WO2016187092A1 - Cleaning solution and method of cleaning laboratory consumables - Google Patents
Cleaning solution and method of cleaning laboratory consumables Download PDFInfo
- Publication number
- WO2016187092A1 WO2016187092A1 PCT/US2016/032634 US2016032634W WO2016187092A1 WO 2016187092 A1 WO2016187092 A1 WO 2016187092A1 US 2016032634 W US2016032634 W US 2016032634W WO 2016187092 A1 WO2016187092 A1 WO 2016187092A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laboratory consumables
- manifold
- solution
- exposing
- liquid solutions
- Prior art date
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims description 31
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 claims abstract description 24
- 229940045872 sodium percarbonate Drugs 0.000 claims abstract description 24
- 239000003085 diluting agent Substances 0.000 claims abstract description 16
- 238000005406 washing Methods 0.000 claims description 56
- 239000007788 liquid Substances 0.000 claims description 43
- 239000006193 liquid solution Substances 0.000 claims description 26
- 239000000243 solution Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000012530 fluid Substances 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000002699 waste material Substances 0.000 claims description 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 239000007844 bleaching agent Substances 0.000 claims description 3
- 239000008213 purified water Substances 0.000 claims description 3
- 102000004190 Enzymes Human genes 0.000 claims description 2
- 108090000790 Enzymes Proteins 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 239000003599 detergent Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 description 14
- 239000004696 Poly ether ether ketone Substances 0.000 description 8
- 229920002530 polyetherether ketone Polymers 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000004734 Polyphenylene sulfide Substances 0.000 description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000005414 inactive ingredient Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012487 rinsing solution Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3947—Liquid compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L13/00—Cleaning or rinsing apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
- B08B3/12—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1004—Cleaning sample transfer devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L13/00—Cleaning or rinsing apparatus
- B01L13/02—Cleaning or rinsing apparatus for receptacle or instruments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B11/00—Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto
- B08B11/02—Devices for holding articles during cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B7/00—Cleaning by methods not provided for in a single other subclass or a single group in this subclass
- B08B7/0035—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
- B08B7/0057—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by ultraviolet radiation
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
- C11D2111/20—Industrial or commercial equipment, e.g. reactors, tubes or engines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/40—Specific cleaning or washing processes
- C11D2111/46—Specific cleaning or washing processes applying energy, e.g. irradiation
Definitions
- the present technology relates to a washing device and a method of washing laboratory consumables, and more particularly to a pipette tip washing device and a method of washing pipette tips.
- a cleaning solution for cleaning laboratory consumables comprises sodium percarbonate in a concentration of from about 0.9% w/w to about 1.6% w/w based on a total weight of the solution, and at least one diluent to 100% w/w.
- the sodium percarbonate may be in a concentration of 1.2% w/w based on the total weight of the solution.
- the at least one diluent may comprise deionized water.
- FIGS. 1 A and IB are exploded perspective views of an exemplary embodiment of a pipette tip washing device of the present disclosure.
- FIG. 2 is a perspective view of the exemplary pipette tip washing device of the present disclosure.
- FIGS. 3 A and 3B are front and rear perspective views of the exemplary pipette tip washing device of the present disclosure with the top compartment in an open position.
- FIG. 4A is a perspective view of a top compartment of the pipette tip washing device illustrated in FIG. 1.
- FIG. 4B is a perspective view of a receiving compartment of the top compartment illustrated in FIG. 4A.
- FIG. 5A-5D are an exploded perspective view, a top perspective view, a side view, and a bottom view, respectively, of the top compartment of the pipette tip washing device and manifold dispensers configured to be located in the top compartment.
- FIG. 1 A first figure.
- FIG. 1 A first figure.
- FIG. 1 A first figure.
- FIG. 1 A first figure.
- FFIIGG.. 16E is a magnified view of portion A of the manifold dispenser illustrated in FIG.
- FIGS. 8A and 8B are partial phantom front and perspective views of another exemplary embodiment of a pipette tip washing device of the present disclosure.
- FIG. 8C is a side view of the pipette tip washing device illustrated in FIGS. 8A and
- FIGS. 9A-9D are perspective views of the pipette tip washing device illustrated in FIGS. 8A-8C in various positions during operation of the device in accordance with the present disclosure.
- FIGS. 1-3B An exemplary pipette tip washing device 10 is illustrated in FIGS. 1-3B.
- the pipette tip washing device 10 includes a top compartment 12, manifold dispensers 14, tip racks 16, a tip rack support 18, a middle compartment 20, a wash sleeve 22, a bottom compartment 24, an ultraviolet (UV) light source 26, and optional transducers 27, although the pipette tip washing device 10 may include other elements in other configurations.
- This exemplary technology includes a number of advantages including providing a device and method for the efficient and economical sterilization of a large number of pipette tips for use in large scale laboratory settings.
- FIGS. 4A-4B an exemplary top compartment 12 of the exemplary pipette tip washing device 10 is shown.
- the top compartment 12 includes a front cover 30 removably coupled to a receiving chamber 32, although the top compartment 12 may include other elements in other configurations.
- Front cover 30 is constructed of stainless steel, although front cover may be constructed of other numbers and types of materials.
- Front cover 30 is removably coupled to the receiving chamber 32 through one or more one or more screws 34 which are inserted into holes 36 in the receiving chamber 32, although other attachment methods may be utilized to removably couple front cover 30 to receiving chamber 32.
- Receiving chamber 32 is configured to receive the one or more manifold dispensers 14 as illustrated in FIGS. 5A-5D.
- receiving chamber 32 is configured to receive four manifold dispensers 14, although receiving chamber 32 may receive other numbers of manifold dispensers 14 in other configurations.
- the receiving chamber 32 includes internal rails 38 on the sidewalls which support the manifold dispensers 14 and one or more holes 40 disposed on the top surface of the receiving chamber 32 configured to receive screws for secure attachment to the manifold dispensers 14, although the receiving chamber 32 may include other elements in other locations to support and securely attach the manifold dispensers 14 within the receiving chamber 32.
- the receiving chamber 32 further includes one or more input ports 42 configured to receive liquid input fittings 44a and 44b, which are disposed on opposite sides of the wall of the receiving chamber 32 and are configured to receive liquid into the pipette tip washing device 10 from an external control source (not shown).
- the external control source may include a pump, control valves, and electronics necessary to deliver wash liquids to the pipette tip washing device 10 in accordance with the present technology.
- the receiving chamber 32 is constructed of stainless steel, although the receiving chamber 32 may be constructed of other numbers and types materials.
- the manifold dispenser 14 is configured to be inserted into receiving compartment 32.
- the manifold dispenser 14 includes a manifold adapter 46 which may be coupled to a manifold body portion 48, and an o-ring adapter 50, although the manifold dispenser 14 may include other elements in other configurations.
- the manifold adapter 46 is coupled to the manifold body portion 48 by screws 52 which are configured to be inserted into the holes 54 and 56 in the manifold adapter 46 and the manifold body portion 48, respectively, although other attachment mechanisms may be utilized.
- the o-ring adapter 50 is located at the contact point between the manifold adapter 46 and the manifold body portion 48 to provide a watertight seal when the manifold adapter 46 and the manifold body portion 48 are coupled together.
- the manifold adapter 46 includes a liquid input 58 configured to receive a manifold elbow input 60 which may be coupled to the liquid input fittings 44b, as illustrated in FIG. 1, to transfer liquid into the manifold adapter 46, although other liquid input ports in other configurations may be utilized to introduce liquid into the manifold adapter 46.
- the manifold adapter 46 also includes exit ports 62, as illustrated in FIG. 6C, which are coupled to the manifold body portion 48 to transfer liquid from the manifold adapter 46 to the manifold body portion 48.
- the manifold adapter 46 is constructed of a chemical resistant material such as, by way of example only, polyphenylene sulfide or polyetheretherketone (PEEK), although the manifold adapter 46 may be constructed of other types and numbers of materials.
- the manifold body portion 48 includes input ports 64 which are configured to be aligned with the exit ports 62 of the manifold adapter 46 when the manifold adapter 46 and the manifold body portion 48 are coupled.
- the input ports 64 receive liquid transferred from the manifold adapter 46.
- the manifold body portion 48 also includes a plurality of liquid outputs 66 configured to operably direct fluid introduced into the manifold dispenser 14 from the manifold body portion 48 into to the wash sleeve 22 to contact a number of laboratory consumables, such as pipette tips.
- the liquid outputs 66 are nozzles extending from the manifold body portion 48, although other types of liquid outputs may be utilized in other configurations.
- the number of liquid outputs 66 in the manifold body portion 48 may match the number of pipette tips in the tip rack 16, which are held below the manifold body portion 48, as illustrated in FIG. 1.
- the manifold body portion 48 may include 96 liquid outputs 66, although manifold body portion 48 may include other numbers of liquid outputs 66 configured for use with different tip racks 16.
- Manifold body portion 48 may further optionally include a number of holes 67 in the surface opposite to the liquid outputs 66, the holes 67 being configured to receive fiber optic needles 68.
- the fiber optic needles 68 extend through the manifold body portion 48 and extend into liquid outputs 66 to direct light into the wash sleeve 22.
- the fiber optic needles 68 are attached to the UV-light source 26 to direct UV-light to the wash sleeve 22, although the fiber optic needles 68 may receive light from other light sources in other configurations.
- the manifold body portion 48 further includes a top support structure 69 including a hole 70 configured to be aligned with hole 40 in the receiving chamber 32.
- Screw 72 may be inserted through hole 40 in the receiving chamber 32 and hole 70 in the top support structure 68 to securely attach manifold body portion 48 to the receiving chamber 32, although other attachment mechanisms may be utilized.
- the manifold body portion 48 is constructed of a chemical resistant material such as, by way of example only, polyphenylene sulfide or polyetheretherketone (PEEK), although the manifold body portion 48 may be constructed of other types and numbers of materials.
- FIGS. 7 A and 7B illustrate another exemplary manifold dispenser 114 that may be utilized with the pipette tip washing device of the present disclosure.
- Manifold dispenser 114 is the same in structure and operation as the manifold dispenser 14 illustrated in FIGS. 6A-6E, except as illustrated and described herein. Like parts will be described using like reference numerals.
- the manifold dispenser 114 includes a manifold adapter 146 which may be coupled to a manifold body portion 148, and an o-ring adapter 50, although the manifold dispenser 114 may include other elements in other configurations.
- the manifold adapter 146 is coupled to the manifold body portion 148 by screws 52, although other attachment mechanisms may be utilized.
- the o-ring adapter 50 is located at the contact point between the manifold adapter 146 and the manifold body portion 148 to provide a seal when the manifold adapter 146 and the manifold body portion 148 are coupled together.
- the manifold adapter 146 includes a liquid input 58 configured to receive a manifold elbow input 60 which may be coupled to the liquid input fittings 44b, as illustrated in FIG. 1, to transfer liquid into the manifold adapter 146, although other liquid input ports in other configurations may be utilized to introduce liquid into the manifold adapter 146.
- the manifold adapter 146 also includes a single exit port 162, which is coupled to the manifold body portion 148 to transfer liquid from the manifold adapter 146 to the manifold body portion 148.
- the manifold adapter 146 is constructed of a chemical resistant material such as, by way of example only, polyphenylene sulfide or polyetheretherketone (PEEK), although the manifold adapter 146 may be constructed of other types and numbers of materials.
- the manifold body portion 148 includes an input port 164 which is configured to be aligned with the exit port 162 of the manifold adapter 146 when the manifold adapter 146 and the manifold body portion 148 are coupled.
- the input port 164 receives liquid transferred from the manifold adapter 146.
- the manifold body portion 148 also includes a plurality of liquid outputs 66 configured to operably direct fluid introduced into the manifold dispenser 114 from the manifold body portion 148 into to the wash sleeve 22 to contact a number of laboratory consumables, such as pipette tips.
- the liquid outputs 66 are nozzles extending from the manifold body portion 148, although other types of liquid outputs may be utilized in other configurations.
- the number of liquid outputs 66 in the manifold body portion 148 may match the number of pipette tips in the tip rack 16, which are held below the manifold body portion 148, as illustrated in FIG. 1.
- the manifold body portion 148 may include 96 liquid outputs 66, although manifold body portion 148 may include other numbers of liquid outputs 66 configured for use with different tip racks 16.
- Manifold body portion 148 may further optionally include a number of holes 67 in the surface opposite to the liquid outputs 66, the holes 67 being configured to receive fiber optic needles 68.
- the fiber optic needles 68 extend through the manifold body portion 148 and extend into liquid outputs 66 to direct light into the wash sleeve 22.
- the fiber optic needles 68 are attached to the UV-light source 26 to direct UV-light to the wash sleeve 22, although the fiber optic needles 68 may receive light from other light sources in other configurations.
- the manifold body portion 148 further includes holes 170 configured to receive springs 171.
- the springs 171 are configured to receive shoulder bolts 172 to attach the manifold body portion 148 to the receiving compartment 32, although other attachment mechanisms may be utilized.
- the springs 171 allow a range of movement of manifold body portion 148 to provide alignment with the pipette tips prior to washing.
- the manifold body portion 148 is constructed of a chemical resistant material such as, by way of example only, polyphenylene sulfide or polyetheretherketone (PEEK), although the manifold body portion 48 may be constructed of other types and numbers of materials.
- the pipette tip washing device 10 includes four tip racks 16 configured to be inserted into tip rack supports 18, although the pipette tip washing device 10 may include other numbers of tip racks.
- the wash device 10 is described with respect to pipette tips, it is to be understood that the present invention could be utilized with racks which hold other types of laboratory consumables, such as laboratory consumables with similar configurations to pipette tips. Further, the present technology may be utilized with pipette tips of various sizes. By way of example 1, 2, 8, 16 or more tip racks 16 may be utilized for maximization of the throughput in the space available in the receiving compartment 32.
- the tip racks 16 hold 96 pipette tips for a total of 384 pipette tips in the pipette tip washing device, although the tip racks 16 may hold other numbers of pipette tips, or other laboratory consumables.
- the tip rack supports 18 support the tip racks 16 above the wash sleeve 22.
- the middle compartment 20 of pipette tip washing device 10 is configured to be attached to the top compartment 12 through hinges 74 such that the top compartment 12 may be lifted in order to insert tip racks 16 into tip rack support 18, although other attachment mechanisms may be utilized to attach the middle compartment 20 to the top compartment 12.
- the middle compartment 20 is capable of receiving fluid output by the one or more manifold dispensers 14 such that fluid does not enter the bottom compartment 24.
- the middle compartment 20 further includes a floor 76 comprising a material transparent to ultraviolet (UV) light, such as by way of example only, quartz, although other transparent materials may be utilized.
- Floor 76 is configured to provide a water tight-seal that prevents fluid introduced into the middle compartment 20 from entering the bottom compartment 24.
- Drain 78 exits the floor 76 and directs fluid through drain fitting 80.
- Drain fitting 80 is coupled to a waste drain elbow fitting 82.
- the waste drain elbow fitting 82 extends from the drain fitting 80 from the bottom of the middle compartment 20 into the bottom compartment 24 and is coupled to waste output fitting 84 which exits the pipette tip washing device 10 through the bottom compartment 24, although the drain may have other configurations.
- the middle compartment is further configured to receive the wash sleeve 22.
- the sidewalls of the middle compartment 20 are constructed of stainless steel, although the middle compartment 20 may be constructed of other numbers and types of materials.
- the wash sleeve 22 or wash chamber is configured to be inserted into the middle compartment 20.
- the wash sleeve 22 is constructed of a material capable of reflecting at least a portion of the UV-light from the UV-light source 26, although the wash sleeve 22 may be constructed of other types and numbers of materials.
- the wash sleeve 22 may be constructed of a transparent material, such as quartz by way of example only, in order to direct UV-light into the middle compartment 20 from other light sources, such as the light sources illustrated in FIGS. 8A and 8B below.
- the wash sleeve 22 is replaceable and protects the sidewalls of the middle compartment 20 from fluid.
- the bottom compartment 24 is located below the middle compartment 20 and separated by floor 76.
- the bottom compartment 24 houses UV-light source 26, such as a UV lamp, which is configured to direct UV-light through the floor 76 into the middle compartment 20, although the UV-light compartment may include other numbers and types of light sources in other configurations.
- the bottom compartment 24 further may include one or more transducers 27 to direct sound in the ultrasonic range into the middle compartment 20, although other devices may be utilized to direct sound in other ranges to the middle compartment 20.
- the bottom compartment is easily accessible to replace the UV-light source 26.
- the bottom compartment 24 is protected from fluids by the floor 76.
- the bottom compartment 24 further includes an exit port 86 located under drain 78 in floor 76.
- the drain elbow fitting 82 extends from the drain fitting 80 from the bottom of the middle compartment 20 into the bottom compartment 24 and is coupled to waste output fitting 84 which exits the pipette tip washing device 10 through exit port 86 in the bottom compartment 24, although the drain may have other configurations.
- FIGS. 8A-9D Another embodiment of an exemplary pipette tip washing device 110 is illustrated in FIGS. 8A-9D.
- Pipette tip washing device 110 is the same in structure and operation as the pipette tip washing device 10 illustrated in FIGS. 1-3B, except as illustrated and described herein. Like parts will be described using like reference numerals.
- top compartment 12 is coupled to middle compartment 20 by rails 190 that allow top compartment 12 to be raised vertically along the rails 190 above middle compartment 20.
- top compartment 12 is coupled to middle compartment 20 by rails 190 that allow top compartment 12 to be raised vertically along the rails 190 above middle compartment 20.
- top is coupled to middle compartment 20 by rails 190 that allow top compartment 12 to be raised vertically along the rails 190 above middle compartment 20.
- top is coupled to middle compartment 20 by rails 190 that allow top compartment 12 to be raised vertically along the rails 190 above middle compartment 20.
- top is coupled to middle compartment 20 by rails 190 that allow top compartment 12 to be raised
- compartment 12 is raised in an automated process by mechanical cylinder 192 which is coupled to rod 194, as shown in FIG. 8C, although top compartment 12 may be manually raised.
- middle compartment 20 is disposed on telescopic guides 196 that allow the middle compartment 20 to be opened as a drawer for insertion of tip racks 16, although other devices that allow middle compartment to be opened may be utilized.
- Middle compartment 20 may be opened and closed in an automated process by cylinder 198, although middle compartment 20 may be opened manually as well.
- Middle compartment 20 further includes UV light sources 126 disposed on the inside surface thereof. The UV light sources 126 may be utilized with a transparent wash sleeve to direct light onto pipette tips held in pipette tip racks 16 during operating of the pipette tip washing device 110.
- the middle compartment 20 further includes mechanical cylinders 199 that may operatively raise and lower the tip racks 16 when the top compartment 12 is in an open position.
- the mechanical cylinders 199 may be utilized to agitate the pipette tips to improve wash quality during the wash process or to assist in the drying process.
- FIGS. 9A-9D the pipette tip washing device 110 is illustrated in various states of operation.
- FIG. 9 A shows the pipette tip washing device 110 in an opened position with top compartment 12 raised and middle compartment 20 opened as a drawer for the insertion of pipette tips.
- FIG. 9B shows the pipette tip washing device 110 in the closed position for washing the pipette tips.
- FIGS. 9C and 9D illustrate the movement of the tip racks 16 with the top compartment 12 raised in order to agitate the pipette tips to assist in the drying process.
- a method for washing pipette tips using the pipette tip washing device 10 will be described with reference to FIGS. 1-9D.
- One or more tip racks 16 containing pipette tips are loaded into the pipette washing device 10, although the present method may be utilized for other laboratory consumables.
- the one or more tip racks 16 are supported in the pipette tip washing device 10 by tip rack support 18.
- the one or more tip racks 16 may hold 24, 48, 96, 384, or 1536 pipette tips, by way of example, although the one or more tip racks 16 may hold other numbers of pipette tips.
- the pipette tip washing device 10 may be utilized with pipette tips with volumes of 10 ⁇ _,-5 ⁇ _,, such as ⁇ ., 50 ⁇ ., lmL, or 5mL pipettes, by way of example, with
- Pipette tip washing device 10 may be utilized with pipette tips with other sizes and configurations.
- Pipette tip washing device 10 may be utilized to clean both conductive and non-conductive pipette tips.
- Manifold body portions 48 having different numbers of liquid outputs 66 may be interchanged based on the number of pipette tips in the one or more tip racks 16.
- One or more liquid washing or rinsing solutions are directed into the pipette tip washing device 10 through input ports 42.
- the liquid solutions may be pumped into the pipette tip washing device 10 by the pump in the external control source (not shown).
- the liquid may be provided in a pressurized flow to assist in the cleaning process.
- the liquid solutions may be deionized water, bleach, hydrogen peroxide, one or more enzyme solutions, ethanol, detergent, purified water, water, ammonia, isopropanol, alcohol, a solution capable of substantially rinsing or decontaminating plastic, or combinations thereof, although other liquid solutions in other combinations may be utilized.
- liquid solutions are applied for washing/rinsing prior to draining: a) deionized water, b) deionized water and 5-10% bleach solution, c) deionized water, d) ethanol, although other liquid solutions may be applied in other combinations.
- one of the cleaning solutions may include a mixture of sodium percarbonate and a diluent.
- Sodium percarbonate Na 2 CC"3 ⁇ 1.5H 2 0 2
- the diluent may comprise deionized water, purified water, or the like, or any other suitable diluent.
- the sodium percarbonate cleaning solution may include one or more other active or inactive ingredients (in addition to the diluent), or may exclude any other ingredients.
- Sodium percarbonate is a powder that is mixed in the diluent to form the desired cleaning solution.
- 25 grams (g) of sodium percarbonate is mixed in 2 liters (L) of deionized water, such that the resulting solution has a concentration of sodium percarbonate of 1.2% w/w.
- the cleaning solution may have a concentration of sodium percarbonate of between about 0.9% w/w (e.g., 17.5g of sodium percarbonate in 2L of water) to 1.6% w/w (e.g., 32.5g of sodium percarbonate in 2L of water).
- the sodium percarbonate powder is added to the diluent, and then the combination is mixed via any suitable means (e.g., shaking vigorously or via stir bar) to suitably dissolve the sodium percarbonate powder in the diluent.
- the sodium percarbonate cleaning solution may be used to cleaning laboratory consumables, such as pipette tips, in a washing device of embodiments of the claimed invention.
- the sodium percarbonate cleaning solution may be used as the sole cleaning solution (although one or more rinsing liquids or solutions may be used), or the sodium percarbonate cleaning solution may be used in conjunction with one or more other cleaning solutions.
- the liquid solutions enter the manifold dispensers 14 through the liquid input 58 in the manifold adapter 46.
- the liquid solutions are then directed through the manifold body portion 48.
- the liquid solutions exit the manifold body portion 48 at liquid outputs 66 and enter the middle compartment 20 to contact the pipette tips held in the one or more tip racks 16.
- the liquid outputs 66 may direct the liquid solution through the pipette tips or may possibly direct the pipette tips to uptake washing fluid for washing/rinsing.
- the liquid solutions enter the middle compartment 20. Quartz floor 76 prevents the liquid solution from entering the bottom compartment 24.
- the liquid solution may exit the pipette washing device 10 through drain 78.
- the pipette tips may be submerged in the liquid solutions that are filled on top of the quartz floor 76 prior to being removed from the middle compartment 20 through drain 78.
- the liquid solutions are then removed from the pipette washing device 10 through drain 78.
- 4 cycles of liquid solutions (water rinse, soap rinse, etc.) are directed into the middle compartment 20 prior to draining the fluids.
- the pipette tips are at least substantially dried, although the pipette tips may be completely dried.
- the pipette tips are substantially dried by agitating the pipette tips, although other drying mechanisms may be utilized to substantially dry the pipette tips.
- the UV light source 26 is engaged to expose the outer surfaces of the pipettes to ultraviolet light to sterilize the pipettes.
- the UV light source 26 directs light to the pipettes through the quartz floor 76, although UV light may be directed from other directions from other UV light sources, such as light sources 126 as illustrated in FIGS. 8 A and 8B.
- the UV light source 26 may further direct light through the fiber optic needles 68 located in the openings of the liquid outputs 66 in the manifold body portion 48.
- the fiber optic needles 66 direct UV light to the inside of the pipette tips to provide sterilization of the interior surfaces of the pipette tips.
- the pipette tips may be exposed to sound in an ultrasonic range from the one or more transducers 27, which direct the sound in the ultrasonic range into the washing chamber.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Clinical Laboratory Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Cleaning By Liquid Or Steam (AREA)
Abstract
A cleaning solution for cleaning laboratory consumables comprises sodium percarbonate in a concentration of from 0.9% w/w to 1.6% w/w based on a total weight of the solution and at least one diluent to 100% w/w.
Description
CLEANING SOLUTION AND METHOD OF CLEANING LABORATORY CONSUMABLES
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation-in-part and claims priority to U.S. Patent
Application Serial No. 14/266,330, filed April 30, 2014, which in turn claims the benefit of U.S. Provisional Patent Application Serial No. 61/817,715, filed April 30, 2013 and U.S. Provisional Patent Application Serial No. 61/890,523, filed October 14, 2013, each of which is hereby incorporated by reference in its entirety.
FIELD OF THE INVENTION
[0002] The present technology relates to a washing device and a method of washing laboratory consumables, and more particularly to a pipette tip washing device and a method of washing pipette tips.
BACKGROUND
[0003] Every year around 4,000,000 pounds of plastic pipette tips, after a single use, are disposed of in landfills globally, leading to significant environmental pollution and costs. A typical laboratory consumes several thousand pipette tips daily for samples and assay
procedures. Due to the lack of options for cleaning plastic consumables, the labs discard pipette tips after each use. Such high consumption of plastic tips adds $25,000- $1.5M to the annual operation cost to each of the approximately 14,000 research laboratories in the US.
[0004] Devices that are capable of efficient pipette tip cleaning and sterilization could save businesses substantial amounts of money in their scientific operations and drastically reduce the amount of waste produced in the course of operations. Few devices have been developed for this purpose to date. In some cases, laboratories have developed small-scale cleaning methods to reuse a few pipette tips, such as single 96-tip cases. In some small-scale automatic liquid handling instruments, there are setups for the cleaning of tips with solutions. Neither of these options, however, is large enough in scale to be useful in a large industrial, government, or academic laboratory that may use hundreds of pipette tips every day. Additionally, labs must have absolute confidence that a cleaning system has completely removed all contaminants from
the pipette tips so that there is no carryover, a term for the contamination presented into an experiment by equipment used in a prior experiment.
[0005] Thus, there is a need for a large-scale and economical method for the comprehensive cleaning and sterilization
BRIEF SUMMARY
[0006] In one embodiment of the invention, a cleaning solution for cleaning laboratory consumables (such as pipette tips) comprises sodium percarbonate in a concentration of from about 0.9% w/w to about 1.6% w/w based on a total weight of the solution, and at least one diluent to 100% w/w. The sodium percarbonate may be in a concentration of 1.2% w/w based on the total weight of the solution. The at least one diluent may comprise deionized water.
[0007] In addition to the cleaning solution, as described above, other aspects of the present invention are directed to corresponding methods for cleaning laboratory consumables.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
[0008] The foregoing summary, as well as the following detailed description of the disclosure, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the disclosure, there are shown in the drawings embodiments which are presently preferred. It should be understood, however, that the disclosure is not limited to the precise arrangements and instrumentalities shown. In the drawings:
[0009] FIGS. 1 A and IB are exploded perspective views of an exemplary embodiment of a pipette tip washing device of the present disclosure.
[0010] FIG. 2 is a perspective view of the exemplary pipette tip washing device of the present disclosure.
[0011] FIGS. 3 A and 3B are front and rear perspective views of the exemplary pipette tip washing device of the present disclosure with the top compartment in an open position.
[0012] FIG. 4A is a perspective view of a top compartment of the pipette tip washing device illustrated in FIG. 1.
[0013] FIG. 4B is a perspective view of a receiving compartment of the top compartment illustrated in FIG. 4A.
[0014] FIG. 5A-5D are an exploded perspective view, a top perspective view, a side view, and a bottom view, respectively, of the top compartment of the pipette tip washing device and manifold dispensers configured to be located in the top compartment.
[0015] FIG. 1
invention.
[0016] FIG. 1
[0017] FIG. 1
[0018] FIG. 1
invention.
[0019] FFIIGG.. 16E is a magnified view of portion A of the manifold dispenser illustrated in FIG.
6D.
[0020] FIGS
another embodiment of the manifold dispenser of the present invention.
[0021] FIGS. 8A and 8B are partial phantom front and perspective views of another exemplary embodiment of a pipette tip washing device of the present disclosure.
[0022] FIG. 8C is a side view of the pipette tip washing device illustrated in FIGS. 8A and
8B in an opened position.
[0023] FIGS. 9A-9D are perspective views of the pipette tip washing device illustrated in FIGS. 8A-8C in various positions during operation of the device in accordance with the present disclosure.
DETAILED DESCRIPTION
[0024] An exemplary pipette tip washing device 10 is illustrated in FIGS. 1-3B. The pipette tip washing device 10 includes a top compartment 12, manifold dispensers 14, tip racks 16, a tip rack support 18, a middle compartment 20, a wash sleeve 22, a bottom compartment 24, an ultraviolet (UV) light source 26, and optional transducers 27, although the pipette tip washing device 10 may include other elements in other configurations. This exemplary technology includes a number of advantages including providing a device and method for the efficient and economical sterilization of a large number of pipette tips for use in large scale laboratory settings.
[0025] Referring more specifically to FIGS. 4A-4B, an exemplary top compartment 12 of the exemplary pipette tip washing device 10 is shown. The top compartment 12 includes a front cover 30 removably coupled to a receiving chamber 32, although the top compartment 12 may include other elements in other configurations. Front cover 30 is constructed of stainless steel, although front cover may be constructed of other numbers and types of materials. Front cover 30 is removably coupled to the receiving chamber 32 through one or more one or more screws 34 which are inserted into holes 36 in the receiving chamber 32, although other attachment methods may be utilized to removably couple front cover 30 to receiving chamber 32.
[0026] Receiving chamber 32 is configured to receive the one or more manifold dispensers 14 as illustrated in FIGS. 5A-5D. In this example, receiving chamber 32 is configured to receive four manifold dispensers 14, although receiving chamber 32 may receive other numbers of manifold dispensers 14 in other configurations. In this example, the receiving chamber 32 includes internal rails 38 on the sidewalls which support the manifold dispensers 14 and one or more holes 40 disposed on the top surface of the receiving chamber 32 configured to receive screws for secure attachment to the manifold dispensers 14, although the receiving chamber 32 may include other elements in other locations to support and securely attach the manifold dispensers 14 within the receiving chamber 32.
[0027] Referring again to FIGS. 1 A and IB, the receiving chamber 32 further includes one or more input ports 42 configured to receive liquid input fittings 44a and 44b, which are disposed on opposite sides of the wall of the receiving chamber 32 and are configured to receive liquid into the pipette tip washing device 10 from an external control source (not shown). The external control source may include a pump, control valves, and electronics necessary to deliver wash liquids to the pipette tip washing device 10 in accordance with the present technology. The receiving chamber 32 is constructed of stainless steel, although the receiving chamber 32 may be constructed of other numbers and types materials.
[0028] Referring now to FIGS. 6A-6E, an exemplary manifold dispenser 14 is shown. The manifold dispenser is configured to be inserted into receiving compartment 32. The manifold dispenser 14 includes a manifold adapter 46 which may be coupled to a manifold body portion 48, and an o-ring adapter 50, although the manifold dispenser 14 may include other elements in other configurations. In this exemplary manifold dispenser 14, the manifold adapter 46 is coupled to the manifold body portion 48 by screws 52 which are configured to be inserted into
the holes 54 and 56 in the manifold adapter 46 and the manifold body portion 48, respectively, although other attachment mechanisms may be utilized. The o-ring adapter 50 is located at the contact point between the manifold adapter 46 and the manifold body portion 48 to provide a watertight seal when the manifold adapter 46 and the manifold body portion 48 are coupled together.
[0029] The manifold adapter 46 includes a liquid input 58 configured to receive a manifold elbow input 60 which may be coupled to the liquid input fittings 44b, as illustrated in FIG. 1, to transfer liquid into the manifold adapter 46, although other liquid input ports in other configurations may be utilized to introduce liquid into the manifold adapter 46. The manifold adapter 46 also includes exit ports 62, as illustrated in FIG. 6C, which are coupled to the manifold body portion 48 to transfer liquid from the manifold adapter 46 to the manifold body portion 48. The manifold adapter 46 is constructed of a chemical resistant material such as, by way of example only, polyphenylene sulfide or polyetheretherketone (PEEK), although the manifold adapter 46 may be constructed of other types and numbers of materials.
[0030] The manifold body portion 48 includes input ports 64 which are configured to be aligned with the exit ports 62 of the manifold adapter 46 when the manifold adapter 46 and the manifold body portion 48 are coupled. The input ports 64 receive liquid transferred from the manifold adapter 46. The manifold body portion 48 also includes a plurality of liquid outputs 66 configured to operably direct fluid introduced into the manifold dispenser 14 from the manifold body portion 48 into to the wash sleeve 22 to contact a number of laboratory consumables, such as pipette tips. In this example, the liquid outputs 66 are nozzles extending from the manifold body portion 48, although other types of liquid outputs may be utilized in other configurations. The number of liquid outputs 66 in the manifold body portion 48 may match the number of pipette tips in the tip rack 16, which are held below the manifold body portion 48, as illustrated in FIG. 1. By way of example, the manifold body portion 48 may include 96 liquid outputs 66, although manifold body portion 48 may include other numbers of liquid outputs 66 configured for use with different tip racks 16.
[0031] Manifold body portion 48 may further optionally include a number of holes 67 in the surface opposite to the liquid outputs 66, the holes 67 being configured to receive fiber optic needles 68. The fiber optic needles 68 extend through the manifold body portion 48 and extend into liquid outputs 66 to direct light into the wash sleeve 22. In one example, the fiber optic
needles 68 are attached to the UV-light source 26 to direct UV-light to the wash sleeve 22, although the fiber optic needles 68 may receive light from other light sources in other configurations. The manifold body portion 48 further includes a top support structure 69 including a hole 70 configured to be aligned with hole 40 in the receiving chamber 32. Screw 72 may be inserted through hole 40 in the receiving chamber 32 and hole 70 in the top support structure 68 to securely attach manifold body portion 48 to the receiving chamber 32, although other attachment mechanisms may be utilized. The manifold body portion 48 is constructed of a chemical resistant material such as, by way of example only, polyphenylene sulfide or polyetheretherketone (PEEK), although the manifold body portion 48 may be constructed of other types and numbers of materials.
[0032] FIGS. 7 A and 7B illustrate another exemplary manifold dispenser 114 that may be utilized with the pipette tip washing device of the present disclosure. Manifold dispenser 114 is the same in structure and operation as the manifold dispenser 14 illustrated in FIGS. 6A-6E, except as illustrated and described herein. Like parts will be described using like reference numerals. The manifold dispenser 114 includes a manifold adapter 146 which may be coupled to a manifold body portion 148, and an o-ring adapter 50, although the manifold dispenser 114 may include other elements in other configurations. In this exemplary manifold dispenser 114, the manifold adapter 146 is coupled to the manifold body portion 148 by screws 52, although other attachment mechanisms may be utilized. The o-ring adapter 50 is located at the contact point between the manifold adapter 146 and the manifold body portion 148 to provide a seal when the manifold adapter 146 and the manifold body portion 148 are coupled together.
[0033] The manifold adapter 146 includes a liquid input 58 configured to receive a manifold elbow input 60 which may be coupled to the liquid input fittings 44b, as illustrated in FIG. 1, to transfer liquid into the manifold adapter 146, although other liquid input ports in other configurations may be utilized to introduce liquid into the manifold adapter 146. The manifold adapter 146 also includes a single exit port 162, which is coupled to the manifold body portion 148 to transfer liquid from the manifold adapter 146 to the manifold body portion 148. The manifold adapter 146 is constructed of a chemical resistant material such as, by way of example only, polyphenylene sulfide or polyetheretherketone (PEEK), although the manifold adapter 146 may be constructed of other types and numbers of materials.
[0034] The manifold body portion 148 includes an input port 164 which is configured to be aligned with the exit port 162 of the manifold adapter 146 when the manifold adapter 146 and the manifold body portion 148 are coupled. The input port 164 receives liquid transferred from the manifold adapter 146. The manifold body portion 148 also includes a plurality of liquid outputs 66 configured to operably direct fluid introduced into the manifold dispenser 114 from the manifold body portion 148 into to the wash sleeve 22 to contact a number of laboratory consumables, such as pipette tips. In this example, the liquid outputs 66 are nozzles extending from the manifold body portion 148, although other types of liquid outputs may be utilized in other configurations. The number of liquid outputs 66 in the manifold body portion 148 may match the number of pipette tips in the tip rack 16, which are held below the manifold body portion 148, as illustrated in FIG. 1. By way of example, the manifold body portion 148 may include 96 liquid outputs 66, although manifold body portion 148 may include other numbers of liquid outputs 66 configured for use with different tip racks 16.
[0035] Manifold body portion 148 may further optionally include a number of holes 67 in the surface opposite to the liquid outputs 66, the holes 67 being configured to receive fiber optic needles 68. The fiber optic needles 68 extend through the manifold body portion 148 and extend into liquid outputs 66 to direct light into the wash sleeve 22. In one example, the fiber optic needles 68 are attached to the UV-light source 26 to direct UV-light to the wash sleeve 22, although the fiber optic needles 68 may receive light from other light sources in other configurations. In this embodiment, the manifold body portion 148 further includes holes 170 configured to receive springs 171. The springs 171 are configured to receive shoulder bolts 172 to attach the manifold body portion 148 to the receiving compartment 32, although other attachment mechanisms may be utilized. The springs 171 allow a range of movement of manifold body portion 148 to provide alignment with the pipette tips prior to washing. The manifold body portion 148 is constructed of a chemical resistant material such as, by way of example only, polyphenylene sulfide or polyetheretherketone (PEEK), although the manifold body portion 48 may be constructed of other types and numbers of materials.
[0036] Referring again to FIGS. 1 A and IB, the pipette tip washing device 10 includes four tip racks 16 configured to be inserted into tip rack supports 18, although the pipette tip washing device 10 may include other numbers of tip racks. Although the wash device 10 is described with respect to pipette tips, it is to be understood that the present invention could be utilized with
racks which hold other types of laboratory consumables, such as laboratory consumables with similar configurations to pipette tips. Further, the present technology may be utilized with pipette tips of various sizes. By way of example 1, 2, 8, 16 or more tip racks 16 may be utilized for maximization of the throughput in the space available in the receiving compartment 32. In this example, the tip racks 16 hold 96 pipette tips for a total of 384 pipette tips in the pipette tip washing device, although the tip racks 16 may hold other numbers of pipette tips, or other laboratory consumables. The tip rack supports 18 support the tip racks 16 above the wash sleeve 22.
[0037] The middle compartment 20 of pipette tip washing device 10 is configured to be attached to the top compartment 12 through hinges 74 such that the top compartment 12 may be lifted in order to insert tip racks 16 into tip rack support 18, although other attachment mechanisms may be utilized to attach the middle compartment 20 to the top compartment 12. The middle compartment 20 is capable of receiving fluid output by the one or more manifold dispensers 14 such that fluid does not enter the bottom compartment 24.
[0038] The middle compartment 20 further includes a floor 76 comprising a material transparent to ultraviolet (UV) light, such as by way of example only, quartz, although other transparent materials may be utilized. Floor 76 is configured to provide a water tight-seal that prevents fluid introduced into the middle compartment 20 from entering the bottom compartment 24. Drain 78 exits the floor 76 and directs fluid through drain fitting 80. Drain fitting 80 is coupled to a waste drain elbow fitting 82. The waste drain elbow fitting 82 extends from the drain fitting 80 from the bottom of the middle compartment 20 into the bottom compartment 24 and is coupled to waste output fitting 84 which exits the pipette tip washing device 10 through the bottom compartment 24, although the drain may have other configurations. The middle compartment is further configured to receive the wash sleeve 22. The sidewalls of the middle compartment 20 are constructed of stainless steel, although the middle compartment 20 may be constructed of other numbers and types of materials.
[0039] The wash sleeve 22 or wash chamber is configured to be inserted into the middle compartment 20. The wash sleeve 22 is constructed of a material capable of reflecting at least a portion of the UV-light from the UV-light source 26, although the wash sleeve 22 may be constructed of other types and numbers of materials. In another embodiment, the wash sleeve 22 may be constructed of a transparent material, such as quartz by way of example only, in order to
direct UV-light into the middle compartment 20 from other light sources, such as the light sources illustrated in FIGS. 8A and 8B below. The wash sleeve 22 is replaceable and protects the sidewalls of the middle compartment 20 from fluid.
[0040] The bottom compartment 24 is located below the middle compartment 20 and separated by floor 76. The bottom compartment 24 houses UV-light source 26, such as a UV lamp, which is configured to direct UV-light through the floor 76 into the middle compartment 20, although the UV-light compartment may include other numbers and types of light sources in other configurations. The bottom compartment 24 further may include one or more transducers 27 to direct sound in the ultrasonic range into the middle compartment 20, although other devices may be utilized to direct sound in other ranges to the middle compartment 20. The bottom compartment is easily accessible to replace the UV-light source 26. The bottom compartment 24 is protected from fluids by the floor 76. The bottom compartment 24 further includes an exit port 86 located under drain 78 in floor 76. The drain elbow fitting 82 extends from the drain fitting 80 from the bottom of the middle compartment 20 into the bottom compartment 24 and is coupled to waste output fitting 84 which exits the pipette tip washing device 10 through exit port 86 in the bottom compartment 24, although the drain may have other configurations.
[0041] Another embodiment of an exemplary pipette tip washing device 110 is illustrated in FIGS. 8A-9D. Pipette tip washing device 110 is the same in structure and operation as the pipette tip washing device 10 illustrated in FIGS. 1-3B, except as illustrated and described herein. Like parts will be described using like reference numerals. In this embodiment, top compartment 12 is coupled to middle compartment 20 by rails 190 that allow top compartment 12 to be raised vertically along the rails 190 above middle compartment 20. In one embodiment, top
compartment 12 is raised in an automated process by mechanical cylinder 192 which is coupled to rod 194, as shown in FIG. 8C, although top compartment 12 may be manually raised.
[0042] In this embodiment, middle compartment 20 is disposed on telescopic guides 196 that allow the middle compartment 20 to be opened as a drawer for insertion of tip racks 16, although other devices that allow middle compartment to be opened may be utilized. Middle compartment 20 may be opened and closed in an automated process by cylinder 198, although middle compartment 20 may be opened manually as well. Middle compartment 20 further includes UV light sources 126 disposed on the inside surface thereof. The UV light sources 126 may be
utilized with a transparent wash sleeve to direct light onto pipette tips held in pipette tip racks 16 during operating of the pipette tip washing device 110.
[0043] In this embodiment, the middle compartment 20 further includes mechanical cylinders 199 that may operatively raise and lower the tip racks 16 when the top compartment 12 is in an open position. The mechanical cylinders 199 may be utilized to agitate the pipette tips to improve wash quality during the wash process or to assist in the drying process.
[0044] Referring now to FIGS. 9A-9D, the pipette tip washing device 110 is illustrated in various states of operation. FIG. 9 A shows the pipette tip washing device 110 in an opened position with top compartment 12 raised and middle compartment 20 opened as a drawer for the insertion of pipette tips. FIG. 9B shows the pipette tip washing device 110 in the closed position for washing the pipette tips. FIGS. 9C and 9D illustrate the movement of the tip racks 16 with the top compartment 12 raised in order to agitate the pipette tips to assist in the drying process.
[0045] A method for washing pipette tips using the pipette tip washing device 10 will be described with reference to FIGS. 1-9D. One or more tip racks 16 containing pipette tips are loaded into the pipette washing device 10, although the present method may be utilized for other laboratory consumables. The one or more tip racks 16 are supported in the pipette tip washing device 10 by tip rack support 18. The one or more tip racks 16 may hold 24, 48, 96, 384, or 1536 pipette tips, by way of example, although the one or more tip racks 16 may hold other numbers of pipette tips. The pipette tip washing device 10 may be utilized with pipette tips with volumes of 10μΙ_,-5ηιΙ_,, such as ΙΟμΙ., 50μΙ., lmL, or 5mL pipettes, by way of example, with
corresponding lengths between 30mm- 120mm, although the pipette tip washing device 10 may be utilized with pipette tips with other sizes and configurations. Pipette tip washing device 10 may be utilized to clean both conductive and non-conductive pipette tips. Manifold body portions 48 having different numbers of liquid outputs 66 may be interchanged based on the number of pipette tips in the one or more tip racks 16.
[0046] One or more liquid washing or rinsing solutions are directed into the pipette tip washing device 10 through input ports 42. The liquid solutions may be pumped into the pipette tip washing device 10 by the pump in the external control source (not shown). In one embodiment, the liquid may be provided in a pressurized flow to assist in the cleaning process. The liquid solutions may be deionized water, bleach, hydrogen peroxide, one or more enzyme solutions, ethanol, detergent, purified water, water, ammonia, isopropanol, alcohol, a solution
capable of substantially rinsing or decontaminating plastic, or combinations thereof, although other liquid solutions in other combinations may be utilized. In one example, the following liquid solutions are applied for washing/rinsing prior to draining: a) deionized water, b) deionized water and 5-10% bleach solution, c) deionized water, d) ethanol, although other liquid solutions may be applied in other combinations.
[0047] In one embodiment of the invention, one of the cleaning solutions may include a mixture of sodium percarbonate and a diluent. Sodium percarbonate (Na2CC"3 · 1.5H202) is an adduct of sodium carbonate and hydrogen peroxide. Sodium percarbonate with 13-14% active oxygen may be used. The diluent may comprise deionized water, purified water, or the like, or any other suitable diluent. The sodium percarbonate cleaning solution may include one or more other active or inactive ingredients (in addition to the diluent), or may exclude any other ingredients.
[0048] Sodium percarbonate is a powder that is mixed in the diluent to form the desired cleaning solution. In one specific embodiment of the invention, 25 grams (g) of sodium percarbonate is mixed in 2 liters (L) of deionized water, such that the resulting solution has a concentration of sodium percarbonate of 1.2% w/w. In alternative embodiments, the cleaning solution may have a concentration of sodium percarbonate of between about 0.9% w/w (e.g., 17.5g of sodium percarbonate in 2L of water) to 1.6% w/w (e.g., 32.5g of sodium percarbonate in 2L of water). The sodium percarbonate powder is added to the diluent, and then the combination is mixed via any suitable means (e.g., shaking vigorously or via stir bar) to suitably dissolve the sodium percarbonate powder in the diluent.
[0049] The sodium percarbonate cleaning solution may be used to cleaning laboratory consumables, such as pipette tips, in a washing device of embodiments of the claimed invention. The sodium percarbonate cleaning solution may be used as the sole cleaning solution (although one or more rinsing liquids or solutions may be used), or the sodium percarbonate cleaning solution may be used in conjunction with one or more other cleaning solutions.
[0050] The liquid solutions enter the manifold dispensers 14 through the liquid input 58 in the manifold adapter 46. The liquid solutions are then directed through the manifold body portion 48. The liquid solutions exit the manifold body portion 48 at liquid outputs 66 and enter the middle compartment 20 to contact the pipette tips held in the one or more tip racks 16. The
liquid outputs 66 may direct the liquid solution through the pipette tips or may possibly direct the pipette tips to uptake washing fluid for washing/rinsing.
[0051] The liquid solutions enter the middle compartment 20. Quartz floor 76 prevents the liquid solution from entering the bottom compartment 24. The liquid solution may exit the pipette washing device 10 through drain 78. In one example, the pipette tips may be submerged in the liquid solutions that are filled on top of the quartz floor 76 prior to being removed from the middle compartment 20 through drain 78.
[0052] The liquid solutions are then removed from the pipette washing device 10 through drain 78. In one example, 4 cycles of liquid solutions (water rinse, soap rinse, etc.) are directed into the middle compartment 20 prior to draining the fluids. After draining the liquid solutions, the pipette tips are at least substantially dried, although the pipette tips may be completely dried. In one example, the pipette tips are substantially dried by agitating the pipette tips, although other drying mechanisms may be utilized to substantially dry the pipette tips.
[0053] Throughout the wash process, the UV light source 26, by way of example, is engaged to expose the outer surfaces of the pipettes to ultraviolet light to sterilize the pipettes. The UV light source 26 directs light to the pipettes through the quartz floor 76, although UV light may be directed from other directions from other UV light sources, such as light sources 126 as illustrated in FIGS. 8 A and 8B. The UV light source 26 may further direct light through the fiber optic needles 68 located in the openings of the liquid outputs 66 in the manifold body portion 48. The fiber optic needles 66 direct UV light to the inside of the pipette tips to provide sterilization of the interior surfaces of the pipette tips. Additionally, the pipette tips may be exposed to sound in an ultrasonic range from the one or more transducers 27, which direct the sound in the ultrasonic range into the washing chamber.
[0054] Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit
the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.
Claims
1. A cleaning solution for cleaning laboratory consumables comprising:
sodium percarbonate in a concentration of from 0.9% w/w to 1.6% w/w based on a total weight of the solution; and
at least one diluent to 100% w/w.
2. The cleaning solution of claim 1, wherein the laboratory consumables comprise pipette tips.
3. The cleaning solution of claim 1, where the sodium percarbonate is in a concentration of 1.2% w/w based on the total weight of the solution.
4. The cleaning solution of claim 1, wherein the at least one diluent comprises deionized water.
5. A cleaning solution for laboratory consumables consisting essentially of:
sodium percarbonate in a concentration of from 0.9% w/w to 1.6% w/w based on a total weight of the solution; and
at least one diluent to 100% w/w.
6. The cleaning solution of claim 5, wherein the laboratory consumables comprise pipette tips.
7. The cleaning solution of claim 5, where the sodium percarbonate is in a concentration of 1.2% w/w based on the total weight of the solution.
8. The cleaning solution of claim 5, wherein the at least one diluent comprises deionized water.
9. A method for washing laboratory consumables, comprising:
directing one or more liquid solutions to contact a plurality of laboratory consumables held by a rack, the directing comprising introducing the one or more liquid solutions into a fluid input and out of a plurality of fluid outputs of a manifold; and
draining the one or more liquid solutions via a waste drain disposed proximate to a washing chamber configured to receive the one or more directed liquid solutions following the contact by the one or more liquid solutions with the plurality of laboratory consumables;
substantially drying the plurality of laboratory consumables;
wherein at least one of the one or more liquid solutions comprises a mixture of sodium percarbonate in a concentration of from 0.9% w/w to 1.6% w/w based on a total weight of the solution and at least one diluent to 100% w/w.
10. The method of claim 9, where the sodium percarbonate is in a concentration of 1.2% w/w based on the total weight of the solution.
11. The method of claim 9, wherein the at least one diluent comprises deionized water.
12. The method of claim 9, further comprising substantially submerging the plurality of laboratory consumables in at least one of the one or more liquid solutions prior to draining the one or more liquid solutions from the waste drain.
13. The method of claim 9, wherein the directing further comprising at least one of washing or rinsing the plurality of laboratory consumables with at least two liquid solutions prior to exposing the plurality of laboratory consumables to the light in the UV range.
14. The method of claim 9, wherein the one or more liquid cleaning solutions further comprise one or more of deionized water, bleach, hydrogen peroxide, one or more enzyme solutions, ethanol, detergent, purified water, water, ammonia, isopropanol, alcohol, a solution capable of substantially rinsing or decontaminating plastic, or combinations thereof.
15. The method of claim 9, further comprising:
exposing the plurality of laboratory consumables to light in an ultraviolet (UV) range, the exposing comprising illuminating a light source to direct the light in the UV range through one or more of a UV transparent floor or one or more walls of the washing chamber;
16. The method of claim 15, wherein the exposing further comprises exposing at least an interior portion of the each of the plurality of laboratory consumables to the light in the UV range via a plurality of fiber optic channels extending from the manifold into the plurality of fluid outputs.
17. The method of claim 15, wherein the exposing further comprises introducing the light in the UV range into the plurality of fiber optic channels directly from the light source.
18. The method of claim 15, wherein the exposing comprises exposing both an interior and an exterior portion of each of the plurality of laboratory consumables to the light in the UV range.
19. The method of claim 9, wherein the directing further comprises directing the one or more liquid solutions to contact a plurality of laboratory consumables held by a plurality of racks and wherein the plurality of laboratory consumables comprise pipette tips.
20. The method of claim 9, further comprising exposing the plurality of laboratory consumables to sound in an ultrasonic range, the exposing comprising energizing one or more transducers to direct the sound in the ultrasonic range into the washing chamber.
21. The method of claim 9, further comprising agitating the plurality of laboratory consumables.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/718,756 US9579696B2 (en) | 2013-04-30 | 2015-05-21 | Cleaning solution and method of cleaning laboratory consumables |
US14/718,756 | 2015-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016187092A1 true WO2016187092A1 (en) | 2016-11-24 |
Family
ID=57320375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2016/032634 WO2016187092A1 (en) | 2015-05-21 | 2016-05-16 | Cleaning solution and method of cleaning laboratory consumables |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016187092A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107349984A (en) * | 2017-07-25 | 2017-11-17 | 雷方淳 | Electrical pipette device assembly |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4753681A (en) * | 1986-09-30 | 1988-06-28 | Millipore Corporation | Method for defouling electrodeionization apparatus |
US20030078178A1 (en) * | 1999-11-26 | 2003-04-24 | Ramirez Jose A. | Low-foaming hydrogen peroxide cleaning solution for organic soils |
US20140318574A1 (en) * | 2013-04-30 | 2014-10-30 | Health Diagnostic Laboratory, Inc. | Pipette tip washing device |
US20150251226A1 (en) * | 2013-04-30 | 2015-09-10 | Grenova, Llc | Cleaning solution and method of cleaning laboratory consumables |
-
2016
- 2016-05-16 WO PCT/US2016/032634 patent/WO2016187092A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4753681A (en) * | 1986-09-30 | 1988-06-28 | Millipore Corporation | Method for defouling electrodeionization apparatus |
US20030078178A1 (en) * | 1999-11-26 | 2003-04-24 | Ramirez Jose A. | Low-foaming hydrogen peroxide cleaning solution for organic soils |
US20140318574A1 (en) * | 2013-04-30 | 2014-10-30 | Health Diagnostic Laboratory, Inc. | Pipette tip washing device |
US20150251226A1 (en) * | 2013-04-30 | 2015-09-10 | Grenova, Llc | Cleaning solution and method of cleaning laboratory consumables |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107349984A (en) * | 2017-07-25 | 2017-11-17 | 雷方淳 | Electrical pipette device assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10576175B2 (en) | Method for washing laboratory consumables | |
US9579696B2 (en) | Cleaning solution and method of cleaning laboratory consumables | |
US10631707B2 (en) | Pipette tip washing device | |
US9744570B2 (en) | Pipette tip washing device | |
EP1633483B1 (en) | Biological apparatus | |
US9480987B2 (en) | Apparatus for process automation using a pin and bushing array | |
CN108139420A (en) | Modularized liquid processing system | |
JPH11128325A (en) | Cleaning process monitor | |
US10024599B2 (en) | Laboratory consumable drying device | |
US20210239726A1 (en) | Reagent delivery and waste management system | |
CN111468460A (en) | Full-automatic biological laboratory ware cleaning, disinfecting and air-drying system | |
WO2016187092A1 (en) | Cleaning solution and method of cleaning laboratory consumables | |
US20160158814A1 (en) | Fluid or semi-fluid dispensing system and method | |
WO2017011243A1 (en) | Pipette tip washing device and method and related fluid or semi-fluid dispensing system and method | |
KR100741523B1 (en) | Automated stainer for microorganism or microorganism in blood | |
WO2017139262A1 (en) | Pipette tip washing device | |
JP2000314739A (en) | Cleaning mechanism for analysis device | |
CN216117645U (en) | Novel biochemical sample automatic processing and analysis device | |
JPH05240870A (en) | Cleaning mechanism of analyzing apparatus | |
CN212759943U (en) | Full-automatic biological laboratory ware processing system | |
WO2023038851A1 (en) | Laboratory well plate washing device and associated method | |
JP2002181690A (en) | Particle diameter distribution measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16797070 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16797070 Country of ref document: EP Kind code of ref document: A1 |