WO2016186455A1 - Method and apparatus for purifying nanodiamond using medium fluidized bed - Google Patents

Method and apparatus for purifying nanodiamond using medium fluidized bed Download PDF

Info

Publication number
WO2016186455A1
WO2016186455A1 PCT/KR2016/005279 KR2016005279W WO2016186455A1 WO 2016186455 A1 WO2016186455 A1 WO 2016186455A1 KR 2016005279 W KR2016005279 W KR 2016005279W WO 2016186455 A1 WO2016186455 A1 WO 2016186455A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanodiamond
fluidized bed
bed reactor
oxidizing gas
aggregates
Prior art date
Application number
PCT/KR2016/005279
Other languages
French (fr)
Korean (ko)
Inventor
이동현
정승우
권명택
Original Assignee
나노리소스 주식회사
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노리소스 주식회사, 성균관대학교산학협력단 filed Critical 나노리소스 주식회사
Publication of WO2016186455A1 publication Critical patent/WO2016186455A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles

Definitions

  • the present invention relates to a nanodiamond purification method and apparatus using a medium fluidized bed. More specifically, the present invention relates to a nanodiamond purification method and apparatus for selectively removing a graphite layer by fluidizing raw nanodiamond aggregates formed by an explosion method.
  • DND Detonation Nano Diamond
  • SWCNT single wall
  • DWCNT double wall
  • MWCNT multiwall carbon nanotubes
  • DND occurs instantaneously when an explosive substance reacts with a mixture of explosive trinitrotoluene (TNT) and white crystalline non-aqueous explosive (RDX), at a certain ratio, for example, in the tens percent by weight.
  • TNT explosive trinitrotoluene
  • RDX white crystalline non-aqueous explosive
  • the carbon component of the composition generates nuclei (carbon SP3 structure) of diamond crystal phase, and the nucleus grows to a certain size.
  • DND has little toxicity in vivo and is biocompatible due to the stability of the structure, and has a very small particle diameter of several nm in size and a specific surface area of 250 m 2 / g to 450 m 2 / g, which is usually about tens of times higher than that of diamond. It is known to exhibit unique electrical, chemical and optical characteristics, such as being several hundred times larger and including a large number of hydrophilic functional groups on its surface. In particular, recently, researches for attaching a functional group to a surface to have a biomedical function or to attach a useful substance having an anti-biomedical function have been in the spotlight as a drug delivery material. For this purpose, high purity and uniform nanodiamonds are essential.
  • DND has a very short explosion process and contraction occurs at the same time, which makes it difficult to separate single or several particle clusters due to the strong aggregation of single diamond particles. Impurities contained in were also difficult to purify.
  • the raw nanodiamond obtained by the explosion reaction in the reaction chamber contains not only diamond particles but also metals, metal oxides and other impurities.
  • chemicals are used to remove impurities by the wet method, but the wet method is not environmentally friendly and requires a high processing cost.
  • U.S. Patent No. 8,940,267 discloses a method for purifying raw nanodiamonds in a liquid phase, and Japanese Patent Application JP 2006-273704 uses a mechanical method.
  • US Patent Publication No. US2010 / 0028675 uses a method of heating nanodiamonds at 375 to 630 ° C. under the presence of oxygen gas.
  • the method disclosed in the U.S. Patent Application has a problem that it is difficult to purify a large amount of nanodiamonds with a uniform quality because it is simply heated in air.
  • the present invention is to provide a method for securing a uniform oxidation temperature to purify the nanodiamonds to a uniform quality.
  • the present invention provides a method for selectively removing amorphous carbon and other impurities including graphite layers present on the surface of nanodiamond aggregates.
  • the present invention is to provide a method for reducing the purification time and temperature of the raw nanodiamond aggregates.
  • It relates to a nanodiamond purification method using a medium fluidized bed comprising separating and recovering the gas discharged to the top of the fluidized bed reactor and the nanodiamond aggregates.
  • a fluidized bed reactor formed on the oxidizing gas and flowing media particles and raw material nanodiamond aggregates to the oxidizing gas introduced from the oxidizing gas supply unit;
  • a raw material supply unit supplying raw nanodiamond aggregates to the fluidized bed reactor
  • nanodiamond purification device including a separation unit for separating the gas and the nanodiamond aggregates are connected to the fluidized bed reactor upper side.
  • the method and apparatus of the present invention use a fluidized bed reactor, it is possible to ensure a uniform oxidation temperature and to improve the contact efficiency between the oxidizing gas and the raw material nanodiamond aggregates.
  • the present invention can increase the mixing and contact efficiency by using a fluid medium such as diamond, it is possible to remove impurities such as graphite layer more quickly.
  • Figure 2 shows a nanodiamond purification apparatus using a medium fluidized bed according to an embodiment of the present invention.
  • FIG 3 shows a nanodiamond purification apparatus using a fluidized bed according to another embodiment of the present invention.
  • FIG. 4 shows a nanodiamond purification apparatus using a medium fluidized bed according to another embodiment of the present invention.
  • the present invention relates to a nanodiamond purification method and apparatus using a medium fluidized bed.
  • FIG. 1 shows the structure of nanodiamond aggregates formed by explosion.
  • Figure 2 shows a nanodiamond purification apparatus using a medium fluidized bed according to an embodiment of the present invention.
  • a graphite layer (sp2 structure) 20 forms a shell along the surface thereof.
  • the nanodiamond of the single particle shape 10 is typically formed by including a core 1 having a diamond crystal structure (SP3) and a graphite layer (sp2 structure, 2) surrounding it, the size of the core is 4 ⁇ 7nm
  • the graphite layer is about 1 nm.
  • the nanodiamond aggregate 100 includes a portion of amorphous carbon such as carbon, soot, coke, and graphene in addition to the graphite layer 20 on the surface.
  • amorphous carbon such as carbon, soot, coke, and graphene
  • the present invention describes only the graphite layer, which occupies most of the amorphous carbon formed on the surface of the nanodiamond aggregate, and does not remove carbon, soot, coke and other amorphous carbons and graphene by the method of the present invention. It is not impossible. That is, in the present invention, “graphite removal” is used to encompass that amorphous carbons and graphene that may be formed on the nanodiamond surface may also be removed.
  • Nanodiamond purification method and apparatus of the present invention is a method and apparatus for separating and removing the graphite layer 20 surrounding the nanodiamond aggregate (100).
  • the present invention oxidizes the graphite layer 20 by fluidizing the nanodiamond aggregates 100.
  • the nanodiamond purification method of the present invention includes a feeding step, a fluidization step and a separation recovery step.
  • the nanodiamond purification method of the present invention can use the apparatus of FIG. 2 comprising a fluidized bed reactor.
  • the nanodiamond purification apparatus of the present invention includes an oxidizing gas supply unit 10, a fluidized bed reactor 20, a raw material supply unit 30, and a separation unit 40.
  • the feeding step is to inject the oxidizing gas and the raw material nanodiamond aggregates 31 into the fluidized bed reactor 20.
  • the oxidizing gas may be supplied to the oxidizing gas supply unit 10 and the raw material nanodiamond aggregates 31 through the raw material supply unit 30.
  • oxidizing gas air, oxygen, water vapor, or the like may be used.
  • the fluidization step is a step of flowing the media particles and the nanodiamond aggregates into the oxidizing gas in the fluidized bed reactor (20).
  • the fluidization step is an oxidation reaction between the oxidizing gas and the graphite layer surrounding the nanodiamond aggregates.
  • the oxidation reaction in the fluidized bed reactor takes place as follows.
  • Carbon monoxide (CO) may also be generated in the oxidation reaction.
  • the flow rate of the oxidizing gas in the fluidized bed, the reaction temperature, etc. may be appropriately adjusted according to the size, content, and the like of the nanodiamond injected.
  • the oxidation reaction can be carried out in the range of 200 ⁇ 650 °C, the flow rate of the oxidizing gas can be varied depending on the size and processing speed of the media particles.
  • the surface of the nanodiamond aggregate is a carbon material having a graphite (sp2) structure.
  • the nanodiamond aggregates are fluidized to efficiently perform oxidation reaction between the graphite layer and the oxidizing gas. That is, fluidization using a fluidized bed reactor rapidly mixes the nanodiamond aggregated particles so that a uniform temperature can be applied to the entirety of the reactor and consequently the surface of the nanodiamond aggregates flowing in the reactor. Since the contact efficiency with the oxidizing gas is improved, the reaction rate between the oxidizing gas and the graphite layer can also be increased. In addition, the use of a fluidization reactor allows large-scale oxidation reactions that can be mass produced.
  • the present invention can more efficiently perform the oxidation reaction of the nanodiamond aggregates using the media particles 60 in the fluidization step.
  • the media particles may correspond to Geldart A or B particles and may be particles which are no longer oxidized in the above temperature range.
  • the media particles may be any material that does not have a chemical reaction at high temperatures such as diamond, SiO 2, TiO 2, zirconia, steel balls, and the like and has good wear resistance.
  • the size of the media particles may be larger than the size of the raw material nanodiamond aggregates.
  • the fluidized bed reactor 20 is composed of a medium fluidized bed 21 in which most of the media particles flow and a lean layer 22 in which the media solid is present in a very small amount.
  • media particles and the nanodiamond aggregates are suspended by the oxidizing gas flow rate to form a fluidized bed.
  • the present invention uses media particles larger in size than the nanodiamond aggregates, wherein the media particles and the nanoparticles are bonded to each other by van der Waals forces and flow together. Referring to FIG. 1, it is conceptually shown that the nanodiamond aggregate 31 is wrapped around the media particle 60.
  • the fluidization step may be mainly carried out in the medium fluidized bed 21 of the fluidized bed reactor 20.
  • the flow rate of the oxidizing gas in the medium fluidized bed, the reaction temperature, etc. may be appropriately adjusted according to the size, content, etc. of the raw nanodiamond and the medium particles to be injected.
  • the present invention improves heat transfer and mass transfer between the media particles in the fluidized bed and aggregates including nanodiamonds, thereby effectively oxidizing the graphite layer and graphene attached to the surface of the nanodiamonds to be removed in the gas phase with carbon dioxide or carbon monoxide.
  • the separation recovery step is a step of separating and recovering the nanodiamond aggregates from which gas and graphite discharged to the fluidized bed reactor are removed.
  • Separation recovery step may use the cyclone 40 as the separation unit 40, and may further use a water trap (70). Cyclones can be used to capture unreacted nanodiamond aggregates or media particles, and purified nanodiamond aggregates can also be collected according to particle size.
  • the water trap 70 is capable of separating from the gas the purified nanodiamond aggregates having a particle size of 100 nm or less in sun nano. That is, when the gas containing the nanodiamond aggregates passes through the water trap, the nanodiamond aggregates may be dispersed in the water, and the gas may be discharged upward.
  • the method may increase the fluidity of the medium and the nanodiamond aggregates by vibrating the fluidized bed reactor.
  • the fluidity of the media particles having a relatively large particle size may be further increased, and thus the fluidity of the nanodiamond aggregates may be increased.
  • the vibration is periodically applied to the entire fluidized bed, even when the size of the medium particles is large, the minimum fluidization rate of the particles can be lowered.
  • the method may vibrate the fluidized bed reactor by adding a vibrator 80 to the bottom outer surface of the fluidized bed reactor.
  • the vibrator 80 is shown in FIG. 3.
  • the intensity of the vibration applied to the vibrator 80 may be appropriately controlled according to the size of the refining apparatus or the size, density of particles to be injected.
  • the vibration unit may apply a vibration of 0.01 ⁇ 100 Hz to the purification apparatus.
  • the method may increase the fluidity of the medium by additionally supplying air to the bottom of the fluidized bed reactor periodically (pulsed-air). Further supply of air may use the air supply unit 90, as shown in FIG.
  • the method of the present invention can periodically inject air into the medium fluidized bed 21 in a pulsed manner to eliminate channeling phenomenon and the like.
  • the fluidity of the media particles can be increased, and the amount of oxidizing gas per unit time can be reduced. Therefore, supplying air in pulses improves the fluidity of the media particles and effectively purifies the nanodiamonds from the fluidized bed.
  • the present invention provides a nanodiamond purification device.
  • the purification apparatus of the present invention includes an oxidizing gas supply unit 10, a fluidized bed reactor 20, a raw material supply unit 30, and a separation unit 40.
  • the oxidizing gas supply unit 10 supplies the oxidizing gas into the purification apparatus.
  • the fluidized bed reactor 20 is formed on the oxidizing gas and flows media particles and raw nanodiamond aggregates to the oxidizing gas introduced from the oxidizing gas supply unit.
  • the purification apparatus includes a dispersion plate 50 located between the oxidizing gas supply unit 10 and the fluidized bed reactor 20.
  • the oxidizing gas is supplied from an external source and provided at a constant flow rate to the fluidized bed reactor 20 through the dispersion plate 50.
  • the dispersion plate may be a bubble cap type dispersion plate.
  • the raw material supply unit 30 supplies the raw material nanodiamond aggregates to the fluidized bed reactor.
  • the separation unit is connected to the fluidized bed reactor upper side to separate the discharged gas and the nanodiamond aggregates.
  • the separator may use a cyclone 40 and may additionally use a water trap 70.
  • cyclones can be used to capture unreacted nanodiamond aggregates or media particles, and purified nanodiamond aggregates can also be collected according to particle size.
  • the cyclone 40 and the water trap 70 may be referred to the above description.
  • the fluidized bed reactor 20 may be an oxidation reactor in which the oxidizing gas and the graphite layer surrounding the nanodiamond aggregates react.
  • Oxidation reaction in the fluidized bed reactor can be referred to the above-described details.
  • the apparatus of the present invention can more efficiently perform the oxidation reaction of the nanodiamond aggregates by flowing the media particles inside the fluidized bed reactor.
  • the above-mentioned contents may also be referred to the media particles and the media fluidized layer.
  • FIG. 2 is a device in which a vibrator 80 is added to the device of FIG. 1.
  • the apparatus of the present invention may further include a vibrator 80 at the bottom or the side of the oxidizing gas supply part of FIG. 1.
  • the vibrator 80 may increase fluidity of media particles having a relatively large particle size.
  • the intensity of the vibration applied to the vibrator 80 may be appropriately controlled according to the size of the refining apparatus or the size, density of particles to be injected.
  • the vibration unit may apply a vibration of 0.01 ⁇ 100 Hz to the purification apparatus.
  • the apparatus of the present invention may further include an air supply unit 80 that may periodically supply air to the oxidizing gas supply unit of FIG. 1.
  • Purification apparatus of the present invention can prevent the occurrence of abnormal operation by periodically injecting air into the medium fluidized bed 21 through the air supply unit (90).
  • the present invention can be used as a drug carrier by purifying the explosive nanodiamond.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)

Abstract

The present invention relates to a method and apparatus for purifying nanodiamond, wherein a raw nanodiamond aggregate formed by an explosion method is fluidized to selectively remove a graphite (amorphous carbon) layer. The method and apparatus of the present invention use a fluidized bed reactor, thereby ensuring a uniform oxidation temperature and increasing the contact efficiency between oxidized gas and the raw nanodiamond aggregate. Furthermore, the present invention can increase the mixing and contact efficiencies using a fluidized medium, such as diamond, thereby removing impurities, such as the graphite layer, more rapidly.

Description

매체유동층을 이용한 나노다이아몬드 정제 방법 및 장치Nanodiamond purification method and apparatus using a medium fluidized bed
본 발명은 매체 유동층을 이용한 나노다이아몬드 정제 방법 및 장치에 관한 것이다. 보다 구체적으로, 본 발명은 폭발법에 의하여 형성된 원료 나노 다이아몬드 응집체를 유동화시켜 흑연층을 선택적으로 제거하는 나노다이아몬드 정제 방법 및 장치에 관한 것이다.The present invention relates to a nanodiamond purification method and apparatus using a medium fluidized bed. More specifically, the present invention relates to a nanodiamond purification method and apparatus for selectively removing a graphite layer by fluidizing raw nanodiamond aggregates formed by an explosion method.
폭발반응에 의한 나노 다이아몬드(DND, Detonation Nano Diamond))는 플러렌(fullerenes), 단일벽(SWCNT), 이중벽(DWCNT), 및 다중벽의 탄소나노튜브(MWCNT)와 같은 다른 탄소나노튜브 입자 및 나노섬유와 같은 다른 탄소 나노입자에 비해 1960년대 구소련에서 상대적으로 일찍 발견되었다. 처음에 DND는 구소련 시절 군사기술로 여겨졌으며 1990년 이전까지는 외부에 잘 알려지지 않다가 두개의 획기적인 논문이 국제학회지에 공개된 이후 관심의 대상이 되기 시작한 물질이다.Detonation Nano Diamond (DND) by explosion reaction is used for other carbon nanotube particles such as fullerenes, single wall (SWCNT), double wall (DWCNT), and multiwall carbon nanotubes (MWCNT). It was found relatively early in the Soviet Union in the 1960s compared to other carbon nanoparticles such as fibers. Initially, DND was considered a military technology in the former Soviet Union and was not well known until 1990, but began to attract attention after two groundbreaking papers were published in the international journal.
폭발반응에 의한 나노 다이아몬드의 생성은 가스 대기하, 예를 들면, 이산화탄소(CO2) 또는 물(H2O) 또는 다른 액체상 환원제 조건하에서 밀폐된 금속합금화된 챔버내에서 이루어지는데 이때 사용하는 폭발물질로는 2,4,6-트리니트로톨루엔(TNT)/1,3,5-트리니트로트리아자시클로헥산(헥소겐 또는 RDX(Research Development Explosive) 라고도 함)이 일정한 비율로 섞여진 상태에서 폭발반응으로 얻어진다.The production of nanodiamonds by an explosion reaction takes place in a closed metal alloyed chamber under a gas atmosphere, for example under carbon dioxide (CO2) or water (H2O) or other liquid reducing agent conditions. Obtained by explosion reaction with, 4,6-trinitrotoluene (TNT) / 1,3,5-trinitrotriazacyclohexane (also known as hexogen or RDX).
말하자면 DND는 폭발성이 있는 트리니트로톨루엔(T.N.T)과 백색 결정성 비수용성 폭발성분인 RDX(Research department explosive)를 일정비율 예를 들면 각기 수십% 중량비로 혼합된 상태의 폭발물질이 반응할 때 순간적으로 발생된 고온 고압 분위기에서 조성물의 탄소성분이 다이아몬드 결정상의 핵(탄소 SP3 구조) 생성하여 일정한 크기로 핵이 성장하게 되고 또한, 흑연(SP2 구조) 표면에는 C, O, H, N로 이루어진 단수 및 복수의 작용기들이 존재한다. 이의 대표적인 작용기로는 COOH, -C=O, -NH2, -CHO,-OH, -NO2,-C-O-C- 등이 다수가 있는 것으로 알려져 있다. In other words, DND occurs instantaneously when an explosive substance reacts with a mixture of explosive trinitrotoluene (TNT) and white crystalline non-aqueous explosive (RDX), at a certain ratio, for example, in the tens percent by weight. In the high temperature and high pressure atmosphere, the carbon component of the composition generates nuclei (carbon SP3 structure) of diamond crystal phase, and the nucleus grows to a certain size. There are functional groups of. Representative functional groups thereof are known to have a large number of COOH, -C = O, -NH2, -CHO, -OH, -NO2, -C-O-C- and the like.
여러 연구에 의하면 DND는 생체내에서 독성이 거의 없고 및 구조체의 안정성으로 인하여 생체적합성을 가지며, 또한, 입경이 매우 작은 수nm 크기와 비표면적이 250m2/g~450m2/g으로 통상 다이아몬드 대비 약 수십배 내지 수백배로 크며 그 표면에는 다수의 친수성 작용기를 포함하고 있는 등 독특한 전기적, 화학적, 광학적 특징을 나타내고 있는 것으로 알려져 있다. 특히 최근 들어 표면에 기능기를 부착하여 바이오 의약적기능을 갖게 하거나 또는 항바이오의약적 기능이 있는 유용한 물질을 부착하는 연구 예를 들면 의약전달물질로 각광을 받고 있다. 이를 위해서는 순도가 높고 균일한 나노다이아몬드가 필수적이다.Several studies have shown that DND has little toxicity in vivo and is biocompatible due to the stability of the structure, and has a very small particle diameter of several nm in size and a specific surface area of 250 m 2 / g to 450 m 2 / g, which is usually about tens of times higher than that of diamond. It is known to exhibit unique electrical, chemical and optical characteristics, such as being several hundred times larger and including a large number of hydrophilic functional groups on its surface. In particular, recently, researches for attaching a functional group to a surface to have a biomedical function or to attach a useful substance having an anti-biomedical function have been in the spotlight as a drug delivery material. For this purpose, high purity and uniform nanodiamonds are essential.
그럼에도 불구하고 DND는 폭발반응과정이 매우 짧고 폭발과 동시에 수축이 일어나기 때문에 생성된 단일다이아몬드 입자상들이 강하게 뭉치는 현상으로 인하여 단일 또는 몇 개의 입자군집들로 분리하는 것이 매우 어려울 뿐 아니라 더욱이 이렇게 뭉쳐있는 내부에 포함된 불순물도 정제하기 어려운 단점이 있었다. Nevertheless, DND has a very short explosion process and contraction occurs at the same time, which makes it difficult to separate single or several particle clusters due to the strong aggregation of single diamond particles. Impurities contained in were also difficult to purify.
반응 챔버에서 폭발 반응에 의해 얻어진 원료 나노다이아몬드에는 다이아몬드 입자뿐만 아니라 금속, 금속산화물, 기타 불순물이 포함되어 있다. 일반적으로 화학 약품을 사용하여 습식법으로 불순물을 제거하고 있으나 습식법은 친환경적이지 않고 처리비용도 많이 소요된다. The raw nanodiamond obtained by the explosion reaction in the reaction chamber contains not only diamond particles but also metals, metal oxides and other impurities. In general, chemicals are used to remove impurities by the wet method, but the wet method is not environmentally friendly and requires a high processing cost.
미국 등록특허 US 8,940,267 에는 액체상에서 원료 나노다이아몬드를 정제하는 방법이 개시되어 있고, 일본공개 특허 JP 2006-273704에는 기계적 방법을 사용하고 있다. U.S. Patent No. 8,940,267 discloses a method for purifying raw nanodiamonds in a liquid phase, and Japanese Patent Application JP 2006-273704 uses a mechanical method.
최근, 습식법으로 나노다이아몬드를 정제하는 것의 문제점을 해결하고자 미국 공개 특허US2010/0028675호에는 나노다이아몬드를 산소가스가 존재하는 조건에서 375~630℃로 가열하는 방법을 사용하고 있다. 하지만, 상기 미국 공개특허에서 제시된 방법은 공기 중에서 단순 가열하는 정도에 그쳐 대량의 나노다이아몬드들을 균일한 품질로 정제하기가 어렵다는 문제가 있었다.Recently, in order to solve the problem of purifying nanodiamonds by a wet method, US Patent Publication No. US2010 / 0028675 uses a method of heating nanodiamonds at 375 to 630 ° C. under the presence of oxygen gas. However, the method disclosed in the U.S. Patent Application has a problem that it is difficult to purify a large amount of nanodiamonds with a uniform quality because it is simply heated in air.
본 발명은 균일한 산화 온도를 확보하여 나노다이아몬드들을 균일한 품질로 정제하는 방법을 제공하는 것이다.The present invention is to provide a method for securing a uniform oxidation temperature to purify the nanodiamonds to a uniform quality.
본 발명은 나노다이아몬드 응집체 표면에 존재하는 흑연층을 포함한 무정형 카본(amorphous carbon) 및 기타 불순물을 선택적으로 제거하는 방법을 제공하는 것이다.The present invention provides a method for selectively removing amorphous carbon and other impurities including graphite layers present on the surface of nanodiamond aggregates.
본 발명은 원료 나노다이아몬드 응집체의 정제 시간 및 온도를 줄일 수 있는 방법을 제공하는 것이다.The present invention is to provide a method for reducing the purification time and temperature of the raw nanodiamond aggregates.
본 발명의 하나의 양상은 One aspect of the present invention
산화기체 및 나노다이아몬드 응집체를 유동층 반응기에 공급하는 단계 ;Supplying oxidizing gas and nanodiamond aggregates to a fluidized bed reactor;
유동층 반응기 내에서 매체입자와 상기 나노다이아몬드 응집체를 상기 산화기체로 유동시키는 단계 ;Flowing media particles and the nanodiamond aggregates into the oxidizing gas in a fluidized bed reactor;
상기 유동층 반응기 상부로 배출되는 가스 및 상기 나노다이아몬드 응집체를 분리 회수하는 단계를 포함하는 매체 유동층을 이용한 나노다이아몬드 정제 방법에 관계한다. It relates to a nanodiamond purification method using a medium fluidized bed comprising separating and recovering the gas discharged to the top of the fluidized bed reactor and the nanodiamond aggregates.
다른 양상에 본 발명은 In another aspect the invention
산화기체 공급부 ;Oxidizing gas supply;
상기 산화기체 상부에 형성되고, 매체입자와 원료 나노다이아몬드 응집체를 상기 산화기체 공급부로부터 유입된 산화기체로 유동시키는 유동층 반응기 ;A fluidized bed reactor formed on the oxidizing gas and flowing media particles and raw material nanodiamond aggregates to the oxidizing gas introduced from the oxidizing gas supply unit;
상기 유동층 반응기에 원료 나노다이아몬드 응집체를 공급하는 원료공급부 ; 및 A raw material supply unit supplying raw nanodiamond aggregates to the fluidized bed reactor; And
상기 유동층 반응기 상부 측에 연결되어 배출되는 가스 및 상기 나노다이아몬드 응집체를 분리하는 분리부를 포함하는 나노다이아몬드 정제 장치에 관계한다.It relates to a nanodiamond purification device including a separation unit for separating the gas and the nanodiamond aggregates are connected to the fluidized bed reactor upper side.
본 발명의 방법 및 장치는 유동층 반응기를 이용하므로 균일한 산화온도를 확보할 수 있고, 산화기체와 원료 나노다이아몬드 응집체와의 접촉 효율도 높일 수 있다. 또한, 본 발명은 다이아몬드 등 유동 매체를 사용하여 혼합 및 접촉 효율을 높일 수 있으므로 흑연층 등 불순물을 보다 빠르게 제거할 수 있다. Since the method and apparatus of the present invention use a fluidized bed reactor, it is possible to ensure a uniform oxidation temperature and to improve the contact efficiency between the oxidizing gas and the raw material nanodiamond aggregates. In addition, the present invention can increase the mixing and contact efficiency by using a fluid medium such as diamond, it is possible to remove impurities such as graphite layer more quickly.
도 1은 원료 나노다이아몬드 응집체 구조를 도시한 것이다.1 illustrates the structure of raw material nanodiamond aggregates.
도 2는 본 발명의 일구현예에 따른 매체 유동층을 이용한 나노다이아몬드 정제 장치를 나타낸다.Figure 2 shows a nanodiamond purification apparatus using a medium fluidized bed according to an embodiment of the present invention.
도 3은 본 발명의 다른 구현예에 따른 매체 유동층을 이용한 나노다이아몬드 정제 장치를 나타낸다. 3 shows a nanodiamond purification apparatus using a fluidized bed according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 구현예에 따른 매체 유동층을 이용한 나노다이아몬드 정제 장치를 나타낸다.4 shows a nanodiamond purification apparatus using a medium fluidized bed according to another embodiment of the present invention.
본 발명은 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아니다. The present invention can all be achieved by the following description. The following description is to be understood as describing preferred embodiments of the invention, but the invention is not necessarily limited thereto.
본 발명은 매체 유동층을 이용한 나노다이아몬드 정제 방법 및 장치에 관한 것이다. The present invention relates to a nanodiamond purification method and apparatus using a medium fluidized bed.
도 1은 폭발에 의해 형성된 나노다이아몬드 응집체 구조를 도시한 것이다. 도 2는 본 발명의 일구현예에 따른 매체 유동층을 이용한 나노다이아몬드 정제 장치를 나타낸다. 도 1을 참고하면, 나노다이아몬드 응집체(100)는 단일 입자상(10) 나노다이아몬드가 수개 내지 수백 개 응집되고, 그 표면을 따라 흑연층(sp2 구조, 20)이 껍질을 형성하고 있다. 또한, 단일 입자상(10)의 나노다이아몬드는 통상적으로 다이아몬드 결정 구조(SP3)를 가지는 코어(1) 및 이를 둘러싸는 흑연층(sp2 구조, 2)을 포함하여 형성하고, 코어의 크기는 4~7nm, 흑연층은 1nm 정도이다. 1 shows the structure of nanodiamond aggregates formed by explosion. Figure 2 shows a nanodiamond purification apparatus using a medium fluidized bed according to an embodiment of the present invention. Referring to FIG. 1, in the nanodiamond aggregate 100, several to several hundred nanodiamonds are aggregated, and a graphite layer (sp2 structure) 20 forms a shell along the surface thereof. In addition, the nanodiamond of the single particle shape 10 is typically formed by including a core 1 having a diamond crystal structure (SP3) and a graphite layer (sp2 structure, 2) surrounding it, the size of the core is 4 ~ 7nm The graphite layer is about 1 nm.
한편, 나노다이아몬드 응집체(100)는 표면에 흑연층(20)이외에도 카본, 검댕, 코크스 등 무정형 탄소들과 그래핀을 일부 포함하고 있다. 본 발명은, 편의상, 나노다이아몬드 응집체 표면에 형성되어 있는 무정형 탄소 중 대부분을 차지하는 흑연층을 중심으로 기술하고 있을 뿐 카본, 검댕, 코크스 등 기타 무정형 탄소들과 그래핀을 본 발명의 방법으로 제거하지 못하는 것은 아니다. 즉, 본 발명에서“흑연층 제거”는 나노다이아몬드 표면에 형성될 수 있는 무정형 탄소들과 그래핀도 제거할 수 있음을 포괄하는 의미로 사용한다. Meanwhile, the nanodiamond aggregate 100 includes a portion of amorphous carbon such as carbon, soot, coke, and graphene in addition to the graphite layer 20 on the surface. For the sake of convenience, the present invention describes only the graphite layer, which occupies most of the amorphous carbon formed on the surface of the nanodiamond aggregate, and does not remove carbon, soot, coke and other amorphous carbons and graphene by the method of the present invention. It is not impossible. That is, in the present invention, "graphite removal" is used to encompass that amorphous carbons and graphene that may be formed on the nanodiamond surface may also be removed.
본 발명의 나노다이아몬드 정제 방법 및 장치는 나노다이아몬드 응집체(100)를 둘러싸고 있는 상기 흑연층(20)을 분리 제거하는 방법 및 장치이다. Nanodiamond purification method and apparatus of the present invention is a method and apparatus for separating and removing the graphite layer 20 surrounding the nanodiamond aggregate (100).
좀 더 구체적으로, 본 발명은 나노다이아몬드 응집체(100)를 유동화시켜 흑연층(20)을 산화 제거한다.More specifically, the present invention oxidizes the graphite layer 20 by fluidizing the nanodiamond aggregates 100.
본 발명의 나노다이아몬드 정제 방법은 공급단계, 유동화 단계 및 분리회수 단계를 포함한다. 본 발명의 나노다이아몬드 정제 방법은 유동층 반응기를 포함하는 도 2의 장치를 사용할 수 있다. 도 2를 참고하면, 본 발명의 나노다이아몬드 정제 장치는 산화기체 공급부(10), 유동층 반응기(20), 원료공급부(30) 및 분리부(40)를 포함한다. The nanodiamond purification method of the present invention includes a feeding step, a fluidization step and a separation recovery step. The nanodiamond purification method of the present invention can use the apparatus of FIG. 2 comprising a fluidized bed reactor. Referring to FIG. 2, the nanodiamond purification apparatus of the present invention includes an oxidizing gas supply unit 10, a fluidized bed reactor 20, a raw material supply unit 30, and a separation unit 40.
상기 공급단계는 산화기체 및 원료 나노다이아몬드 응집체(31)를 유동층 반응기(20)에 주입하는 단계이다. The feeding step is to inject the oxidizing gas and the raw material nanodiamond aggregates 31 into the fluidized bed reactor 20.
상기 산화기체는 산화기체 공급부(10), 원료 나노다이아몬드 응집체(31)는 원료 공급부(30)를 통해 공급할 수 있다.The oxidizing gas may be supplied to the oxidizing gas supply unit 10 and the raw material nanodiamond aggregates 31 through the raw material supply unit 30.
상기 산화기체로는 공기, 산소, 수증기 등을 사용할 수 있다.As the oxidizing gas, air, oxygen, water vapor, or the like may be used.
상기 유동화 단계는 유동층 반응기(20) 내에서 매체입자와 상기 나노다이아몬드 응집체를 상기 산화기체로 유동시키는 단계이다. 상기 유동화 단계는 상기 산화기체와 상기 나노다이아몬드 응집체를 둘러싸고 있는 흑연층이 산화 반응하는 단계이다.The fluidization step is a step of flowing the media particles and the nanodiamond aggregates into the oxidizing gas in the fluidized bed reactor (20). The fluidization step is an oxidation reaction between the oxidizing gas and the graphite layer surrounding the nanodiamond aggregates.
상기 유동층 반응기에서 산화반응은 하기와 같이 일어난다. The oxidation reaction in the fluidized bed reactor takes place as follows.
C + O2 → CO2C + O2 → CO2
상기 산화반응에서는 일산화탄소(CO)도 생성될 수 있다. Carbon monoxide (CO) may also be generated in the oxidation reaction.
상기 유동층 내의 산화기체의 유속, 반응온도 등은 주입되는 나노다이아몬드 크기, 함량 등에 따라 적절하게 조절될 수 있다.The flow rate of the oxidizing gas in the fluidized bed, the reaction temperature, etc. may be appropriately adjusted according to the size, content, and the like of the nanodiamond injected.
예를 들면, 상기 산화반응은 200~650℃ 범위에서 수행될 수 있으며, 산화기체의 유속은 매체입자의 크기와 처리속도에 따라 가변될 수 있다. For example, the oxidation reaction can be carried out in the range of 200 ~ 650 ℃, the flow rate of the oxidizing gas can be varied depending on the size and processing speed of the media particles.
상기 나노다이아몬드 응집체의 표면은 흑연(sp2) 구조의 탄소물질이다. The surface of the nanodiamond aggregate is a carbon material having a graphite (sp2) structure.
본 발명에서는 나노다이아몬드 응집체를 유동화시켜 흑연층과 산화기체와의 산화반응을 효율적으로 수행할 수 있다. 즉, 유동층 반응기를 이용한 유동화는 상기 나노다이아몬드 응집체 입자들을 빠르게 혼합시키므로 반응기 전체, 결과적으로 반응기 내부에서 유동하는 나노다이아몬드 응집체들 표면에 균일한 온도가 가해질 수 있으며, 또한, 유동화는 나노다이아몬드 응집체들과 산화기체와의 접촉 효율을 높여주므로 산화기체와 흑연층과의 반응속도도 높여줄 수 있다. 또한, 유동화 반응기를 이용하면 양산 가능할 정도의 대규모 산화 반응이 가능하다. In the present invention, the nanodiamond aggregates are fluidized to efficiently perform oxidation reaction between the graphite layer and the oxidizing gas. That is, fluidization using a fluidized bed reactor rapidly mixes the nanodiamond aggregated particles so that a uniform temperature can be applied to the entirety of the reactor and consequently the surface of the nanodiamond aggregates flowing in the reactor. Since the contact efficiency with the oxidizing gas is improved, the reaction rate between the oxidizing gas and the graphite layer can also be increased. In addition, the use of a fluidization reactor allows large-scale oxidation reactions that can be mass produced.
본 발명은 상기 유동화 단계에서 매체 입자(60)를 사용하여 나노다이아몬드 응집체의 산화반응을 좀 더 효율적으로 수행할 수 있다. The present invention can more efficiently perform the oxidation reaction of the nanodiamond aggregates using the media particles 60 in the fluidization step.
상기 매체 입자는 Geldart A 또는 B 입자에 해당하면서 상기 온도 범위에서 더 이상 산화되지 않는 입자를 사용할 수 있다. 상기 매체 입자는 다이아몬드, SiO2, TiO2, 지르코니아, steel볼, 등 고온에서 화학반응이 일어나지 않고, 내 마모성이 좋은 물질이면 모두 가능하다. The media particles may correspond to Geldart A or B particles and may be particles which are no longer oxidized in the above temperature range. The media particles may be any material that does not have a chemical reaction at high temperatures such as diamond, SiO 2, TiO 2, zirconia, steel balls, and the like and has good wear resistance.
상기 매체입자의 크기가 상기 원료 나노다이아몬드 응집체의 크기보다 큰 것을 사용할 수 있다.The size of the media particles may be larger than the size of the raw material nanodiamond aggregates.
도 2를 참고하면, 상기 유동층 반응기(20)는 대부분의 매체 입자가 유동하여 존재하는 매체 유동층(21)과 상기 매체 입체가 매우 적은 양으로 존재하는 희박층(22)으로 이루어진다. Referring to FIG. 2, the fluidized bed reactor 20 is composed of a medium fluidized bed 21 in which most of the media particles flow and a lean layer 22 in which the media solid is present in a very small amount.
상기 매체 유동층(21)에는 상기 산화기체 유속에 의해 매체입자와 상기 나노다이아몬드 응집체가 부유하여 유동층을 형성한다. 특히, 본 발명에서는 상기 나노다이아몬드 응집체에 비해 크기가 큰 매체 입자를 사용하는데, 상기 매체 입자와 상기 나노입자는 반데르바알스 힘에 의해 서로 결합하여 함께 유동한다. 도 1을 참고하면, 상기 나노다이아몬드 응집체(31)가 매체 입자(60) 주위를 둘러싸고 있는 것을 개념적으로 도시하고 있다. In the medium fluidized bed 21, media particles and the nanodiamond aggregates are suspended by the oxidizing gas flow rate to form a fluidized bed. In particular, the present invention uses media particles larger in size than the nanodiamond aggregates, wherein the media particles and the nanoparticles are bonded to each other by van der Waals forces and flow together. Referring to FIG. 1, it is conceptually shown that the nanodiamond aggregate 31 is wrapped around the media particle 60.
상기 유동화 단계는 상기 유동층 반응기(20)의 매체 유동층(21)에서 주로 수행될 수 있다. 상기 매체 유동층 내의 산화기체의 유속, 반응온도 등은 주입되는 원료 나노다이아몬드와 매체 입자의 크기, 함량 등에 따라 적절하게 조절될 수 있다.The fluidization step may be mainly carried out in the medium fluidized bed 21 of the fluidized bed reactor 20. The flow rate of the oxidizing gas in the medium fluidized bed, the reaction temperature, etc. may be appropriately adjusted according to the size, content, etc. of the raw nanodiamond and the medium particles to be injected.
본 발명은 유동층내의 매체입자와 나노다이아몬드를 포함하는 응집체간의 열전달과 물질전달이 향상되어 나노다이아몬드의 표면에 부착된 흑연층과 그래핀을 효과적으로 산화시켜 이산화탄소 또는 일산화탄소로 기체상으로 제거할 수 있다.The present invention improves heat transfer and mass transfer between the media particles in the fluidized bed and aggregates including nanodiamonds, thereby effectively oxidizing the graphite layer and graphene attached to the surface of the nanodiamonds to be removed in the gas phase with carbon dioxide or carbon monoxide.
상기 분리 회수 단계는 상기 유동층 반응기 상부로 배출되는 가스 및 흑연이 제거된 나노다이아몬드 응집체를 분리 회수하는 단계이다. The separation recovery step is a step of separating and recovering the nanodiamond aggregates from which gas and graphite discharged to the fluidized bed reactor are removed.
분리 회수 단계는 분리부(40)로 싸이클론(40)을 사용할 수 있으며, 또한, 추가로 워터트랩(water trap)(70)을 사용할 수 있다. 싸이클론을 사용하여 미반응된 나노다이아몬드 응집체나 매체입자를 포집할 수 있으며, 정제된 나노다이아몬드 응집체도 입자 크기에 따라 포집될 수 있다. Separation recovery step may use the cyclone 40 as the separation unit 40, and may further use a water trap (70). Cyclones can be used to capture unreacted nanodiamond aggregates or media particles, and purified nanodiamond aggregates can also be collected according to particle size.
상기 워터 트랩(70)은 정제된 나노다이아몬드 응집체 중에서 입자 사이즈가 수나노에서 100nm 이하인 것들을 가스로부터 분리할 수 있다. 즉, 나노다이아몬드 응집체를 포함한 가스가 워터트랩을 통과하면 나노다이아몬드 응집체는 물속에 분산되고, 가스는 상부로 배출될 수 있다.The water trap 70 is capable of separating from the gas the purified nanodiamond aggregates having a particle size of 100 nm or less in sun nano. That is, when the gas containing the nanodiamond aggregates passes through the water trap, the nanodiamond aggregates may be dispersed in the water, and the gas may be discharged upward.
상기 방법은 상기 유동층 반응기를 진동시켜 상기 매체와 나노다이아몬드 응집체의 유동성을 높일 수 있다. 상기 진동에 의해 상대적으로 입자 크기가 큰 매체 입자의 유동성을 더 높일 수 있으며 이를 통해 나노다이아몬드 응집체의 유동성도 높일 수 있다. 좀 더 구체적으로 살펴보면, 진동을 주기적으로 유동층 전체에 가하면 매체입자의 크기가 큰 경우에도 입자의 최소유동화 속도를 낮출 수 있다. The method may increase the fluidity of the medium and the nanodiamond aggregates by vibrating the fluidized bed reactor. By vibrating, the fluidity of the media particles having a relatively large particle size may be further increased, and thus the fluidity of the nanodiamond aggregates may be increased. In more detail, when the vibration is periodically applied to the entire fluidized bed, even when the size of the medium particles is large, the minimum fluidization rate of the particles can be lowered.
상기 방법은 상기 유동층 반응기 하단 외면에 진동부(80)를 가하여 유동층 반응기를 진동시킬 수 있다. 진동부(80)에 대해서는 도 3에 도시되어 있다. The method may vibrate the fluidized bed reactor by adding a vibrator 80 to the bottom outer surface of the fluidized bed reactor. The vibrator 80 is shown in FIG. 3.
상기 진동부(80)에 가해지는 진동의 세기는 정제장치의 크기나 주입되는 입자들의 크기, 밀도 등에 따라 적절하게 제어될 수 있다. 예를 들면, 상기 진동부는 0.01~100 Hz의 진동을 정제장치에 가할 수 있다.The intensity of the vibration applied to the vibrator 80 may be appropriately controlled according to the size of the refining apparatus or the size, density of particles to be injected. For example, the vibration unit may apply a vibration of 0.01 ~ 100 Hz to the purification apparatus.
상기 방법은 상기 유동층 반응기 하단에 공기를 주기적으로(pulsed-air) 추가 공급하여 상기 매체의 유동성을 높일 수 있다. 공기의 추가 공급은 도 4에 도시된 바와 같이, 공기공급부(90)를 사용할 수 있다. The method may increase the fluidity of the medium by additionally supplying air to the bottom of the fluidized bed reactor periodically (pulsed-air). Further supply of air may use the air supply unit 90, as shown in FIG.
유동층 반응기에서 흑연층을 제거하는 데 필요한 체류시간을 확보하기 위하여 매우 적은 양의 산화 기체를 공급하면 매체 입자층에서 channeling이나 defluidization가 같은 비정상적 조업이 발생한다. 따라서, 본 발명의 방법은 주기적으로 공기를 펄스 방식으로 매체 유동층(21)에 주입하여 채널링 현상 등을 제거할 수 있다. 공기를 펄스로 주는 방식도 진동을 주는 것과 같이 매체입자의 유동성은 높이면서 전체적인 단위시간당 산화기체의 양을 낮출 수 있다. 따라서, 공기를 펄스로 공급하면 매체입자의 유동성은 향상시키고 정제된 나노다이아몬드는 효과적으로 유동층에서 배출시킬 수 있다. When a very small amount of oxidizing gas is supplied to secure the residence time required to remove the graphite layer in the fluidized bed reactor, abnormal operations such as channeling or defluidization occur in the media particle layer. Accordingly, the method of the present invention can periodically inject air into the medium fluidized bed 21 in a pulsed manner to eliminate channeling phenomenon and the like. Like the pulse-pulverizing air method, the fluidity of the media particles can be increased, and the amount of oxidizing gas per unit time can be reduced. Therefore, supplying air in pulses improves the fluidity of the media particles and effectively purifies the nanodiamonds from the fluidized bed.
다른 양상에서 본 발명은 나노다이아몬드 정제 장치를 제공한다. 도 1을 참고하면, 본 발명의 정제 장치는 산화기체 공급부(10), 유동층 반응기(20), 원료공급부(30) 및 분리부(40)를 포함한다. In another aspect, the present invention provides a nanodiamond purification device. Referring to FIG. 1, the purification apparatus of the present invention includes an oxidizing gas supply unit 10, a fluidized bed reactor 20, a raw material supply unit 30, and a separation unit 40.
상기 산화기체 공급부(10)는 정제 장치 내부로 산화가스를 공급한다.The oxidizing gas supply unit 10 supplies the oxidizing gas into the purification apparatus.
상기 유동층 반응기(20)는 상기 산화기체 상부에 형성되고, 매체입자와 원료 나노다이아몬드 응집체를 상기 산화기체 공급부로부터 유입된 산화기체로 유동시킨다.The fluidized bed reactor 20 is formed on the oxidizing gas and flows media particles and raw nanodiamond aggregates to the oxidizing gas introduced from the oxidizing gas supply unit.
상기 정제 장치는 산화기체 공급부(10)와 유동층 반응기(20) 사이에 위치하는 분산판(50)을 포함한다. 상기 산화기체는 외부의 공급원에서 공급되어 상기 분산판(50)을 통해 유동층 반응기(20)로 일정 유량으로 제공한다. 상기 분산판은 버블캡 방식의 분산판일 수 있다. The purification apparatus includes a dispersion plate 50 located between the oxidizing gas supply unit 10 and the fluidized bed reactor 20. The oxidizing gas is supplied from an external source and provided at a constant flow rate to the fluidized bed reactor 20 through the dispersion plate 50. The dispersion plate may be a bubble cap type dispersion plate.
상기 원료공급부(30)는 상기 유동층 반응기에 원료 나노다이아몬드 응집체를 공급한다.The raw material supply unit 30 supplies the raw material nanodiamond aggregates to the fluidized bed reactor.
상기 분리부는 상기 유동층 반응기 상부 측에 연결되어 배출되는 가스 및 상기 나노다이아몬드 응집체를 분리한다. The separation unit is connected to the fluidized bed reactor upper side to separate the discharged gas and the nanodiamond aggregates.
분리부는 싸이클론(40)을 사용할 수 있으며, 추가로 워터트랩(water trap)(70)을 사용할 수 있다. 예를 들면, 싸이클론을 사용하여 미반응된 나노다이아몬드 응집체나 매체입자를 포집할 수 있으며, 정제된 나노다이아몬드 응집체도 입자 크기에 따라 포집될 수 있다. The separator may use a cyclone 40 and may additionally use a water trap 70. For example, cyclones can be used to capture unreacted nanodiamond aggregates or media particles, and purified nanodiamond aggregates can also be collected according to particle size.
상기 싸이클론(40)과 워터 트랩(70)에 대해서는 앞에서 상술한 내용을 참고할 수 있다.The cyclone 40 and the water trap 70 may be referred to the above description.
상기 유동층 반응기(20)는 상기 산화기체와 상기 나노다이아몬드 응집체를 둘러싸고 있는 흑연층이 반응하는 산화반응기일 수 있다.The fluidized bed reactor 20 may be an oxidation reactor in which the oxidizing gas and the graphite layer surrounding the nanodiamond aggregates react.
상기 유동층 반응기에서 산화반응은 앞에서 상술한 내용을 참고할 수 있다. Oxidation reaction in the fluidized bed reactor can be referred to the above-described details.
본 발명의 장치는 유동층 반응기 내부에 매체 입자를 유동시켜 나노다이아몬드 응집체의 산화반응을 좀 더 효율적으로 수행할 수 있다. The apparatus of the present invention can more efficiently perform the oxidation reaction of the nanodiamond aggregates by flowing the media particles inside the fluidized bed reactor.
상기 매체입자 및 매체유동층에 대해서도 앞에서 상술한 내용을 참고할 수 있다. The above-mentioned contents may also be referred to the media particles and the media fluidized layer.
도 2는 도 1의 장치에 진동부(80)가 추가된 장치이다. 도 2를 참고하면, 본 발명의 장치는 도 1의 산화기체 공급부 하단이나 측면에 진동부(80)를 추가로 포함할 수 있다.FIG. 2 is a device in which a vibrator 80 is added to the device of FIG. 1. Referring to FIG. 2, the apparatus of the present invention may further include a vibrator 80 at the bottom or the side of the oxidizing gas supply part of FIG. 1.
상기 진동부(80)는 상대적으로 입자 크기가 큰 매체 입자의 유동성을 높일 수 있다.The vibrator 80 may increase fluidity of media particles having a relatively large particle size.
상기 진동부(80)에 가해지는 진동의 세기는 정제장치의 크기나 주입되는 입자들의 크기, 밀도 등에 따라 적절하게 제어될 수 있다. 예를 들면, 상기 진동부는 0.01~100 Hz의 진동을 정제장치에 가할 수 있다.The intensity of the vibration applied to the vibrator 80 may be appropriately controlled according to the size of the refining apparatus or the size, density of particles to be injected. For example, the vibration unit may apply a vibration of 0.01 ~ 100 Hz to the purification apparatus.
도 3은 도 1의 장치에 공기공급부(90)가 추가된 장치이다. 도 3를 참고하면, 본 발명의 장치는 도 1의 산화기체 공급부에 공기를 주기적으로 추가 공급할 수 있는 공기공급부(80)를 추가로 포함할 수 있다.3 is a device in which an air supply unit 90 is added to the device of FIG. 1. Referring to FIG. 3, the apparatus of the present invention may further include an air supply unit 80 that may periodically supply air to the oxidizing gas supply unit of FIG. 1.
본 발명의 정제 장치는 상기 공기공급부(90)를 통해 매체 유동층(21)에 주기적으로 공기를 주입하여 비정상적 조업의 발생을 방지할 수 있다.Purification apparatus of the present invention can prevent the occurrence of abnormal operation by periodically injecting air into the medium fluidized bed 21 through the air supply unit (90).
상기 진동부(80)와 공기공급부(90)에 대해서는 앞에서 상술한 내용을 참고할 수 있다.For the vibrator 80 and the air supply unit 90 may be referred to the above-described content.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications and variations of the present invention can be readily used by those skilled in the art, and all such variations or modifications can be considered to be included within the scope of the present invention.
본 발명은 폭발형 나노다이아몬드를 정제하여 약물 전달체로 사용할 수 있다. The present invention can be used as a drug carrier by purifying the explosive nanodiamond.

Claims (16)

  1. 산화기체 및 나노다이아몬드 응집체를 유동층 반응기에 공급하는 단계 ;Supplying oxidizing gas and nanodiamond aggregates to a fluidized bed reactor;
    유동층 반응기 내에서 매체입자와 상기 나노다이아몬드 응집체를 상기 산화기체로 유동화시키는 단계 ;Fluidizing the media particles and the nanodiamond aggregates into the oxidizing gas in a fluidized bed reactor;
    상기 유동층 반응기 상부로 배출되는 가스 및 상기 나노다이아몬드 응집체를 분리 회수하는 단계를 포함하는 매체 유동층을 이용한 나노다이아몬드 정제 방법.The nanodiamond purification method using a medium fluidized bed comprising the step of separating and recovering the gas discharged to the top of the fluidized bed reactor and the nanodiamond aggregates.
  2. 제 1항에 있어서, 상기 유동화 단계는 상기 산화기체와 상기 나노다이아몬드 응집체를 둘러싸고 있는 흑연층이 산화 반응하는 단계를 포함하는 것을 특징으로 하는 매체 유동층을 이용한 나노다이아몬드 정제 방법.The method of claim 1, wherein the fluidizing step comprises oxidizing the oxidizing gas and the graphite layer surrounding the nanodiamond aggregates.
  3. 제 1항에 있어서, 상기 매체입자의 크기가 상기 나노다이아몬드 응집체보다 큰 것을 특징으로 하는 매체 유동층을 이용한 나노다이아몬드 정제 방법.The method of claim 1, wherein the size of the media particles is larger than that of the nanodiamond aggregates.
  4. 제 1항에 있어서, 상기 유동화 단계는 상기 매체입자 표면에 상기 나노다이아몬드 응집체를 부착시켜 함께 유동시키는 단계인 것을 특징으로 하는 매체 유동층을 이용한 나노다이아몬드 정제 방법.The method of claim 1, wherein the fluidizing step comprises attaching the nanodiamond aggregates to a surface of the media particles to flow the nanodiamond aggregates.
  5. 제 1항에 있어서, 상기 방법은 상기 유동층 반응기 내부의 온도를 200~650℃로 제어하는 것을 특징으로 하는 매체 유동층을 이용한 나노다이아몬드 정제 방법.The method of claim 1, wherein the method controls the temperature inside the fluidized bed reactor at 200 to 650 ° C. 2.
  6. 제 1항에 있어서, 상기 매체 입자는 Geldart A 또는 B 입자에 해당하면서 더 이상 산화되지 않는 입자인 것을 특징으로 하는 매체 유동층을 이용한 나노다이아몬드 정제 방법.The method of claim 1, wherein the medium particles correspond to Geldart A or B particles and are particles that are no longer oxidized.
  7. 제 1항에 있어서, 상기 방법은 상기 유동층 반응기를 진동시켜 상기 매체의 유동성을 높이는 것을 특징으로 하는 매체 유동층을 이용한 나노다이아몬드 정제 방법.The method of claim 1, wherein the fluidized bed reactor vibrates to increase fluidity of the medium.
  8. 제 7항에 있어서, 상기 방법은 상기 유동층 반응기 하단 외면에 진동기를 가하여 유동층 반응기를 진동시키는 것을 특징으로 하는 매체 유동층을 이용한 나노다이아몬드 정제 방법.8. The method of claim 7, wherein the method comprises applying a vibrator to an outer surface of the bottom of the fluidized bed reactor to vibrate the fluidized bed reactor.
  9. 제 1항에 있어서, 상기 방법은 상기 유동층 반응기 하단에 공기를 주기적으로(pulsed-air) 추가 공급하여 상기 매체의 유동성을 높이는 것을 특징으로 하는 매체 유동층을 이용한 나노다이아몬드 정제 방법.The method of claim 1, wherein the method further comprises supplying air to the bottom of the fluidized bed reactor (pulsed-air) to increase fluidity of the medium.
  10. 산화기체 공급부 ;Oxidizing gas supply;
    상기 산화기체 상부에 형성되고, 매체입자와 원료 나노다이아몬드 응집체를 상기 산화기체 공급부로부터 유입된 산화기체로 유동시키는 유동층 반응기 ;A fluidized bed reactor formed on the oxidizing gas and flowing media particles and raw material nanodiamond aggregates to the oxidizing gas introduced from the oxidizing gas supply unit;
    상기 유동층 반응기에 원료 나노다이아몬드 응집체를 공급하는 원료공급부 ; 및 A raw material supply unit supplying raw nanodiamond aggregates to the fluidized bed reactor; And
    상기 유동층 반응기 상부 측에 연결되어 배출되는 가스 및 상기 나노다이아몬드 응집체를 분리하는 분리부를 포함하는 나노다이아몬드 정제 장치.Nanodiamond purification apparatus comprising a separation unit for separating the nanodiamond aggregates and the gas discharged connected to the fluidized bed reactor upper side.
  11. 제 10항에 있어서, 유동층 반응기는 상기 산화기체와 상기 나노다이아몬드 응집체를 둘러싸고 있는 흑연층이 반응하는 산화반응기인 것을 특징으로 하는 나노다이아몬드 정제 장치.The apparatus of claim 10, wherein the fluidized bed reactor is an oxidation reactor in which the oxidizing gas and the graphite layer surrounding the nanodiamond aggregates react.
  12. 제 10에 있어서, 상기 유동층 반응기의 온도는 200~650℃인 것을 특징으로 하는 나노다이아몬드 정제 장치.The nanodiamond purification apparatus of claim 10, wherein the fluidized bed reactor has a temperature of 200 ° C. to 650 ° C. 12.
  13. 제 10항에 있어서, 상기 매체입자의 크기가 상기 원료 나노다이아몬드 응집체보다 큰 것을 특징으로 하는 나노다이아몬드 정제 장치.11. The nanodiamond refining apparatus according to claim 10, wherein a size of the media particles is larger than that of the raw nanodiamond aggregates.
  14. 제 10항에 있어서, 상기 매체 입자는 Geldart A 또는 B 입자에 해당하면서 상기 온도 범위에서 더 이상 산화되지 않는 입자인 것을 특징으로 하는 나노다이아몬드 정제 장치.11. The nanodiamond purification apparatus of claim 10, wherein the media particles correspond to Geldart A or B particles and are no longer oxidized in the temperature range.
  15. 제 10항에 있어서, 상기 장치는 상기 산화기체 공급부 하단이나 측면에 진동기를 추가로 포함하는 것을 특징으로 하는 나노다이아몬드 정제 장치.The nanodiamond purification apparatus according to claim 10, wherein the apparatus further comprises a vibrator at the bottom or the side of the oxidizing gas supply unit.
  16. 제 10항에 있어서, 상기 장치는 상기 산화기체 공급부에 공기를 주기적으로 추가 공급할 수 있는 공기공급부를 포함하는 것을 특징으로 하는 나노다이아몬드 정제 장치.The nanodiamond refining apparatus of claim 10, wherein the apparatus includes an air supply unit configured to periodically supply air to the oxidizing gas supply unit.
PCT/KR2016/005279 2015-05-18 2016-05-18 Method and apparatus for purifying nanodiamond using medium fluidized bed WO2016186455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150068953A KR102329003B1 (en) 2015-05-18 2015-05-18 Method and apparatus for purifying Nanodiamond using the powder-particle fluidized beds
KR10-2015-0068953 2015-05-18

Publications (1)

Publication Number Publication Date
WO2016186455A1 true WO2016186455A1 (en) 2016-11-24

Family

ID=57320737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005279 WO2016186455A1 (en) 2015-05-18 2016-05-18 Method and apparatus for purifying nanodiamond using medium fluidized bed

Country Status (2)

Country Link
KR (1) KR102329003B1 (en)
WO (1) WO2016186455A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020089864A (en) * 2018-12-07 2020-06-11 株式会社ダイセル Production method of nanodiamond and nanodiamond

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2019502C1 (en) * 1991-01-09 1994-09-15 Евгений Валерьевич Павлов Method for removal of impurity of non-diamond carbon and device for its realization
US20100069567A1 (en) * 2007-05-21 2010-03-18 Igor Leonidovich Petrov Nanodiamond material, method and device for purifying and modifying a nanodiamond

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3546494B2 (en) * 1994-10-27 2004-07-28 信越化学工業株式会社 Purification method of fine silica
KR100920145B1 (en) * 2009-01-16 2009-10-08 권원현 Mechnical seperation method of aggregated carbon nanotube powder and carbon nanotube powder prepared thereby
KR101121852B1 (en) * 2010-06-28 2012-03-21 현대제철 주식회사 Method for recovering graphite from by-product of in pre-treating process molten pig-iron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2019502C1 (en) * 1991-01-09 1994-09-15 Евгений Валерьевич Павлов Method for removal of impurity of non-diamond carbon and device for its realization
US20100069567A1 (en) * 2007-05-21 2010-03-18 Igor Leonidovich Petrov Nanodiamond material, method and device for purifying and modifying a nanodiamond

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MOCHALIN, VADYM N. ET AL.: "The Properties and Applications of Nanodiamonds", NATURE NANOTECHNOLOGY, vol. 7, no. 1, 2012, pages 11 - 23, XP055133599 *
PETROV, I. ET AL.: "Detonation Nanodiamonds Simultaneously Purified and Modified by Gas Treatment", DIAMOND & RELATED MATERIALS, vol. 16, no. 12, 2007, pages 2098 - 2103, XP022354283 *
SCHRAND, AMANDA M. ET AL.: "Nanodiamond Particles: Properties and Perspectives for Bioapplications", CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, vol. 34, no. 1-2, 2009, pages 18 - 74, XP055064590 *

Also Published As

Publication number Publication date
KR20160135901A (en) 2016-11-29
KR102329003B1 (en) 2021-11-22

Similar Documents

Publication Publication Date Title
EP1919826B1 (en) Process and reactor for producing carbon nanotubes
JP5567294B2 (en) Carbon nanomaterial manufacturing method and carbon nanomaterial manufacturing apparatus
JP4968643B2 (en) Method for producing single-walled carbon nanotube
WO2011019095A1 (en) A method of producing nano-size graphene-based material and an equipment for producing the same
EP1375424A1 (en) Manufacturing method for a carbon nanomaterial, a manufacturing apparatus for a carbon nanomaterial, and manufacturing facility for a carbon nanomaterial
CN1259105A (en) Method and device for producing Fullerenes
IT8320752A1 (en) METHOD TO RECOVER OXYGEN FROM CARBON DIOXIDE CONVERSION SYSTEMS
GB1564361A (en) Method of reducing sulphur content of particulate carbonaceous material
JP2006045051A (en) Method and apparatus for producing carbon nanotube
WO2004070094A1 (en) Method and apparatus for producing carbon nanofibers
JP3816017B2 (en) Tubular carbon material production apparatus, production equipment, and carbon nanotube production method
SE411170B (en) WAY TO REMOVE PARTICULAR MATERIAL AND SULFUR OXIDES FROM EXHAUST GASES AND APPLIANCE FOR CARRYING OUT THE KIT
WO2016186455A1 (en) Method and apparatus for purifying nanodiamond using medium fluidized bed
WO2011081276A1 (en) Apparatus for manufacturing molten iron
WO2018143602A1 (en) Method for producing carbon nanotube fiber and carbon nanotube fiber produced thereby
JP5946835B2 (en) Fabrication of polycrystalline silicon in a substantially closed loop method and system
WO2013100382A1 (en) Preparation method of graphene-carbon nanotube composite using spray pyrolysis, and graphene-carbon nanotube composite prepared thereby
US20230109092A1 (en) System and Method for Synthesizing Carbon Nanotubes and Hybrid Materials Via Catalytic Chemical Deposition
CN100391834C (en) Preparation method of high-purity multi-wall carbon nano-tube
KR100790839B1 (en) Method of nondestructively refining carbon nanotube
WO2013032146A1 (en) Method of fabricating silicon carbide
Burkert et al. Corking Nitrogen‐Doped Carbon Nanotube Cups with Gold Nanoparticles for Biodegradable Drug Delivery Applications
WO2021029579A1 (en) Carbon nanotube preparation method and preparation system
Abdullayeva et al. Synthesis of carbon nanotubes using Azerbaijan’s oil
WO2021112511A1 (en) System and method for producing carbon nanotubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796782

Country of ref document: EP

Kind code of ref document: A1