between the speed V t [m / s] and the distance l d [m] corresponding to the relative distance L 0 [m] set in step S302. The relationship between the non-speed V t [m / s] and the distance l d [m] is compared (step S303). The processing in this step is the same as that in step S103 of FIG. 5 described above. Finally, as shown in FIG. 7C, the travel area expanding unit 102 superimposes the graph of FIG. 7A and the graph of FIG. The speed V t [m / s] and the distance l d [m] at the intersection of both graphs are used as the target vehicle speed V t ´ [m / s] and the target distance l d when the host vehicle passes the side to be avoided. Set to ´ [m].
 次に、走行領域拡張部102は、ステップS303で算出した目標距離ld´[m]を実現するように基準走行領域の拡張量を算出する(ステップS304)。最後に、走行領域拡張部102は、ステップS304で算出した拡張量に従って基準走行領域を拡張する(ステップS305)。 Next, the travel area extending unit 102 calculates the extension amount of the reference travel area so as to realize the target distance l d ′ [m] calculated in step S303 (step S304). Finally, the travel area expanding unit 102 expands the reference travel area according to the expansion amount calculated in step S304 (step S305).
 ここで、外部情報認識部12により他車両が認識されてから該他車両と自車両とがすれ違う地点に到達するまでの時間が長くなるほど、余裕を持って、即ち自車両と回避対象との距離ld[m]をより長く自車両の速度Vt[m/s]をより低くしても、自車両が回避対象を回避できることになる。そこで、走行領域拡張部102は、上記時間が長くなるほど(即ち、相対距離L0[m]が長くなるほど)、自車両と回避対象との距離ld[m]をより長く、即ち、基準走行領域をより大きく拡張する。 Here, the longer the time from when the other vehicle is recognized by the external information recognition unit 12 to when the other vehicle and the host vehicle pass each other, the longer the time is, that is, the distance between the host vehicle and the avoidance target. Even if l d [m] is longer and the speed V t [m / s] of the host vehicle is lower, the host vehicle can avoid the avoidance target. Therefore, the travel area expanding unit 102 increases the distance l d [m] between the host vehicle and the avoidance target as the time becomes longer (that is, as the relative distance L 0 [m] becomes longer), that is, as the reference travel. Extend the region more greatly.
 次に、図13に示すように、外部情報認識部12の前方を認識できる距離がL1[m]であり、この認識距離内においては対向車線を走行する他車両が存在しないような走行シーンを例にとって基準走行領域を拡張する処理を説明する。 Next, as shown in FIG. 13, the distance in which the front of the external information recognizing unit 12 can be recognized is L 1 [m], and a traveling scene in which no other vehicle traveling in the oncoming lane exists within this recognized distance. A process for extending the reference travel area will be described with reference to FIG.
 図14は、基準走行領域を拡張する処理を説明するためのフローチャートである。まず、走行領域拡張部102は、外部情報認識部12の認識距離L1[m]をROMから読み出す(ステップS401)。次に、走行領域拡張部102は、外部情報認識部12の認識距離L1[m]に応じた、自車両の速度Vt[m/s]と、回避対象と自車両との距離ld[m]との関係を算出する(ステップS402)。ここで、上記(4)式の見通し距離Lm[m]を上記認識距離L1[m]に置換し、上記(4)式の速度Vmを他車両が走行する対向車線の制限速度V0に置換した下記(12)式により、横移動量lと速度Vtとの関係が表される。
Figure JPOXMLDOC01-appb-M000010
FIG. 14 is a flowchart for explaining a process of extending the reference travel area. First, the travel area extending unit 102 reads the recognition distance L 1 [m] of the external information recognition unit 12 from the ROM (step S401). Next, the travel area expanding unit 102 determines the vehicle speed V t [m / s] corresponding to the recognition distance L 1 [m] of the external information recognition unit 12 and the distance l d between the avoidance target and the host vehicle. The relationship with [m] is calculated (step S402). Here, the line-of-sight distance L m [m] in the above equation (4) is replaced with the recognition distance L 1 [m], and the speed V m in the above equation (4) is used as the speed limit V for the oncoming lane in which another vehicle travels. following equation (12) by substituted on 0, the relationship between the lateral movement amount l and the speed V t is represented.
Figure JPOXMLDOC01-appb-M000010
 本ステップでは、図7Aのグラフ中の灰色で塗りつぶしている範囲が、上記(12)式を満たしている範囲となる。そのため、この灰色で塗りつぶしている範囲で速度Vtと距離ldとの目標値を設定することにより、自車両から認識距離L1[m]だけ前方の位置から速度V0で他車両が走行してきた場合、自車両は、対向車線で他車両と干渉せずに回避対象を回避して自車線に戻ることができる。 In this step, the grayed out range in the graph of FIG. 7A is a range that satisfies the above equation (12). Therefore, by setting the target values of the speed V t and distance l d within the grayed out range, the other vehicle travels at the speed V 0 from the front position by the recognition distance L 1 [m] from the own vehicle. In this case, the host vehicle can return to the host lane while avoiding the avoidance target without interfering with other vehicles in the oncoming lane.
 次に、走行領域拡張部102は、ステップS402で設定した認識距離L1[m]に応じた速度Vt[m/s]と距離ld[m]との関係と、乗員に不安を与えない速度Vt[m/s]と距離ld[m]との関係とを比較する(ステップS403)。本ステップの処理は、上述のステップS103と同様であり、最終的に、走行領域拡張部102は、図7Cに示すように、図7Aのグラフと図7Bのグラフとを重畳し、両グラフの交点の速度Vt[m/s]及び距離ld[m]を、自車両が回避対象の側方を通過するときの目標車速Vt´[m/s]及び目標距離ld´[m]に設定する。 Next, the travel area expanding unit 102 gives anxiety to the occupant and the relationship between the speed V t [m / s] and the distance l d [m] corresponding to the recognition distance L 1 [m] set in step S402. The relationship between the non-speed V t [m / s] and the distance l d [m] is compared (step S403). The processing in this step is the same as that in step S103 described above. Finally, as shown in FIG. 7C, the travel area expanding unit 102 superimposes the graph of FIG. 7A and the graph of FIG. The intersection speed V t [m / s] and the distance l d [m] are determined based on the target vehicle speed V t ´ [m / s] and the target distance l d ´ [m] when the host vehicle passes the side to be avoided. ] Is set.
 次に、走行領域拡張部102は、ステップS403で算出した目標距離ld´[m]を実現するように基準走行領域の拡張量を算出する(ステップS404)。最後に、走行領域拡張部102は、ステップS404で算出した拡張量に従って基準走行領域を拡張する(ステップS405)。 Next, the travel area extending unit 102 calculates the extension amount of the reference travel area so as to realize the target distance l d ′ [m] calculated in step S403 (step S404). Finally, the travel area expanding unit 102 expands the reference travel area according to the expansion amount calculated in step S404 (step S405).
 次に、図15に示すように、自車両の前方に第1の回避対象が存在し、該第1の回避対象の前方、すなわち第1の回避対象の陰に隠れて自車両からは死角となって認識できない第2の回避対象が存在するような走行シーンを例にとって基準走行領域を拡張する処理を説明する。 Next, as shown in FIG. 15, there is a first avoidance target in front of the host vehicle, and a blind spot is hidden from the host vehicle in front of the first avoidance target, that is, behind the first avoidance target. The process of expanding the reference travel area will be described taking a travel scene in which there is a second avoidance target that cannot be recognized as an example.
 かかる走行シーンで基準走行領域を拡張する場合には、走行領域拡張部102は、上述の図5のステップS104、図12のS304、図14のS404において、回避対象の前方の死角になる領域の大きさに応じて、左側境界fl(k)を設定する。ここで、走行領域拡張部102は、死角になる領域の大きさを、第1の回避対象と自車両との相対位置と、第1の回避対象の大きさとに応じて算出し、死角になる領域が大きくなるほど、左側境界fl(k)を、第1の回避対象からの離隔距離が大きくなる側に大きく拡張する。 In the case where the reference travel area is expanded in such a travel scene, the travel area expansion unit 102 determines the area that becomes the blind spot ahead of the avoidance target in step S104 in FIG. 5, S304 in FIG. 12, and S404 in FIG. The left boundary f l (k) is set according to the size. Here, the travel area expanding unit 102 calculates the size of the area that becomes a blind spot according to the relative position between the first avoidance target and the host vehicle and the size of the first avoidance target, and becomes a blind spot. As the region becomes larger, the left boundary f l (k) is greatly expanded to the side where the separation distance from the first avoidance target becomes larger.
 これにより、第1の回避対象の前方の死角が大きく、さらに第2の回避対象が車両であって、該車両が高速度で死角から飛び出して来た場合であっても、第2の回避対象たる車両と自車両とのより安全な距離を確保し易くなる。他方、第1の回避対象を回避して自車線に戻るのに要する時間が短くなることにより、第1の回避対象の前方の死角が小さく、対向車線の他車両が走行している場合には、自車両と他車両との距離をより確保し易くなる。 Thereby, even if the blind spot ahead of the 1st avoidance object is large, and the 2nd avoidance object is a vehicle, and this vehicle jumps out of the blind spot at high speed, the 2nd avoidance object It becomes easy to secure a safer distance between the vehicle and the own vehicle. On the other hand, when the time required to avoid the first avoidance target and return to the own lane is shortened, the blind spot ahead of the first avoidance target is small, and other vehicles in the opposite lane are traveling It becomes easier to secure the distance between the host vehicle and the other vehicle.
 本実施形態の走行制御装置は、以上のように構成され動作するので、以下の効果を奏する。 Since the travel control device of the present embodiment is configured and operates as described above, the following effects can be obtained.
[1]本実施形態の走行制御装置によれば、自車両が走行可能な基準走行領域を設定し、該基準走行領域に回避すべき回避対象が存在する場合に、該回避対象の周囲の基準走行領域を拡張した走行領域を生成し、該走行領域の中で上記回避対象を回避する目標経路を生成する。これにより、設定している走行領域の幅等と回避対象の位置、大きさ等との関係にかかわらず、自車両は、回避対象の手前で停車することなく回避対象を回避して進行することができ、自動運転制御又は運転支援制御を中断することなく実施できる。 [1] According to the travel control device of the present embodiment, a reference travel area in which the host vehicle can travel is set, and when there is an avoidance target to be avoided in the reference travel area, a reference around the avoidance target A travel area is generated by expanding the travel area, and a target route that avoids the avoidance target is generated in the travel area. As a result, regardless of the relationship between the width of the set travel area and the position, size, etc. of the avoidance target, the host vehicle travels avoiding the avoidance target without stopping before the avoidance target. The automatic operation control or the driving support control can be performed without interruption.
[2]本実施形態の走行制御装置によれば、予め設定した基準走行領域を拡張し、その後に、得られた走行領域内で自車両が走行すべき目標経路を生成している。このため、基準走行領域を設定せずに、初めから回避対象を回避する目標経路を生成する場合に比して、目標経路を生成する領域が限定されることにより、目標経路の生成の演算が容易になり、目標経路を生成する時間の短縮、目標経路を生成する演算負荷の低減といった効果を得ることができる。 [2] According to the travel control device of the present embodiment, a preset reference travel area is expanded, and thereafter, a target route for the host vehicle to travel within the obtained travel area is generated. For this reason, compared with the case where a target route that avoids the avoidance target is generated from the beginning without setting the reference travel region, the region for generating the target route is limited. It becomes easy, and the effect of shortening the time for generating the target route and reducing the calculation load for generating the target route can be obtained.
[3]本実施形態の走行制御装置によれば、対向車線の見通し距離Lmが長いほど基準走行領域を大きく拡張する。即ち、対向車線をより遠くまで見通せる場合には、基準走行領域を大きく拡張した走行領域を生成することにより、回避対象との距離がより大きく回避対象をより安全に回避できる目標経路を生成できる。 According [3] to the travel control device of the present embodiment, sight distance L m on the opposite lane is largely extend longer reference travel region. That is, when the oncoming lane can be seen farther, by generating a travel area in which the reference travel area is greatly expanded, it is possible to generate a target route that has a greater distance from the avoidance target and can avoid the avoidance target more safely.
[4]本実施形態の走行制御装置によれば、外部情報認識部12により対向車線の他車両が認識されてから該他車両と自車両とがすれ違うまでの時間が長いほど、基準走行領域を大きく拡張する。即ち、自車両から対向車線の他車両までの距離(上記相対距離L0)が長く、両車両がすれ違う位置までに到達する時間が長くなるほど、基準走行領域をより大きく拡張した走行領域を生成することにより、回避対象との距離がより大きく回避対象をより安全に回避できる目標経路を生成できる。 [4] According to the travel control device of this embodiment, the longer the time from when the other vehicle on the opposite lane is recognized by the external information recognition unit 12 until the other vehicle and the host vehicle pass each other, the longer the reference travel region is. Expand greatly. That is, the longer the distance from the host vehicle to the other vehicle in the opposite lane (the relative distance L 0 ) is, and the longer it takes to reach the position where both vehicles pass each other, the longer the reference travel region is expanded. Thus, it is possible to generate a target route that is larger in distance to the avoidance target and that can avoid the avoidance target more safely.
[5]本実施形態の走行制御装置によれば、外部情報認識部12による自車両から認識可能な距離L1が長いほど基準走行領域を大きく拡張する。即ち、外部情報認識部12が対向車線をより遠くまで認識できる場合には、基準走行領域をより大きく拡張した走行領域を生成することにより、回避対象との距離がより大きく回避対象をより安全に回避できる目標経路を生成できる。 [5] According to the driving control device of the present embodiment, recognizable distance L 1 from the vehicle greatly extend the longer reference travel region by the external information recognition unit 12. That is, when the external information recognition unit 12 can recognize the oncoming lane farther, by generating a travel area that is a larger extension of the reference travel area, the distance to the avoidance target is greater and the avoidance target is safer. A target route that can be avoided can be generated.
[6]本実施形態の走行制御装置によれば、外部情報認識部12における第1の回避対象の前方の死角となる範囲が広いほど基準走行領域を大きく拡張する。即ち、外部情報認識部12により認識された第1の回避対象の死角から第2の回避対象が飛び出す可能性が高いほど、基準走行領域をより大きく拡張した走行領域を生成することにより、第2の回避対象との距離がより大きく第2の回避対象をより安全に回避できる目標経路を生成できる。 [6] According to the travel control device of the present embodiment, the reference travel area is greatly expanded as the range of the blind spot ahead of the first avoidance target in the external information recognition unit 12 is wider. That is, the second avoidance target is more likely to pop out from the blind spot of the first avoidance target recognized by the external information recognition unit 12, thereby generating a travel area that is a larger extension of the reference travel area. It is possible to generate a target route that is larger in distance to the avoidance target and that can avoid the second avoidance target more safely.
[7]本実施形態の走行制御装置によれば、回避対象が基準走行領域の左側に存在する場合には基準走行領域を右側に拡張し、回避対象が基準走行領域の右側に存在する場合には基準走行領域を左側に拡張する。これにより、基準走行領域の右側に存在する回避対象を回避するために基準走行領域を右側に拡張する場合のように、基準走行領域を過大に拡張して目標経路を過大に蛇行させることを要せず、基準走行領域の拡張量及び目標経路の蛇行量を抑えることができる。 [7] According to the travel control apparatus of the present embodiment, when the avoidance target exists on the left side of the reference travel region, the reference travel region is expanded to the right side, and when the avoidance target exists on the right side of the reference travel region. Expands the reference travel area to the left. As a result, it is necessary to overextend the reference travel area and meander the target route excessively, as in the case of extending the reference travel area to the right side to avoid the avoidance target existing on the right side of the reference travel area. Without being limited, the amount of expansion of the reference travel area and the amount of meandering of the target route can be suppressed.
[8]本実施形態の走行制御装置によれば、車両のように回避対象が動く可能性のあるものである場合に、動く可能性の無い回避対象に比して、基準走行領域を大きく拡張するというように、回避対象の種別に応じて基準走行領域の拡張量を異ならせる。特に、動く可能性のある回避対象の場合に、基準走行領域をより大きく拡張した走行領域を生成することにより、当該回避対象との距離がより大きく当該回避対象をより安全に回避できる目標経路を生成できる。 [8] According to the travel control device of this embodiment, when the avoidance target is likely to move like a vehicle, the reference travel range is greatly expanded compared to the avoidance target that is not likely to move. As described above, the amount of expansion of the reference travel area is varied according to the type of the avoidance target. In particular, in the case of an avoidance target that may move, by generating a travel area that is a larger extension of the reference travel area, a target route that can be avoided more safely by avoiding the avoidance target with a greater distance to the avoidance target. Can be generated.
[9]本実施形態の走行制御装置によれば、回避対象たる車両の進行方向に対する向きに応じて基準走行領域の拡張方法を異ならせる。例えば、基準走行領域の左側に停車している車両が進行方向に対して右側に傾斜している場合には、進行方向に対して平行である場合あるいは進行方向に対して左側に傾斜している場合に比して、基準走行領域を右側に大きく拡張する。これにより、回避対象たる車両の動く可能性のある方向に対応して基準走行領域を拡張でき、当該車両との距離がより大きく当該車両をより安全に回避できる目標経路を生成できる。 [9] According to the travel control device of the present embodiment, the method of extending the reference travel region is made different according to the direction of the vehicle to be avoided with respect to the traveling direction. For example, when a vehicle parked on the left side of the reference traveling area is inclined to the right with respect to the traveling direction, the vehicle is parallel to the traveling direction or inclined to the left with respect to the traveling direction. Compared to the case, the reference travel area is greatly expanded to the right. As a result, the reference travel area can be expanded corresponding to the direction in which the vehicle that is the avoidance target may move, and a target route that can increase the distance to the vehicle and avoid the vehicle more safely can be generated.
[10]本実施形態の走行制御装置によれば、例えば、自車両が走行する車線が追い越し禁止車線である場合には基準走行領域を拡張しない等、自車両が走行する車線の種別に応じて基準走行領域の拡張方法(拡張方法及び拡張量)を異ならせる。これにより、図16に示すように、自車両が走行する車線が追い越し禁止車線であり、回避対象を回避する行為が追い越し行為に該当する場合には、自車両は、回避対象の手前で停止又は回避対象に追従走行することになるから、法令違反になることが防止される。 [10] According to the travel control device of the present embodiment, for example, when the lane in which the host vehicle travels is an overtaking prohibition lane, the reference travel area is not expanded. Different methods of extending the reference travel area (expansion method and amount). Accordingly, as shown in FIG. 16, when the lane in which the host vehicle is traveling is an overtaking prohibited lane, and the act of avoiding the avoidance object corresponds to the overtaking action, the own vehicle is stopped before the avoidance target or Since the vehicle follows the avoidance target, it is possible to prevent a violation of the law.
《第2実施形態》
 図17は、本発明の第2実施形態に係る走行制御装置の機能ブロック図である。なお、第1実施形態と同様の構成には同一の符号を付し、その説明をここに援用し繰り返しの説明は省略する。
<< Second Embodiment >>
FIG. 17 is a functional block diagram of a travel control apparatus according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the structure similar to 1st Embodiment, the description is used here and repeated description is abbreviate | omitted.
 本実施形態の走行制御装置は、第1実施形態の走行制御装置に回避対象選択部104が付加された構成である。回避対象選択部104は、基準走行領域設定部101から基準走行領域の情報を入力し、外部情報認識部12から認識した物体の情報を入力する。そして、回避対象選択部104は、外部情報認識部12により基準走行領域内に認識された物体を回避対象として選択するか否かを判定し、判定結果を走行領域拡張部102へ出力する。 The travel control device of the present embodiment has a configuration in which an avoidance target selection unit 104 is added to the travel control device of the first embodiment. The avoidance target selection unit 104 inputs information on the reference travel region from the reference travel region setting unit 101 and inputs information on the recognized object from the external information recognition unit 12. Then, the avoidance target selection unit 104 determines whether to select an object recognized by the external information recognition unit 12 in the reference travel area as an avoidance target, and outputs the determination result to the travel area expansion unit 102.
 走行領域拡張部102は、第1実施形態と同様、外部情報認識部12による基準走行領域内の物体の認識結果に応じて、基準走行領域を拡張する。その際、走行領域拡張部102は、まず、物体の座標と基準走行領域の左右の境界fl(k)、fr(k)とを比較するが、回避対象選択部104により回避対象と選択された物体のみについて実施する。 Similarly to the first embodiment, the travel area extending unit 102 extends the reference travel area according to the recognition result of the object in the reference travel area by the external information recognition unit 12. At that time, the travel area expansion unit 102 first compares the coordinates of the object with the left and right boundaries f l (k) and f r (k) of the reference travel area, but the avoidance target selection unit 104 selects the avoidance target. This is performed only for the object that has been removed.
 回避対象選択部104は、基準走行領域内で認識された物体を回避対象として選択するか否かを判定する際、例えば、基準走行領域内で認識された物体の速度が閾値以下である場合には、当該物体を回避対象として選択すればよい。ここで、速度の閾値は、例えば、基準走行領域内で認識された物体が停止していると判断できる値に設定すればよい。これにより、基準走行領域内で停止している物体についてのみ、回避するべく基準走行領域の拡張を実施することができる。また、速度の閾値は、例えば、基準走行領域内で認識された物体の速度が自車両の速度に対して十分に低いと判断できる値に設定すればよい。これにより、基準走行領域内で低速で移動し、あるいは停止している物体についてのみ、回避するべく基準走行領域の拡張を実施することができる。 When the avoidance target selection unit 104 determines whether to select an object recognized in the reference travel area as an avoidance target, for example, when the speed of the object recognized in the reference travel area is equal to or less than a threshold value. May be selected as the avoidance target. Here, the speed threshold value may be set to a value at which it can be determined that the object recognized in the reference travel area is stopped, for example. Thereby, the reference travel area can be expanded to avoid only the objects that are stopped in the reference travel area. Further, the speed threshold may be set to a value at which it can be determined that the speed of the object recognized in the reference travel area is sufficiently lower than the speed of the host vehicle. As a result, the reference travel area can be expanded to avoid only an object that moves at a low speed or stops in the reference travel area.
 さらに、回避対象選択部104は、基準走行領域内で認識された物体を回避対象として選択するか否かを判定する際、例えば、基準走行領域内で認識された物体の幅寸法が閾値以上である場合には、当該物体を回避対象として選択すればよい。ここで、物体の幅寸法の閾値は、例えば、基準走行領域の幅に比して大きく、自車両が基準走行領域内を通って物体の側方を通過できないと判断できる値に設定すればよい。これにより、基準走行領域内を通って物体の側方を通過できない場合についてのみ、物体を回避するべく基準走行領域の拡張を実施することができる。 Furthermore, when the avoidance target selection unit 104 determines whether to select an object recognized in the reference travel area as an avoidance target, for example, the width dimension of the object recognized in the reference travel area is equal to or greater than a threshold value. In some cases, the object may be selected as an avoidance target. Here, the threshold value of the width dimension of the object may be set to a value that is larger than the width of the reference travel area, for example, so that it can be determined that the host vehicle cannot pass the side of the object through the reference travel area. . As a result, the reference travel area can be expanded to avoid the object only when the vehicle cannot pass the side of the object through the reference travel area.
 図18は、制御装置100の処理を説明するためのフローチャートである。制御装置100では、以下のステップS501~S505の処理が演算周期毎に繰り返される。 FIG. 18 is a flowchart for explaining the processing of the control device 100. In the control device 100, the following steps S501 to S505 are repeated every calculation cycle.
 まず、基準走行領域設定部101は、基準走行領域を設定する(ステップS501)。次に、回避対象選択部104は、外部情報認識部12により自車両の前方に認識された物体が回避対象であるか否かを判定する(ステップS502)。ステップS502において肯定判定がされた場合、走行領域拡張部102は、回避対象と判定された物体が基準走行領域内に存在するか否かを判定する(ステップS503)。ステップS503において肯定判定がされた場合、走行領域拡張部102は、基準走行領域を拡張する(ステップS504)。一方、ステップS502、S503において否定判定がされた場合にはステップS505へ移行する。 First, the reference travel area setting unit 101 sets a reference travel area (step S501). Next, the avoidance target selection unit 104 determines whether the object recognized in front of the host vehicle by the external information recognition unit 12 is an avoidance target (step S502). When an affirmative determination is made in step S502, the travel area expanding unit 102 determines whether or not an object determined as an avoidance target exists in the reference travel area (step S503). When an affirmative determination is made in step S503, the travel area expanding unit 102 expands the reference travel area (step S504). On the other hand, if a negative determination is made in steps S502 and S503, the process proceeds to step S505.
 ステップS505では、目標経路目標速度生成部103が、走行領域内に目標経路を生成し、目標経路に対する目標速度を設定する。目標経路の生成、及び目標速度の設定は、第1実施形態で説明したとおりである。 In step S505, the target route target speed generation unit 103 generates a target route in the travel area and sets a target speed for the target route. The generation of the target route and the setting of the target speed are as described in the first embodiment.
 本実施形態の走行制御装置は、以上のように構成され動作するので、以下の効果を奏する。 Since the travel control device of the present embodiment is configured and operates as described above, the following effects can be obtained.
 本実施形態の走行制御装置によれば、基準走行領域に存在する物体が回避対象に該当するか否かを、自車両と物体との相対速度に基づいて判定する。ここで、該相対速度が所定閾値以下である場合に物体を回避対象と判定し、該相対速度が所定閾値を超える場合に物体を非回避対象と判定する。そして、物体が回避対象に該当すると判定した場合に基準走行領域を拡張し、物体が非回避対象に該当すると判定した場合に基準走行領域の拡張処理を禁止する。これにより、例えば、上記物体が追従したい先行車両である場合には、該先行車両に対して不必要な回避をすることを防止できる。 According to the travel control device of the present embodiment, it is determined based on the relative speed between the host vehicle and the object whether or not the object existing in the reference travel region corresponds to the avoidance target. Here, when the relative speed is equal to or lower than a predetermined threshold, the object is determined as an avoidance target, and when the relative speed exceeds the predetermined threshold, the object is determined as a non-evasion target. When it is determined that the object corresponds to the avoidance target, the reference travel area is expanded, and when it is determined that the object corresponds to the non-evasion target, the reference travel area expansion process is prohibited. Thereby, for example, when the object is a preceding vehicle to be followed, it is possible to prevent unnecessary avoidance of the preceding vehicle.
 また、本実施形態の走行制御装置によれば、基準走行領域に存在する物体が回避対象に該当するか否かを、物体の幅寸法に基づいて判定する。ここで、該幅寸法が所定閾値以上である場合に物体を回避対象と判定し、該幅寸法が所定閾値未満である場合に物体を非回避対象と判定する。そして、物体が回避対象に該当すると判定した場合に基準走行領域を拡張し、物体が非回避対象に該当すると判定した場合に基準走行領域の拡張処理を禁止する。これにより、例えば、上記物体の側方を基準走行領域をはみ出すことなく通過できる場合には、該物体に対して不必要な回避をすることを防止できる。 Further, according to the travel control device of the present embodiment, it is determined based on the width dimension of the object whether or not the object existing in the reference travel region corresponds to the avoidance target. Here, when the width dimension is equal to or greater than a predetermined threshold, the object is determined as an avoidance target, and when the width dimension is less than the predetermined threshold, the object is determined as a non-evasion target. When it is determined that the object corresponds to the avoidance target, the reference travel area is expanded, and when it is determined that the object corresponds to the non-evasion target, the reference travel area expansion process is prohibited. Thereby, for example, when the vehicle can pass through the side of the object without protruding from the reference travel area, unnecessary avoidance of the object can be prevented.
 上記制御装置100は本発明に係るに走行制御装置に相当し、上記基準走行領域設定部101は本発明に係る基準走行領域設定手段に相当し、上記走行領域拡張部102は本発明に係る走行領域拡張手段に相当し、上記目標経路目標速度生成部103は本発明に係る目標経路生成手段に相当し、上記回避対象選択部104は本発明に係る判定手段に相当し、上記外部情報認識部12は本発明に係る外部情報認識手段に相当する。 The control device 100 corresponds to a travel control device according to the present invention, the reference travel region setting unit 101 corresponds to a reference travel region setting means according to the present invention, and the travel region expansion unit 102 travels according to the present invention. The target route target speed generation unit 103 corresponds to a target route generation unit according to the present invention, the avoidance target selection unit 104 corresponds to a determination unit according to the present invention, and the external information recognition unit Reference numeral 12 corresponds to external information recognition means according to the present invention.
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for easy understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
100 制御装置
 101 基準走行領域設定部
 102 走行領域拡張部
 103 目標経路目標速度生成部
 104 回避対象選択部
12 外部情報認識部
DESCRIPTION OF SYMBOLS 100 Control apparatus 101 Reference | standard driving | running | working area setting part 102 Traveling area expansion part 103 Target route target speed production | generation part 104 Avoidance target selection part 12 External information recognition part

Claims (12)

  1.  自車両が走行可能な基準走行領域を設定する基準走行領域設定手段と、
     前記基準走行領域に回避すべき回避対象が存在する場合に、前記回避対象の周囲の前記基準走行領域を拡張した走行領域を生成する走行領域拡張手段と、
     前記走行領域拡張手段によって生成された前記走行領域の中で前記回避対象を回避する目標経路を生成する目標経路生成手段と、
     を備える走行制御装置。
    Reference running area setting means for setting a reference running area in which the host vehicle can run;
    When there is an avoidance target to be avoided in the reference travel region, a travel region extending means for generating a travel region that extends the reference travel region around the avoidance target;
    Target route generating means for generating a target route for avoiding the avoidance target in the travel region generated by the travel region extending means;
    A travel control device comprising:
  2.  前記走行領域拡張手段は、対向車線の見通し距離が長いほど前記基準走行領域を大きく拡張する請求項1に記載の走行制御装置。 The travel control device according to claim 1, wherein the travel area extending means expands the reference travel area as the line-of-sight distance of the oncoming lane increases.
  3.  前記走行領域拡張手段は、前記自車両に設けられた外部情報認識手段により対向車線の他車両が認識されてから該他車両と前記自車両とがすれ違うまでの時間が長いほど前記基準走行領域を大きく拡張する請求項1又は2に記載の走行制御装置。 The travel area extending means increases the reference travel area as the time from when the other vehicle on the opposite lane is recognized by the external information recognition means provided on the own vehicle until the other vehicle and the own vehicle pass each other is longer. The travel control device according to claim 1 or 2, which is greatly expanded.
  4.  前記走行領域拡張手段は、前記自車両に設けられた外部情報認識手段による自車両から認識可能な距離が長いほど前記基準走行領域を大きく拡張する請求項1~3のいずれか一項に記載の走行制御装置。 4. The travel area expanding unit according to any one of claims 1 to 3, wherein the travel area extending unit expands the reference travel area as the distance that can be recognized from the host vehicle by the external information recognition unit provided in the host vehicle increases. Travel control device.
  5.  前記走行領域拡張手段は、前記自車両に設けられた外部情報認識手段の認識範囲が前記回避対象によって死角となる範囲が広いほど前記基準走行領域を大きく拡張する請求項1~4のいずれか一項に記載の走行制御装置。 5. The travel area extending means expands the reference travel area to a greater extent as the recognition range of the external information recognition means provided in the host vehicle is larger in the blind spot depending on the avoidance target. The travel control device according to item.
  6.  前記走行領域拡張手段は、前記回避対象が前記基準走行領域の幅方向の一方側に存在する場合には前記基準走行領域を幅方向の他方側に拡張し、前記回避対象が前記基準走行領域の幅方向の他方側に存在する場合には前記基準走行領域を幅方向の一方側に拡張する請求項1~5のいずれか一項に記載の走行制御装置。 The travel area extending means expands the reference travel area to the other side in the width direction when the avoidance target is present on one side in the width direction of the reference travel area, and the avoidance target is the reference travel area. The travel control device according to any one of claims 1 to 5, wherein the reference travel region is expanded to one side in the width direction when the other side exists in the other side in the width direction.
  7.  前記走行領域拡張手段は、前記回避対象の種別に応じて前記基準走行領域の拡張量を設定する請求項1~6のいずれか一項に記載の走行制御装置。 The travel control device according to any one of claims 1 to 6, wherein the travel area extending means sets an expansion amount of the reference travel area according to the type of the avoidance target.
  8.  前記走行領域拡張手段は、前記回避対象が車両である場合に該車両の進行方向に対する向きに応じて前記基準走行領域の拡張方向及び拡張量を設定する請求項1~7のいずれか一項に記載の走行制御装置。 The travel area extending means sets an extension direction and an extension amount of the reference travel area according to a direction of the vehicle with respect to a traveling direction when the avoidance target is a vehicle. The travel control device described.
  9.  前記走行領域拡張手段は、自車両が走行する車線の種別に応じて前記基準走行領域の拡張方向及び拡張量を設定する請求項1~8のいずれか一項に記載の走行制御装置。 The travel control device according to any one of claims 1 to 8, wherein the travel area expanding means sets an expansion direction and an expansion amount of the reference travel area according to a type of lane in which the host vehicle travels.
  10.  前記基準走行領域に存在する物体が前記回避対象に該当するか否かを、前記自車両と前記物体との相対速度に基づいて判定する判定手段を備え、
     前記判定手段は、前記相対速度が所定閾値以下である場合に前記物体を回避対象と判定し、前記相対速度が前記所定閾値を超える場合に前記物体を非回避対象と判定し、
     前記走行領域拡張手段は、前記判定手段によって前記物体が前記回避対象に該当すると判定された場合に前記基準走行領域を拡張し、前記物体が前記非回避対象に該当すると判定された場合に前記基準走行領域の拡張処理を禁止する請求項1~9のいずれか一項に記載の走行制御装置。
    A determination unit configured to determine whether an object existing in the reference traveling region corresponds to the avoidance target based on a relative speed between the host vehicle and the object;
    The determination means determines the object as an avoidance target when the relative speed is equal to or less than a predetermined threshold, and determines the object as a non-avoidance target when the relative speed exceeds the predetermined threshold;
    The traveling area extending means expands the reference traveling area when the determination means determines that the object corresponds to the avoidance target, and the reference when the object is determined to correspond to the non-avoidance target. The travel control device according to any one of claims 1 to 9, wherein the travel region expansion process is prohibited.
  11.  前記基準走行領域の存在する物体が前記回避対象に該当するか否かを、前記物体の幅寸法に基づいて判定する判定手段を備え、
     前記判定手段は、前記幅寸法が所定閾値以上である場合に前記物体を回避対象と判定し、前記幅寸法が前記所定閾値未満である場合に前記物体を非回避対象と判定し、
     前記走行領域拡張手段は、前記判定手段によって前記物体が前記非回避対象に該当すると判定された場合に前記基準走行領域の拡張処理を禁止する請求項1~10のいずれか一項に記載の走行制御装置。
    A determination unit that determines whether or not an object in which the reference travel region exists corresponds to the avoidance target based on a width dimension of the object;
    The determination means determines the object as an avoidance target when the width dimension is equal to or greater than a predetermined threshold, and determines the object as a non-avoidance target when the width dimension is less than the predetermined threshold;
    The travel according to any one of claims 1 to 10, wherein the travel area extending unit prohibits the process of extending the reference travel area when the determination unit determines that the object corresponds to the non-avoidance target. Control device.
  12.  車両に搭載された走行制御装置のコンピュータが実行する走行制御方法であって、
     自車両が走行可能な基準走行領域を設定するステップと、
     前記基準走行領域に回避すべき回避対象が存在する場合に、前記回避対象の周囲の前記基準走行領域を拡張した走行領域を生成するステップと、
     前記走行領域の中で前記回避対象を回避する目標経路を生成するステップと、
     を含む走行制御方法。
    A travel control method executed by a computer of a travel control device mounted on a vehicle,
    Setting a reference travel area in which the host vehicle can travel;
    When there is an avoidance target to be avoided in the reference travel region, generating a travel region that extends the reference travel region around the avoidance target; and
    Generating a target route that avoids the avoidance target in the travel area;
    A traveling control method including:
PCT/JP2015/065395 2015-05-28 2015-05-28 Travel control device and method WO2016189727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065395 WO2016189727A1 (en) 2015-05-28 2015-05-28 Travel control device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065395 WO2016189727A1 (en) 2015-05-28 2015-05-28 Travel control device and method

Publications (1)

Publication Number Publication Date
WO2016189727A1 true WO2016189727A1 (en) 2016-12-01

Family

ID=57393974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065395 WO2016189727A1 (en) 2015-05-28 2015-05-28 Travel control device and method

Country Status (1)

Country Link
WO (1) WO2016189727A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109693667A (en) * 2017-10-23 2019-04-30 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN110271548A (en) * 2018-03-14 2019-09-24 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN110275520A (en) * 2018-03-14 2019-09-24 本田技研工业株式会社 Controller of vehicle
WO2020249995A1 (en) * 2019-06-14 2020-12-17 日産自動車株式会社 Travel assistance method and travel assistance device
US11235757B2 (en) 2018-09-05 2022-02-01 Mitsubishi Electric Corporation Collision avoidance apparatus
US11708069B2 (en) 2018-09-05 2023-07-25 Mitsubishi Electric Corporation Obstacle avoidance apparatus and obstacle avoidance route generating apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06139498A (en) * 1992-10-30 1994-05-20 Mitsubishi Electric Corp Obstacle evading device
JPH10283593A (en) * 1997-04-04 1998-10-23 Fuji Heavy Ind Ltd Vehicle collision preventing device
JP2000146547A (en) * 1998-11-17 2000-05-26 Toyota Central Res & Dev Lab Inc Detector for shape of obstacle for vehicle
JP2004326355A (en) * 2003-04-23 2004-11-18 Nissan Motor Co Ltd Lane deviation prevention device
JP2008305014A (en) * 2007-06-05 2008-12-18 Toyota Motor Corp Device for obtaining travel region of vehicle
JP2009035245A (en) * 2007-07-09 2009-02-19 Honda Motor Co Ltd Vehicle operation supporting device
US20100256835A1 (en) * 2009-04-06 2010-10-07 Gm Global Technology Operations, Inc. Fail-safe speed profiles for cooperative autonomous vehicles
JP2010237763A (en) * 2009-03-30 2010-10-21 Aisin Aw Co Ltd Driving assist device, driving assist method, and driving assist program
JP2011090582A (en) * 2009-10-23 2011-05-06 Fuji Heavy Ind Ltd Apparatus for drive supporting at right-turn time
JP2011170762A (en) * 2010-02-22 2011-09-01 Toyota Motor Corp Driving support apparatus
JP2014076689A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp Vehicle control device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06139498A (en) * 1992-10-30 1994-05-20 Mitsubishi Electric Corp Obstacle evading device
JPH10283593A (en) * 1997-04-04 1998-10-23 Fuji Heavy Ind Ltd Vehicle collision preventing device
JP2000146547A (en) * 1998-11-17 2000-05-26 Toyota Central Res & Dev Lab Inc Detector for shape of obstacle for vehicle
JP2004326355A (en) * 2003-04-23 2004-11-18 Nissan Motor Co Ltd Lane deviation prevention device
JP2008305014A (en) * 2007-06-05 2008-12-18 Toyota Motor Corp Device for obtaining travel region of vehicle
JP2009035245A (en) * 2007-07-09 2009-02-19 Honda Motor Co Ltd Vehicle operation supporting device
JP2010237763A (en) * 2009-03-30 2010-10-21 Aisin Aw Co Ltd Driving assist device, driving assist method, and driving assist program
US20100256835A1 (en) * 2009-04-06 2010-10-07 Gm Global Technology Operations, Inc. Fail-safe speed profiles for cooperative autonomous vehicles
JP2011090582A (en) * 2009-10-23 2011-05-06 Fuji Heavy Ind Ltd Apparatus for drive supporting at right-turn time
JP2011170762A (en) * 2010-02-22 2011-09-01 Toyota Motor Corp Driving support apparatus
JP2014076689A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp Vehicle control device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109693667A (en) * 2017-10-23 2019-04-30 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
JP2019079206A (en) * 2017-10-23 2019-05-23 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
US11008002B2 (en) 2017-10-23 2021-05-18 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and program for collision avoidance
CN110271548A (en) * 2018-03-14 2019-09-24 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN110275520A (en) * 2018-03-14 2019-09-24 本田技研工业株式会社 Controller of vehicle
US11235757B2 (en) 2018-09-05 2022-02-01 Mitsubishi Electric Corporation Collision avoidance apparatus
US11708069B2 (en) 2018-09-05 2023-07-25 Mitsubishi Electric Corporation Obstacle avoidance apparatus and obstacle avoidance route generating apparatus
WO2020249995A1 (en) * 2019-06-14 2020-12-17 日産自動車株式会社 Travel assistance method and travel assistance device
JPWO2020249995A1 (en) * 2019-06-14 2020-12-17
CN114287025A (en) * 2019-06-14 2022-04-05 日产自动车株式会社 Driving assistance method and driving assistance device
JP7226545B2 (en) 2019-06-14 2023-02-21 日産自動車株式会社 Driving support method and driving support device

Similar Documents

Publication Publication Date Title
US10513267B2 (en) Vehicle safety system
US9914463B2 (en) Autonomous driving device
US10583833B2 (en) Vehicle control apparatus, vehicle control method, and vehicle control program
US10953883B2 (en) Vehicle control device
US11225249B2 (en) Vehicle control device, vehicle control method, and storage medium
JP6598127B2 (en) Vehicle control system, vehicle control method, and vehicle control program
US20190315348A1 (en) Vehicle control device, vehicle control method, and storage medium
JP6647361B2 (en) Vehicle driving support device
WO2016189727A1 (en) Travel control device and method
US20180065627A1 (en) Vehicle control system
US11370442B2 (en) Vehicle control device and control method
US11247677B2 (en) Vehicle control device for maintaining inter-vehicle spacing including during merging
JP2016084038A (en) Vehicle traveling control device
JP6641583B2 (en) Vehicle control device, vehicle control method, and program
JP2020163900A (en) Vehicle control device, vehicle control method, and program
JP7115184B2 (en) Autonomous driving system
JP6832164B2 (en) Driving assistance device and driving assistance method
WO2016194168A1 (en) Travel control device and method
JP2019137189A (en) Vehicle control system, vehicle control method, and program
JP2019084924A (en) Vehicle control device
WO2018211645A1 (en) Driving assistance method and driving assistance apparatus
JP2020124994A (en) Vehicle motion control method and vehicle motion control device
JP7373118B2 (en) Driving route generation system and vehicle driving support system
JP7077870B2 (en) Autonomous driving system
JP2021041754A (en) Operation control method and operation control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP