WO2016186131A1 - Light-modulating film and method for producing same, and light-modulating element - Google Patents

Light-modulating film and method for producing same, and light-modulating element Download PDF

Info

Publication number
WO2016186131A1
WO2016186131A1 PCT/JP2016/064731 JP2016064731W WO2016186131A1 WO 2016186131 A1 WO2016186131 A1 WO 2016186131A1 JP 2016064731 W JP2016064731 W JP 2016064731W WO 2016186131 A1 WO2016186131 A1 WO 2016186131A1
Authority
WO
WIPO (PCT)
Prior art keywords
light control
layer
film
light
inorganic oxide
Prior art date
Application number
PCT/JP2016/064731
Other languages
French (fr)
Japanese (ja)
Inventor
望 藤野
正義 片桐
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016097282A external-priority patent/JP6900156B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US15/576,053 priority Critical patent/US10514560B2/en
Priority to EP16796524.3A priority patent/EP3299882A4/en
Priority to CN201680029512.8A priority patent/CN107636526A/en
Publication of WO2016186131A1 publication Critical patent/WO2016186131A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses

Definitions

  • the present invention relates to a light control film used for a hydrogen active light control device capable of switching between a transparent state and a reflective state by hydrogenation and dehydrogenation and a method for producing the same. Furthermore, this invention relates to the light control element using the said light control film.
  • Dimming elements are used in window glass and interior materials for buildings and vehicles. Particularly in recent years, demand and expectation for dimming elements are increasing from the viewpoints of reducing the heating / cooling load, reducing the lighting load, and improving comfort.
  • the light control element uses a liquid crystal material or an electrochromic material, and an electric field driving method for controlling the light transmittance by applying an electric field; a thermochromic method using a thermochromic material whose light transmittance varies with temperature; an atmospheric gas A gas chromic method has been developed to control the light transmittance by controlling the light intensity.
  • Examples of the light transmittance control method include a method of switching light transmission and scattering by the light control material, a method of switching light transmission and absorption, and a method of switching light transmission and reflection.
  • the hydrogen activation type dimming element that switches between transmission and reflection of light by hydrogenation and dehydrogenation of the dimming material is excellent in heat shielding because it can prevent the inflow of heat by reflecting external light, It has an advantage that a high energy saving effect can be obtained. Further, since hydrogenation and dehydrogenation can be switched by a gas chromic method, the area can be increased and the cost can be reduced.
  • Examples of hydrogen active light-modulating materials that can reversibly switch between transparent and reflective states by hydrogenation and dehydrogenation include rare earth metals such as yttrium, lanthanum, and gadolinium, alloys of rare earth metals and magnesium, calcium, strontium, and barium. Alloys of alkaline earth metals such as magnesium and alloys of transition metals such as nickel, manganese, cobalt, and iron and magnesium are known. In particular, when a magnesium alloy is used as the light control material, the visible light transmittance of magnesium hydride is high, so that a light control element having a high light transmittance in a transparent state can be obtained.
  • a catalyst layer is provided in the vicinity of a light control layer made of a light control material.
  • the catalyst layer has a function of accelerating hydrogenation and dehydrogenation of the light control layer, and palladium, platinum, palladium alloy, platinum alloy, or the like is used.
  • a hydrogen activation type light control element what is equipped with the light control layer and the catalyst layer on the glass substrate until now is examined (for example, patent document 1).
  • the hydrogen-activated dimming material is repeatedly switched between the transparent state by hydrogenation and the reflection state by dehydrogenation, magnesium in the magnesium alloy of the dimming layer is deposited on the surface through the catalyst layer and oxidized. Therefore, it is known that the switching characteristics may be deteriorated.
  • a buffer layer such as a metal thin film or a metal hydride thin film between the light control layer and the catalyst layer (for example, Patent Document 2).
  • a film substrate instead of the glass substrate in order to mass-produce and reduce the cost of the hydrogen activated dimmer.
  • a film base material By using a film base material and adopting a continuous film formation method such as roll-to-roll sputtering, it is possible to provide a long light control film with a light control layer and a catalyst layer with uniform film thickness and characteristics. It becomes easy.
  • a film substrate when used, it is easy to bond to general glass or the like, and can be applied to a curved surface.
  • Patent Document 2 describes that the base material may be a flexible film, but does not describe a specific example in which a light control layer is formed on the film base material.
  • the light control layer was formed on a glass substrate under the same conditions as compared with the case where the light control layer was formed. It has been found that the light performance decreases.
  • an object of the present invention is to provide a hydrogen activation type light control film having a light control layer on a film substrate and having a light control performance equivalent to that when a glass substrate is used.
  • the light control film of the present invention includes an inorganic oxide layer, a light control layer, and a catalyst layer in this order on a polymer film substrate.
  • the light control layer reversibly changes between a transparent state by hydrogenation and a reflection state by dehydrogenation.
  • the catalyst layer promotes hydrogenation and dehydrogenation in the light control layer.
  • the inorganic oxide layer contains an oxide of an element different from the metal element constituting the light control layer.
  • the light control layer metal thin films such as rare earth metals, alloys of rare earth metals and magnesium, alloys of alkaline earth metals and magnesium, and alloys of transition metals and magnesium are preferably used.
  • the light control layer may contain the said metal in the state of hydride.
  • the film thickness of the light control layer is preferably 10 to 500 nm.
  • Inorganic oxide layers include Si, Ge, Sn, Pb, Al, Ga, In, Tl, As, Sb, Bi, Se, Te, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, and Hf. , V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, etc.
  • An oxide thin film containing is preferably used.
  • the film thickness of the inorganic oxide layer is preferably 1 to 200 nm. Moreover, it is preferable that the film thickness of an inorganic oxide layer is smaller than the film thickness of a light control layer.
  • the light control film of the present invention can be obtained, for example, by forming an inorganic oxide layer, a light control layer and a catalyst layer on a film substrate by roll-to-roll sputtering.
  • this invention relates to the light control element using the said light control film. Since the light control film of this invention can hydrogenate and dehydrogenate a light control layer by a gas chromic system, it is suitable for the light control element of a gas chromic system.
  • the gaschromic light control element includes a plurality of transparent members (for example, multi-layer glass), and a gap between the transparent members forms a gas filling chamber. A light control element is formed by disposing a light control film in the gas filling chamber.
  • the gaschromic light control element preferably further includes an atmosphere control device. The atmosphere control device is configured to be able to supply and exhaust hydrogen into the gas filling chamber.
  • the light control film of the present invention includes an inorganic oxide layer between the polymer film substrate and the light control layer, oxidation of the light control layer due to moisture, oxygen, etc. from the polymer film substrate is suppressed. Is done. Therefore, the light control film of this invention can exhibit the high light control performance equivalent to the case where a glass substrate is used by hydrogenation and dehydrogenation.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the light control film of the present invention.
  • the light control film 1 of the present invention includes an inorganic oxide layer 20, a light control layer 30, and a catalyst layer 40 on a polymer film substrate 10.
  • the polymer film substrate 10 may be transparent or opaque.
  • a transparent plastic material is preferably used as the material of the polymer film substrate in order to make the light control film light transmissive in a state where the light control layer is hydrogenated.
  • plastic materials include polyesters such as polyethylene terephthalate, polyolefins, cyclic polyolefins such as norbornene, polycarbonate, polyether sulfone, and polyarylate.
  • the film thickness of the polymer film substrate 10 is not particularly limited, but is generally about 2 to 500 ⁇ m, preferably about 20 to 300 ⁇ m.
  • An easy-adhesion layer, an antistatic layer, a hard coat layer, and the like may be provided on the surface of the polymer film substrate 10.
  • the surface of the polymer film substrate 10 is subjected to appropriate adhesion treatment such as corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, sputter etching treatment, etc. from the viewpoint of enhancing the adhesion with the inorganic oxide layer 20. Also good.
  • the arithmetic average roughness Ra of the polymer film substrate 10 on the surface on which the inorganic oxide layer 20 is formed is preferably 5 nm or less, more preferably 3 nm or less, and even more preferably 1 nm or less.
  • the arithmetic average roughness Ra is obtained from a 1 ⁇ m square AFM observation image using a scanning probe microscope (AFM).
  • An inorganic oxide layer 20 is formed on the polymer film substrate 10.
  • the inorganic oxide layer 20 serves as a base when the light control layer 30 is formed, and has an action of blocking moisture, oxygen gas, and the like generated from the polymer film substrate 10 and suppressing oxidation of the light control layer.
  • the inorganic oxide layer 20 is not particularly limited as long as it is an oxide thin film having a material (metal element composition) different from that of the light control layer 30 formed thereon.
  • examples of the inorganic oxide constituting the inorganic oxide layer 20 include Si, Ge, Sn, Pb, Al, Ga, In, Tl, As, and Sb.
  • the inorganic oxide layer may contain a mixed oxide of a plurality of (semi) metals.
  • oxides such as Si, Nb, and Ti are preferably used because they have low light absorption and excellent gas barrier properties such as oxygen and water vapor.
  • the inorganic oxide layer 20 preferably has a metal element composition different from that of the light control layer 30 described later.
  • the difference in the metal element composition between the inorganic oxide layer 20 and the light control layer 30 means that one or more metal elements or metalloid elements contained in the inorganic oxide layer at 5 atomic% or more are 5 atomic% or more in the light control layer. This means that it is not contained, or one or more metal elements contained in the light control layer in an amount of 3 atomic% or more are not contained in the inorganic oxide layer in an amount of 5 atomic% or more.
  • All metal elements or metalloid elements contained in the inorganic oxide layer at 5 atomic% or more are not contained in the light control layer at 5 atomic% or more, and all metal elements contained in the light control layer at 5 atomic% or more are inorganic oxides More preferably, the layer does not contain 5 atomic% or more.
  • the inorganic oxide layer 20 preferably has a high gas barrier property such as oxygen and moisture, and has a low permeability of gas that can be generated from a polymer film substrate such as moisture and oxygen.
  • the transmittance of water under an environment of 40 ° C. 90% RH is preferably less 10g / m 2 ⁇ day, 5g / m or less, more preferably 2 ⁇ day, more preferably less 1g / m 2 ⁇ day. If the water transmittance is within the above range, oxidation of the light control layer due to outgas from the polymer film substrate during film formation of the light control layer is suppressed, and a light control film having high light control performance is obtained.
  • the lower limit of the water transmittance is not particularly limited. In general, the water permeability is 0.00001 g / m 2 ⁇ day or more.
  • Water permeability is measured according to JIS K7129: 2008 Annex B.
  • the inorganic oxide layer is a thin film, and it is difficult to obtain moisture permeability by itself. Therefore, the moisture permeability may be measured by forming an inorganic oxide layer on the polymer film substrate. Since the moisture permeability of many polymer films is sufficiently larger than the moisture permeability of the inorganic oxide layer, the moisture permeability of the laminate in which the inorganic oxide layer is provided on the polymer film is that of the inorganic oxide layer alone. It can be regarded as equal to moisture permeability.
  • an inorganic oxide layer may be formed on a PET film substrate having a thickness of 50 ⁇ m under the same conditions as the film formation on the polymer film substrate, and the moisture permeability of the laminate may be measured.
  • a PET film substrate having a thickness of 50 ⁇ m has a moisture permeability sufficiently greater than 10 g / m 2 ⁇ day in an environment of 40 ° C. and 90% RH. Therefore, when the moisture permeability of the inorganic oxide layer is 10 g / m 2 ⁇ day or less, the moisture permeability of the laminate in which the inorganic oxide layer is provided on the PET film substrate is the moisture permeability of the inorganic oxide layer alone. Substantially equal. Therefore, the moisture permeability of the inorganic oxide layer alone can be obtained by measuring the moisture permeability of the laminate in which the inorganic oxide layer is provided on the PET film substrate having a thickness of 50 ⁇ m.
  • the thickness of the inorganic oxide layer 20 is not particularly limited as long as the inorganic oxide layer 20 can provide a barrier property such as oxygen and moisture to suppress outgas from the polymer film. From the viewpoint of forming a continuous film, the thickness of the inorganic oxide layer is preferably 1 nm or more. On the other hand, if the film thickness is excessively large, the productivity tends to decrease and the light transmittance due to the light absorption of the inorganic oxide layer tends to decrease. Therefore, the film thickness of the inorganic oxide layer is preferably 200 nm or less. . The film thickness of the inorganic oxide layer is more preferably 2 to 60 nm, and further preferably 5 to 50 nm.
  • the deposition rate tends to be lower than that of the metal layer.
  • a film thickness is as small as possible in the range which can suppress the outgas from a polymer film base material.
  • the film thickness of the inorganic oxide layer 20 is preferably smaller than the film thickness of the light control layer 30 formed thereon, and more preferably 0.8 times or less the film thickness of the light control layer.
  • the inorganic oxide layer 20 may be a stacked body of a plurality of oxide thin films. For example, by laminating a plurality of oxide thin films having different refractive indexes and adjusting the optical film thickness of each layer, light reflection between the light control layer 30 and the polymer film substrate 10 is reduced, and the transparent state The light transmittance can be increased.
  • the total film thickness is preferably within the above range.
  • the light control layer 30 contains the chromic material from which a state changes reversibly between the transparent state by hydrogenation, and the reflective state by dehydrogenation, the material will not be specifically limited.
  • the material constituting the light control layer include rare earth metals such as Y, La, Gd and Sm, alloys of rare earth metals and magnesium, alloys of alkaline earth metals such as Ca, Sr and Ba, magnesium, Ni, Examples include alloys of transition metals such as Mn, Co, and Fe with magnesium.
  • the light control layer 30 may contain elements other than the said alloy as a trace component.
  • Said metal or alloy which comprises the light control layer 30 contains the metal element which will be in a transparent state by hydrogenation, and will be in a reflective state by discharge
  • magnesium becomes transparent MgH 2 when hydrogenated, and becomes Mg having metal reflection by dehydrogenation.
  • the film thickness of the light control layer 30 is not particularly limited, but is preferably 10 nm to 500 nm, more preferably 15 nm to 200 nm, from the viewpoint of achieving both the light transmittance in the transparent state and the light shielding rate (reflectance) in the reflective state. 20 nm to 100 m is more preferable. If the film thickness of the light control layer is excessively small, the light reflectance in the reflective state tends to be low, and if the film thickness of the light control layer is excessively large, the light transmittance in the transparent state tends to be low.
  • an oxidizing gas such as moisture or oxygen may be released from the polymer film during film formation or in a use environment, and the light control layer may be oxidized.
  • moisture, oxygen, and the like contained in the polymer film substrate itself can be released during sputter deposition of the light control layer, which can cause oxidation of the light control layer.
  • the light control layer is oxidized, the light control performance (difference in transmittance during hydrogenation and dehydrogenation) is reduced.
  • magnesium has a high binding force with oxygen, and once oxidized, hydrogen does not hydrogenate even if hydrogen is introduced.
  • the light control layer containing magnesium tends to greatly reduce the light control performance due to oxidation.
  • the inorganic oxide layer 20 is formed between the polymer film base material 10 and the light control layer 30, moisture and oxygen from the base material 10 to the light control layer 30 can be obtained. Permeation is suppressed. Therefore, oxidation of the light control layer is suppressed, and a light control element having excellent light control performance and durability is obtained.
  • the light control layer 30 formed on the inorganic oxide layer 20 has an oxidized region (region having an oxygen concentration of 50 atomic% or more) with a thickness of 10 nm or less near the interface with the inorganic oxide layer 20. May be.
  • the oxygen concentration can be measured by X-ray photoelectron spectroscopy (XPS). Even when an oxidation region is formed in the light control layer 30, if the thickness is 10 nm or less, the ratio of the oxidation region to the film thickness of the entire light control layer is small, so that good light control performance can be maintained.
  • the thickness of the oxidized region is preferably 8 nm or less, more preferably 5 nm or less.
  • the catalyst layer 40 has a function of promoting hydrogenation and dehydrogenation in the light control layer 30.
  • the catalyst layer 40 increases the switching speed in switching from the reflective state to the transparent state (hydrogenation of the light control layer) and in switching from the transparent state to the reflection state (dehydrogenation of the light control layer).
  • the catalyst layer 40 is not particularly limited as long as it has a function of promoting the hydrogenation and dehydrogenation of the light control layer 30.
  • the catalyst layer 40 is palladium, platinum, a palladium alloy, and a platinum alloy. It is preferable to have at least one metal selected from In particular, palladium is preferably used because of its high hydrogen permeability.
  • the film thickness of the catalyst layer 40 can be appropriately set depending on the reactivity of the light control layer 30, the catalytic ability of the catalyst layer 40, and the like, and is not particularly limited, but is preferably 1 to 30 nm, and more preferably 2 to 20 nm. If the film thickness of the catalyst layer is excessively small, the catalytic functions of hydrogenation and dehydrogenation may not be sufficiently exhibited. If the film thickness of the catalyst layer is excessively large, the light transmittance tends to decrease.
  • the light control film of the present invention may have a layer other than the inorganic oxide layer 20, the light control layer 30, and the catalyst layer 40 on the polymer film substrate 10.
  • the buffer layer 50 may be provided between the light control layer 30 and the catalyst layer 40, or the surface layer 70 may be provided on the catalyst layer 40.
  • the buffer layer 50 is preferably one that can transmit hydrogen and can suppress oxidation of the light control layer and metal migration from the light control layer to the catalyst layer.
  • a metal thin film made of Ti, Nb, V or an alloy of these metals as a buffer layer 50 between the light control layer 30 and the catalyst layer 40, magnesium from the light control layer to the catalyst layer can be obtained. Migration is suppressed, and the switching speed from the transparent state to the reflective state due to dehydrogenation tends to increase.
  • a metal thin film made of W, Ta, Hf or an alloy of these metals As the buffer layer 50, oxygen permeation from the catalyst layer 40 to the light control layer 30 is suppressed, and the light control layer Deterioration due to oxidation can be suppressed.
  • a buffer layer 50 a sacrificial layer that reacts with oxygen passing through the catalyst layer 40 by inserting a metal material similar to that of the light control layer, for example, a metal thin film made of Sc, Mg—Sc alloy or a hydride thereof. It is made to function and the oxidation of the light control layer 30 can be suppressed.
  • Such a buffer layer acting as a sacrificial layer is preferably reversibly bonded to oxygen, and is hydrogenated when the light control layer 30 is hydrogenated (transparent state), so that the light transmittance is preferably increased.
  • the magnesium content relative to the total amount of metal elements is preferably less than 50 atomic%.
  • the film thickness of the buffer layer 50 can be appropriately set according to the purpose and the like, and is not particularly limited, but is, for example, 1 to 200 nm, preferably 2 to 30 nm.
  • the buffer layer may be composed of only one layer, and may include a plurality of layers.
  • the buffer layer 50 may have a stacked structure of a layer having a function of suppressing migration of a metal such as magnesium from the light control layer 30 and a layer that suppresses transmission of oxygen from the catalyst layer 40 side to the light control layer 30. .
  • the surface layer 70 may be any material that can permeate hydrogen.
  • the surface layer 70 preferably has a function of blocking the permeation of water and oxygen and preventing the light control layer 30 from being oxidized. Moreover, by adjusting the optical film thickness of the surface layer 70, the light reflection in the surface of a light control film can be reduced, and the light transmittance in a transparent state can be improved.
  • the material of the surface layer 70 (semi) metal oxide exemplified as the material of the inorganic oxide layer, metal exemplified as the material of the buffer layer, or the like can be used. Further, as the material of the surface layer 70, an organic material such as a polymer, an organic-inorganic hybrid material, or the like can be used. If a material having water repellency such as a fluorine-based resin is used as the material of the surface layer 70, the function of suppressing the oxidation of the light control layer 30 by water or oxygen can be further enhanced, and the durability of the light control element can be improved.
  • a material having water repellency such as a fluorine-based resin
  • the film thickness of the surface layer 70 can be appropriately set according to the purpose and the like, and is not particularly limited, but is, for example, about 1 nm to 50 ⁇ m.
  • the surface layer may be composed of only one layer, and may include a plurality of layers. For example, by stacking a plurality of thin films having different refractive indexes and adjusting the optical film thickness of each layer, the antireflection performance can be improved and the light transmittance in a transparent state can be increased. Further, durability can be improved by combining an organic layer and an inorganic layer.
  • a light control film can be produced by sequentially forming the inorganic oxide layer 20, the light control layer 30, and the catalyst layer 40 on the polymer film substrate 10. If the buffer layer is formed after the light control layer 30 is formed and before the catalyst layer 40 is formed, a light control film including the buffer layer 50 is obtained.
  • the film formation method of each of these layers is not particularly limited.
  • film formation such as sputtering, vacuum vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), chemical solution deposition (CBD), and plating.
  • the method can be adopted.
  • the sputtering method is preferable because a uniform and dense film can be formed.
  • the productivity of the light control film can be enhanced.
  • a plurality of cathodes are arranged along the circumferential direction of one film-forming roll, or a sputtering apparatus equipped with a plurality of film-forming rolls is employed, so that a plurality of films can be conveyed by one film conveyance. Therefore, productivity can be further improved.
  • the sputtering device After loading the roll-shaped film substrate in the sputtering device and before the start of sputtering film formation, the sputtering device should be evacuated to create an atmosphere in which impurities such as moisture and organic gas generated from the substrate are removed. preferable. By removing the gas in the apparatus and in the substrate in advance, it is possible to suppress oxidation due to oxygen and moisture being taken into the light control layer 30.
  • the degree of vacuum (degree of ultimate vacuum) in the sputtering apparatus before the start of sputtering film formation is, for example, 1 ⁇ 10 ⁇ 2 Pa or less, preferably 5 ⁇ 10 ⁇ 3 Pa or less, and more preferably 1 ⁇ 10 ⁇ 3 Pa or less. It is preferably 5 ⁇ 10 ⁇ 4 Pa or less, more preferably 5 ⁇ 10 ⁇ 5 Pa or less.
  • a metal target or an oxide target is used for the formation of the inorganic oxide layer 20.
  • a metal target is used, sputter film formation is performed while introducing a reactive gas (for example, oxygen) in addition to an inert gas such as argon.
  • a reactive gas for example, oxygen
  • an oxide target is used, film formation is performed while introducing an inert gas such as argon. Even when an oxide target is used, film formation may be performed while introducing a reactive gas as necessary.
  • a metal target is used for forming the light control layer 30 on the inorganic oxide layer 20.
  • an alloy target may be used, or a plurality of metal targets may be used.
  • an alloy layer can also be formed using a target (divided target) in which a plurality of metal plates are arranged and bonded on a backing plate so that the erosion portion has a predetermined area ratio.
  • a target divided target
  • an alloy layer having a desired composition can be formed by adjusting the power applied to each target.
  • the light control layer is formed while introducing an inert gas.
  • the inorganic oxide layer 20 is formed on the polymer film substrate 10, even if the plasma power during the light control layer formation reaches the polymer film substrate 10, outgas from the substrate is generated. Blocked by the inorganic oxide layer, the oxidation of the light control layer is suppressed. Note that since the oxygen gas at the time of forming the inorganic oxide layer and oxygen atoms of the inorganic oxide are present on the surface of the inorganic oxide layer 20, there is a slight oxide layer at the initial stage of forming the light control layer 30. May be formed.
  • a thick oxide layer for example, 15 nm or more
  • an inorganic oxidation layer is formed.
  • the thickness is at most several nm (for example, within 5 nm). Therefore, according to the present invention, a light control film having high transmittance in a transparent state and excellent light control performance can be obtained.
  • the buffer layer 50 is formed on the light control layer as necessary, and the catalyst layer 40 is formed thereon.
  • a metal target is used to form the buffer layer and the catalyst layer, and the film formation is performed while introducing an inert gas.
  • the surface layer 70 may be formed by the sputtering method or may be formed by other methods.
  • the surface layer is an organic material such as a polymer or an organic-inorganic hybrid material
  • the film is preferably formed by a wet method such as spin coating, dip coating, gravure coating, or die coating.
  • a wet method such as the above-described coating method, CBD method, or plating method may be employed, and a sputtering method, a vacuum deposition method, an electron beam deposition method, a CVD method, or the like may be employed. You can also
  • the light control film of this invention can be used for the hydrogen active type light control element which can switch the permeation
  • the method for hydrogenating and dehydrogenating the light control layer is not particularly limited.
  • the light control film is exposed to a hydrogen atmosphere to hydrogenate the light control layer, and the light control film is exposed to an oxygen atmosphere (air).
  • a method for dehydrogenating the light control layer gas chromic method
  • the gaschromic method is preferable because a large-area light control layer can be switched in a short time.
  • the light control film of the present invention may be used as a light control element as it is, or may be formed in combination with a transparent member such as glass, a translucent member, an opaque member, or the like.
  • a transparent member such as glass, a translucent member, an opaque member, or the like.
  • the light control element combined with the transparent member switches between the transparent state and the reflection state by hydrogenation and dehydrogenation. Is possible.
  • the light control film When a light control element is formed by combining a light control film and another member, the light control film should be fixed by bonding with an adhesive, bonding with an adhesive tape, pinning, etc. from the viewpoint of preventing misalignment. Is preferred.
  • a fixing means for fixing the light control film and another member an adhesive is preferable because the fixing area can be increased.
  • An adhesive is preferably used as the adhesive. By attaching an adhesive on the polymer film substrate 10 of the light control films 1 and 2 in advance, it is possible to easily bond the glass or the like to the light control film.
  • the pressure-sensitive adhesive those having excellent transparency such as an acrylic pressure-sensitive adhesive are preferably used.
  • the light control element using the light control film of the present invention can be applied to a window glass of a building or a vehicle, a shielding object for privacy protection, various decorations, and the like. Since the light control film of the present invention uses a flexible substrate, it is easy to process and can be applied to a curved surface.
  • a gaschromic light control element can also be formed by disposing the light control film of the present invention in a gas filling chamber. If the light control element is arranged in the gas filling chamber with the gap between the plurality of transparent members as the gas filling chamber, the transparent state and the reflective state can be switched by supplying and exhausting hydrogen into the gas filling chamber.
  • FIG. 3 is a schematic cross-sectional view showing one embodiment of a multilayer glass functioning as a light control element.
  • the double-glazed glass 100 includes two glass plates 81 and 82, and the light control film 1 is disposed on the inner surface of one glass plate 81, that is, on the side facing the glass plate 82, with an adhesive layer 90 interposed therebetween. Are pasted together.
  • the adhesive layer 90, the polymer film substrate 10, the inorganic oxide layer 20, the light control layer 30, and the catalyst layer 40 are arranged on the inner surface side of one glass plate 81 from the glass plate 81 side.
  • the light control film may be provided with the buffer layer between the light control layer 30 and the catalyst layer 40, and may be provided with the surface layer on the catalyst layer.
  • the gap between the two glass plates 81 and 82 serves as a gas filling chamber S, and the end is sealed with a sealing member 85.
  • a gas filling chamber S for example, an inert gas such as argon is sealed in advance.
  • the glass plate 82 is provided with an opening, and the gas filling chamber S is spatially connected to the atmosphere control device 86.
  • the atmosphere control device 86 is configured to supply and exhaust hydrogen, oxygen, and air to the gas filling chamber S.
  • the atmosphere control device 86 can be configured to electrolyze water to supply hydrogen or oxygen and exhaust the gas in the gas filling chamber S to the outside using a vacuum pump.
  • the light control layer 30 When hydrogen is supplied from the atmosphere control device 86 to the gas filling chamber S, the light control layer 30 is hydrogenated through the catalyst layer 40 and becomes transparent. Further, when oxygen gas or air is supplied from the atmosphere control device 86 to the gas filling chamber S, the light control layer 30 is dehydrogenated through the catalyst layer 40 and the buffer layer 50 to be in a reflective state. In this way, the atmosphere in the gas filling chamber S can be controlled by supplying and exhausting air from the atmosphere control device 86, and the transparent state and the reflective state can be switched reversibly. Further, when the supply / exhaust is interrupted, the state can be maintained as it is.
  • the gas filling chamber S and the atmosphere control device 86 are connected via an opening provided in the glass plate 82, but the atmosphere control device is provided via an opening provided in the seal member. May be connected. Further, an atmosphere control mechanism capable of generating hydrogen gas or oxygen gas may be disposed in the gas filling chamber S.
  • the light control film is bonded only on one glass plate 81, but the light control film may also be bonded on the glass plate 82.
  • Example 1 A roll of a polyethylene terephthalate (PET) film (manufactured by Mitsubishi Plastics) having a thickness of 188 ⁇ m was set in the roll-to-roll sputtering apparatus, and the inside of the sputtering apparatus was evacuated until the ultimate vacuum reached 5 ⁇ 10 ⁇ 3 Pa.
  • PET polyethylene terephthalate
  • the pressure in the apparatus rose to 4 ⁇ 10 ⁇ 2 Pa. This is because the residual gas contained in the PET film was released into the sputtering apparatus.
  • a sputtering gas is introduced into the sputtering apparatus, and an inorganic oxide layer made of silicon oxide, a light control layer made of Mg—Y alloy, and a catalyst layer made of Pd are sequentially formed while the film is running on the film forming roll. A film was formed.
  • a B-doped Si target manufactured by Mitsubishi Materials Corporation
  • argon and oxygen were introduced as sputtering gases, and sputter deposition was performed in a vacuum environment at a pressure of 0.2 Pa (power source: AC / MF).
  • the Mg—Y alloy layer was formed by using an Mg—Y split target (made by Rare Metallic) having an Mg metal plate and a Y metal plate in an erosion area ratio of 2: 5, and using argon as a sputtering gas.
  • sputtering film formation power supply: DC
  • a Pd metal target manufactured by Tanaka Kikinzoku Co., Ltd.
  • argon was introduced as a sputtering gas
  • sputtering film formation power supply: DC
  • the obtained light control film had a silicon oxide layer thickness of 30 nm, a Mg—Y alloy layer thickness of 40 nm, and a Pd layer thickness of 7 nm.
  • the observation image by the tunnel scanning electron microscope (TEM) of the cross section of a light control film is shown in FIG.
  • the moisture permeability at 40 ° C. and 90% RH of the laminated film obtained by forming a silicon oxide layer on a PET film under the same conditions was 0.2 g / m 2 ⁇ day.
  • Comparative Example 2 An Mg—Y alloy layer was directly formed on the PET film under the same conditions as in Comparative Example 1, and a Pd layer was formed thereon with a thickness of 18 nm.
  • the cross-sectional TEM observation image of the obtained light control film is shown in FIG.
  • the thickness of the Mg—Y layer tended to be slightly larger than that of Example 1. This is presumably because the volume increased due to the formation of the oxidized region layer.
  • permeability of the light control film in wavelength 750nm which is a wavelength of 940 nm and visible light region is substantially the same.
  • the difference in light transmittance between the hydrogenated state (transparent state) and the dehydrogenated state (reflective state) was defined as the light control performance.
  • Table 1 shows the film thickness and light control performance of each layer in the light control films of Examples and Comparative Examples.
  • the film thickness (depth) in the depth profile was calculated by converting the etching time to depth based on the Ar ion etching rate of the silicon oxide layer. From the obtained depth profile, the thickness of the region (oxidized region) where the oxygen concentration in the vicinity of the silicon oxide layer side interface of the light control layer was 50 atomic% or more was determined.
  • Table 1 shows the thickness and light control performance of each layer of the light control films of the above Examples and Comparative Examples.
  • the light control film of Example 1 provided with an inorganic oxide layer on a film substrate has higher light control performance than the light control films of Comparative Examples 1 and 2 in which the light control layer is directly formed on the film substrate. showed that.
  • the light control film of the comparative example on the film substrate interface side of the Mg-Y light control layer, regions with different contrasts due to oxidation of the light control metal material (Mg-Y PET film interface side in FIG. 5) was confirmed by a cross-sectional TEM observation image, and the thickness of the oxidized region determined from the XPS depth profile was 18 nm in both Comparative Examples 1 and 2. This oxidized region is considered to be generated by the oxidation of the metal by the residual gas released from the PET film.
  • Comparative Example 2 in which the thickness of the catalyst layer was increased, the thickness of the oxidized region in the light control layer was equivalent to that in Comparative Example 1, but the light control performance was further reduced as compared with Comparative Example 1. This is considered to be mainly due to a decrease in light transmittance in the transparent state due to the large thickness of the catalyst layer. Since the catalyst layer also functions as an oxygen blocking layer, it also has a function of suppressing oxidation of the light control layer. However, even if the thickness of the catalyst layer is increased as in Comparative Example 2, the thickness of the oxidation region is increased. It can be seen that does not decrease. From these results, the oxidation region of the light control layer is mainly caused by the polymer film base material. By providing an inorganic oxide layer on the polymer film base material as in the examples, the light control layer It can be seen that the oxidation of the layer is suppressed and high dimming performance can be exhibited.

Abstract

A light-modulating film (1) in which an inorganic oxide layer (20), a light-modulating layer (30), and a catalyst layer (40) are provided, in this order, on a polymer film substrate (10) which is a light-modulating film of the hydrogen activation type. The light-modulating layer (30) is a layer for reversibly changing states between a transparent state caused by hydrogenation and a reflective state caused by dehydrogenation. The catalyst layer (40) promotes hydrogenation and dehydrogenation in the light-modulating layer. The inorganic oxide layer (20) contains an oxide of an element that differs from the metal element constituting the light-modulating layer (30).

Description

調光フィルムおよびその製造方法、ならびに調光素子Light control film, method for producing the same, and light control element
 本発明は、水素化と脱水素化により透明状態と反射状態とをスイッチング可能な水素活性型調光素子に用いられる、調光フィルムおよびその製造方法に関する。さらに、本発明は当該調光フィルムを用いた調光素子に関する。 The present invention relates to a light control film used for a hydrogen active light control device capable of switching between a transparent state and a reflective state by hydrogenation and dehydrogenation and a method for producing the same. Furthermore, this invention relates to the light control element using the said light control film.
 建物や乗り物等の窓ガラスやインテリア材料等に、調光素子が用いられている。特に近年では、冷暖房負荷の低減や、照明負荷の削減、快適性向上等の観点から、調光素子に対する需要や期待が高まっている。 Dimming elements are used in window glass and interior materials for buildings and vehicles. Particularly in recent years, demand and expectation for dimming elements are increasing from the viewpoints of reducing the heating / cooling load, reducing the lighting load, and improving comfort.
 調光素子としては、液晶材料やエレクトロクロミック材料を用い、電界の印加により光の透過率を制御する電界駆動方式;温度により光透過率が変化するサーモクロミック材料を用いたサーモクロミック方式;雰囲気ガスの制御により光の透過率を制御するガスクロミック方式が開発されている。 The light control element uses a liquid crystal material or an electrochromic material, and an electric field driving method for controlling the light transmittance by applying an electric field; a thermochromic method using a thermochromic material whose light transmittance varies with temperature; an atmospheric gas A gas chromic method has been developed to control the light transmittance by controlling the light intensity.
 光透過率の制御方式としては、調光材料による光の透過と散乱をスイッチングする方法、光の透過と吸収をスイッチングする方法、光の透過と反射をスイッチングする方法が挙げられる。これらの中でも、調光材料の水素化と脱水素化により光の透過と反射をスイッチングする水素活性型の調光素子は、外光を反射して熱の流入を防止できるため遮熱性に優れ、高い省エネルギー効果が得られるとの利点を有する。また、水素化と脱水素化をガスクロミック方式によりスイッチングできるため、大面積化および低コスト化が可能である。 Examples of the light transmittance control method include a method of switching light transmission and scattering by the light control material, a method of switching light transmission and absorption, and a method of switching light transmission and reflection. Among these, the hydrogen activation type dimming element that switches between transmission and reflection of light by hydrogenation and dehydrogenation of the dimming material is excellent in heat shielding because it can prevent the inflow of heat by reflecting external light, It has an advantage that a high energy saving effect can be obtained. Further, since hydrogenation and dehydrogenation can be switched by a gas chromic method, the area can be increased and the cost can be reduced.
 水素化と脱水素化により透明状態と反射状態を可逆的にスイッチングできる水素活性型調光材料としては、イットリウム、ランタン、ガドリニウム等の希土類金属や、希土類金属とマグネシウムの合金、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属とマグネシウムの合金、およびニッケル、マンガン、コバルト、鉄等の遷移金属とマグネシウムの合金が知られている。特に、調光材料としてマグネシウム合金を用いた場合、水素化マグネシウムの可視光透過率が高いため、透明状態における光透過率の高い調光素子が得られる。 Examples of hydrogen active light-modulating materials that can reversibly switch between transparent and reflective states by hydrogenation and dehydrogenation include rare earth metals such as yttrium, lanthanum, and gadolinium, alloys of rare earth metals and magnesium, calcium, strontium, and barium. Alloys of alkaline earth metals such as magnesium and alloys of transition metals such as nickel, manganese, cobalt, and iron and magnesium are known. In particular, when a magnesium alloy is used as the light control material, the visible light transmittance of magnesium hydride is high, so that a light control element having a high light transmittance in a transparent state can be obtained.
 水素活性型の調光素子では、調光材料からなる調光層に近接して触媒層が設けられる。触媒層は、調光層の水素化、脱水素化を促進する機能を有し、パラジウムや白金、あるいはパラジウム合金や白金合金等が用いられる。このような水素活性型の調光素子として、これまでに、ガラス基板上に、調光層および触媒層を備えるものが検討されている(例えば、特許文献1)。水素活性型の調光材料は、水素化による透明状態と脱水素化による反射状態とのスイッチングを繰り返すと、調光層のマグネシウム合金中のマグネシウムが触媒層をつきぬけて表面に析出し、酸化されるために、スイッチング特性が劣化する場合があることが知られている。触媒層へのマグネシウムのマイグレーションを抑制するために、調光層と触媒層との間に金属薄膜や水素化金属薄膜等のバッファー層を設けることが提案されている(例えば、特許文献2)。 In a hydrogen activation type light control element, a catalyst layer is provided in the vicinity of a light control layer made of a light control material. The catalyst layer has a function of accelerating hydrogenation and dehydrogenation of the light control layer, and palladium, platinum, palladium alloy, platinum alloy, or the like is used. As such a hydrogen activation type light control element, what is equipped with the light control layer and the catalyst layer on the glass substrate until now is examined (for example, patent document 1). When the hydrogen-activated dimming material is repeatedly switched between the transparent state by hydrogenation and the reflection state by dehydrogenation, magnesium in the magnesium alloy of the dimming layer is deposited on the surface through the catalyst layer and oxidized. Therefore, it is known that the switching characteristics may be deteriorated. In order to suppress migration of magnesium to the catalyst layer, it has been proposed to provide a buffer layer such as a metal thin film or a metal hydride thin film between the light control layer and the catalyst layer (for example, Patent Document 2).
特開2013-83911号公報JP 2013-83911 A 特開2014-26262号公報JP 2014-26262 A
 水素活性型調光素子を量産化および低コスト化するためには、ガラス基材に代えてフィルム基材を用いることが有用と考えられる。フィルム基材を用い、ロールトゥロールスパッタ等の連続成膜方式を採用することにより、膜厚や特性が均一な調光層や触媒層を備える調光フィルムを長尺で提供できるため、大面積化も容易となる。また、フィルム基材を用いた場合、一般的なガラス等への貼り合わせが容易である上に、曲面への適用も可能であることから、汎用性にも優れる。 It is considered useful to use a film substrate instead of the glass substrate in order to mass-produce and reduce the cost of the hydrogen activated dimmer. By using a film base material and adopting a continuous film formation method such as roll-to-roll sputtering, it is possible to provide a long light control film with a light control layer and a catalyst layer with uniform film thickness and characteristics. It becomes easy. In addition, when a film substrate is used, it is easy to bond to general glass or the like, and can be applied to a curved surface.
 特許文献2には、基材がフレキシブルなフィルムでもよい旨の記載があるが、フィルム基材上に調光層を形成した具体例についての記載はない。本発明者らが、フィルム基材上に水素活性型の調光層を備える調光フィルムの作製を試みたところ、同様の条件でガラス基板上に調光層を形成した場合に比べて、調光性能が低下することが判明した。かかる課題に鑑み、本発明は、フィルム基板上に調光層を備え、ガラス基板を用いた場合と同等の調光性能を有する水素活性型調光フィルムの提供を目的とする。 Patent Document 2 describes that the base material may be a flexible film, but does not describe a specific example in which a light control layer is formed on the film base material. When the inventors tried to produce a light control film comprising a hydrogen active light control layer on a film substrate, the light control layer was formed on a glass substrate under the same conditions as compared with the case where the light control layer was formed. It has been found that the light performance decreases. In view of such problems, an object of the present invention is to provide a hydrogen activation type light control film having a light control layer on a film substrate and having a light control performance equivalent to that when a glass substrate is used.
 本発明者らが検討の結果、フィルム基材上に調光層を成膜した場合には、調光層のフィルム基材との界面付近に膜厚の大きい(例えば、15nm以上)酸化膜が形成され、この酸化膜が調光性能低下の原因であることが判明した。当該知見に鑑みさらに検討の結果、基材フィルム上に調光層とは異なる材料からなる無機酸化物層を設けることにより、調光層の酸化が抑制されることを見出し、本発明に至った。 As a result of the study by the present inventors, when a light control layer is formed on the film substrate, an oxide film having a large film thickness (for example, 15 nm or more) is formed near the interface of the light control layer with the film substrate. It was found that this oxide film was responsible for the dimming performance degradation. As a result of further investigation in view of the knowledge, it was found that by providing an inorganic oxide layer made of a material different from the light control layer on the base film, oxidation of the light control layer was suppressed, and the present invention was achieved. .
 本発明の調光フィルムは、高分子フィルム基材上に、無機酸化物層、調光層、および触媒層をこの順に備える。調光層は、水素化による透明状態と脱水素化による反射状態との間で状態が可逆的に変化する。触媒層は、調光層における水素化および脱水素化を促進する。無機酸化物層は、調光層を構成する金属元素とは異なる元素の酸化物を含む。 The light control film of the present invention includes an inorganic oxide layer, a light control layer, and a catalyst layer in this order on a polymer film substrate. The light control layer reversibly changes between a transparent state by hydrogenation and a reflection state by dehydrogenation. The catalyst layer promotes hydrogenation and dehydrogenation in the light control layer. The inorganic oxide layer contains an oxide of an element different from the metal element constituting the light control layer.
 調光層としては、希土類金属、希土類金属とマグネシウムの合金、アルカリ土類金属とマグネシウムの合金、および遷移金属とマグネシウムの合金等の金属薄膜が好ましく用いられる。なお、調光層は、水素化物の状態で上記金属を含んでいてもよい。調光層の膜厚は、10~500nmが好ましい。 As the light control layer, metal thin films such as rare earth metals, alloys of rare earth metals and magnesium, alloys of alkaline earth metals and magnesium, and alloys of transition metals and magnesium are preferably used. In addition, the light control layer may contain the said metal in the state of hydride. The film thickness of the light control layer is preferably 10 to 500 nm.
 無機酸化物層としては、Si,Ge,Sn,Pb,Al,Ga,In,Tl,As,Sb,Bi,Se,Te,Mg,Ca,Sr,Ba,Sc,Y,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Tc,Re,Fe,Ru,Os,Co,Rh,Ir,Ni,Pd,Pt,Cu,Ag,Au,Zn,Cd等の酸化物を含む酸化物薄膜が好ましく用いられる。無機酸化物層の膜厚は、1~200nmが好ましい。また、無機酸化物層の膜厚は、調光層の膜厚よりも小さいことが好ましい。 Inorganic oxide layers include Si, Ge, Sn, Pb, Al, Ga, In, Tl, As, Sb, Bi, Se, Te, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, and Hf. , V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, etc. An oxide thin film containing is preferably used. The film thickness of the inorganic oxide layer is preferably 1 to 200 nm. Moreover, it is preferable that the film thickness of an inorganic oxide layer is smaller than the film thickness of a light control layer.
 本発明の調光フィルムは、例えば、ロールトゥロールスパッタにより、フィルム基材上に、無機酸化物層、調光層および触媒層を成膜することにより得られる。 The light control film of the present invention can be obtained, for example, by forming an inorganic oxide layer, a light control layer and a catalyst layer on a film substrate by roll-to-roll sputtering.
 さらに、本発明は上記調光フィルムを用いた調光素子に関する。本発明の調光フィルムは、ガスクロミック方式により、調光層の水素化と脱水素化を行い得るため、ガスクロミック方式の調光素子に適している。ガスクロミック方式の調光素子の一形態は、複数の透明部材(例えば複層ガラス)を含み、透明部材の間隙がガス充填室を構成している。このガス充填室内に調光フィルムが配置されることにより調光素子が形成される。ガスクロミック方式の調光素子は、雰囲気制御装置をさらに備えることが好ましい。雰囲気制御装置は、ガス充填室内に水素を給排気可能に構成されている。 Furthermore, this invention relates to the light control element using the said light control film. Since the light control film of this invention can hydrogenate and dehydrogenate a light control layer by a gas chromic system, it is suitable for the light control element of a gas chromic system. One form of the gaschromic light control element includes a plurality of transparent members (for example, multi-layer glass), and a gap between the transparent members forms a gas filling chamber. A light control element is formed by disposing a light control film in the gas filling chamber. The gaschromic light control element preferably further includes an atmosphere control device. The atmosphere control device is configured to be able to supply and exhaust hydrogen into the gas filling chamber.
 本発明の調光フィルムは、高分子フィルム基材と調光層との間に無機酸化物層を備えるため、高分子フィルム基材からの水分や酸素等に起因する調光層の酸化が抑制される。そのため、本発明の調光フィルムは、水素化と脱水素化により、ガラス基板を用いた場合と同等の高い調光性能を発揮することができる。 Since the light control film of the present invention includes an inorganic oxide layer between the polymer film substrate and the light control layer, oxidation of the light control layer due to moisture, oxygen, etc. from the polymer film substrate is suppressed. Is done. Therefore, the light control film of this invention can exhibit the high light control performance equivalent to the case where a glass substrate is used by hydrogenation and dehydrogenation.
調光フィルムの一実施形態を表す模式的断面図である。It is a typical sectional view showing one embodiment of a light control film. 調光フィルムの一実施形態を表す模式的断面図である。It is a typical sectional view showing one embodiment of a light control film. 調光フィルムを備える複層ガラスの一実施形態を表す模式的断面図である。It is a typical sectional view showing one embodiment of multilayer glass provided with a light control film. 実施例の調光フィルムの断面TEM観察像である。It is a cross-sectional TEM observation image of the light control film of an Example. 比較例の調光フィルムの断面TEM観察像である。It is a cross-sectional TEM observation image of the light control film of a comparative example.
[調光フィルムの構成]
 図1は、本発明の調光フィルムの一実施形態を表す模式的断面図である。本発明の調光フィルム1は、高分子フィルム基材10上に、無機酸化物層20、調光層30および触媒層40を備える。
[Configuration of light control film]
FIG. 1 is a schematic cross-sectional view showing an embodiment of the light control film of the present invention. The light control film 1 of the present invention includes an inorganic oxide layer 20, a light control layer 30, and a catalyst layer 40 on a polymer film substrate 10.
<フィルム基材>
 高分子フィルム基材10は、透明でも不透明でもよい。調光層が水素化された状態において、調光フィルムを光透過性とするために、高分子フィルム基材の材料としては透明プラスチック材料が好ましく用いられる。このようなプラスチック材料としては、ポリエチレンテレフタレート等のポリエステル、ポリオレフィン、ノルボルネン系等の環状ポリオレフィン、ポリカーボネート、ポリエーテルスルフォン、ポリアリレート等が挙げられる。
<Film base>
The polymer film substrate 10 may be transparent or opaque. A transparent plastic material is preferably used as the material of the polymer film substrate in order to make the light control film light transmissive in a state where the light control layer is hydrogenated. Examples of such plastic materials include polyesters such as polyethylene terephthalate, polyolefins, cyclic polyolefins such as norbornene, polycarbonate, polyether sulfone, and polyarylate.
 高分子フィルム基材10の膜厚は特に限定されないが、一般には、2~500μm程度であり、20~300μm程度が好ましい。高分子フィルム基材10の表面には、易接着層、帯電防止層、ハードコート層等が設けられていてもよい。また、高分子フィルム基材10の表面には、無機酸化物層20との密着性を高める観点から、コロナ放電処理、紫外線照射処理、プラズマ処理、スパッタエッチング処理等の適宜な接着処理を施してもよい。 The film thickness of the polymer film substrate 10 is not particularly limited, but is generally about 2 to 500 μm, preferably about 20 to 300 μm. An easy-adhesion layer, an antistatic layer, a hard coat layer, and the like may be provided on the surface of the polymer film substrate 10. In addition, the surface of the polymer film substrate 10 is subjected to appropriate adhesion treatment such as corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, sputter etching treatment, etc. from the viewpoint of enhancing the adhesion with the inorganic oxide layer 20. Also good.
 高分子フィルム基材10の無機酸化物層20形成面側の算術平均粗さRaは、5nm以下が好ましく、3nm以下がより好ましく、1nm以下がさらに好ましい。基材の表面粗さを小さくすることにより、無機酸化物層のカバレッジが良好となり、無機酸化物層上に調光層を形成する際のガスバリア性が高められる傾向がある。算術平均粗さRaは、走査型プローブ顕微鏡(AFM)を用いた1μm四方のAFM観察像から求められる。 The arithmetic average roughness Ra of the polymer film substrate 10 on the surface on which the inorganic oxide layer 20 is formed is preferably 5 nm or less, more preferably 3 nm or less, and even more preferably 1 nm or less. By reducing the surface roughness of the base material, the coverage of the inorganic oxide layer is improved, and the gas barrier property when forming the light control layer on the inorganic oxide layer tends to be improved. The arithmetic average roughness Ra is obtained from a 1 μm square AFM observation image using a scanning probe microscope (AFM).
<無機酸化物層>
 高分子フィルム基材10上には無機酸化物層20が形成される。無機酸化物層20は、調光層30成膜時の下地となり、高分子フィルム基材10から発生する水分や酸素ガス等を遮断して、調光層の酸化を抑制する作用を有する。
<Inorganic oxide layer>
An inorganic oxide layer 20 is formed on the polymer film substrate 10. The inorganic oxide layer 20 serves as a base when the light control layer 30 is formed, and has an action of blocking moisture, oxygen gas, and the like generated from the polymer film substrate 10 and suppressing oxidation of the light control layer.
 無機酸化物層20は、その上に形成される調光層30と異なる材料(金属元素組成)を有する酸化物薄膜であれば、その材料は特に制限されない。高分子フィルム基材からのガス遮断性を高める観点から、無機酸化物層20を構成する無機酸化物としては、例えば、Si,Ge,Sn,Pb,Al,Ga,In,Tl,As,Sb,Bi,Se,Te,Mg,Ca,Sr,Ba,Sc,Y,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Tc,Re,Fe,Ru,Os,Co,Rh,Ir,Ni,Pd,Pt,Cu,Ag,Au,Zn,Cd等の金属元素あるいは半金属元素の酸化物が好ましく用いられる。無機酸化物層は、複数種の(半)金属の混合酸化物を含んでいてもよい。これらの中でも、光吸収が少なく、かつ酸素や水蒸気等のガス遮断性に優れることから、Si,Nb,Ti等の酸化物が好ましく用いられる。 The inorganic oxide layer 20 is not particularly limited as long as it is an oxide thin film having a material (metal element composition) different from that of the light control layer 30 formed thereon. From the viewpoint of improving the gas barrier property from the polymer film substrate, examples of the inorganic oxide constituting the inorganic oxide layer 20 include Si, Ge, Sn, Pb, Al, Ga, In, Tl, As, and Sb. , Bi, Se, Te, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co , Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, and other metal elements or metalloid oxides are preferably used. The inorganic oxide layer may contain a mixed oxide of a plurality of (semi) metals. Among these, oxides such as Si, Nb, and Ti are preferably used because they have low light absorption and excellent gas barrier properties such as oxygen and water vapor.
 無機酸化物層20は、後述する調光層30と金属元素組成が異なることが好ましい。無機酸化物層20と調光層30の金属元素組成が異なるとは、無機酸化物層に5原子%以上含まれる金属元素あるいは半金属元素の1種以上が、調光層に5原子%以上含まれないこと、または調光層に3原子%以上含まれる金属元素の1種以上が、無機酸化物層に5原子%以上含まれないことを意味する。無機酸化物層に5原子%以上含まれる金属元素あるいは半金属元素の全てが調光層に5原子%以上含まれず、かつ調光層に5原子%以上含まれる金属元素の全てが無機酸化物層に5原子%以上含まれないことがより好ましい。無機酸化物層20として、調光層30と金属元素組成の異なる材料を採用することにより、調光性能の低下を抑制できる。 The inorganic oxide layer 20 preferably has a metal element composition different from that of the light control layer 30 described later. The difference in the metal element composition between the inorganic oxide layer 20 and the light control layer 30 means that one or more metal elements or metalloid elements contained in the inorganic oxide layer at 5 atomic% or more are 5 atomic% or more in the light control layer. This means that it is not contained, or one or more metal elements contained in the light control layer in an amount of 3 atomic% or more are not contained in the inorganic oxide layer in an amount of 5 atomic% or more. All metal elements or metalloid elements contained in the inorganic oxide layer at 5 atomic% or more are not contained in the light control layer at 5 atomic% or more, and all metal elements contained in the light control layer at 5 atomic% or more are inorganic oxides More preferably, the layer does not contain 5 atomic% or more. By adopting a material having a metal element composition different from that of the light control layer 30 as the inorganic oxide layer 20, a decrease in light control performance can be suppressed.
 無機酸化物層20は、酸素や水分等のガスバリア性が高く、水分や酸素等の高分子フィルム基材から発生し得るガスの透過率が小さいことが好ましい。例えば、40℃90%RHの環境下での水の透過率は、10g/m・day以下が好ましく、5g/m・day以下がより好ましく、1g/m・day以下がさらに好ましい。水の透過率が上記範囲であれば、調光層成膜時の高分子フィルム基材からのアウトガスに起因する調光層の酸化が抑制され、調光性能の高い調光フィルムが得られる。水の透過率の下限は特に限定されない。一般には、水の透過率は0.00001g/m・day以上である。 The inorganic oxide layer 20 preferably has a high gas barrier property such as oxygen and moisture, and has a low permeability of gas that can be generated from a polymer film substrate such as moisture and oxygen. For example, the transmittance of water under an environment of 40 ° C. 90% RH is preferably less 10g / m 2 · day, 5g / m or less, more preferably 2 · day, more preferably less 1g / m 2 · day. If the water transmittance is within the above range, oxidation of the light control layer due to outgas from the polymer film substrate during film formation of the light control layer is suppressed, and a light control film having high light control performance is obtained. The lower limit of the water transmittance is not particularly limited. In general, the water permeability is 0.00001 g / m 2 · day or more.
 水の透過率(透湿度)は、JIS K7129:2008 附属書Bに準じて測定される。なお、無機酸化物層は薄膜であり、単体で透湿度を求めることは困難である。そのため、高分子フィルム基材上に無機酸化物層を形成して、透湿度を測定すればよい。多くの高分子フィルムの透湿度は、無機酸化物層の透湿度に比べて十分大きいため、高分子フィルム上に無機酸化物層が設けられた積層体の透湿度は、無機酸化物層単体の透湿度に等しいとみなせる。 Water permeability (moisture permeability) is measured according to JIS K7129: 2008 Annex B. Note that the inorganic oxide layer is a thin film, and it is difficult to obtain moisture permeability by itself. Therefore, the moisture permeability may be measured by forming an inorganic oxide layer on the polymer film substrate. Since the moisture permeability of many polymer films is sufficiently larger than the moisture permeability of the inorganic oxide layer, the moisture permeability of the laminate in which the inorganic oxide layer is provided on the polymer film is that of the inorganic oxide layer alone. It can be regarded as equal to moisture permeability.
 高分子フィルム基材として、シクロオレフィンポリマーフィルム等のガスバリア性の高い(水の透過率が低い)フィルムが用いられると、高分子フィルム基材単体の透湿度と、高分子フィルム上に無機酸化物層が設けられた積層体の透湿度との差が十分ではなく、積層体の透湿度から無機酸化物層の透湿度を正確に測定し難い場合がある。このような場合は、厚み50μmのPETフィルム基材上に、高分子フィルム基材への成膜と同条件で無機酸化物層を形成して、積層体の透湿度を測定すればよい。厚み50μmのPETフィルム基材は、40℃90%RHの環境下での透湿度が10g/m・dayよりも十分大きい。そのため、無機酸化物層の透湿度が10g/m・day以下の場合、PETフィルム基材上に無機酸化物層が設けられた積層体の透湿度は、無機酸化物層単体の透湿度と実質的に等しい。したがって、厚み50μmのPETフィルム基材上に無機酸化物層が設けられた積層体の透湿度を測定することにより、無機酸化物層単体の透湿度が得られる。 When a film having a high gas barrier property (low water permeability) such as a cycloolefin polymer film is used as the polymer film substrate, the moisture permeability of the polymer film substrate alone and the inorganic oxide on the polymer film The difference between the moisture permeability of the laminated body provided with the layer is not sufficient, and it may be difficult to accurately measure the moisture permeability of the inorganic oxide layer from the moisture permeability of the laminated body. In such a case, an inorganic oxide layer may be formed on a PET film substrate having a thickness of 50 μm under the same conditions as the film formation on the polymer film substrate, and the moisture permeability of the laminate may be measured. A PET film substrate having a thickness of 50 μm has a moisture permeability sufficiently greater than 10 g / m 2 · day in an environment of 40 ° C. and 90% RH. Therefore, when the moisture permeability of the inorganic oxide layer is 10 g / m 2 · day or less, the moisture permeability of the laminate in which the inorganic oxide layer is provided on the PET film substrate is the moisture permeability of the inorganic oxide layer alone. Substantially equal. Therefore, the moisture permeability of the inorganic oxide layer alone can be obtained by measuring the moisture permeability of the laminate in which the inorganic oxide layer is provided on the PET film substrate having a thickness of 50 μm.
 無機酸化物層20は、酸素や水分等のバリア性を付与して高分子フィルムからのアウトガスを抑制できるものであれば、その膜厚は特に制限されない。連続被膜を形成する観点から、無機酸化物層の膜厚は1nm以上が好ましい。一方、膜厚が過度に大きいと、生産性の低下、および無機酸化物層の光吸収に起因する光透過率の低下を生じる傾向があるため、無機酸化物層の膜厚は200nm以下が好ましい。無機酸化物層の膜厚は、2~60nmがより好ましく、5~50nmがさらに好ましい。無機酸化物層をスパッタリング法により形成する場合、金属層に比べて成膜レートが小さい傾向がある。また、上記のように無機酸化物層は、光吸収の原因となるため、高分子フィルム基材からのアウトガスを抑制できる範囲で、できる限り膜厚が小さいことが好ましい。無機酸化物層20の膜厚はその上に形成される調光層30の膜厚よりも小さいことが好ましく、調光層の膜厚の0.8倍以下がより好ましい。 The thickness of the inorganic oxide layer 20 is not particularly limited as long as the inorganic oxide layer 20 can provide a barrier property such as oxygen and moisture to suppress outgas from the polymer film. From the viewpoint of forming a continuous film, the thickness of the inorganic oxide layer is preferably 1 nm or more. On the other hand, if the film thickness is excessively large, the productivity tends to decrease and the light transmittance due to the light absorption of the inorganic oxide layer tends to decrease. Therefore, the film thickness of the inorganic oxide layer is preferably 200 nm or less. . The film thickness of the inorganic oxide layer is more preferably 2 to 60 nm, and further preferably 5 to 50 nm. When the inorganic oxide layer is formed by a sputtering method, the deposition rate tends to be lower than that of the metal layer. Moreover, since an inorganic oxide layer becomes a cause of light absorption as mentioned above, it is preferable that a film thickness is as small as possible in the range which can suppress the outgas from a polymer film base material. The film thickness of the inorganic oxide layer 20 is preferably smaller than the film thickness of the light control layer 30 formed thereon, and more preferably 0.8 times or less the film thickness of the light control layer.
 なお、無機酸化物層20は、複数の酸化物薄膜の積層体でもよい。例えば、屈折率の異なる複数の酸化物薄膜を積層し、各層の光学膜厚を調整することにより、調光層30と高分子フィルム基材10との間での光反射を低減し、透明状態における光透過率を高めることができる。無機酸化物層が複数層からなる場合、合計膜厚が上記範囲内であることが好ましい。 The inorganic oxide layer 20 may be a stacked body of a plurality of oxide thin films. For example, by laminating a plurality of oxide thin films having different refractive indexes and adjusting the optical film thickness of each layer, light reflection between the light control layer 30 and the polymer film substrate 10 is reduced, and the transparent state The light transmittance can be increased. When the inorganic oxide layer is composed of a plurality of layers, the total film thickness is preferably within the above range.
<調光層>
 調光層30は、水素化による透明状態と脱水素化による反射状態との間で状態が可逆的に変化するクロミック材料を含んでいれば、その材料は特に限定されない。調光層を構成する材料の具体例としては、Y,La,Gd,Sm等の希土類金属、希土類金属とマグネシウムの合金、Ca,Sr,Ba等のアルカリ土類金属とマグネシウムの合金、Ni,Mn,Co,Fe等の遷移金属とマグネシウムの合金等が挙げられる。なお、調光層30は、上記合金以外の元素を微量成分として含んでいてもよい。
<Light control layer>
If the light control layer 30 contains the chromic material from which a state changes reversibly between the transparent state by hydrogenation, and the reflective state by dehydrogenation, the material will not be specifically limited. Specific examples of the material constituting the light control layer include rare earth metals such as Y, La, Gd and Sm, alloys of rare earth metals and magnesium, alloys of alkaline earth metals such as Ca, Sr and Ba, magnesium, Ni, Examples include alloys of transition metals such as Mn, Co, and Fe with magnesium. In addition, the light control layer 30 may contain elements other than the said alloy as a trace component.
 調光層30を構成する上記の金属あるいは合金は、水素化により透明状態になり、水素を放出することにより反射状態になる金属元素を含む。例えば、マグネシウムは水素化されると透明なMgHになり、脱水素化により金属反射を有するMgになる。 Said metal or alloy which comprises the light control layer 30 contains the metal element which will be in a transparent state by hydrogenation, and will be in a reflective state by discharge | releasing hydrogen. For example, magnesium becomes transparent MgH 2 when hydrogenated, and becomes Mg having metal reflection by dehydrogenation.
 調光層30の膜厚は特に限定されないが、透明状態における光透過率と反射状態における光遮蔽率(反射率)とを両立する観点からは、10nm~500nmが好ましく、15nm~200nmがより好ましく、20nm~100mがさらに好ましい。調光層の膜厚が過度に小さいと、反射状態における光反射率が低くなる傾向があり、調光層の膜厚が過度に大きいと、透明状態における光透過率が低くなる傾向がある。 The film thickness of the light control layer 30 is not particularly limited, but is preferably 10 nm to 500 nm, more preferably 15 nm to 200 nm, from the viewpoint of achieving both the light transmittance in the transparent state and the light shielding rate (reflectance) in the reflective state. 20 nm to 100 m is more preferable. If the film thickness of the light control layer is excessively small, the light reflectance in the reflective state tends to be low, and if the film thickness of the light control layer is excessively large, the light transmittance in the transparent state tends to be low.
 高分子フィルム上に調光層を形成すると、成膜時や使用環境において、高分子フィルムから水分や酸素等の酸化性ガスが放出され、調光層が酸化される場合がある。ガスバリア性に優れる高分子フィルム基材を用いる場合でも、調光層のスパッタ成膜時には、高分子フィルム基材自身に含まれる水分や酸素等が放出され、調光層を酸化させる原因となり得る。調光層が酸化されると調光性能(水素化時と脱水素化時の透過率の差)が低下する原因となる。特に、マグネシウムは酸素との結合力が高く、一旦酸化されると水素を導入しても水素化しなくなるため、マグネシウムを含む調光層は、酸化により調光性能が大幅に低下する傾向がある。これに対して、本発明においては、高分子フィルム基材10と調光層30との間に無機酸化物層20が形成されているため、基材10から調光層30への水分や酸素の浸透が抑制される。そのため、調光層の酸化が抑制され、調光性能や耐久性に優れる調光素子が得られる。 When a light control layer is formed on a polymer film, an oxidizing gas such as moisture or oxygen may be released from the polymer film during film formation or in a use environment, and the light control layer may be oxidized. Even when a polymer film substrate having excellent gas barrier properties is used, moisture, oxygen, and the like contained in the polymer film substrate itself can be released during sputter deposition of the light control layer, which can cause oxidation of the light control layer. When the light control layer is oxidized, the light control performance (difference in transmittance during hydrogenation and dehydrogenation) is reduced. In particular, magnesium has a high binding force with oxygen, and once oxidized, hydrogen does not hydrogenate even if hydrogen is introduced. Therefore, the light control layer containing magnesium tends to greatly reduce the light control performance due to oxidation. On the other hand, in the present invention, since the inorganic oxide layer 20 is formed between the polymer film base material 10 and the light control layer 30, moisture and oxygen from the base material 10 to the light control layer 30 can be obtained. Permeation is suppressed. Therefore, oxidation of the light control layer is suppressed, and a light control element having excellent light control performance and durability is obtained.
 なお、無機酸化物層20上に形成された調光層30は、無機酸化物層20との界面近傍に10nm以下の厚みで酸化領域(酸素濃度が50原子%以上の領域)を有していてもよい。酸素濃度は、X線光電子分光法(XPS)により測定することができる。調光層30に酸化領域が形成されている場合でも、その厚みが10nm以下であれば、調光層全体の膜厚に対する酸化領域の割合が小さいため、良好な調光性能を維持できる。酸化領域の厚みは、好ましくは8nm以下、より好ましくは5nm以下である。 The light control layer 30 formed on the inorganic oxide layer 20 has an oxidized region (region having an oxygen concentration of 50 atomic% or more) with a thickness of 10 nm or less near the interface with the inorganic oxide layer 20. May be. The oxygen concentration can be measured by X-ray photoelectron spectroscopy (XPS). Even when an oxidation region is formed in the light control layer 30, if the thickness is 10 nm or less, the ratio of the oxidation region to the film thickness of the entire light control layer is small, so that good light control performance can be maintained. The thickness of the oxidized region is preferably 8 nm or less, more preferably 5 nm or less.
<触媒層>
 触媒層40は、調光層30における水素化、脱水素化を促進する機能を有する。触媒層40により、反射状態から透明状態へのスイッチング(調光層の水素化)および透明状態から反射状態へのスイッチング(調光層の脱水素化)におけるスイッチング速度が高められる。
<Catalyst layer>
The catalyst layer 40 has a function of promoting hydrogenation and dehydrogenation in the light control layer 30. The catalyst layer 40 increases the switching speed in switching from the reflective state to the transparent state (hydrogenation of the light control layer) and in switching from the transparent state to the reflection state (dehydrogenation of the light control layer).
 触媒層40は、調光層30の水素化、脱水素化を促進する機能を有するものであればよく、その材料は特に限定されないが、例えば、パラジウム、白金、パラジウム合金、および白金合金の中から選択された少なくとも1種の金属を有することが好ましい。特に、水素透過性が高いことから、パラジウムが好適に用いられる。 The catalyst layer 40 is not particularly limited as long as it has a function of promoting the hydrogenation and dehydrogenation of the light control layer 30. For example, the catalyst layer 40 is palladium, platinum, a palladium alloy, and a platinum alloy. It is preferable to have at least one metal selected from In particular, palladium is preferably used because of its high hydrogen permeability.
 触媒層40の膜厚は、調光層30の反応性、触媒層40の触媒能力等により適宜設定可能であり、特に限定されないが、1~30nmが好ましく、2~20nmがより好ましい。触媒層の膜厚が過度に小さいと、水素化および脱水素化の触媒機能が十分に発現されない場合があり、触媒層の膜厚が過度に大きいと、光透過率が低下する傾向がある。 The film thickness of the catalyst layer 40 can be appropriately set depending on the reactivity of the light control layer 30, the catalytic ability of the catalyst layer 40, and the like, and is not particularly limited, but is preferably 1 to 30 nm, and more preferably 2 to 20 nm. If the film thickness of the catalyst layer is excessively small, the catalytic functions of hydrogenation and dehydrogenation may not be sufficiently exhibited. If the film thickness of the catalyst layer is excessively large, the light transmittance tends to decrease.
<バッファー層および表面層>
 本発明の調光フィルムは、高分子フィルム基材10上に、無機酸化物層20、調光層30および触媒層40以外の層を有していてもよい。例えば、図2に示す調光フィルム2のように、調光層30と触媒層40との間にバッファー層50を設けたり、触媒層40上に表面層70を設けてもよい。
<Buffer layer and surface layer>
The light control film of the present invention may have a layer other than the inorganic oxide layer 20, the light control layer 30, and the catalyst layer 40 on the polymer film substrate 10. For example, as in the light control film 2 shown in FIG. 2, the buffer layer 50 may be provided between the light control layer 30 and the catalyst layer 40, or the surface layer 70 may be provided on the catalyst layer 40.
 バッファー層50としては、水素を透過可能であり、かつ調光層の酸化や調光層から触媒層への金属のマイグレーションを抑制可能なものが好ましい。例えば、Ti,Nb,Vあるいはこれらの金属の合金等からなる金属薄膜を、バッファー層50として調光層30と触媒層40との間に挿入することにより、調光層から触媒層へのマグネシウム等のマイグレーションが抑制されるとともに、脱水素化による透明状態から反射状態へのスイッチング速度が大きくなる傾向がある。 The buffer layer 50 is preferably one that can transmit hydrogen and can suppress oxidation of the light control layer and metal migration from the light control layer to the catalyst layer. For example, by inserting a metal thin film made of Ti, Nb, V or an alloy of these metals as a buffer layer 50 between the light control layer 30 and the catalyst layer 40, magnesium from the light control layer to the catalyst layer can be obtained. Migration is suppressed, and the switching speed from the transparent state to the reflective state due to dehydrogenation tends to increase.
 バッファー層50としてW,Ta,Hfあるいはこれらの金属の合金等からなる金属薄膜を挿入することにより、触媒層40側からの調光層30への酸素の透過を抑制して、調光層の酸化による劣化を抑制できる。バッファー層50として、調光層と同様の金属材料、例えば、Sc,Mg‐Sc合金あるいはこれらの水素化物からなる金属薄膜を挿入することにより、触媒層40を透過する酸素と反応する犠牲層として機能させ、調光層30の酸化を抑制できる。このような犠牲層として作用するバッファー層は、酸素と可逆的に結合し、調光層30の水素化時(透明状態)には水素化されて光透過率が上昇することが好ましい。そのため、バッファー層としてマグネシウム合金を用いる場合は、金属元素全量に対するマグネシウムの含有量が50原子%未満であることが好ましい。 By inserting a metal thin film made of W, Ta, Hf or an alloy of these metals as the buffer layer 50, oxygen permeation from the catalyst layer 40 to the light control layer 30 is suppressed, and the light control layer Deterioration due to oxidation can be suppressed. As a buffer layer 50, a sacrificial layer that reacts with oxygen passing through the catalyst layer 40 by inserting a metal material similar to that of the light control layer, for example, a metal thin film made of Sc, Mg—Sc alloy or a hydride thereof. It is made to function and the oxidation of the light control layer 30 can be suppressed. Such a buffer layer acting as a sacrificial layer is preferably reversibly bonded to oxygen, and is hydrogenated when the light control layer 30 is hydrogenated (transparent state), so that the light transmittance is preferably increased. For this reason, when a magnesium alloy is used as the buffer layer, the magnesium content relative to the total amount of metal elements is preferably less than 50 atomic%.
 バッファー層50の膜厚は、その目的等に応じて適宜設定可能であり、特に限定されないが、例えば、1~200nmであり、好ましくは2~30nmである。バッファー層は1層のみからなるものでもよく、複数の層を含んでいてもよい。例えば、バッファー層50は、調光層30からのマグネシウム等の金属のマイグレーション抑制機能を有する層と、触媒層40側から調光層30への酸素の透過を抑制する層との積層構成でもよい。 The film thickness of the buffer layer 50 can be appropriately set according to the purpose and the like, and is not particularly limited, but is, for example, 1 to 200 nm, preferably 2 to 30 nm. The buffer layer may be composed of only one layer, and may include a plurality of layers. For example, the buffer layer 50 may have a stacked structure of a layer having a function of suppressing migration of a metal such as magnesium from the light control layer 30 and a layer that suppresses transmission of oxygen from the catalyst layer 40 side to the light control layer 30. .
 触媒層40上に表面層70が設けられる場合、表面層70としては水素を透過可能なものであればよい。表面層70は、水や酸素の透過を遮断し、調光層30の酸化を防止する機能を有することが好ましい。また、表面層70の光学膜厚を調整することにより、調光フィルム表面での光反射を低減し、透明状態における光透過率を高めることができる。 When the surface layer 70 is provided on the catalyst layer 40, the surface layer 70 may be any material that can permeate hydrogen. The surface layer 70 preferably has a function of blocking the permeation of water and oxygen and preventing the light control layer 30 from being oxidized. Moreover, by adjusting the optical film thickness of the surface layer 70, the light reflection in the surface of a light control film can be reduced, and the light transmittance in a transparent state can be improved.
 表面層70の材料としては、上記無機酸化物層の材料として例示した(半)金属酸化物や、上記バッファー層の材料として例示した金属等を用いることができる。また、表面層70の材料として、ポリマー等の有機材料や、有機‐無機ハイブリッド材料等を用いることもできる。表面層70の材料として、フッ素系樹脂のように撥水性を有するものを用いれば、水や酸素による調光層30の酸化抑制機能をさらに高め、調光素子の耐久性を向上できる。 As the material of the surface layer 70, (semi) metal oxide exemplified as the material of the inorganic oxide layer, metal exemplified as the material of the buffer layer, or the like can be used. Further, as the material of the surface layer 70, an organic material such as a polymer, an organic-inorganic hybrid material, or the like can be used. If a material having water repellency such as a fluorine-based resin is used as the material of the surface layer 70, the function of suppressing the oxidation of the light control layer 30 by water or oxygen can be further enhanced, and the durability of the light control element can be improved.
 表面層70の膜厚は、その目的等に応じて適宜設定可能であり、特に限定されないが、例えば1nm~50μm程度である。表面層は1層のみからなるものでもよく、複数の層を含んでいてもよい。例えば、屈折率の異なる複数の薄膜を積層し、各層の光学膜厚を調整することにより、反射防止性能を高め、透明状態における光透過率を高めることができる。また、有機層と無機層とを組み合わせることにより、耐久性向上を図ることもできる。 The film thickness of the surface layer 70 can be appropriately set according to the purpose and the like, and is not particularly limited, but is, for example, about 1 nm to 50 μm. The surface layer may be composed of only one layer, and may include a plurality of layers. For example, by stacking a plurality of thin films having different refractive indexes and adjusting the optical film thickness of each layer, the antireflection performance can be improved and the light transmittance in a transparent state can be increased. Further, durability can be improved by combining an organic layer and an inorganic layer.
[調光フィルムの作製方法]
 高分子フィルム基材10上に、無機酸化物層20、調光層30および触媒層40を順に成膜することにより、調光フィルムを作製できる。調光層30を成膜後、触媒層40の成膜前にバッファー層を成膜すれば、バッファー層50を備える調光フィルムが得られる。
[Production method of light control film]
A light control film can be produced by sequentially forming the inorganic oxide layer 20, the light control layer 30, and the catalyst layer 40 on the polymer film substrate 10. If the buffer layer is formed after the light control layer 30 is formed and before the catalyst layer 40 is formed, a light control film including the buffer layer 50 is obtained.
 これらの各層の成膜方法は特に限定されず、例えば、スパッタリング法、真空蒸着法、電子ビーム蒸着法、化学気相蒸着法(CVD)、化学溶液析出法(CBD)、めっき法等の成膜方法を採用できる。これらの中でも、均一かつ緻密な膜を成膜できることから、スパッタリング法が好ましい。特に、ロールトゥロールスパッタ装置を用い、長尺の高分子フィルム基材を長手方向に連続的に移動させながら成膜を行うことにより、調光フィルムの生産性が高められる。また、ロールトゥロールスパッタでは、1つの成膜ロールの周方向に沿って複数のカソードを配置したり、複数の成膜ロールを備えるスパッタ装置を採用することにより、1回のフィルム搬送で、複数の薄膜を成膜できるため、さらに生産性が高められる。 The film formation method of each of these layers is not particularly limited. For example, film formation such as sputtering, vacuum vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), chemical solution deposition (CBD), and plating. The method can be adopted. Among these, the sputtering method is preferable because a uniform and dense film can be formed. In particular, by using a roll-to-roll sputtering apparatus and performing film formation while continuously moving a long polymer film substrate in the longitudinal direction, the productivity of the light control film can be enhanced. In roll-to-roll sputtering, a plurality of cathodes are arranged along the circumferential direction of one film-forming roll, or a sputtering apparatus equipped with a plurality of film-forming rolls is employed, so that a plurality of films can be conveyed by one film conveyance. Therefore, productivity can be further improved.
 スパッタ装置内にロール状のフィルム基材を装填後、スパッタ成膜の開始前に、スパッタ装置内を排気して、水分や基材から発生する有機ガス等の不純物を取り除いた雰囲気とすることが好ましい。事前に装置内および基材中のガスを除去することにより、調光層30に酸素や水分が取り込まれることによる酸化を抑制できる。スパッタ成膜開始前のスパッタ装置内の真空度(到達真空度)は、例えば、1×10-2Pa以下であり、5×10-3Pa以下が好ましく、1×10-3Pa以下がより好ましく、5×10-4Pa以下がさらに好ましく、5×10-5Pa以下が特に好ましい。 After loading the roll-shaped film substrate in the sputtering device and before the start of sputtering film formation, the sputtering device should be evacuated to create an atmosphere in which impurities such as moisture and organic gas generated from the substrate are removed. preferable. By removing the gas in the apparatus and in the substrate in advance, it is possible to suppress oxidation due to oxygen and moisture being taken into the light control layer 30. The degree of vacuum (degree of ultimate vacuum) in the sputtering apparatus before the start of sputtering film formation is, for example, 1 × 10 −2 Pa or less, preferably 5 × 10 −3 Pa or less, and more preferably 1 × 10 −3 Pa or less. It is preferably 5 × 10 −4 Pa or less, more preferably 5 × 10 −5 Pa or less.
 無機酸化物層20の成膜には、金属ターゲットまたは酸化物ターゲットが用いられる。金属ターゲットが用いられる場合は、アルゴン等の不活性ガスに加えて、反応性ガス(例えば、酸素)を導入しながらスパッタ成膜が行われる。酸化物ターゲットが用いられる場合は、アルゴン等の不活性ガスを導入しながら成膜が行われる。酸化物ターゲットが用いられる場合も、必要に応じて反応性ガスを導入しながら成膜が行われてもよい。 For the formation of the inorganic oxide layer 20, a metal target or an oxide target is used. When a metal target is used, sputter film formation is performed while introducing a reactive gas (for example, oxygen) in addition to an inert gas such as argon. When an oxide target is used, film formation is performed while introducing an inert gas such as argon. Even when an oxide target is used, film formation may be performed while introducing a reactive gas as necessary.
 無機酸化物層20上への調光層30の成膜には金属ターゲットが用いられる。調光層として合金層を成膜する場合、合金ターゲットを用いてもよく、複数の金属ターゲットを用いてもよい。また、エロージョン部分が所定の面積比となるように複数の金属板がバッキングプレート上に配置・ボンディングされたターゲット(分割ターゲット)を用いて合金層を形成することもできる。複数の金属ターゲットを用いる場合、各ターゲットへの印加電力を調整することにより、所望の組成の合金層を形成できる。調光層は、不活性ガスを導入しながら成膜が行われる。 A metal target is used for forming the light control layer 30 on the inorganic oxide layer 20. When forming an alloy layer as the light control layer, an alloy target may be used, or a plurality of metal targets may be used. Moreover, an alloy layer can also be formed using a target (divided target) in which a plurality of metal plates are arranged and bonded on a backing plate so that the erosion portion has a predetermined area ratio. When a plurality of metal targets are used, an alloy layer having a desired composition can be formed by adjusting the power applied to each target. The light control layer is formed while introducing an inert gas.
 高分子フィルム基材10上に無機酸化物層20が形成されているため、調光層成膜時のプラズマパワーが高分子フィルム基材10にまで及んだとしても、基材からのアウトガスが無機酸化物層によりブロックされ、調光層の酸化が抑制される。なお、無機酸化物層20の表面には、無機酸化物層成膜時の酸素ガスや無機酸化物の酸素原子が存在するため、調光層30の成膜初期に、わずかに酸化物層が形成される場合がある。高分子フィルム基材上に調光層が直接成膜される場合には、調光層の成膜初期に厚膜(例えば、15nm以上)の酸化層が形成されるのに対して、無機酸化物層上に調光層を成膜する場合には、調光層の成膜初期に酸化層が形成されるとしても、その厚みは高々数nm(例えば、5nm以内)である。そのため、本発明によれば、透明状態での透過率が高く、調光性能に優れる調光フィルムが得られる。 Since the inorganic oxide layer 20 is formed on the polymer film substrate 10, even if the plasma power during the light control layer formation reaches the polymer film substrate 10, outgas from the substrate is generated. Blocked by the inorganic oxide layer, the oxidation of the light control layer is suppressed. Note that since the oxygen gas at the time of forming the inorganic oxide layer and oxygen atoms of the inorganic oxide are present on the surface of the inorganic oxide layer 20, there is a slight oxide layer at the initial stage of forming the light control layer 30. May be formed. When a light control layer is directly formed on a polymer film substrate, a thick oxide layer (for example, 15 nm or more) is formed at the initial stage of the light control layer, whereas an inorganic oxidation layer is formed. When a light control layer is formed on a physical layer, even if an oxide layer is formed at the initial stage of the light control layer formation, the thickness is at most several nm (for example, within 5 nm). Therefore, according to the present invention, a light control film having high transmittance in a transparent state and excellent light control performance can be obtained.
 調光層上には、必要に応じてバッファー層50が成膜され、その上に触媒層40が成膜される。バッファー層および触媒層の成膜には、金属ターゲットが用いられ、不活性ガスを導入しながら成膜が行われる。 The buffer layer 50 is formed on the light control layer as necessary, and the catalyst layer 40 is formed thereon. A metal target is used to form the buffer layer and the catalyst layer, and the film formation is performed while introducing an inert gas.
 スパッタリング法により触媒層40までを形成後、その上に表面層70が設けられる場合、表面層70はスパッタリング法により成膜してもよく、その他の方法により成膜してもよい。表面層がポリマー等の有機材料や、有機‐無機ハイブリッド材料である場合は、スピンコート、ディップコート、グラビアコート、ダイコート等のウェット法により成膜が行われることが好ましい。表面層が無機材料である場合は、上記のコーティング法や、CBD法、めっき法等のウェット法を採用してもよく、スパッタリング法、真空蒸着法、電子ビーム蒸着法、CVD法等を採用することもできる。 After forming up to the catalyst layer 40 by the sputtering method, when the surface layer 70 is provided thereon, the surface layer 70 may be formed by the sputtering method or may be formed by other methods. When the surface layer is an organic material such as a polymer or an organic-inorganic hybrid material, the film is preferably formed by a wet method such as spin coating, dip coating, gravure coating, or die coating. When the surface layer is an inorganic material, a wet method such as the above-described coating method, CBD method, or plating method may be employed, and a sputtering method, a vacuum deposition method, an electron beam deposition method, a CVD method, or the like may be employed. You can also
[調光素子]
 本発明の調光フィルムは、調光層の水素化と脱水素化により光の透過状態と反射状態をスイッチング可能な水素活性型調光素子に用いることができる。調光層の水素化および脱水素化を行う方法は特に限定されず、例えば、調光フィルムを水素雰囲気に曝して調光層の水素化を行い、調光フィルムを酸素雰囲気(空気)に曝して調光層を脱水素化する方法(ガスクロミック方式);および液体の電解質(電解液)または固体の電解質を用いて、調光層30の水素化および脱水素化を行う方法(エレクトロクロミック方式)が挙げられる。中でも、大面積の調光層を短時間でスイッチングが可能であることから、ガスクロミック方式が好ましい。
[Dimmer element]
The light control film of this invention can be used for the hydrogen active type light control element which can switch the permeation | transmission state and reflection state of light by hydrogenation and dehydrogenation of a light control layer. The method for hydrogenating and dehydrogenating the light control layer is not particularly limited. For example, the light control film is exposed to a hydrogen atmosphere to hydrogenate the light control layer, and the light control film is exposed to an oxygen atmosphere (air). A method for dehydrogenating the light control layer (gas chromic method); and a method for hydrogenating and dehydrogenating the light control layer 30 using a liquid electrolyte (electrolyte) or a solid electrolyte (electrochromic method) ). Among them, the gaschromic method is preferable because a large-area light control layer can be switched in a short time.
 本発明の調光フィルムは、そのまま調光素子として用いてもよく、ガラス等の透明部材や、半透明部材、不透明部材等と組み合わせて調光素子を形成してもよい。本発明の調光フィルムは、調光層が水素化により透明状態となり光を透過可能であるため、透明部材と組み合わせた調光素子は、水素化と脱水素化により透明状態と反射状態をスイッチング可能である。 The light control film of the present invention may be used as a light control element as it is, or may be formed in combination with a transparent member such as glass, a translucent member, an opaque member, or the like. In the light control film of the present invention, since the light control layer becomes transparent by hydrogenation and can transmit light, the light control element combined with the transparent member switches between the transparent state and the reflection state by hydrogenation and dehydrogenation. Is possible.
 調光フィルムと他の部材とを組み合わせて調光素子を形成する場合、位置ズレ防止の観点から、接着剤による貼り合せや接着テープによる貼り合わせ、ピン留め等により、調光フィルムを固定することが好ましい。調光フィルムと他の部材とを固定するための固定手段としては、固定面積を大きくできることから、接着剤が好ましい。接着剤としては、粘着剤が好ましく用いられる。調光フィルム1,2の高分子フィルム基材10上に予め粘着剤を付設しておくことにより、ガラス等と調光フィルムとの貼り合わせを容易に行うことができる。粘着剤としては、アクリル系粘着剤等の透明性に優れるものが好ましく用いられる。 When a light control element is formed by combining a light control film and another member, the light control film should be fixed by bonding with an adhesive, bonding with an adhesive tape, pinning, etc. from the viewpoint of preventing misalignment. Is preferred. As a fixing means for fixing the light control film and another member, an adhesive is preferable because the fixing area can be increased. An adhesive is preferably used as the adhesive. By attaching an adhesive on the polymer film substrate 10 of the light control films 1 and 2 in advance, it is possible to easily bond the glass or the like to the light control film. As the pressure-sensitive adhesive, those having excellent transparency such as an acrylic pressure-sensitive adhesive are preferably used.
 本発明の調光フィルムを用いた調光素子は、建物や乗り物の窓ガラスや、プライバシー保護を目的とした遮蔽物、各種の装飾物等に適用できる。本発明の調光フィルムは、フレキシブル基板を用いているため、加工が容易であり、曲面への適用も可能であるため、汎用性に優れる。 The light control element using the light control film of the present invention can be applied to a window glass of a building or a vehicle, a shielding object for privacy protection, various decorations, and the like. Since the light control film of the present invention uses a flexible substrate, it is easy to process and can be applied to a curved surface.
 本発明の調光フィルムを、ガス充填室内に配置することにより、ガスクロミック方式の調光素子を形成することもできる。複数の透明部材の間隙をガス充填室として、当該ガス充填室内に調光素子を配置すれば、ガス充填室内への水素の給排気により、透明状態と反射状態をスイッチングできる。 A gaschromic light control element can also be formed by disposing the light control film of the present invention in a gas filling chamber. If the light control element is arranged in the gas filling chamber with the gap between the plurality of transparent members as the gas filling chamber, the transparent state and the reflective state can be switched by supplying and exhausting hydrogen into the gas filling chamber.
 本発明の調光フィルムを用いたガスクロミック方式調光素子の一形態として、複層ガラスにおけるガラス間の空間に調光フィルムが配置された調光素子について説明する。図3は、調光素子として機能する複層ガラスの一形態を表す模式的断面図である。複層ガラス100は、2枚のガラス板81,82を備え、一方のガラス板81の内側面、すなわちガラス板82との対向面側には、接着剤層90を介して、調光フィルム1が貼り合せられている。 As a form of a gaschromic light control device using the light control film of the present invention, a light control device in which a light control film is disposed in the space between the glasses in the double glazing will be described. FIG. 3 is a schematic cross-sectional view showing one embodiment of a multilayer glass functioning as a light control element. The double-glazed glass 100 includes two glass plates 81 and 82, and the light control film 1 is disposed on the inner surface of one glass plate 81, that is, on the side facing the glass plate 82, with an adhesive layer 90 interposed therebetween. Are pasted together.
 すなわち、一方のガラス板81の内面側には、ガラス板81側から、接着剤層90、高分子フィルム基材10,無機酸化物層20,調光層30,触媒層40が配置されている。なお、調光フィルムは、調光層30と触媒層40との間にバッファー層を備えていてもよく、触媒層上に表面層を備えていてもよい。 That is, the adhesive layer 90, the polymer film substrate 10, the inorganic oxide layer 20, the light control layer 30, and the catalyst layer 40 are arranged on the inner surface side of one glass plate 81 from the glass plate 81 side. . In addition, the light control film may be provided with the buffer layer between the light control layer 30 and the catalyst layer 40, and may be provided with the surface layer on the catalyst layer.
 複層ガラス100は、2枚のガラス板81、82の間隙がガス充填室Sとなっており、端部がシール部材85により封止されている。ガス充填室S内には、例えば予めアルゴン等の不活性ガスが封入されている。ガラス板82には開口が設けられており、ガス充填室Sは、雰囲気制御装置86と空間的に接続されている。 In the double-glazed glass 100, the gap between the two glass plates 81 and 82 serves as a gas filling chamber S, and the end is sealed with a sealing member 85. In the gas filling chamber S, for example, an inert gas such as argon is sealed in advance. The glass plate 82 is provided with an opening, and the gas filling chamber S is spatially connected to the atmosphere control device 86.
 雰囲気制御装置86は、ガス充填室Sに、水素、および酸素または空気を給排気可能に構成されている。例えば、雰囲気制御装置86は、水を電気分解して水素や酸素を給気し、真空ポンプを用いてガス充填室S内のガスを外部に排気する構成とすることができる。 The atmosphere control device 86 is configured to supply and exhaust hydrogen, oxygen, and air to the gas filling chamber S. For example, the atmosphere control device 86 can be configured to electrolyze water to supply hydrogen or oxygen and exhaust the gas in the gas filling chamber S to the outside using a vacuum pump.
 雰囲気制御装置86からガス充填室Sに水素がガス供給されると、調光層30が触媒層40を介して水素化されて透明状態になる。また、雰囲気制御装置86からガス充填室Sに酸素ガスまたは空気が供給されると、調光層30が触媒層40、バッファー層50を介して脱水素化されて反射状態になる。このように、雰囲気制御装置86からの給排気により、ガス充填室Sの雰囲気を制御し、透明状態と反射状態を可逆的にスイッチングできる。また、給排気を中断すると、そのままの状態を保つことができる。 When hydrogen is supplied from the atmosphere control device 86 to the gas filling chamber S, the light control layer 30 is hydrogenated through the catalyst layer 40 and becomes transparent. Further, when oxygen gas or air is supplied from the atmosphere control device 86 to the gas filling chamber S, the light control layer 30 is dehydrogenated through the catalyst layer 40 and the buffer layer 50 to be in a reflective state. In this way, the atmosphere in the gas filling chamber S can be controlled by supplying and exhausting air from the atmosphere control device 86, and the transparent state and the reflective state can be switched reversibly. Further, when the supply / exhaust is interrupted, the state can be maintained as it is.
 なお、図3に示す形態では、ガラス板82に設けられた開口を介してガス充填室Sと雰囲気制御装置86が接続されているが、シール部材に設けられた開口等を介して雰囲気制御装置が接続されていてもよい。また、ガス充填室S内に、水素ガスや酸素ガスを発生可能な雰囲気制御機構が配置されていてもよい。また、図3に示す形態では、一方のガラス板81上にのみ調光フィルムが貼り合せられているが、ガラス板82上にも調光フィルムが貼り合せられていてもよい。 In the form shown in FIG. 3, the gas filling chamber S and the atmosphere control device 86 are connected via an opening provided in the glass plate 82, but the atmosphere control device is provided via an opening provided in the seal member. May be connected. Further, an atmosphere control mechanism capable of generating hydrogen gas or oxygen gas may be disposed in the gas filling chamber S. In the form shown in FIG. 3, the light control film is bonded only on one glass plate 81, but the light control film may also be bonded on the glass plate 82.
 以下に、実施例を挙げて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
[実施例1]
 ロールトゥロールスパッタ装置内に、厚み188μmのポリエチレンテレフタレート(PET)フィルム(三菱樹脂社製)のロールをセットし、スパッタ装置内を到達真空度が5×10-3Paとなるまで排気した。スパッタリングガスを導入しない状態で、スパッタ装置内でPETフィルムを搬送したところ、装置内圧力が4×10-2Paまで上昇した。これはPETフィルムに含まれる残存ガスが、スパッタ装置内に放出されたためである。
[Example 1]
A roll of a polyethylene terephthalate (PET) film (manufactured by Mitsubishi Plastics) having a thickness of 188 μm was set in the roll-to-roll sputtering apparatus, and the inside of the sputtering apparatus was evacuated until the ultimate vacuum reached 5 × 10 −3 Pa. When the PET film was transported in the sputtering apparatus without introducing the sputtering gas, the pressure in the apparatus rose to 4 × 10 −2 Pa. This is because the residual gas contained in the PET film was released into the sputtering apparatus.
 その後、スパッタ装置内にスパッタリングガスを導入し、成膜ロール上でフィルムを走行させながら、珪素酸化物からなる無機酸化物層、Mg‐Y合金からなる調光層、Pdからなる触媒層を順次成膜した。 Thereafter, a sputtering gas is introduced into the sputtering apparatus, and an inorganic oxide layer made of silicon oxide, a light control layer made of Mg—Y alloy, and a catalyst layer made of Pd are sequentially formed while the film is running on the film forming roll. A film was formed.
 珪素酸化物層の成膜には、BドープSiターゲット(三菱マテリアル社製)を用い、スパッタリングガスとしてアルゴンおよび酸素を導入し、圧力0.2Paの真空環境下でスパッタ成膜(電源:AC/MF)を行った。Mg‐Y合金層の成膜には、Mg金属板とY金属板とを、エロージョン部の面積比2:5で有するMg-Y分割ターゲット(レアメタリック社製)を用い、スパッタリングガスとしてアルゴンを導入し、圧力0.4Paの真空環境下でスパッタ成膜(電源:DC)を行った。Pd層の成膜には、Pd金属ターゲット(田中貴金属社製)を用い、スパッタリングガスとしてアルゴンを導入し、圧力0.4Paの真空環境下で、スパッタ成膜(電源:DC)を行った。 For forming the silicon oxide layer, a B-doped Si target (manufactured by Mitsubishi Materials Corporation) was used, and argon and oxygen were introduced as sputtering gases, and sputter deposition was performed in a vacuum environment at a pressure of 0.2 Pa (power source: AC / MF). The Mg—Y alloy layer was formed by using an Mg—Y split target (made by Rare Metallic) having an Mg metal plate and a Y metal plate in an erosion area ratio of 2: 5, and using argon as a sputtering gas. Then, sputtering film formation (power supply: DC) was performed in a vacuum environment at a pressure of 0.4 Pa. For the formation of the Pd layer, a Pd metal target (manufactured by Tanaka Kikinzoku Co., Ltd.) was used, argon was introduced as a sputtering gas, and sputtering film formation (power supply: DC) was performed in a vacuum environment at a pressure of 0.4 Pa.
 得られた調光フィルムは、珪素酸化物層の膜厚が30nm,Mg‐Y合金層の膜厚が40nm,Pd層の膜厚が7nmであった。調光フィルムの断面のトンネル走査型電子顕微鏡(TEM)による観察像を図4に示す。同条件でPETフィルム上に珪素素酸化物層を製膜した積層フィルムの40℃90%RHにおける透湿度は、0.2g/m・dayであった。 The obtained light control film had a silicon oxide layer thickness of 30 nm, a Mg—Y alloy layer thickness of 40 nm, and a Pd layer thickness of 7 nm. The observation image by the tunnel scanning electron microscope (TEM) of the cross section of a light control film is shown in FIG. The moisture permeability at 40 ° C. and 90% RH of the laminated film obtained by forming a silicon oxide layer on a PET film under the same conditions was 0.2 g / m 2 · day.
[比較例1]
 珪素酸化物層を成膜せずに、実施例1と同様の条件でMg‐Y合金層をPETフィルム上に直接成膜し、その上にPd層を成膜した。
[Comparative Example 1]
Without forming a silicon oxide layer, an Mg—Y alloy layer was directly formed on a PET film under the same conditions as in Example 1, and a Pd layer was formed thereon.
[比較例2]
 比較例1と同様の条件でMg‐Y合金層をPETフィルム上に直接成膜し、その上に18nmの膜厚でPd層を成膜した。得られた調光フィルムの断面TEM観察像を図5に示す。なお、比較例1,2のTEM画像では、実施例1に比してMg-Y層の厚みが僅かに大きくなる傾向がみられた。これは酸化領域層形成により体積が増加したためと考えられる。
[Comparative Example 2]
An Mg—Y alloy layer was directly formed on the PET film under the same conditions as in Comparative Example 1, and a Pd layer was formed thereon with a thickness of 18 nm. The cross-sectional TEM observation image of the obtained light control film is shown in FIG. In the TEM images of Comparative Examples 1 and 2, the thickness of the Mg—Y layer tended to be slightly larger than that of Example 1. This is presumably because the volume increased due to the formation of the oxidized region layer.
[調光性能の評価]
 実施例および比較例の調光フィルムは、金属光沢の反射状態であった。調光フィルムを、アルゴンで4体積%に希釈した1気圧の水素ガス雰囲気下に曝すと、Mg‐Y合金層の水素化により透明状態に変化した。この水素ガス雰囲気下で光透過率を測定した後、空気雰囲気下に戻して脱水素化を行い、再度光透過率を測定した。光透過率の測定には、光源として発光ダイオード(コーデンシ社製、EL-1KL3(ピーク波長:約940nm))を用い、受光素子としてフォトダイオード(コーデンシ社製、SP-1ML)を用いた。なお、波長940nmと可視光域である波長750nmにおける調光フィルムの透過率はほぼ同じである。水素化状態(透明状態)と脱水素化状態(反射状態)の光透過率の差を調光性能とした。各実施例および比較例の調光フィルムにおける各層の膜厚および調光性能を表1に示す。
[Evaluation of light control performance]
The light control films of Examples and Comparative Examples were in a metallic glossy reflection state. When the light control film was exposed to a hydrogen gas atmosphere of 1 atm diluted to 4% by volume with argon, it changed to a transparent state due to hydrogenation of the Mg—Y alloy layer. After measuring the light transmittance in this hydrogen gas atmosphere, it returned to the air atmosphere, dehydrogenated, and measured the light transmittance again. For measurement of light transmittance, a light emitting diode (EL-1KL3 (peak wavelength: about 940 nm) manufactured by Kodenshi) was used as a light source, and a photodiode (SP-1ML manufactured by Kodenshi) was used as a light receiving element. In addition, the transmittance | permeability of the light control film in wavelength 750nm which is a wavelength of 940 nm and visible light region is substantially the same. The difference in light transmittance between the hydrogenated state (transparent state) and the dehydrogenated state (reflective state) was defined as the light control performance. Table 1 shows the film thickness and light control performance of each layer in the light control films of Examples and Comparative Examples.
[無機酸化物層の表面近傍における調光層の酸素原子の評価]
 Arイオンエッチング銃を備える走査型X線光電子分光装置(「Quantum2000」、アルバック・ファイ社製)を用いて、デプスプロファイル測定を行い、調光層における酸素濃度分布を求めた。なお、デプスプロファイルの解析においては、調光層と珪素酸化物層との間に位置し、かつ、Si元素濃度が珪素酸化物層内のSi元素濃度の最大値の半値となる位置を、調光層と珪素酸化物層の界面(調光層の終点)であると定義した。デプスプロファイルにおける膜厚(深さ)は、珪素酸化物層のArイオンエッチングレートを基準として、エッチング時間を深さに換算することにより算出した。得られたデプスプロファイルから、調光層の珪素酸化物層側界面近傍における酸素濃度が50原子%以上の領域(酸化領域)の厚みを求めた。
[Evaluation of oxygen atoms in the light control layer near the surface of the inorganic oxide layer]
Using a scanning X-ray photoelectron spectrometer (“Quantum 2000”, manufactured by ULVAC-PHI) equipped with an Ar ion etching gun, depth profile measurement was performed to determine the oxygen concentration distribution in the light control layer. In the analysis of the depth profile, the position where the Si element concentration is between the dimming layer and the silicon oxide layer and the Si element concentration is half the maximum value of the Si element concentration in the silicon oxide layer is adjusted. It was defined as the interface between the light layer and the silicon oxide layer (end point of the light control layer). The film thickness (depth) in the depth profile was calculated by converting the etching time to depth based on the Ar ion etching rate of the silicon oxide layer. From the obtained depth profile, the thickness of the region (oxidized region) where the oxygen concentration in the vicinity of the silicon oxide layer side interface of the light control layer was 50 atomic% or more was determined.
 上記実施例および比較例の調光フィルムの各層の厚みおよび調光性能を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the thickness and light control performance of each layer of the light control films of the above Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
 フィルム基材上に無機酸化物層を備える実施例1の調光フィルムは、フィルム基材上に直接調光層が形成された比較例1,2の調光フィルムに比べて、高い調光性能を示した。比較例の調光フィルムでは、Mg‐Y調光層のフィルム基材界面側に、調光金属材料の酸化に起因して、コントラストの異なる領域(図5におけるMg-YのPETフィルム界面側)が断面TEM観察像により確認され、XPSのデプスプロファイルから求められた酸化領域の厚みは、比較例1,2ともに18nmであった。この酸化領域は、PETフィルムから放出された残存ガスによって、金属が酸化されたことにより生成したと考えられる。一方、実施例の調光フィルムの断面TEM観察像(図4)では、比較例のような酸化領域は観察されず、XPSのデプスプロファイルにおいても、酸化領域の厚みは2nm程度であった。 The light control film of Example 1 provided with an inorganic oxide layer on a film substrate has higher light control performance than the light control films of Comparative Examples 1 and 2 in which the light control layer is directly formed on the film substrate. showed that. In the light control film of the comparative example, on the film substrate interface side of the Mg-Y light control layer, regions with different contrasts due to oxidation of the light control metal material (Mg-Y PET film interface side in FIG. 5) Was confirmed by a cross-sectional TEM observation image, and the thickness of the oxidized region determined from the XPS depth profile was 18 nm in both Comparative Examples 1 and 2. This oxidized region is considered to be generated by the oxidation of the metal by the residual gas released from the PET film. On the other hand, in the cross-sectional TEM observation image (FIG. 4) of the light control film of an Example, the oxidation area | region like a comparative example was not observed, but the thickness of the oxidation area | region was about 2 nm also in the XPS depth profile.
 触媒層の膜厚を大きくした比較例2では、調光層における酸化領域の厚みが比較例1と同等であったが、比較例1に比べてさらに調光性能が低下していた。これは触媒層の膜厚が大きいために、透明状態における光透過率が低下したことが主な原因であると考えられる。触媒層は、酸素遮断層としても作用するため、調光層の酸化を抑制する機能も有しているが、比較例2のように触媒層の膜厚を大きくしても、酸化領域の厚みが低減しないことが分かる。これらの結果から、調光層の酸化領域は主に高分子フィルム基材に起因して生じており、実施例のように高分子フィルム基材上に無機酸化物層を設けることにより、調光層の酸化が抑制され、高い調光性能を発揮できることが分かる。 In Comparative Example 2 in which the thickness of the catalyst layer was increased, the thickness of the oxidized region in the light control layer was equivalent to that in Comparative Example 1, but the light control performance was further reduced as compared with Comparative Example 1. This is considered to be mainly due to a decrease in light transmittance in the transparent state due to the large thickness of the catalyst layer. Since the catalyst layer also functions as an oxygen blocking layer, it also has a function of suppressing oxidation of the light control layer. However, even if the thickness of the catalyst layer is increased as in Comparative Example 2, the thickness of the oxidation region is increased. It can be seen that does not decrease. From these results, the oxidation region of the light control layer is mainly caused by the polymer film base material. By providing an inorganic oxide layer on the polymer film base material as in the examples, the light control layer It can be seen that the oxidation of the layer is suppressed and high dimming performance can be exhibited.
  1,2    調光フィルム
  10,12  高分子フィルム基材
  20     無機酸化物層
  30     調光層
  40     触媒層
  50     バッファー層
  70     表面層
  100    複層ガラス
  81,82  ガラス板
  85     シール部材
  86     雰囲気制御装置
  90     接着剤層
DESCRIPTION OF SYMBOLS 1, 2 Light control film 10,12 Polymer film base material 20 Inorganic oxide layer 30 Light control layer 40 Catalyst layer 50 Buffer layer 70 Surface layer 100 Multi-layer glass 81,82 Glass plate 85 Seal member 86 Atmosphere control device 90 Adhesion Agent layer

Claims (10)

  1.  高分子フィルム基材上に、無機酸化物層;水素化による透明状態と脱水素化による反射状態との間で状態が可逆的に変化する調光層;ならびに前記調光層における水素化および脱水素化を促進する触媒層、をこの順に備え、
     前記無機酸化物層は、前記調光層を構成する金属元素とは異なる元素の酸化物を含む、調光フィルム。
    An inorganic oxide layer on a polymer film substrate; a light control layer whose state reversibly changes between a transparent state by hydrogenation and a reflection state by dehydrogenation; and hydrogenation and dehydration in the light control layer A catalyst layer that promotes elementalization is provided in this order,
    The said inorganic oxide layer is a light control film containing the oxide of an element different from the metal element which comprises the said light control layer.
  2.  前記調光層が、希土類金属、希土類金属とマグネシウムの合金、アルカリ土類金属とマグネシウムの合金、および遷移金属とマグネシウムの合金からなる群から選択される金属、またはこれらの金属の水素化物を含む薄膜である、請求項1に記載の調光フィルム。 The light control layer includes a metal selected from the group consisting of rare earth metals, alloys of rare earth metals and magnesium, alloys of alkaline earth metals and magnesium, and alloys of transition metals and magnesium, or hydrides of these metals. The light control film of Claim 1 which is a thin film.
  3.  前記無機酸化物層が、Si,Ge,Sn,Pb,Al,Ga,In,Tl,As,Sb,Bi,Se,Te,Mg,Ca,Sr,Ba,Sc,Y,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Tc,Re,Fe,Ru,Os,Co,Rh,Ir,Ni,Pd,Pt,Cu,Ag,Au,ZnおよびCdからなる群から選択される1種以上の元素の酸化物を含む酸化物薄膜である、請求項1または2に記載の調光フィルム。 The inorganic oxide layer is made of Si, Ge, Sn, Pb, Al, Ga, In, Tl, As, Sb, Bi, Se, Te, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf. , V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, and Cd The light control film of Claim 1 or 2 which is an oxide thin film containing the oxide of the 1 or more types of selected element.
  4.  前記無機酸化物層の膜厚が、1~200nmである、請求項1~3のいずれか1項に記載の調光フィルム。 The light control film according to any one of claims 1 to 3, wherein the inorganic oxide layer has a thickness of 1 to 200 nm.
  5.  前記調光層の膜厚が、10~500nmである、請求項1~4のいずれか1項に記載の調光フィルム。 The light control film according to any one of claims 1 to 4, wherein the light control layer has a thickness of 10 to 500 nm.
  6.  前記無機酸化物層の膜厚が、前記調光層の膜厚よりも小さい、請求項1~5のいずれか1項に記載の調光フィルム。 The light control film according to any one of claims 1 to 5, wherein a film thickness of the inorganic oxide layer is smaller than a film thickness of the light control layer.
  7.  請求項1~6のいずれか1項に記載の調光フィルムを製造する方法であって、
     ロールトゥロールスパッタにより、フィルム基材上に、無機酸化物層、調光層および触媒層が成膜される、調光フィルムの製造方法。
    A method for producing the light control film according to any one of claims 1 to 6,
    A method for producing a light control film, wherein an inorganic oxide layer, a light control layer and a catalyst layer are formed on a film substrate by roll-to-roll sputtering.
  8.  請求項1~6のいずれか1項に記載の調光フィルムを備える調光素子。 A light control element comprising the light control film according to any one of claims 1 to 6.
  9.  複数の透明部材の間隙がガス充填室を構成し、前記ガス充填室内に前記調光フィルムを備える、請求項8に記載の調光素子。 The light control element according to claim 8, wherein gaps between the plurality of transparent members constitute a gas filling chamber, and the light control film is provided in the gas filling chamber.
  10.  前記ガス充填室内に水素を給排気可能に構成された雰囲気制御装置をさらに備える、請求項9に記載の調光素子。 The light control device according to claim 9, further comprising an atmosphere control device configured to supply and exhaust hydrogen into the gas filling chamber.
PCT/JP2016/064731 2015-05-21 2016-05-18 Light-modulating film and method for producing same, and light-modulating element WO2016186131A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/576,053 US10514560B2 (en) 2015-05-21 2016-05-18 Light-modulating film and method for producing same, and light-modulating element
EP16796524.3A EP3299882A4 (en) 2015-05-21 2016-05-18 Light-modulating film and method for producing same, and light-modulating element
CN201680029512.8A CN107636526A (en) 2015-05-21 2016-05-18 Dimming film and its manufacture method and Light modulating device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-103615 2015-05-21
JP2015103615 2015-05-21
JP2016097282A JP6900156B2 (en) 2015-05-21 2016-05-13 Dimming film and its manufacturing method, and dimming element
JP2016-097282 2016-05-13

Publications (1)

Publication Number Publication Date
WO2016186131A1 true WO2016186131A1 (en) 2016-11-24

Family

ID=57320134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064731 WO2016186131A1 (en) 2015-05-21 2016-05-18 Light-modulating film and method for producing same, and light-modulating element

Country Status (1)

Country Link
WO (1) WO2016186131A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037261A (en) * 2015-08-12 2017-02-16 国立研究開発法人産業技術総合研究所 Reflective type dimming member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046050A1 (en) * 2009-10-16 2011-04-21 東洋紡績株式会社 Manufacturing device and manufacturing method for transparent conductive film
JP2013083911A (en) * 2011-09-30 2013-05-09 National Institute Of Advanced Industrial & Technology Reflective dimming element, reflective dimming member using reflective dimming element, and multi-layered glass
JP2014026262A (en) * 2012-06-20 2014-02-06 National Institute Of Advanced Industrial & Technology Reflection type dimming element
JP2014218726A (en) * 2013-05-10 2014-11-20 株式会社カネカ Substrate equipped with transparent electrode, method of manufacturing the same, and touch panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046050A1 (en) * 2009-10-16 2011-04-21 東洋紡績株式会社 Manufacturing device and manufacturing method for transparent conductive film
JP2013083911A (en) * 2011-09-30 2013-05-09 National Institute Of Advanced Industrial & Technology Reflective dimming element, reflective dimming member using reflective dimming element, and multi-layered glass
JP2014026262A (en) * 2012-06-20 2014-02-06 National Institute Of Advanced Industrial & Technology Reflection type dimming element
JP2014218726A (en) * 2013-05-10 2014-11-20 株式会社カネカ Substrate equipped with transparent electrode, method of manufacturing the same, and touch panel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3299882A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037261A (en) * 2015-08-12 2017-02-16 国立研究開発法人産業技術総合研究所 Reflective type dimming member

Similar Documents

Publication Publication Date Title
JP6757176B2 (en) Dimming film and its manufacturing method, and dimming element
US8773746B2 (en) All-solid-state reflective dimming electrochromic element sealed with protective layer, and dimming member comprising the same
JP6900156B2 (en) Dimming film and its manufacturing method, and dimming element
JP6057255B2 (en) Reflective light control element.
WO2016186130A1 (en) Light modulation film and method for manufacturing same, and light modulation element
US8189255B2 (en) All solid state type reflection light control electrochromic element employing magnesium/titanium alloy and light control member
EP2762968B1 (en) Reflective dimming element, reflective dimming member and multi-layered glass
EP3435151A1 (en) Process for producing light-modulating film
WO2019176969A1 (en) Gaschromic light control element
WO2016190284A1 (en) Gas barrier film and method for manufacturing same
WO2016186131A1 (en) Light-modulating film and method for producing same, and light-modulating element
JPWO2016190284A6 (en) Gas barrier film and method for producing the same
WO2020158799A1 (en) Light control film and manufacturing method thereof
WO2017164285A1 (en) Process for producing light-modulating film
KR101719520B1 (en) Multilayer barrier film including fluorocarbon thin film and Method of Manufacturing The Same
WO2017090605A1 (en) Gas barrier film and electronic device
WO2017163577A1 (en) Method for manufacturing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796524

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576053

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE