WO2016189611A1 - Light irradiation device, bellows tube manufacturing method, and welded metal tube manufacturing method - Google Patents

Light irradiation device, bellows tube manufacturing method, and welded metal tube manufacturing method Download PDF

Info

Publication number
WO2016189611A1
WO2016189611A1 PCT/JP2015/064872 JP2015064872W WO2016189611A1 WO 2016189611 A1 WO2016189611 A1 WO 2016189611A1 JP 2015064872 W JP2015064872 W JP 2015064872W WO 2016189611 A1 WO2016189611 A1 WO 2016189611A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
bellows
core material
lens
light irradiation
Prior art date
Application number
PCT/JP2015/064872
Other languages
French (fr)
Japanese (ja)
Inventor
洋之 津金
Original Assignee
株式会社ミラプロ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミラプロ filed Critical 株式会社ミラプロ
Priority to PCT/JP2015/064872 priority Critical patent/WO2016189611A1/en
Publication of WO2016189611A1 publication Critical patent/WO2016189611A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J3/00Diaphragms; Bellows; Bellows pistons
    • F16J3/02Diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J3/00Diaphragms; Bellows; Bellows pistons
    • F16J3/04Bellows

Definitions

  • the present invention relates to a light irradiation apparatus, a method for manufacturing a bellows tube, and a method for manufacturing a welded metal tube.
  • Piping is often used in vacuum equipment, and piping is used as a means for transporting gas and fluid to a target location.
  • Ordinary piping is composed of a rigid body connecting metal or resin pipes, so that it is difficult to perform minute alignment.
  • bellows (bellows) tube is a flexible tube that can be deformed by an external force relatively freely, it is possible to perform detailed alignment. For this reason, bellows tubes are often used for piping to a vacuum chamber and fluid flow paths.
  • the bellows tube has a characteristic in which vibration is difficult to be transmitted and a characteristic in which heat is difficult to be transmitted. Therefore, the bellows pipe can also be used for a purpose of separating a vibration source and a heat insulating purpose of blocking heat.
  • the stress is distributed in the circumferential direction even when a very high external pressure or internal pressure is applied, the circular bellows pipe is extremely resistant to high pressure and is difficult to break even if the pipe itself becomes extremely thin. In recent years, demand has increased. As described above, the bellows pipe has been used in various products and has become an indispensable part for recent industries.
  • metal bellows pipes are often used for transporting media such as chemicals and vacuum.
  • the metal bellows pipe is a relatively stretchable pipe manufactured by alternately welding thin plates called welded bellows (see, for example, Patent Document 1) and a metal pipe molded using a mold called a molded bellows.
  • welded bellows see, for example, Patent Document 1
  • molded bellows There are two types of tubes with low elasticity.
  • FIG. 4 is a schematic cross-sectional view for explaining a conventional method for manufacturing a welded bellows tube.
  • the welded bellows tube is particularly valuable in terms of stretchability.
  • ring-shaped bellows core materials 101 to 108 are prepared.
  • the bellows core material 102 is disposed on the bellows core material 101, and the laser beam 111 condensed from the laser head tip 110 is irradiated on the inner periphery of the bellows core material 101 and the inner periphery of the bellows core material 102.
  • the inner circumferences of the bellows core materials 101 and 102 are welded by cooling after the metal is melted by the heat generated in the inner circumferences of the bellows core materials 101 and 102 disposed near the focal point of the laser beam 111.
  • a bead 112 is formed at the welded portion at this time.
  • the bellows core material 103 is disposed on the bellows core material 102, and the outer periphery of the bellows core material 102 and the outer periphery of the bellows core material 103 are welded by the laser beam 111 irradiated from the laser head tip 110.
  • a bead 112 is formed at the welded portion at this time.
  • the bellows core material 104 is disposed on the bellows core material 103, and the inner periphery of the bellows core material 103 and the inner periphery of the bellows core material 104 are welded by laser light 111 irradiated from the laser head tip 110. A bead 112 is formed at the welded portion at this time.
  • the bellows-shaped welded bellows tube is manufactured by alternately welding the inner and outer peripheries of the bellows core material one by one.
  • the laser head tip 110 used here is the tip of the laser head of a laser welding machine that automatically welds the inner and outer peripheries of the bellows core materials 101 to 108.
  • the tip 110 of the laser head including the condensing optical system is larger than the inner diameter.
  • the laser beam 111 is irradiated obliquely from above the materials 101 to 108 (see FIG. 4). That is, in the case where the working space for welding is small, such as a bellows pipe having a small inner diameter, the laser head tip 110 cannot be put in the working space, and therefore the laser head tip 110 can be sufficiently brought close to the welding object.
  • the laser beam 111 must be irradiated obliquely.
  • the bead shape of a welding part will become non-uniform
  • heterogenous and welding performance may fall.
  • the laser beam 111 is irradiated obliquely, it is difficult to sufficiently improve the irradiation position accuracy of the laser beam 111. Therefore, it has been difficult for conventional laser welding machines to perform welding with good welding performance on a small work space.
  • tube An opening formed in a side surface of the tube; An optical fiber disposed in the tube and transmitting laser light; A lens arranged in the tube and collecting the laser light transmitted by the optical fiber; A reflection mirror that reflects the laser light collected by the lens; Comprising The laser beam reflected by the reflecting mirror is irradiated to the outside of the tube through the opening portion.
  • [2] tube An opening formed in a side surface of the tube; An optical fiber disposed in the tube and transmitting laser light; A condensing mirror disposed in the tube and condensing and reflecting the laser light transmitted by the optical fiber; Comprising The light irradiation apparatus, wherein the laser beam condensed and reflected by the collector mirror is irradiated to the outside of the tube through the opening.
  • An outer diameter of the tube is 9 mm or less (preferably 6 mm or less).
  • An inner diameter of the bellows core material or an inner diameter of the metal tube is 10 mm or less (preferably 6 mm or less).
  • the light irradiation device wherein the lens is a ball lens or a cylindrical lens.
  • the inner periphery of the bellows core material is welded by irradiating the inner periphery of the bellows core material while rotating the tube or the bellows core material with the laser beam reflected by the mirror and passing through the opening.
  • tube characterized by comprising.
  • the manufacturing method of the weld metal pipe characterized by comprising.
  • a light irradiation apparatus that can irradiate laser light with high irradiation position accuracy can be provided. Moreover, according to one aspect of the present invention, it is possible to provide a method for manufacturing a bellows tube and a method for manufacturing a welded metal tube using the light irradiation device.
  • FIG. 3 is a cross-sectional view schematically showing the inside of the guide pipe of the light irradiation apparatus according to one aspect of the present invention. It is typical sectional drawing for demonstrating the manufacturing method of the conventional welding bellows pipe.
  • FIG. 1 is a schematic cross-sectional view for explaining a method of manufacturing a small-diameter bellows tube using the light irradiation apparatus according to one embodiment of the present invention.
  • This light irradiation apparatus is an apparatus that irradiates laser light.
  • FIG. 2 is a cross-sectional view schematically showing the inside of the guide pipe 11 shown in FIG.
  • the light irradiation apparatus 10 shown in FIG. 1 includes a guide pipe (tube) 11, a driving mechanism 14 provided with a rotation mechanism that rotates the guide pipe 11 as indicated by an arrow 12 and a moving mechanism that moves up and down as indicated by an arrow 13.
  • the drive unit 14 includes a servo motor and the like.
  • the material of the guide pipe 11 is preferably a metal that is not easily bent or twisted, such as stainless steel.
  • the outer diameter of the guide pipe 11 is sufficiently smaller than the inner diameter of the small bellows and is preferably 9 mm or less (preferably 6 mm or less).
  • an optical fiber 15 is provided in the guide pipe 11, and the optical fiber 15 is a transmission path for transmitting laser light emitted from a laser light source (not shown).
  • a laser light source various light sources can be used as long as they emit a laser beam for welding.
  • a CO 2 laser light source, a YAG laser light source, a laser diode, an excimer laser, a fiber laser, and the like can be used.
  • the optical fiber 15 is used as a transmission path for transmitting laser light, but a photonic crystal may be used as the transmission path.
  • a lens 17 and a plane mirror 18 located on the tip side of the optical fiber 15 are arranged.
  • the lens 17 condenses laser light, and for example, a ball lens, a cylindrical lens, a drum lens, a Fresnel lens, a hemispherical lens, a convex lens, a concave lens, or a combination of these can be used.
  • the laser beam 16 transmitted by the optical fiber 15 is collected by a lens 17, and this collected laser beam is reflected by a plane mirror 18 with its traveling direction changed by about 90 ° with respect to the longitudinal direction of the guide pipe 11, The reflected laser beam 16 is emitted to the outside of the guide pipe 11 through the opening portion 11a.
  • the plane mirror 18 is a 90 ° deflection mirror (see FIG. 2), and for example, a non-axial parabolic mirror or an elliptical mirror having a condensing function can be used.
  • a ring-shaped bellows core material 22 is arranged on a ring-shaped bellows core material 21 so that the opening 11 a of the guide pipe 11 faces the inner circumference of the bellows core materials 21 and 22. Deploy.
  • the guide pipe 11 is rotated by the rotation mechanism of the drive unit 14 with the laser light 16 emitted to the outside of the guide pipe 11 as described above on the inner periphery of the bellows core material 21 and the inner periphery of the bellows core material 22. Irradiate while.
  • the inner periphery of the bellows core materials 21 and 22 is welded by cooling after the metal is melted by the heat generated in the inner periphery of the bellows core materials 21 and 22 disposed near the focal point of the laser beam 16.
  • a bead 32 is formed at the welded portion at this time.
  • the bellows core material is fixed, and the inner circumference of the bellows core material 21 and the inner circumference of the bellows core material 22 are irradiated with the laser beam 16 while the guide pipe 11 is rotated by the rotation mechanism of the drive unit 14.
  • the laser pipe 16 may be irradiated to the inner circumference of the bellows core material 21 and the inner circumference of the bellows core material 22 while the guide pipe 11 is fixed and the bellows core material is rotated by a drive unit (not shown). Is possible.
  • the bellows core material 23 is disposed on the bellows core material 22, and the outer periphery of the bellows core material 22 and the outer periphery of the bellows core material 23 are welded by laser light.
  • a bead 32 is formed at the welded portion at this time.
  • the laser beam irradiated at this time may be a laser beam from the light irradiation device 10 or a laser beam from another light irradiation device.
  • the bellows core material 24 is arranged on the bellows core material 23, and the inner circumference of the bellows core material 23 and the inner circumference of the bellows core material 24 are the same as the method of welding the inner circumferences of the bellows core materials 21 and 22 described above. Weld by the method of. A bead 32 is formed at the welded portion at this time.
  • the bellows-shaped welded bellows tube is manufactured by alternately welding the inner and outer peripheries of the bellows core material one by one.
  • the inner diameter of the bellows core material that can be welded by the light irradiation device shown in FIG. 1 depends on the outer diameter of the guide pipe 11. For example, if the guide pipe 11 has an outer diameter of 0.8 mm, it is possible to weld the inner circumference of a bellows core material having an inner diameter of about 1 mm.
  • the 1 has a moving mechanism (not shown) that moves the optical fiber 15 in the longitudinal direction of the guide pipe 11.
  • the light irradiation device shown in FIG. By this moving mechanism, the distance between the lens 17 and the tip of the optical fiber 15 can be adjusted. Thereby, the focal position of the laser beam 16 emitted from the opening 11a of the guide pipe 11 can be adjusted according to the inner diameter of the bellows core material.
  • a working space for welding such as a bellows pipe having a small inner diameter (for example, a bellows pipe having an inner diameter of 10 mm or less, a bellows pipe having a diameter of 6 mm or less, a bellows pipe having a diameter of 5 mm or less, a bellows pipe having a diameter of 3 mm or less).
  • a bellows pipe having a small inner diameter for example, a bellows pipe having an inner diameter of 10 mm or less, a bellows pipe having a diameter of 6 mm or less, a bellows pipe having a diameter of 5 mm or less, a bellows pipe having a diameter of 3 mm or less.
  • the guide pipe 11 since the outer diameter of the guide pipe 11 is small as described above, the guide pipe 11 can be placed inside the bellows core material. For this reason, it becomes possible to irradiate the laser beam 16 horizontally with respect to the inner periphery of the bellows core materials 21 and 22. As a result, it can suppress that the bead shape of a welding part becomes uneven, and it can suppress that welding performance falls. Therefore, even if the inner diameter of the bellows tube is small, a high quality bellows tube can be manufactured.
  • the light irradiation apparatus is used for welding the inner and outer periphery of the bellows core material, it is not limited to a bellows core material, for example, two metal pipes (for example, inner diameter is 10 mm or less). It is also possible to use a light irradiator for welding the end portions of the metal tube (metal tube of 6 mm or less).
  • first and second metal tubes having the same diameter are prepared, the end of the first metal tube and the end of the second metal tube are brought into contact, and the contacted portion and the guide pipe 11
  • the opening 11a is arranged so as to be opposed, and the laser beam emitted from the opening 11a is irradiated to the inside of the contacted portion while rotating the guide pipe 11 or the first and second metal tubes.
  • the edge part of a 1st metal tube and the edge part of a 2nd metal tube can be welded and joined.
  • the inner surface of the metal tube welded in this way is seamless. That is, it is possible to produce a metal tube having no seam on the inner surface.
  • FIG. 3 is a cross-sectional view schematically showing the inside of the guide pipe of the light irradiation apparatus according to one aspect of the present invention, and the same parts as those in FIG.
  • the lens 17 and the plane mirror 18 are arranged in the guide pipe 11, whereas in the light irradiation apparatus shown in FIG. 3, the condensing mirror 19 is arranged in the guide pipe 11.
  • the points are different from the first embodiment, and the other points are the same as those in the first embodiment, and thus detailed description thereof is omitted.
  • the condensing mirror 19 is a mirror that condenses and reflects the laser light 16 transmitted by the optical fiber 15, and may be a parabolic mirror or an elliptical mirror, for example.
  • Light irradiation device 11 Guide pipe (pipe) 11a Opening part 12, 13 Arrow 14 Drive part 15 Optical fiber 16 Laser light 17 Lens 18 Plane mirror 19 Condensing mirror 21-28 Bellows core material 32 Bead 110 Laser head tip 101-108 Bellows core material 111 Laser light 112 Bead

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

[Problem] To provide a light irradiation device capable of irradiating laser light at excellent irradiation positional accuracy. [Solution] According to one embodiment of the present invention, a light irradiation device is provided with: a guide pipe 11; an opening 11a formed in the side surface of the guide pipe; an optical fiber 15, which is disposed in the guide pipe, and which transmits laser light 16; a lens 17, which is disposed in the guide pipe, and which collects the laser light transmitted by the optical fiber; and a reflecting mirror 18 that reflects the laser light collected by the lens. The laser light reflected by the reflecting mirror is irradiated to the outside of the guide pipe through the opening.

Description

光照射装置、ベローズ管の製造方法及び溶接金属管の製造方法Light irradiation apparatus, method for manufacturing bellows tube, and method for manufacturing welded metal tube
 本発明は、光照射装置、ベローズ管の製造方法及び溶接金属管の製造方法に関する。 The present invention relates to a light irradiation apparatus, a method for manufacturing a bellows tube, and a method for manufacturing a welded metal tube.
 真空装置には配管が多く用いられており、配管は気体や流体を目的の場所まで輸送する手段として用いられる。通常の配管は、金属製や樹脂製のパイプを繋いだ剛体で構成されているため、微小な位置合わせが難しい。 Piping is often used in vacuum equipment, and piping is used as a means for transporting gas and fluid to a target location. Ordinary piping is composed of a rigid body connecting metal or resin pipes, so that it is difficult to perform minute alignment.
 しかし、ベローズ(蛇腹)管は比較的に自由に外力で変形させられるフレキシブル管であるため、詳細な位置合わせを行うことができる。そのため、ベローズ管は、真空チャンバーへの配管や流体流路に多く使われている。 However, since the bellows (bellows) tube is a flexible tube that can be deformed by an external force relatively freely, it is possible to perform detailed alignment. For this reason, bellows tubes are often used for piping to a vacuum chamber and fluid flow paths.
 さらに、液等の供給体と可動体をベローズ管で繋ぎ、可動体の動きの自由度を増す用途にも使われる。また、ベローズ管は、振動が伝わり難い特性及び熱が伝わりにくい特性を有するため、振動源を切り離す用途及び熱を遮断する断熱用途に用いることもできる。また、円形ベローズ管は、非常に高い外圧もしくは内圧がかかっても応力が円周方向に分散されるため、高圧耐性が極めて高く管自体が極薄肉になっても破壊し難く、超軽量配管としても近年需要増している。このようにベローズ管は様々な製品に使われるようになってきており、近年の産業に欠かせない部品となっている。 Furthermore, it can also be used for applications that increase the degree of freedom of movement of the movable body by connecting the movable body and the liquid supply body with a bellows tube. In addition, the bellows tube has a characteristic in which vibration is difficult to be transmitted and a characteristic in which heat is difficult to be transmitted. Therefore, the bellows pipe can also be used for a purpose of separating a vibration source and a heat insulating purpose of blocking heat. In addition, since the stress is distributed in the circumferential direction even when a very high external pressure or internal pressure is applied, the circular bellows pipe is extremely resistant to high pressure and is difficult to break even if the pipe itself becomes extremely thin. In recent years, demand has increased. As described above, the bellows pipe has been used in various products and has become an indispensable part for recent industries.
 特に、薬品や真空等の媒質輸送用として金属製ベローズ管が使われる事が多い。金属製ベローズ管には、溶接ベローズと呼ばれる薄板を交互に溶接して製作した伸縮性の高い管(例えば特許文献1参照)と、成型ベローズと呼ばれる金型を用いて金属パイプを成型した比較的伸縮性の低い管の2種類がある。 In particular, metal bellows pipes are often used for transporting media such as chemicals and vacuum. The metal bellows pipe is a relatively stretchable pipe manufactured by alternately welding thin plates called welded bellows (see, for example, Patent Document 1) and a metal pipe molded using a mold called a molded bellows. There are two types of tubes with low elasticity.
 図4は、従来の溶接ベローズ管の製造方法を説明するための模式的な断面図である。溶接ベローズ管は伸縮性の観点から特に利用価値の高い。 FIG. 4 is a schematic cross-sectional view for explaining a conventional method for manufacturing a welded bellows tube. The welded bellows tube is particularly valuable in terms of stretchability.
 図4に示すように、リング状のベローズコア材101~108を用意する。次いで、ベローズコア材101上にベローズコア材102を配置し、ベローズコア材101の内周とベローズコア材102の内周にレーザーヘッド先端110から集光したレーザー光111を照射する。レーザー光111の焦点近くに配置されたベローズコア材101,102の内周に発生した熱により金属が溶融された後に冷却されることで、ベローズコア材101,102の内周が溶接される。この際の溶接部にはビード112が形成される。 As shown in FIG. 4, ring-shaped bellows core materials 101 to 108 are prepared. Next, the bellows core material 102 is disposed on the bellows core material 101, and the laser beam 111 condensed from the laser head tip 110 is irradiated on the inner periphery of the bellows core material 101 and the inner periphery of the bellows core material 102. The inner circumferences of the bellows core materials 101 and 102 are welded by cooling after the metal is melted by the heat generated in the inner circumferences of the bellows core materials 101 and 102 disposed near the focal point of the laser beam 111. A bead 112 is formed at the welded portion at this time.
 次いで、ベローズコア材102上にベローズコア材103を配置し、ベローズコア材102の外周とベローズコア材103の外周をレーザーヘッド先端110から照射したレーザー光111により溶接する。この際の溶接部にはビード112が形成される。 Next, the bellows core material 103 is disposed on the bellows core material 102, and the outer periphery of the bellows core material 102 and the outer periphery of the bellows core material 103 are welded by the laser beam 111 irradiated from the laser head tip 110. A bead 112 is formed at the welded portion at this time.
 次いで、ベローズコア材103上にベローズコア材104を配置し、ベローズコア材103の内周とベローズコア材104の内周をレーザーヘッド先端110から照射したレーザー光111により溶接する。この際の溶接部にはビード112が形成される。 Next, the bellows core material 104 is disposed on the bellows core material 103, and the inner periphery of the bellows core material 103 and the inner periphery of the bellows core material 104 are welded by laser light 111 irradiated from the laser head tip 110. A bead 112 is formed at the welded portion at this time.
 上記のようにベローズコア材の内外周を1枚1枚、交互に溶接して蛇腹形状の溶接ベローズ管を製作する。ここで使用しているレーザーヘッド先端110は、ベローズコア材101~108の内外周の溶接を自動で行うレーザー溶接機のレーザーヘッドの先端である。 As mentioned above, the bellows-shaped welded bellows tube is manufactured by alternately welding the inner and outer peripheries of the bellows core material one by one. The laser head tip 110 used here is the tip of the laser head of a laser welding machine that automatically welds the inner and outer peripheries of the bellows core materials 101 to 108.
 しかし、内径が小さいベローズ管(例えば内径が10mm以下のベローズ管)では、その内径より集光光学系を含むレーザーヘッド先端110が大きいため、ベローズコア材の内周側を溶接するにはベローズコア材101~108の上部から斜めにレーザー光111を照射することになる(図4参照)。つまり、内径が小さいベローズ管のような溶接する際の作業空間が小さいものの場合、その作業空間にレーザーヘッド先端110を入れることができないため、溶接対象物にレーザーヘッド先端110を十分に近づけることができず、斜めにレーザー光111を照射せざるを得なくなる。このように斜めから照射すると溶接部のビード形状が不均等になり、溶接性能が低下することがある。別言すれば、ビード形状を均等にするためには溶接部に対してレーザー光を水平に照射することが好ましい。また、斜めからレーザー光111を照射するとレーザー光111の照射位置精度を十分に高めることが困難である。従って、従来のレーザー溶接機では、作業空間が小さいものに対して溶接性能良く溶接することが難しかった。 However, in a bellows tube having a small inner diameter (for example, a bellows tube having an inner diameter of 10 mm or less), the tip 110 of the laser head including the condensing optical system is larger than the inner diameter. The laser beam 111 is irradiated obliquely from above the materials 101 to 108 (see FIG. 4). That is, in the case where the working space for welding is small, such as a bellows pipe having a small inner diameter, the laser head tip 110 cannot be put in the working space, and therefore the laser head tip 110 can be sufficiently brought close to the welding object. The laser beam 111 must be irradiated obliquely. Thus, if it irradiates from diagonally, the bead shape of a welding part will become non-uniform | heterogenous and welding performance may fall. In other words, in order to make the bead shape uniform, it is preferable to irradiate the welded portion with laser light horizontally. Further, when the laser beam 111 is irradiated obliquely, it is difficult to sufficiently improve the irradiation position accuracy of the laser beam 111. Therefore, it has been difficult for conventional laser welding machines to perform welding with good welding performance on a small work space.
 そこで、作業空間が小さいものに対しても溶接性能の低下を抑制でき、照射位置精度良くレーザー光を照射できる光照射装置が求められている。 Therefore, there is a need for a light irradiation apparatus that can suppress a decrease in welding performance even for a small work space and can irradiate laser light with high irradiation position accuracy.
特開2003-97709JP2003-97709
 本発明の一態様は、照射位置精度良くレーザー光を照射できる光照射装置を提供することを課題とする。
 また、本発明の一態様は、その光照射装置を用いたベローズ管の製造方法または溶接金属管の製造方法を提供することを課題とする。
An object of one embodiment of the present invention is to provide a light irradiation device that can irradiate laser light with high irradiation position accuracy.
Another object of one embodiment of the present invention is to provide a method for manufacturing a bellows tube or a method for manufacturing a welded metal tube using the light irradiation device.
 以下に、本発明の種々の態様について説明する。
[1]管と、
 前記管の側面に形成された開孔部と、
 前記管内に配置され、レーザー光を伝送する光ファイバーと、
 前記管内に配置され、前記光ファイバーによって伝送された前記レーザー光を集光するレンズと、
 前記レンズによって集光されたレーザー光を反射させる反射ミラーと、
を具備し、
 前記反射ミラーによって反射された前記レーザー光は、前記開孔部を通って前記管の外側に照射されることを特徴とする光照射装置。
Hereinafter, various aspects of the present invention will be described.
[1] tube,
An opening formed in a side surface of the tube;
An optical fiber disposed in the tube and transmitting laser light;
A lens arranged in the tube and collecting the laser light transmitted by the optical fiber;
A reflection mirror that reflects the laser light collected by the lens;
Comprising
The laser beam reflected by the reflecting mirror is irradiated to the outside of the tube through the opening portion.
[2]管と、
 前記管の側面に形成された開孔部と、
 前記管内に配置され、レーザー光を伝送する光ファイバーと、
 前記管内に配置され、前記光ファイバーによって伝送された前記レーザー光を集光させて反射する集光ミラーと、
を具備し、
 前記集光ミラーによって集光して反射された前記レーザー光は、前記開孔部を通って前記管の外側に照射されることを特徴とする光照射装置。
[2] tube,
An opening formed in a side surface of the tube;
An optical fiber disposed in the tube and transmitting laser light;
A condensing mirror disposed in the tube and condensing and reflecting the laser light transmitted by the optical fiber;
Comprising
The light irradiation apparatus, wherein the laser beam condensed and reflected by the collector mirror is irradiated to the outside of the tube through the opening.
[3]上記[1]または[2]において、
 前記管の外径は9mm以下(好ましくは6mm以下)であることを特徴とする光照射装置。
[3] In the above [1] or [2],
An outer diameter of the tube is 9 mm or less (preferably 6 mm or less).
[4]上記[1]乃至[3]のいずれか一項において、
 前記ミラーによって反射され前記開孔部を通った前記レーザー光は、前記管の外側に配置されたリング状のベローズコア材の内周または金属管の内側に照射され、前記ベローズコア材または前記金属管が溶接されることを特徴とする光照射装置。
[4] In any one of [1] to [3] above,
The laser beam reflected by the mirror and passed through the aperture is irradiated to the inner periphery of the ring-shaped bellows core material arranged on the outside of the tube or the inside of the metal tube, and the bellows core material or the metal A light irradiation apparatus characterized in that a tube is welded.
[5]上記[4]において、
 前記ベローズコア材の内径または前記金属管の内径は10mm以下(好ましくは6mm以下)であることを特徴とする光照射装置。
[5] In the above [4],
An inner diameter of the bellows core material or an inner diameter of the metal tube is 10 mm or less (preferably 6 mm or less).
[6]上記[1]において、
 前記レンズは、ボールレンズまたはシリンドリカルレンズであることを特徴とする光照射装置。
[6] In the above [1],
The light irradiation device, wherein the lens is a ball lens or a cylindrical lens.
[7]上記[1]乃至[6]のいずれか一項に記載の光照射装置を用いてベローズ管を製造する製造方法であって、
 前記管の前記開孔部をリング状のベローズコア材の内周と対向するように配置する工程と、
 前記ミラーによって反射され前記開孔部を通った前記レーザー光を、前記管または前記ベローズコア材を回転させながら前記ベローズコア材の内周に照射することで、前記ベローズコア材の内周を溶接する工程と、
を具備することを特徴とするベローズ管の製造方法。
[7] A manufacturing method for manufacturing a bellows tube using the light irradiation device according to any one of [1] to [6],
Arranging the opening of the tube so as to face the inner periphery of the ring-shaped bellows core material;
The inner periphery of the bellows core material is welded by irradiating the inner periphery of the bellows core material while rotating the tube or the bellows core material with the laser beam reflected by the mirror and passing through the opening. And a process of
The manufacturing method of the bellows pipe | tube characterized by comprising.
[8]上記[1]乃至[3]及び[6]のいずれか一項に記載の光照射装置を用いて溶接金属管を製造する製造方法であって、
 第1の金属管の端部と第2の金属管の端部を接触させ、この接触させた部分と前記管の前記開孔部を対向するように配置する工程と、
 前記ミラーによって反射され前記開孔部を通った前記レーザー光を、前記管または前記第1の金属管及び前記第2の金属管を回転させながら前記接触させた部分の内側に照射することで、前記第1の金属管の端部と前記第2の金属管の端部を溶接する工程と、
を具備することを特徴とする溶接金属管の製造方法。
[8] A manufacturing method for manufacturing a welded metal pipe using the light irradiation device according to any one of [1] to [3] and [6],
A step of bringing the end of the first metal tube and the end of the second metal tube into contact with each other, and arranging the contacted portion and the opening of the tube to face each other;
By irradiating the laser beam reflected by the mirror and passing through the opening portion to the inside of the contacted portion while rotating the tube or the first metal tube and the second metal tube, Welding the end of the first metal tube and the end of the second metal tube;
The manufacturing method of the weld metal pipe characterized by comprising.
 本発明の一態様によれば、照射位置精度良くレーザー光を照射できる光照射装置を提供することができる。
 また、本発明の一態様によれば、その光照射装置を用いたベローズ管の製造方法及び溶接金属管の製造方法を提供することができる。
According to one embodiment of the present invention, a light irradiation apparatus that can irradiate laser light with high irradiation position accuracy can be provided.
Moreover, according to one aspect of the present invention, it is possible to provide a method for manufacturing a bellows tube and a method for manufacturing a welded metal tube using the light irradiation device.
本発明の一態様に係る光照射装置を用いて小径ベローズ管を製造する方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the method to manufacture a small diameter bellows pipe | tube using the light irradiation apparatus which concerns on 1 aspect of this invention. 図1に示すガイドパイプ11の内部を模式的に示す断面図である。It is sectional drawing which shows typically the inside of the guide pipe 11 shown in FIG. 図3は、本発明の一態様に係る光照射装置のガイドパイプの内部を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the inside of the guide pipe of the light irradiation apparatus according to one aspect of the present invention. 従来の溶接ベローズ管の製造方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the manufacturing method of the conventional welding bellows pipe.
 以下では、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
 [第1の実施形態]
 図1は、本発明の一態様に係る光照射装置を用いて小径ベローズ管を製造する方法を説明するための模式的な断面図である。この光照射装置はレーザー光を照射する装置である。
 図2は、図1に示すガイドパイプ11の内部を模式的に示す断面図である。
[First Embodiment]
FIG. 1 is a schematic cross-sectional view for explaining a method of manufacturing a small-diameter bellows tube using the light irradiation apparatus according to one embodiment of the present invention. This light irradiation apparatus is an apparatus that irradiates laser light.
FIG. 2 is a cross-sectional view schematically showing the inside of the guide pipe 11 shown in FIG.
 図1に示す光照射装置10は、ガイドパイプ(管)11と、このガイドパイプ11を矢印12のように回転させる回転機構及び矢印13のように上下移動させる移動機構を備えた駆動部14を有している。駆動部14にはサーボモーター等が含まれている。ガイドパイプ11の側面にはレーザー光16を出射する開孔部(図2に示す参照符号11a)が形成されている。ガイドパイプ11の材質は、例えばステンレス等簡単に折れ曲がったりねじれたりしない金属であることが望ましい。また、ガイドパイプ11の外径は、小径ベローズ内径より十分小さく、9mm以下(好ましくは6mm以下)であるとよい。 The light irradiation apparatus 10 shown in FIG. 1 includes a guide pipe (tube) 11, a driving mechanism 14 provided with a rotation mechanism that rotates the guide pipe 11 as indicated by an arrow 12 and a moving mechanism that moves up and down as indicated by an arrow 13. Have. The drive unit 14 includes a servo motor and the like. On the side surface of the guide pipe 11, an opening (reference numeral 11a shown in FIG. 2) for emitting a laser beam 16 is formed. The material of the guide pipe 11 is preferably a metal that is not easily bent or twisted, such as stainless steel. Further, the outer diameter of the guide pipe 11 is sufficiently smaller than the inner diameter of the small bellows and is preferably 9 mm or less (preferably 6 mm or less).
 図2に示すように、ガイドパイプ11内には光ファイバー15が設けられており、この光ファイバー15は図示せぬレーザー光源から発せられたレーザー光を伝送する伝送路である。レーザー光源は、溶接用レーザー光を発する光源であれば種々の光源を用いることができ、例えばCOレーザー光源、YAGレーザー光源、レーザーダイオード、エキシマレーザー、ファイバーレーザー等を用いることができる。 As shown in FIG. 2, an optical fiber 15 is provided in the guide pipe 11, and the optical fiber 15 is a transmission path for transmitting laser light emitted from a laser light source (not shown). As the laser light source, various light sources can be used as long as they emit a laser beam for welding. For example, a CO 2 laser light source, a YAG laser light source, a laser diode, an excimer laser, a fiber laser, and the like can be used.
 なお、本実施形態では、レーザー光を伝送する伝送路として光ファイバー15を用いているが、伝送路としてフォトニック結晶を用いてもよい。 In this embodiment, the optical fiber 15 is used as a transmission path for transmitting laser light, but a photonic crystal may be used as the transmission path.
 ガイドパイプ11内には光ファイバー15の先端側に位置するレンズ17及び平面ミラー18が配置されている。レンズ17はレーザー光を集光するものであり、例えばボールレンズ、シリンドリカルレンズ、ドラムレンズ、フレネルレンズ、半球レンズ、凸レンズ、凹レンズ、またそれらを組み合わせたレンズ等を用いることができる。光ファイバー15によって伝送されたレーザー光16はレンズ17によって集光され、この集光されたレーザー光は平面ミラー18によってガイドパイプ11の長手方向に対して90°程度進行方向が変えられて反射され、その反射したレーザー光16は開孔部11aを通ってガイドパイプ11の外側に出射される。なお、平面ミラー18は、90°偏向ミラーであり(図2参照)、例えば集光機能を兼ね備えた非軸放物面ミラーや楕円ミラー等を用いることができる。 In the guide pipe 11, a lens 17 and a plane mirror 18 located on the tip side of the optical fiber 15 are arranged. The lens 17 condenses laser light, and for example, a ball lens, a cylindrical lens, a drum lens, a Fresnel lens, a hemispherical lens, a convex lens, a concave lens, or a combination of these can be used. The laser beam 16 transmitted by the optical fiber 15 is collected by a lens 17, and this collected laser beam is reflected by a plane mirror 18 with its traveling direction changed by about 90 ° with respect to the longitudinal direction of the guide pipe 11, The reflected laser beam 16 is emitted to the outside of the guide pipe 11 through the opening portion 11a. The plane mirror 18 is a 90 ° deflection mirror (see FIG. 2), and for example, a non-axial parabolic mirror or an elliptical mirror having a condensing function can be used.
 次に、小径ベローズ管の製造方法について説明する。
 図1に示すように、リング状のベローズコア材21上にリング状のベローズコア材22を配置し、ガイドパイプ11の開孔部11aをベローズコア材21,22の内周と対向するように配置する。次いで、ベローズコア材21の内周とベローズコア材22の内周に、上記のようにしてガイドパイプ11の外側に出射されたレーザー光16を駆動部14の回転機構によってガイドパイプ11を回転させながら照射する。レーザー光16の焦点近くに配置されたベローズコア材21,22の内周に発生した熱により金属が溶融された後に冷却されることで、ベローズコア材21,22の内周が溶接される。この際の溶接部にはビード32が形成される。
Next, the manufacturing method of a small diameter bellows pipe is demonstrated.
As shown in FIG. 1, a ring-shaped bellows core material 22 is arranged on a ring-shaped bellows core material 21 so that the opening 11 a of the guide pipe 11 faces the inner circumference of the bellows core materials 21 and 22. Deploy. Next, the guide pipe 11 is rotated by the rotation mechanism of the drive unit 14 with the laser light 16 emitted to the outside of the guide pipe 11 as described above on the inner periphery of the bellows core material 21 and the inner periphery of the bellows core material 22. Irradiate while. The inner periphery of the bellows core materials 21 and 22 is welded by cooling after the metal is melted by the heat generated in the inner periphery of the bellows core materials 21 and 22 disposed near the focal point of the laser beam 16. A bead 32 is formed at the welded portion at this time.
 なお、本実施形態では、ベローズコア材を固定し、駆動部14の回転機構によってガイドパイプ11を回転させながら、ベローズコア材21の内周とベローズコア材22の内周にレーザー光16を照射するが、ガイドパイプ11を固定し、駆動部(図示せず)によってベローズコア材を回転させながら、ベローズコア材21の内周とベローズコア材22の内周にレーザー光16を照射することも可能である。 In the present embodiment, the bellows core material is fixed, and the inner circumference of the bellows core material 21 and the inner circumference of the bellows core material 22 are irradiated with the laser beam 16 while the guide pipe 11 is rotated by the rotation mechanism of the drive unit 14. However, the laser pipe 16 may be irradiated to the inner circumference of the bellows core material 21 and the inner circumference of the bellows core material 22 while the guide pipe 11 is fixed and the bellows core material is rotated by a drive unit (not shown). Is possible.
 次いで、ベローズコア材22上にベローズコア材23を配置し、ベローズコア材22の外周とベローズコア材23の外周をレーザー光により溶接する。この際の溶接部にはビード32が形成される。この際に照射されるレーザー光は、光照射装置10によるレーザー光でもよいし、他の光照射装置によるレーザー光でもよい。 Next, the bellows core material 23 is disposed on the bellows core material 22, and the outer periphery of the bellows core material 22 and the outer periphery of the bellows core material 23 are welded by laser light. A bead 32 is formed at the welded portion at this time. The laser beam irradiated at this time may be a laser beam from the light irradiation device 10 or a laser beam from another light irradiation device.
 次いで、ベローズコア材23上にベローズコア材24を配置し、ベローズコア材23の内周とベローズコア材24の内周を、上記のベローズコア材21,22の内周を溶接した方法と同様の方法で溶接する。この際の溶接部にはビード32が形成される。 Next, the bellows core material 24 is arranged on the bellows core material 23, and the inner circumference of the bellows core material 23 and the inner circumference of the bellows core material 24 are the same as the method of welding the inner circumferences of the bellows core materials 21 and 22 described above. Weld by the method of. A bead 32 is formed at the welded portion at this time.
 上記のようにベローズコア材の内外周を1枚1枚、交互に溶接して蛇腹形状の溶接ベローズ管を製作する。 As mentioned above, the bellows-shaped welded bellows tube is manufactured by alternately welding the inner and outer peripheries of the bellows core material one by one.
 また、図1に示す光照射装置によって溶接可能なベローズコア材の内径はガイドパイプ11の外径に依存する。例えば外径0.8mmのガイドパイプ11であれば、内径1mm程度のベローズコア材の内周溶接が可能となる。 Further, the inner diameter of the bellows core material that can be welded by the light irradiation device shown in FIG. 1 depends on the outer diameter of the guide pipe 11. For example, if the guide pipe 11 has an outer diameter of 0.8 mm, it is possible to weld the inner circumference of a bellows core material having an inner diameter of about 1 mm.
 図1に示す光照射装置は、光ファイバー15をガイドパイプ11の長手方向に移動させる移動機構(図示せず)を有している。この移動機構によってレンズ17と光ファイバー15の先端との距離を調整することができる。これにより、ガイドパイプ11の開孔部11aから出射されるレーザー光16の焦点位置を、ベローズコア材の内径に応じて調整することができる。 1 has a moving mechanism (not shown) that moves the optical fiber 15 in the longitudinal direction of the guide pipe 11. The light irradiation device shown in FIG. By this moving mechanism, the distance between the lens 17 and the tip of the optical fiber 15 can be adjusted. Thereby, the focal position of the laser beam 16 emitted from the opening 11a of the guide pipe 11 can be adjusted according to the inner diameter of the bellows core material.
 上記実施形態によれば、内径が小さいベローズ管(例えば内径が10mm以下のベローズ管、6mm以下のベローズ管、5mm以下のベローズ管、3mm以下のベローズ管等)のような溶接する際の作業空間が小さいものであっても、ガイドパイプ11の外径が小さいため、その作業空間にガイドパイプ11を入れることができる。そのため、溶接対象物にガイドパイプ11のレーザー光16を出射する開孔部11aを十分に近づけることができ、その結果、レーザー光16の照射位置精度を十分に高めることができる。従って、内径が小さいベローズ管のような作業空間が小さいものに対しても溶接することが容易である。 According to the above-described embodiment, a working space for welding such as a bellows pipe having a small inner diameter (for example, a bellows pipe having an inner diameter of 10 mm or less, a bellows pipe having a diameter of 6 mm or less, a bellows pipe having a diameter of 5 mm or less, a bellows pipe having a diameter of 3 mm or less). Even if the guide pipe 11 is small, the guide pipe 11 can be inserted into the work space because the outer diameter of the guide pipe 11 is small. Therefore, the opening portion 11a that emits the laser beam 16 of the guide pipe 11 can be sufficiently brought close to the welding object, and as a result, the irradiation position accuracy of the laser beam 16 can be sufficiently increased. Therefore, it is easy to weld even a small work space such as a bellows pipe having a small inner diameter.
 また、上述したようにガイドパイプ11の外径が小さいため、ガイドパイプ11をベローズコア材の内側に入れることができる。このため、ベローズコア材21,22の内周に対してレーザー光16を水平に照射することが可能となる。その結果、溶接部のビード形状が不均等になることを抑制でき、溶接性能が低下することを抑制できる。従って、ベローズ管の内径が小さくても、高い品質のベローズ管を製造することができる。 Moreover, since the outer diameter of the guide pipe 11 is small as described above, the guide pipe 11 can be placed inside the bellows core material. For this reason, it becomes possible to irradiate the laser beam 16 horizontally with respect to the inner periphery of the bellows core materials 21 and 22. As a result, it can suppress that the bead shape of a welding part becomes uneven, and it can suppress that welding performance falls. Therefore, even if the inner diameter of the bellows tube is small, a high quality bellows tube can be manufactured.
 また、本実施形態では、光照射装置をベローズコア材の内外周を溶接することに用いているが、ベローズコア材に限定されるものではなく、例えば2本の金属管(例えば内径が10mm以下の金属管、6mm以下の金属管)の端部同士を溶接することに光照射装置を用いることも可能である。詳細には、同径の第1及び第2の金属管を用意し、第1の金属管の端部と第2の金属管の端部を接触させ、この接触させた部分とガイドパイプ11の開孔部11aを対向するように配置し、この接触させた部分の内側に開孔部11aから出射したレーザー光をガイドパイプ11または第1及び第2の金属管を回転させながら照射する。これにより、第1の金属管の端部と第2の金属管の端部を溶接して接合することができる。このようにして溶接した金属管の内面には継ぎ目が無い。つまり、内面に継ぎ目の無い金属管の作製が可能となる。 Moreover, in this embodiment, although the light irradiation apparatus is used for welding the inner and outer periphery of the bellows core material, it is not limited to a bellows core material, for example, two metal pipes (for example, inner diameter is 10 mm or less). It is also possible to use a light irradiator for welding the end portions of the metal tube (metal tube of 6 mm or less). Specifically, first and second metal tubes having the same diameter are prepared, the end of the first metal tube and the end of the second metal tube are brought into contact, and the contacted portion and the guide pipe 11 The opening 11a is arranged so as to be opposed, and the laser beam emitted from the opening 11a is irradiated to the inside of the contacted portion while rotating the guide pipe 11 or the first and second metal tubes. Thereby, the edge part of a 1st metal tube and the edge part of a 2nd metal tube can be welded and joined. The inner surface of the metal tube welded in this way is seamless. That is, it is possible to produce a metal tube having no seam on the inner surface.
 [第2の実施形態]
 図3は、本発明の一態様に係る光照射装置のガイドパイプの内部を模式的に示す断面図であり、図2と同一部分には同一符号を付す。
[Second Embodiment]
FIG. 3 is a cross-sectional view schematically showing the inside of the guide pipe of the light irradiation apparatus according to one aspect of the present invention, and the same parts as those in FIG.
 図2に示す光照射装置では、ガイドパイプ11内にレンズ17及び平面ミラー18を配置しているのに対し、図3に示す光照射装置では、ガイドパイプ11内に集光ミラー19を配置する点が第1の実施形態と異なり、この点以外については第1の実施形態と同様であるので詳細な説明は省略する。 In the light irradiation apparatus shown in FIG. 2, the lens 17 and the plane mirror 18 are arranged in the guide pipe 11, whereas in the light irradiation apparatus shown in FIG. 3, the condensing mirror 19 is arranged in the guide pipe 11. The points are different from the first embodiment, and the other points are the same as those in the first embodiment, and thus detailed description thereof is omitted.
 この集光ミラー19は、光ファイバー15によって伝送されたレーザー光16を集光させて反射するミラーであり、例えば放物面ミラーまたは楕円ミラーを用いることができる。 The condensing mirror 19 is a mirror that condenses and reflects the laser light 16 transmitted by the optical fiber 15, and may be a parabolic mirror or an elliptical mirror, for example.
 本実施形態においても第1の実施形態と同様の効果を得ることができる。 In this embodiment, the same effect as that of the first embodiment can be obtained.
 なお、上記の第1及び第2の実施形態を互いに組み合わせて実施することも可能である。 Note that the first and second embodiments described above can be combined with each other.
 10  光照射装置
 11  ガイドパイプ(管)
 11a 開孔部
 12,13 矢印
 14  駆動部
 15  光ファイバー
 16  レーザー光
 17  レンズ
 18  平面ミラー
 19  集光ミラー
 21~28 ベローズコア材
 32  ビード
110  レーザーヘッド先端
101~108 ベローズコア材
111  レーザー光
112  ビード
10 Light irradiation device 11 Guide pipe (pipe)
11a Opening part 12, 13 Arrow 14 Drive part 15 Optical fiber 16 Laser light 17 Lens 18 Plane mirror 19 Condensing mirror 21-28 Bellows core material 32 Bead 110 Laser head tip 101-108 Bellows core material 111 Laser light 112 Bead

Claims (8)

  1.  管と、
     前記管の側面に形成された開孔部と、
     前記管内に配置され、レーザー光を伝送する光ファイバーと、
     前記管内に配置され、前記光ファイバーによって伝送された前記レーザー光を集光するレンズと、
     前記レンズによって集光されたレーザー光を反射させる反射ミラーと、
    を具備し、
     前記反射ミラーによって反射された前記レーザー光は、前記開孔部を通って前記管の外側に照射されることを特徴とする光照射装置。
    Tube,
    An opening formed in a side surface of the tube;
    An optical fiber disposed in the tube and transmitting laser light;
    A lens arranged in the tube and collecting the laser light transmitted by the optical fiber;
    A reflection mirror that reflects the laser light collected by the lens;
    Comprising
    The laser beam reflected by the reflecting mirror is irradiated to the outside of the tube through the opening portion.
  2.  管と、
     前記管の側面に形成された開孔部と、
     前記管内に配置され、レーザー光を伝送する光ファイバーと、
     前記管内に配置され、前記光ファイバーによって伝送された前記レーザー光を集光させて反射する集光ミラーと、
    を具備し、
     前記集光ミラーによって集光して反射された前記レーザー光は、前記開孔部を通って前記管の外側に照射されることを特徴とする光照射装置。
    Tube,
    An opening formed in a side surface of the tube;
    An optical fiber disposed in the tube and transmitting laser light;
    A condensing mirror disposed in the tube and condensing and reflecting the laser light transmitted by the optical fiber;
    Comprising
    The light irradiation apparatus, wherein the laser beam condensed and reflected by the collector mirror is irradiated to the outside of the tube through the opening.
  3.  請求項1または2において、
     前記管の外径は9mm以下であることを特徴とする光照射装置。
    In claim 1 or 2,
    The light irradiation apparatus characterized in that an outer diameter of the tube is 9 mm or less.
  4.  請求項1乃至3のいずれか一項において、
     前記ミラーによって反射され前記開孔部を通った前記レーザー光は、前記管の外側に配置されたリング状のベローズコア材の内周または金属管の内側に照射され、前記ベローズコア材または前記金属管が溶接されることを特徴とする光照射装置。
    In any one of Claims 1 thru | or 3,
    The laser beam reflected by the mirror and passed through the aperture is irradiated to the inner periphery of the ring-shaped bellows core material arranged on the outside of the tube or the inside of the metal tube, and the bellows core material or the metal A light irradiation apparatus characterized in that a tube is welded.
  5.  請求項4において、
     前記ベローズコア材の内径または前記金属管の内径は10mm以下であることを特徴とする光照射装置。
    In claim 4,
    The inner diameter of the bellows core material or the inner diameter of the metal tube is 10 mm or less.
  6.  請求項1において、
     前記レンズは、ボールレンズ、シリンドリカルレンズ、ドラムレンズ、フレネルレンズ、半球レンズ、凸レンズ、凹レンズ及びそれらを組み合わせたレンズのいずれかであることを特徴とする光照射装置。
    In claim 1,
    The light irradiation device, wherein the lens is any one of a ball lens, a cylindrical lens, a drum lens, a Fresnel lens, a hemispherical lens, a convex lens, a concave lens, and a combination thereof.
  7.  請求項1乃至6のいずれか一項に記載の光照射装置を用いてベローズ管を製造する製造方法であって、
     前記管の前記開孔部をリング状のベローズコア材の内周と対向するように配置する工程と、
     前記ミラーによって反射され前記開孔部を通った前記レーザー光を、前記管または前記ベローズコア材を回転させながら前記ベローズコア材の内周に照射することで、前記ベローズコア材の内周を溶接する工程と、
    を具備することを特徴とするベローズ管の製造方法。
    A manufacturing method for manufacturing a bellows tube using the light irradiation device according to any one of claims 1 to 6,
    Arranging the opening of the tube so as to face the inner periphery of the ring-shaped bellows core material;
    The inner periphery of the bellows core material is welded by irradiating the inner periphery of the bellows core material while rotating the tube or the bellows core material with the laser beam reflected by the mirror and passing through the opening. And a process of
    The manufacturing method of the bellows pipe | tube characterized by comprising.
  8.  請求項1乃至3及び6のいずれか一項に記載の光照射装置を用いて溶接金属管を製造する製造方法であって、
     第1の金属管の端部と第2の金属管の端部を接触させ、この接触させた部分と前記管の前記開孔部を対向するように配置する工程と、
     前記ミラーによって反射され前記開孔部を通った前記レーザー光を、前記管または前記第1の金属管及び前記第2の金属管を回転させながら前記接触させた部分の内側に照射することで、前記第1の金属管の端部と前記第2の金属管の端部を溶接する工程と、
    を具備することを特徴とする溶接金属管の製造方法。
    A manufacturing method for manufacturing a welded metal pipe using the light irradiation device according to any one of claims 1 to 3 and 6,
    A step of bringing the end of the first metal tube and the end of the second metal tube into contact with each other, and arranging the contacted portion and the opening of the tube to face each other;
    By irradiating the laser beam reflected by the mirror and passing through the opening portion to the inside of the contacted portion while rotating the tube or the first metal tube and the second metal tube, Welding the end of the first metal tube and the end of the second metal tube;
    The manufacturing method of the weld metal pipe characterized by comprising.
PCT/JP2015/064872 2015-05-25 2015-05-25 Light irradiation device, bellows tube manufacturing method, and welded metal tube manufacturing method WO2016189611A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064872 WO2016189611A1 (en) 2015-05-25 2015-05-25 Light irradiation device, bellows tube manufacturing method, and welded metal tube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064872 WO2016189611A1 (en) 2015-05-25 2015-05-25 Light irradiation device, bellows tube manufacturing method, and welded metal tube manufacturing method

Publications (1)

Publication Number Publication Date
WO2016189611A1 true WO2016189611A1 (en) 2016-12-01

Family

ID=57392998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064872 WO2016189611A1 (en) 2015-05-25 2015-05-25 Light irradiation device, bellows tube manufacturing method, and welded metal tube manufacturing method

Country Status (1)

Country Link
WO (1) WO2016189611A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066297A (en) * 2002-08-06 2004-03-04 Saginomiya Seisakusho Inc Manufacturing method of welded aluminum bellows
JP2005313191A (en) * 2004-04-28 2005-11-10 Toshiba Corp Laser beam machining apparatus and laser beam machining method
JP2013006182A (en) * 2011-06-22 2013-01-10 Toshiba Corp Laser irradiation apparatus and laser irradiation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066297A (en) * 2002-08-06 2004-03-04 Saginomiya Seisakusho Inc Manufacturing method of welded aluminum bellows
JP2005313191A (en) * 2004-04-28 2005-11-10 Toshiba Corp Laser beam machining apparatus and laser beam machining method
JP2013006182A (en) * 2011-06-22 2013-01-10 Toshiba Corp Laser irradiation apparatus and laser irradiation method

Similar Documents

Publication Publication Date Title
JP5931141B2 (en) Laser processing equipment with switchable fiber core
US9186751B2 (en) Laser irradiation apparatus and laser irradiation method
JP2004136675A (en) Method and device for joining article of synthetic resin in three-dimensional shape
US20100170634A1 (en) Laser welding method, laser welding apparatus, and method for manufacturing impeller for blower
JP2016068131A (en) Laser processing device capable of expanding convergence diameter
WO2012073931A1 (en) Laser processing apparatus
JP6863050B2 (en) Laser welding method and laser welding equipment
WO2017061276A1 (en) Joint body, fluid pressure cylinder, and method for manufacturing joint body
JP2006130565A (en) Welding apparatus and method for welding first panel to second panel
WO2016189611A1 (en) Light irradiation device, bellows tube manufacturing method, and welded metal tube manufacturing method
JP2009012239A (en) Apparatus and method for laser resin welding
JP5731184B2 (en) Vehicle lamp
JPWO2018139019A1 (en) Laser processing head and laser processing apparatus using the same
US11540705B2 (en) Welded structure of tubular member and bending device
JP2018189151A (en) Joint, gear mechanism, drive device, robot, and joint manufacturing method
JP5957717B2 (en) Laser welding method and laser welding apparatus
JP5718595B2 (en) Joining method using laser light
KR101659496B1 (en) Laser cutting apparatus
JP6549007B2 (en) Laser irradiation device
JP6955934B2 (en) Laser processing machine
TWM562181U (en) Laser processing apparatus
JP7216326B2 (en) PIPE WELDING METHOD AND PIPE WELDING DEVICE
JPS61212800A (en) Ultraviolet curing device
JP2013154380A (en) Laser machining head
JP2001147219A (en) Ultrasonic probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP