WO2016189615A1 - Travel control device, self-propelled crane, and travel control method of self-propelled crane - Google Patents

Travel control device, self-propelled crane, and travel control method of self-propelled crane Download PDF

Info

Publication number
WO2016189615A1
WO2016189615A1 PCT/JP2015/064889 JP2015064889W WO2016189615A1 WO 2016189615 A1 WO2016189615 A1 WO 2016189615A1 JP 2015064889 W JP2015064889 W JP 2015064889W WO 2016189615 A1 WO2016189615 A1 WO 2016189615A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradient
target position
self
stop
traveling
Prior art date
Application number
PCT/JP2015/064889
Other languages
French (fr)
Japanese (ja)
Inventor
伸郎 吉岡
Original Assignee
住友重機械搬送システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械搬送システム株式会社 filed Critical 住友重機械搬送システム株式会社
Priority to PCT/JP2015/064889 priority Critical patent/WO2016189615A1/en
Priority to JP2017520090A priority patent/JP6258559B2/en
Priority to CN201580079794.8A priority patent/CN107531463B/en
Publication of WO2016189615A1 publication Critical patent/WO2016189615A1/en
Priority to HK18103043.1A priority patent/HK1243394A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a travel control device, a self-propelled crane, and a travel control method for a self-propelled crane.
  • Self-propelled cranes such as RTG (Rubber Tired Gantry Crane) are known as cargo handling equipment that performs cargo handling work in yards such as harbors.
  • the self-propelled crane needs to perform a cargo handling operation at a predetermined storage position. Therefore, the traveling of the self-propelled crane is controlled so that the amount of deviation between the stop position and the storage position is within a predetermined amount of deviation (for example, ⁇ 35 mm).
  • a technique for reducing the amount of deviation between the stop position and the storage position of the self-propelled crane the right and left wheels of the self-propelled crane are arranged according to the deviation angle and the traveling speed immediately before stopping.
  • a technique for setting a negative acceleration is disclosed.
  • Some self-propelled cranes transmit power to the wheels by meshing the chain and sprocket.
  • the chain meshing with the sprocket is provided with a slack to prevent an increase in driving resistance and to reduce a load applied to the chain.
  • a gap is provided in the meshing portion between the chain and the sprocket in order to prevent breakage of the meshing portion. Therefore, a transmission mechanism including a chain and a sprocket has a backlash.
  • a self-propelled crane provided with a transmission mechanism having backlash can move freely by the amount of backlash even if the motor shaft is locked with a brake.
  • the traveling path of the self-propelled crane is not necessarily horizontal, and has a minute gradient (for example, within 1%). Therefore, when the storage position is downhill, even if a self-propelled crane equipped with a transmission mechanism with backlash stops at the storage position, the self-propelled crane's own weight or the load fluctuation of the self-propelled crane due to cargo handling work The stop position is shifted to the front position by the amount of backlash.
  • An object of the present invention is to provide a travel control device, a self-propelled crane, and a travel control method for a self-propelled crane that reduce a deviation amount of a stop position when the transmission mechanism has a backlash and the travel path is not horizontal. There is to do.
  • the travel control device is a travel control device for a self-propelled crane that travels by a travel device to which power is transmitted via a transmission mechanism having a backlash.
  • a gradient determination unit that determines whether the gradient of the road surface at the target stop position of the crane is a first gradient that includes a gradient that rises with respect to the traveling direction, or a second gradient other than the first gradient;
  • a travel control unit configured to move the self-propelled crane forward by a predetermined amount forward in the traveling direction from the stop target position and then move back to the stop target position when the slope is the second slope.
  • the control target position that is the target of the travel control of the self-propelled crane is determined when the gradient is the second gradient.
  • the position is set a predetermined amount ahead of the stop target position, and when the slope is the first slope, and the position of the self-propelled crane matches the control target position and the control target position and the stop target position
  • the travel control device provides road surface gradients at a plurality of positions that are candidates for stop target positions in a path on which the self-propelled crane travels.
  • a gradient storage unit that stores data
  • a gradient acquisition unit that receives an input of the target stop position and reads the gradient of the target stop position from the gradient storage unit, wherein the gradient determination unit acquires the gradient acquired by the gradient acquisition unit Is a first gradient or a second gradient.
  • a self-propelled crane includes a transmission mechanism having a backlash, a traveling device to which power is transmitted via the transmission mechanism, and any one of the first to third aspects.
  • the travel control device is provided.
  • a traveling control method for a self-propelled crane is a traveling control method for a self-propelled crane that travels by a traveling device to which power is transmitted via a transmission mechanism having a backlash.
  • the program causes a computer mounted on a self-propelled crane traveling by a traveling device to which power is transmitted via a transmission mechanism having a backlash to stop the self-propelled crane.
  • a gradient determination unit that determines whether the gradient of the road surface at the target position is a first gradient that includes an gradient that rises in the traveling direction or a second gradient other than the first gradient, and the gradient is a second gradient
  • the self-propelled crane is caused to function as a travel control unit that moves forward by a predetermined amount forward in the traveling direction from the stop target position and then moves backward to the stop target position.
  • a program for executing the self-propelled operation so that a position of a self-propelled crane traveling by a traveling device to which power is transmitted via a transmission mechanism having a backlash coincides with a control target position.
  • a traveling control device that controls traveling of the crane, the gradient of the road surface at the target stop position of the self-propelled crane is a first gradient that includes a gradient that rises with respect to the traveling direction, or other than the first gradient
  • a gradient determination unit for determining whether the second gradient is the second gradient, and when the gradient is the second gradient, the control target position is set to a position ahead of the stop target position by a predetermined amount, and the gradient is the first gradient
  • the control target position is set to the stop target position when it is a slope, and when the position of the self-propelled crane coincides with the control target position and the control target position and the stop target position are different.
  • Target position setting unit to function as a.
  • the self-propelled crane moves forward to a position ahead of the stop target position and then moves backward to the stop target position when the stop target position has a downward slope. To do. With this control, the direction of free movement of the self-propelled crane by backlash is the upward direction of the gradient. Therefore, since the self-propelled crane can change the sliding direction due to the gradient and the direction of free movement, the stop position can be prevented from shifting due to the load fluctuation of the self-propelled crane due to the cargo handling operation.
  • FIG. 1 is a perspective view showing an appearance of a tire-type portal crane according to the first embodiment.
  • the tire-type portal crane 1 according to the present embodiment is provided, for example, in a container yard of a container terminal that loads and unloads containers C, loads containers C, and the like on a container ship that touches a quay.
  • the container yard is provided with a plurality of lanes (passages) on which the tire-type portal crane 1 travels.
  • a plurality of magnets M are provided as positioning marks on the road surface of each lane at regular intervals in the extending direction.
  • the magnet M is provided at a position that is at least a candidate stop target position of the tire-type portal crane 1.
  • the tire-type portal crane 1 is disposed in the lane and handles the container C.
  • the tire-type portal crane 1 can be self-propelled by the traveling device 4.
  • the traveling device 4 includes a motor 41, wheels 42 with tires, a transmission mechanism 43 that transmits power of the motor 41, a position sensor 44 that detects the magnet M, and an encoder 45 that detects the number of rotations of the wheels 42 with tires.
  • Have The transmission mechanism 43 includes a chain and a sprocket.
  • the chain of the transmission mechanism 43 is provided with slack in order to prevent an increase in driving resistance and reduce a load applied to the chain.
  • a gap is provided in the meshing portion between the chain and the sprocket in order to prevent breakage of the meshing portion. That is, the transmission mechanism 43 has a backlash. Backlash is play in a transmission mechanism having a meshing portion.
  • the tire-type portal crane 1 is formed in a substantially gate shape including two pairs of leg portions 5 supported by the traveling device 4 and a crane girder 6 connecting the upper ends of the leg portions 5.
  • the tire-type portal crane 1 includes a trolley 7 that can traverse the crane girder 6.
  • the trolley 7 includes a winding device 8, and a spreader 10 is suspended from the winding device 8 via a suspension wire 9 so as to be lifted and lowered.
  • the tire-type portal crane 1 includes a travel control device 2 that controls the travel of the travel device 4.
  • the traveling control device 2 can precisely stop the tire-type portal crane 1 at the storage position by stopping the tire-type portal crane 1 so that the positional relationship between the position sensor 44 and the magnet M is constant. it can.
  • the traveling control device 2 counts the detection each time the position sensor 44 detects the magnet M. For example, the traveling control device 2 adds 1 to the count number every time it passes through the magnet M in the first direction in the extending direction of the lane with a specific magnet M as a reference. For example, the traveling control device 2 subtracts 1 from the count number each time it passes through the magnet M in a second direction that is opposite to the first direction of the lane extending direction with a specific magnet M as a reference.
  • the traveling control device 2 calculates the traveling position of the tire type portal crane 1 based on the rotational speed detected by the encoder 45. In addition, since the travel position calculated based on the encoder 45 has an error as the tire-type portal crane 1 travels, the travel control apparatus 2 calibrates the travel position every time it passes through the magnet M.
  • FIG. 2 is a schematic block diagram illustrating the configuration of the travel control apparatus according to the first embodiment.
  • the travel control device 2 includes a rotation speed acquisition unit 201, a magnetic flux density acquisition unit 202, a mark counter unit 203, a travel position calculation unit 204, a stop target position input unit 205, a stop target position storage unit 206, a travel A direction specifying unit 207, a gradient storage unit 208, a gradient acquisition unit 209, a gradient determination unit 210, a control target position storage unit 211, a control target position setting unit 212, and a travel control unit 213 are provided.
  • the rotation speed acquisition unit 201 acquires the rotation speed of the wheel with tire 42 from each encoder 45.
  • the magnetic flux density acquisition unit 202 acquires a magnetic flux density value detected by the position sensor 44.
  • the mark counter unit 203 counts the number of magnets M detected by the position sensor 44 based on the magnetic flux density value acquired by the magnetic flux density acquisition unit 202.
  • the travel position calculation unit 204 calculates the travel position of the tire-type portal crane 1 based on the rotational speed acquired by the rotational speed acquisition unit 201 and the counter value of the mark counter unit 203.
  • the stop target position input unit 205 receives an input of a stop target position of the tire type portal crane 1.
  • the stop target position storage unit 206 stores the stop target position input to the stop target position input unit 205.
  • the traveling direction identification unit 207 identifies the traveling direction of the tire type portal crane 1 based on the current position of the tire type portal crane 1 and the stop target position input to the stop target position input unit 205. Specifically, the traveling direction specifying unit 207 specifies whether the traveling direction of the tire type portal crane 1 is the first direction or the second direction of the lane extending direction.
  • the gradient storage unit 208 stores road gradients at a plurality of positions (for example, positions where the magnet M is provided) that are candidates for the stop target position.
  • the gradient storage unit 208 stores, for each position, for example, a gradient with respect to the first direction of the lane extending direction.
  • the gradient value stored in the gradient storage unit 208 is positive when it is a positive number, and is negative when it is a negative number.
  • the gradient acquisition unit 209 reads the gradient of the stop target position input to the stop target position input unit 205 from the gradient storage unit 208.
  • the gradient determining unit 210 determines that the road surface gradient at the stop target position is a tire-type gate. It is determined whether the uphill gradient or no gradient (first gradient) or the downward gradient (second gradient) is obtained with respect to the traveling direction of the crane 1.
  • the control target position storage unit 211 stores a control target position that is a temporary target position for the travel control of the travel control unit 213.
  • the control target position setting unit 212 determines a control target position based on the stop target position input to the stop target position input unit 205 and records the control target position in the control target position storage unit 211.
  • the traveling control unit 213 causes the tire-type portal crane 1 to travel to the control target position stored in the control target position storage unit 211 based on the traveling position calculated by the traveling position calculation unit 204.
  • FIG. 3 is a first flowchart showing the operation of the travel control apparatus according to the first embodiment.
  • FIG. 4 is a second flowchart showing the operation of the travel control apparatus according to the first embodiment.
  • the traveling direction specifying unit 207 is configured to move to the control target position based on the current traveling position of the tire-type portal crane 1 and the control target position stored in the control target position storage unit 211.
  • a direction in which the crane 1 travels is specified (step S3).
  • the current traveling position of the tire type portal crane 1 is specified by the traveling position calculated last by the traveling position calculation unit 204.
  • the gradient acquisition unit 209 acquires the gradient associated with the control target position stored in the control target position storage unit 211 from the gradient storage unit 208 (step S4).
  • the gradient stored in the control target position storage unit 211 is a gradient with respect to the first direction in the lane extending direction.
  • the gradient determination unit 210 determines that the gradient of the control target position with respect to the traveling direction of the tire-type portal crane 1 is based on the traveling direction identified by the traveling direction identifying unit 207 and the gradient obtained by the gradient obtaining unit 209. It is determined whether or not it is a downward slope (step S5). For example, when the traveling direction identified by the traveling direction identifying unit 207 is the first direction of the lane extending direction, the gradient determining unit 210 determines whether the gradient acquired by the gradient obtaining unit 209 is a negative number with respect to the traveling direction. It is determined that the gradient of the control target position is a downward gradient.
  • the gradient determining unit 210 determines the traveling direction when the gradient acquired by the gradient acquiring unit 209 is a positive number. It is determined that the gradient of the control target position with respect to is a downward gradient.
  • step S5 determines that the gradient of the control target position with respect to the traveling direction is not a downward gradient
  • step S5: NO the control target position setting unit 212 stores the stop target position stored in the stop target position storage unit 206.
  • the control target position is recorded in the control target position storage unit 211 (step S6).
  • step S5: YES the control target position setting unit 212 stores the stop that the stop target position storage unit 206 stores.
  • a position advanced by a predetermined amount (for example, 50 mm) from the target position is recorded in the control target position storage unit 211 as a control target position (step S7).
  • the predetermined amount is a value longer than the distance that the traveling device 4 can freely move by backlash.
  • the travel control unit 213 starts the travel control of the travel device 4 toward the control target position.
  • the travel position calculation unit 204 calculates the current travel position of the tire-type portal crane 1 based on the rotational speed of the tire-equipped wheel 42 acquired by the rotational speed acquisition unit 201.
  • the mark counter unit 203 determines whether or not the magnetic flux density value acquired by the magnetic flux density acquisition unit 202 is equal to or greater than a predetermined threshold (step S10).
  • the threshold value is a value corresponding to the magnetic flux density value detected by the position sensor 44 when the magnet M and the position sensor 44 face each other.
  • the mark counter unit 203 updates the count number of the magnet M (step S11). Specifically, the mark counter unit 203 adds 1 to the counter value when the traveling direction of the tire type portal crane 1 is the first direction of the lane extending direction, and the tire type portal crane 1 travels. When the direction is the second direction of the lane extending direction, 1 is subtracted from the counter value. Next, the travel position calculation unit 204 corrects the travel position calculated in step S9 based on the counter value of the mark counter unit 203 (step S12).
  • step S10 When the value of the magnetic flux density is less than the predetermined threshold (step S10: NO), or when the travel position calculation unit 204 corrects the travel position in step S12, the travel control unit 213 calculates the travel position calculation unit 204. It is determined whether the travel position matches the control target position stored in the control target position storage unit 211 (step S13). When the travel position and the control target position do not match (step S13: NO), the travel control device 2 returns the process to step S9 and continues the travel control. On the other hand, if the travel position matches the control target position (step S13: YES), does the stop target position stored in the stop target position storage unit 206 match the control target position stored in the control target position storage unit 211? It is determined whether or not (step S14). If the stop target position matches the control target position (step S14: YES), the travel control started in step S8 is terminated, the motor is locked (step S15), and the process is terminated.
  • step S14 when the stop target position and the control target position do not match (step S14: NO), that is, when the control target position is set to a position advanced by a predetermined amount from the stop target position, the control target position setting unit 212 The stop target position stored in the stop target position storage unit 206 is recorded in the control target position storage unit 211 as a control target position (step S16). And the traveling control apparatus 2 returns a process to step S9, and continues traveling control. Thereby, the traveling control unit 213 moves the tire-type portal crane 1 forward by a predetermined amount forward in the traveling direction from the target stop position when the target stop position has a downward slope, and then moves backward to the target stop position. Can be made.
  • the traveling control device 2 causes the tire-type portal crane 1 to move forward and stop at the stop target position when the slope of the stop target position is an uphill slope or no slope.
  • the slope is a downward slope
  • the tire type portal crane 1 is moved backward to stop at the stop target position. That is, the traveling control device 2 according to the present embodiment stops the tire-type portal crane 1 in a state where the gradient is increased.
  • the direction of the free movement of the tire-type portal crane 1 due to the backlash of the transmission mechanism 43 is the upward direction of the gradient.
  • the sliding direction (the direction of the force of gravity) due to the gradient of the tire-type portal crane 1 and the direction of free movement are opposite, and the tire-type portal crane is caused by the load fluctuation of the tire-type portal crane 1 due to the cargo handling operation.
  • the stop position of the crane 1 can be prevented from shifting.
  • the traveling control device 2 controls traveling of the tire-type portal crane 1 using a control target position that is a target of temporary traveling control.
  • the control target position setting unit 212 of the travel control device 2 sets the control target position to a position ahead of the stop target position by a predetermined amount when the gradient of the stop target position is a downward gradient.
  • the control target position setting unit 212 sets the control target position as the stop target position when the gradient of the stop target position is an ascending gradient or no gradient.
  • the control target position setting unit 212 sets the control target position as the stop target position when the position of the tire-type portal crane 1 matches the control target position and the control target position and the stop target position are different.
  • the traveling control unit 213 may always perform the traveling control toward the control target position, so that the tire-type portal crane 1 can be stopped in a state where the gradient is increased without complicating the traveling control. it can.
  • FIG. 5 is a perspective view showing an appearance of a tire-type portal crane according to the second embodiment.
  • the tire-type portal crane 1 according to the first embodiment stores the gradient of the stop target position in advance, and travels based on the gradient so as to prevent the shift of the stop position due to load fluctuation.
  • the tire-type portal crane 1 according to the present embodiment travels so as to prevent the stop position from being shifted due to the load fluctuation without storing the gradient of the stop target position in advance.
  • the tire-type portal crane 1 according to the second embodiment further includes a tilt sensor 11 in addition to the configuration of the first embodiment.
  • the inclination sensor 11 detects the inclination with respect to the traveling direction of the tire-type portal crane 1, that is, the lane extending direction.
  • the inclination sensor 11 detects the inclination of the lane extending direction with respect to the first direction.
  • the inclination value output from the inclination sensor 11 indicates an upward inclination when it is a positive number, and indicates a downward inclination when it is a negative number.
  • the inclination sensor 11 is realized by an acceleration sensor that detects at least biaxial acceleration in the direction of gravity and the traveling direction of the tire-type portal crane 1.
  • FIG. 6 is a schematic block diagram showing the configuration of the travel control apparatus according to the second embodiment.
  • the travel control device 2 according to the present embodiment includes an inclination acquisition unit 214 instead of the gradient storage unit 208 and the gradient acquisition unit 209.
  • the inclination acquisition unit 214 acquires an inclination value output from the inclination sensor 11.
  • FIG. 7 is a first flowchart showing the operation of the travel control apparatus according to the second embodiment.
  • FIG. 8 is a second flowchart showing the operation of the travel control apparatus according to the second embodiment.
  • control target position setting unit 212 records the stop target position stored in the stop target position storage unit 206 in the control target position storage unit 211 as a control target position (step S104).
  • the traveling control unit 213 starts traveling control of the traveling device 4 toward the control target position stored in the control target position storage unit 211 (step S105).
  • the travel position calculation unit 204 calculates the current travel position of the tire-type portal crane 1 based on the rotational speed of the tire-equipped wheel 42 acquired by the rotational speed acquisition unit 201. (Step S106). Further, the mark counter unit 203 determines whether or not the value of the magnetic flux density acquired by the magnetic flux density acquisition unit 202 is equal to or greater than a predetermined threshold (step S107). When the value of the magnetic flux density is equal to or greater than the predetermined threshold (step S107: YES), the mark counter unit 203 updates the count number of the magnet M (step S108). Next, the travel position calculation unit 204 corrects the travel position calculated in step S106 based on the counter value of the mark counter unit 203 (step S109).
  • step S107 When the value of the magnetic flux density is less than the predetermined threshold (step S107: NO), or when the travel position calculation unit 204 corrects the travel position in step S109, the travel control unit 213 calculates the travel position calculation unit 204. It is determined whether the travel position matches the control target position stored in the control target position storage unit 211 (step S110). If the travel position does not match the control target position (step S110: NO), the travel control device 2 returns the process to step S106 and continues the travel control. On the other hand, if the travel position matches the control target position (step S110: YES), the travel control started in step S105 is terminated and the motor is locked (step S111).
  • the inclination acquisition unit 214 acquires the value of the inclination detected by the inclination sensor 11 (step S112).
  • the reason for locking the motor in step S111 is to eliminate an error caused by acceleration other than gravitational acceleration in the tilt detected by the tilt sensor 11.
  • the gradient determination unit 210 is a tire type gate type at the current position (control target position) based on the value of the inclination acquired by the inclination acquisition unit 214 and the traveling direction identified by the traveling direction identification unit 207 in step S103. It is determined whether or not the gradient with respect to the traveling direction of the crane 1 is a downward gradient (step S113).
  • the slope determination unit 210 travels when the slope value acquired by the slope acquisition unit 214 is a negative number. It is determined that the gradient of the control target position with respect to the direction is a downward gradient.
  • the slope determining unit 210 is when the slope value acquired by the slope acquiring unit 214 is a positive number. It is determined that the gradient of the control target position with respect to the traveling direction is a downward gradient.
  • step S113: NO When the gradient determination unit 210 determines that the gradient of the control target position with respect to the traveling direction is not a downward gradient (step S113: NO), the tire-type portal crane 1 is stopped in a state where the gradient is increased, and thus traveling The control device 2 ends the process.
  • step S113: YES when the gradient determination unit 210 determines that the gradient of the control target position with respect to the traveling direction is a downward gradient (step S113: YES), the control target position setting unit 212 stores the stop target position stored in the stop target position storage unit 206. The position advanced by a predetermined amount from the target position is recorded in the control target position storage unit 211 as a control target position (step S114).
  • the traveling control unit 213 starts traveling control of the traveling device 4 toward a new control target position (step S115).
  • the travel position calculation unit 204 calculates the current travel position of the tire-type portal crane 1 based on the rotational speed of the tire-equipped wheel 42 acquired by the rotational speed acquisition unit 201.
  • the mark counter unit 203 determines whether or not the value of the magnetic flux density acquired by the magnetic flux density acquisition unit 202 is equal to or greater than a predetermined threshold (step S117). When the value of the magnetic flux density is equal to or greater than a predetermined threshold (step S117: YES), the mark counter unit 203 updates the count number of the magnet M (step S118).
  • the travel position calculation unit 204 corrects the travel position calculated in step S9 based on the counter value of the mark counter unit 203 (step S119).
  • step S117: NO When the value of the magnetic flux density is less than the predetermined threshold (step S117: NO), or when the travel position calculation unit 204 corrects the travel position in step S119, the travel control unit 213 calculates the travel position calculation unit 204. It is determined whether or not the travel position matches the control target position stored in the control target position storage unit 211 (step S120). If the travel position does not match the control target position (step S120: NO), the travel control device 2 returns the process to step S116 and continues the travel control. On the other hand, if the travel position matches the control target position (step S120: YES), does the stop target position stored in the stop target position storage unit 206 match the control target position stored in the control target position storage unit 211? It is determined whether or not (step S121).
  • step S121: NO When the stop target position and the control target position do not match (step S121: NO), that is, when the control target position is set to a position advanced by a predetermined amount from the stop target position, the control target position setting unit 212 stops.
  • the stop target position stored in the target position storage unit 206 is recorded in the control target position storage unit 211 as a control target position (step S122). Then, the traveling control device 2 returns the process to step S116 and continues the traveling control.
  • step S121: YES when the stop target position matches the control target position (step S121: YES), the travel control started in step S115 is terminated, the motor is locked (step S123), and the process is terminated.
  • the traveling control device 2 can stop the tire-type portal crane 1 in a state where the gradient is increased without storing the gradient of the target stop position in advance.
  • the traveling control apparatus 2 which concerns on this embodiment prevents that the stop position of the tire type portal crane 1 shifts
  • the traveling control device 2 controls the traveling of the tire-type portal crane 1 which is an example of a self-propelled crane
  • the traveling control device 2 can travel other self-propelled cranes such as a crane traveling on a rail with an iron wheel, a crane traveling on a lane with an endless track, and a self-propelled bridge crane. You may control.
  • the transmission mechanism 43 includes a chain and a sprocket, but is not limited thereto.
  • the transmission mechanism 43 according to another embodiment may be another transmission mechanism having a backlash, such as a combination of a plurality of gears.
  • the tire-type portal crane 1 is designed as a self-propelled crane, but is not limited thereto.
  • a self-propelled crane according to another embodiment may be one in which the traveling control device 2 is mounted on a mobile crane designed as a manned crane having a driver's seat.
  • the traveling control device 2 stops after the tire-type portal crane 1 is advanced by a predetermined amount forward in the traveling direction from the target stop position when the target stop position has a downward slope. Although it backs up to a target position, it is not restricted to this.
  • the traveling control device 2 allows the tire-type portal crane 1 to be moved from the stop target position only when the absolute value of the gradient is larger than a predetermined value even if the gradient of the stop target position is a downward gradient.
  • it may be moved forward by a predetermined amount forward in the traveling direction and then moved backward to the stop target position. That is, the first gradient may include an ascending gradient, no gradient, and some descending gradient.
  • the traveling control device 2 advances the tire-type portal crane 1 by a predetermined amount forward in the traveling direction from the stop target position when the stop target position has a downward slope or no slope. It is also possible to reverse the vehicle to the stop target position after making it. That is, the first gradient may not include no gradient.
  • FIG. 9 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
  • the computer 900 includes a CPU 901, a main storage device 902, an auxiliary storage device 903, and an interface 904.
  • the travel control device 2 described above is mounted on the computer 900.
  • the operation of each processing unit described above is stored in the auxiliary storage device 903 in the form of a program.
  • the CPU 901 reads a program from the auxiliary storage device 903, develops it in the main storage device 902, and executes the above processing according to the program.
  • the CPU 901 ensures a storage area corresponding to each storage unit described above in the main storage device 902 or the auxiliary storage device 903 according to the program.
  • the auxiliary storage device 903 is an example of a tangible medium that is not temporary.
  • Other examples of the non-temporary tangible medium include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory connected via the interface 904.
  • this program is distributed to a computer via a communication line, the computer that has received the distribution may develop the program in the main storage device 902 and execute the above processing.
  • the program may be for realizing a part of the functions described above.
  • the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device 903.
  • the program may be a program in which a gradient determination unit 210 and a control target position setting unit 212 are added to a conventional travel control device that travels a self-propelled crane to a stop target position.
  • the traveling control device is mounted on a self-propelled crane such as a cargo handling facility that performs cargo handling work in a yard such as a harbor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

This travel control device controls travel of a self-propelled crane which travels by means of a travel device to which power is transmitted via a transmission mechanism that has backlash. The travel control device is provided with: a gradient determination unit which determines whether the gradient of the road surface in a target stopping position of the self-propelled crane is a first gradient, first gradients including gradients that are rising with respect to the direction of travel, or a second gradient, second gradients being those that are not first gradients; and a travel control unit which, if the gradient at the target stopping position is a second gradient, then, after advancing the self-propelled crane by a prescribed amount past the target stopping position in the travel direction, moves the self-propelled crane backwards to the target stopping position.

Description

走行制御装置、自走式クレーンおよび自走式クレーンの走行制御方法Travel control device, self-propelled crane and travel control method for self-propelled crane
 本発明は、走行制御装置、自走式クレーンおよび自走式クレーンの走行制御方法に関する。 The present invention relates to a travel control device, a self-propelled crane, and a travel control method for a self-propelled crane.
 港湾等のヤードにおいて荷役作業を行う荷役設備として、RTG(Rubber Tired Gantry Crane)などの自走式クレーンが知られている。自走式クレーンは、予め定められた蔵置位置において荷役作業を行う必要がある。そのため、自走式クレーンの走行は、停止位置と蔵置位置とのずれ量が所定のずれ量(例えば±35mm)以内となるように制御される。
 特許文献1には、自走式クレーンの停止位置と蔵置位置とのずれ量を小さくする技術として、停止直前になったときのずれ角や走行速度に応じて自走式クレーンの左右の車輪に負の加速度を設定する技術が開示されている。
2. Description of the Related Art Self-propelled cranes such as RTG (Rubber Tired Gantry Crane) are known as cargo handling equipment that performs cargo handling work in yards such as harbors. The self-propelled crane needs to perform a cargo handling operation at a predetermined storage position. Therefore, the traveling of the self-propelled crane is controlled so that the amount of deviation between the stop position and the storage position is within a predetermined amount of deviation (for example, ± 35 mm).
In Patent Document 1, as a technique for reducing the amount of deviation between the stop position and the storage position of the self-propelled crane, the right and left wheels of the self-propelled crane are arranged according to the deviation angle and the traveling speed immediately before stopping. A technique for setting a negative acceleration is disclosed.
特開2005-67753号公報Japanese Patent Laying-Open No. 2005-67753
 自走式クレーンには、動力をチェーンとスプロケットの噛み合いによって車輪に伝達するものがある。スプロケットに噛み合うチェーンには、駆動抵抗の増加を防ぐため、また当該チェーンに掛かる負荷を低減するために弛みが設けられる。またチェーンとスプロケットとの噛み合い部には、噛み合い部の破損を防ぐために隙間が設けられる。そのため、チェーンとスプロケットを備える伝達機構は、バックラッシを有する。バックラッシを有する伝達機構を備える自走式クレーンは、モータ軸をブレーキでロックしても、当該バックラッシ分だけ自由に動くことができてしまう。 Some self-propelled cranes transmit power to the wheels by meshing the chain and sprocket. The chain meshing with the sprocket is provided with a slack to prevent an increase in driving resistance and to reduce a load applied to the chain. In addition, a gap is provided in the meshing portion between the chain and the sprocket in order to prevent breakage of the meshing portion. Therefore, a transmission mechanism including a chain and a sprocket has a backlash. A self-propelled crane provided with a transmission mechanism having backlash can move freely by the amount of backlash even if the motor shaft is locked with a brake.
 また、自走式クレーンの走行通路は必ずしも水平ではなく、微小な(例えば、1%以内の)勾配を有している。そのため、蔵置位置が下り勾配である場合、バックラッシを有する伝達機構を備える自走式クレーンが蔵置位置に停止したとしても、自走式クレーンの自重や、荷役作業による自走式クレーンの荷重変動によりバックラッシ分だけ前方の位置に停止位置がずれてしまう。 Also, the traveling path of the self-propelled crane is not necessarily horizontal, and has a minute gradient (for example, within 1%). Therefore, when the storage position is downhill, even if a self-propelled crane equipped with a transmission mechanism with backlash stops at the storage position, the self-propelled crane's own weight or the load fluctuation of the self-propelled crane due to cargo handling work The stop position is shifted to the front position by the amount of backlash.
 本発明の目的は、伝達機構がバックラッシを有し、かつ走行通路が水平でない場合に、停止位置のずれ量を低減する走行制御装置、自走式クレーンおよび自走式クレーンの走行制御方法を提供することにある。 An object of the present invention is to provide a travel control device, a self-propelled crane, and a travel control method for a self-propelled crane that reduce a deviation amount of a stop position when the transmission mechanism has a backlash and the travel path is not horizontal. There is to do.
 本発明の第1の態様によれば、走行制御装置は、バックラッシを有する伝達機構を介して動力が伝達される走行装置によって走行する自走式クレーンの走行制御装置であって、前記自走式クレーンの停止目標位置の路面の勾配が、進行方向に対して上りとなる勾配を含む第1勾配であるか、前記第1勾配以外の第2勾配であるかを判定する勾配判定部と、前記勾配が第2勾配である場合に、前記自走式クレーンを前記停止目標位置よりも進行方向前方に所定量前進させた後に、前記停止目標位置まで後退させる走行制御部とを備える。 According to the first aspect of the present invention, the travel control device is a travel control device for a self-propelled crane that travels by a travel device to which power is transmitted via a transmission mechanism having a backlash. A gradient determination unit that determines whether the gradient of the road surface at the target stop position of the crane is a first gradient that includes a gradient that rises with respect to the traveling direction, or a second gradient other than the first gradient; And a travel control unit configured to move the self-propelled crane forward by a predetermined amount forward in the traveling direction from the stop target position and then move back to the stop target position when the slope is the second slope.
 本発明の第2の態様によれば、第1の態様に係る走行制御装置は、前記勾配が前記第2勾配である場合に前記自走式クレーンの走行制御の目標となる制御目標位置を前記停止目標位置より所定量前方の位置に設定し、前記勾配が前記第1勾配である場合、および前記自走式クレーンの位置が前記制御目標位置と一致しかつ前記制御目標位置と前記停止目標位置とが異なる場合に前記制御目標位置を前記停止目標位置に設定する制御目標位置設定部をさらに備え、前記走行制御部が、前記自走式クレーンの位置が前記制御目標位置と一致するように前記自走式クレーンの走行を制御する。 According to the second aspect of the present invention, in the travel control device according to the first aspect, the control target position that is the target of the travel control of the self-propelled crane is determined when the gradient is the second gradient. The position is set a predetermined amount ahead of the stop target position, and when the slope is the first slope, and the position of the self-propelled crane matches the control target position and the control target position and the stop target position Is further provided with a control target position setting unit that sets the control target position to the stop target position, and the travel control unit is configured so that the position of the self-propelled crane matches the control target position. Controls the traveling of self-propelled cranes.
 本発明の第3の態様によれば、第1または第2の態様に係る走行制御装置は、前記自走式クレーンが走行する通路における停止目標位置の候補となる複数の位置における路面の勾配を記憶する勾配記憶部と、停止目標位置の入力を受け付け、前記勾配記憶部から当該停止目標位置の勾配を読み出す勾配取得部とをさらに備え、前記勾配判定部が、前記勾配取得部が取得した勾配が第1勾配であるか第2勾配であるかを判定する。 According to the third aspect of the present invention, the travel control device according to the first or second aspect provides road surface gradients at a plurality of positions that are candidates for stop target positions in a path on which the self-propelled crane travels. A gradient storage unit that stores data, and a gradient acquisition unit that receives an input of the target stop position and reads the gradient of the target stop position from the gradient storage unit, wherein the gradient determination unit acquires the gradient acquired by the gradient acquisition unit Is a first gradient or a second gradient.
 本発明の第4の態様によれば、自走式クレーンは、バックラッシを有する伝達機構と、前記伝達機構を介して動力が伝達される走行装置と、第1から第3の何れかの態様に係る走行制御装置とを備える。 According to a fourth aspect of the present invention, a self-propelled crane includes a transmission mechanism having a backlash, a traveling device to which power is transmitted via the transmission mechanism, and any one of the first to third aspects. The travel control device is provided.
 本発明の第5の態様によれば、自走式クレーンの走行制御方法は、バックラッシを有する伝達機構を介して動力が伝達される走行装置によって走行する自走式クレーンの走行制御方法であって、前記自走式クレーンの停止目標位置の路面の勾配が、進行方向に対して上りとなる勾配を含む第1勾配であるか、前記第1勾配以外の第2勾配であるかを判定する工程と、前記勾配が第2勾配である場合に、前記自走式クレーンを前記停止目標位置よりも進行方向前方に所定量前進させた後に、前記停止目標位置まで後退させる工程とを有する。 According to a fifth aspect of the present invention, a traveling control method for a self-propelled crane is a traveling control method for a self-propelled crane that travels by a traveling device to which power is transmitted via a transmission mechanism having a backlash. The step of determining whether the slope of the road surface at the stop target position of the self-propelled crane is a first slope including a slope that is upward relative to the traveling direction or a second slope other than the first slope. And, when the slope is the second slope, the self-propelled crane is moved forward by a predetermined amount forward in the traveling direction from the stop target position, and then retracted to the stop target position.
 本発明の第6の態様によれば、プログラムは、バックラッシを有する伝達機構を介して動力が伝達される走行装置によって走行する自走式クレーンに搭載されるコンピュータを、前記自走式クレーンの停止目標位置の路面の勾配が、進行方向に対して上りとなる勾配を含む第1勾配であるか、前記第1勾配以外の第2勾配であるかを判定する勾配判定部、前記勾配が第2勾配である場合に、前記自走式クレーンを前記停止目標位置よりも進行方向前方に所定量前進させた後に、前記停止目標位置まで後退させる走行制御部として機能させる。 According to the sixth aspect of the present invention, the program causes a computer mounted on a self-propelled crane traveling by a traveling device to which power is transmitted via a transmission mechanism having a backlash to stop the self-propelled crane. A gradient determination unit that determines whether the gradient of the road surface at the target position is a first gradient that includes an gradient that rises in the traveling direction or a second gradient other than the first gradient, and the gradient is a second gradient In the case of a gradient, the self-propelled crane is caused to function as a travel control unit that moves forward by a predetermined amount forward in the traveling direction from the stop target position and then moves backward to the stop target position.
 本発明の第7の態様によれば、プログラムは、バックラッシを有する伝達機構を介して動力が伝達される走行装置によって走行する自走式クレーンの位置が制御目標位置と一致するように前記自走式クレーンの走行を制御する走行制御装置を、前記自走式クレーンの停止目標位置の路面の勾配が、進行方向に対して上りとなる勾配を含む第1勾配であるか、前記第1勾配以外の第2勾配であるかを判定する勾配判定部、前記勾配が前記第2勾配である場合に前記制御目標位置を前記停止目標位置より所定量前方の位置に設定し、前記勾配が前記第1勾配である場合、および前記自走式クレーンの位置が前記制御目標位置と一致しかつ前記制御目標位置と前記停止目標位置とが異なる場合に前記制御目標位置を前記停止目標位置に設定する制御目標位置設定部、として機能させる。 According to a seventh aspect of the present invention, there is provided a program for executing the self-propelled operation so that a position of a self-propelled crane traveling by a traveling device to which power is transmitted via a transmission mechanism having a backlash coincides with a control target position. A traveling control device that controls traveling of the crane, the gradient of the road surface at the target stop position of the self-propelled crane is a first gradient that includes a gradient that rises with respect to the traveling direction, or other than the first gradient A gradient determination unit for determining whether the second gradient is the second gradient, and when the gradient is the second gradient, the control target position is set to a position ahead of the stop target position by a predetermined amount, and the gradient is the first gradient The control target position is set to the stop target position when it is a slope, and when the position of the self-propelled crane coincides with the control target position and the control target position and the stop target position are different. Target position setting unit, to function as a.
 上記態様のうち少なくとも1つの態様によれば、自走式クレーンは、停止目標位置の勾配が下り勾配である場合に、停止目標位置よりも前方の位置まで前進した後に、当該停止目標位置まで後退する。当該制御により、バックラッシによる自走式クレーンの自由移動の方向は、勾配の上り方向になる。したがって、自走式クレーンは、勾配による滑り方向と自由移動の方向とを異ならせることができるため、荷役作業による自走式クレーンの荷重変動により停止位置がずれることを防ぐことができる。 According to at least one of the above aspects, the self-propelled crane moves forward to a position ahead of the stop target position and then moves backward to the stop target position when the stop target position has a downward slope. To do. With this control, the direction of free movement of the self-propelled crane by backlash is the upward direction of the gradient. Therefore, since the self-propelled crane can change the sliding direction due to the gradient and the direction of free movement, the stop position can be prevented from shifting due to the load fluctuation of the self-propelled crane due to the cargo handling operation.
第1の実施形態に係るタイヤ式門型クレーンの外観を示す斜視図である。It is a perspective view which shows the external appearance of the tire type portal crane which concerns on 1st Embodiment. 第1の実施形態に係る走行制御装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the traveling control apparatus which concerns on 1st Embodiment. 第1の実施形態に係る走行制御装置の動作を示す第1のフローチャートである。It is a 1st flowchart which shows operation | movement of the traveling control apparatus which concerns on 1st Embodiment. 第1の実施形態に係る走行制御装置の動作を示す第2のフローチャートである。It is a 2nd flowchart which shows operation | movement of the traveling control apparatus which concerns on 1st Embodiment. 第2の実施形態に係るタイヤ式門型クレーンの外観を示す斜視図である。It is a perspective view which shows the external appearance of the tire type portal crane which concerns on 2nd Embodiment. 第2の実施形態に係る走行制御装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the traveling control apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る走行制御装置の動作を示す第1のフローチャートである。It is a 1st flowchart which shows operation | movement of the traveling control apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る走行制御装置の動作を示す第2のフローチャートである。It is a 2nd flowchart which shows operation | movement of the traveling control apparatus which concerns on 2nd Embodiment. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the computer which concerns on at least 1 embodiment.
《第1の実施形態》
 以下、図面を参照しながら実施形態について詳しく説明する。
 図1は、第1の実施形態に係るタイヤ式門型クレーンの外観を示す斜視図である。
 本実施形態におけるタイヤ式門型クレーン1は、例えば、岸壁に接岸したコンテナ船に対してコンテナCの積み降ろし、および、コンテナCの積み込み等を行うコンテナターミナルのコンテナヤードに設けられている。コンテナヤードには、タイヤ式門型クレーン1が走行する複数のレーン(通路)が設けられる。また各レーンの路面には、その延在方向に一定間隔ごとに、位置決めマークとして複数の磁石Mが設けられる。なお、本実施形態においては、磁石Mは、少なくともタイヤ式門型クレーン1の停止目標位置の候補となる位置に設けられる。
<< First Embodiment >>
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing an appearance of a tire-type portal crane according to the first embodiment.
The tire-type portal crane 1 according to the present embodiment is provided, for example, in a container yard of a container terminal that loads and unloads containers C, loads containers C, and the like on a container ship that touches a quay. The container yard is provided with a plurality of lanes (passages) on which the tire-type portal crane 1 travels. A plurality of magnets M are provided as positioning marks on the road surface of each lane at regular intervals in the extending direction. In the present embodiment, the magnet M is provided at a position that is at least a candidate stop target position of the tire-type portal crane 1.
 タイヤ式門型クレーン1は、レーンに配されてコンテナCの荷役を行う。タイヤ式門型クレーン1は、走行装置4により自走可能とされている。走行装置4は、モータ41と、タイヤ付車輪42と、モータ41の動力を伝達する伝達機構43と、磁石Mを検出する位置センサ44と、タイヤ付車輪42の回転数を検出するエンコーダ45とを有する。
 伝達機構43は、チェーンおよびスプロケットを備える。伝達機構43のチェーンには、駆動抵抗の増加を防ぎ、当該チェーンに掛かる負荷を低減するために弛みが設けられる。またチェーンとスプロケットとの噛み合い部には、噛み合い部の破損を防ぐために隙間が設けられる。つまり、伝達機構43はバックラッシを有する。バックラッシとは、噛み合い部を有する伝達機構における遊びである。
The tire-type portal crane 1 is disposed in the lane and handles the container C. The tire-type portal crane 1 can be self-propelled by the traveling device 4. The traveling device 4 includes a motor 41, wheels 42 with tires, a transmission mechanism 43 that transmits power of the motor 41, a position sensor 44 that detects the magnet M, and an encoder 45 that detects the number of rotations of the wheels 42 with tires. Have
The transmission mechanism 43 includes a chain and a sprocket. The chain of the transmission mechanism 43 is provided with slack in order to prevent an increase in driving resistance and reduce a load applied to the chain. In addition, a gap is provided in the meshing portion between the chain and the sprocket in order to prevent breakage of the meshing portion. That is, the transmission mechanism 43 has a backlash. Backlash is play in a transmission mechanism having a meshing portion.
 タイヤ式門型クレーン1は、走行装置4に支持される二対の脚部5と、これら脚部5の上端部同士を繋ぐクレーンガーダ6とを備える略門形に形成されている。そして、タイヤ式門型クレーン1は、クレーンガーダ6上を横行可能なトロリー7を備えている。トロリー7は、巻き上げ装置8を備えており、この巻き上げ装置8に吊ワイヤー9を介して昇降可能にスプレッダ10が吊り下げられている。 The tire-type portal crane 1 is formed in a substantially gate shape including two pairs of leg portions 5 supported by the traveling device 4 and a crane girder 6 connecting the upper ends of the leg portions 5. The tire-type portal crane 1 includes a trolley 7 that can traverse the crane girder 6. The trolley 7 includes a winding device 8, and a spreader 10 is suspended from the winding device 8 via a suspension wire 9 so as to be lifted and lowered.
 また、タイヤ式門型クレーン1は走行装置4の走行を制御する走行制御装置2を備える。走行制御装置2は、位置センサ44と磁石Mとの位置関係が一定になるようにタイヤ式門型クレーン1を停止させることで、タイヤ式門型クレーン1を精密に蔵置位置に停止させることができる。
 走行制御装置2は、位置センサ44が磁石Mを検出するたびにその検出をカウントする。例えば、走行制御装置2は、ある特定の磁石Mを基準として、レーンの延在方向の第1方向に磁石Mを通過するたびにカウント数に1を加算する。例えば、走行制御装置2は、ある特定の磁石Mを基準として、レーンの延在方向の第1方向と逆方向である第2方向に磁石Mを通過するたびにカウント数から1を減算する。
 また走行制御装置2は、エンコーダ45が検出する回転数に基づいてタイヤ式門型クレーン1の走行位置を算出する。また、エンコーダ45に基づいて算出される走行位置はタイヤ式門型クレーン1の走行に伴って誤差が生じるため、走行制御装置2は、磁石Mを通過するたびに当該走行位置を校正する。
The tire-type portal crane 1 includes a travel control device 2 that controls the travel of the travel device 4. The traveling control device 2 can precisely stop the tire-type portal crane 1 at the storage position by stopping the tire-type portal crane 1 so that the positional relationship between the position sensor 44 and the magnet M is constant. it can.
The traveling control device 2 counts the detection each time the position sensor 44 detects the magnet M. For example, the traveling control device 2 adds 1 to the count number every time it passes through the magnet M in the first direction in the extending direction of the lane with a specific magnet M as a reference. For example, the traveling control device 2 subtracts 1 from the count number each time it passes through the magnet M in a second direction that is opposite to the first direction of the lane extending direction with a specific magnet M as a reference.
Further, the traveling control device 2 calculates the traveling position of the tire type portal crane 1 based on the rotational speed detected by the encoder 45. In addition, since the travel position calculated based on the encoder 45 has an error as the tire-type portal crane 1 travels, the travel control apparatus 2 calibrates the travel position every time it passes through the magnet M.
 図2は、第1の実施形態に係る走行制御装置の構成を示す概略ブロック図である。
 走行制御装置2は、回転数取得部201と、磁束密度取得部202と、マークカウンタ部203と、走行位置算出部204と、停止目標位置入力部205と、停止目標位置記憶部206と、走行方向特定部207と、勾配記憶部208と、勾配取得部209と、勾配判定部210と、制御目標位置記憶部211と、制御目標位置設定部212と、走行制御部213とを備える。
FIG. 2 is a schematic block diagram illustrating the configuration of the travel control apparatus according to the first embodiment.
The travel control device 2 includes a rotation speed acquisition unit 201, a magnetic flux density acquisition unit 202, a mark counter unit 203, a travel position calculation unit 204, a stop target position input unit 205, a stop target position storage unit 206, a travel A direction specifying unit 207, a gradient storage unit 208, a gradient acquisition unit 209, a gradient determination unit 210, a control target position storage unit 211, a control target position setting unit 212, and a travel control unit 213 are provided.
 回転数取得部201は、各エンコーダ45からタイヤ付車輪42の回転数を取得する。
 磁束密度取得部202は、位置センサ44が検出する磁束密度の値を取得する。
 マークカウンタ部203は、磁束密度取得部202が取得した磁束密度の値に基づいて、位置センサ44による磁石Mの検出数をカウントする。
 走行位置算出部204は、回転数取得部201が取得する回転数およびマークカウンタ部203のカウンタ値に基づいて、タイヤ式門型クレーン1の走行位置を算出する。
The rotation speed acquisition unit 201 acquires the rotation speed of the wheel with tire 42 from each encoder 45.
The magnetic flux density acquisition unit 202 acquires a magnetic flux density value detected by the position sensor 44.
The mark counter unit 203 counts the number of magnets M detected by the position sensor 44 based on the magnetic flux density value acquired by the magnetic flux density acquisition unit 202.
The travel position calculation unit 204 calculates the travel position of the tire-type portal crane 1 based on the rotational speed acquired by the rotational speed acquisition unit 201 and the counter value of the mark counter unit 203.
 停止目標位置入力部205は、タイヤ式門型クレーン1の停止目標位置の入力を受け付ける。
 停止目標位置記憶部206は、停止目標位置入力部205に入力された停止目標位置を記憶する。
 走行方向特定部207は、タイヤ式門型クレーン1の現在位置と停止目標位置入力部205に入力された停止目標位置とに基づいて、タイヤ式門型クレーン1の走行方向を特定する。具体的には、走行方向特定部207は、タイヤ式門型クレーン1の走行方向がレーンの延在方向の第1方向であるか第2方向であるかを特定する。
The stop target position input unit 205 receives an input of a stop target position of the tire type portal crane 1.
The stop target position storage unit 206 stores the stop target position input to the stop target position input unit 205.
The traveling direction identification unit 207 identifies the traveling direction of the tire type portal crane 1 based on the current position of the tire type portal crane 1 and the stop target position input to the stop target position input unit 205. Specifically, the traveling direction specifying unit 207 specifies whether the traveling direction of the tire type portal crane 1 is the first direction or the second direction of the lane extending direction.
 勾配記憶部208は、停止目標位置の候補となる複数の位置(例えば、磁石Mが設けられる各位置)における路面の勾配を記憶する。勾配記憶部208は、各位置について、例えばレーンの延在方向の第1方向に対する勾配を記憶する。勾配記憶部208が記憶する勾配の値は、正数であるときに上り勾配であることを示し、負数であるときに下り勾配であることを示す。
 勾配取得部209は、停止目標位置入力部205に入力された停止目標位置の勾配を、勾配記憶部208から読み出す。
 勾配判定部210は、走行方向特定部207が特定したタイヤ式門型クレーン1の走行方向と、勾配取得部209が取得した勾配とに基づいて、停止目標位置の路面の勾配が、タイヤ式門型クレーン1の進行方向に対して上り勾配または勾配なし(第1勾配)となるか、下り勾配(第2勾配)となるかを判定する。
The gradient storage unit 208 stores road gradients at a plurality of positions (for example, positions where the magnet M is provided) that are candidates for the stop target position. The gradient storage unit 208 stores, for each position, for example, a gradient with respect to the first direction of the lane extending direction. The gradient value stored in the gradient storage unit 208 is positive when it is a positive number, and is negative when it is a negative number.
The gradient acquisition unit 209 reads the gradient of the stop target position input to the stop target position input unit 205 from the gradient storage unit 208.
Based on the traveling direction of the tire-type portal crane 1 specified by the traveling direction specifying unit 207 and the gradient acquired by the gradient acquiring unit 209, the gradient determining unit 210 determines that the road surface gradient at the stop target position is a tire-type gate. It is determined whether the uphill gradient or no gradient (first gradient) or the downward gradient (second gradient) is obtained with respect to the traveling direction of the crane 1.
 制御目標位置記憶部211は、走行制御部213の走行制御の一時的な目標位置である制御目標位置を記憶する。
 制御目標位置設定部212は、停止目標位置入力部205に入力された停止目標位置に基づいて制御目標位置を決定し、当該制御目標位置を制御目標位置記憶部211に記録する。
 走行制御部213は、走行位置算出部204が算出する走行位置に基づいて、タイヤ式門型クレーン1を制御目標位置記憶部211が記憶する制御目標位置まで走行させる。
The control target position storage unit 211 stores a control target position that is a temporary target position for the travel control of the travel control unit 213.
The control target position setting unit 212 determines a control target position based on the stop target position input to the stop target position input unit 205 and records the control target position in the control target position storage unit 211.
The traveling control unit 213 causes the tire-type portal crane 1 to travel to the control target position stored in the control target position storage unit 211 based on the traveling position calculated by the traveling position calculation unit 204.
 図3は、第1の実施形態に係る走行制御装置の動作を示す第1のフローチャートである。図4は、第1の実施形態に係る走行制御装置の動作を示す第2のフローチャートである。
 タイヤ式門型クレーン1の操作者が、コンテナCの荷役のための蔵置位置として、走行制御装置2に停止目標位置を入力すると、走行制御装置2の停止目標位置入力部205は、停止目標位置の入力を受け付ける(ステップS1)。停止目標位置入力部205は、入力された停止目標位置を、制御目標位置記憶部211に記録する(ステップS2)。
FIG. 3 is a first flowchart showing the operation of the travel control apparatus according to the first embodiment. FIG. 4 is a second flowchart showing the operation of the travel control apparatus according to the first embodiment.
When the operator of the tire type portal crane 1 inputs a stop target position to the travel control device 2 as a storage position for cargo handling of the container C, the stop target position input unit 205 of the travel control device 2 Is received (step S1). The stop target position input unit 205 records the input stop target position in the control target position storage unit 211 (step S2).
 次に、走行方向特定部207は、タイヤ式門型クレーン1の現在の走行位置と制御目標位置記憶部211が記憶する制御目標位置とに基づいて、制御目標位置に移動するためにタイヤ式門型クレーン1が走行する方向を特定する(ステップS3)。タイヤ式門型クレーン1の現在の走行位置は、走行位置算出部204が最後に算出した走行位置によって特定される。次に、勾配取得部209は、勾配記憶部208から制御目標位置記憶部211が記憶する制御目標位置に関連付けられた勾配を取得する(ステップS4)。なお、制御目標位置記憶部211が記憶する勾配は、レーンの延在方向の第1方向に対する勾配である。 Next, the traveling direction specifying unit 207 is configured to move to the control target position based on the current traveling position of the tire-type portal crane 1 and the control target position stored in the control target position storage unit 211. A direction in which the crane 1 travels is specified (step S3). The current traveling position of the tire type portal crane 1 is specified by the traveling position calculated last by the traveling position calculation unit 204. Next, the gradient acquisition unit 209 acquires the gradient associated with the control target position stored in the control target position storage unit 211 from the gradient storage unit 208 (step S4). Note that the gradient stored in the control target position storage unit 211 is a gradient with respect to the first direction in the lane extending direction.
 次に、勾配判定部210は、走行方向特定部207が特定した走行方向と勾配取得部209が取得した勾配とに基づいて、タイヤ式門型クレーン1の走行方向に対する制御目標位置の勾配が、下り勾配であるか否かを判定する(ステップS5)。例えば、勾配判定部210は、走行方向特定部207が特定した走行方向がレーンの延在方向の第1方向である場合、勾配取得部209が取得した勾配が負数であるときに、走行方向に対する制御目標位置の勾配が下り勾配であると判定する。他方、勾配判定部210は、走行方向特定部207が特定した走行方向がレーンの延在方向の第2方向である場合、勾配取得部209が取得した勾配が正数であるときに、走行方向に対する制御目標位置の勾配が下り勾配であると判定する。 Next, the gradient determination unit 210 determines that the gradient of the control target position with respect to the traveling direction of the tire-type portal crane 1 is based on the traveling direction identified by the traveling direction identifying unit 207 and the gradient obtained by the gradient obtaining unit 209. It is determined whether or not it is a downward slope (step S5). For example, when the traveling direction identified by the traveling direction identifying unit 207 is the first direction of the lane extending direction, the gradient determining unit 210 determines whether the gradient acquired by the gradient obtaining unit 209 is a negative number with respect to the traveling direction. It is determined that the gradient of the control target position is a downward gradient. On the other hand, when the traveling direction identified by the traveling direction identifying unit 207 is the second direction of the lane extending direction, the gradient determining unit 210 determines the traveling direction when the gradient acquired by the gradient acquiring unit 209 is a positive number. It is determined that the gradient of the control target position with respect to is a downward gradient.
 勾配判定部210が、走行方向に対する制御目標位置の勾配が下り勾配でないと判定した場合(ステップS5:NO)、制御目標位置設定部212は、停止目標位置記憶部206が記憶する停止目標位置を、制御目標位置として制御目標位置記憶部211に記録する(ステップS6)。他方、勾配判定部210が、走行方向に対する制御目標位置の勾配が下り勾配であると判定した場合(ステップS5:YES)、制御目標位置設定部212は、停止目標位置記憶部206が記憶する停止目標位置より所定量(例えば、50mm)だけ進んだ位置を、制御目標位置として制御目標位置記憶部211に記録する(ステップS7)。当該所定量は、バックラッシにより走行装置4が自由移動可能な距離より長い値とする。 When the gradient determination unit 210 determines that the gradient of the control target position with respect to the traveling direction is not a downward gradient (step S5: NO), the control target position setting unit 212 stores the stop target position stored in the stop target position storage unit 206. The control target position is recorded in the control target position storage unit 211 (step S6). On the other hand, when the gradient determination unit 210 determines that the gradient of the control target position with respect to the traveling direction is a downward gradient (step S5: YES), the control target position setting unit 212 stores the stop that the stop target position storage unit 206 stores. A position advanced by a predetermined amount (for example, 50 mm) from the target position is recorded in the control target position storage unit 211 as a control target position (step S7). The predetermined amount is a value longer than the distance that the traveling device 4 can freely move by backlash.
 ステップS6またはステップS7にて制御目標位置設定部212が制御目標位置を制御目標位置記憶部211に記録すると、走行制御部213は、当該制御目標位置へ向けて走行装置4の走行制御を開始する(ステップS8)。走行制御部213が走行制御を開始すると、走行位置算出部204は、回転数取得部201が取得するタイヤ付車輪42の回転数に基づいて、タイヤ式門型クレーン1の現在の走行位置を算出する(ステップS9)。またマークカウンタ部203は、磁束密度取得部202が取得する磁束密度の値が所定の閾値以上となったか否かを判定する(ステップS10)。当該閾値は、磁石Mと位置センサ44とが対向するときに位置センサ44が検出する磁束密度の値に相当する値とする。 When the control target position setting unit 212 records the control target position in the control target position storage unit 211 in step S6 or step S7, the travel control unit 213 starts the travel control of the travel device 4 toward the control target position. (Step S8). When the travel control unit 213 starts the travel control, the travel position calculation unit 204 calculates the current travel position of the tire-type portal crane 1 based on the rotational speed of the tire-equipped wheel 42 acquired by the rotational speed acquisition unit 201. (Step S9). Further, the mark counter unit 203 determines whether or not the magnetic flux density value acquired by the magnetic flux density acquisition unit 202 is equal to or greater than a predetermined threshold (step S10). The threshold value is a value corresponding to the magnetic flux density value detected by the position sensor 44 when the magnet M and the position sensor 44 face each other.
 磁束密度の値が所定の閾値以上となった場合(ステップS10:YES)、マークカウンタ部203は、磁石Mのカウント数を更新する(ステップS11)。具体的には、マークカウンタ部203は、タイヤ式門型クレーン1の走行方向がレーンの延在方向の第1方向である場合にカウンタ値に1を加算し、タイヤ式門型クレーン1の走行方向がレーンの延在方向の第2方向である場合にカウンタ値に1を減算する。次に、走行位置算出部204は、ステップS9で算出した走行位置を、マークカウンタ部203のカウンタ値に基づいて補正する(ステップS12)。 When the value of the magnetic flux density is equal to or greater than a predetermined threshold (step S10: YES), the mark counter unit 203 updates the count number of the magnet M (step S11). Specifically, the mark counter unit 203 adds 1 to the counter value when the traveling direction of the tire type portal crane 1 is the first direction of the lane extending direction, and the tire type portal crane 1 travels. When the direction is the second direction of the lane extending direction, 1 is subtracted from the counter value. Next, the travel position calculation unit 204 corrects the travel position calculated in step S9 based on the counter value of the mark counter unit 203 (step S12).
 磁束密度の値が所定の閾値未満である場合(ステップS10:NO)、またはステップS12で走行位置算出部204が走行位置を補正した場合、走行制御部213は、走行位置算出部204が算出した走行位置と、制御目標位置記憶部211が記憶する制御目標位置とが一致するか否かを判定する(ステップS13)。
 走行位置と制御目標位置とが一致しない場合(ステップS13:NO)、走行制御装置2は、ステップS9へ処理を戻し、走行制御を継続する。他方、走行位置と制御目標位置とが一致する場合(ステップS13:YES)、停止目標位置記憶部206が記憶する停止目標位置と制御目標位置記憶部211が記憶する制御目標位置とが一致するか否かを判定する(ステップS14)。停止目標位置と制御目標位置とが一致する場合(ステップS14:YES)、ステップS8で開始した走行制御を終了してモータをロックし(ステップS15)、処理を終了する。
When the value of the magnetic flux density is less than the predetermined threshold (step S10: NO), or when the travel position calculation unit 204 corrects the travel position in step S12, the travel control unit 213 calculates the travel position calculation unit 204. It is determined whether the travel position matches the control target position stored in the control target position storage unit 211 (step S13).
When the travel position and the control target position do not match (step S13: NO), the travel control device 2 returns the process to step S9 and continues the travel control. On the other hand, if the travel position matches the control target position (step S13: YES), does the stop target position stored in the stop target position storage unit 206 match the control target position stored in the control target position storage unit 211? It is determined whether or not (step S14). If the stop target position matches the control target position (step S14: YES), the travel control started in step S8 is terminated, the motor is locked (step S15), and the process is terminated.
 他方、停止目標位置と制御目標位置とが一致しない場合(ステップS14:NO)、つまり、制御目標位置が停止目標位置より所定量進んだ位置に設定されている場合、制御目標位置設定部212は、停止目標位置記憶部206が記憶する停止目標位置を、制御目標位置として制御目標位置記憶部211に記録する(ステップS16)。そして、走行制御装置2は、ステップS9へ処理を戻し、走行制御を継続する。これにより、走行制御部213は、停止目標位置の勾配が下り勾配である場合に、タイヤ式門型クレーン1を停止目標位置よりも進行方向前方に所定量前進させた後に、停止目標位置まで後退させることができる。 On the other hand, when the stop target position and the control target position do not match (step S14: NO), that is, when the control target position is set to a position advanced by a predetermined amount from the stop target position, the control target position setting unit 212 The stop target position stored in the stop target position storage unit 206 is recorded in the control target position storage unit 211 as a control target position (step S16). And the traveling control apparatus 2 returns a process to step S9, and continues traveling control. Thereby, the traveling control unit 213 moves the tire-type portal crane 1 forward by a predetermined amount forward in the traveling direction from the target stop position when the target stop position has a downward slope, and then moves backward to the target stop position. Can be made.
 このように、本実施形態に係る走行制御装置2は、停止目標位置の勾配が上り勾配または勾配なしの場合に、タイヤ式門型クレーン1を前進させて停止目標位置に停止させ、停止目標位置の勾配が下り勾配の場合に、タイヤ式門型クレーン1を後退させて停止目標位置に停止させる。つまり、本実施形態に係る走行制御装置2は、勾配を上った状態でタイヤ式門型クレーン1を停止させる。これにより、伝達機構43のバックラッシによるタイヤ式門型クレーン1の自由移動の方向は、勾配の上り方向になる。したがって、タイヤ式門型クレーン1の勾配による滑り方向(重力の分力の方向)と自由移動の方向とが逆向きになり、荷役作業によるタイヤ式門型クレーン1の荷重変動によりタイヤ式門型クレーン1の停止位置がずれることを防ぐことができる。 As described above, the traveling control device 2 according to the present embodiment causes the tire-type portal crane 1 to move forward and stop at the stop target position when the slope of the stop target position is an uphill slope or no slope. When the slope is a downward slope, the tire type portal crane 1 is moved backward to stop at the stop target position. That is, the traveling control device 2 according to the present embodiment stops the tire-type portal crane 1 in a state where the gradient is increased. Thereby, the direction of the free movement of the tire-type portal crane 1 due to the backlash of the transmission mechanism 43 is the upward direction of the gradient. Therefore, the sliding direction (the direction of the force of gravity) due to the gradient of the tire-type portal crane 1 and the direction of free movement are opposite, and the tire-type portal crane is caused by the load fluctuation of the tire-type portal crane 1 due to the cargo handling operation. The stop position of the crane 1 can be prevented from shifting.
 また、本実施形態に係る走行制御装置2は、一時的な走行制御の目標となる制御目標位置を用いてタイヤ式門型クレーン1の走行を制御する。具体的には、走行制御装置2の制御目標位置設定部212は、停止目標位置の勾配が下り勾配である場合に制御目標位置を停止目標位置より所定量前方の位置に設定する。また制御目標位置設定部212は、停止目標位置の勾配が上り勾配または勾配なしである場合に制御目標位置を停止目標位置に設定する。また制御目標位置設定部212は、タイヤ式門型クレーン1の位置が制御目標位置と一致しかつ制御目標位置と停止目標位置とが異なる場合に制御目標位置を停止目標位置に設定する。
 これにより、走行制御部213は常に制御目標位置へ向けて走行制御を行えば良いため、走行制御を複雑化することなく、勾配を上った状態でタイヤ式門型クレーン1を停止させることができる。
Moreover, the traveling control device 2 according to the present embodiment controls traveling of the tire-type portal crane 1 using a control target position that is a target of temporary traveling control. Specifically, the control target position setting unit 212 of the travel control device 2 sets the control target position to a position ahead of the stop target position by a predetermined amount when the gradient of the stop target position is a downward gradient. In addition, the control target position setting unit 212 sets the control target position as the stop target position when the gradient of the stop target position is an ascending gradient or no gradient. The control target position setting unit 212 sets the control target position as the stop target position when the position of the tire-type portal crane 1 matches the control target position and the control target position and the stop target position are different.
As a result, the traveling control unit 213 may always perform the traveling control toward the control target position, so that the tire-type portal crane 1 can be stopped in a state where the gradient is increased without complicating the traveling control. it can.
《第2の実施形態》
 図5は、第2の実施形態に係るタイヤ式門型クレーンの外観を示す斜視図である。
 第1の実施形態に係るタイヤ式門型クレーン1は、予め停止目標位置の勾配を記憶しておき、当該勾配に基づいて、荷重変動による停止位置のずれを防ぐように走行する。これに対し、本実施形態に係るタイヤ式門型クレーン1は、予め停止目標位置の勾配を記憶しておくことなしに、荷重変動による停止位置のずれを防ぐように走行する。
<< Second Embodiment >>
FIG. 5 is a perspective view showing an appearance of a tire-type portal crane according to the second embodiment.
The tire-type portal crane 1 according to the first embodiment stores the gradient of the stop target position in advance, and travels based on the gradient so as to prevent the shift of the stop position due to load fluctuation. On the other hand, the tire-type portal crane 1 according to the present embodiment travels so as to prevent the stop position from being shifted due to the load fluctuation without storing the gradient of the stop target position in advance.
 第2の実施形態に係るタイヤ式門型クレーン1は、第1の実施形態の構成に加え、さらに傾斜センサ11を備える。傾斜センサ11は、タイヤ式門型クレーン1の進行方向、すなわちレーンの延在方向に対する傾きを検出する。例えば、傾斜センサ11は、レーンの延在方向の第1方向に対する傾きを検出する。傾斜センサ11が出力する傾きの値は、正数であるときに上向きの傾きであることを示し、負数であるときに下向きの傾きであることを示す。傾斜センサ11は、少なくとも重力方向とタイヤ式門型クレーン1の進行方向の二軸の加速度を検出する加速度センサによって実現される。 The tire-type portal crane 1 according to the second embodiment further includes a tilt sensor 11 in addition to the configuration of the first embodiment. The inclination sensor 11 detects the inclination with respect to the traveling direction of the tire-type portal crane 1, that is, the lane extending direction. For example, the inclination sensor 11 detects the inclination of the lane extending direction with respect to the first direction. The inclination value output from the inclination sensor 11 indicates an upward inclination when it is a positive number, and indicates a downward inclination when it is a negative number. The inclination sensor 11 is realized by an acceleration sensor that detects at least biaxial acceleration in the direction of gravity and the traveling direction of the tire-type portal crane 1.
 図6は、第2の実施形態に係る走行制御装置の構成を示す概略ブロック図である。
 本実施形態に係る走行制御装置2は、勾配記憶部208および勾配取得部209に代えて、傾き取得部214を備える。
 傾き取得部214は、傾斜センサ11が出力する傾きの値を取得する。
FIG. 6 is a schematic block diagram showing the configuration of the travel control apparatus according to the second embodiment.
The travel control device 2 according to the present embodiment includes an inclination acquisition unit 214 instead of the gradient storage unit 208 and the gradient acquisition unit 209.
The inclination acquisition unit 214 acquires an inclination value output from the inclination sensor 11.
 図7は、第2の実施形態に係る走行制御装置の動作を示す第1のフローチャートである。図8は、第2の実施形態に係る走行制御装置の動作を示す第2のフローチャートである。
 タイヤ式門型クレーン1の操作者が、コンテナCの荷役のための蔵置位置として、走行制御装置2に停止目標位置を入力すると、走行制御装置2の停止目標位置入力部205は、停止目標位置の入力を受け付ける(ステップS101)。停止目標位置入力部205は、入力された停止目標位置を、制御目標位置記憶部211に記録する(ステップS102)。次に、走行方向特定部207は、タイヤ式門型クレーン1の現在の走行位置と制御目標位置記憶部211が記憶する制御目標位置とに基づいて、制御目標位置に移動するためにタイヤ式門型クレーン1が走行する方向を特定する(ステップS103)。
FIG. 7 is a first flowchart showing the operation of the travel control apparatus according to the second embodiment. FIG. 8 is a second flowchart showing the operation of the travel control apparatus according to the second embodiment.
When the operator of the tire type portal crane 1 inputs a stop target position to the travel control device 2 as a storage position for cargo handling of the container C, the stop target position input unit 205 of the travel control device 2 Is received (step S101). The stop target position input unit 205 records the input stop target position in the control target position storage unit 211 (step S102). Next, the traveling direction specifying unit 207 is configured to move to the control target position based on the current traveling position of the tire-type portal crane 1 and the control target position stored in the control target position storage unit 211. A direction in which the crane 1 travels is specified (step S103).
 次に、制御目標位置設定部212は、停止目標位置記憶部206が記憶する停止目標位置を、制御目標位置として制御目標位置記憶部211に記録する(ステップS104)。次に、走行制御部213は、制御目標位置記憶部211が記憶する制御目標位置へ向けて走行装置4の走行制御を開始する(ステップS105)。 Next, the control target position setting unit 212 records the stop target position stored in the stop target position storage unit 206 in the control target position storage unit 211 as a control target position (step S104). Next, the traveling control unit 213 starts traveling control of the traveling device 4 toward the control target position stored in the control target position storage unit 211 (step S105).
 走行制御部213が走行制御を開始すると、走行位置算出部204は、回転数取得部201が取得するタイヤ付車輪42の回転数に基づいて、タイヤ式門型クレーン1の現在の走行位置を算出する(ステップS106)。またマークカウンタ部203は、磁束密度取得部202が取得する磁束密度の値が所定の閾値以上となったか否かを判定する(ステップS107)。磁束密度の値が所定の閾値以上となった場合(ステップS107:YES)、マークカウンタ部203は、磁石Mのカウント数を更新する(ステップS108)。次に、走行位置算出部204は、ステップS106で算出した走行位置を、マークカウンタ部203のカウンタ値に基づいて補正する(ステップS109)。 When the travel control unit 213 starts the travel control, the travel position calculation unit 204 calculates the current travel position of the tire-type portal crane 1 based on the rotational speed of the tire-equipped wheel 42 acquired by the rotational speed acquisition unit 201. (Step S106). Further, the mark counter unit 203 determines whether or not the value of the magnetic flux density acquired by the magnetic flux density acquisition unit 202 is equal to or greater than a predetermined threshold (step S107). When the value of the magnetic flux density is equal to or greater than the predetermined threshold (step S107: YES), the mark counter unit 203 updates the count number of the magnet M (step S108). Next, the travel position calculation unit 204 corrects the travel position calculated in step S106 based on the counter value of the mark counter unit 203 (step S109).
 磁束密度の値が所定の閾値未満である場合(ステップS107:NO)、またはステップS109で走行位置算出部204が走行位置を補正した場合、走行制御部213は、走行位置算出部204が算出した走行位置と、制御目標位置記憶部211が記憶する制御目標位置とが一致するか否かを判定する(ステップS110)。
 走行位置と制御目標位置とが一致しない場合(ステップS110:NO)、走行制御装置2は、ステップS106へ処理を戻し、走行制御を継続する。他方、走行位置と制御目標位置とが一致する場合(ステップS110:YES)、ステップS105で開始した走行制御を終了してモータをロックする(ステップS111)。
When the value of the magnetic flux density is less than the predetermined threshold (step S107: NO), or when the travel position calculation unit 204 corrects the travel position in step S109, the travel control unit 213 calculates the travel position calculation unit 204. It is determined whether the travel position matches the control target position stored in the control target position storage unit 211 (step S110).
If the travel position does not match the control target position (step S110: NO), the travel control device 2 returns the process to step S106 and continues the travel control. On the other hand, if the travel position matches the control target position (step S110: YES), the travel control started in step S105 is terminated and the motor is locked (step S111).
 タイヤ式門型クレーン1が完全に停止すると、傾き取得部214は、傾斜センサ11が検出する傾きの値を取得する(ステップS112)。ステップS111でモータをロックする理由は、傾斜センサ11が検出する傾きに重力加速度以外の加速度による誤差をなくすことにある。次に、勾配判定部210は、傾き取得部214が取得した傾きの値とステップS103で走行方向特定部207が特定した走行方向とに基づいて、現在位置(制御目標位置)におけるタイヤ式門型クレーン1の走行方向に対する勾配が、下り勾配であるか否かを判定する(ステップS113)。例えば、勾配判定部210は、走行方向特定部207が特定した走行方向がレーンの延在方向の第1方向である場合、傾き取得部214が取得した傾きの値が負数であるときに、走行方向に対する制御目標位置の勾配が下り勾配であると判定する。他方、勾配判定部210は、走行方向特定部207が特定した走行方向がレーンの延在方向の第2方向である場合、傾き取得部214が取得した傾きの値が正数であるときに、走行方向に対する制御目標位置の勾配が下り勾配であると判定する。 When the tire type portal crane 1 is completely stopped, the inclination acquisition unit 214 acquires the value of the inclination detected by the inclination sensor 11 (step S112). The reason for locking the motor in step S111 is to eliminate an error caused by acceleration other than gravitational acceleration in the tilt detected by the tilt sensor 11. Next, the gradient determination unit 210 is a tire type gate type at the current position (control target position) based on the value of the inclination acquired by the inclination acquisition unit 214 and the traveling direction identified by the traveling direction identification unit 207 in step S103. It is determined whether or not the gradient with respect to the traveling direction of the crane 1 is a downward gradient (step S113). For example, when the travel direction specified by the travel direction specification unit 207 is the first direction of the lane extending direction, the slope determination unit 210 travels when the slope value acquired by the slope acquisition unit 214 is a negative number. It is determined that the gradient of the control target position with respect to the direction is a downward gradient. On the other hand, when the traveling direction identified by the traveling direction identifying unit 207 is the second direction of the lane extending direction, the slope determining unit 210 is when the slope value acquired by the slope acquiring unit 214 is a positive number. It is determined that the gradient of the control target position with respect to the traveling direction is a downward gradient.
 勾配判定部210が、走行方向に対する制御目標位置の勾配が下り勾配でないと判定した場合(ステップS113:NO)、タイヤ式門型クレーン1が勾配を上った状態で停止しているため、走行制御装置2は、処理を終了する。
 他方、勾配判定部210が、走行方向に対する制御目標位置の勾配が下り勾配であると判定した場合(ステップS113:YES)、制御目標位置設定部212は、停止目標位置記憶部206が記憶する停止目標位置より所定量だけ進んだ位置を、制御目標位置として制御目標位置記憶部211に記録する(ステップS114)。
When the gradient determination unit 210 determines that the gradient of the control target position with respect to the traveling direction is not a downward gradient (step S113: NO), the tire-type portal crane 1 is stopped in a state where the gradient is increased, and thus traveling The control device 2 ends the process.
On the other hand, when the gradient determination unit 210 determines that the gradient of the control target position with respect to the traveling direction is a downward gradient (step S113: YES), the control target position setting unit 212 stores the stop target position stored in the stop target position storage unit 206. The position advanced by a predetermined amount from the target position is recorded in the control target position storage unit 211 as a control target position (step S114).
 次に、走行制御部213は、新たな制御目標位置へ向けて走行装置4の走行制御を開始する(ステップS115)。走行制御部213が走行制御を開始すると、走行位置算出部204は、回転数取得部201が取得するタイヤ付車輪42の回転数に基づいて、タイヤ式門型クレーン1の現在の走行位置を算出する(ステップS116)。またマークカウンタ部203は、磁束密度取得部202が取得する磁束密度の値が所定の閾値以上となったか否かを判定する(ステップS117)。磁束密度の値が所定の閾値以上となった場合(ステップS117:YES)、マークカウンタ部203は、磁石Mのカウント数を更新する(ステップS118)。次に、走行位置算出部204は、ステップS9で算出した走行位置を、マークカウンタ部203のカウンタ値に基づいて補正する(ステップS119)。 Next, the traveling control unit 213 starts traveling control of the traveling device 4 toward a new control target position (step S115). When the travel control unit 213 starts the travel control, the travel position calculation unit 204 calculates the current travel position of the tire-type portal crane 1 based on the rotational speed of the tire-equipped wheel 42 acquired by the rotational speed acquisition unit 201. (Step S116). In addition, the mark counter unit 203 determines whether or not the value of the magnetic flux density acquired by the magnetic flux density acquisition unit 202 is equal to or greater than a predetermined threshold (step S117). When the value of the magnetic flux density is equal to or greater than a predetermined threshold (step S117: YES), the mark counter unit 203 updates the count number of the magnet M (step S118). Next, the travel position calculation unit 204 corrects the travel position calculated in step S9 based on the counter value of the mark counter unit 203 (step S119).
 磁束密度の値が所定の閾値未満である場合(ステップS117:NO)、またはステップS119で走行位置算出部204が走行位置を補正した場合、走行制御部213は、走行位置算出部204が算出した走行位置と、制御目標位置記憶部211が記憶する制御目標位置とが一致するか否かを判定する(ステップS120)。
 走行位置と制御目標位置とが一致しない場合(ステップS120:NO)、走行制御装置2は、ステップS116へ処理を戻し、走行制御を継続する。他方、走行位置と制御目標位置とが一致する場合(ステップS120:YES)、停止目標位置記憶部206が記憶する停止目標位置と制御目標位置記憶部211が記憶する制御目標位置とが一致するか否かを判定する(ステップS121)。
When the value of the magnetic flux density is less than the predetermined threshold (step S117: NO), or when the travel position calculation unit 204 corrects the travel position in step S119, the travel control unit 213 calculates the travel position calculation unit 204. It is determined whether or not the travel position matches the control target position stored in the control target position storage unit 211 (step S120).
If the travel position does not match the control target position (step S120: NO), the travel control device 2 returns the process to step S116 and continues the travel control. On the other hand, if the travel position matches the control target position (step S120: YES), does the stop target position stored in the stop target position storage unit 206 match the control target position stored in the control target position storage unit 211? It is determined whether or not (step S121).
 停止目標位置と制御目標位置とが一致しない場合(ステップS121:NO)、つまり、制御目標位置が停止目標位置より所定量進んだ位置に設定されている場合、制御目標位置設定部212は、停止目標位置記憶部206が記憶する停止目標位置を、制御目標位置として制御目標位置記憶部211に記録する(ステップS122)。そして、走行制御装置2は、ステップS116へ処理を戻し、走行制御を継続する。
 他方、停止目標位置と制御目標位置とが一致する場合(ステップS121:YES)、ステップS115で開始した走行制御を終了してモータをロックし(ステップS123)、処理を終了する。
When the stop target position and the control target position do not match (step S121: NO), that is, when the control target position is set to a position advanced by a predetermined amount from the stop target position, the control target position setting unit 212 stops. The stop target position stored in the target position storage unit 206 is recorded in the control target position storage unit 211 as a control target position (step S122). Then, the traveling control device 2 returns the process to step S116 and continues the traveling control.
On the other hand, when the stop target position matches the control target position (step S121: YES), the travel control started in step S115 is terminated, the motor is locked (step S123), and the process is terminated.
 このように、本実施形態に係る走行制御装置2は、予め停止目標位置の勾配を記憶しておくことなしに、勾配を上った状態でタイヤ式門型クレーン1を停止させることができる。これにより、本実施形態に係る走行制御装置2は、第1の実施形態と同様に、荷役作業によるタイヤ式門型クレーン1の荷重変動によりタイヤ式門型クレーン1の停止位置がずれることを防ぐことができる。 Thus, the traveling control device 2 according to the present embodiment can stop the tire-type portal crane 1 in a state where the gradient is increased without storing the gradient of the target stop position in advance. Thereby, the traveling control apparatus 2 which concerns on this embodiment prevents that the stop position of the tire type portal crane 1 shifts | deviates by the load fluctuation | variation of the tire type portal crane 1 by cargo handling work similarly to 1st Embodiment. be able to.
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
 例えば、上述した実施形態では、走行制御装置2が自走式クレーンの一例であるタイヤ式門型クレーン1の走行を制御する場合について説明したが、これに限られない。例えば、他の実施形態に係る走行制御装置2は、鉄輪によりレール上を走行するクレーン、無限軌道によりレーンを走行するクレーンおよび自走式の橋形クレーンなど、他の自走式クレーンの走行を制御しても良い。
As described above, the embodiment has been described in detail with reference to the drawings. However, the specific configuration is not limited to that described above, and various design changes and the like can be made.
For example, in the above-described embodiment, the case where the traveling control device 2 controls the traveling of the tire-type portal crane 1 which is an example of a self-propelled crane has been described, but the present invention is not limited thereto. For example, the traveling control device 2 according to another embodiment can travel other self-propelled cranes such as a crane traveling on a rail with an iron wheel, a crane traveling on a lane with an endless track, and a self-propelled bridge crane. You may control.
 また、上述した実施形態に係る伝達機構43は、チェーンとスプロケットを備えるものであるが、これに限られない。例えば、他の実施形態に係る伝達機構43は、複数のギアを組み合わせたものなど、バックラッシを有する他の伝達機構であっても良い。 Further, the transmission mechanism 43 according to the above-described embodiment includes a chain and a sprocket, but is not limited thereto. For example, the transmission mechanism 43 according to another embodiment may be another transmission mechanism having a backlash, such as a combination of a plurality of gears.
 また、上述した実施形態に係るタイヤ式門型クレーン1は、自走式クレーンとして設計されたものであるが、これに限られない。例えば、他の実施形態に係る自走式クレーンは、運転席を有する有人クレーンとして設計された移動型クレーンに走行制御装置2を搭載されたものであっても良い。 Further, the tire-type portal crane 1 according to the above-described embodiment is designed as a self-propelled crane, but is not limited thereto. For example, a self-propelled crane according to another embodiment may be one in which the traveling control device 2 is mounted on a mobile crane designed as a manned crane having a driver's seat.
 また、上述した実施形態に係る走行制御装置2は、停止目標位置の勾配が下り勾配である場合に、タイヤ式門型クレーン1を停止目標位置よりも進行方向前方に所定量前進させた後に停止目標位置まで後退させるが、これに限られない。例えば、他の実施形態に係る走行制御装置2は、停止目標位置の勾配が下り勾配であっても勾配の絶対値が所定値より大きい場合にのみ、タイヤ式門型クレーン1を停止目標位置よりも進行方向前方に所定量前進させた後に停止目標位置まで後退させても良い。つまり、第1勾配は、上り勾配、勾配なし、および一部の下り勾配を含んでも良い。また例えば、他の実施形態に係る走行制御装置2は、停止目標位置の勾配が下り勾配または勾配なしである場合に、タイヤ式門型クレーン1を停止目標位置よりも進行方向前方に所定量前進させた後に停止目標位置まで後退させても良い。つまり、第1勾配は、勾配なしを含まないものであっても良い。 Further, the traveling control device 2 according to the above-described embodiment stops after the tire-type portal crane 1 is advanced by a predetermined amount forward in the traveling direction from the target stop position when the target stop position has a downward slope. Although it backs up to a target position, it is not restricted to this. For example, the traveling control device 2 according to another embodiment allows the tire-type portal crane 1 to be moved from the stop target position only when the absolute value of the gradient is larger than a predetermined value even if the gradient of the stop target position is a downward gradient. Alternatively, it may be moved forward by a predetermined amount forward in the traveling direction and then moved backward to the stop target position. That is, the first gradient may include an ascending gradient, no gradient, and some descending gradient. Further, for example, the traveling control device 2 according to another embodiment advances the tire-type portal crane 1 by a predetermined amount forward in the traveling direction from the stop target position when the stop target position has a downward slope or no slope. It is also possible to reverse the vehicle to the stop target position after making it. That is, the first gradient may not include no gradient.
 図9は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、インタフェース904を備える。
 上述の走行制御装置2は、コンピュータ900に実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置902または補助記憶装置903に確保する。
FIG. 9 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
The computer 900 includes a CPU 901, a main storage device 902, an auxiliary storage device 903, and an interface 904.
The travel control device 2 described above is mounted on the computer 900. The operation of each processing unit described above is stored in the auxiliary storage device 903 in the form of a program. The CPU 901 reads a program from the auxiliary storage device 903, develops it in the main storage device 902, and executes the above processing according to the program. In addition, the CPU 901 ensures a storage area corresponding to each storage unit described above in the main storage device 902 or the auxiliary storage device 903 according to the program.
 なお、少なくとも1つの実施形態において、補助記憶装置903は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例としては、インタフェース904を介して接続される磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等が挙げられる。また、このプログラムが通信回線によってコンピュータに配信される場合、配信を受けたコンピュータが当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。 In at least one embodiment, the auxiliary storage device 903 is an example of a tangible medium that is not temporary. Other examples of the non-temporary tangible medium include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory connected via the interface 904. When this program is distributed to a computer via a communication line, the computer that has received the distribution may develop the program in the main storage device 902 and execute the above processing.
 また、当該プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、当該プログラムは、前述した機能を補助記憶装置903に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であっても良い。例えば、当該プログラムは、自走式クレーンを停止目標位置まで走行させる従来の走行制御装置に、勾配判定部210および制御目標位置設定部212を追加するプログラムであっても良い。 Further, the program may be for realizing a part of the functions described above. Further, the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device 903. For example, the program may be a program in which a gradient determination unit 210 and a control target position setting unit 212 are added to a conventional travel control device that travels a self-propelled crane to a stop target position.
 走行制御装置は、港湾等のヤードにおいて荷役作業を行う荷役設備などの自走式クレーンに搭載される。 The traveling control device is mounted on a self-propelled crane such as a cargo handling facility that performs cargo handling work in a yard such as a harbor.
1 タイヤ式門型クレーン
2 走行制御装置
4 走行装置
41 モータ
42 タイヤ付車輪
43 伝達機構
204 走行位置算出部
205 停止目標位置入力部
210 勾配判定部
211 制御目標位置記憶部
212 制御目標位置設定部
213 走行制御部
DESCRIPTION OF SYMBOLS 1 Tire type portal crane 2 Traveling control apparatus 4 Traveling apparatus 41 Motor 42 Wheel with tire 43 Transmission mechanism 204 Traveling position calculation part 205 Stop target position input part 210 Gradient determination part 211 Control target position storage part 212 Control target position setting part 213 Travel control unit

Claims (7)

  1.  バックラッシを有する伝達機構を介して動力が伝達される走行装置によって走行する自走式クレーンの走行制御装置であって、
     前記自走式クレーンの停止目標位置の路面の勾配が、進行方向に対して上りとなる勾配を含む第1勾配であるか、前記第1勾配以外の第2勾配であるかを判定する勾配判定部と、
     前記勾配が第2勾配である場合に、前記自走式クレーンを前記停止目標位置よりも進行方向前方に所定量前進させた後に、前記停止目標位置まで後退させる走行制御部と
     を備える走行制御装置。
    A traveling control device for a self-propelled crane that travels by a traveling device to which power is transmitted via a transmission mechanism having a backlash,
    Gradient determination that determines whether the gradient of the road surface at the target stop position of the self-propelled crane is a first gradient that includes a gradient that rises in the traveling direction or a second gradient other than the first gradient. And
    A travel control unit comprising: a travel control unit configured to move the self-propelled crane forward by a predetermined amount forward in the traveling direction from the stop target position and then move back to the stop target position when the slope is the second slope. .
  2.  前記勾配が前記第2勾配である場合に前記自走式クレーンの走行制御の目標となる制御目標位置を前記停止目標位置より所定量前方の位置に設定し、前記勾配が前記第1勾配である場合、および前記自走式クレーンの位置が前記制御目標位置と一致しかつ前記制御目標位置と前記停止目標位置とが異なる場合に前記制御目標位置を前記停止目標位置に設定する制御目標位置設定部をさらに備え、
     前記走行制御部が、前記自走式クレーンの位置が前記制御目標位置と一致するように前記自走式クレーンの走行を制御する
     請求項1に記載の走行制御装置。
    When the gradient is the second gradient, a control target position that is a target of traveling control of the self-propelled crane is set to a position that is a predetermined amount ahead of the stop target position, and the gradient is the first gradient. And a control target position setting unit that sets the control target position to the stop target position when the position of the self-propelled crane coincides with the control target position and the control target position and the stop target position are different. Further comprising
    The travel control device according to claim 1, wherein the travel control unit controls travel of the self-propelled crane so that a position of the self-propelled crane matches the control target position.
  3.  前記自走式クレーンが走行する通路における停止目標位置の候補となる複数の位置における路面の勾配を記憶する勾配記憶部と、
     停止目標位置の入力を受け付け、前記勾配記憶部から当該停止目標位置の勾配を読み出す勾配取得部と
     をさらに備え、
     前記勾配判定部が、前記勾配取得部が取得した勾配が第1勾配であるか第2勾配であるかを判定する
     請求項1または請求項2に記載の走行制御装置。
    A gradient storage unit that stores gradients of a road surface at a plurality of positions that are candidates for a target stop position in a path traveled by the self-propelled crane;
    A gradient acquisition unit that receives an input of a target stop position and reads a gradient of the target stop position from the gradient storage unit;
    The travel control device according to claim 1, wherein the gradient determination unit determines whether the gradient acquired by the gradient acquisition unit is a first gradient or a second gradient.
  4.  バックラッシを有する伝達機構と、
     前記伝達機構を介して動力が伝達される走行装置と、
     請求項1から請求項3の何れか1項に記載の走行制御装置と
     を備える自走式クレーン。
    A transmission mechanism having a backlash;
    A traveling device in which power is transmitted via the transmission mechanism;
    A self-propelled crane provided with the travel control device according to any one of claims 1 to 3.
  5.  バックラッシを有する伝達機構を介して動力が伝達される走行装置によって走行する自走式クレーンの走行制御方法であって、
     前記自走式クレーンの停止目標位置の路面の勾配が、進行方向に対して上りとなる勾配を含む第1勾配であるか、前記第1勾配以外の第2勾配であるかを判定する工程と、
     前記勾配が第2勾配である場合に、前記自走式クレーンを前記停止目標位置よりも進行方向前方に所定量前進させた後に、前記停止目標位置まで後退させる工程と
     を有する自走式クレーンの走行制御方法。
    A traveling control method for a self-propelled crane that travels by a traveling device in which power is transmitted via a transmission mechanism having a backlash,
    Determining whether the slope of the road surface at the stop target position of the self-propelled crane is a first slope including a slope that is upward relative to the traveling direction or a second slope other than the first slope; ,
    A step of moving the self-propelled crane forward by a predetermined amount forward in the traveling direction from the stop target position and then moving the self-propelled crane back to the stop target position when the gradient is the second gradient. Travel control method.
  6.  バックラッシを有する伝達機構を介して動力が伝達される走行装置によって走行する自走式クレーンに搭載されるコンピュータを、
     前記自走式クレーンの停止目標位置の路面の勾配が、進行方向に対して上りとなる勾配を含む第1勾配であるか、前記第1勾配以外の第2勾配であるかを判定する勾配判定部、
     前記勾配が第2勾配である場合に、前記自走式クレーンを前記停止目標位置よりも進行方向前方に所定量前進させた後に、前記停止目標位置まで後退させる走行制御部
     として機能させるためのプログラム。
    A computer mounted on a self-propelled crane that travels by a traveling device to which power is transmitted via a transmission mechanism having a backlash,
    Gradient determination that determines whether the gradient of the road surface at the target stop position of the self-propelled crane is a first gradient that includes a gradient that rises in the traveling direction or a second gradient other than the first gradient. Part,
    A program for causing the self-propelled crane to function as a travel control unit that moves the self-propelled crane forward by a predetermined amount forward in the traveling direction from the stop target position and then moves backward to the stop target position when the slope is the second slope. .
  7.  バックラッシを有する伝達機構を介して動力が伝達される走行装置によって走行する自走式クレーンの位置が制御目標位置と一致するように前記自走式クレーンの走行を制御する走行制御装置を、
     前記自走式クレーンの停止目標位置の路面の勾配が、進行方向に対して上りとなる勾配を含む第1勾配であるか、前記第1勾配以外の第2勾配であるかを判定する勾配判定部、
     前記勾配が前記第2勾配である場合に前記制御目標位置を前記停止目標位置より所定量前方の位置に設定し、前記勾配が前記第1勾配である場合、および前記自走式クレーンの位置が前記制御目標位置と一致しかつ前記制御目標位置と前記停止目標位置とが異なる場合に前記制御目標位置を前記停止目標位置に設定する制御目標位置設定部、
     として機能させるためのプログラム。
    A traveling control device for controlling the traveling of the self-propelled crane so that the position of the self-propelled crane traveling by the traveling device to which power is transmitted via a transmission mechanism having a backlash coincides with the control target position;
    Gradient determination that determines whether the gradient of the road surface at the target stop position of the self-propelled crane is a first gradient that includes a gradient that rises in the traveling direction or a second gradient other than the first gradient. Part,
    When the gradient is the second gradient, the control target position is set to a position ahead of the stop target position by a predetermined amount, and when the gradient is the first gradient, and the position of the self-propelled crane is A control target position setting unit for setting the control target position to the stop target position when the control target position matches the control target position and the stop target position is different;
    Program to function as.
PCT/JP2015/064889 2015-05-25 2015-05-25 Travel control device, self-propelled crane, and travel control method of self-propelled crane WO2016189615A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/064889 WO2016189615A1 (en) 2015-05-25 2015-05-25 Travel control device, self-propelled crane, and travel control method of self-propelled crane
JP2017520090A JP6258559B2 (en) 2015-05-25 2015-05-25 Travel control device, self-propelled crane and travel control method for self-propelled crane
CN201580079794.8A CN107531463B (en) 2015-05-25 2015-05-25 The ambulation control method of traveling control device, mobile crane and mobile crane
HK18103043.1A HK1243394A1 (en) 2015-05-25 2018-03-02 Travel control device, self-propelled crane, and travel control method of self-propelled crane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064889 WO2016189615A1 (en) 2015-05-25 2015-05-25 Travel control device, self-propelled crane, and travel control method of self-propelled crane

Publications (1)

Publication Number Publication Date
WO2016189615A1 true WO2016189615A1 (en) 2016-12-01

Family

ID=57393944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064889 WO2016189615A1 (en) 2015-05-25 2015-05-25 Travel control device, self-propelled crane, and travel control method of self-propelled crane

Country Status (4)

Country Link
JP (1) JP6258559B2 (en)
CN (1) CN107531463B (en)
HK (1) HK1243394A1 (en)
WO (1) WO2016189615A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022014976A (en) * 2020-07-08 2022-01-21 株式会社三井E&Sマシナリー Control system and traveling body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125609A (en) * 1992-02-03 1994-05-10 Sadao Yabuno Tower type mobile crane used for cultivation or the like and method for agricultural work using the same
JPH07291575A (en) * 1994-04-26 1995-11-07 Hitachi Kiden Kogyo Ltd Reduction gear in automatic crane
JP2009057149A (en) * 2007-08-31 2009-03-19 Mitsubishi Heavy Ind Ltd Travel control device for container crane
JP2014134926A (en) * 2013-01-09 2014-07-24 Toyota Industries Corp Unmanned carrier transport system and unmanned carrier transport method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4220852B2 (en) * 2003-08-25 2009-02-04 三菱重工業株式会社 Transfer crane
JP4438736B2 (en) * 2005-11-04 2010-03-24 村田機械株式会社 Transport device
CN102211739A (en) * 2011-05-26 2011-10-12 河南省郑起起重设备有限公司 Basic programming system (BPS) automatic deflection correction method and system for crane cart
CN103496635B (en) * 2013-09-26 2015-08-05 尤洛卡矿业安全工程股份有限公司 A kind of monorail crane locomotive hill start control setup and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125609A (en) * 1992-02-03 1994-05-10 Sadao Yabuno Tower type mobile crane used for cultivation or the like and method for agricultural work using the same
JPH07291575A (en) * 1994-04-26 1995-11-07 Hitachi Kiden Kogyo Ltd Reduction gear in automatic crane
JP2009057149A (en) * 2007-08-31 2009-03-19 Mitsubishi Heavy Ind Ltd Travel control device for container crane
JP2014134926A (en) * 2013-01-09 2014-07-24 Toyota Industries Corp Unmanned carrier transport system and unmanned carrier transport method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022014976A (en) * 2020-07-08 2022-01-21 株式会社三井E&Sマシナリー Control system and traveling body
JP7365975B2 (en) 2020-07-08 2023-10-20 株式会社三井E&S Control system and running body

Also Published As

Publication number Publication date
CN107531463B (en) 2019-07-30
CN107531463A (en) 2018-01-02
JP6258559B2 (en) 2018-01-10
HK1243394A1 (en) 2018-07-13
JPWO2016189615A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP2009525553A (en) Automatic guided vehicle with variable travel path
CN101830226A (en) The method and apparatus that helps parking
JP6258559B2 (en) Travel control device, self-propelled crane and travel control method for self-propelled crane
JP2017122008A (en) Tire-type gantry crane and method for controlling the same
TWI523801B (en) Walking the car
JP2014189393A (en) Container Terminal
JP3902448B2 (en) Straight traveling control device and straight traveling control method for trackless traveling body
JP4585303B2 (en) Yard crane control device
JP2011118585A (en) Automated guided vehicle
JP6111684B2 (en) Automated guided vehicle
JP6048258B2 (en) Inverted motorcycle, turning motion control method and program for inverted motorcycle
JP2000351414A (en) Position detecting device
JP7052398B2 (en) Automated guided vehicle control method
JP2012137823A (en) Unmanned carrier travel controller and unmanned carrier
JP2005001868A (en) Crane operating device and crane
JP2019091148A (en) Unmanned carrier and control method thereof
JP6263416B2 (en) How to stop a transport carriage in a parking system
JP4667669B2 (en) Self-propelled portal crane and its travel control method
JP2003192268A (en) Container crane travelling positioning device and method of positioning container crane travelling
JP2005239415A (en) Travel control device and travel control method for yard crane
JP2003155191A (en) Loading/unloading device
JP2009059059A (en) Carrier vehicle and automatic travel control method for carrier vehicle
JP2005041383A (en) Movable body
JP7031807B2 (en) Crane control system and control method
JP3220433B2 (en) Travel control device for traveling body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893250

Country of ref document: EP

Kind code of ref document: A1