WO2016186434A1 - Stereoscopic image device for reducing cross-talk - Google Patents

Stereoscopic image device for reducing cross-talk Download PDF

Info

Publication number
WO2016186434A1
WO2016186434A1 PCT/KR2016/005224 KR2016005224W WO2016186434A1 WO 2016186434 A1 WO2016186434 A1 WO 2016186434A1 KR 2016005224 W KR2016005224 W KR 2016005224W WO 2016186434 A1 WO2016186434 A1 WO 2016186434A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
modulator
pbs
polarized light
image
Prior art date
Application number
PCT/KR2016/005224
Other languages
French (fr)
Korean (ko)
Inventor
이영훈
이철우
Original Assignee
유한회사 마스터이미지쓰리디아시아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유한회사 마스터이미지쓰리디아시아 filed Critical 유한회사 마스터이미지쓰리디아시아
Publication of WO2016186434A1 publication Critical patent/WO2016186434A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers

Definitions

  • the following description relates to a stereoscopic imaging apparatus which effectively reduces crosstalk in a stereoscopic imaging apparatus using a polarized light splitter.
  • a method of implementing a stereoscopic image is realized by illuminating different images on two human eyes, and in the case of a stereoscopic image displayed on a large screen such as a theater, polarization in a direction in which the left and right sides are perpendicular to each other
  • a polarization method for distinguishing and transmitting a left image and a right image is mainly used. This takes images using two cameras, displays the two images on one screen by overlapping images having right angle deviations using polarization means, and images taken by the two cameras through the polarizing glasses described above.
  • the three-dimensional image is implemented by viewing the left and right eyes respectively.
  • FIG. 1 is a view showing the structure of a conventional two-projector system for displaying a stereoscopic image.
  • the left image is irradiated on one projector 1 by two conventional two-dimensional (2D) projectors 1 and 2,
  • the other projector 2 allows the right image to be irradiated so that each of these images is irradiated onto the screen 5 by passing through the polarization filters 3 and 4 whose polarization directions are perpendicular to each other.
  • the left image and the right image, which are irradiated on the screen 5 overlap the left and right sides of the viewer through each of the left image lens 7 and the right image lens 8 of the polarizing glasses 6 worn by the viewer. It is a way of making three-dimensional impressions by looking inside.
  • Such a conventional two-projector stereoscopic image screening system has been replaced by the following one-projector system in which the projector alternately irradiates the left and right images in time.
  • FIG. 2 is a view for explaining a 1 projector circular polarization filter system.
  • the three-dimensional image projector system includes a single projector 201 sequentially irradiating a left image and a right image, a circular polarization filter unit 202 including a polarization filter for a left image and a polarization filter for a right image. And a filter driver 203 which rotates and drives the circularly polarized filter unit 202 described above to synchronize timing of left image irradiation and right image irradiation of the projector 201.
  • a filter driver 203 which rotates and drives the circularly polarized filter unit 202 described above to synchronize timing of left image irradiation and right image irradiation of the projector 201.
  • the synchronization unit 204 may further include a synchronization unit 204 for acquiring timing synchronization of the left image irradiation and the right image irradiation of the projector 201 and transmitting the timing synchronization to the filter driver 203 described above.
  • the projector 201 continuously receives the contents for the stereoscopic images in which the left image and the right image are stored in order, and continuously examines the contents.
  • the circular polarization filter unit 202 includes a polarizing film for the left image and a polarizing film for the right image as described above, and at the timing when the projector 201 irradiates the left image through rotation, the polarizing filter for the left image of the projector When the projector 201 is irradiated to the right image, the polarizing filter for the right image is adjusted to be positioned at the irradiation port of the projector 201.
  • the brightness decreases as the image light emitted from one projector is divided into left and right images.
  • a stereoscopic image display apparatus in which the transmitted light and the reflected light are collected on the screen by using a polarized light splitter and improved in brightness is introduced.
  • the three-dimensional image light which is sequentially irradiated with the left image and the right image from the projector, is divided into at least one transmitted light and at least one reflected light according to the polarization component by using a polarized light splitter, and then the left image / right for each transmitted light / reflected light.
  • a method of modulating a modulator to have different polarization directions according to an image irradiation point and then superimposing them on a screen has been introduced.
  • the present invention proposes a system that does not use a half-wave retarder to solve the above problems, but specifically a stereoscopic image that effectively reduces crosstalk that may be a problem when the half-wave retarder is not used.
  • An apparatus is proposed.
  • a first polarized light splitter for spatially dividing the image light irradiated from the projector into one or more transmitted light and one or more reflected light according to the polarization component;
  • a first modulator configured to perform modulation on the circularly polarized light so that the transmitted light is irradiated to the left image or the right image in a time-divisional manner so that the transmitted light is irradiated onto the screen;
  • a second modulator for modulating the reflected light to alternately polarize the reflected light to the left image or the right image so that the reflected light is irradiated onto the screen;
  • a stereoscopic imaging apparatus including a PBS is proposed.
  • the second PBS for spatially dividing the image light irradiated from
  • the specific polarization component blocked by the second PBS may be a linear polarization component transmitted by the 3D glasses.
  • either one of the left eye lens and the right eye lens of the 3D glasses blocks the light at the first time point, and the other one of the left eye lens and the right eye lens of the 3D glasses may block the light at the second time point. Can be.
  • the left eye lens and the right eye lens of the 3D glasses may be configured to transmit light in a first linearly polarized light direction and block light in a second linearly polarized light direction, and to enter the second modulator.
  • the light may have the first linear polarization direction.
  • the stereoscopic image device preferably does not include a 1/2 wavelength phase retarder in front of the first modulator and the second modulator. Since it does not include the 1/2 wavelength phase retarder as described above, the first modulator and the first linear polarization component of the light incident on the first modulator and the second linear polarization component of the light incident on the second modulator are perpendicular to each other.
  • the light output by the second modulator may be configured to have the same circular polarization direction at the same time.
  • the first modulator and the second modulator may include a quarter wavelength phase delay unit.
  • the second PBS may have any one or more of a film form, a coating form and a liquid crystal form.
  • a clean-up polarizer may be further included between the first PBS and the second modulator or inside the second modulator in front of the liquid crystal LC.
  • the specific linearly polarized light selectively transmitted by the clean-up polarizer may be blocked by the second PBS. That is, the second PBS is preferably configured to block circularly polarized light that is not converted into circularly polarized light so that circularly polarized light is transmitted.
  • FIG. 1 is a view showing the structure of a conventional two-projector system for displaying a stereoscopic image.
  • FIG. 2 is a view for explaining a 1 projector circular polarization filter system.
  • FIG. 3 is a view for explaining an example of a stereoscopic image display apparatus using a polarized light splitter to which the present invention can be applied.
  • FIG. 4 is a view showing another example for explaining a stereoscopic image display apparatus using a polarized light splitter to which the present invention can be applied.
  • FIG. 5 is a diagram for describing a relationship with 3D glasses in a stereoscopic imaging apparatus using PBS as shown in FIGS. 3 and 4.
  • FIG. 6 is a view for explaining an operation when omitting a 1/2 phase delay unit and crosstalk increase according to an embodiment of the present invention.
  • FIG. 7 and 8 are views for explaining a stereoscopic image device for reducing crosstalk according to an embodiment of the present invention.
  • FIGS. 9 and 10 are diagrams for further explaining a crosstalk reduction method when a 1/2 wavelength phase retarder is not used, according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing a specific configuration to which an additional PBS for crosstalk reduction is applied according to one preferred embodiment of the present invention.
  • FIG. 12 is a view for explaining a specific configuration of the LC for transmitted light and the LC for reflected light as a modulator configuration according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining an example of a stereoscopic image display apparatus using a polarized light splitter to which the present invention can be applied.
  • the light emitted from the projector 302 is processed into two paths using a polarizing beam splitter (PBS) 301, and then processed again. ) To improve brightness.
  • PBS polarizing beam splitter
  • the image light emitted from the projector 302 is divided into light having two polarization components in the polarization light splitter 301. That is, light having S-polarized light and P-polarized light component is reflected or transmitted by the PBS 301. The light having the transmitted P-polarization component is magnified by the lens 304 to form an image on the screen 303. On the other hand, the reflected S-polarized light is reflected by the reflector 305 to reach the screen 303. The above two transmitted / reflected lights are converted into the same linearly or circularly polarized light by the modulators 306 and 307.
  • a half wave plate 308 is used for the reflected light path passing through the modulator 307, and a half wave plate is not used for the transmitted light path passing through the modulator 306.
  • the image light of both optical paths has the same linear polarization (eg, P-polarization) at the front of the modulators 306 and 307, and after passing through the modulators 306 and 307, both are circularly polarized or in the same direction. As a result, they all had linearly polarized light in the same direction.
  • the half-wave plate is not used for the reflected light path passing through the modulator 307, and the half-wave plate 309 is used for the transmitted light path passing through the modulator 306.
  • the front end of 306, 307 may all have S-polarized light, and after passing through the modulators 306, 307, they may all have circular polarized light in the same direction or, in some cases, linearly polarized light in the same direction.
  • FIG. 4 is a view showing another example for explaining a stereoscopic image display apparatus using a polarized light splitter to which the present invention can be applied.
  • the stereoscopic apparatus shown in FIG. 4 relates to a triple light system in which image light is divided into three by a polarized light splitter and processed.
  • the image light irradiated by the projector 401 is reflected by the first image light, the polarized light splitter 402, which passes through the polarized light splitters 402 and 403, and is reflected by the reflective member 404.
  • the second image light may be split into a third image light that is reflected by the polarized light splitter 403 and is reflected by the reflective member 405.
  • the transmitted light and the reflected light are divided into one image light according to the polarization component, the two reflected light is characterized by dividing one image light into two.
  • the two reflected light beams are preferably combined into one image on the screen.
  • the polarized light splitters 402 and 403 are bent as shown, and the light passing through the center portion is refracted to prevent the loss due to incident on the connection part of the polarized light splitters 402 and 403. It is shown to include members 406 and 407.
  • the polarized light splitters 402 and 403 of FIG. 4 may be implemented in a prism form in consideration of optical path differences between transmitted light and reflected light, and various other methods may be used.
  • FIG. 5 is a diagram for describing a relationship with 3D glasses in a stereoscopic imaging apparatus using PBS as shown in FIGS. 3 and 4.
  • the time-division stereoscopic image emitted from the projector 510 may be modulated by the modulator 520 such that the left image and the right image have different circular polarization directions.
  • the stereoscopic image irradiated from the projector may be divided into transmitted light paths and reflected light paths and then modulated into circularly polarized light by the modulator 520. .
  • Light modulated by the modulator 520 is irradiated to the screen 530, and the light reflected by the screen 530 is incident on the 3D glasses 540.
  • the 3D glasses 540 generally include a ⁇ / 4 phase delay unit and a linear polarizer, and the circularly polarized light reflected by the screen 530 and incident on the 3D glasses is 3D. It is converted into linearly polarized light in a specific direction by the ⁇ / 4 phase delay of the glasses, and either one of the left eye lens or the right eye lens of the 3D glasses blocks the light at a specific point of time by the linear polarizing plate of the 3D glasses. It may be configured to transmit light.
  • the right eye lens of the 3D glasses may transmit light at the first time point at which the right image is irradiated, and the left eye lens may block light.
  • the left eye lens may be configured to transmit light, and the right eye lens may be configured to block the light.
  • 3D glasses have a film that blocks P-polarized light, and such a film may correspond to the linear polarizing plate described above.
  • FIG. 6 is a view for explaining an operation when omitting a 1/2 wavelength phase retarder and an increase in crosstalk according to an embodiment of the present invention.
  • FIG. 6 may be considered to specifically illustrate one side of the reflected light path when the P-polarized light is transmitted and the S-polarized light is reflected by the PBS 301 of FIG. 3 or the PBSs 402 and 403 of FIG. 4. .
  • FIG. 6 illustrates a case where S-polarized light is incident on the ⁇ / 4 phase retarder or a modulator 610 serving as the same in the exemplary reflection optical path as described above.
  • the efficiency of converting linearly polarized light into circularly polarized light is known to be about 90%.
  • 90% of the light transmitted through the ⁇ / 4 phase retarder 610 is converted into circularly polarized light, while the remaining 10% is unconverted and can maintain S-polarized light.
  • the 3D glasses basically include a ⁇ / 4 phase retarder 620 and a linear polarizer 630 as described above, which linearly polarizes the S-polarized light and blocks the P-polarized light.
  • the 3D glasses illustrated in FIG. 6 illustrate a case where one lens of the 3D glasses should block light at a specific time point. That is, the left eye lens may correspond to the right eye lens when the left image is irradiated or the left eye lens when the right image is irradiated.
  • the circularly polarized light is changed to P-polarized light by the ⁇ / 4 phase retarder 620 of the 3D glasses, and thus can be blocked by the linear polarizer 630.
  • 10% of S-polarized light is again converted to S-polarized light after 1% corresponding to 10% of 10% passes through the ⁇ / 4 phase retarder 620 of the 3D glasses with a similar conversion efficiency.
  • 9% of the light corresponds to 90% of the S-polarized light
  • 9% of the light corresponds to 10% of the 90% circularly polarized light with circular polarization and the ⁇ / 4 phase retarder of the 3D glasses.
  • 620 i.e., a total of 18% of the circularly polarized light passes through the ⁇ / 4 phase retarder 620 of the 3D glasses).
  • the left eye lens and the right eye lens of the 3D glasses have the first linear polarization direction (for example, S-polarized light).
  • the first linear polarization direction for example, S-polarized light
  • the light incident on the modulator 610 of the reflected optical path is the first linearly polarized light direction (eg, S Polarization), and crosstalk as described above may be problematic.
  • FIG. 7 and 8 are views for explaining a stereoscopic image device for reducing crosstalk according to an embodiment of the present invention.
  • the stereoscopic imaging apparatus further includes a PBS 720 configured to block linearly polarized light in a specific direction.
  • a PBS 720 configured to block linearly polarized light in a specific direction.
  • the PBS 720 may be referred to as a second PBS to distinguish it from the PBS described with reference to FIGS. 3 and 4.
  • the configuration for blocking the crosstalk is limited to the second PBS 720, and the method of reducing the crosstalk by arranging the linearly polarized light device at the corresponding position is a method of finally irradiating the screen with the linearly polarized light. It may be used only.
  • the half-wavelength phase retarder when the half-wavelength phase retarder is not used in front of the modulator 710 as described above with reference to FIG. 7, the light incident on the modulator 710 is not linearly blocked by the 3D glasses.
  • S-polarized light As described above with respect to FIG. 6, the same is true that 10% of the light may remain as S-polarized light as it is transmitted through the quarter-wave phase retarder or LC modulator 710, but is additional in this embodiment.
  • the PBS 720 is thus configured to block light that is not converted by the modulator 710 and is maintained as linearly polarized light, thereby reducing crosstalk as described above.
  • PBS 720 may be configured to block all or some of the S-polarized light
  • FIG. 7 illustrates a case where PBS 720 blocks all of the S-polarized light.
  • the crosstalk level in the 3D glasses can be reduced to 2.25% or less.
  • the PBS 720 is preferably disposed between the modulator 710 and the 3D glasses in the reflected optical path. 8 illustrates that the PBS 720 is added between the modulator 710 and the screen 860 of the reflected optical path, but the present invention is not limited thereto.
  • the PBS 720 described above may use not only a film form, but also various types of Polarization Beam Splitter (PBS), for example, coated PBS.
  • PBS Polarization Beam Splitter
  • FIGS. 9 and 10 are diagrams for further explaining a crosstalk reduction method when a 1/2 wavelength phase retarder is not used, according to an embodiment of the present invention.
  • FIG. 9 illustrates a form in which S-polarized light, which is the polarization direction of the light of the reflected light path, of the light separated by triple light by PBS is converted into P-polarized light using a 1/2 wavelength phase retarder, and then modulated into circularly polarized light by a modulator. have.
  • S-polarized light which is the polarization direction of the light of the reflected light path
  • PBS the light separated by triple light by PBS
  • FIG. 10 illustrates a case where transmitted light and reflected light are configured to have the same circular polarization direction after the modulator without using a 1/2 wavelength phase retarder to solve such a problem, such as asymmetric driving of the modulator or a modulator applied voltage. Doing.
  • a configuration is disposed after the modulator and at the front of the screen to block cross-polarization components (S-polarized light) that are not modulated with circular polarization by the modulator to improve crosstalk. Shows an example in which is specified as the second PBS.
  • the configuration for reducing crosstalk according to the present invention may include both the above-described linear polarizer and the second PBS, but it may be preferable to configure the PBS in the form of PBS to maintain the circularly polarized light component of the light.
  • the use of the linear polarization device may be limited to the case where the linear polarization device is coupled while maintaining the linear polarization state on the screen.
  • FIG. 11 is a diagram showing a specific configuration to which an additional PBS for crosstalk reduction is applied according to one preferred embodiment of the present invention.
  • the incident light incident through the window passes through the substrate 1120 before entering the first PBS 1120, thereby preventing light loss or distortion caused by the central portion of the PBS 1120.
  • the first PBS 1110 preferably has a prism shape as shown in FIG. 11, but is not limited thereto.
  • Light transmitted through the first PBS 1110 may enter the transmitted light LC 1140-1 with a specific linear polarization component (eg, P polarization component), and is reflected by the first PBS 1110.
  • Silver may be incident on the reflected light LCs 1140-2 and 1140-3 with the linearly polarized light component reflected by the mirror elements 1130-1 and 1130-2 and orthogonal to the transmitted light.
  • FIG. 12 is a view for explaining a specific configuration of the LC for transmitted light and the LC for reflected light as a modulator configuration according to an embodiment of the present invention.
  • the LC for transmitted light preferably has antireflective coatings at both ends.
  • the LC for transmitted light may include a clean-up polarizer for removing unintended polarized light after the antireflective coating in the incident light path.
  • the P-polarized light that has passed through such a clean-up polarizer may be modulated by the LCD 1 and the LCD 2 into left-circular polarization or right-circular polarization in synchronization with the image signal.
  • the reflective LC may include an anti-reflection coding in the same manner as the LC for the transmitted light, and the incident light passing through the reflective light may pass through the clean-up polarizer to remove the unintended polarized light.
  • the S-polarized light passing through the clean-up polarizer may be modulated into left-circular polarization or right-circular polarization in accordance with the synchronization of the image signal by LCD 1 and LCD 2, and the linear polarization direction input to the LCDs is determined by the transmitted light path.
  • it is orthogonal to the light it is preferable to modulate the output light to have the same circular polarization direction at the same time point as the light of the transmitted light path.
  • the light of the reflected optical path of the light subjected to such modulation is not converted into circularly polarized light by the aforementioned LC for reflection light by the second PBSs 1150-1 and 1150-2, and thus S-polarized light is converted. It blocks the light to be maintained.
  • the second PBSs 1150-1 and 1150-2 may be disposed at the rear ends of the LC LCs 1140-2 and 1140-3 in an inclined form with respect to the traveling direction of the reflected light path. .
  • the second PBSs 1150-1 and 1150-2 are for removing linearly polarized light that is not modulated into circularly polarized light by the modulator as compared to a clean-up polarizer disposed in front of the modulator or inside the modulator. It is distinguished from a clean-up polarizer for constituting the intended linear polarization direction prior to incidence.
  • the clean-up polarizer of the reflected light LC positioned in the reflected light path is configured to remove light other than S polarized light
  • the second PBSs 1150-1 and 1150-2 block S polarized light that is not converted into circularly polarized light. And the circular polarization of the remaining light as it is.
  • the present invention can be widely used in homes, offices, and the like, as well as theaters requiring high quality stereoscopic image display by improving color quality and crosstalk performance with high brightness.

Abstract

The present invention presents a stereoscopic image device comprising: a first polarizing beam splitter (PBS) for spatially splitting image light emitted from a projector into one or more transmitted light beams and one or more reflected light beams according to polarization components, and emitting the split image light; a first modulator performing modulation so as to have circularly polarized light beams different from each other, according to the alternate emitting, to a left image and a right image, of transmitted light in a time-division manner, such that the transmitted light beams are emitted at a screen; a second modulator performing modulation so as to have circularly polarized light beams different from each other, according to the alternately emitting, to a left image and a right image, of reflected light in a time-division manner, such that the reflected light beams are emitted at a screen; and a second PBS arranged between the second modulator and 3D glasses so as to block light having a specific polarization component, which is not converted into circularly polarized light by the second modulator.

Description

크로스토크를 저감시키는 입체영상장치 Stereoscopic image device to reduce crosstalk
이하의 설명은 편광 광분할기를 이용하는 입체영상 장치에 있어서 크로스토크를 효율적으로 저감시키는 입체영상 장치에 대한 것이다.The following description relates to a stereoscopic imaging apparatus which effectively reduces crosstalk in a stereoscopic imaging apparatus using a polarized light splitter.
일반적으로 입체 영상(또는 3D 영상)을 구현하는 방법은 인간의 두 눈에 서로 다른 영상을 조명함으로써 구현되며, 극장과 같은 대형 스크린을 통해 상영되는 입체 영상의 경우, 좌우측이 서로 수직하는 방향의 편광 렌즈를 가진 편광 안경을 통해, 좌측 영상과 우측 영상을 구분하여 투과시키는 편광 방식이 주로 이용되고 있다. 이는 두 개의 카메라를 이용하여 영상을 촬영하고, 그 두 개의 영상을 편광수단을 이용하여 서로 직각 편차를 가진 겹친 영상을 하나의 화면에 디스플레이하고, 상술한 편광 안경을 통해 두 개의 카메라가 촬영한 영상을 각각 좌우측 눈으로 보게 함으로써 입체 영상을 구현하는 방식이다. In general, a method of implementing a stereoscopic image (or 3D image) is realized by illuminating different images on two human eyes, and in the case of a stereoscopic image displayed on a large screen such as a theater, polarization in a direction in which the left and right sides are perpendicular to each other Through polarizing glasses having a lens, a polarization method for distinguishing and transmitting a left image and a right image is mainly used. This takes images using two cameras, displays the two images on one screen by overlapping images having right angle deviations using polarization means, and images taken by the two cameras through the polarizing glasses described above. The three-dimensional image is implemented by viewing the left and right eyes respectively.
도 1은 입체 영상 상영을 위한 종래 2 프로젝터 방식 시스템의 구조를 도시한 도면이다.1 is a view showing the structure of a conventional two-projector system for displaying a stereoscopic image.
상술한 바와 같은 편광 방식에 의한 입체 영상 상영을 하기 위해 종래 2 프로젝터 방식 시스템에서는 2 개의 기존의 2차원(2D) 프로젝터(1, 2)에 의해 하나의 프로젝터(1)에서는 좌측 영상을 조사하고, 다른 하나의 프로젝터(2)에서는 우측영상을 조사하도록 하여, 이들 각각의 영상을 편광 방향이 각각 수직인 편광필터들(3, 4)을 통과시켜 스크린(5)에 조사되도록 한다. 이와 같이 스크린(5)에 조사된 좌측 영상과 우측 영상이 겹쳐진 영상은 이후 관람자가 착용한 편광 안경(6)의 좌측 영상용 렌즈(7)와 우측 영상용 렌즈(8) 각각을 통해 관람자의 좌우안에 구분되어 보임으로서 입체감을 느끼게 하는 방식이다.In order to perform stereoscopic image display by the polarization method as described above, in the conventional two projector system, the left image is irradiated on one projector 1 by two conventional two-dimensional (2D) projectors 1 and 2, The other projector 2 allows the right image to be irradiated so that each of these images is irradiated onto the screen 5 by passing through the polarization filters 3 and 4 whose polarization directions are perpendicular to each other. The left image and the right image, which are irradiated on the screen 5, overlap the left and right sides of the viewer through each of the left image lens 7 and the right image lens 8 of the polarizing glasses 6 worn by the viewer. It is a way of making three-dimensional impressions by looking inside.
상술한 방식에 있어서 좌측 영상 및 우측 영상에 서로 다른 편광을 적용하는 것은 선편광 방식 및 원편광 방식 모두에 의해 가능하다.In the above-described method, it is possible to apply different polarizations to the left image and the right image by both linear polarization and circular polarization.
이와 같은 종래의 2 프로젝터 방식 입체 영상 상영 시스템은, 프로젝터가 시간적으로 좌우영상을 교대로 조사하도록 하는 아래 1 프로젝터 방식으로 대체되고 있다.Such a conventional two-projector stereoscopic image screening system has been replaced by the following one-projector system in which the projector alternately irradiates the left and right images in time.
도 2는 1 프로젝터 원편광 필터 방식 시스템을 설명하기 위한 도면이다. 2 is a view for explaining a 1 projector circular polarization filter system.
도 2에 도시된 바와 같은 입체영상 프로젝터 시스템은 좌측영상과 우측영상을 순차적으로 조사하는 하나의 프로젝터(201), 좌측 영상용 편광 필터와 우측 영상용 편광 필터를 포함하는 원편광필터부(202), 및 상술한 원편광필터부(202)를 프로젝터(201)의 좌측영상 조사와 우측영상 조사의 타이밍 동기에 맞게 회전시켜 구동하는 필터 구동부(203)를 포함한다. 또한, 도 2에 도시된 바와 같이 프로젝터(201)의 좌측영상 조사와 우측영상 조사의 타이밍 동기를 획득하여 상술한 필터 구동부(203)에 전달하는 동기부(204)를 더 포함할 수 있다. As shown in FIG. 2, the three-dimensional image projector system includes a single projector 201 sequentially irradiating a left image and a right image, a circular polarization filter unit 202 including a polarization filter for a left image and a polarization filter for a right image. And a filter driver 203 which rotates and drives the circularly polarized filter unit 202 described above to synchronize timing of left image irradiation and right image irradiation of the projector 201. In addition, as shown in FIG. 2, the synchronization unit 204 may further include a synchronization unit 204 for acquiring timing synchronization of the left image irradiation and the right image irradiation of the projector 201 and transmitting the timing synchronization to the filter driver 203 described above.
프로젝터(201)는 좌측영상과 우측영상이 순차적으로 저장된 입체영상용 콘텐츠를 입력 받아 이 콘텐츠를 지속적으로 조사한다. 원편광필터부(202)는 상술한 바와 같이 좌측 영상용 편광 필름과 우측 영상용 편광 필름을 포함하며, 회전을 통해 프로젝터(201)가 좌측 영상을 조사하는 타이밍에는 좌측영상용 편광 필터가 프로젝터의 조사구에 위치하도록 하고, 프로젝터(201)가 우측 영상을 조사하는 타이밍에는 우측영상용 편광 필터가 프로젝터(201)의 조사구에 위치하도록 조절되는 것이다. The projector 201 continuously receives the contents for the stereoscopic images in which the left image and the right image are stored in order, and continuously examines the contents. The circular polarization filter unit 202 includes a polarizing film for the left image and a polarizing film for the right image as described above, and at the timing when the projector 201 irradiates the left image through rotation, the polarizing filter for the left image of the projector When the projector 201 is irradiated to the right image, the polarizing filter for the right image is adjusted to be positioned at the irradiation port of the projector 201.
다만, 상술한 바와 같은 1 프로젝터 방식은 하나의 프로젝터로부터 조사되는 영상광을 좌우측 영상에 나누어 사용함에 따라 휘도(Brightness) 감소가 크게 문제가 된다. However, in the one projector method as described above, the brightness decreases as the image light emitted from one projector is divided into left and right images.
상술한 바와 같은 종래 1프로젝터 시스템의 휘도 감소 문제를 해결하기 위해 편광 광 분할기를 이용하여 투과광과 반사광을 스크린에 모아 휘도를 개선 한 입체영상상영 장치가 도입되었다. 구체적으로 프로젝터로부터 좌측 영상과 우측 영상이 순차적으로 조사되는 입체영상광을 편광 광분할기를 이용하여 편광 성분에 따라 하나 이상의 투과광과 하나 이상의 반사광으로 분할 한 후, 투과광/반사광 각각에 대해 좌측 영상/우측 영상 조사 시점에 따라 서로 다른 편광 방향을 가지도록 변조기를 통해 변조한 후, 이들을 스크린 상에서 중첩될 수 있도록 하는 방식이 도입되었다.In order to solve the brightness reduction problem of the conventional one-projector system as described above, a stereoscopic image display apparatus in which the transmitted light and the reflected light are collected on the screen by using a polarized light splitter and improved in brightness is introduced. Specifically, the three-dimensional image light, which is sequentially irradiated with the left image and the right image from the projector, is divided into at least one transmitted light and at least one reflected light according to the polarization component by using a polarized light splitter, and then the left image / right for each transmitted light / reflected light. A method of modulating a modulator to have different polarization directions according to an image irradiation point and then superimposing them on a screen has been introduced.
다만, 상술한 바와 같은 장치에 있어서 입사광을 편광 성분에 따라 분할하는 편광분할기(PBS)에 의해 투과된 광과 반사된 광을 일치시키기 위해 1/2 파장 지연기(retarder)의 사용이 필수적으로 요구되어 여러가지 문제가 야기되었다.However, in the apparatus as described above, the use of a 1/2 wavelength retarder is essentially required to match the reflected light with the light transmitted by the polarization splitter (PBS) that divides the incident light according to the polarization component. This caused various problems.
본 발명은 상술한 문제들을 해결하기 위해 1/2 파장 지연기를 사용하지 않는 시스템을 제안하되, 구체적으로 1/2 파장 지연기를 사용하지 않는 경우에 문제될 수 있는 크로스토크를 효율적으로 저감한 입체영상 장치를 제안하고자 한다.The present invention proposes a system that does not use a half-wave retarder to solve the above problems, but specifically a stereoscopic image that effectively reduces crosstalk that may be a problem when the half-wave retarder is not used. An apparatus is proposed.
상술한 바와 같은 과제를 해결하기 위한 본 발명의 일 측면에서는 프로젝터로부터 조사된 영상광을 편광성분에 따라 하나 이상의 투과광 및 하나 이상의 반사광으로 공간적으로 분할하여 조사하는 제 1 편광 광분할기(PBS); 상기 투과광이 시분할적으로 번갈아 좌측 영상 또는 우측 영상으로 조사됨에 따라 서로 다른 원편광을 가지도록 변조를 수행하여 스크린으로 조사되도록 하는 제 1 변조기; 상기 반사광이 시분할적으로 번갈아 좌측 영상 또는 우측 영상으로 조사됨에 따라 서로 다른 원편광을 가지도록 변조를 수행하여 상기 스크린으로 조사되도록 하는 제 2 변조기; 및 상기 제 1 변조기 및 상기 제 2 변조기 중 하나 이상(바람직하게는 제 2 변조기)과 3D 안경 사이에 배치되어 상기 제 2 변조기에 의해 원편광으로 변환되지 않은 특정 편광 성분의 광을 차단하는 제 2 PBS를 포함하는, 입체영상 장치를 제안한다. 위 실시형태에서 제 2 PBS는 상기 제 2 변조기와 3D 안경 사이, 더 구체적으로 제 2 변조기와 스크린 사이에 배치되는 것이 바람직하다.According to an aspect of the present invention for solving the above problems, a first polarized light splitter (PBS) for spatially dividing the image light irradiated from the projector into one or more transmitted light and one or more reflected light according to the polarization component; A first modulator configured to perform modulation on the circularly polarized light so that the transmitted light is irradiated to the left image or the right image in a time-divisional manner so that the transmitted light is irradiated onto the screen; A second modulator for modulating the reflected light to alternately polarize the reflected light to the left image or the right image so that the reflected light is irradiated onto the screen; And a second interposed between at least one of the first modulator and the second modulator (preferably a second modulator) and 3D glasses to block light of a particular polarization component that is not converted into circularly polarized light by the second modulator. A stereoscopic imaging apparatus including a PBS is proposed. In the above embodiment, the second PBS is preferably disposed between the second modulator and the 3D glasses, more specifically between the second modulator and the screen.
구체적으로, 상기 제 2 PBS에 의해 차단되는 특정 편광 성분은 상기 3D 안경에 의해 투과되는 선편광 성분일 수 있다.Specifically, the specific polarization component blocked by the second PBS may be a linear polarization component transmitted by the 3D glasses.
여기서, 상기 3D 안경의 좌안용 렌즈와 우안용 렌즈 중 어느 일측 렌즈는 제 1 시점에서 광을 차단하며, 상기 3D 안경의 좌안용 렌즈와 우안용 렌즈 중 다른 일측 렌즈는 제 2 시점에서 광을 차단할 수 있다.Here, either one of the left eye lens and the right eye lens of the 3D glasses blocks the light at the first time point, and the other one of the left eye lens and the right eye lens of the 3D glasses may block the light at the second time point. Can be.
상술한 입체영상 장치에 있어서, 상기 3D 안경의 좌안용 렌즈와 우안용 렌즈는 제 1 선편광 방향의 광을 투과시키고, 제 2 선편광 방향의 광을 차단하도록 구성될 수 있으며, 상기 제 2 변조기에 입사되는 광은 상기 제 1 선편광 방향을 가질 수 있다.In the above-described stereoscopic apparatus, the left eye lens and the right eye lens of the 3D glasses may be configured to transmit light in a first linearly polarized light direction and block light in a second linearly polarized light direction, and to enter the second modulator. The light may have the first linear polarization direction.
즉, 상기 입체영상 장치는 상기 제 1 변조기 및 상기 제 2 변조기 전단에 1/2 파장 위상 지연기를 포함하지 않는 것이 바람직하다. 이와 같이 1/2 파장 위상 지연기를 포함하지 않기 때문에, 상기 제 1 변조기에 입사하는 광의 제 1 선편광 성분과 상기 제 2 변조기에 입사하는 광의 제 2 선편광 성분은 서로 수직하더라도, 상기 제 1 변조기 및 상기 제 2 변조기에 의해 출력되는 광은 동일한 시점에서 동일한 원편광 방향을 가지도록 구성될 수 있다.That is, the stereoscopic image device preferably does not include a 1/2 wavelength phase retarder in front of the first modulator and the second modulator. Since it does not include the 1/2 wavelength phase retarder as described above, the first modulator and the first linear polarization component of the light incident on the first modulator and the second linear polarization component of the light incident on the second modulator are perpendicular to each other. The light output by the second modulator may be configured to have the same circular polarization direction at the same time.
상기 제 1 변조기 및 상기 제 2 변조기는 1/4 파장 위상지연기를 포함할 수도 있다.The first modulator and the second modulator may include a quarter wavelength phase delay unit.
아울러, 상기 제 2 PBS는 필름 형태, 코팅 형태 및 액정 형태 중 어느 하나 이상을 가질 수 있다.In addition, the second PBS may have any one or more of a film form, a coating form and a liquid crystal form.
한편, 상기 제 1 PBS와 상기 제 2 변조기 사이, 또는 상기 제 2 변조기 내부에서 액정(LC) 전단에 클린업 편광기를 추가적으로 포함할 수 있다. 여기서, 상기 클린업 편광기에 의해 선택적으로 투과되는 특정 선편광광은 상기 제 2 PBS에 의해 차단될 수 있다. 즉, 상기 제 2 PBS는 원편광으로 변환되지 않는 특정 편광 성분의 광을 차단하여 원편광이 투과되도록 구성되는 것이 바람직하다.Meanwhile, a clean-up polarizer may be further included between the first PBS and the second modulator or inside the second modulator in front of the liquid crystal LC. Here, the specific linearly polarized light selectively transmitted by the clean-up polarizer may be blocked by the second PBS. That is, the second PBS is preferably configured to block circularly polarized light that is not converted into circularly polarized light so that circularly polarized light is transmitted.
상술한 바와 같은 본 발명의 실시형태들에 따를 경우, 종래의 1/2 파장 위상 지연기를 사용하지 않고 편광장치를 사용 함으로써 색상 특성이 우수한 양질의 화질을 제공할 수 있으며, 1/2 파장 지연기를 사용하지 않더라도 크로스토크를 효율적으로 감소시켜 높은 품질의 입체영상을 상영할 수 있다.According to the embodiments of the present invention as described above, it is possible to provide a high quality image quality with excellent color characteristics by using a polarizer without using a conventional 1/2 wavelength phase retarder, Even if not used, crosstalk can be efficiently reduced to display high quality stereoscopic images.
도 1은 입체 영상 상영을 위한 종래 2 프로젝터 방식 시스템의 구조를 도시한 도면이다.1 is a view showing the structure of a conventional two-projector system for displaying a stereoscopic image.
도 2는 1 프로젝터 원편광필터 방식 시스템을 설명하기 위한 도면이다. 2 is a view for explaining a 1 projector circular polarization filter system.
도 3은 본 발명이 적용될 수 있는 편광 광분할기를 이용한 입체영상상영 장치의 일례를 설명하기 위한 도면이다.3 is a view for explaining an example of a stereoscopic image display apparatus using a polarized light splitter to which the present invention can be applied.
도 4는 본 발명이 적용될 수 있는 편광 광분할기를 이용한 입체영상상영 장치를 설명하기 위한 또 다른 일례를 나타낸 도면이다.4 is a view showing another example for explaining a stereoscopic image display apparatus using a polarized light splitter to which the present invention can be applied.
도 5는 도 3 및 4와 같이 PBS를 이용하는 입체영상 장치에 있어서 3D 안경과의 관계를 설명하기 위한 도면이다.FIG. 5 is a diagram for describing a relationship with 3D glasses in a stereoscopic imaging apparatus using PBS as shown in FIGS. 3 and 4.
도 6은 본 발명의 일 실시형태에 따라 1/2 위상 지연기를 생략하는 경우의 동작과 이에 따른 크로스토크 증가를 설명하기 위한 도면이다.FIG. 6 is a view for explaining an operation when omitting a 1/2 phase delay unit and crosstalk increase according to an embodiment of the present invention.
도 7 및 8은 본 발명의 바람직한 일 실시형태에 따라 크로스토크를 저감시키기 위한 입체영상장치를 설명하기 위한 도면이다.7 and 8 are views for explaining a stereoscopic image device for reducing crosstalk according to an embodiment of the present invention.
도 9 및 도 10은 본 발명의 일 실시형태에 따라 1/2 파장 위상 지연기를 사용하지 않는 경우의 크로스토크 저감 방식에 대해 추가적으로 설명하기 위한 도면이다.9 and 10 are diagrams for further explaining a crosstalk reduction method when a 1/2 wavelength phase retarder is not used, according to an embodiment of the present invention.
도 11은 본 발명의 바람직한 일 실시형태에 따라 크로스토크 저감용 추가 PBS를 적용한 구체적인 구성을 도시한 도면이다.FIG. 11 is a diagram showing a specific configuration to which an additional PBS for crosstalk reduction is applied according to one preferred embodiment of the present invention. FIG.
도 12는 본 발명의 일 실시형태에 따른 변조기 구성으로서 투과광용 LC 및 반사광용 LC의 구체적 구성을 설명하기 위한 도면이다.12 is a view for explaining a specific configuration of the LC for transmitted light and the LC for reflected light as a modulator configuration according to an embodiment of the present invention.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced.
이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시된다. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details. In some instances, well-known structures and devices are omitted or shown in block diagram form, centering on the core functions of each structure and device, in order to avoid obscuring the concepts of the present invention.
도 3은 본 발명이 적용될 수 있는 편광 광분할기를 이용한 입체영상상영 장치의 일례를 설명하기 위한 도면이다.3 is a view for explaining an example of a stereoscopic image display apparatus using a polarized light splitter to which the present invention can be applied.
도 3에 도시된 입체영상상영 장치는 편광 광분할기(polarizing beam splitter(PBS); 301)를 이용하여 프로젝터(302)로부터 조사된 광을 2가지 경로로 분할 하여 처리한 후, 이를 다시 스크린(303)에서 합쳐 휘도를 개선하는 방식으로 동작한다.In the stereoscopic image display apparatus shown in FIG. 3, the light emitted from the projector 302 is processed into two paths using a polarizing beam splitter (PBS) 301, and then processed again. ) To improve brightness.
구체적으로, 프로젝터(302)로부터 나오는 영상광은 편광 광분할기(301)에서 두 개의 편광성분을 갖는 빛으로 나뉜다. 즉, S-편광 및 P-편광성분을 갖는 빛은 PBS(301)에서 반사 또는 투과된다. 투과된 P-편광성분을 갖는 광은 렌즈(304)에 의하여 상이 확대되어 스크린(303) 상에 영상이 맺힌다. 한편, 반사된 S-편광광은 반사경(305)에 의하여 반사되어 스크린(303)에 도달한다. 위와 같은 두 개의 투과/반사된 광은 변조기(306, 307)에 의하여 동일한 선편광 또는 원편광으로 바뀌어 사용하게 된다. In detail, the image light emitted from the projector 302 is divided into light having two polarization components in the polarization light splitter 301. That is, light having S-polarized light and P-polarized light component is reflected or transmitted by the PBS 301. The light having the transmitted P-polarization component is magnified by the lens 304 to form an image on the screen 303. On the other hand, the reflected S-polarized light is reflected by the reflector 305 to reach the screen 303. The above two transmitted / reflected lights are converted into the same linearly or circularly polarized light by the modulators 306 and 307.
한편 상기 두 개의 투과/반사된 광은 서로 다른 편광성분을 가지게 되므로 이를 동일한 편광으로 변환시키는 것이 요구되었다. 이를 위한 시스템의 일례에서는 변조기(307)을 거치는 반사광로에 1/2 파장판(Half wave plate; 308)을 사용하고, 변조기(306)을 거치는 투과광로에는 이와 달리 1/2 파장판을 사용하지 않음으로써, 양 광로의 영상광이 변조기들(306,307)의 전단에서는 모두 동일한 선편광(예를 들어, P-편광)을 가지고, 변조기들(306,307)을 거친 후에는 모두 동일한 방향의 원편광 또는 경우에 따라 모두 동일한 방향의 선편광을 가지게 하였다. Meanwhile, since the two transmitted / reflected light have different polarization components, it is required to convert them to the same polarization. In one example of a system for this purpose, a half wave plate 308 is used for the reflected light path passing through the modulator 307, and a half wave plate is not used for the transmitted light path passing through the modulator 306. In other words, the image light of both optical paths has the same linear polarization (eg, P-polarization) at the front of the modulators 306 and 307, and after passing through the modulators 306 and 307, both are circularly polarized or in the same direction. As a result, they all had linearly polarized light in the same direction.
반대로, 변조기(307)을 거치는 반사광로에는 1/2 파장판을 사용하지 않고, 변조기(306)을 거치는 투과광로에는 1/2 파장판(309)을 사용하여, 양 광로의 영상광이 변조기들(306,307)의 전단에서는 모두 S-편광을 가지고, 변조기들(306,307)을 거친 후에는 모두 동일한 방향의 원편광 또는 경우에 따라 모두 동일한 방향의 선편광을 가지게 할 수도 있다.On the contrary, the half-wave plate is not used for the reflected light path passing through the modulator 307, and the half-wave plate 309 is used for the transmitted light path passing through the modulator 306. The front end of 306, 307 may all have S-polarized light, and after passing through the modulators 306, 307, they may all have circular polarized light in the same direction or, in some cases, linearly polarized light in the same direction.
도 4는 본 발명이 적용될 수 있는 편광 광분할기를 이용한 입체영상상영 장치를 설명하기 위한 또 다른 일례를 나타낸 도면이다. 구체적으로, 도 4에 도시된 입체영상 장치는 편광 광분할기에 의해 영상광이 3개로 분할되어 처리되는 3중광 시스템에 대한 것이다. 4 is a view showing another example for explaining a stereoscopic image display apparatus using a polarized light splitter to which the present invention can be applied. Specifically, the stereoscopic apparatus shown in FIG. 4 relates to a triple light system in which image light is divided into three by a polarized light splitter and processed.
도 4에서 프로젝터(401)에 의해 조사된 영상광은 편광 광분할기(402, 403)를 투과하여 진행하는 제 1 영상광, 편광 광분할기(402)에 의해 반사되어 반사부재(404)를 통해 반사되어 진행하는 제 2 영상광, 그리고 편광 광분할기(403)에 의해 반사되어 반사부재(405)를 통해 반사되어 진행하는 제 3 영상광으로 분할될 수 있다. 이때, 투과광과 반사광은 편광 성분에 따라 하나의 이미지광이 분할되는 것이고, 2개의 반사광은 하나의 이미지광을 이등분 분할을 하는 것을 특징으로 한다. 이와 같은 시스템에서 분리된 2개의 반사광은 스크린 상에서 하나의 이미지로 이미지 결합이 되는 것이 바람직하다.In FIG. 4, the image light irradiated by the projector 401 is reflected by the first image light, the polarized light splitter 402, which passes through the polarized light splitters 402 and 403, and is reflected by the reflective member 404. The second image light may be split into a third image light that is reflected by the polarized light splitter 403 and is reflected by the reflective member 405. In this case, the transmitted light and the reflected light are divided into one image light according to the polarization component, the two reflected light is characterized by dividing one image light into two. In this system, the two reflected light beams are preferably combined into one image on the screen.
도 4의 실시 예에서는 편광 광분할기(402, 403)가 도시된 바와 같이 구부러져 있는 형태를 가지며, 중앙부를 통과하는 광이 편광 광분할기(402, 403)의 연결부에 입사함에 따른 유실을 막기 위해 굴절부재(406, 407)를 포함하는 것을 도시하고 있다. In the embodiment of FIG. 4, the polarized light splitters 402 and 403 are bent as shown, and the light passing through the center portion is refracted to prevent the loss due to incident on the connection part of the polarized light splitters 402 and 403. It is shown to include members 406 and 407.
한편, 도 4의 편광 광분할기(402, 403)는 투과광과 반사광의 광로차 등을 고려하여 프리즘 형태로 구현될 수도 있으며, 그 밖에도 다양한 방식이 이용될 수 있다. Meanwhile, the polarized light splitters 402 and 403 of FIG. 4 may be implemented in a prism form in consideration of optical path differences between transmitted light and reflected light, and various other methods may be used.
도 5는 도 3 및 4와 같이 PBS를 이용하는 입체영상 장치에 있어서 3D 안경과의 관계를 설명하기 위한 도면이다.FIG. 5 is a diagram for describing a relationship with 3D glasses in a stereoscopic imaging apparatus using PBS as shown in FIGS. 3 and 4.
프로젝터(510)으로부터 조사되는 시분할적인 입체영상은 변조기(520)에 의해 좌측 영상과 우측 영상이 서로 다른 원편광 방향을 가지도록 변조될 수 있다. 도 3 및 도 4와 관련하여 상술한 바와 같은 PBS를 이용한 장치의 경우, 프로젝터로부터 조사된 입체영상은 투과광로와 반사광로로 분할된 후 각각 변조기(520)에 의해 원편광 광으로 변조될 수 있다. The time-division stereoscopic image emitted from the projector 510 may be modulated by the modulator 520 such that the left image and the right image have different circular polarization directions. In the case of the apparatus using the PBS as described above with reference to FIGS. 3 and 4, the stereoscopic image irradiated from the projector may be divided into transmitted light paths and reflected light paths and then modulated into circularly polarized light by the modulator 520. .
변조기(520)에 의해 변조된 광은 스크린(530)에 조사되며, 스크린(530)에 의해 반사된 광은 3D 안경(540)에 입사하게 된다. Light modulated by the modulator 520 is irradiated to the screen 530, and the light reflected by the screen 530 is incident on the 3D glasses 540.
상술한 바와 같이 원편광 방식을 이용하는 경우 3D 안경(540)은 일반적으로 λ/4 위상지연기 및 선편광판을 포함하도록 구성되며, 스크린(530)에 반사되어 3D 안경에 입사하는 원편광광은 3D 안경의 λ/4 위상지연기에 의해 특정 방향의 선편광광으로 변환되며, 3D 안경의 선편광판에 의해 특정 시점에서 3D 안경의 좌안용 렌즈 또는 우안용 렌즈의 어느 일측은 광을 차단하고, 다른 일측은 광을 투과하도록 구성될 수 있다.As described above, when the circularly polarized light is used, the 3D glasses 540 generally include a λ / 4 phase delay unit and a linear polarizer, and the circularly polarized light reflected by the screen 530 and incident on the 3D glasses is 3D. It is converted into linearly polarized light in a specific direction by the λ / 4 phase delay of the glasses, and either one of the left eye lens or the right eye lens of the 3D glasses blocks the light at a specific point of time by the linear polarizing plate of the 3D glasses. It may be configured to transmit light.
예를 들어, 우측 영상이 조사되는 제 1 시점에서는 3D 안경의 우안용 렌즈는 광을 투과하고, 좌안용 렌즈는 광을 차단하도록 구성될 수 있으며, 좌측 영상이 조사되는 제 2 시점에서는 3D 안경의 좌안용 렌즈는 광을 투과하고, 우안용 렌즈는 광을 차단하도록 구성될 수 있다.For example, the right eye lens of the 3D glasses may transmit light at the first time point at which the right image is irradiated, and the left eye lens may block light. The left eye lens may be configured to transmit light, and the right eye lens may be configured to block the light.
일반적으로 3D 안경에는 P-편광을 차단하는 필름이 부착되어 있으며, 이러한 필름이 상술한 선편광판에 해당할 수 있다.Generally, 3D glasses have a film that blocks P-polarized light, and such a film may correspond to the linear polarizing plate described above.
도 6은 본 발명의 일 실시형태에 따라 1/2 파장 위상 지연기를 생략하는 경우의 동작과 이에 따른 크로스토크 증가를 설명하기 위한 도면이다.FIG. 6 is a view for explaining an operation when omitting a 1/2 wavelength phase retarder and an increase in crosstalk according to an embodiment of the present invention.
도 6은 도 3의 PBS (301) 또는 도 4의 PBS (402, 403)에 의해 P 편광광은 투과되고 S 편광광은 반사되는 경우, 반사광로 중 어느 일측을 구체적으로 도시한 것으로 볼 수 있다.FIG. 6 may be considered to specifically illustrate one side of the reflected light path when the P-polarized light is transmitted and the S-polarized light is reflected by the PBS 301 of FIG. 3 or the PBSs 402 and 403 of FIG. 4. .
구체적으로, 도 6에서는 상술한 바와 같이 예시적인 반사광로에서 λ/4 위상 지연기 또는 이 역할을 하는 변조기(610)에 S-편광광이 입사하는 경우를 도시하였다. 일반적으로 변조기가 직선편광을 원편광으로 변환시키는 효율이 90% 정도로 알려져 있다. 따라서, λ/4 위상 지연기(610)를 투과한 광에서 예컨대 90%는 원편광광으로 변환되지만, 나머지 10%는 변환이 되지 않고 S-편광을 유지할 수 있다. Specifically, FIG. 6 illustrates a case where S-polarized light is incident on the λ / 4 phase retarder or a modulator 610 serving as the same in the exemplary reflection optical path as described above. In general, the efficiency of converting linearly polarized light into circularly polarized light is known to be about 90%. Thus, for example, 90% of the light transmitted through the λ / 4 phase retarder 610 is converted into circularly polarized light, while the remaining 10% is unconverted and can maintain S-polarized light.
3D안경은 상술한 바와 같이 기본적으로 λ/4 위상 지연기(620) 및 선편광판(630)을 포함하며, 이 선편광판(630)은 S-편광광을 투과시키고 P-편광광은 차단하는 기능을 가지고 있다. The 3D glasses basically include a λ / 4 phase retarder 620 and a linear polarizer 630 as described above, which linearly polarizes the S-polarized light and blocks the P-polarized light. Have
도 6에 도시된 3D 안경은 특정 시점에 3D 안경의 일측 렌즈가 광을 차단해야 하는 경우를 도시하고 있다. 즉, 좌측 영상이 조사되는 시점에 우안용 렌즈 또는 우측 영상이 조사되는 시점에 좌안용 렌즈에 대응될 수 있다.The 3D glasses illustrated in FIG. 6 illustrate a case where one lens of the 3D glasses should block light at a specific time point. That is, the left eye lens may correspond to the right eye lens when the left image is irradiated or the left eye lens when the right image is irradiated.
이러한 상황에서, 3D 안경의 λ/4 위상 지연기(620)에 의하여 원편광광은 P-편광광으로 바뀌며, 따라서 선편광판(630)에 의하여 차단될 수 있다. 한편 10%의 S-편광광은 다시 유사한 변환효율로 10% 의 10%에 대응하는 1%가 3D 안경의 λ/4 위상 지연기(620)를 투과한 후 S-편광광으로 남게 되며, 10%의 S-편광 광 중 90%에 해당하는 9%의 광과, 90%의 원편광 광 중 10%의 광에 대응하는 9%의 광은 원편광을 가지고 3D 안경의 λ/4 위상 지연기(620)를 투과하게 된다 (즉, 전체 18 %의 원편광광이 3D 안경의 λ/4 위상 지연기(620)를 투과한다). In this situation, the circularly polarized light is changed to P-polarized light by the λ / 4 phase retarder 620 of the 3D glasses, and thus can be blocked by the linear polarizer 630. Meanwhile, 10% of S-polarized light is again converted to S-polarized light after 1% corresponding to 10% of 10% passes through the λ / 4 phase retarder 620 of the 3D glasses with a similar conversion efficiency. 9% of the light corresponds to 90% of the S-polarized light and 9% of the light corresponds to 10% of the 90% circularly polarized light with circular polarization and the λ / 4 phase retarder of the 3D glasses. 620 (i.e., a total of 18% of the circularly polarized light passes through the λ / 4 phase retarder 620 of the 3D glasses).
따라서 변조되지 않은 1%의 S-편광광과 18%의 원편광광의 절반인 9%는 3D안경의 선편광판(630)을 해당 시점에 투과하게 된다. 이는 좌우 영상 중 10%가 투과하여 cross-talk로 발생하여 입체영상의 좌/우 화면의 구분이 저하된다. 실제로 일반적으로 허용하는 크로스토크의 양은 약 2.5%이하이다.Thus, 9%, which is half of unmodulated 1% S-polarized light and 18% circularly polarized light, passes through the linear polarizing plate 630 of the 3D glasses at that time. This causes 10% of the left and right images to pass through, resulting in cross-talk, which reduces the distinction between the left and right images of the stereoscopic image. In practice, the generally acceptable amount of crosstalk is less than about 2.5%.
만일 도 3 및 도 4에서와 같이 변조기(610)에 입사하기 전에 1/2 λ 위상 지연기를 거치는 경우, 변조기(610)에 입사하는 광은 P- 편광광이 되기 때문에, 상술한 바와 같이 λ/4 위상 지연기(610)에 의해 변환되지 않는 선편광 성분인 P 편광광은 3D 안경에 의해 차단될 수 있어 상술한 바와 같은 문제가 발생하지 않으나, 본 발명에서와 같이 1/2 파장 위상 지연기를 사용하지 않는 경우 상술한 바와 같이 크로스토크 문제가 발생하게 된다.3 and 4, if the light passes through the 1/2 lambda phase retarder before entering the modulator 610, the light incident on the modulator 610 becomes P-polarized light, and thus, as described above, P-polarized light, which is a linearly polarized component that is not converted by the 4-phase retarder 610, may be blocked by the 3D glasses so that the problem described above does not occur. However, as in the present invention, a 1/2 wavelength phase retarder is used. If not, crosstalk problems will occur as described above.
즉, 본 실시형태에서와 같이 변조기 (610)전단에 1/2 파장 위상 지연기를 사용하지 않는 경우, 3D 안경의 좌안용 렌즈와 우안용 렌즈가 제 1 선편광 방향(예를 들어, S-편광)의 광을 투과시키고, 제 2 선편광 방향(예를 들어, P-편광)의 광을 차단하도록 구성되는 경우, 반사광로의 변조기(610)에 입사되는 광은 제 1 선편광 방향(예를 들어, S-편광)을 가지게 되며, 이에 따라 상술한 바와 같은 크로스토크가 문제될 수 있다.That is, when the half-wavelength phase retarder is not used at the front of the modulator 610 as in the present embodiment, the left eye lens and the right eye lens of the 3D glasses have the first linear polarization direction (for example, S-polarized light). Is configured to transmit light of the light beam and block light in the second linearly polarized light direction (eg, P-polarized light), the light incident on the modulator 610 of the reflected optical path is the first linearly polarized light direction (eg, S Polarization), and crosstalk as described above may be problematic.
도 7 및 8은 본 발명의 바람직한 일 실시형태에 따라 크로스토크를 저감시키기 위한 입체영상장치를 설명하기 위한 도면이다.7 and 8 are views for explaining a stereoscopic image device for reducing crosstalk according to an embodiment of the present invention.
구체적으로 도 7과 도 6을 비교하면, 본 발명의 바람직한 일 실시형태에 따른 입체영상 장치는 특정 방향의 선편광 광을 차단하도록 구성되는 PBS (720)를 추가적으로 포함하는 것을 특징으로 한다. 도 7 및 8에서 PBS(720)가 이용되는 경우 이를 도 3 및 도 4에서 설명한 PBS와 구분하기 위해 제 2 PBS로 지칭할 수도 있다.7 and 6, the stereoscopic imaging apparatus according to the preferred embodiment of the present invention further includes a PBS 720 configured to block linearly polarized light in a specific direction. When the PBS 720 is used in FIGS. 7 and 8, it may be referred to as a second PBS to distinguish it from the PBS described with reference to FIGS. 3 and 4.
한편, 본 발명의 일 실시형태에 따라 크로스토크를 방지하기 위한 구성으로서 상술한 제 2 PBS (720)의 위치에 일반적인 선편광 장치를 추가하여 특정 선편광 성분(즉, S- 편광 성분)을 차단하는 것을 고려할 수 있으나, 이는 다음과 같은 문제점을 가질 수 있다. On the other hand, as a configuration for preventing crosstalk according to an embodiment of the present invention to block a specific linearly polarized component (ie, S-polarized component) by adding a general linearly polarized device at the position of the second PBS 720 described above. Although it may be considered, this may have the following problems.
만일 1/4 파장 지연 기능을 가지는 변조기 (710)에 의해 광이 시점에 따라 좌-원편광 또는 우-원편광으로 변조된 상황에서 상기 제 2 PBS(720)의 위치에 배치되는 선편광 장치를 통과하는 경우, 원편광 광은 이에 의해 차단되고 특정 선편광 성분만을 투과하게 되는 문제가 있다. 따라서, 상술한 실시형태에서 크로스토크를 차단하기 위한 구성은 제 2 PBS(720)에 한정되며, 해당 위치에 선편광 장치를 배치하여 크로스토크를 저감시키는 방식은 선편광을 최종적으로 스크린에 조사하는 방식에 한하여 이용될 수 있을 것이다.If the light is modulated to left-circular polarization or right-circular polarization depending on the time point by the modulator 710 having a quarter-wave delay function, it passes through the linear polarizer disposed at the position of the second PBS 720. In this case, there is a problem that circularly polarized light is blocked by it and transmits only a specific linearly polarized light component. Therefore, in the above-described embodiment, the configuration for blocking the crosstalk is limited to the second PBS 720, and the method of reducing the crosstalk by arranging the linearly polarized light device at the corresponding position is a method of finally irradiating the screen with the linearly polarized light. It may be used only.
한편, 도 7과 관련하여 상술한 바와 같이 변조기(710) 전단에 1/2 파장 위상 지연기를 사용하지 않는 경우, 변조기(710)에 입사되는 광은 최종적으로 3D 안경에 의해 차단되지 않는 선편광 방향(예를 들어, S- 편광)의 광을 가지게 된다. 도 6과 관련하여 상술한 바와 같이 1/4 파장 위상 지연기 또는 LC 변조기 (710)를 투과시 10%의 광은 그대로 S-편광광으로 남아 있을 수 있는 점은 동일하지만, 본 실시형태에서 추가된 PBS(720)는 이와 같이 변조기(710)에 의해 변환되지 않고 선편광광으로 유지되는 광을 차단하도록 구성되어 상술한 바와 같은 크로스토크를 저감시킬 수 있다.On the other hand, when the half-wavelength phase retarder is not used in front of the modulator 710 as described above with reference to FIG. 7, the light incident on the modulator 710 is not linearly blocked by the 3D glasses. For example, S-polarized light). As described above with respect to FIG. 6, the same is true that 10% of the light may remain as S-polarized light as it is transmitted through the quarter-wave phase retarder or LC modulator 710, but is additional in this embodiment. The PBS 720 is thus configured to block light that is not converted by the modulator 710 and is maintained as linearly polarized light, thereby reducing crosstalk as described above.
구체적으로, PBS(720)는 S-편광 광의 전부 또는 일부를 차단하도록 구성될 수 있으며, 도 7은 PBS(720)가 S-편광 광의 전부를 차단하는 경우를 예시하고 있다. 이에 따라 3D 안경에서의 크로스토크 수준은 2.25% 이하로 감소시킬 수 있다.Specifically, PBS 720 may be configured to block all or some of the S-polarized light, and FIG. 7 illustrates a case where PBS 720 blocks all of the S-polarized light. As a result, the crosstalk level in the 3D glasses can be reduced to 2.25% or less.
도 8에 도시된 바와 같이 본 실시형태에 따른 PBS(720)는 반사광로에서 변조기(710)과 3D 안경 사이에 배치되는 것이 바람직하다. 도 8에서는 반사광로의 변조기(710)와 스크린(860) 사이에 PBS(720)가 추가되는 것을 도시하고 있으나, 이에 한정될 필요는 없다. As shown in FIG. 8, the PBS 720 according to the present embodiment is preferably disposed between the modulator 710 and the 3D glasses in the reflected optical path. 8 illustrates that the PBS 720 is added between the modulator 710 and the screen 860 of the reflected optical path, but the present invention is not limited thereto.
한편, 상술한 PBS (720)는 필름 형태뿐만이 아니라, 다양한 종류의 PBS(Polarization Beam Splitter), 예컨데 코팅된 PBS를 사용 할 수도 있다.On the other hand, the PBS 720 described above may use not only a film form, but also various types of Polarization Beam Splitter (PBS), for example, coated PBS.
도 9 및 도 10은 본 발명의 일 실시형태에 따라 1/2 파장 위상 지연기를 사용하지 않는 경우의 크로스토크 저감 방식에 대해 추가적으로 설명하기 위한 도면이다.9 and 10 are diagrams for further explaining a crosstalk reduction method when a 1/2 wavelength phase retarder is not used, according to an embodiment of the present invention.
도 9는 PBS에 의해 3중광으로 분리된 광들 중 반사광로의 광의 편광 방향인 S 편광을 1/2 파장 위상 지연기를 이용하여 P 편광으로 변환시킨 후 변조기에 의해 원편광으로 변조하는 형태를 도시하고 있다. 이와 같이 1/2 파장 위상 지연기를 이용하는 경우 상술한 바와 같이 크로스토크를 발생시키는 주된 요인인 S-편광이 효율적으로 차단되는 장점을 가지나, 이로 인하여 비용 증가 및 휘도 감소 등이 문제될 수 있다.FIG. 9 illustrates a form in which S-polarized light, which is the polarization direction of the light of the reflected light path, of the light separated by triple light by PBS is converted into P-polarized light using a 1/2 wavelength phase retarder, and then modulated into circularly polarized light by a modulator. have. As described above, when the 1/2 wavelength phase retarder is used, the S-polarized light, which is a main factor for generating crosstalk, is effectively blocked as described above, but this may cause an increase in cost and a decrease in luminance.
도 10에서는 이러한 문제를 해결하기 위해 1/2 파장 위상 지연기를 사용하지 않고, 변조기의 비대칭 구동 또는 변조기 인가 전압 등의 방식으로 투과광과 반사광이 변조기 이후 동일한 원편광 방향을 가지도록 구성되는 경우를 도시하고 있다. 또한, 도 10의 실시형태에서는 상술한 실시형태들과 달리 변조기에 의해 원편광으로 변조되지 않은 편광 성분(S-편광)을 차단하여 크로스토크를 개선하기 위해 변조기 이후, 그리고 스크린 전단에 배치되는 구성을 제 2 PBS로 특정하여 구성한 예를 도시하고 있다.FIG. 10 illustrates a case where transmitted light and reflected light are configured to have the same circular polarization direction after the modulator without using a 1/2 wavelength phase retarder to solve such a problem, such as asymmetric driving of the modulator or a modulator applied voltage. Doing. In addition, in the embodiment of FIG. 10, unlike the embodiments described above, a configuration is disposed after the modulator and at the front of the screen to block cross-polarization components (S-polarized light) that are not modulated with circular polarization by the modulator to improve crosstalk. Shows an example in which is specified as the second PBS.
본 발명에 따른 크로스토크 저감을 위한 구성은 상술한 선편광장치 및 제 2 PBS 모두 포함할 수 있으나, 이를 PBS 형태로 구성하는 것이 해당 광의 원편광 성분을 유지하기 위해 바람직할 수 있다. 상술한 바와 같이 선편광 장치를 이용하는 것은 스크린에서 선편광 상태를 유지한 상태에서 결합하는 경우에 한정될 수 있다.The configuration for reducing crosstalk according to the present invention may include both the above-described linear polarizer and the second PBS, but it may be preferable to configure the PBS in the form of PBS to maintain the circularly polarized light component of the light. As described above, the use of the linear polarization device may be limited to the case where the linear polarization device is coupled while maintaining the linear polarization state on the screen.
도 11은 본 발명의 바람직한 일 실시형태에 따라 크로스토크 저감용 추가 PBS를 적용한 구체적인 구성을 도시한 도면이다.FIG. 11 is a diagram showing a specific configuration to which an additional PBS for crosstalk reduction is applied according to one preferred embodiment of the present invention. FIG.
윈도우를 통해 입사한 입사광은 제 1 PBS (1120)에 입사하기 전에 기판(1120)을 통과함으로써 PBS (1120)의 중심 부분에 의한 광손실 또는 왜곡을 방지할 수 있다. 제 1 PBS (1110)는 도 11에 도시된 바와 같이 프리즘 형태를 가지는 것이 바람직하나, 이에 한정될 필요는 없다. 제 1 PBS (1110)를 투과한 광은 특정 선편광 성분(예를 들어, P 편광 성분)을 가지고 투과광용 LC (1140-1)에 입사할 수 있으며, 제 1 PBS (1110)에 의해 반사된 광은 거울 소자들(1130-1 및 1130-2)에 의해 반사되어 투과광과 직교하는 선편광 성분을 가지고 반사광용 LC (1140-2 및 1140-3)에 입사할 수 있다. The incident light incident through the window passes through the substrate 1120 before entering the first PBS 1120, thereby preventing light loss or distortion caused by the central portion of the PBS 1120. The first PBS 1110 preferably has a prism shape as shown in FIG. 11, but is not limited thereto. Light transmitted through the first PBS 1110 may enter the transmitted light LC 1140-1 with a specific linear polarization component (eg, P polarization component), and is reflected by the first PBS 1110. Silver may be incident on the reflected light LCs 1140-2 and 1140-3 with the linearly polarized light component reflected by the mirror elements 1130-1 and 1130-2 and orthogonal to the transmitted light.
도 12는 본 발명의 일 실시형태에 따른 변조기 구성으로서 투과광용 LC 및 반사광용 LC의 구체적 구성을 설명하기 위한 도면이다.12 is a view for explaining a specific configuration of the LC for transmitted light and the LC for reflected light as a modulator configuration according to an embodiment of the present invention.
도 12의 상단에 도시된 바와 같이 투과광용 LC는 양 끝단에 반사방지 코팅이 되어 있는 것이 바람직하다. 또한, 투과광용 LC는 입사광로에서 반사방지 코팅을 거친 후 의도하지 않은 편광 광을 제거하기 위한 클린업 편광기를 포함할 수 있다. 이와 같은 클린업 편광기를 통과한 P 편광광은 LCD 1 및 LCD 2에 의해 영상 신호의 동기에 맞추어 좌-원편광 또는 우-원편광으로 변조될 수 있다.As shown in the upper part of FIG. 12, the LC for transmitted light preferably has antireflective coatings at both ends. In addition, the LC for transmitted light may include a clean-up polarizer for removing unintended polarized light after the antireflective coating in the incident light path. The P-polarized light that has passed through such a clean-up polarizer may be modulated by the LCD 1 and the LCD 2 into left-circular polarization or right-circular polarization in synchronization with the image signal.
한편, 도 12의 하단에 도시된 바와 같이 반사광용 LC는 투과광용 LC와 동일하게 반사방지 코딩을 포함할 수 있으며, 이를 거친 입사광은 클린업 편광기를 통과하여 의도하지 않은 편광 광을 제거할 수 있다. 이와 같은 클린업 편광기를 통과한 S 편광광은 LCD 1 및 LCD 2에 의해 영상 신호의 동기에 맞추어 좌-원편광 또는 우-원편광으로 변조될 수 있으며, LCD들에 입력되는 선편광 방향이 투과광로의 광과 직교 상태이지만, 출력 광은 투과광로의 광과 동일한 시점에서 동일한 원편광 방향을 가지도록 변조하는 것이 바람직하다.Meanwhile, as shown at the bottom of FIG. 12, the reflective LC may include an anti-reflection coding in the same manner as the LC for the transmitted light, and the incident light passing through the reflective light may pass through the clean-up polarizer to remove the unintended polarized light. The S-polarized light passing through the clean-up polarizer may be modulated into left-circular polarization or right-circular polarization in accordance with the synchronization of the image signal by LCD 1 and LCD 2, and the linear polarization direction input to the LCDs is determined by the transmitted light path. Although it is orthogonal to the light, it is preferable to modulate the output light to have the same circular polarization direction at the same time point as the light of the transmitted light path.
다시 도 11을 참조하면, 이와 같은 변조를 거친 광 중 반사광로의 광은 제 2 PBS (1150-1 및 1150-2)에 의해 상술한 반사광용 LC에 의해 원편광으로 변환되지 않고 S-편광을 유지하는 광을 차단하게 된다. 제 2 PBS (1150-1 및 1150-2)는 도 11에 도시된 바와 같이 반사광로의 진행 방향에 대해 기울어진 형태로 반사광용 LC (1140-2 및 1140-3)의 후단에 배치될 수 있다. Referring back to FIG. 11, the light of the reflected optical path of the light subjected to such modulation is not converted into circularly polarized light by the aforementioned LC for reflection light by the second PBSs 1150-1 and 1150-2, and thus S-polarized light is converted. It blocks the light to be maintained. As shown in FIG. 11, the second PBSs 1150-1 and 1150-2 may be disposed at the rear ends of the LC LCs 1140-2 and 1140-3 in an inclined form with respect to the traveling direction of the reflected light path. .
상술한 실시형태에서 제 2 PBS (1150-1 및 1150-2)는 변조기 전단 또는 변조기 내부에 배치되는 클린업 편광기와 비교할 때, 변조기에 의해 원편광으로 변조되지 않은 선편광을 제거하기 위한 것으로서, 변조기에 입사하기 이전에 의도하는 선편광 방향을 구성하기 위한 클린업 편광기와 구분된다. 아울러, 반사광로에 위치하는 반사광용 LC의 클린업 편광기는 S 편광 이외의 광을 제거하기 위한 구성인 반면, 제 2 PBS(1150-1 및 1150-2)는 원편광으로 변환되지 않은 S 편광을 차단하고 나머지 광의 원편광을 그대로 유지시키기 위한 구성으로 볼 수 있다.In the above-described embodiment, the second PBSs 1150-1 and 1150-2 are for removing linearly polarized light that is not modulated into circularly polarized light by the modulator as compared to a clean-up polarizer disposed in front of the modulator or inside the modulator. It is distinguished from a clean-up polarizer for constituting the intended linear polarization direction prior to incidence. In addition, while the clean-up polarizer of the reflected light LC positioned in the reflected light path is configured to remove light other than S polarized light, the second PBSs 1150-1 and 1150-2 block S polarized light that is not converted into circularly polarized light. And the circular polarization of the remaining light as it is.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 상술한 설명으로부터 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.The detailed description of the preferred embodiments of the invention disclosed as described above is provided to enable any person skilled in the art to make and practice the invention. Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art will understand that the present invention can be variously modified and changed from the above description.
상술한 바와 같은 본 발명은 고휘도와 함께 색상품질 및 크로스토크 성능을 개선시켜 고품질의 입체영상 상영이 필요로 하는 극장뿐만 아니라, 가정, 사무실 등에도 광범위하게 이용될 수 있다.As described above, the present invention can be widely used in homes, offices, and the like, as well as theaters requiring high quality stereoscopic image display by improving color quality and crosstalk performance with high brightness.

Claims (11)

  1. 프로젝터로부터 조사된 영상광을 편광성분에 따라 하나 이상의 투과광 및 하나 이상의 반사광으로 공간적으로 분할하여 조사하는 제 1 편광 광분할기(PBS);A first polarized light splitter (PBS) for spatially dividing the image light emitted from the projector into at least one transmitted light and at least one reflected light according to a polarization component;
    상기 투과광이 시분할적으로 번갈아 좌측 영상 또는 우측 영상으로 조사됨에 따라 서로 다른 원편광을 가지도록 변조를 수행하여 스크린으로 조사되도록 하는 제 1 변조기;A first modulator configured to perform modulation on the circularly polarized light so that the transmitted light is irradiated to the left image or the right image in a time-divisional manner so that the transmitted light is irradiated onto the screen;
    상기 반사광이 시분할적으로 번갈아 좌측 영상 또는 우측 영상으로 조사됨에 따라 서로 다른 원편광을 가지도록 변조를 수행하여 상기 스크린으로 조사되도록 하는 제 2 변조기; 및A second modulator for modulating the reflected light to alternately polarize the reflected light to the left image or the right image so that the reflected light is irradiated onto the screen; And
    상기 제 2 변조기와 3D 안경 사이에 배치되어 상기 제 2 변조기에 의해 원편광으로 변환되지 않은 특정 편광 성분의 광을 차단하는 제 2 PBS를 포함하는, 입체영상 장치.And a second PBS disposed between the second modulator and the 3D glasses to block light of a specific polarization component that is not converted into circularly polarized light by the second modulator.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 PBS에 의해 차단되는 특정 편광 성분은 상기 3D 안경에 의해 투과되는 선편광 성분인, 입체영상 장치.The specific polarization component blocked by the second PBS is a linearly polarized light component transmitted by the 3D glasses.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 3D 안경의 좌안용 렌즈와 우안용 렌즈 중 어느 일측 렌즈는 제 1 시점에서 광을 차단하며,One of the left eye lens and the right eye lens of the 3D glasses blocks the light at the first time point,
    상기 3D 안경의 좌안용 렌즈와 우안용 렌즈 중 다른 일측 렌즈는 제 2 시점에서 광을 차단하는, 입체영상 장치.The other one of the left eye lens and the right eye lens of the 3D glasses block the light at the second time point, the stereoscopic imaging device.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 3D 안경의 좌안용 렌즈와 우안용 렌즈는 제 1 선편광 방향의 광을 투과시키고, 제 2 선편광 방향의 광을 차단하도록 구성되며,The left eye lens and the right eye lens of the 3D glasses are configured to transmit light in the first linearly polarized direction and block light in the second linearly polarized direction,
    상기 제 2 변조기에 입사되는 광은 상기 제 1 선편광 방향을 가지는, 입체영상 장치.The light incident on the second modulator has the first linear polarization direction.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 입체영상 장치는 상기 제 1 변조기 및 상기 제 2 변조기 전단에 1/2 파장 위상 지연기를 포함하지 않는, 입체영상 장치.The stereoscopic imaging device does not include a 1/2 wavelength phase retarder in front of the first modulator and the second modulator.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 변조기에 입사하는 광의 제 1 선편광 성분과 상기 제 2 변조기에 입사하는 광의 제 2 선편광 성분은 서로 수직하며, A first linearly polarized component of the light incident on the first modulator and a second linearly polarized component of the light incident on the second modulator are perpendicular to each other,
    상기 제 1 변조기 및 상기 제 2 변조기에 의해 출력되는 광은 동일한 시점에서 동일한 원편광 방향을 가지는, 입체영상 장치.And the light output by the first modulator and the second modulator have the same circular polarization direction at the same time point.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 변조기 및 상기 제 2 변조기는 1/4 파장 위상지연기를 포함하는, 입체영상 장치.And the first modulator and the second modulator comprise a quarter wavelength phase delay unit.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 PBS는 필름 형태, 코팅 형태 및 액정 형태 중 어느 하나 이상을 가지는, 입체영상 장치.The second PBS has one or more of a film form, a coating form and a liquid crystal form, stereoscopic apparatus.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 PBS와 상기 제 2 변조기 사이, 또는 상기 제 2 변조기 내부에서 액정(LC) 전단에 클린업 편광기를 추가적으로 포함하는, 입체영상 장치.And a clean-up polarizer in front of the liquid crystal (LC) between the first PBS and the second modulator or inside the second modulator.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 클린업 편광기에 의해 선택적으로 투과되는 특정 선편광광은 상기 제 2 PBS에 의해 차단되는, 입체영상 장치.Specific linearly polarized light selectively transmitted by the clean-up polarizer is blocked by the second PBS.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 PBS는 원편광으로 변환되지 않는 특정 편광 성분의 광을 차단하여 원편광이 투과되도록 구성되는, 입체영상 장치.The second PBS is configured to block light of a specific polarization component that is not converted into circularly polarized light so that circularly polarized light is transmitted.
PCT/KR2016/005224 2015-05-18 2016-05-18 Stereoscopic image device for reducing cross-talk WO2016186434A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150068849A KR101675436B1 (en) 2015-05-18 2015-05-18 Stereoscopic Projection Device Reducing Crosstalk
KR10-2015-0068849 2015-05-18

Publications (1)

Publication Number Publication Date
WO2016186434A1 true WO2016186434A1 (en) 2016-11-24

Family

ID=57320725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005224 WO2016186434A1 (en) 2015-05-18 2016-05-18 Stereoscopic image device for reducing cross-talk

Country Status (2)

Country Link
KR (1) KR101675436B1 (en)
WO (1) WO2016186434A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080042490A (en) * 2006-11-10 2008-05-15 (주)마스터이미지 Circularly polarized filter, stereoscopic image projector ststem, apparatus for stereoscopic image projecting ststem, and stereoscopic image projecting ststem using the same
KR20090089325A (en) * 2006-10-18 2009-08-21 리얼 디 Combining p and s rays for bright stereoscopic projection
KR20090094224A (en) * 2006-09-29 2009-09-04 컬러링크, 인크. Polarization conversion systems for stereoscopic projection
KR20100035775A (en) * 2008-09-29 2010-04-07 엘지전자 주식회사 Apparatus for three-dimensional image display
KR101453451B1 (en) * 2014-04-11 2014-10-22 유한회사 마스터이미지쓰리디아시아 High Brightness Stereoscopic Projection Device Based on Phase Retardation and Operating Method For the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090094224A (en) * 2006-09-29 2009-09-04 컬러링크, 인크. Polarization conversion systems for stereoscopic projection
KR20090089325A (en) * 2006-10-18 2009-08-21 리얼 디 Combining p and s rays for bright stereoscopic projection
KR20080042490A (en) * 2006-11-10 2008-05-15 (주)마스터이미지 Circularly polarized filter, stereoscopic image projector ststem, apparatus for stereoscopic image projecting ststem, and stereoscopic image projecting ststem using the same
KR20100035775A (en) * 2008-09-29 2010-04-07 엘지전자 주식회사 Apparatus for three-dimensional image display
KR101453451B1 (en) * 2014-04-11 2014-10-22 유한회사 마스터이미지쓰리디아시아 High Brightness Stereoscopic Projection Device Based on Phase Retardation and Operating Method For the Same

Also Published As

Publication number Publication date
KR101675436B1 (en) 2016-11-14

Similar Documents

Publication Publication Date Title
WO2016182280A1 (en) High brightness stereoscopic image screening device using modulator asymmetry drive, and method for operating same
EP1904892B1 (en) Three dimensional stereoscopic projection architectures
US7204592B2 (en) Stereoscopic image projection system
US8164620B2 (en) Stereo projection optical system
WO2012030091A2 (en) Stereoscopic image projection system, and stereoscopic image player and projector therefor
TW386177B (en) A projection display device for displaying electronic images
US20070146880A1 (en) Optical device for splitting an incident light into simultaneously spectrally separated and orthogonally polarized light beams having complementary primary color bands
CA2885281A1 (en) Stereo projection apparatus and stereo projection system with low throw ratio and high light efficiency
US7479933B2 (en) Stereoscopic display apparatus particularly useful with LCD projectors
US20020080287A1 (en) Color separating/synthesizing apparatus
JP3055683B2 (en) Electronic image display and projection device
WO2017164571A1 (en) Stereoscopic image display device
US9482875B2 (en) Polarization preserving DLP optical architecture
WO2017206259A1 (en) Projection device and projection system
WO2018086349A1 (en) 3d projection lens and projection apparatus
US20050046759A1 (en) Brighter light engine architecture for a liquid crystal display projection system
WO2015088236A1 (en) Beam modulator and display apparatus using the same
WO2016186434A1 (en) Stereoscopic image device for reducing cross-talk
EP1331827A1 (en) Brighter light engine architecture
US9612520B2 (en) Polarized projection device and polarized projection system using the same
JP2526652B2 (en) Liquid crystal projection type stereoscopic display device
KR20090099542A (en) Modulator device and apparatus for three dimensional display system
CN105824182B (en) It polarizes projection arrangement and applies its polarization optical projection system
KR101939939B1 (en) Image conversion for stereoscopic imagery
JP2004264761A (en) Stereoscopic image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796761

Country of ref document: EP

Kind code of ref document: A1