WO2016188125A1 - 一种生产金属半固态浆体的方法 - Google Patents
一种生产金属半固态浆体的方法 Download PDFInfo
- Publication number
- WO2016188125A1 WO2016188125A1 PCT/CN2016/070194 CN2016070194W WO2016188125A1 WO 2016188125 A1 WO2016188125 A1 WO 2016188125A1 CN 2016070194 W CN2016070194 W CN 2016070194W WO 2016188125 A1 WO2016188125 A1 WO 2016188125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid
- metal
- semi
- slurry
- alloy
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D1/00—Treatment of fused masses in the ladle or the supply runners before casting
Definitions
- the invention belongs to the technical field of semi-solid molding of metals, and in particular relates to a method for producing a semi-solid slurry of metal.
- semi-solid metal pastes have characteristics of large viscosity and small solidification shrinkage with respect to liquid metal, and thus parts molded using semi-solid metal have many advantages over conventional liquid-formed corresponding parts, such as fewer pores and shrinkage cavities. Defects, better mechanical properties, etc.
- the semi-solid metal paste has a very small deformation resistance, can be formed into a complicated part, and has low processing cost. Therefore, semi-solid metal forming is called the most promising metal material processing method in the 21st century because of its many advantages.
- the preparation of semi-solid metal paste is the key to semi-solid metal forming technology; at present, the methods for preparing semi-solid metal slurry with spherical crystal structure are: mechanical stirring method, electromagnetic stirring method, ultrasonic stirring method, DC pulse method, etc. .
- the process flow of these methods is relatively complicated, the process parameters are not easy to control, and the production cost is relatively high, so that the semi-solid molding technology of metal has not been industrialized in a large range so far.
- the object of the present invention is to provide a method for producing a metal semi-solid slurry.
- the process flow is very simple and easy to control, the production cost is extremely low, and it is easy to realize large-scale industrial application.
- the present invention adopts the following technical solutions:
- a specific method of a method for producing a metal semi-solid slurry is as follows:
- the molten metal or alloy (1) in the step (a) is the same as or different from the chemical composition of the molten metal or alloy (3) in the step (c).
- the molten metal or alloy (1) in the step (b) is cooled to be in a solid-liquid coexisting state or completely solidified into a solid.
- the metal semi-solid slurry (4) formed in the step (c) is stirred to increase the uniformity of the slurry.
- the metal semi-solid slurry (4) formed in the step (c) has a solid content of at least 1% by weight.
- the solid content of the metal semi-solid slurry (4) formed in the step (c) is not more than 60% by weight.
- the present invention is easy to implement large-scale industrial applications.
- Figure 1 is a schematic view of the process of the present invention
- Example 2 is a photomicrograph of a metal composition of Example 1 of the present invention, including a spherical primary solid phase and a secondary solid phase formed during cold quenching.
- a specific method of a method for producing a metal semi-solid slurry is as follows:
- the molten metal or alloy (1) in the step (a) is the same as or different from the chemical composition of the molten metal or alloy (3) in the step (c).
- the molten metal or alloy (1) in the step (b) is cooled to be in a solid-liquid coexisting state or completely solidified into a solid.
- the metal semi-solid slurry (4) formed in the step (c) is stirred to increase the uniformity of the slurry.
- the metal semi-solid slurry (4) formed in the step (c) has a solid content of at least 1% by weight.
- the solid content of the metal semi-solid slurry (4) formed in the step (c) is not more than 60% by weight.
- the solid content of the formed metal semi-solid slurry (4) is less than 10% by weight, the viscosity thereof is relatively low; an additional stirring process (such as mechanical stirring, electromagnetic stirring, etc.) may be omitted to reach the slurry.
- an additional stirring process such as mechanical stirring, electromagnetic stirring, etc.
- the viscosity thereof is relatively high, and an additional stirring process (such as mechanical stirring, electromagnetic stirring, etc.) is generally required to achieve the purpose of slurry homogenization.
- the formed metal semi-solid slurry (4) has a solid content after cooling of at least 1% by weight, preferably at least 10% by weight, more preferably at least 20% by weight; the key is that the formed metal semi-solid slurry (4) is solid
- the bulk content should be chosen to ensure that it inhibits the formation of metal dendritic structures and networks during further cooling and solidification.
- the formed metal semi-solid slurry (4) has a solid content of not more than 60% by weight after cooling, preferably not more than 50% by weight, more preferably not more than 40% by weight; a higher solid content may make the slurry less prone to further semi-solid processing .
- Step 1 shows a container (2) containing a certain weight of molten metal (1).
- Step 2 shows the vessel (2) and the molten metal (1) in the step 1; the molten metal (1) in the vessel (2) has been cooled below the liquidus of the metal, that is, part of the molten metal (1) ) has solidified into a solid.
- Step 3 shows the container (2) in step 2 and a further container (5); the container (5) is filled with molten metal (3), and a certain amount of molten metal (3) has been added to the container (2) And mixed with the metal (1) in the step 2 to form a semi-solid metal slurry (4).
- Step 4 shows the vessel (2) and the semi-solid metal slurry (4) in step 3, and a mechanical stirring device (6); the uniformity of the semi-solid metal slurry (4) is increased by mechanical agitation.
- the solid ratio of the semi-solid metal slurry (4) can be cooled by the weight of the molten metal (1) in the container (2) and the temperature of the molten metal (1) in the container (2) The time, as well as the adjustment of the parameters such as the weight and temperature of the molten metal (3) to be added, are controlled. In many cases, it is desirable to control the solid ratio of the semi-solid metal slurry (4) to between 10 and 30%; since the semi-solid metal slurry (4) has sufficient solid content in this ratio range In order to prevent it from producing dendrites during a further cold cutting process, the semi-solid metal slurry (4) still has sufficient fluidity to be poured out of the container (2) (not shown).
- a "clay-graphite" crucible having an inner diameter of about 130 mm, a wall thickness of about 16 mm, and a height of about 180 mm is heated to about 500 ° C; then about 2,000 g of molten Al - 7 wt % Si is poured into the crucible.
- the temperature of the aluminum alloy in the crucible is 625 ° C (the liquidus temperature of the Al-7 wt% Si aluminum alloy is about 616 ° C, the solidus temperature is about 572 ° C); then the aluminum in the crucible The alloy is naturally cooled, when ⁇ The temperature of the aluminum alloy in the mixture is lowered to about 600 ° C, and about 3000 g of a molten Al-7 wt% Si aluminum alloy of about 630 ° C is added to the crucible, and the temperature of the aluminum alloy in the crucible is about 612 ° C, that is, about 5000.
- a gram of aluminum alloy semi-solid slurry has been formed; the semi-solid slurry in the crucible is then mechanically agitated for about 30 seconds, at which time the temperature of about 5000 grams of the semi-solid slurry in the crucible drops to about 601 °C.
- a small amount of the semi-solid slurry is taken out of the crucible and quenched in cold water; the resulting microstructure is shown in Figure 2; as can be seen from Figure 2, the semi-solid slurry produced using the method disclosed herein, Its primary solid phase is a spherical crystal structure.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
提供一种生产金属半固态浆体的方法,具体步骤如下:(a)将熔融金属或合金(1)置于一容器(2)中;(b)将容器(2)中的熔融金属或合金(1)冷却至其液相线以下;(c)往容器(2)中加入熔融金属或合金(3),形成金属半固态浆体(4)。该方法的工艺流程非常简单且易于控制,生产成本极低,易于实现大规模的产业化应用。
Description
本发明属于金属的半固态成型技术领域,具体涉及一种生产金属半固态浆体的方法。
众所周知,半固态金属浆体相对于液态金属具有粘度大,凝固收缩小等特点,因而使用半固态金属成型的零件相对于普通液态成型的对应零件有许多的优点,如较少的气孔和缩孔缺陷、更佳的机械性能等;另,相对于固态成型方法,半固态金属浆体的变形抗力非常小,可进行复杂件成型,且加工成本低。因此,半固态金属成型以其诸多的优越性而被称为21世纪最有前途的的金属材料加工方法。半固态金属浆体的制作是半固态金属成型技术的关键;目前,制备具有球状晶结构的半固态金属浆体的方法主要有:机械搅拌法、电磁搅拌法、超声波搅拌法、直流脉冲法等。这些方法的工艺流程相对复杂、工艺参数不易控制,导致生产成本相对较高,以至于到目前为止,金属的半固态成型技术还没有在很大的范围得到工业化应用。
发明内容
本发明的目的在于提供一种生产金属半固态浆体的方法,工艺流程非常简单且易于控制,生产成本极低,易于实现大规模的产业化应用。
为实现上述目的,本发明采用如下技术方案:
一种生产金属半固态浆体的方法的具体步骤如下:
(a)将熔融金属或合金(1)置于一容器(2)中;
(b)将容器(2)中的熔融金属或合金(1)冷却至其液相线以下;
(c)往容器(2)中加入熔融金属或合金(3),形成金属半固态浆体(4)。
所述的步骤(a)中的熔融金属或合金(1)与所述的步骤(c)中的熔融金属或合金(3)的化学成分相同或不同。
所述的步骤(b)中的熔融金属或合金(1)经冷却后处于固液共存状态或完全凝固成固体。
对所述的步骤(c)中形成的金属半固态浆体(4)加以搅拌以增加该浆体的均匀性。
所述的步骤(c)中形成的金属半固态浆体(4)的固体含量至少为1wt%。
所述的步骤(c)中形成的金属半固态浆体(4)的固体含量不超过60wt%。
本发明的有益效果在于:
1)本发明的工艺流程非常简单,且易于控制;
2)应用本发明的制浆方法,浆体的生产成本极低;
3)本发明易于实现大规模的产业化应用。
图1为本发明的工艺示意图;
图2为本发明的实施例1的金属组合物的显微照片,包括球状的初生固体相和冷淬过程中形成的二次固体相。
一种生产金属半固态浆体的方法的具体步骤如下:
(a)将熔融金属或合金(1)置于一容器(2)中;
(b)将容器(2)中的熔融金属或合金(1)冷却至其液相线以下;
(c)往容器(2)中加入熔融金属或合金(3),形成金属半固态浆体(4)。
所述的步骤(a)中的熔融金属或合金(1)与所述的步骤(c)中的熔融金属或合金(3)的化学成分相同或不同。
所述的步骤(b)中的熔融金属或合金(1)经冷却后处于固液共存状态或完全凝固成固体。
对所述的步骤(c)中形成的金属半固态浆体(4)加以搅拌以增加该浆体的均匀性。
所述的步骤(c)中形成的金属半固态浆体(4)的固体含量至少为1wt%。
所述的步骤(c)中形成的金属半固态浆体(4)的固体含量不超过60wt%。
需要指出的是,当形成的金属半固态浆体(4)的固体含量少于10wt%,其粘度相对较低;可以不需要附加的搅拌工序(如机械搅拌、电磁搅拌等)以达到浆体均匀化的目的。然而,当形成的金属半固态浆体(4)的固体含量大于20wt%,其粘度相对较高,一般需要附加的搅拌工序(如机械搅拌、电磁搅拌等)以达到浆体均匀化的目的。
形成的金属半固态浆体(4)经冷却后的固体含量至少为1wt%,优选至少为10wt%,更优选至少为20wt%;其关键在于,形成的金属半固态浆体(4)的固
体含量的选择,应确保其在进一步的冷却和凝固时抑制金属枝状晶结构和网络的产生。
形成的金属半固态浆体(4)经冷却后固体含量不超过60wt%,优选不超过50wt%,更优选不超过40wt%;更高的固体含量可能使浆体不易于进行进一步的半固态加工。
本发明用下列实施例来进一步说明本发明,但本发明的保护范围并不限于下列实施例。
图1示出了本发明的的四个独立步骤。步骤1示出了一个容器(2),容器(2)中装有一定重量的熔融金属(1)。步骤2示出了步骤1中的容器(2)和熔融金属(1);容器(2)中的熔融金属(1)已冷却至该金属的液相线以下,即部份的熔融金属(1)已凝固成固体。步骤3示出了步骤2中的容器(2)以及再一个容器(5);容器(5)中装有熔融的金属(3),一定量的熔融金属(3)已被加入到容器(2)中,并和步骤2中的金属(1)混合在一起形成半固态金属浆体(4)。步骤4示出了步骤3中的容器(2)和半固态金属浆体(4),以及一个机械搅拌装置(6);通过机械搅拌,半固态金属浆体(4)的均匀性得以增加。
半固态金属浆体(4)的固体比率可以通过对所装入容器(2)中的熔融金属(1)的重量和温度,对所装入容器(2)中的熔融金属(1)的冷却时间,以及对所加入的熔融金属(3)的重量和温度等参数进行调节来控制。在许多情况下,理想的是,将半固态金属浆体(4)的固体比率控制在10-30%之间;因为在该比率范围,半固态金属浆体(4)已具有足够的固体含量以防止其在进一部冷切过程产生枝状晶,同时半固态金属浆体(4)仍然具有足够的流动性从容器(2)中倒出(非示出)。
实施例1
以下对Al-7wt%Si铝合金半固态浆体的生产方法及装置加以举例说明。
首先把一个内径为约130毫米、壁厚为约16毫米、高度为约180毫米的“粘土-石墨”坩埚加热至约500℃;然后往该坩埚倒入约2000克的熔融Al-7wt%Si铝合金,这时坩埚中的铝合金的温度为625℃(该Al-7wt%Si铝合金的液相线温度为约616℃,固相线温度为约572℃);然后让坩埚中的铝合金自然冷却,当坩埚
中的铝合金的温度降到约600℃,往坩埚中加入约3000克的约630℃的熔融Al-7wt%Si铝合金,这时坩埚中的铝合金的温度为约612℃,即约5000克的铝合金半固态浆体已经形成;然后对坩埚中的半固态浆体进行机械搅拌约30秒,这时坩埚中的约5000克半固态浆体的温度降到约601℃。少量的半固态浆体被从坩埚中取出并在冷水中淬火;所得到的显微结构如图2所示;从图2可以看出,使用本发明所揭露的方法生产的半固态浆体,其初生固体相为球状晶结构。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (10)
- 一种生产金属半固态浆体的方法,其特征在于:具体步骤如下:(a)将熔融金属或合金(1)置于一容器(2)中;(b)将容器(2)中的熔融金属或合金(1)冷却至其液相线以下;(c)往容器(2)中加入熔融金属或合金(3),形成金属半固态浆体(4)。
- 根据权利要求1所述的生产金属半固态浆体的方法,其特征在于:所述的步骤(a)中的熔融金属或合金(1)与所述的步骤(c)中的熔融金属或合金(3)的化学成分相同或不同。
- 根据权利要求1所述的生产金属半固态浆体的方法,其特征在于:所述的步骤(b)中的熔融金属或合金(1)经冷却后处于固液共存状态或完全凝固成固体。
- 根据权利要求1所述的生产金属半固态浆体的方法,其特征在于:对所述的步骤(c)中形成的金属半固态浆体(4)加以搅拌以增加该浆体的均匀性。
- 根据权利要求1所述的生产金属半固态浆体的方法,其特征在于:所述的步骤(c)中形成的金属半固态浆体(4)的固体含量至少为1wt%。
- 根据权利要求5所述的生产金属半固态浆体的方法,其特征在于:所述的步骤(c)中形成的金属半固态浆体(4)的固体含量至少为10wt%。
- 根据权利要求6所述的生产金属半固态浆体的方法,其特征在于:所述的步骤(c)中形成的金属半固态浆体(4)的固体含量至少为20wt%。
- 根据权利要求1所述的生产金属半固态浆体的方法,其特征在于:所述的步骤(c)中形成的金属半固态浆体(4)的固体含量不超过60wt%。
- 根据权利要求8所述的生产金属半固态浆体的方法,其特征在于:所述的步骤(c)中形成的金属半固态浆体(4)的固体含量不超过50wt%。
- 根据权利要求9所述的生产金属半固态浆体的方法,其特征在于:所述的步骤(c)中形成的金属半固态浆体(4)的固体含量不超过40wt%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510277675.5 | 2015-05-28 | ||
CN201510277675.5A CN104841896A (zh) | 2015-05-28 | 2015-05-28 | 一种生产金属半固态浆体的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016188125A1 true WO2016188125A1 (zh) | 2016-12-01 |
Family
ID=53842091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/070194 WO2016188125A1 (zh) | 2015-05-28 | 2016-01-05 | 一种生产金属半固态浆体的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104841896A (zh) |
WO (1) | WO2016188125A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113187818A (zh) * | 2021-05-05 | 2021-07-30 | 张家港江苏科技大学产业技术研究院 | 滑动轴承的轴瓦的制造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104841896A (zh) * | 2015-05-28 | 2015-08-19 | 林荣英 | 一种生产金属半固态浆体的方法 |
CN105537552A (zh) * | 2016-02-02 | 2016-05-04 | 曹海平 | 一种生产半固态浆体的方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5094700A (en) * | 1990-03-22 | 1992-03-10 | University Of Cincinnati | Solder and brazing alloys having improved properties and method of preparation |
JPH04124232A (ja) * | 1990-09-12 | 1992-04-24 | Leotec:Kk | 連続式半凝固金属製造装置のスタート方法 |
CN1657201A (zh) * | 2004-02-20 | 2005-08-24 | 北京有色金属研究总院 | 制备半固态合金浆料的方法及其设备 |
CN104232953A (zh) * | 2014-09-18 | 2014-12-24 | 珠海市润星泰电器有限公司 | 一种轻金属合金半固态浆料制备方法 |
CN104550888A (zh) * | 2015-01-30 | 2015-04-29 | 林荣英 | 一种可连续生产金属半固态浆体的方法 |
CN104841896A (zh) * | 2015-05-28 | 2015-08-19 | 林荣英 | 一种生产金属半固态浆体的方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE528376C2 (sv) * | 2004-12-10 | 2006-10-31 | Magnus Wessen | Förfarande och anordning för framställning av en flytande- fast metallkomposition |
CN102266914B (zh) * | 2011-08-08 | 2013-05-08 | 昆明理工大学 | 一种半固态合金浆料的制备方法 |
CN104084545B (zh) * | 2014-07-25 | 2016-05-11 | 无锡职业技术学院 | 一种铸造Mg-Al合金液态熔体/半固态熔体混液变质方法 |
-
2015
- 2015-05-28 CN CN201510277675.5A patent/CN104841896A/zh active Pending
-
2016
- 2016-01-05 WO PCT/CN2016/070194 patent/WO2016188125A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5094700A (en) * | 1990-03-22 | 1992-03-10 | University Of Cincinnati | Solder and brazing alloys having improved properties and method of preparation |
JPH04124232A (ja) * | 1990-09-12 | 1992-04-24 | Leotec:Kk | 連続式半凝固金属製造装置のスタート方法 |
CN1657201A (zh) * | 2004-02-20 | 2005-08-24 | 北京有色金属研究总院 | 制备半固态合金浆料的方法及其设备 |
CN104232953A (zh) * | 2014-09-18 | 2014-12-24 | 珠海市润星泰电器有限公司 | 一种轻金属合金半固态浆料制备方法 |
CN104550888A (zh) * | 2015-01-30 | 2015-04-29 | 林荣英 | 一种可连续生产金属半固态浆体的方法 |
CN104841896A (zh) * | 2015-05-28 | 2015-08-19 | 林荣英 | 一种生产金属半固态浆体的方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113187818A (zh) * | 2021-05-05 | 2021-07-30 | 张家港江苏科技大学产业技术研究院 | 滑动轴承的轴瓦的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104841896A (zh) | 2015-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105525158B (zh) | 一种半固态压铸铝合金材料及使用该材料压铸成型的方法 | |
CN104593652B (zh) | 准晶及氧化铝混合颗粒增强镁基复合材料及其制造方法 | |
CN100436615C (zh) | 铝、钛、碳、钇中间合金及其制造方法 | |
KR20180090850A (ko) | 반응고 슬러리의 제조방법 및 제조장치 | |
CN106282620B (zh) | 一种通过添加形核剂制备具有弥散型复合凝固组织Al-Bi合金的方法 | |
CN105583396A (zh) | 一种制造半固态轻合金铸件的低压铸造一步法 | |
WO2016188125A1 (zh) | 一种生产金属半固态浆体的方法 | |
WO2016119579A1 (zh) | 一种可连续生产金属半固态浆体的方法 | |
CN102699081A (zh) | 一种铝硅铁合金发动机缸套的半固态触变挤压成形方法 | |
JP5960282B2 (ja) | Cu−Ga合金スパッタリングターゲット及びその製造方法 | |
CN108300917A (zh) | 一种大型复杂汽车结构件专用压铸铝合金及其制备方法 | |
CN105154729A (zh) | 铸造铝-锌-镁-铜-钽合金及其制备方法 | |
CN102319890B (zh) | 一种制备变形铝合金半固态浆料的方法 | |
CN102418009B (zh) | 一种可消解高硬度化合物的铝合金及其熔炼方法 | |
CN107419118A (zh) | 一种铝铅硅合金的制备方法 | |
CN104195348A (zh) | 一种电渣重熔用低硅低杂质预熔渣及其制备方法与应用 | |
CN101705398A (zh) | 一种半固态流变成形用稀土铝合金及其半固态浆料制备方法 | |
CN107400791B (zh) | 一种高质、高效制备半固态铝合金浆料的装置及方法 | |
CN1301166C (zh) | 一种高速钢坯料的制备方法及设备 | |
CN106756180B (zh) | 一种钙/氧化镁晶粒细化剂及其制备方法和应用 | |
CN102672142B (zh) | 一种在型腔内的液态金属半固态加工精确成形系统 | |
CN105803252A (zh) | 一种电子线缆用高强度高导电铜合金线的制造方法 | |
CN105108099A (zh) | 一种a356铝合金高真空压铸工艺 | |
CN101348871B (zh) | Zn-27Al-2Cu-0.04Mg-4.76Si合金晶粒细化的方法 | |
CN105316609A (zh) | 一种提高7022铝合金性能的固溶处理工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16799014 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16799014 Country of ref document: EP Kind code of ref document: A1 |