WO2016186064A1 - Transmission delay unit and shielding material raising/lowering device - Google Patents

Transmission delay unit and shielding material raising/lowering device Download PDF

Info

Publication number
WO2016186064A1
WO2016186064A1 PCT/JP2016/064421 JP2016064421W WO2016186064A1 WO 2016186064 A1 WO2016186064 A1 WO 2016186064A1 JP 2016064421 W JP2016064421 W JP 2016064421W WO 2016186064 A1 WO2016186064 A1 WO 2016186064A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
input shaft
rotation
rotates
cam
Prior art date
Application number
PCT/JP2016/064421
Other languages
French (fr)
Japanese (ja)
Inventor
善行 裸野
Original Assignee
立川ブラインド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立川ブラインド工業株式会社 filed Critical 立川ブラインド工業株式会社
Priority to JP2017519201A priority Critical patent/JP6925266B2/en
Priority to CN201680027803.3A priority patent/CN107532699B/en
Publication of WO2016186064A1 publication Critical patent/WO2016186064A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/28Lamellar or like blinds, e.g. venetian blinds with horizontal lamellae, e.g. non-liftable
    • E06B9/30Lamellar or like blinds, e.g. venetian blinds with horizontal lamellae, e.g. non-liftable liftable
    • E06B9/32Operating, guiding, or securing devices therefor
    • E06B9/322Details of operating devices, e.g. pulleys, brakes, spring drums, drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/02Automatic clutches actuated entirely mechanically
    • F16D43/26Automatic clutches actuated entirely mechanically acting at definite angular position or disengaging after consecutive definite number of rotations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D63/00Brakes not otherwise provided for; Brakes combining more than one of the types of groups F16D49/00 - F16D61/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H35/00Gearings or mechanisms with other special functional features
    • F16H35/12Transmitting mechanisms with delayed effect

Definitions

  • the present invention relates to a transmission delay unit that delays rotation of an input shaft and transmits it to an output shaft, and a shielding material lifting device using the transmission delay unit.
  • the lifting operation of the bottom rail is performed by rotating the lifting shaft by lowering the ascending operation side of the loop-shaped operation cord hung on the operation pulley rotatably supported by the head box, There is one configured to rotate the tilt shaft by lowering the lowering operation side of the operation cord to perform the tilt operation of the slats and to lower the bottom rail by releasing the clutch connected to the lifting shaft (patent) Reference 1).
  • a guide groove 67 having a shape as shown in FIG. 13 of Patent Document 1 is formed in the cam shaft 14, and the slide ball 20 is moved along the guide groove 67.
  • the lifting shaft is separated.
  • the horizontal blind as described above has the advantage of not requiring an operating rod for tilting operation, while the clutch is activated before the tilting operation is completed and the lifting shaft is disconnected, and the bottom blind is moved at an unintended timing.
  • the rail may fall by its own weight.
  • the switching cylinder 42 connected to the idle cylinder 71 with a predetermined amount of play in the rotational direction, and the engagement connected to the switching cylinder 42 with a predetermined amount of play in the rotational direction.
  • the cylinder 44 is used to delay and transmit the rotation of the operation pulley, thereby suppressing the bottom rail from falling by its own weight during the slat tilting operation.
  • Patent Document 2 it is possible to prevent the bottom rail from falling by its own weight to some extent during the slat tilting operation. However, since the rotation angle required until the completion of the tilt operation changes depending on the rotation transmission mechanism, the slat width, and the like, the delay angle obtained by the configuration of Patent Document 2 may be insufficient.
  • the present invention has been made in view of such circumstances, and provides means for reliably suppressing the bottom rail from falling by its own weight before the completion of the tilting operation.
  • a transmission delay unit comprising a first output shaft to which the rotation of the first input shaft is transmitted, wherein the intermediate rotating body is configured to be unable to rotate relative to the first output shaft after a predetermined angle of rotation;
  • the rotation of the first input shaft can be delayed and transmitted to the output shaft, so that the bottom rail can be prevented from falling by its own weight before the tilt operation is completed.
  • the rotation of the first input shaft is slower than that of the first input shaft. Since the rotation of the first input shaft is transmitted to the first output shaft via the intermediate rotator configured to rotate at a speed, it is easy to set the rotation transmission delay amount to 360 degrees or more. Since the tilt operation is normally completed before the first input shaft rotates 360 degrees, it is possible to more reliably suppress the bottom rail from falling by its own weight before the tilt operation is completed.
  • the outer peripheral surface of the intermediate rotating body is configured to mesh with the outer peripheral surface of the first input shaft.
  • the intermediate rotating body is configured to rotate intermittently with the rotation of the first input shaft.
  • a plurality of the intermediate rotators are provided, and the plurality of intermediate rotators are configured to rotate simultaneously with the rotation of the first input shaft.
  • the inner peripheral surface of the intermediate rotating body is configured to mesh with the outer peripheral surface of the first input shaft.
  • the intermediate rotating body is configured to rotate with the rotation of the first input shaft and to revolve around the first input shaft in a direction opposite to the direction of the rotation.
  • the intermediate rotator includes a restriction protrusion, and the intermediate protrusion is locked to the first output shaft as the restriction protrusion is locked by the first output shaft as the intermediate rotator rotates. So that the relative rotation is impossible.
  • the shielding member lifting / lowering device is configured to rotate the lifting shaft by operating the operation code to raise and lower the shielding material, and the rotation of the input shaft that rotates in accordance with the operation of the operation code is the transmission delay unit and the clutch described above
  • the clutch unit includes a second input shaft that rotates as the first output shaft rotates, and a second output shaft that rotates integrally with the lift shaft.
  • the clutch unit includes: a cam portion that moves the cam shaft in an axial direction thereof as the cam shaft rotates as the second input shaft rotates; and the cam shaft that moves as the cam shaft moves.
  • a shielding material elevating device is provided that includes a clutch portion that switches between a connected state and a non-connected state between the first output shaft and the second output shaft.
  • a shielding material lifting / lowering device configured to rotate a lift shaft and a tilt shaft by operation of an operation code, and rotation of an input shaft that rotates in accordance with the operation of the operation code Is transmitted to the elevating shaft via a transmission delay unit, and the transmission delay unit is configured to delay the rotation of the first input shaft and the first input shaft rotating with the rotation of the input shaft.
  • a transmission gear that rotates integrally with the first input shaft, and a tilt shaft gear that rotates integrally with the tilt shaft and meshes with the transmission gear. Is provided with a shield lifting / lowering device disposed on the input side of the transmission delay unit.
  • the transmission delay unit may be any unit as long as the rotation of the first input shaft is delayed and transmitted to the first output shaft, and it is not essential to include an intermediate rotating body. According to this aspect, wear between the transmission gear and the first input shaft can be suppressed.
  • a shielding material lifting / lowering device that lifts and lowers a shielding material by rotating a lifting shaft by operation of an operation code, wherein an input shaft that rotates in accordance with the operation of the operation code rotates.
  • the transmission delay unit is configured to be transmitted to the elevating shaft via a transmission delay unit and a clutch unit, and the transmission delay unit includes a first input shaft that rotates as the input shaft rotates, and a rotation of the first input shaft.
  • the clutch unit includes a cam portion that moves the cam shaft in the axial direction as the cam shaft rotates as the second input shaft rotates, and the cam shaft and the second shaft that move as the cam shaft moves.
  • Connection between output shafts A clutch unit that switches a coupling state, and a brake unit that is provided between the transmission delay unit and the clutch unit, wherein the brake unit transmits rotation of the first output shaft to the second input shaft;
  • a shielding material lifting / lowering device configured to prevent rotation of the second input shaft due to torque generated by its own weight is provided.
  • the transmission delay unit may be any unit as long as the rotation of the first input shaft is delayed and transmitted to the first output shaft, and it is not essential to include an intermediate rotating body. According to this aspect, it is possible to prevent the first output shaft of the transmission delay unit from being rotated by the torque generated by the weight of the shielding material.
  • FIG. 3 is a perspective view showing a state in which a winding shaft 9 and a tilter unit 19 are supported by a support member 11.
  • FIG. 4 is an exploded perspective view of FIG. 3.
  • the tilter unit 19 is shown, (a) is a perspective view, (b) is an exploded perspective view.
  • (A)-(b) is a perspective view which shows the assembly process of the tilter unit 19.
  • FIG. (A) is a cross-sectional view of the central plane in the front-rear direction of FIG.
  • FIG. 8 is a cross-sectional view corresponding to FIG. 7A, showing another configuration of the tilter drum 32.
  • the operation part unit 6 is shown, (a) is a perspective view, (b) is sectional drawing of the center surface of the front-back direction of (a). (A)-(c) shows the transmission delay unit 25, (a) is a perspective view, (b) is an exploded perspective view, and (c) is a left side view.
  • FIG. 4D is a perspective view of the input shaft 28 of the transmission delay unit 25.
  • the transmission delay unit 25 is shown, (a) is a perspective view, (b) is an exploded perspective view, (c) is a right side view, and (d) is an enlarged view of a region A.
  • FIG. 1 is sectional drawing which shows the fitting state of the input shaft 28 of the transmission delay unit 25, and the transmission gear 24b
  • (b) is the input shaft 28 of the transmission delay unit 25, and the planet carrier 23d of the planetary gear 23b. It is sectional drawing which shows a fitting state.
  • 4 is a cross-sectional view showing a fitting state between the second case 30 of the transmission delay unit 25 and the engagement protrusion 26a1 of the input portion 26a of the brake portion 26.
  • positioned in the operation part case 45 is shown, (a) is a right view, (b) is a perspective view.
  • the middle stage is a cross-sectional view showing the meshing between the input shaft 28 of the transmission delay unit 25 and the intermediate rotating body 31, and the upper stage and the lower stage are within the rotation grooves 29a and 30a. It is the figure seen from the operation pulley 23a side which shows the position of the control protrusions 31b and 31c. Although the regulation protrusions 31b and 31c are not originally shown in the middle sectional view, they are shown for convenience in order to help understanding.
  • FIG. 4 is a perspective view showing an operation unit case 45 and a clutch unit 27.
  • FIG. 6E is a perspective view of the separate part 46. It is sectional drawing corresponding to FIG.9 (b) which shows the operation part case 45 and the clutch unit 27, (a) is the state with which the cam shaft 42 and the output shaft 43 were connected, (b) is the cam shaft 42 and output. A state in which the shaft 43 is disconnected is shown.
  • FIG. 5 is a perspective view showing only some members in the operation unit 6.
  • FIG. 5 is a perspective view showing only some members in the operation unit 6.
  • FIG. 5 is a perspective view showing only some members in the operation unit 6.
  • FIG. 5 is a perspective view showing only some members in the operation unit 6.
  • FIG. 5 is a perspective view showing only some members in the operation unit 6.
  • the transmission delay unit 25 of 2nd Embodiment of this invention is shown, (a)-(b) is a perspective view, (c) is a perspective view of the intermediate
  • the transmission delay unit 25 of 3rd Embodiment of this invention is shown, (a)-(b) is a perspective view, (c) is a perspective view of the state which removed the cover part 51a of the case 51, (d) is a disassembled perspective view.
  • FIG. It is sectional drawing of the cross section which passes each gear part of the transmission delay unit 25 of FIG.
  • FIG. (A)-(d) is sectional drawing which shows operation
  • the 4th Embodiment of this invention which applied the transmission delay unit 25 to the roll screen is shown, (a) is a front view, (b) is a right view, (c) is a front view of a screen. In (a), illustration of the screens 64a and 65a is omitted, and in (b), illustration of the operation pulley 23a and the operation cord 7 is omitted.
  • a horizontal blind as a shielding device shown in FIGS. 1 and 2 is supported by hanging a plurality of slats 3 as a shielding material through a plurality of ladder cords 2 suspended from a head box 1, A bottom rail 4 is suspended and supported at the lower end of the ladder cord 2.
  • the ladder cord 2 includes a plurality of wefts between a pair of warp yarns.
  • a slat 3 is supported on each weft.
  • a loop portion 2 a is provided on the upper end side of the ladder cord 2, and the loop portion 2 a is rotated by the support member 10 or the support member 11 disposed in the head box 1.
  • the V-shaped groove 32a is formed so that its width increases outward in the radial direction so as to go around the outer peripheral surface of the tilter drum 32.
  • the ladder cord 2 corresponds to the “slat support cord” in the claims.
  • the structure of the “slat support cord” is not limited as long as it can support and rotate the slat 3.
  • the slat support cord includes two warps separated from each other, and one warp is provided on one edge of the slat.
  • a configuration may be employed in which the other warp is attached to the other edge of the slat.
  • the lifting / lowering cord 5 is also suspended from the head box 1, and the lower end of the lifting / lowering cord 5 is attached to the bottom rail 4.
  • the bottom rail 4 is raised and lowered by winding and unwinding the lifting cord 5 on the winding shaft 9 rotatably supported by the support member 11 disposed in the head box 1.
  • the support members 10 and 11 support a tilter unit 19 having the same configuration.
  • the support member 10 is configured to support only the tilter unit 19.
  • the support member 11 is configured to support the tilter unit 19 and the winding shaft 9.
  • the support member 10 has substantially the same configuration as that of the support member 11 for the part that supports the tilter unit 19.
  • the support member 11, the winding shaft 9, and the tilter unit 19 will be described in detail.
  • the support member 11 includes a support member main body 11a and an adapter plate 11b.
  • the support member main body 11 a includes a winding shaft housing portion 11 e that supports the winding shaft 9 and a tilter unit housing portion 11 f that supports the tilter unit 19.
  • the adapter plate 11b includes a lifting / lowering cord insertion portion 11c through which the lifting / lowering cord 5 is inserted, and a ladder cord insertion portion 11d through which the ladder cord 2 is inserted, and is mounted on the adapter mounting portion 11g of the support member main body 11a.
  • the winding shaft 9 includes a winding cone 9a and a cam unit 9b.
  • the cam unit 9b is provided with a winding cone 9a when the bottom rail 4 collides with an obstacle while the weight of the bottom rail 4 is lowered, or when the bottom rail 4 reaches the lower limit position. Has the function of stopping the rotation of the.
  • the cam unit 9 b is configured to rotate integrally with the lifting shaft 8 that rotates in accordance with the operation of the operation cord 7. When the bottom rail 4 is lifted, the cam unit 9 b is rotated with the rotation of the lifting shaft 8. And the winding cone 9a rotate integrally.
  • the lifting / lowering shaft 8 is provided with a speed adjuster 22 so that the rotational speed of the lifting / lowering shaft 8 when the weight of the bottom rail 4 is lowered is not excessively increased.
  • the tilter unit 19 includes a tilter drum 32, a support cap 33, a tilter gear 34, and a bearing plate 35.
  • the loop portion 2 a of the ladder cord 2 is hooked on the V-shaped groove 32 a of the tilter drum 32.
  • the tilter drum 32 does not rotate with the rotation of the lifting shaft 8.
  • the tilt shaft 17 that rotates in accordance with the operation of the operation cord 7 is engaged with the insertion hole 34 c of the tilter gear 34, so that the tilter gear 34 rotates with the rotation of the tilt shaft 17.
  • the gear portion 32 c of the tilter drum 32 is engaged with the gear portion 34 b of the tilter gear 34, the tilter gear 32 rotates as the tilter gear 34 rotates as the tilt shaft 17 rotates.
  • the bearing plate 35 includes a pair of arms 35a having engaging convex portions 35b, a tilter gear bearing portion 35c, and a tilter drum bearing portion 35d.
  • the shaft portion 34a of the tilter gear 34 is inserted into the tilter gear bearing portion 35c, and the shaft portion 32b of the tilter drum 32 is inserted into the tilter drum bearing. It is inserted into the part 35d.
  • the pair of arms 35a is elastically deformed so that the distance between the pair of arms 35a is widened, the engaging convex portion 35b gets over the gear base 32d of the tilter drum 32, and the engaging convex portion 35b is engaged with the gear base 32d.
  • the support cap 33 includes a pair of side walls 33d each having a V-shaped protrusion 33a that becomes narrower toward the tip and an engagement groove 33b. As shown in FIG. 6B, when the support cap 33 is mounted from above the bearing plate 35 so that the base plate 35e of the bearing plate 35 enters the engagement groove 33b, the V-shaped protrusion 33a becomes the V-shaped groove 32a. It is arrange
  • the V-shaped protrusion 33a functions as a lift suppression unit that suppresses the lift of the ladder cord 2, even when the weight of the slat 3 is not applied to the ladder cord 2, the slat 3 is fully closed. When it is not, the tilter drum 32 is prevented from spinning around the ladder cord 2.
  • the V-shaped protrusion 33a is provided over an angle of about 104 degrees in the circumferential direction.
  • the central angle ⁇ shown in FIG. 7B) in the range in which the V-shaped protrusion 33a is provided is preferably 30 degrees or more, and more preferably 60 or 90 degrees or more.
  • the upper limit of the central angle ⁇ is not particularly defined, but is 180 degrees, for example. Increasing the central angle ⁇ generates a frictional force sufficient to cause the ladder cord 2 to follow the rotation of the tilter drum 32 without excessively narrowing the gap S between the V-shaped protrusion 33a and the V-shaped groove 32a. It is possible.
  • the configuration of the lifting suppression portion is not limited as long as the loop portion 2a of the ladder cord 2 can be prevented from lifting from the V-shaped groove 32a.
  • a locking projection 32f protruding from the inner surface 32e may be provided so that the loop portion 2a of the ladder cord 2 is held in the space S1 below the locking projection 32f in the V-shaped groove 32a. Even in this case, the lifting of the loop portion 2a can be suppressed by the same action as when the V-shaped protrusion 33a is provided on the support cap 33.
  • the bearing plate 35 is provided with positioning protrusions 35f that protrude from the base plate 35e in the front-rear direction.
  • the lower surface 33c of the side wall 33d of the support cap 33 abuts the upper surface 35g of the positioning protrusion 35f, thereby supporting the support cap 33. Is positioned in the vertical direction with respect to the bearing plate 35.
  • the tilter unit 19 in which the tilter drum 32, the support cap 33, the tilter gear 34, and the bearing plate 35 are integrated is obtained.
  • the tilter unit 19 can be attached to the support member body 11a from above the support member body 11a in a state where the winding shaft 9 is supported by the support member body 11a.
  • the tilter unit 19 can be attached to the support member 11 main body a, so that the assemblability is excellent.
  • An operation unit 6 is provided at the substantially right end of the head box 1. As shown in FIGS. 9 to 25, the operation unit 6 includes a planetary gear / operation pulley unit 23, a tilt transmission unit 24, a transmission delay unit 25, a brake unit 26, and a clutch unit 27.
  • the planetary gear / operation pulley unit 23 includes an operation pulley 23a and a planetary gear 23b.
  • An operation cord 7 is hung on the operation pulley 23a.
  • the operation code 7 is led out of the head box 1 through the code gate 15.
  • the operation pulley 23a includes a support shaft 23a1, and the support shaft 23a1 is rotatably supported by a case cap 23c.
  • the tilt transmission unit 24 includes a gear plate 24a, a transmission gear 24b and a tilt shaft gear 24c that are rotatably supported by the gear plate 24a.
  • the transmission gear 24b is configured to rotate integrally with the input shaft 28.
  • the transmission gear 24 b is provided on the input side of the transmission delay unit 25.
  • wear tends to occur between the transmission gear 24b and the input shaft 28.
  • the transmission gear 24b is relative to the input shaft 28. Since there is no relative movement in the axial direction, there is no problem of wear associated with the relative movement.
  • the tilt shaft gear 24c meshes with the transmission gear 24b and rotates with the rotation of the transmission gear 24b. The rotation of the tilt shaft gear 24c is transmitted to the tilter gear 34 of the tilter unit 19 through the tilt shaft 17, and the slat 3 is rotated.
  • the transmission delay unit 25 includes an input shaft 28 and a pair of intermediate rotating bodies 31 that are rotatably supported by the first and second cases 29 and 30.
  • the input shaft 28 includes, in order from the input side, a first shaft portion 28f, a second shaft portion 28g, a third shaft portion 28e, a fourth shaft portion 28i, and a fifth shaft portion 28d.
  • the first shaft portion 28f has a smaller diameter than the second shaft portion 28g.
  • the second shaft portion 28g has a smaller diameter than the third shaft portion 28e.
  • the fourth shaft portion 28i has a smaller diameter than the third shaft portion 28e.
  • the fifth shaft portion 28d has a smaller diameter than the fourth shaft portion 28i.
  • the first shaft portion 28f is supported by a bearing portion 23e1 provided on the input shaft 23e of the planetary gear 23b.
  • An engagement groove 28b is provided in the second shaft portion 28g.
  • Three engagement grooves 28b are provided at regular intervals in the circumferential direction.
  • an insertion hole 23d1 is provided at the rotation center of the planet carrier 23d, and an engagement protrusion 23d2 protruding radially inward is provided in the insertion hole 23d1.
  • Three engagement projections 23d2 are provided at equal intervals in the circumferential direction, and the input shaft 28 and the planet carrier 23d rotate integrally by engaging each engagement projection 23d2 with each engagement groove 28b. Is done.
  • An engagement groove 28c is provided in the third shaft portion 28e.
  • Three engagement grooves 28c are provided at equal intervals in the circumferential direction. As shown in FIG.
  • an insertion hole 24b1 is provided at the rotation center of the transmission gear 24b, and an engagement protrusion 24b2 protruding radially inward is provided in the insertion hole 24b1.
  • Three engagement protrusions 24b2 are provided at equal intervals in the circumferential direction, and the input shaft 28 and the transmission gear 24b rotate integrally as each engagement protrusion 24b2 is engaged with each engagement groove 28c. Is done.
  • the first case 29 is provided with a bearing portion 29g, and the third shaft portion 28e is supported by the bearing portion 29g.
  • Two tooth protrusions 28a protruding in the radial direction are provided on the outer peripheral surface of the fourth shaft portion 28i at a pitch of 180 degrees.
  • the fifth shaft portion 28 d is supported by a bearing surface 30 h of an engagement protrusion 30 g that protrudes radially inward from the cylindrical portion 30 k of the second case 30.
  • the first and second cases 29 and 30 function as an output shaft of the transmission delay unit 25.
  • the base portion 29b of the first case 29 is provided with a bearing portion 29g and a turning groove 29a.
  • an engagement protrusion 29h is provided at the center of the rotation groove 29a in the circumferential direction so as to protrude toward the rotation groove 29a.
  • a pair of projecting walls 29e and projecting cylinders 29c projecting from the base 29b are provided on the output side surface of the base 29b.
  • the protruding wall 29e is provided with a snap hole 29f, and the protruding cylinder 29c is provided with an insertion hole 29d.
  • the snap holes 29f are provided at two positions spaced apart in the vertical direction on each protruding wall 29e.
  • a rotation groove 30a is provided in the base 30b of the second case 30.
  • a pair of projecting walls 30d and projecting rods 30c projecting from the base 30b are provided on the input side surface of the base 30b.
  • a snap projection 30e is provided on the outer surface of each protruding wall 30d. The snap projections 30e are provided at two locations apart in the vertical direction.
  • a support shaft 30f protruding from the base portion 30b is provided between the pair of protruding walls 30d. The support shaft 30f is provided at two locations apart in the vertical direction.
  • a protruding piece 30i is provided adjacent to the rotation groove 30a.
  • the protruding pieces 30i are provided at two locations in the respective rotating grooves 30a so as to be separated in the direction along the respective rotating grooves 30a.
  • Each protruding piece 30i is provided with an engaging protrusion 30j protruding in the direction of the rotation groove 30a.
  • the cylinder part 30k is provided in the surface of the output side of the base part 30b, and the engagement protrusion 30g which protrudes radially inward from the cylinder part 30k is provided in the cylinder part 30k.
  • Three engagement protrusions 30g are provided at equal intervals in the circumferential direction.
  • a bearing surface 30h is provided at the tip of each engagement protrusion 30g. As described above, the fifth shaft portion 28d of the input shaft 28 is supported by the bearing surface 30h.
  • the intermediate rotating body 31 is provided with a bearing portion 31d, and the intermediate rotating body 31 is rotatably supported by the second case 30 when the support shaft 30f of the second case 30 is supported by the bearing portion 31d. .
  • Three tooth protrusions 31 a protruding in the radial direction are provided on the outer peripheral surface of the intermediate rotating body 31 at a 45-degree pitch. As shown in FIG. 15, the tooth protrusions 28a and the tooth protrusions 31a are arranged so as to mesh with each other. As the input shaft 28 rotates, the tooth protrusions 28a abut against the tooth protrusions 31a and the intermediate rotating body 31 rotates. It has come to be.
  • middle rotary body 31 is provided with the control protrusions 31b and 31c which protrude in the axial direction front and back both sides.
  • the intermediate rotating body 31 has the restricting protrusions 31b and 31c within the turning grooves 29a and 30a.
  • a rotatable angle range about 140 degrees in the present embodiment
  • relative rotation with respect to the first and second cases 29 and 30 is possible.
  • An engaging groove 31e is provided in the restricting protrusion 31b.
  • An engagement protrusion 31f is provided on the restriction protrusion 31c.
  • the transmission delay unit 25 inserts the support shaft 30f into the bearing portion 31d, and the first shaft portion 28f, the second shaft portion 28g, the second shaft portion 28g, and the fifth shaft portion 28d of the input shaft 28 are supported by the bearing surface 30h.
  • the triaxial portion 28e can be assembled by inserting the bearing portion 29g in this order, inserting the protruding rod 30c through the insertion hole 29d, and engaging the snap projection 30e with the snap hole 29f.
  • the operation of the transmission delay unit 25 will be described with reference to FIG. First, when the input shaft 28 is rotated in the direction of the arrow X shown in FIGS. 10B and 11B (the direction in which the bottom rail 4 is raised), the tooth protrusion 28a is moved to the arrow as shown in FIG. Rotate in the X direction. When the input shaft 28 rotates about half a half, as shown in FIG. 15 (b), the tooth protrusion 28a meshes with the tooth protrusion 31a. When the input shaft 28 is further rotated in the arrow X direction in this state, the intermediate rotator 31 rotates in the arrow Y direction as the input shaft 28 rotates as shown in FIGS. 15 (c) to 15 (d).
  • the intermediate rotator 31 also rotates about 60 degrees before the input shaft 28 rotates about 60 degrees to reach the state shown in FIG.
  • the restricting protrusions 31b and 31c rotate about 60 degrees in the arrow Y direction in the rotation grooves 29a and 30a. While the restricting protrusions 31b and 31c are rotatable in the rotation grooves 29a and 30a, the rotation of the input shaft 28 is not transmitted to the first and second cases 29 and 30, and the input shaft 28 is And it rotates relative to the second cases 29 and 30.
  • the meshing of the tooth protrusions 28a and 31a is released, so that the rotation of the intermediate rotating body 31 accompanying the rotation of the input shaft 28 is stopped.
  • the restricting protrusions 31b and 31c reach the ends of the rotating grooves 29a and 30a, and the state shown in FIG.
  • the intermediate rotating body 31 is intermittently rotated with the rotation of the input shaft 28.
  • the regulation protrusions 31 b and 31 c are not rotatable in the rotation grooves 29 a and 30 a, so that when the input shaft 28 is rotated, the rotation is via the intermediate rotator 31.
  • the first and second cases 29, 30 are transmitted to the first and second cases 29, 30, and the first and second cases 29, 30 rotate integrally with the input shaft 28.
  • the first and second cases 29 and 30 start to rotate in the arrow X direction as the input shaft 28 rotates after the input shaft 28 rotates about 1.5 in the arrow X direction.
  • the restricting protrusions 31b and 31c move in the rotation grooves 29a and 30a in the arrow X direction from the state shown in FIG.
  • the restricting protrusions 31b and 31c reach the ends of the rotation grooves 29a and 30a, and the first and second cases 29 and 30 move along the arrow Y as the input shaft 28 rotates. Start rotating in the direction.
  • the transmission delay unit 25 is accommodated in the operation unit case 45 as shown in FIG.
  • the transmission delay unit 25 is rotated in the operation portion case 45 in a state where the outer peripheral surfaces of the base portions 29 b and 30 b are supported by the bearing portion 45 d of the operation portion case 45.
  • the bearing portions 45d are provided at four locations spaced at equal intervals in the circumferential direction.
  • Rotation of the first and second cases 29 and 30 is transmitted to the input unit 26a of the brake unit 26.
  • the input portion 26a is provided with an engaging protrusion 26a1.
  • the engagement protrusions 26a1 are provided at three locations that are spaced apart at equal intervals in the circumferential direction. Each engagement protrusion 26a1 is engaged between two adjacent engagement protrusions 30g. With such a configuration, the input portion 26 a of the brake portion 26 rotates integrally with the first and second cases 29 and 30.
  • the rotation transmitted to the input unit 26a from the first and second cases 29, 30 side is input to the input shaft 41 of the clutch unit 27 via the transmission shaft 26c fitted in the fitting hole of the output unit 26b.
  • Communicate to The input shaft 41 is prevented from rotating due to the torque generated by the weight of the shielding material (slat 3 and bottom rail 4). For this reason, by providing the brake part 26, the bottom-rail 4's own weight fall is prevented.
  • the clutch unit 27 includes an input shaft 41, a cam shaft 42, and an output shaft 43.
  • the cam shaft 42 and the output shaft 43 are accommodated in the operation portion case 45 so as to be relatively rotatable.
  • the cam shaft 42 is configured to rotate integrally with the input shaft 41.
  • a fitting hole 41 a is provided at the rotation center of the input shaft 41.
  • the fitting hole 41a and the transmission shaft 26c are non-circular in cross section (square), and the input shaft 41 is configured to rotate integrally with the transmission shaft 26c when the transmission shaft 26c is inserted into the fitting hole 41a.
  • an engagement protrusion 41b is provided that protrudes radially outward.
  • the engagement protrusions 41b are provided at three locations that are spaced apart at equal intervals in the circumferential direction.
  • a fitting hole 42h is provided at the rotation center of the cam shaft 42.
  • An engagement groove 42i is provided in the fitting hole 42h.
  • the engaging grooves 42i are provided at six locations spaced apart at equal intervals in the circumferential direction.
  • the cam shaft 42 is configured to rotate integrally with the input shaft 41 by engaging the engagement protrusions 41b with the three engagement grooves 42i.
  • the cam shaft 42 is movable in the axial direction of the input shaft 41.
  • a bearing 41e is provided on the output side of the input shaft 41.
  • a bearing portion 42 j is provided on the output side of the cam shaft 42.
  • On the input side of the output shaft 43 a first shaft portion 43e and a second shaft portion 43d are provided in order from the input side.
  • the first shaft portion 43e has a smaller diameter than the second shaft portion 43d.
  • the first shaft portion 43e and the second shaft portion 43d are respectively supported by the bearing portion 41e and the bearing portion 42j.
  • the cam shaft 42 and the output shaft 43 are formed with engaging portions 42k and 43k having a corrugated shape having a cross-sectional wave shape.
  • the engaging portions 42k and 43k do not mesh with each other, and the cam shaft 42 and the output shaft 43 are not connected to each other and rotate relative to each other. To do.
  • the cam shaft 42 is at a position close to the output shaft 43 as shown in FIG. 18A, the engaging portions 42k and 43k are engaged with each other so that the cam shaft 42 and the output shaft 43 are connected to rotate integrally. To do. Therefore, the cam shaft 42 and the output shaft 43 constitute a clutch portion.
  • the outer periphery of the cam shaft 42 is provided with a guide groove 42g having a substantially semicircular cross section extending in the circumferential direction of the cam shaft 42.
  • a separate part 46 supported by the operation unit case 45 is provided with a slide groove 46a having a substantially semicircular cross section extending in the axial direction, and the ball 44 is sandwiched between the guide groove 42g and the slide groove 46a. .
  • the ball 44 is movable in the axial direction within the slide groove 46a. Further, the ball 44 relatively moves in the circumferential direction of the cam shaft 42 along the guide groove 42g as the cam shaft 42 rotates.
  • the relative movement in the circumferential direction may be simply referred to as “movement” for convenience.
  • the operation part case (case body) 45 includes a cylindrical part 45a in which the cam shaft 42 and the output shaft 43 are accommodated, and a pocket part 45b provided so as to protrude in the radial direction from the cylindrical part 45a. Is provided. With the ball 44 sandwiched between the guide groove 42g of the cam shaft 42 and the slide groove 46a of the separate part 46, the output shaft 43, the cam shaft 42, the ball 44 and the separate part 46 are connected to the cylindrical portion 45a and the pocket portion 45b. These members can be disposed in the operation unit case 45 by being housed in the operation unit case 45.
  • the output shaft 43 is accommodated in the cylindrical portion 45a, and then the separate part 46 is disposed in the pocket portion 45b and the ball 44 is disposed in the slide groove 46a.
  • the cam shaft 42 can be accommodated in the cylindrical portion 45a. As shown in FIG.
  • the cam shaft 42 is provided with an introduction groove 42a extending from the output side of the cam shaft 42 to the guide groove 42g, when the cam shaft 42 is inserted into the cylindrical portion 45a, The ball 44 can be easily introduced into the guide groove 42g by appropriately rotating the shaft 42 so that the position of the introduction groove 42a matches the position of the ball 44.
  • the output shaft 43 is accommodated in the cylindrical portion 45a before the ball 44 is accommodated in the slide groove 46a.
  • the output shaft 43 can be accommodated in the cylindrical portion 45a while the ball 44 is accommodated in the slide groove 46a.
  • the guide groove 42g is composed of the rows A to C, and the movable range of the balls 44 in the slide groove 46a is the width of the two rows of the guide grooves 42g. It has become.
  • the axial movement of the cam shaft 42 is realized by moving the ball 44 along the guide groove 42g as the cam shaft 42 rotates in a state where the movable range of the ball 44 in the axial direction is limited. Accordingly, the cam portion is constituted by the guide groove 42g, the slide groove 46a, and the ball 44.
  • the bottom rail 4 is in the lower limit position as an initial state.
  • the transmission delay unit 25 is in the state shown in FIG. 15G, and the balls 44 of the clutch unit 27 are placed in the rows A or B of the guide grooves 42g as shown in FIG. Has been placed.
  • the cam shaft 42 and the output shaft 43 are connected as shown in FIG.
  • the tilter drum 32 With the rotation of the tilter drum 32, the ladder cord 2 hung on the V-shaped groove 32a of the tilter drum 32 is displaced, and the slat 3 is rotated until the slat 3 is in the reverse fully closed state. After the slat 3 is in the reverse fully closed state, the tilter drum 32 rotates idly with respect to the ladder cord 2.
  • the restricting protrusions 31b and 31c move in the rotation grooves 29a and 30a in the arrow X direction from the state of FIG. 15G, and the input shaft 28 moves in the arrow Y direction.
  • the restricting protrusions 31b and 31c reach the ends of the rotation grooves 29a and 30a, and the first and second cases 29 and 30 rotate the input shaft 28.
  • the rotation of the input shaft 28 is delayed by 1.5 rotations and transmitted to the first and second cases 29 and 30.
  • Rotation of the first and second cases 29 and 30 is transmitted to the input shaft 41 of the clutch unit 27 via the brake unit 26. This rotation is also transmitted to the cam shaft 42.
  • the cam shaft 42 is rotated in the upward direction of the bottom rail 4, the ball 44 moves along a route that reciprocates between the rows A and B of the guide grooves 42g as shown in FIG. .
  • the ball 44 reaches the cam projection a1 while moving in the row A, the ball 44 is guided in the row B direction by the cam projection a1.
  • the cam island a2 When the ball 44 reaches the cam island a2 while moving in the row B, the ball 44 is guided in the row A direction by the cam island a2.
  • cam protrusions a1 and cam islands a2 are provided at four locations spaced apart at equal intervals in the circumferential direction.
  • the cam island a2 is provided so that a row B is formed between the cam protrusion a1 and the cam island a2.
  • the rotation of the input shaft 28 is immediately transmitted to the tilt shaft 17, but is transmitted to the lift shaft 8 after being delayed by the transmission delay unit 25. For this reason, the bottom rail 4 is prevented from starting to rise during the rotation of the slat 3.
  • the torque generated by the weight of the bottom rail 4 when the hand is released from the operation cord 7 causes the winding shaft 9, the lifting shaft 8, the output shaft 43, the cam shaft 42, and the input shaft 41.
  • the input shaft 41 tries to rotate in the downward direction, but the rotation is stopped by the brake unit 26, so the input shaft 41 does not rotate and the cam shaft 42 does not rotate either.
  • the ball 44 is arranged somewhere in the row A or B.
  • the description will be made assuming that the rotation of the cam shaft 42 is stopped in a state where the ball 44 is disposed at the position shown in FIG.
  • the slat 3 is not rotated.
  • the bottom rail 4 when the bottom rail 4 is at the upper limit position, the bottom rail 4 may be lowered by its own weight without the slat 3 being fully closed.
  • the bottom rail 4 when the bottom rail 4 is at a position lower than the upper limit position, the bottom rail 4 is lowered by its own weight with the slats 3 being fully closed. Only when the bottom rail 4 is in the upper limit position, the bottom rail 4 being lowered by its own weight with the slats 3 open is a problem in that the feeling of use is deteriorated.
  • the ladder cord 2 is prevented from being lifted by arranging the V-shaped protrusion 33a provided on the support cap 33 so as to extend into the V-shaped groove 32a.
  • the idler of the tilter drum 32 does not occur, and when the operation pulley 23a is rotated in the downward direction of the bottom rail 4, the slat 3 is fully closed. It is rotated until it becomes.
  • the tilter drum 32 is idle with respect to the ladder cord 2.
  • the restricting protrusions 31b and 31c move in the rotation grooves 29a and 30a in the arrow Y direction from the state of FIG. 15A, and the input shaft 28 moves in the arrow X direction.
  • the restricting protrusions 31 b and 31 c reach the ends of the turning grooves 29 a and 30 a, and the first and second cases 29 and 30 rotate the input shaft 28. Along with this, it starts to rotate in the arrow X direction. Accordingly, the rotation of the input shaft 28 is delayed by 1.5 rotations and transmitted to the first and second cases 29 and 30.
  • Rotation of the first and second cases 29 and 30 is transmitted to the input shaft 41 of the clutch unit 27 via the brake unit 26. This rotation is also transmitted to the cam shaft 42.
  • the camshaft 42 is rotated in the lowering direction of the bottom rail 4, the balls 44 move in the order of row A ⁇ row B ⁇ row C of the guide grooves 42g as shown in FIGS. 19 (b) to 19 (c). .
  • the ball 44 reaches the cam projection a1 while moving in the row A, the ball 44 is guided in the row B direction by the cam projection a1.
  • the ball 44 reaches the cam island a2 while moving in the row B, the ball 44 is guided in the row C direction by the cam island a2.
  • the balls 44 are guided and moved in the order of row A ⁇ row B ⁇ row C by the cam protrusion a1 and the cam island a2.
  • a leftward force is applied to the ball 44 and a rightward force is applied to the cam shaft 42.
  • the cam shaft 42 moves in the right direction (that is, the separation direction from the output shaft 43). )
  • the cam shaft 42 and the output shaft 43 are disconnected, the lifting shaft 8 freely rotates, and the bottom rail 4 is lowered by its own weight.
  • the taper surface 42k1 is provided in the front-end
  • the tapered surface 42k1 is configured so that the tapered surface 42k1 comes into contact with the convex portion of the engaging portion 43k of the output shaft 43 when the cam shaft 42 is rotated in the downward direction, and the cam shaft 42 is connected to the output shaft 43. 43 so that a force in the separation direction from 43 is applied.
  • the cam shaft 42 is easily separated from the output shaft 43.
  • the idling angle is relatively small from the start of the lowering operation to the start of the weight drop of the bottom rail 4.
  • the cam protrusions a1 and the cam islands a2 are provided at a pitch of 90 degrees, the idling angle has a maximum value of less than 180 degrees. The maximum value of the idling angle can be further reduced by increasing the number of cam protrusions a1 and cam islands a2 (that is, providing five or more).
  • the rotation of the input shaft 28 is immediately transmitted to the tilt shaft 17, but is transmitted to the lift shaft 8 after being delayed by the transmission delay unit 25. For this reason, the bottom rail 4 is restrained from starting its own weight descent while the slat 3 is rotating.
  • the lowering side of the operation cord 7 is further lowered to further rotate the cam shaft 42 in the lowering direction of the bottom rail 4.
  • the balls 44 move along a route that reciprocates between the rows B and C of the guide grooves 42g. Specifically, when the ball 44 reaches the cam projection a3 while moving in the row C, the ball 44 is guided in the row B direction by the cam projection a3. When the ball 44 reaches the cam island a2 while moving in the row B, the ball 44 is guided in the row C direction by the cam island a2. Thus, the ball 44 is guided and moved so as to reciprocate between the row C and the row B by the cam protrusion a3 and the cam island a2.
  • cam protrusions a3 are provided at four locations that are spaced apart at equal intervals in the circumferential direction.
  • the cam island a2 is provided such that a row B is formed between the cam protrusion a3 and the cam island a2.
  • the ball 44 is positioned on the right side in the slide groove 46a.
  • the ball 44 moves to the C row, the ball 44 moves to the left side in the slide groove 46a. Therefore, the cam shaft 42 does not move in the axial direction while the ball 44 is moving along a route that reciprocates between the rows B and C.
  • the floating suppression unit that suppresses the floating of the ladder cord 2 is provided, but the floating suppression unit is not essential.
  • the slat 3 is tilted using the tilter drum 32 having the V-shaped groove 32a.
  • the mechanism for tilting the slat 3 is not particularly limited, and is disclosed in, for example, FIG. 2 of JP-A-2014-231696. Such a mechanism using a tilt spring may be used.
  • the rotation of the input shaft 28 is transmitted to the first and second cases 29 and 30 using the two intermediate rotating bodies 31 in order to disperse the load applied to the intermediate rotating body 31.
  • the number of the rotators 31 may be one or three or more.
  • the restricting protrusions 31b and 31c are provided on both sides in the axial direction of each intermediate rotator 31, and the restricting protrusions 31b and 31c are first and second.
  • the restricting protrusions may be provided only on one side in the axial direction of each intermediate rotating body 31.
  • the direction in which the restriction protrusions 31b and 31c protrude is not particularly limited, and may be provided so as to protrude in the radial direction.
  • the delay amount can be adjusted by appropriately changing the number and pitch of the tooth protrusions 28a and 31a and the angle range in which the restricting protrusions 31b and 31c can rotate in the rotation grooves 29a and 30a.
  • the delay amount is preferably 360 degrees or more, more preferably 400, 450, or 500 degrees or more.
  • a gear that meshes with the input shaft 28 and the intermediate rotating body 31 may be provided instead of the tooth protrusions 28a and 31a. In this case, the rotational speed of the intermediate rotating body 31 can be made smaller than that of the input shaft 28 by making the number of gear teeth of the intermediate rotating body 31 larger than the number of gear teeth of the input shaft 28.
  • the number of gear teeth of the intermediate rotator 31 needs to be three times the number of gear teeth of the input shaft 28. Therefore, the diameter of the gear of the intermediate rotating body 31 is also three times the diameter of the gear of the input shaft 28.
  • the intermediate rotating body 31 is intermittently rotated by making the pitch of the tooth protrusions 31a of the intermediate rotating body 31 smaller than the pitch of the tooth protrusions 28a of the input shaft 28. Since the rotation speed is reduced, the diameter of the intermediate rotating body 31 can be made relatively small.
  • the rotation speed of the intermediate rotator 31 is defined by (rotation angle of the intermediate rotator 31 every time the input shaft 28 makes one revolution) / (time taken for the input shaft 28 to make one revolution). Is done. Therefore, when the intermediate rotator 31 is intermittently rotated, the time during which the intermediate rotator 31 is stopped is also included in the time for calculating the rotation speed.
  • the transmission delay unit 25 can be used for applications other than those in the above-described embodiment and for any application that requires a delay in transmission of rotation.
  • the clutch unit 27 is connected and disconnected by engaging and disengaging the two members (the cam shaft 42 and the output shaft 43) relative to each other in the axial direction. However, as long as the input rotation to the clutch unit is within a predetermined rotation angle and the input shaft can be connected to and disconnected from the output shaft, the two members may be engaged / disengaged in the radial direction. .
  • Second Embodiment A second embodiment of the present invention will be described with reference to FIG. This embodiment is similar to the first embodiment, and the difference in the configuration of the transmission delay unit 25 is the main difference. Hereinafter, the difference will be mainly described.
  • the transmission delay unit 25 includes a case 54, an intermediate rotating body 55, and an input shaft 56.
  • Case 54 functions as an output shaft.
  • the intermediate rotating body 55 includes a shaft portion 55c rotatably supported by the case 54, an annular portion 55d, an inner peripheral gear portion 55a provided on the inner peripheral surface of the annular portion 55d, and an axial direction from the annular portion 55d.
  • the control protrusion 55b provided so that it may protrude is provided.
  • the shaft portion 55c and the annular portion 55d are connected via a base portion 55e.
  • the input shaft 56 includes a shaft portion 56a that is rotatably supported by the case 54, and a gear portion 56b that is provided so as to mesh with the inner peripheral gear portion 55a.
  • the restricting protrusion 55 b is inserted into a rotation groove 54 a provided in the case 54.
  • the intermediate rotator 55 can be rotated relative to the case 54 within an angular range (about 270 degrees in the present embodiment) in which the restricting protrusion 55b can rotate within the rotation groove 54a.
  • the gear ratio of the inner peripheral gear part 55a / gear part 56b is 3, every time the gear part 56b makes one rotation with the rotation of the input shaft 56, the restricting projection 55b rotates 120 degrees, and the gear part 56b Is slightly rotated twice, the restricting projection 55b reaches the end of the rotating groove 54a.
  • the input shaft 56 rotates relative to the case 54, and when the restricting protrusion 55b reaches the end of the turning groove 54a, the input shaft 56 rotates.
  • the signal is transmitted to the case 54 via the intermediate rotating body 55, and the input shaft 56 rotates integrally with the case 54.
  • the rotation of the input shaft 56 is delayed and transmitted to the output shaft (case 54).
  • the transmission delay unit 25 includes a case 51, an intermediate rotating body 52, and an input shaft 53.
  • Case 51 functions as an output shaft.
  • the case 51 includes a base portion 51c, a cover portion 51a, an annular portion 51h, and a locking portion 51d.
  • the base 51c is provided with a turning groove 51f and an insertion hole 51g.
  • An inner peripheral gear portion 51e is provided on the inner peripheral surface of the annular portion 51h.
  • the intermediate rotating body 52 includes a shaft portion 52a that is rotatably supported by the rotation groove 51f, an annular portion 52e, an inner peripheral gear portion 52d provided on the inner peripheral surface of the annular portion 52e, and an outer periphery of the annular portion 52e.
  • the outer peripheral gear part 52b provided in the surface and the regulation protrusion 52c provided so that it might protrude from the annular part 55d to radial direction are provided.
  • the shaft portion 52a and the annular portion 52e are connected via a base portion 52f.
  • the input shaft 53 includes a shaft portion 53a that is inserted into the insertion hole 51g and is rotatably supported, and a gear portion 53b that is provided so as to mesh with the inner peripheral gear portion 52d.
  • 28 to 30 are cross-sectional views of a cross section passing through each gear part as viewed from the cover part 51a side.
  • the restriction projection 52c does not originally appear in each cross-sectional view, the restriction projection 52c is displayed in each drawing for the sake of convenience in order to represent the positional relationship between the restriction projection 52c and the locking portion 51d.
  • the intermediate rotating body 52 is also rotated counterclockwise due to the engagement of the gear portion 53b and the inner peripheral gear portion 52d.
  • the shaft portion 52a of the intermediate rotating body 52 revolves around the input shaft 53 in the clockwise direction along the rotation groove 51f by the meshing of the outer peripheral gear portion 52b and the inner peripheral gear portion 51e. That is, the intermediate rotating body 52 is configured to revolve clockwise while rotating counterclockwise.
  • the intermediate rotator 52 follows the trajectories shown in FIGS. 29 (a) to 29 (d) and FIGS. 30 (a) to (b), as shown in FIG. 30 (c). Then, the restricting projection 52c is rotated to a position where it is locked by the locking portion 51d.
  • the input shaft 53 rotates relative to the case 51.
  • the restricting projection 52c reaches the locking portion 51d, the input shaft 53 rotates to an intermediate rotation. It is transmitted to the case 51 via the body 52 and the input shaft 53 rotates integrally with the case 51.
  • the rotation of the input shaft 53 is delayed and transmitted to the output shaft (case 51).
  • the number of rotations of the input shaft 53 from the state of FIG. 28 to FIG. 30C is about 4.5 in this embodiment, but the number of gear teeth, the shape of the restricting protrusion 52c or the locking portion 51d The number of rotations can be appropriately changed by changing the position.
  • the drive gear 61 and the transmission gear 62 are engaged, and the transmission gear 62 and the driven gear 63 are engaged.
  • the transmission gear 62 and the driven gear 63 have support shafts 62a and 63a, respectively, and the support shafts 62a and 63a are rotatably supported by a support frame (not shown).
  • the drive gear 61 has an engagement shaft 61a, and the engagement shaft 61a is engaged with the operation pulley 23a.
  • the drive gear 61, the transmission gear 62, and the driven gear 63 rotate with the rotation of the operation pulley 23a.
  • a transmission delay unit 25 is provided between the drive gear 61 and the winding shaft 64. For this reason, the rotation of the drive gear 61 is delayed and transmitted to the winding shaft 64.
  • the upper end of the screen 64a is attached to the winding shaft 64.
  • a weight bar 64b is attached to the lower end of the screen 64a. Since no transmission delay unit is provided between the driven gear 63 and the winding shaft 65, the rotation of the driven gear 63 is transmitted to the winding shaft 65 without being delayed.
  • the upper end of the screen 65a is attached to the winding shaft 65.
  • a weight bar 65b is attached to the lower end of the screen 65a.
  • the operation pulley 7a is operated to rotate the operation pulley 23a in the rewinding direction of the screens 64a and 65a.
  • the rotation of 23a is transmitted to the winding shaft 65 without being delayed.
  • the rotation of the operation pulley 23 a is delayed by the transmission delay unit 25 and transmitted to the winding shaft 64. For this reason, while the transmission of rotation is delayed, only the screen 65a is rewound, and the vertical displacement of the screens 64a and 65a is reduced.
  • the transmission delay unit 25 the relative position in the vertical direction of the two screens 64a and 65a can be changed. For example, as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Blinds (AREA)
  • Transmission Devices (AREA)

Abstract

Provided is a means for reliably preventing a bottom rail from descending due to its own weight prior to the completion of a tilting operation. The present invention provides a transmission delay unit (25) equipped with a first input shaft (28), intermediate rotating bodies (31) configured so as to rotate at a slower rotational speed than that of the first input shaft in conjunction with rotation of the first input shaft, and a first output shaft (29, 30) to which the rotation of the first input shaft is transmitted via the intermediate rotating bodies. The intermediate rotating bodies are configured so as to be incapable of rotating relative to the first output shaft after rotating by a prescribed angle.

Description

伝達遅延ユニット、遮蔽材昇降装置Transmission delay unit, shielding material lifting device
 この発明は、入力軸の回転を遅延させて出力軸に伝達させる伝達遅延ユニット、及び伝達遅延ユニットを用いた遮蔽材昇降装置に関する。 The present invention relates to a transmission delay unit that delays rotation of an input shaft and transmits it to an output shaft, and a shielding material lifting device using the transmission delay unit.
 横型ブラインドの中には、ヘッドボックスに回転可能に支持された操作プーリーに掛装されたループ状の操作コードの上昇操作側を引き下げることによって昇降軸を回転させてボトムレールの上昇操作を行い、操作コードの下降操作側を引き下げることによってチルト軸を回転させてスラットのチルト操作を行うと共に昇降軸に繋がったクラッチを切り離すことによってボトムレールを自重下降させるように構成されているものがある(特許文献1)。例えば、特許文献1の第二の実施の形態では、特許文献1の図13に示すような形状のガイド溝67をカム軸14に形成し、ガイド溝67に沿ってスライド球20を移動させることによって、昇降軸の切り離しを行っている。 In the horizontal blind, the lifting operation of the bottom rail is performed by rotating the lifting shaft by lowering the ascending operation side of the loop-shaped operation cord hung on the operation pulley rotatably supported by the head box, There is one configured to rotate the tilt shaft by lowering the lowering operation side of the operation cord to perform the tilt operation of the slats and to lower the bottom rail by releasing the clutch connected to the lifting shaft (patent) Reference 1). For example, in the second embodiment of Patent Document 1, a guide groove 67 having a shape as shown in FIG. 13 of Patent Document 1 is formed in the cam shaft 14, and the slide ball 20 is moved along the guide groove 67. Thus, the lifting shaft is separated.
 上記のような横型ブラインドは、チルト操作のための操作棒を必要としないという利点がある一方で、チルト操作が完了する前にクラッチが作動して昇降軸が切り離されて、意図しないタイミングでボトムレールが自重下降してしまう場合がある。 The horizontal blind as described above has the advantage of not requiring an operating rod for tilting operation, while the clutch is activated before the tilting operation is completed and the lifting shaft is disconnected, and the bottom blind is moved at an unintended timing. The rail may fall by its own weight.
 特許文献2では、空転筒71に対して回転方向に所定量の遊びを持って連結される切換筒42と、切換筒42に対して回転方向に所定量の遊びを持って連結される係合筒44を用いて、操作プーリーの回転を遅延させて伝達させることによって、スラットのチルト操作中にボトムレールが自重下降することを抑制している。 In Patent Document 2, the switching cylinder 42 connected to the idle cylinder 71 with a predetermined amount of play in the rotational direction, and the engagement connected to the switching cylinder 42 with a predetermined amount of play in the rotational direction. The cylinder 44 is used to delay and transmit the rotation of the operation pulley, thereby suppressing the bottom rail from falling by its own weight during the slat tilting operation.
特許第3378813号Japanese Patent No. 3378813 特許第4074420号Japanese Patent No. 4074420
 特許文献2の構成では、スラットのチルト操作中にボトムレールが自重下降することをある程度防止することができる。しかし、チルト操作の完了までに必要な回転角度は、回転の伝達機構やスラット幅などによって変化するので、特許文献2の構成で得られる遅延角度では不十分な場合がある。 In the configuration of Patent Document 2, it is possible to prevent the bottom rail from falling by its own weight to some extent during the slat tilting operation. However, since the rotation angle required until the completion of the tilt operation changes depending on the rotation transmission mechanism, the slat width, and the like, the delay angle obtained by the configuration of Patent Document 2 may be insufficient.
 本発明はこのような事情に鑑みてなされたものであり、チルト操作の完了前にボトムレールが自重下降することを確実に抑制することができる手段を提供するものである。 The present invention has been made in view of such circumstances, and provides means for reliably suppressing the bottom rail from falling by its own weight before the completion of the tilting operation.
 本発明によれば、第1入力軸と、第1入力軸の回転に伴って第1入力軸よりも遅い回転速度で回転するように構成された中間回転体と、前記中間回転体を介して第1入力軸の回転が伝達される第1出力軸を備え、前記中間回転体は、所定角度回転後に、第1出力軸に対して相対回転不能になるように構成される、伝達遅延ユニットが提供される。 According to the present invention, a first input shaft, an intermediate rotator configured to rotate at a rotational speed slower than the first input shaft as the first input shaft rotates, and the intermediate rotator via A transmission delay unit comprising a first output shaft to which the rotation of the first input shaft is transmitted, wherein the intermediate rotating body is configured to be unable to rotate relative to the first output shaft after a predetermined angle of rotation; Provided.
 本発明の伝達遅延ユニットを用いれば、第1入力軸の回転を遅延させて出力軸に伝達させることができるので、チルト操作の完了前にボトムレールが自重下降することを抑制することができる。また、伝達の遅延が不十分な場合は、チルト操作の完了前にボトムレールが自重下降する恐れがあるが、本発明では、第1入力軸の回転に伴って第1入力軸よりも遅い回転速度で回転するように構成された中間回転体を介して第1入力軸の回転を第1出力軸に伝達するので、回転の伝達の遅延量を360度以上にすることが容易である。そして、チルト操作は、通常、第1入力軸が360度回転する前に完了するので、チルト操作の完了前にボトムレールが自重下降することをより確実に抑制することができる。 If the transmission delay unit of the present invention is used, the rotation of the first input shaft can be delayed and transmitted to the output shaft, so that the bottom rail can be prevented from falling by its own weight before the tilt operation is completed. In addition, when the transmission delay is insufficient, the bottom rail may fall by its own weight before the completion of the tilting operation. In the present invention, however, the rotation of the first input shaft is slower than that of the first input shaft. Since the rotation of the first input shaft is transmitted to the first output shaft via the intermediate rotator configured to rotate at a speed, it is easy to set the rotation transmission delay amount to 360 degrees or more. Since the tilt operation is normally completed before the first input shaft rotates 360 degrees, it is possible to more reliably suppress the bottom rail from falling by its own weight before the tilt operation is completed.
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
 好ましくは、前記中間回転体の外周面が第1入力軸の外周面に噛み合うように構成される。
 好ましくは、前記中間回転体は、第1入力軸の回転に伴って断続的に回転するように構成される。
 好ましくは、前記中間回転体は、複数設けられ、第1入力軸の回転に伴って複数の前記中間回転体が同時に回転するように構成される。
 好ましくは、前記中間回転体の内周面が第1入力軸の外周面に噛み合うように構成される。
 好ましくは、前記中間回転体は、第1入力軸の回転に伴って自転すると共に第1入力軸の周りを前記自転の方向とは逆方向に公転するように構成される。
 好ましくは、前記中間回転体は、規制突起を備え、前記中間回転体の回転に伴って前記規制突起が第1出力軸によって係止されることによって、前記中間回転体が第1出力軸に対して相対回転不能になるように構成される。
Hereinafter, various embodiments of the present invention will be exemplified. The following embodiments can be combined with each other.
Preferably, the outer peripheral surface of the intermediate rotating body is configured to mesh with the outer peripheral surface of the first input shaft.
Preferably, the intermediate rotating body is configured to rotate intermittently with the rotation of the first input shaft.
Preferably, a plurality of the intermediate rotators are provided, and the plurality of intermediate rotators are configured to rotate simultaneously with the rotation of the first input shaft.
Preferably, the inner peripheral surface of the intermediate rotating body is configured to mesh with the outer peripheral surface of the first input shaft.
Preferably, the intermediate rotating body is configured to rotate with the rotation of the first input shaft and to revolve around the first input shaft in a direction opposite to the direction of the rotation.
Preferably, the intermediate rotator includes a restriction protrusion, and the intermediate protrusion is locked to the first output shaft as the restriction protrusion is locked by the first output shaft as the intermediate rotator rotates. So that the relative rotation is impossible.
 好ましくは、操作コードの操作によって昇降軸を回転させて遮蔽材を昇降させる遮蔽材昇降装置であって、前記操作コードの操作に伴って回転する入力軸の回転が上記記載の伝達遅延ユニット及びクラッチユニットを介して前記昇降軸に伝達されるように構成され、前記クラッチユニットは、第1出力軸の回転に伴って回転する第2入力軸と、前記昇降軸と一体回転する第2出力軸を備え、前記クラッチユニットは、第2入力軸の回転に伴って回転するカム軸の回転に伴って前記カム軸をその軸方向に移動させるカム部と、前記カム軸の移動に伴って前記カム軸と第2出力軸の間の連結・非連結状態を切り替えるクラッチ部を備える、遮蔽材昇降装置が提供される。 Preferably, the shielding member lifting / lowering device is configured to rotate the lifting shaft by operating the operation code to raise and lower the shielding material, and the rotation of the input shaft that rotates in accordance with the operation of the operation code is the transmission delay unit and the clutch described above The clutch unit includes a second input shaft that rotates as the first output shaft rotates, and a second output shaft that rotates integrally with the lift shaft. The clutch unit includes: a cam portion that moves the cam shaft in an axial direction thereof as the cam shaft rotates as the second input shaft rotates; and the cam shaft that moves as the cam shaft moves. A shielding material elevating device is provided that includes a clutch portion that switches between a connected state and a non-connected state between the first output shaft and the second output shaft.
 本発明の別の観点によれば、操作コードの操作によって昇降軸及びチルト軸を回転させるように構成された遮蔽材昇降装置であって、前記操作コードの操作に伴って回転する入力軸の回転が伝達遅延ユニットを介して前記昇降軸に伝達されるように構成され、前記伝達遅延ユニットは、前記入力軸の回転に伴って回転する第1入力軸と、第1入力軸の回転が遅延されて伝達される第1出力軸を備え、第1入力軸と一体回転する伝達ギヤと、前記チルト軸と一体回転し且つ前記伝達ギヤに噛み合うように設けられたチルト軸ギヤを備え、前記伝達ギヤは、前記伝達遅延ユニットの入力側に配置される、遮蔽材昇降装置が提供される。本観点では、伝達遅延ユニットは、第1入力軸の回転が遅延されて第1出力軸に伝達されるものであればよく、中間回転体を備えることは必須ではない。本観点によれば、伝達ギヤと第1入力軸の間の摩耗が抑制できる。 According to another aspect of the present invention, there is provided a shielding material lifting / lowering device configured to rotate a lift shaft and a tilt shaft by operation of an operation code, and rotation of an input shaft that rotates in accordance with the operation of the operation code Is transmitted to the elevating shaft via a transmission delay unit, and the transmission delay unit is configured to delay the rotation of the first input shaft and the first input shaft rotating with the rotation of the input shaft. A transmission gear that rotates integrally with the first input shaft, and a tilt shaft gear that rotates integrally with the tilt shaft and meshes with the transmission gear. Is provided with a shield lifting / lowering device disposed on the input side of the transmission delay unit. In this aspect, the transmission delay unit may be any unit as long as the rotation of the first input shaft is delayed and transmitted to the first output shaft, and it is not essential to include an intermediate rotating body. According to this aspect, wear between the transmission gear and the first input shaft can be suppressed.
 本発明のさらに別の観点によれば、操作コードの操作によって昇降軸を回転させて遮蔽材を昇降させる遮蔽材昇降装置であって、前記操作コードの操作に伴って回転する入力軸の回転が伝達遅延ユニット及びクラッチユニットを介して前記昇降軸に伝達されるように構成され、前記伝達遅延ユニットは、前記入力軸の回転に伴って回転する第1入力軸と、第1入力軸の回転が遅延されて伝達される第1出力軸を備え、前記クラッチユニットは、第1出力軸の回転に伴って回転する第2入力軸と、前記昇降軸と一体回転する第2出力軸を備え、前記クラッチユニットは、第2入力軸の回転に伴って回転するカム軸の回転に伴って前記カム軸をその軸方向に移動させるカム部と、前記カム軸の移動に伴って前記カム軸と第2出力軸の間の連結・非連結状態を切り替えるクラッチ部を備え、前記伝達遅延ユニットと前記クラッチユニットの間にブレーキ部を備え、前記ブレーキ部は、第1出力軸の回転を第2入力軸に伝達すると共に、前記遮蔽材の自重によって発生するトルクによる第2入力軸の回転を阻止するように構成される、遮蔽材昇降装置が提供される。本観点では、伝達遅延ユニットは、第1入力軸の回転が遅延されて第1出力軸に伝達されるものであればよく、中間回転体を備えることは必須ではない。本観点によれば、遮蔽材の自重によって発生するトルクによって伝達遅延ユニットの第1出力軸が回転されることを防ぐことができる。 According to still another aspect of the present invention, there is provided a shielding material lifting / lowering device that lifts and lowers a shielding material by rotating a lifting shaft by operation of an operation code, wherein an input shaft that rotates in accordance with the operation of the operation code rotates. The transmission delay unit is configured to be transmitted to the elevating shaft via a transmission delay unit and a clutch unit, and the transmission delay unit includes a first input shaft that rotates as the input shaft rotates, and a rotation of the first input shaft. A first output shaft that is transmitted with a delay; and the clutch unit includes a second input shaft that rotates as the first output shaft rotates, and a second output shaft that rotates integrally with the elevating shaft, The clutch unit includes a cam portion that moves the cam shaft in the axial direction as the cam shaft rotates as the second input shaft rotates, and the cam shaft and the second shaft that move as the cam shaft moves. Connection between output shafts A clutch unit that switches a coupling state, and a brake unit that is provided between the transmission delay unit and the clutch unit, wherein the brake unit transmits rotation of the first output shaft to the second input shaft; A shielding material lifting / lowering device configured to prevent rotation of the second input shaft due to torque generated by its own weight is provided. In this aspect, the transmission delay unit may be any unit as long as the rotation of the first input shaft is delayed and transmitted to the first output shaft, and it is not essential to include an intermediate rotating body. According to this aspect, it is possible to prevent the first output shaft of the transmission delay unit from being rotated by the torque generated by the weight of the shielding material.
本発明の第1実施形態の横型ブラインドの全体構成を示す正面図である。It is a front view which shows the whole structure of the horizontal blind of 1st Embodiment of this invention. 図1の左側面図である。It is a left view of FIG. サポート部材11に巻取軸9及びチルターユニット19が支持された状態を示す斜視図である。FIG. 3 is a perspective view showing a state in which a winding shaft 9 and a tilter unit 19 are supported by a support member 11. 図3の分解斜視図である。FIG. 4 is an exploded perspective view of FIG. 3. チルターユニット19を示し、(a)は斜視図、(b)は分解斜視図である。The tilter unit 19 is shown, (a) is a perspective view, (b) is an exploded perspective view. (a)~(b)は、チルターユニット19の組み立て工程を示す斜視図である。(A)-(b) is a perspective view which shows the assembly process of the tilter unit 19. FIG. (a)は、図3の前後方向の中央面の断面図であり、(b)は(a)中のA-A断面図である。(A) is a cross-sectional view of the central plane in the front-rear direction of FIG. チルタードラム32の別構成を示す、図7(a)に対応する断面図である。FIG. 8 is a cross-sectional view corresponding to FIG. 7A, showing another configuration of the tilter drum 32. 操作部ユニット6を示し、(a)は斜視図、(b)は(a)の前後方向の中央面の断面図である。The operation part unit 6 is shown, (a) is a perspective view, (b) is sectional drawing of the center surface of the front-back direction of (a). (a)~(c)は、伝達遅延ユニット25を示し、(a)は斜視図、(b)は分解斜視図、(c)は左側面図である。(d)は、伝達遅延ユニット25の入力軸28の斜視図である。(A)-(c) shows the transmission delay unit 25, (a) is a perspective view, (b) is an exploded perspective view, and (c) is a left side view. FIG. 4D is a perspective view of the input shaft 28 of the transmission delay unit 25. 伝達遅延ユニット25を示し、(a)は斜視図、(b)は分解斜視図、(c)は右側面図、(d)は領域Aの拡大図である。The transmission delay unit 25 is shown, (a) is a perspective view, (b) is an exploded perspective view, (c) is a right side view, and (d) is an enlarged view of a region A. FIG. (a)は伝達遅延ユニット25の入力軸28と、伝達ギヤ24bの嵌合状態を示す断面図であり、(b)は伝達遅延ユニット25の入力軸28と、遊星ギヤ23bの遊星キャリア23dの嵌合状態を示す断面図である。(A) is sectional drawing which shows the fitting state of the input shaft 28 of the transmission delay unit 25, and the transmission gear 24b, (b) is the input shaft 28 of the transmission delay unit 25, and the planet carrier 23d of the planetary gear 23b. It is sectional drawing which shows a fitting state. 伝達遅延ユニット25の第2ケース30と、ブレーキ部26の入力部26aの係合突起26a1との嵌合状態を示す断面図である。4 is a cross-sectional view showing a fitting state between the second case 30 of the transmission delay unit 25 and the engagement protrusion 26a1 of the input portion 26a of the brake portion 26. FIG. 伝達遅延ユニット25が操作部ケース45内に配置されている状態を示し、(a)は右側面図であり、(b)は斜視図である。The state in which the transmission delay unit 25 is arrange | positioned in the operation part case 45 is shown, (a) is a right view, (b) is a perspective view. (a)~(g)の各図において、中段は、伝達遅延ユニット25の入力軸28と中間回転体31の噛み合いを示す断面図であり、上段及び下段は、回動溝29a,30a内での規制突起31b,31cの位置を示す、操作プーリー23a側から見た図である。なお、規制突起31b,31cは、本来は、中段の断面図には表れないが、理解を助けるために、便宜上、図示している。In each of the drawings (a) to (g), the middle stage is a cross-sectional view showing the meshing between the input shaft 28 of the transmission delay unit 25 and the intermediate rotating body 31, and the upper stage and the lower stage are within the rotation grooves 29a and 30a. It is the figure seen from the operation pulley 23a side which shows the position of the control protrusions 31b and 31c. Although the regulation protrusions 31b and 31c are not originally shown in the middle sectional view, they are shown for convenience in order to help understanding. 操作部ケース45とクラッチユニット27を示す斜視図である。FIG. 4 is a perspective view showing an operation unit case 45 and a clutch unit 27. (a)はクラッチユニット27の斜視図であり、(b)は出力軸43の斜視図であり、(c)はカム軸42の斜視図であり、(d)は入力軸41の斜視図であり、(e)は別体パーツ46の斜視図である。(A) is a perspective view of the clutch unit 27, (b) is a perspective view of the output shaft 43, (c) is a perspective view of the cam shaft 42, and (d) is a perspective view of the input shaft 41. FIG. 6E is a perspective view of the separate part 46. 操作部ケース45とクラッチユニット27を示す、図9(b)に対応する断面図であり、(a)はカム軸42と出力軸43が連結された状態、(b)はカム軸42と出力軸43が非連結になった状態を示す。It is sectional drawing corresponding to FIG.9 (b) which shows the operation part case 45 and the clutch unit 27, (a) is the state with which the cam shaft 42 and the output shaft 43 were connected, (b) is the cam shaft 42 and output. A state in which the shaft 43 is disconnected is shown. (a)~(c)は、カム軸42と出力軸43の外周面の展開図であり、下降操作によってカム軸42と出力軸43が非連結状態となる作用を説明するための図である。(A)-(c) is an expanded view of the outer peripheral surface of the camshaft 42 and the output shaft 43, and is a figure for demonstrating the effect | action which the camshaft 42 and the output shaft 43 will be in a non-connection state by lowering operation. . (a)~(c)は、カム軸42と出力軸43の外周面の展開図であり、上昇操作によってカム軸42と出力軸43が連結状態となる作用を説明するための図である。(A)-(c) is an expanded view of the outer peripheral surface of the cam shaft 42 and the output shaft 43, and is a figure for demonstrating the effect | action which the cam shaft 42 and the output shaft 43 will be in a connection state by raising operation. 操作部ユニット6中の一部の部材のみを示した斜視図である。FIG. 5 is a perspective view showing only some members in the operation unit 6. 操作部ユニット6中の一部の部材のみを示した斜視図である。FIG. 5 is a perspective view showing only some members in the operation unit 6. 操作部ユニット6中の一部の部材のみを示した斜視図である。FIG. 5 is a perspective view showing only some members in the operation unit 6. (a)~(b)は、操作部ユニット6中の一部の部材のみを示した斜視図である。(A)-(b) is the perspective view which showed only the one part member in the operation part unit 6. FIG. 操作部ユニット6中の一部の部材のみを示した斜視図である。FIG. 5 is a perspective view showing only some members in the operation unit 6. 本発明の第2実施形態の伝達遅延ユニット25を示し、(a)~(b)は斜視図、(c)は中間回転体55及び入力軸56の斜視図である。The transmission delay unit 25 of 2nd Embodiment of this invention is shown, (a)-(b) is a perspective view, (c) is a perspective view of the intermediate | middle rotary body 55 and the input shaft 56. FIG. 本発明の第3実施形態の伝達遅延ユニット25を示し、(a)~(b)は斜視図、(c)はケース51のカバー部51aを除いた状態の斜視図、(d)は分解斜視図である。The transmission delay unit 25 of 3rd Embodiment of this invention is shown, (a)-(b) is a perspective view, (c) is a perspective view of the state which removed the cover part 51a of the case 51, (d) is a disassembled perspective view. FIG. 図27の伝達遅延ユニット25の各ギヤ部を通る断面の断面図である。It is sectional drawing of the cross section which passes each gear part of the transmission delay unit 25 of FIG. (a)~(d)は、図28の状態から入力軸53が回転したときの中間回転体52の動作を示す断面図である。(A)-(d) is sectional drawing which shows operation | movement of the intermediate | middle rotary body 52 when the input shaft 53 rotates from the state of FIG. (a)~(c)は、図29(d)の状態から入力軸53がさらに回転したときの中間回転体52の動作を示す断面図である。(A)-(c) is sectional drawing which shows operation | movement of the intermediate | middle rotary body 52 when the input shaft 53 rotates further from the state of FIG.29 (d). 伝達遅延ユニット25をロールスクリーンに適用した本発明の第4実施形態を示し、(a)は正面図、(b)は右側面図、(c)はスクリーンの正面図である。(a)ではスクリーン64a,65aの図示を省略し、(b)では操作プーリー23a及び操作コード7の図示を省略している。The 4th Embodiment of this invention which applied the transmission delay unit 25 to the roll screen is shown, (a) is a front view, (b) is a right view, (c) is a front view of a screen. In (a), illustration of the screens 64a and 65a is omitted, and in (b), illustration of the operation pulley 23a and the operation cord 7 is omitted.
 以下、本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴について独立して発明が成立する。 Hereinafter, embodiments of the present invention will be described. Various characteristic items shown in the following embodiments can be combined with each other. The invention is established independently for each feature.
1.第1実施形態
 図1~図2に示す遮蔽装置としての横型ブラインドは、ヘッドボックス1から垂下される複数本のラダーコード2を介して遮蔽材としての多数段のスラット3が吊下支持され、同ラダーコード2の下端にボトムレール4が吊下支持されている。ラダーコード2は、一対の縦糸の間に複数の横糸を備える。各横糸には、スラット3が支持されている。図5(b)に示すように、ラダーコード2の上端側にはループ部2aが設けられており、ループ部2aは、ヘッドボックス1内に配設されたサポート部材10又はサポート部材11によって回転可能に支持されたチルタードラム32に設けられたV状溝32aに掛装されている。V状溝32aは、チルタードラム32の外周面を周回するように、径方向外側に向かって幅が広がるように形成されている。ループ部2aとV状溝32aの内面32eの間の摩擦によって、チルタードラム32の回転に追従してループ部2aが変位することによってスラット3が回動するように構成されている。また、スラット3が全閉状態又は逆全閉状態(スラット3が全閉状態とは逆側を向いて略垂直になっている状態)になるまで回動された後は、チルタードラム32がラダーコード2に対して空回りするようになっている。なお、ラダーコード2は、特許請求の範囲の「スラット支持コード」に相当する。「スラット支持コード」は、スラット3を支持及び回動可能なものであればその構成は限定されず、例えば、互いに分離された2本の縦糸を備え、一方の縦糸がスラットの一方の縁に取着され、他方の縦糸がスラットの他方の縁に取着されるような構成であってもよい。
1. First Embodiment A horizontal blind as a shielding device shown in FIGS. 1 and 2 is supported by hanging a plurality of slats 3 as a shielding material through a plurality of ladder cords 2 suspended from a head box 1, A bottom rail 4 is suspended and supported at the lower end of the ladder cord 2. The ladder cord 2 includes a plurality of wefts between a pair of warp yarns. A slat 3 is supported on each weft. As shown in FIG. 5 (b), a loop portion 2 a is provided on the upper end side of the ladder cord 2, and the loop portion 2 a is rotated by the support member 10 or the support member 11 disposed in the head box 1. It is hung on a V-shaped groove 32a provided on a tilter drum 32 supported in a possible manner. The V-shaped groove 32a is formed so that its width increases outward in the radial direction so as to go around the outer peripheral surface of the tilter drum 32. By the friction between the loop portion 2a and the inner surface 32e of the V-shaped groove 32a, the slat 3 is rotated by the displacement of the loop portion 2a following the rotation of the tilter drum 32. Further, after the slat 3 is rotated until the slat 3 is in a fully closed state or a reverse fully closed state (a state in which the slat 3 faces substantially opposite to the fully closed state), the tilter drum 32 is a ladder code. 2 is idle. The ladder cord 2 corresponds to the “slat support cord” in the claims. The structure of the “slat support cord” is not limited as long as it can support and rotate the slat 3. For example, the slat support cord includes two warps separated from each other, and one warp is provided on one edge of the slat. A configuration may be employed in which the other warp is attached to the other edge of the slat.
 ヘッドボックス1からは昇降コード5も垂下されており、昇降コード5の下端がボトムレール4に取着されている。ヘッドボックス1内に配設されたサポート部材11に回転可能に支持された巻取軸9に昇降コード5が巻取り及び巻戻しされることによってボトムレール4が昇降される。 The lifting / lowering cord 5 is also suspended from the head box 1, and the lower end of the lifting / lowering cord 5 is attached to the bottom rail 4. The bottom rail 4 is raised and lowered by winding and unwinding the lifting cord 5 on the winding shaft 9 rotatably supported by the support member 11 disposed in the head box 1.
 サポート部材10,11には、同一構成のチルターユニット19が支持されている。サポート部材10は、チルターユニット19のみを支持するように構成されている。一方、サポート部材11は、チルターユニット19及び巻取軸9を支持するように構成されている。チルターユニット19を支持する部位については、サポート部材10は、サポート部材11と実質的に同一構成である。以下、サポート部材11、巻取軸9、及びチルターユニット19について詳細に説明する。 The support members 10 and 11 support a tilter unit 19 having the same configuration. The support member 10 is configured to support only the tilter unit 19. On the other hand, the support member 11 is configured to support the tilter unit 19 and the winding shaft 9. The support member 10 has substantially the same configuration as that of the support member 11 for the part that supports the tilter unit 19. Hereinafter, the support member 11, the winding shaft 9, and the tilter unit 19 will be described in detail.
 図3~図4に示すように、サポート部材11は、サポート部材本体11aと、アダプタプレート11bを備える。サポート部材本体11aは、巻取軸9を支持する巻取軸収容部11eと、チルターユニット19を支持するチルターユニット収容部11fを備える。アダプタプレート11bは、昇降コード5が挿通される昇降コード挿通部11cと、ラダーコード2が挿通されるラダーコード挿通部11dを備え、サポート部材本体11aのアダプタ装着部11gに装着される。 As shown in FIGS. 3 to 4, the support member 11 includes a support member main body 11a and an adapter plate 11b. The support member main body 11 a includes a winding shaft housing portion 11 e that supports the winding shaft 9 and a tilter unit housing portion 11 f that supports the tilter unit 19. The adapter plate 11b includes a lifting / lowering cord insertion portion 11c through which the lifting / lowering cord 5 is inserted, and a ladder cord insertion portion 11d through which the ladder cord 2 is inserted, and is mounted on the adapter mounting portion 11g of the support member main body 11a.
 図3~図4に示すように、巻取軸9は、巻取コーン9aと、カムユニット9bを備える。カムユニット9bは、特開2014-231696に開示されているように、ボトムレール4が自重下降中に障害物に衝突したり、ボトムレール4が下限位置に到達したりしたときに巻取コーン9aの回転を停止させる機能を有する。カムユニット9bは、操作コード7の操作に伴って回転する昇降軸8と一体回転するように構成されており、ボトムレール4を上昇させる際には、昇降軸8の回転に伴ってカムユニット9bと巻取コーン9aが一体回転する。一方、ボトムレール4を自重下降させる際には、ボトムレール4の下降に伴って昇降コード5に引張り力が加わり、この引張り力によって発生するトルクによって巻取コーン9aが回転するように構成されている。なお、昇降軸8には速度調整機22が設けられていて、ボトムレール4の自重下降時の昇降軸8の回転速度が過度に大きくならないように調整される。 As shown in FIGS. 3 to 4, the winding shaft 9 includes a winding cone 9a and a cam unit 9b. As disclosed in Japanese Patent Application Laid-Open No. 2014-231696, the cam unit 9b is provided with a winding cone 9a when the bottom rail 4 collides with an obstacle while the weight of the bottom rail 4 is lowered, or when the bottom rail 4 reaches the lower limit position. Has the function of stopping the rotation of the. The cam unit 9 b is configured to rotate integrally with the lifting shaft 8 that rotates in accordance with the operation of the operation cord 7. When the bottom rail 4 is lifted, the cam unit 9 b is rotated with the rotation of the lifting shaft 8. And the winding cone 9a rotate integrally. On the other hand, when the bottom rail 4 is lowered by its own weight, a pulling force is applied to the lifting cord 5 as the bottom rail 4 is lowered, and the winding cone 9a is rotated by the torque generated by the pulling force. Yes. In addition, the lifting / lowering shaft 8 is provided with a speed adjuster 22 so that the rotational speed of the lifting / lowering shaft 8 when the weight of the bottom rail 4 is lowered is not excessively increased.
 図5~図7に示すように、チルターユニット19は、チルタードラム32と、サポートキャップ33と、チルターギヤ34と、軸受プレート35を備える。上記の通り、チルタードラム32のV状溝32aには、ラダーコード2のループ部2aが掛装される。チルタードラム32は、昇降軸8の回転に伴って回転しない。一方、操作コード7の操作に伴って回転するチルト軸17がチルターギヤ34の挿通孔34cに係合されることによって、チルターギヤ34は、チルト軸17の回転に伴って回転するように構成されている。そして、チルタードラム32のギヤ部32cがチルターギヤ34のギヤ部34bに噛み合っているので、チルト軸17の回転に伴ってチルターギヤ34が回転することによってチルタードラム32が回転する。 5 to 7, the tilter unit 19 includes a tilter drum 32, a support cap 33, a tilter gear 34, and a bearing plate 35. As described above, the loop portion 2 a of the ladder cord 2 is hooked on the V-shaped groove 32 a of the tilter drum 32. The tilter drum 32 does not rotate with the rotation of the lifting shaft 8. On the other hand, the tilt shaft 17 that rotates in accordance with the operation of the operation cord 7 is engaged with the insertion hole 34 c of the tilter gear 34, so that the tilter gear 34 rotates with the rotation of the tilt shaft 17. . Since the gear portion 32 c of the tilter drum 32 is engaged with the gear portion 34 b of the tilter gear 34, the tilter gear 32 rotates as the tilter gear 34 rotates as the tilt shaft 17 rotates.
 軸受プレート35には、係合凸部35bを有する一対のアーム35aと、チルターギヤ軸受部35cと、チルタードラム軸受部35dを備える。図6(a)に示すように、ギヤ部32cとギヤ部34bを噛みあわせた状態で、チルターギヤ34の軸部34aをチルターギヤ軸受部35c内に挿入させ、且つチルタードラム32の軸部32bをチルタードラム軸受部35d内に挿入させる。この際、一対のアーム35aの間隔が広がるように一対のアーム35aが弾性変形しながら、係合凸部35bがチルタードラム32のギヤベース32dを乗り越えて、係合凸部35bがギヤベース32dに係合され、図6(b)に示す状態になる。この状態では、チルタードラム32の軸方向移動は係合凸部35bによって阻止され、チルターギヤ34の軸方向移動はギヤベース32dによって阻止させるので、軸受プレート35と、チルタードラム32と、チルターギヤ34が一体化される。これらを一体化させる前又は後であって、サポートキャップ33を装着する前に、ラダーコード2のループ部2aをV状溝32aに掛装させる。 The bearing plate 35 includes a pair of arms 35a having engaging convex portions 35b, a tilter gear bearing portion 35c, and a tilter drum bearing portion 35d. As shown in FIG. 6A, with the gear portion 32c and the gear portion 34b engaged, the shaft portion 34a of the tilter gear 34 is inserted into the tilter gear bearing portion 35c, and the shaft portion 32b of the tilter drum 32 is inserted into the tilter drum bearing. It is inserted into the part 35d. At this time, while the pair of arms 35a is elastically deformed so that the distance between the pair of arms 35a is widened, the engaging convex portion 35b gets over the gear base 32d of the tilter drum 32, and the engaging convex portion 35b is engaged with the gear base 32d. Then, the state shown in FIG. In this state, the axial movement of the tilter drum 32 is blocked by the engaging projection 35b, and the axial movement of the tilter gear 34 is blocked by the gear base 32d. Therefore, the bearing plate 35, the tilter drum 32 and the tilter gear 34 are integrated. . Before or after these are integrated and before the support cap 33 is attached, the loop portion 2a of the ladder cord 2 is hung on the V-shaped groove 32a.
 サポートキャップ33は、先端に向かって幅が狭くなるV状突起33aと、係合溝33bを有する一対の側壁33dを備える。図6(b)に示すように、軸受プレート35の上側から、軸受プレート35のベース板35eが係合溝33b内に入り込むようにサポートキャップ33を装着すると、V状突起33aがV状溝32a内に延びるように配設される。 The support cap 33 includes a pair of side walls 33d each having a V-shaped protrusion 33a that becomes narrower toward the tip and an engagement groove 33b. As shown in FIG. 6B, when the support cap 33 is mounted from above the bearing plate 35 so that the base plate 35e of the bearing plate 35 enters the engagement groove 33b, the V-shaped protrusion 33a becomes the V-shaped groove 32a. It is arrange | positioned so that it may extend in.
 ところで、ボトムレール4が上限位置以外にある場合には、ラダーコード2にスラット3の重量が加わるためにラダーコード2とV状溝32aが摩擦係合してラダーコード2がチルタードラム32の回転に追従して移動するのに対し、ボトムレール4が上限位置にある場合は昇降コード5にスラット3の全重量が加わるためにラダーコード2にはスラット3の重量が加わらない。このような状態では、V状突起33aがない場合には、ラダーコード2のループ部2aがV状溝32aから浮き上がってしまい、スラット3が全閉状態になっていないにも関わらず、チルタードラム32がラダーコード2に対して空回りしてしまう場合がある。しかし、本実施形態では、V状突起33aがラダーコード2の浮き上がりを抑制する浮き上がり抑制部として機能するので、ラダーコード2にスラット3の重量が加わっていない場合でも、スラット3が全閉状態になっていない場合にチルタードラム32がラダーコード2に対して空回りすることが抑制される。本実施形態では、V状突起33aは、周方向に約104度の角度に渡って設けられている。V状突起33aが設けられる範囲の中心角α(図7(b)に図示)は、30度以上が好ましく、60又は90度以上がより好ましい。中心角αの上限は、特に規定されないが、例えば、180度である。中心角αを大きくすることによってV状突起33aとV状溝32aの間の隙間Sを過度に狭くすることなく、チルタードラム32の回転にラダーコード2を追従させるのに十分な摩擦力を発生させることが可能になっている。なお、浮き上がり抑制部は、ラダーコード2のループ部2aがV状溝32aから浮き上がることを抑制できるものであればその構成は限定されず、例えば、図8に示すように、V状溝32aの内面32eから突出する係止突起32fを設けて、V状溝32a内の、係止突起32fよりも下側の空間S1にラダーコード2のループ部2aを保持するようにしてもよい。この場合でも、サポートキャップ33にV状突起33aを設けた場合と同様の作用によって、ループ部2aの浮き上がりを抑制することができる。 By the way, when the bottom rail 4 is located at a position other than the upper limit position, the ladder cord 2 and the V-shaped groove 32a are frictionally engaged with each other because the weight of the slat 3 is added to the ladder cord 2, so that the ladder cord 2 rotates the tilter drum 32. On the other hand, when the bottom rail 4 is in the upper limit position, the entire weight of the slat 3 is added to the lifting / lowering cord 5 so that the weight of the slat 3 is not added to the ladder cord 2. In such a state, when there is no V-shaped protrusion 33a, the loop portion 2a of the ladder cord 2 is lifted from the V-shaped groove 32a, and the slat 3 is not fully closed, but the tilter drum 32 is not fully closed. May be idle with respect to the ladder code 2 in some cases. However, in the present embodiment, since the V-shaped protrusion 33a functions as a lift suppression unit that suppresses the lift of the ladder cord 2, even when the weight of the slat 3 is not applied to the ladder cord 2, the slat 3 is fully closed. When it is not, the tilter drum 32 is prevented from spinning around the ladder cord 2. In this embodiment, the V-shaped protrusion 33a is provided over an angle of about 104 degrees in the circumferential direction. The central angle α (shown in FIG. 7B) in the range in which the V-shaped protrusion 33a is provided is preferably 30 degrees or more, and more preferably 60 or 90 degrees or more. The upper limit of the central angle α is not particularly defined, but is 180 degrees, for example. Increasing the central angle α generates a frictional force sufficient to cause the ladder cord 2 to follow the rotation of the tilter drum 32 without excessively narrowing the gap S between the V-shaped protrusion 33a and the V-shaped groove 32a. It is possible. The configuration of the lifting suppression portion is not limited as long as the loop portion 2a of the ladder cord 2 can be prevented from lifting from the V-shaped groove 32a. For example, as illustrated in FIG. A locking projection 32f protruding from the inner surface 32e may be provided so that the loop portion 2a of the ladder cord 2 is held in the space S1 below the locking projection 32f in the V-shaped groove 32a. Even in this case, the lifting of the loop portion 2a can be suppressed by the same action as when the V-shaped protrusion 33a is provided on the support cap 33.
 軸受プレート35にはベース板35eから前後方向の両側に突出する位置決め突起35fが設けられており、サポートキャップ33の側壁33dの下面33cが、位置決め突起35fの上面35gに当接することによってサポートキャップ33が軸受プレート35に対して上下方向に位置決めされる。 The bearing plate 35 is provided with positioning protrusions 35f that protrude from the base plate 35e in the front-rear direction. The lower surface 33c of the side wall 33d of the support cap 33 abuts the upper surface 35g of the positioning protrusion 35f, thereby supporting the support cap 33. Is positioned in the vertical direction with respect to the bearing plate 35.
 以上の構成によって、チルタードラム32、サポートキャップ33、チルターギヤ34、及び軸受プレート35が一体化されたチルターユニット19が得られる。 With the above configuration, the tilter unit 19 in which the tilter drum 32, the support cap 33, the tilter gear 34, and the bearing plate 35 are integrated is obtained.
 チルターユニット19は、図4に示すように、巻取軸9をサポート部材本体11aに支持させた状態で、サポート部材本体11aの上方からサポート部材本体11aに取り付けることができる。このように、予めチルターユニット19の組み立てを行った後に、チルターユニット19をサポート部材11本体aに取り付けることができるので、組立性が優れている。 As shown in FIG. 4, the tilter unit 19 can be attached to the support member body 11a from above the support member body 11a in a state where the winding shaft 9 is supported by the support member body 11a. Thus, after assembling the tilter unit 19 in advance, the tilter unit 19 can be attached to the support member 11 main body a, so that the assemblability is excellent.
 ヘッドボックス1の略右端には操作部ユニット6が設けられている。図9~図25に示すように、操作部ユニット6は、遊星ギヤ・操作プーリー部23と、チルト伝達部24と、伝達遅延ユニット25と、ブレーキ部26と、クラッチユニット27を備える。遊星ギヤ・操作プーリー部23は、操作プーリー23aと、遊星ギヤ23bを備える。操作プーリー23aには、操作コード7が掛装される。操作コード7は、コードゲート15を通じてヘッドボックス1の外に導き出されている。操作プーリー23aは、支軸23a1を備え、支軸23a1がケースキャップ23cによって回転可能に支持されている。操作コード7を操作して操作プーリー23aを回転させると、その回転が遊星ギヤ23bの入力軸23eに伝達される。遊星ギヤ23bでは、入力軸23eの回転が減速されて遊星キャリア23dに伝達される。遊星キャリア23dの回転が伝達遅延ユニット25の入力軸28に伝達される。 An operation unit 6 is provided at the substantially right end of the head box 1. As shown in FIGS. 9 to 25, the operation unit 6 includes a planetary gear / operation pulley unit 23, a tilt transmission unit 24, a transmission delay unit 25, a brake unit 26, and a clutch unit 27. The planetary gear / operation pulley unit 23 includes an operation pulley 23a and a planetary gear 23b. An operation cord 7 is hung on the operation pulley 23a. The operation code 7 is led out of the head box 1 through the code gate 15. The operation pulley 23a includes a support shaft 23a1, and the support shaft 23a1 is rotatably supported by a case cap 23c. When the operation cord 7 is operated to rotate the operation pulley 23a, the rotation is transmitted to the input shaft 23e of the planetary gear 23b. In the planetary gear 23b, the rotation of the input shaft 23e is decelerated and transmitted to the planet carrier 23d. The rotation of the planet carrier 23d is transmitted to the input shaft 28 of the transmission delay unit 25.
 チルト伝達部24は、ギヤプレート24aと、ギヤプレート24aに回転可能に支持される伝達ギヤ24b及びチルト軸ギヤ24cを備える。伝達ギヤ24bは、入力軸28と一体回転するように構成されている。伝達ギヤ24bは、伝達遅延ユニット25の入力側に設けられている。伝達ギヤ24bが入力軸28に対して軸方向に相対移動する場合は伝達ギヤ24bと入力軸28の間に摩耗が発生しやすいが、本実施形態では、伝達ギヤ24bが入力軸28に対して軸方向に相対移動しないので、相対移動に伴う摩耗の問題が生じない。チルト軸ギヤ24cは、伝達ギヤ24bと噛み合っており、伝達ギヤ24bの回転に伴って回転する。チルト軸ギヤ24cの回転は、チルト軸17を通じて、チルターユニット19のチルターギヤ34に伝達されてスラット3が回動される。 The tilt transmission unit 24 includes a gear plate 24a, a transmission gear 24b and a tilt shaft gear 24c that are rotatably supported by the gear plate 24a. The transmission gear 24b is configured to rotate integrally with the input shaft 28. The transmission gear 24 b is provided on the input side of the transmission delay unit 25. When the transmission gear 24b moves relative to the input shaft 28 in the axial direction, wear tends to occur between the transmission gear 24b and the input shaft 28. However, in this embodiment, the transmission gear 24b is relative to the input shaft 28. Since there is no relative movement in the axial direction, there is no problem of wear associated with the relative movement. The tilt shaft gear 24c meshes with the transmission gear 24b and rotates with the rotation of the transmission gear 24b. The rotation of the tilt shaft gear 24c is transmitted to the tilter gear 34 of the tilter unit 19 through the tilt shaft 17, and the slat 3 is rotated.
 図10~図15に示すように、伝達遅延ユニット25は、入力軸28と、第1及び第2ケース29,30によって回転可能に支持される一対の中間回転体31を備える。 As shown in FIGS. 10 to 15, the transmission delay unit 25 includes an input shaft 28 and a pair of intermediate rotating bodies 31 that are rotatably supported by the first and second cases 29 and 30.
 入力軸28は、入力側から順に、第1軸部28f、第2軸部28g、第3軸部28e、第4軸部28i、第5軸部28dを備える。第1軸部28fは、第2軸部28gよりも小径である。第2軸部28gは、第3軸部28eよりも小径である。第4軸部28iは、第3軸部28eよりも小径である。第5軸部28dは、第4軸部28iよりも小径である。第1軸部28fは、遊星ギヤ23bの入力軸23eに設けられた軸受部23e1で軸受される。第2軸部28gには係合溝28bが設けられている。係合溝28bは、周方向に等間隔に離間されて3つ設けられている。図12(b)に示すように、遊星キャリア23dの回転中心には挿通孔23d1が設けられており、挿通孔23d1には径方向内側に突出する係合突起23d2が設けられている。係合突起23d2は、周方向に等間隔に離間されて3つ設けられており、各係合突起23d2が各係合溝28bに係合されることによって入力軸28と遊星キャリア23dが一体回転される。第3軸部28eには係合溝28cが設けられている。係合溝28cは、周方向に等間隔に離間されて3つ設けられている。図12(a)に示すように、伝達ギヤ24bの回転中心には挿通孔24b1が設けられており、挿通孔24b1には径方向内側に突出する係合突起24b2が設けられている。係合突起24b2は、周方向に等間隔に離間されて3つ設けられており、各係合突起24b2が各係合溝28cに係合されることによって入力軸28と伝達ギヤ24bが一体回転される。第1ケース29には軸受部29gが設けられており、第3軸部28eが軸受部29gによって軸受される。第4軸部28iの外周面には、径方向に突出する2つの歯突起28aが180度ピッチで設けられている。第5軸部28dは図13に示すように、第2ケース30の筒部30kから径方向内側に突出する係合突起30gの軸受面30hによって軸受される。 The input shaft 28 includes, in order from the input side, a first shaft portion 28f, a second shaft portion 28g, a third shaft portion 28e, a fourth shaft portion 28i, and a fifth shaft portion 28d. The first shaft portion 28f has a smaller diameter than the second shaft portion 28g. The second shaft portion 28g has a smaller diameter than the third shaft portion 28e. The fourth shaft portion 28i has a smaller diameter than the third shaft portion 28e. The fifth shaft portion 28d has a smaller diameter than the fourth shaft portion 28i. The first shaft portion 28f is supported by a bearing portion 23e1 provided on the input shaft 23e of the planetary gear 23b. An engagement groove 28b is provided in the second shaft portion 28g. Three engagement grooves 28b are provided at regular intervals in the circumferential direction. As shown in FIG. 12B, an insertion hole 23d1 is provided at the rotation center of the planet carrier 23d, and an engagement protrusion 23d2 protruding radially inward is provided in the insertion hole 23d1. Three engagement projections 23d2 are provided at equal intervals in the circumferential direction, and the input shaft 28 and the planet carrier 23d rotate integrally by engaging each engagement projection 23d2 with each engagement groove 28b. Is done. An engagement groove 28c is provided in the third shaft portion 28e. Three engagement grooves 28c are provided at equal intervals in the circumferential direction. As shown in FIG. 12A, an insertion hole 24b1 is provided at the rotation center of the transmission gear 24b, and an engagement protrusion 24b2 protruding radially inward is provided in the insertion hole 24b1. Three engagement protrusions 24b2 are provided at equal intervals in the circumferential direction, and the input shaft 28 and the transmission gear 24b rotate integrally as each engagement protrusion 24b2 is engaged with each engagement groove 28c. Is done. The first case 29 is provided with a bearing portion 29g, and the third shaft portion 28e is supported by the bearing portion 29g. Two tooth protrusions 28a protruding in the radial direction are provided on the outer peripheral surface of the fourth shaft portion 28i at a pitch of 180 degrees. As shown in FIG. 13, the fifth shaft portion 28 d is supported by a bearing surface 30 h of an engagement protrusion 30 g that protrudes radially inward from the cylindrical portion 30 k of the second case 30.
 第1及び第2ケース29,30は、伝達遅延ユニット25の出力軸として機能する。第1ケース29の基部29bには、軸受部29gと回動溝29aが設けられている。図11(d)に示すように、回動溝29aの周方向の中央には回動溝29a内に向かって突出する係合突起29hが設けられている。また、基部29bの出力側の面には、基部29bから突出する一対の突出壁29e及び突出筒29cが設けられている。突出壁29eにはスナップ孔29fが設けられ、突出筒29cには挿通孔29dが設けられている。スナップ孔29fは、各突出壁29eに上下方向に離間されて2箇所に設けられている。 The first and second cases 29 and 30 function as an output shaft of the transmission delay unit 25. The base portion 29b of the first case 29 is provided with a bearing portion 29g and a turning groove 29a. As shown in FIG. 11D, an engagement protrusion 29h is provided at the center of the rotation groove 29a in the circumferential direction so as to protrude toward the rotation groove 29a. A pair of projecting walls 29e and projecting cylinders 29c projecting from the base 29b are provided on the output side surface of the base 29b. The protruding wall 29e is provided with a snap hole 29f, and the protruding cylinder 29c is provided with an insertion hole 29d. The snap holes 29f are provided at two positions spaced apart in the vertical direction on each protruding wall 29e.
 第2ケース30の基部30bには回動溝30aが設けられている。基部30bの入力側の面には、基部30bから突出する一対の突出壁30d及び突出棒30cが設けられている。各突出壁30dの外側面にはスナップ突起30eが設けられている。スナップ突起30eは、上下方向に離間されて2箇所に設けられている。また、一対の突出壁30dの間には、基部30bから突出する支軸30fが設けられている。支軸30fは、上下方向に離間されて2箇所に設けられている。基部30bの出力側の面には、回動溝30aに隣接して突出片30iが設けられている。突出片30iは、各回動溝30aに、各回動溝30aに沿った方向に離間されて2箇所に設けられている。各突出片30iには、回動溝30aの方向に向かって突出する係合突起30jが設けられている。また、基部30bの出力側の面には、筒部30kが設けられており、筒部30kには、筒部30kから径方向内側に突出する係合突起30gが設けられている。係合突起30gは、周方向に等間隔に離間されて3つ設けられている。各係合突起30gの先端には軸受面30hが設けられている。上記の通り、入力軸28の第5軸部28dが軸受面30hによって軸受される。 A rotation groove 30a is provided in the base 30b of the second case 30. A pair of projecting walls 30d and projecting rods 30c projecting from the base 30b are provided on the input side surface of the base 30b. A snap projection 30e is provided on the outer surface of each protruding wall 30d. The snap projections 30e are provided at two locations apart in the vertical direction. A support shaft 30f protruding from the base portion 30b is provided between the pair of protruding walls 30d. The support shaft 30f is provided at two locations apart in the vertical direction. On the output side surface of the base portion 30b, a protruding piece 30i is provided adjacent to the rotation groove 30a. The protruding pieces 30i are provided at two locations in the respective rotating grooves 30a so as to be separated in the direction along the respective rotating grooves 30a. Each protruding piece 30i is provided with an engaging protrusion 30j protruding in the direction of the rotation groove 30a. Moreover, the cylinder part 30k is provided in the surface of the output side of the base part 30b, and the engagement protrusion 30g which protrudes radially inward from the cylinder part 30k is provided in the cylinder part 30k. Three engagement protrusions 30g are provided at equal intervals in the circumferential direction. A bearing surface 30h is provided at the tip of each engagement protrusion 30g. As described above, the fifth shaft portion 28d of the input shaft 28 is supported by the bearing surface 30h.
 中間回転体31には、軸受部31dが設けられており、第2ケース30の支軸30fが軸受部31dによって軸受されることによって中間回転体31が第2ケース30によって回転可能に支持される。中間回転体31の外周面には、径方向に突出する3つの歯突起31aが45度ピッチで設けられている。図15に示すように、歯突起28aと歯突起31aは互いに噛み合うように配置されており、入力軸28の回転に伴って歯突起28aが歯突起31aに当接して、中間回転体31が回転されるようになっている。また、中間回転体31は軸方向の前後両側に突出する規制突起31b,31cを備える。規制突起31b,31cが第1及び第2ケース29,30の回動溝29a,30a内に挿通されることによって、中間回転体31は、規制突起31b,31cが回動溝29a,30a内で回動可能な角度範囲(本実施形態では約140度)内において、第1及び第2ケース29,30に対して相対回転可能になっている。規制突起31bには係合溝31eが設けられている。規制突起31cには係合突起31fが設けられている。
The intermediate rotating body 31 is provided with a bearing portion 31d, and the intermediate rotating body 31 is rotatably supported by the second case 30 when the support shaft 30f of the second case 30 is supported by the bearing portion 31d. . Three tooth protrusions 31 a protruding in the radial direction are provided on the outer peripheral surface of the intermediate rotating body 31 at a 45-degree pitch. As shown in FIG. 15, the tooth protrusions 28a and the tooth protrusions 31a are arranged so as to mesh with each other. As the input shaft 28 rotates, the tooth protrusions 28a abut against the tooth protrusions 31a and the intermediate rotating body 31 rotates. It has come to be. Moreover, the intermediate | middle rotary body 31 is provided with the control protrusions 31b and 31c which protrude in the axial direction front and back both sides. When the restricting protrusions 31b and 31c are inserted into the turning grooves 29a and 30a of the first and second cases 29 and 30, the intermediate rotating body 31 has the restricting protrusions 31b and 31c within the turning grooves 29a and 30a. Within a rotatable angle range (about 140 degrees in the present embodiment), relative rotation with respect to the first and second cases 29 and 30 is possible. An engaging groove 31e is provided in the restricting protrusion 31b. An engagement protrusion 31f is provided on the restriction protrusion 31c.
 伝達遅延ユニット25は、軸受部31dに支軸30fを挿通し、入力軸28の第5軸部28dが軸受面30hによって軸受された状態で、第1軸部28f、第2軸部28g、第3軸部28eの順に軸受部29gに挿通させ、突出棒30cを挿通孔29dに挿通させ、スナップ突起30eをスナップ孔29fに係合させることによって組み立てることができる。 The transmission delay unit 25 inserts the support shaft 30f into the bearing portion 31d, and the first shaft portion 28f, the second shaft portion 28g, the second shaft portion 28g, and the fifth shaft portion 28d of the input shaft 28 are supported by the bearing surface 30h. The triaxial portion 28e can be assembled by inserting the bearing portion 29g in this order, inserting the protruding rod 30c through the insertion hole 29d, and engaging the snap projection 30e with the snap hole 29f.
 ここで、図15を用いて、伝達遅延ユニット25の動作を説明する。
 まず、入力軸28を図10(b)及び図11(b)に示す矢印X方向(ボトムレール4を上昇させる方向)に回転させると、図15(a)に示すように歯突起28aが矢印X方向に回動する。入力軸28が約半回転すると、図15(b)に示すように、歯突起28aが歯突起31aに噛み合う。この状態で入力軸28を矢印X方向にさらに回転させると、図15(c)~(d)に示すように、入力軸28の回転に伴って中間回転体31が矢印Y方向に回転する。入力軸28が約60度回転して図15(d)の状態になるまでに中間回転体31も約60度回転する。この際、規制突起31b,31cが回動溝29a,30a内で矢印Y方向に約60度回動する。規制突起31b,31cが回動溝29a,30a内で回動可能な間は、入力軸28の回転は、第1及び第2ケース29,30には伝達されず、入力軸28は、第1及び第2ケース29,30に対して相対回転する。図15(d)の状態になると歯突起28a,31aの噛み合いが解除されるので、入力軸28の回転に伴う中間回転体31の回転は停止される。入力軸28をさらに約半回転させると、図15(e)~(f)に示すように歯突起28a,31aが再度噛み合って、入力軸28の回転に伴って中間回転体31が回転するようになる。そして、入力軸28及び中間回転体31がそれぞれ約60度回転した後に歯突起28a,31aの噛み合いが解除され、入力軸28の回転に伴う中間回転体31の回転は停止される。入力軸28をさらに約半回転させると、再度噛み合って、入力軸28の回転に伴って中間回転体31が回転するようになる。そして、入力軸28及び中間回転体31がそれぞれ約20度回転すると、規制突起31b,31cが回動溝29a,30aの端にまで到達し、図15(g)に示す状態になる。このように、中間回転体31は、入力軸28の回転に伴って断続的に回転される。
Here, the operation of the transmission delay unit 25 will be described with reference to FIG.
First, when the input shaft 28 is rotated in the direction of the arrow X shown in FIGS. 10B and 11B (the direction in which the bottom rail 4 is raised), the tooth protrusion 28a is moved to the arrow as shown in FIG. Rotate in the X direction. When the input shaft 28 rotates about half a half, as shown in FIG. 15 (b), the tooth protrusion 28a meshes with the tooth protrusion 31a. When the input shaft 28 is further rotated in the arrow X direction in this state, the intermediate rotator 31 rotates in the arrow Y direction as the input shaft 28 rotates as shown in FIGS. 15 (c) to 15 (d). The intermediate rotator 31 also rotates about 60 degrees before the input shaft 28 rotates about 60 degrees to reach the state shown in FIG. At this time, the restricting protrusions 31b and 31c rotate about 60 degrees in the arrow Y direction in the rotation grooves 29a and 30a. While the restricting protrusions 31b and 31c are rotatable in the rotation grooves 29a and 30a, the rotation of the input shaft 28 is not transmitted to the first and second cases 29 and 30, and the input shaft 28 is And it rotates relative to the second cases 29 and 30. In the state of FIG. 15D, the meshing of the tooth protrusions 28a and 31a is released, so that the rotation of the intermediate rotating body 31 accompanying the rotation of the input shaft 28 is stopped. When the input shaft 28 is further rotated about half a half, the tooth protrusions 28a and 31a are engaged again as shown in FIGS. 15E to 15F, and the intermediate rotating body 31 is rotated as the input shaft 28 rotates. become. Then, after the input shaft 28 and the intermediate rotator 31 are rotated about 60 degrees, the meshing of the tooth protrusions 28a and 31a is released, and the rotation of the intermediate rotator 31 accompanying the rotation of the input shaft 28 is stopped. When the input shaft 28 is further rotated about a half turn, the input shaft 28 is engaged again, and the intermediate rotating body 31 rotates as the input shaft 28 rotates. When the input shaft 28 and the intermediate rotator 31 rotate about 20 degrees, the restricting protrusions 31b and 31c reach the ends of the rotating grooves 29a and 30a, and the state shown in FIG. Thus, the intermediate rotating body 31 is intermittently rotated with the rotation of the input shaft 28.
 図15(g)に示す状態では、規制突起31b,31cは回動溝29a,30a内で回動不能であるので、入力軸28が回転されると、その回転が中間回転体31を介して第1及び第2ケース29,30に伝達され、第1及び第2ケース29,30が入力軸28と一体回転する。 In the state shown in FIG. 15G, the regulation protrusions 31 b and 31 c are not rotatable in the rotation grooves 29 a and 30 a, so that when the input shaft 28 is rotated, the rotation is via the intermediate rotator 31. The first and second cases 29, 30 are transmitted to the first and second cases 29, 30, and the first and second cases 29, 30 rotate integrally with the input shaft 28.
 このように、第1及び第2ケース29,30は、入力軸28が矢印X方向に約1.5回転した後に、入力軸28の回転に伴って矢印X方向に回転し始める。なお、入力軸28が矢印Y方向に回転された場合には、図15(g)の状態から規制突起31b,31cは回動溝29a,30a内を矢印X方向に移動し、入力軸28が矢印Y方向に約1.5回転すると、規制突起31b,31cが回動溝29a,30aの端に到達して、第1及び第2ケース29,30が入力軸28の回転に伴って矢印Y方向に回転し始める。 Thus, the first and second cases 29 and 30 start to rotate in the arrow X direction as the input shaft 28 rotates after the input shaft 28 rotates about 1.5 in the arrow X direction. When the input shaft 28 is rotated in the arrow Y direction, the restricting protrusions 31b and 31c move in the rotation grooves 29a and 30a in the arrow X direction from the state shown in FIG. When about 1.5 rotations in the direction of the arrow Y, the restricting protrusions 31b and 31c reach the ends of the rotation grooves 29a and 30a, and the first and second cases 29 and 30 move along the arrow Y as the input shaft 28 rotates. Start rotating in the direction.
 なお、図15(a)~図15(b)の状態では、規制突起31bの側面が係合突起30jによって係止されることによって中間回転体31の回動が緩く規制される。図15(c)の状態では、係合突起30jが係合溝31eに係合されることによって中間回転体31の回動が緩く規制される。図15(d)~図15(e)の状態では、係合突起31fが係合突起29hによって係止され且つ規制突起31bの側面が係合突起30jによって係止されることによって中間回転体31の回動が緩く規制される。図15(f)の状態では、係合突起30jが係合溝31eに係合されることによって中間回転体31の回動が緩く規制される。図15(g)の状態では、規制突起31bの側面が係合突起30jによって係止されることによって中間回転体31の回動が緩く規制される。このように、図15(a)~図15(g)の各状態において、中間回転体31の回動が緩く規制されていて、入力軸28の非回転時に振動などによって中間回転体31が回動することが抑制される。このため、2つの中間回転体31の回転角度がずれることが抑制される。 In the state shown in FIGS. 15 (a) to 15 (b), the rotation of the intermediate rotating body 31 is loosely restricted by locking the side surface of the restricting protrusion 31b with the engaging protrusion 30j. In the state of FIG. 15C, the rotation of the intermediate rotating body 31 is loosely restricted by the engagement protrusion 30j being engaged with the engagement groove 31e. In the state shown in FIGS. 15D to 15E, the engaging protrusion 31f is locked by the engaging protrusion 29h, and the side surface of the restricting protrusion 31b is locked by the engaging protrusion 30j. Rotation is controlled loosely. In the state of FIG. 15F, the rotation of the intermediate rotating body 31 is loosely restricted by the engagement protrusion 30j being engaged with the engagement groove 31e. In the state of FIG. 15G, the rotation of the intermediate rotating body 31 is loosely restricted by locking the side surface of the restricting protrusion 31b with the engaging protrusion 30j. As described above, in each state of FIGS. 15A to 15G, the rotation of the intermediate rotator 31 is loosely regulated, and the intermediate rotator 31 is rotated by vibration or the like when the input shaft 28 is not rotated. The movement is suppressed. For this reason, it is suppressed that the rotation angle of the two intermediate | middle rotary bodies 31 shifts | deviates.
 伝達遅延ユニット25は、図14に示すように操作部ケース45内に収容される。基部29b,30bの外周面が操作部ケース45の軸受部45dによって軸受された状態で伝達遅延ユニット25が操作部ケース45内で回転される。軸受部45dは、周方向に等間隔に離間されて4箇所に設けられている。 The transmission delay unit 25 is accommodated in the operation unit case 45 as shown in FIG. The transmission delay unit 25 is rotated in the operation portion case 45 in a state where the outer peripheral surfaces of the base portions 29 b and 30 b are supported by the bearing portion 45 d of the operation portion case 45. The bearing portions 45d are provided at four locations spaced at equal intervals in the circumferential direction.
 第1及び第2ケース29,30の回転は、ブレーキ部26の入力部26aに伝達される。図13に示すように、入力部26aには係合突起26a1が設けられている。係合突起26a1は周方向に等間隔に離間されて3箇所に設けられている。各係合突起26a1は、隣接する2つの係合突起30gの間に係合されている。このような構成によって、ブレーキ部26の入力部26aが第1及び第2ケース29,30と一体回転する。 Rotation of the first and second cases 29 and 30 is transmitted to the input unit 26a of the brake unit 26. As shown in FIG. 13, the input portion 26a is provided with an engaging protrusion 26a1. The engagement protrusions 26a1 are provided at three locations that are spaced apart at equal intervals in the circumferential direction. Each engagement protrusion 26a1 is engaged between two adjacent engagement protrusions 30g. With such a configuration, the input portion 26 a of the brake portion 26 rotates integrally with the first and second cases 29 and 30.
 ブレーキ部26は、第1及び第2ケース29,30側から入力部26aに伝達された回転は出力部26bの嵌合孔に嵌合された伝達軸26cを介してクラッチユニット27の入力軸41に伝達するが、
遮蔽材(スラット3及びボトムレール4)の自重によって発生するトルクによる入力軸41の回転を阻止するように構成されている。このため、ブレーキ部26を設けることによってボトムレール4の自重下降が防止される。クラッチユニット27と伝達遅延ユニット25の間にブレーキ部26を配置することによってボトムレール4の自重によって発生するトルクによって伝達遅延ユニット25の出力軸が回転されることを防ぐことができる。
In the brake unit 26, the rotation transmitted to the input unit 26a from the first and second cases 29, 30 side is input to the input shaft 41 of the clutch unit 27 via the transmission shaft 26c fitted in the fitting hole of the output unit 26b. Communicate to
The input shaft 41 is prevented from rotating due to the torque generated by the weight of the shielding material (slat 3 and bottom rail 4). For this reason, by providing the brake part 26, the bottom-rail 4's own weight fall is prevented. By disposing the brake unit 26 between the clutch unit 27 and the transmission delay unit 25, it is possible to prevent the output shaft of the transmission delay unit 25 from being rotated by the torque generated by the weight of the bottom rail 4.
 図16~図20に示すように、クラッチユニット27は、入力軸41と、カム軸42と、出力軸43を備える。カム軸42及び出力軸43は、操作部ケース45内に相対回転可能に収容されている。カム軸42は、入力軸41と一体回転するように構成されている。 16 to 20, the clutch unit 27 includes an input shaft 41, a cam shaft 42, and an output shaft 43. The cam shaft 42 and the output shaft 43 are accommodated in the operation portion case 45 so as to be relatively rotatable. The cam shaft 42 is configured to rotate integrally with the input shaft 41.
 入力軸41の回転中心には、嵌合孔41aが設けられている。嵌合孔41a及び伝達軸26cは、断面非円形(四角形)であり、嵌合孔41aに伝達軸26cが挿入されることによって入力軸41が伝達軸26cと一体回転するように構成されている。入力軸41の外周面には径方向外側に突出する係合突起41bが設けられている。係合突起41bは、周方向に等間隔に離間されて3箇所に設けられている。 A fitting hole 41 a is provided at the rotation center of the input shaft 41. The fitting hole 41a and the transmission shaft 26c are non-circular in cross section (square), and the input shaft 41 is configured to rotate integrally with the transmission shaft 26c when the transmission shaft 26c is inserted into the fitting hole 41a. . On the outer peripheral surface of the input shaft 41, an engagement protrusion 41b is provided that protrudes radially outward. The engagement protrusions 41b are provided at three locations that are spaced apart at equal intervals in the circumferential direction.
 カム軸42の回転中心には、嵌合孔42hが設けられている。嵌合孔42hには係合溝42iが設けられている。係合溝42iは周方向に等間隔に離間されて6箇所に設けられている。このうちの3つの係合溝42iに係合突起41bが係合されることによって、カム軸42が入力軸41と一体回転するように構成されている。また、カム軸42は、入力軸41の軸方向には移動可能になっている。 A fitting hole 42h is provided at the rotation center of the cam shaft 42. An engagement groove 42i is provided in the fitting hole 42h. The engaging grooves 42i are provided at six locations spaced apart at equal intervals in the circumferential direction. The cam shaft 42 is configured to rotate integrally with the input shaft 41 by engaging the engagement protrusions 41b with the three engagement grooves 42i. The cam shaft 42 is movable in the axial direction of the input shaft 41.
 入力軸41の出力側には軸受部41eが設けられている。カム軸42の出力側には軸受部42jが設けられている。出力軸43の入力側には、入力側から順に第1軸部43e及び第2軸部43dが設けられている。第1軸部43eは、第2軸部43dよりも小径である。第1軸部43e及び第2軸部43dがそれぞれ軸受部41e及び軸受部42jによって軸受される。 A bearing 41e is provided on the output side of the input shaft 41. A bearing portion 42 j is provided on the output side of the cam shaft 42. On the input side of the output shaft 43, a first shaft portion 43e and a second shaft portion 43d are provided in order from the input side. The first shaft portion 43e has a smaller diameter than the second shaft portion 43d. The first shaft portion 43e and the second shaft portion 43d are respectively supported by the bearing portion 41e and the bearing portion 42j.
 カム軸42と出力軸43には断面波型の凹凸形状である係合部42k,43kが形成されている。カム軸42が図18(b)に示すように出力軸43から離れた位置にあるときは係合部42k,43kが噛み合わず、カム軸42と出力軸43が非連結状態となって相対回転する。一方、カム軸42が図18(a)に示すように出力軸43に近づいた位置にあるときは係合部42k,43kが噛み合ってカム軸42と出力軸43が連結状態となって一体回転する。従って、カム軸42と出力軸43によってクラッチ部が構成される。 The cam shaft 42 and the output shaft 43 are formed with engaging portions 42k and 43k having a corrugated shape having a cross-sectional wave shape. When the cam shaft 42 is located away from the output shaft 43 as shown in FIG. 18B, the engaging portions 42k and 43k do not mesh with each other, and the cam shaft 42 and the output shaft 43 are not connected to each other and rotate relative to each other. To do. On the other hand, when the cam shaft 42 is at a position close to the output shaft 43 as shown in FIG. 18A, the engaging portions 42k and 43k are engaged with each other so that the cam shaft 42 and the output shaft 43 are connected to rotate integrally. To do. Therefore, the cam shaft 42 and the output shaft 43 constitute a clutch portion.
 カム軸42の外周には、カム軸42の周方向に延びる断面略半円のガイド溝42gが設けられている。操作部ケース45に支持された別体パーツ46には、軸方向に延びる断面略半円のスライド溝46aが設けられており、ガイド溝42gとスライド溝46aの間にボール44が挟まれている。ボール44は、スライド溝46a内で軸方向に移動可能になっている。また、ボール44は、カム軸42の回転に伴ってガイド溝42gに沿ってカム軸42の周方向に相対移動する。なお、以下の説明では、便宜上、周方向の相対移動を単に「移動」と称する場合がある。 The outer periphery of the cam shaft 42 is provided with a guide groove 42g having a substantially semicircular cross section extending in the circumferential direction of the cam shaft 42. A separate part 46 supported by the operation unit case 45 is provided with a slide groove 46a having a substantially semicircular cross section extending in the axial direction, and the ball 44 is sandwiched between the guide groove 42g and the slide groove 46a. . The ball 44 is movable in the axial direction within the slide groove 46a. Further, the ball 44 relatively moves in the circumferential direction of the cam shaft 42 along the guide groove 42g as the cam shaft 42 rotates. In the following description, the relative movement in the circumferential direction may be simply referred to as “movement” for convenience.
 図16に示すように、操作部ケース(ケース本体)45は、カム軸42と出力軸43が収容される円筒部45aと、円筒部45aから径方向に突出するように設けられたポケット部45bを備える。カム軸42のガイド溝42gと別体パーツ46のスライド溝46aの間にボール44を挟んだ状態で、出力軸43、カム軸42、ボール44及び別体パーツ46を円筒部45a及びポケット部45b内に収容させることによって、これらの部材を操作部ケース45内に配置することができる。また、別体パーツ46の係止突起46bがポケット部45bの端面45cに係合されることによって、別体パーツ46の軸方向移動が規制される。また、別の組立方法では、出力軸43を円筒部45a内に収容し、次に、別体パーツ46をポケット部45b内に配置し、且つスライド溝46a内にボール44を配置した状態で、カム軸42を円筒部45a内に収容することができる。図17に示すように、カム軸42には、カム軸42の出力側からガイド溝42gまで延びる導入溝42aが設けられているので、カム軸42を円筒部45a内に挿入する際に、カム軸42を適宜回転させて、導入溝42aの位置をボール44の位置に一致させることによってボール44をガイド溝42g内に容易に導入することができる。なお、ここでは、出力軸43とボール44との干渉を避けるために、ボール44をスライド溝46a内に収容する前に、出力軸43を円筒部45a内に収容しているが、出力軸43の外径を小さくしたり、出力軸43にも導入溝を設けたりすることによって、出力軸43とボール44の干渉を避けることができる。この場合、ボール44をスライド溝46a内に収容した状態で、出力軸43を円筒部45a内に収容させることができる。 As shown in FIG. 16, the operation part case (case body) 45 includes a cylindrical part 45a in which the cam shaft 42 and the output shaft 43 are accommodated, and a pocket part 45b provided so as to protrude in the radial direction from the cylindrical part 45a. Is provided. With the ball 44 sandwiched between the guide groove 42g of the cam shaft 42 and the slide groove 46a of the separate part 46, the output shaft 43, the cam shaft 42, the ball 44 and the separate part 46 are connected to the cylindrical portion 45a and the pocket portion 45b. These members can be disposed in the operation unit case 45 by being housed in the operation unit case 45. Further, when the locking projection 46b of the separate part 46 is engaged with the end face 45c of the pocket portion 45b, the axial movement of the separate part 46 is restricted. In another assembling method, the output shaft 43 is accommodated in the cylindrical portion 45a, and then the separate part 46 is disposed in the pocket portion 45b and the ball 44 is disposed in the slide groove 46a. The cam shaft 42 can be accommodated in the cylindrical portion 45a. As shown in FIG. 17, since the cam shaft 42 is provided with an introduction groove 42a extending from the output side of the cam shaft 42 to the guide groove 42g, when the cam shaft 42 is inserted into the cylindrical portion 45a, The ball 44 can be easily introduced into the guide groove 42g by appropriately rotating the shaft 42 so that the position of the introduction groove 42a matches the position of the ball 44. Here, in order to avoid interference between the output shaft 43 and the ball 44, the output shaft 43 is accommodated in the cylindrical portion 45a before the ball 44 is accommodated in the slide groove 46a. By reducing the outer diameter of the shaft or by providing an introduction groove in the output shaft 43, interference between the output shaft 43 and the ball 44 can be avoided. In this case, the output shaft 43 can be accommodated in the cylindrical portion 45a while the ball 44 is accommodated in the slide groove 46a.
 図19~図20に示すように、ガイド溝42gは、列A~列Cの溝で構成されており、スライド溝46a内でのボール44の可動範囲は、ガイド溝42gの2列分の幅になっている。ボール44の軸方向の可動範囲が制限された状態で、カム軸42の回転に伴ってボール44がガイド溝42gに沿って移動することによって、カム軸42の軸方向移動が実現される。従って、ガイド溝42gとスライド溝46aとボール44によってカム部が構成される。 As shown in FIGS. 19 to 20, the guide groove 42g is composed of the rows A to C, and the movable range of the balls 44 in the slide groove 46a is the width of the two rows of the guide grooves 42g. It has become. The axial movement of the cam shaft 42 is realized by moving the ball 44 along the guide groove 42g as the cam shaft 42 rotates in a state where the movable range of the ball 44 in the axial direction is limited. Accordingly, the cam portion is constituted by the guide groove 42g, the slide groove 46a, and the ball 44.
 ここで、本実施形態の横型ブラインドの動作について説明する。 Here, the operation of the horizontal blind according to this embodiment will be described.
 説明の便宜上、初期状態として、ボトムレール4が下限位置にある状態を想定する。この状態では、伝達遅延ユニット25は図15(g)に示す状態となっており、クラッチユニット27のボール44は、図19(a)に示すように、ガイド溝42gの列A又は列Bに配置されている。この状態では、カム軸42と出力軸43は、図18(a)に示すように連結状態になっているので、両者は一体回転する。 For convenience of explanation, it is assumed that the bottom rail 4 is in the lower limit position as an initial state. In this state, the transmission delay unit 25 is in the state shown in FIG. 15G, and the balls 44 of the clutch unit 27 are placed in the rows A or B of the guide grooves 42g as shown in FIG. Has been placed. In this state, the cam shaft 42 and the output shaft 43 are connected as shown in FIG.
 操作コード7の上昇操作側を引き下げることによって操作プーリー23aをボトムレール4の上昇方向に回転させると、その回転が遊星ギヤ23bを介して伝達遅延ユニット25の入力軸28に伝達される。入力軸28がボトムレール4の上昇方向に回転されると、伝達ギヤ24bとこれに噛み合うチルト軸ギヤ24cが回転される。チルト軸ギヤ24cの回転は、チルト軸17を介してチルターギヤ34に伝達される。チルターギヤ34の回転は、チルタードラム32に伝達される。チルタードラム32の回転に伴って、チルタードラム32のV状溝32aに掛装されているラダーコード2が変位され、スラット3が逆全閉状態になるまでスラット3が回動される。スラット3が逆全閉状態になった後は、チルタードラム32は、ラダーコード2に対して空回りする。 When the operation pulley 23a is rotated in the upward direction of the bottom rail 4 by pulling down the ascending operation side of the operation cord 7, the rotation is transmitted to the input shaft 28 of the transmission delay unit 25 through the planetary gear 23b. When the input shaft 28 is rotated in the upward direction of the bottom rail 4, the transmission gear 24b and the tilt shaft gear 24c meshing with the transmission gear 24b are rotated. The rotation of the tilt shaft gear 24 c is transmitted to the tilter gear 34 via the tilt shaft 17. The rotation of the tilter gear 34 is transmitted to the tilter drum 32. With the rotation of the tilter drum 32, the ladder cord 2 hung on the V-shaped groove 32a of the tilter drum 32 is displaced, and the slat 3 is rotated until the slat 3 is in the reverse fully closed state. After the slat 3 is in the reverse fully closed state, the tilter drum 32 rotates idly with respect to the ladder cord 2.
 伝達遅延ユニット25の入力軸28の回転に伴って、図15(g)の状態から規制突起31b,31cが回動溝29a,30a内を矢印X方向に移動し、入力軸28が矢印Y方向(ボトムレール4の上昇方向)に約1.5回転すると、規制突起31b,31cが回動溝29a,30aの端に到達して、第1及び第2ケース29,30が入力軸28の回転に伴って矢印Y方向に回転し始める。従って、入力軸28の回転は、1.5回転分遅延されて、第1及び第2ケース29,30に伝達される。 With the rotation of the input shaft 28 of the transmission delay unit 25, the restricting protrusions 31b and 31c move in the rotation grooves 29a and 30a in the arrow X direction from the state of FIG. 15G, and the input shaft 28 moves in the arrow Y direction. When about 1.5 rotations (in the upward direction of the bottom rail 4), the restricting protrusions 31b and 31c reach the ends of the rotation grooves 29a and 30a, and the first and second cases 29 and 30 rotate the input shaft 28. Along with this, it starts to rotate in the arrow Y direction. Accordingly, the rotation of the input shaft 28 is delayed by 1.5 rotations and transmitted to the first and second cases 29 and 30.
 第1及び第2ケース29,30の回転は、ブレーキ部26を介してクラッチユニット27の入力軸41に伝達される。この回転は、カム軸42にも伝達される。カム軸42がボトムレール4の上昇方向に回転されると、図19(a)に示すように、ボール44は、ガイド溝42gの列Aと列Bの間を往復するルートに沿って移動する。具体的には、ボール44が列A内を移動中にカム突起a1に到達すると、カム突起a1によってボール44が列B方向に誘導される。ボール44が列B内を移動中にカム島a2に到達すると、カム島a2によってボール44が列A方向に誘導される。このように、カム突起a1とカム島a2によってボール44が列Aと列Bの間を往復するように誘導されて移動される。カム軸42の外周面には、カム突起a1及びカム島a2がそれぞれ周方向に等間隔に離間されて4箇所に設けられている。カム島a2は、カム突起a1及びカム島a2の間に列Bが構成されるように設けられる。ボール44がA列にある状態では、ボール44は、スライド溝46a内の右側に位置しており、ボール44がB列に移動すると、ボール44はスライド溝46a内の左側に移動する。従って、ボール44が列Aと列Bの間を往復するルートに沿って移動している間は、カム軸42は、軸方向に移動しない。 Rotation of the first and second cases 29 and 30 is transmitted to the input shaft 41 of the clutch unit 27 via the brake unit 26. This rotation is also transmitted to the cam shaft 42. When the cam shaft 42 is rotated in the upward direction of the bottom rail 4, the ball 44 moves along a route that reciprocates between the rows A and B of the guide grooves 42g as shown in FIG. . Specifically, when the ball 44 reaches the cam projection a1 while moving in the row A, the ball 44 is guided in the row B direction by the cam projection a1. When the ball 44 reaches the cam island a2 while moving in the row B, the ball 44 is guided in the row A direction by the cam island a2. In this manner, the ball 44 is guided and moved so as to reciprocate between the rows A and B by the cam protrusion a1 and the cam island a2. On the outer peripheral surface of the cam shaft 42, cam protrusions a1 and cam islands a2 are provided at four locations spaced apart at equal intervals in the circumferential direction. The cam island a2 is provided so that a row B is formed between the cam protrusion a1 and the cam island a2. When the ball 44 is in the A row, the ball 44 is positioned on the right side in the slide groove 46a. When the ball 44 moves to the B row, the ball 44 moves to the left side in the slide groove 46a. Therefore, the cam shaft 42 does not move in the axial direction while the ball 44 is moving along a route that reciprocates between the rows A and B.
 この状態では、カム軸42と出力軸43が連結状態になっているので、カム軸42の回転が出力軸43、昇降軸8、及び巻取軸9の順で伝達される。従って、操作コード7の上昇操作側を引き下げることによってボトムレール4が上昇する。 In this state, since the cam shaft 42 and the output shaft 43 are in a connected state, the rotation of the cam shaft 42 is transmitted in the order of the output shaft 43, the lifting shaft 8 and the winding shaft 9. Accordingly, the bottom rail 4 is raised by lowering the raising operation side of the operation cord 7.
 以上のように、本実施形態では、入力軸28の回転は、チルト軸17には即座に伝達されるが、昇降軸8には、伝達遅延ユニット25によって遅延された後に、伝達される。このため、スラット3の回動中に、ボトムレール4が上昇を開始することが抑制される。 As described above, in this embodiment, the rotation of the input shaft 28 is immediately transmitted to the tilt shaft 17, but is transmitted to the lift shaft 8 after being delayed by the transmission delay unit 25. For this reason, the bottom rail 4 is prevented from starting to rise during the rotation of the slat 3.
 ボトムレール4が上限位置にまで上昇したところで、操作コード7から手を離すとボトムレール4の自重によって生じるトルクが、巻取軸9、昇降軸8、出力軸43、カム軸42、入力軸41の順で伝達されて、入力軸41が下降方向に回転しようとするが、その回転はブレーキ部26によって停止されるので、入力軸41は回転せず、カム軸42も回転しない。このとき、ボール44は、列A又はB内のどこかに配置されている。ここでは、図19(b)に示す位置にボール44が配置された状態でカム軸42の回転が停止されていると想定して説明を進める。 When the bottom rail 4 is raised to the upper limit position, the torque generated by the weight of the bottom rail 4 when the hand is released from the operation cord 7 causes the winding shaft 9, the lifting shaft 8, the output shaft 43, the cam shaft 42, and the input shaft 41. In this order, the input shaft 41 tries to rotate in the downward direction, but the rotation is stopped by the brake unit 26, so the input shaft 41 does not rotate and the cam shaft 42 does not rotate either. At this time, the ball 44 is arranged somewhere in the row A or B. Here, the description will be made assuming that the rotation of the cam shaft 42 is stopped in a state where the ball 44 is disposed at the position shown in FIG.
 この状態から、操作コード7の下降操作側を引き下げて、操作プーリー23aをボトムレール4の下降方向に回転させると、その回転が入力軸28、伝達ギヤ24b、チルト軸ギヤ24c、チルト軸17、チルターギヤ34を介してチルタードラム32に伝達される。ボトムレール4が上限位置にある状態では全てのスラット3の重量が昇降コード5に加わるのでラダーコード2にはスラット3の重量が加わらない。このため、従来技術では、チルタードラム32内のラダーコード2のループ部2aが浮き上がってしまい、スラット3が全閉状態になっていないにも関わらず、チルタードラム32がラダーコード2に対して空回りしてしまって、スラット3が回動されない。このため、従来技術では、ボトムレール4が上限位置にある場合に、スラット3が全閉状態にならずにボトムレール4が自重下降されてしまう場合がある。一方、ボトムレール4が上限位置よりも低い位置にある場合には、スラット3が全閉状態になった状態でボトムレール4が自重下降される。ボトムレール4が上限位置にある場合にのみスラット3が開いた状態でボトムレール4が自重下降されてしまうことは使用感を悪化させるという点で問題である。本実施形態では、サポートキャップ33に設けたV状突起33aをV状溝32a内に延びるように配置することによって、ラダーコード2の浮き上がりを防止している。このため、本実施形態では、スラット3が全閉状態になっていない状態でのチルタードラム32の空回りが起こらず、操作プーリー23aをボトムレール4の下降方向に回転させると、スラット3が全閉状態になるまで回動される。一方、スラット3が全閉状態になった後は、チルタードラム32は、ラダーコード2に対して空回りする。 From this state, when the operation cord 7 is lowered on the lowering operation side and the operation pulley 23a is rotated in the lowering direction of the bottom rail 4, the rotation is caused by the input shaft 28, the transmission gear 24b, the tilt shaft gear 24c, the tilt shaft 17, It is transmitted to the tilter drum 32 via the tilter gear 34. In the state where the bottom rail 4 is in the upper limit position, the weight of all the slats 3 is added to the lifting / lowering cord 5, and therefore the weight of the slats 3 is not added to the ladder cord 2. For this reason, in the prior art, the loop portion 2a of the ladder cord 2 in the tilter drum 32 is lifted and the slat 3 is not fully closed, but the tilter drum 32 is idle with respect to the ladder cord 2. Then, the slat 3 is not rotated. For this reason, in the prior art, when the bottom rail 4 is at the upper limit position, the bottom rail 4 may be lowered by its own weight without the slat 3 being fully closed. On the other hand, when the bottom rail 4 is at a position lower than the upper limit position, the bottom rail 4 is lowered by its own weight with the slats 3 being fully closed. Only when the bottom rail 4 is in the upper limit position, the bottom rail 4 being lowered by its own weight with the slats 3 open is a problem in that the feeling of use is deteriorated. In the present embodiment, the ladder cord 2 is prevented from being lifted by arranging the V-shaped protrusion 33a provided on the support cap 33 so as to extend into the V-shaped groove 32a. For this reason, in this embodiment, when the slat 3 is not fully closed, the idler of the tilter drum 32 does not occur, and when the operation pulley 23a is rotated in the downward direction of the bottom rail 4, the slat 3 is fully closed. It is rotated until it becomes. On the other hand, after the slat 3 is fully closed, the tilter drum 32 is idle with respect to the ladder cord 2.
 伝達遅延ユニット25の入力軸28の回転に伴って、図15(a)の状態から規制突起31b,31cが回動溝29a,30a内を矢印Y方向に移動し、入力軸28が矢印X方向(ボトムレール4の下降方向)に約1.5回転すると、規制突起31b,31cが回動溝29a,30aの端に到達して、第1及び第2ケース29,30が入力軸28の回転に伴って矢印X方向に回転し始める。従って、入力軸28の回転は、1.5回転分遅延されて、第1及び第2ケース29,30に伝達される。 With the rotation of the input shaft 28 of the transmission delay unit 25, the restricting protrusions 31b and 31c move in the rotation grooves 29a and 30a in the arrow Y direction from the state of FIG. 15A, and the input shaft 28 moves in the arrow X direction. When about 1.5 turns in the downward direction of the bottom rail 4, the restricting protrusions 31 b and 31 c reach the ends of the turning grooves 29 a and 30 a, and the first and second cases 29 and 30 rotate the input shaft 28. Along with this, it starts to rotate in the arrow X direction. Accordingly, the rotation of the input shaft 28 is delayed by 1.5 rotations and transmitted to the first and second cases 29 and 30.
 第1及び第2ケース29,30の回転は、ブレーキ部26を介してクラッチユニット27の入力軸41に伝達される。この回転は、カム軸42にも伝達される。カム軸42がボトムレール4の下降方向に回転されると、図19(b)~(c)に示すように、ボール44は、ガイド溝42gの列A→列B→列Cの順に移動する。具体的には、ボール44が列A内を移動中にカム突起a1に到達すると、カム突起a1によってボール44が列B方向に誘導される。ボール44が列B内を移動中にカム島a2に到達すると、カム島a2によってボール44が列C方向に誘導される。このように、カム突起a1とカム島a2によってボール44が列A→列B→列Cの順に誘導されて移動される。ボール44が列Bから列Cに移動する際に、ボール44に対しては左向きの力が加わり、カム軸42に対しては右向きの力が加わる。ボール44は、スライド溝46a内においてこれ以上左側に移動することができないので、ボール44が列Bから列Cに移動する際に、カム軸42が右方向(つまり、出力軸43からの分離方向)に移動する。これによって、カム軸42と出力軸43が非連結状態となり、昇降軸8が自由回転して、ボトムレール4が自重下降する。なお、図19(b)に示すように、係合部42kの凸部の先端にはテーパー面42k1が設けられている。テーパー面42k1は、テーパー面42k1は、カム軸42に下降方向の回転が加わったときに、テーパー面42k1が、出力軸43の係合部43kの凸部と当接してカム軸42に出力軸43からの分離方向の力が加わるように設けられている。このようなテーパー面42k1が設けられることによって、カム軸42が出力軸43から分離されやすくなっている。 Rotation of the first and second cases 29 and 30 is transmitted to the input shaft 41 of the clutch unit 27 via the brake unit 26. This rotation is also transmitted to the cam shaft 42. When the camshaft 42 is rotated in the lowering direction of the bottom rail 4, the balls 44 move in the order of row A → row B → row C of the guide grooves 42g as shown in FIGS. 19 (b) to 19 (c). . Specifically, when the ball 44 reaches the cam projection a1 while moving in the row A, the ball 44 is guided in the row B direction by the cam projection a1. When the ball 44 reaches the cam island a2 while moving in the row B, the ball 44 is guided in the row C direction by the cam island a2. Thus, the balls 44 are guided and moved in the order of row A → row B → row C by the cam protrusion a1 and the cam island a2. When the ball 44 moves from the row B to the row C, a leftward force is applied to the ball 44 and a rightward force is applied to the cam shaft 42. Since the ball 44 cannot move further to the left in the slide groove 46a, when the ball 44 moves from the row B to the row C, the cam shaft 42 moves in the right direction (that is, the separation direction from the output shaft 43). ) As a result, the cam shaft 42 and the output shaft 43 are disconnected, the lifting shaft 8 freely rotates, and the bottom rail 4 is lowered by its own weight. In addition, as shown in FIG.19 (b), the taper surface 42k1 is provided in the front-end | tip of the convex part of the engaging part 42k. The tapered surface 42k1 is configured so that the tapered surface 42k1 comes into contact with the convex portion of the engaging portion 43k of the output shaft 43 when the cam shaft 42 is rotated in the downward direction, and the cam shaft 42 is connected to the output shaft 43. 43 so that a force in the separation direction from 43 is applied. By providing such a tapered surface 42k1, the cam shaft 42 is easily separated from the output shaft 43.
 本実施形態では、隣接する2つのカム突起a1の間の距離及び隣接する2つのカム島a2の間の距離が短いので、下降操作の開始時点でボール44が列A又は列B内のどの位置にあったとしても、下降操作を開始してからボトムレール4の自重降下が開始されるまでに空転角度が比較的小さくなっている。具体的には、本実施形態では、カム突起a1及びカム島a2がそれぞれ90度ピッチで設けられているので、空転角度が最大値が180度未満になっている。この空転角度の最大値は、カム突起a1及びカム島a2の数を増やす(つまり、5つ以上設ける)ことによってさらに小さくすることができる。  In this embodiment, since the distance between the two adjacent cam protrusions a1 and the distance between the two adjacent cam islands a2 are short, the position of the ball 44 in the row A or the row B at the start of the lowering operation In this case, the idling angle is relatively small from the start of the lowering operation to the start of the weight drop of the bottom rail 4. Specifically, in the present embodiment, since the cam protrusions a1 and the cam islands a2 are provided at a pitch of 90 degrees, the idling angle has a maximum value of less than 180 degrees. The maximum value of the idling angle can be further reduced by increasing the number of cam protrusions a1 and cam islands a2 (that is, providing five or more). *
 以上のように、本実施形態では、入力軸28の回転は、チルト軸17には即座に伝達されるが、昇降軸8には、伝達遅延ユニット25によって遅延された後に、伝達される。このため、スラット3の回動中に、ボトムレール4が自重下降を開始することが抑制される。 As described above, in this embodiment, the rotation of the input shaft 28 is immediately transmitted to the tilt shaft 17, but is transmitted to the lift shaft 8 after being delayed by the transmission delay unit 25. For this reason, the bottom rail 4 is restrained from starting its own weight descent while the slat 3 is rotating.
 ボトムレール4の自重下降中又は自重下降完了後に、操作コード7の下降操作側をさらに引き下げて、カム軸42をボトムレール4の下降方向にさらに回転させると、図20(a)に示すように、ボール44は、ガイド溝42gの列Bと列Cの間を往復するルートに沿って移動する。具体的には、ボール44が列C内を移動中にカム突起a3に到達すると、カム突起a3によってボール44が列B方向に誘導される。ボール44が列B内を移動中にカム島a2に到達すると、カム島a2によってボール44が列C方向に誘導される。このように、カム突起a3とカム島a2によってボール44が列Cと列Bの間を往復するように誘導されて移動される。カム軸42の外周面には、カム突起a3が周方向に等間隔に離間されて4箇所に設けられている。カム島a2は、カム突起a3とカム島a2の間に列Bが構成されるように設けられる。ボール44がB列にある状態では、ボール44は、スライド溝46a内の右側に位置しており、ボール44がC列に移動すると、ボール44はスライド溝46a内の左側に移動する。従って、ボール44が列Bと列Cの間を往復するルートに沿って移動している間は、カム軸42は、軸方向に移動しない。 As shown in FIG. 20A, when the bottom rail 4 is lowered or its completion is lowered, the lowering side of the operation cord 7 is further lowered to further rotate the cam shaft 42 in the lowering direction of the bottom rail 4. The balls 44 move along a route that reciprocates between the rows B and C of the guide grooves 42g. Specifically, when the ball 44 reaches the cam projection a3 while moving in the row C, the ball 44 is guided in the row B direction by the cam projection a3. When the ball 44 reaches the cam island a2 while moving in the row B, the ball 44 is guided in the row C direction by the cam island a2. Thus, the ball 44 is guided and moved so as to reciprocate between the row C and the row B by the cam protrusion a3 and the cam island a2. On the outer peripheral surface of the cam shaft 42, cam protrusions a3 are provided at four locations that are spaced apart at equal intervals in the circumferential direction. The cam island a2 is provided such that a row B is formed between the cam protrusion a3 and the cam island a2. When the ball 44 is in the B row, the ball 44 is positioned on the right side in the slide groove 46a. When the ball 44 moves to the C row, the ball 44 moves to the left side in the slide groove 46a. Therefore, the cam shaft 42 does not move in the axial direction while the ball 44 is moving along a route that reciprocates between the rows B and C.
 ボトムレール4の自重下降中又は自重下降完了後に、操作コード7の上昇操作側を引き下げて、操作プーリー23aをボトムレール4の上昇方向に回転させると、その回転が伝達遅延ユニット25によって遅延されてクラッチユニット27の入力軸41及びカム軸42に伝達される。カム軸42がボトムレール4の上昇方向に回転されると、図20(b)~(c)に示すように、ボール44は、ガイド溝42gの列C→列B→列Aの順に移動する。具体的には、ボール44が列C内を移動中にカム突起a3に到達すると、カム突起a3によってボール44が列B方向に誘導される。ボール44が列B内を移動中にカム島a2に到達すると、カム島a2によってボール44が列A方向に誘導される。このように、カム突起a3とカム島a2によってボール44が列C→列B→列Aの順に誘導されて移動される。ボール44が列Bから列Aに移動する際に、ボール44に対しては右向きの力が加わり、カム軸42に対しては左向きの力が加わる。ボール44は、スライド溝46a内においてこれ以上右側に移動することができないので、ボール44が列Bから列Aに移動する際に、カム軸42が左方向(つまり、出力軸43への連結方向)に移動する。これによって、カム軸42と出力軸43が連結状態となり、カム軸42の回転が昇降軸8に伝達されて、ボトムレール4が上昇する。 When the bottom rail 4 is lowered or after completion of the weight reduction, the operation pulley 7 is pulled down to rotate the operation pulley 23a in the upward direction of the bottom rail 4, and the rotation is delayed by the transmission delay unit 25. This is transmitted to the input shaft 41 and the cam shaft 42 of the clutch unit 27. When the cam shaft 42 is rotated in the upward direction of the bottom rail 4, as shown in FIGS. 20B to 20C, the balls 44 move in the order of row C → row B → row A of the guide groove 42g. . Specifically, when the ball 44 reaches the cam projection a3 while moving in the row C, the ball 44 is guided in the row B direction by the cam projection a3. When the ball 44 reaches the cam island a2 while moving in the row B, the ball 44 is guided in the row A direction by the cam island a2. In this way, the balls 44 are guided and moved in the order of row C → row B → row A by the cam protrusion a3 and the cam island a2. When the ball 44 moves from the row B to the row A, a rightward force is applied to the ball 44 and a leftward force is applied to the cam shaft 42. Since the ball 44 cannot move any further to the right in the slide groove 46a, when the ball 44 moves from the row B to the row A, the cam shaft 42 moves to the left (that is, the connecting direction to the output shaft 43). ) As a result, the cam shaft 42 and the output shaft 43 are connected, and the rotation of the cam shaft 42 is transmitted to the elevating shaft 8 so that the bottom rail 4 is raised.
 本発明は、以下の態様でも実施可能である。
・上記実施形態では、ラダーコード2の浮き上がりを抑制する浮き上がり抑制部を設けたが、浮き上がり抑制部は必須ではない。
・上記実施形態では、V状溝32aを有するチルタードラム32を用いてスラット3をチルトさせたが、スラット3をチルトさせる機構は特に限定されず、例えば、特開2014-231696の図2に開示されているようなチルトスプリングを用いた機構を用いてもよい。
・上記実施形態では、中間回転体31に加わる負荷を分散させるために2つの中間回転体31を用いて入力軸28の回転を第1及び第2ケース29,30に伝達しているが、中間回転体31の数は1つであっても3つ以上であってもよい。
・上記実施形態では、中間回転体31に加わる負荷を分散させるために、各中間回転体31の軸方向の両側に規制突起31b,31cを設けて、規制突起31b,31cを第1及び第2ケース29,30に係合させているが、規制突起は、各中間回転体31の軸方向の一方のみに設けてもよい。
・規制突起31b,31cが突出する方向は、特に限定されず、径方向に突出するように設けてもよい。
・歯突起28a,31aの数及びピッチ、及び規制突起31b,31cが回動溝29a,30a内で回動可能な角度範囲を適宜変更することにより、遅延量を調節可能である。遅延量は、360度以上が好ましく、400、450、又は500度以上がさらに好ましい。
・歯突起28a,31aの代わりに、入力軸28及び中間回転体31に互いに噛み合うギヤを設けてもよい。この場合、中間回転体31のギヤの歯数を入力軸28のギヤの歯数よりも多くすることによって、中間回転体31の回転速度を入力軸28よりも小さくすることができる。但し、この場合、中間回転体31の回転速度を上記実施形態と同程度に遅くさせるためには、中間回転体31のギヤの歯数を入力軸28のギヤの歯数の3倍にする必要があり、中間回転体31のギヤの直径も入力軸28のギヤの直径の3倍になってしまう。これに対して、上記実施形態では、中間回転体31の歯突起31aのピッチを、入力軸28の歯突起28aのピッチよりも小さくすることによって、中間回転体31を断続的に回転させて、その回転速度を小さくしているので、中間回転体31の直径を比較的小さくすることができる。なお、本願明細書において、中間回転体31の回転速度は、(入力軸28が1回転する毎の中間回転体31の回転角度)/(入力軸28が1回転するのにかかる時間)によって定義される。従って、中間回転体31が断続的に回転される場合は、中間回転体31が停止している間の時間も回転速度を算出する際の時間に含められる。
・伝達遅延ユニット25は、上記実施形態での用途以外の用途にも、回転の伝達の遅延が必要な任意の用途に利用可能である。
・上記実施形態では、クラッチユニット27は、2つの部材(カム軸42と出力軸43)が軸方向に相対移動してすることによって係合・非係合されることによって、連結・分離される形態としたが、クラッチユニットへの入力回転が所定回転角以内で入力軸が出力軸に対し連結・分離可能であれば、2つの部材が径方向に係合・非係合される形式でもよい。
The present invention can also be implemented in the following modes.
In the above-described embodiment, the floating suppression unit that suppresses the floating of the ladder cord 2 is provided, but the floating suppression unit is not essential.
In the above embodiment, the slat 3 is tilted using the tilter drum 32 having the V-shaped groove 32a. However, the mechanism for tilting the slat 3 is not particularly limited, and is disclosed in, for example, FIG. 2 of JP-A-2014-231696. Such a mechanism using a tilt spring may be used.
In the above embodiment, the rotation of the input shaft 28 is transmitted to the first and second cases 29 and 30 using the two intermediate rotating bodies 31 in order to disperse the load applied to the intermediate rotating body 31. The number of the rotators 31 may be one or three or more.
In the above embodiment, in order to disperse the load applied to the intermediate rotator 31, the restricting protrusions 31b and 31c are provided on both sides in the axial direction of each intermediate rotator 31, and the restricting protrusions 31b and 31c are first and second. Although engaged with the cases 29 and 30, the restricting protrusions may be provided only on one side in the axial direction of each intermediate rotating body 31.
The direction in which the restriction protrusions 31b and 31c protrude is not particularly limited, and may be provided so as to protrude in the radial direction.
The delay amount can be adjusted by appropriately changing the number and pitch of the tooth protrusions 28a and 31a and the angle range in which the restricting protrusions 31b and 31c can rotate in the rotation grooves 29a and 30a. The delay amount is preferably 360 degrees or more, more preferably 400, 450, or 500 degrees or more.
A gear that meshes with the input shaft 28 and the intermediate rotating body 31 may be provided instead of the tooth protrusions 28a and 31a. In this case, the rotational speed of the intermediate rotating body 31 can be made smaller than that of the input shaft 28 by making the number of gear teeth of the intermediate rotating body 31 larger than the number of gear teeth of the input shaft 28. However, in this case, in order to slow down the rotation speed of the intermediate rotator 31 to the same extent as in the above embodiment, the number of gear teeth of the intermediate rotator 31 needs to be three times the number of gear teeth of the input shaft 28. Therefore, the diameter of the gear of the intermediate rotating body 31 is also three times the diameter of the gear of the input shaft 28. On the other hand, in the above embodiment, the intermediate rotating body 31 is intermittently rotated by making the pitch of the tooth protrusions 31a of the intermediate rotating body 31 smaller than the pitch of the tooth protrusions 28a of the input shaft 28. Since the rotation speed is reduced, the diameter of the intermediate rotating body 31 can be made relatively small. In the present specification, the rotation speed of the intermediate rotator 31 is defined by (rotation angle of the intermediate rotator 31 every time the input shaft 28 makes one revolution) / (time taken for the input shaft 28 to make one revolution). Is done. Therefore, when the intermediate rotator 31 is intermittently rotated, the time during which the intermediate rotator 31 is stopped is also included in the time for calculating the rotation speed.
The transmission delay unit 25 can be used for applications other than those in the above-described embodiment and for any application that requires a delay in transmission of rotation.
In the above embodiment, the clutch unit 27 is connected and disconnected by engaging and disengaging the two members (the cam shaft 42 and the output shaft 43) relative to each other in the axial direction. However, as long as the input rotation to the clutch unit is within a predetermined rotation angle and the input shaft can be connected to and disconnected from the output shaft, the two members may be engaged / disengaged in the radial direction. .
2.第2実施形態
 図26を用いて、本発明の第2実施形態について説明する。本実施形態は、第1実施形態に類似しており、伝達遅延ユニット25の構成の違いが主な相違点である。以下、相違点を中心に説明する。
2. Second Embodiment A second embodiment of the present invention will be described with reference to FIG. This embodiment is similar to the first embodiment, and the difference in the configuration of the transmission delay unit 25 is the main difference. Hereinafter, the difference will be mainly described.
 本実施形態では、伝達遅延ユニット25は、ケース54と、中間回転体55と、入力軸56を備える。ケース54が出力軸として機能する。中間回転体55は、ケース54に回転可能に支持される軸部55cと、環状部55dと、環状部55dの内周面に設けられた内周ギヤ部55aと、環状部55dから軸方向に突出するように設けられた規制突起55bを備える。軸部55cと環状部55dは、ベース部55eを介して連結されている。入力軸56は、ケース54に回転可能に支持される軸部56aと、内周ギヤ部55aに噛み合うように設けられたギヤ部56bを備える。規制突起55bは、ケース54に設けられた回動溝54a内に挿通される。このような構成によって、中間回転体55は、規制突起55bが回動溝54a内で回動可能な角度範囲(本実施形態では約270度)内において、ケース54に対して相対回転可能になっている。そして、内周ギヤ部55a/ギヤ部56bのギヤ比が3であるので、入力軸56の回転に伴ってギヤ部56bが1周する度に規制突起55bが120度回動し、ギヤ部56bが2回と少し回転すると規制突起55bが回動溝54aの端に到達する。規制突起55bが回動溝54a内を回動可能な間は、入力軸56はケース54に対して相対回転し、規制突起55bが回動溝54aの端に到達すると、入力軸56の回転が中間回転体55を介してケース54に伝達されて、入力軸56がケース54と一体回転する。このように、本実施形態においても、入力軸56の回転が遅延されて出力軸(ケース54)に伝達される。 In the present embodiment, the transmission delay unit 25 includes a case 54, an intermediate rotating body 55, and an input shaft 56. Case 54 functions as an output shaft. The intermediate rotating body 55 includes a shaft portion 55c rotatably supported by the case 54, an annular portion 55d, an inner peripheral gear portion 55a provided on the inner peripheral surface of the annular portion 55d, and an axial direction from the annular portion 55d. The control protrusion 55b provided so that it may protrude is provided. The shaft portion 55c and the annular portion 55d are connected via a base portion 55e. The input shaft 56 includes a shaft portion 56a that is rotatably supported by the case 54, and a gear portion 56b that is provided so as to mesh with the inner peripheral gear portion 55a. The restricting protrusion 55 b is inserted into a rotation groove 54 a provided in the case 54. With such a configuration, the intermediate rotator 55 can be rotated relative to the case 54 within an angular range (about 270 degrees in the present embodiment) in which the restricting protrusion 55b can rotate within the rotation groove 54a. ing. And since the gear ratio of the inner peripheral gear part 55a / gear part 56b is 3, every time the gear part 56b makes one rotation with the rotation of the input shaft 56, the restricting projection 55b rotates 120 degrees, and the gear part 56b Is slightly rotated twice, the restricting projection 55b reaches the end of the rotating groove 54a. While the restricting protrusion 55b can turn in the turning groove 54a, the input shaft 56 rotates relative to the case 54, and when the restricting protrusion 55b reaches the end of the turning groove 54a, the input shaft 56 rotates. The signal is transmitted to the case 54 via the intermediate rotating body 55, and the input shaft 56 rotates integrally with the case 54. Thus, also in this embodiment, the rotation of the input shaft 56 is delayed and transmitted to the output shaft (case 54).
3.第3実施形態
 図27~図30を用いて、本発明の第3実施形態について説明する。本実施形態は、第1実施形態に類似しており、伝達遅延ユニット25の構成の違いが主な相違点である。以下、相違点を中心に説明する。
3. Third Embodiment A third embodiment of the present invention will be described with reference to FIGS. This embodiment is similar to the first embodiment, and the difference in the configuration of the transmission delay unit 25 is the main difference. Hereinafter, the difference will be mainly described.
 本実施形態では、伝達遅延ユニット25は、ケース51と、中間回転体52と、入力軸53を備える。ケース51が出力軸として機能する。ケース51は、ベース部51cと、カバー部51aと、環状部51hと、係止部51dを備える。ベース部51cには、回動溝51fと挿通孔51gが設けられている。環状部51hの内周面には内周ギヤ部51eが設けられている。中間回転体52は、回動溝51fに回転可能に支持される軸部52aと、環状部52eと、環状部52eの内周面に設けられた内周ギヤ部52dと、環状部52eの外周面に設けられた外周ギヤ部52bと、環状部55dから径方向に突出するように設けられた規制突起52cを備える。軸部52aと環状部52eは、ベース部52fを介して連結されている。入力軸53は、挿通孔51gに挿通されて回転可能に支持される軸部53aと、内周ギヤ部52dに噛み合うように設けられたギヤ部53bを備える。 In the present embodiment, the transmission delay unit 25 includes a case 51, an intermediate rotating body 52, and an input shaft 53. Case 51 functions as an output shaft. The case 51 includes a base portion 51c, a cover portion 51a, an annular portion 51h, and a locking portion 51d. The base 51c is provided with a turning groove 51f and an insertion hole 51g. An inner peripheral gear portion 51e is provided on the inner peripheral surface of the annular portion 51h. The intermediate rotating body 52 includes a shaft portion 52a that is rotatably supported by the rotation groove 51f, an annular portion 52e, an inner peripheral gear portion 52d provided on the inner peripheral surface of the annular portion 52e, and an outer periphery of the annular portion 52e. The outer peripheral gear part 52b provided in the surface and the regulation protrusion 52c provided so that it might protrude from the annular part 55d to radial direction are provided. The shaft portion 52a and the annular portion 52e are connected via a base portion 52f. The input shaft 53 includes a shaft portion 53a that is inserted into the insertion hole 51g and is rotatably supported, and a gear portion 53b that is provided so as to mesh with the inner peripheral gear portion 52d.
 各ギヤ部を通る断面をカバー部51a側から見た断面図を図28~図30に示す。各断面図には本来は規制突起52cが現れないが、規制突起52cと係止部51dの位置関係を表すために、便宜上、各図に、規制突起52cを表示している。 28 to 30 are cross-sectional views of a cross section passing through each gear part as viewed from the cover part 51a side. Although the restriction projection 52c does not originally appear in each cross-sectional view, the restriction projection 52c is displayed in each drawing for the sake of convenience in order to represent the positional relationship between the restriction projection 52c and the locking portion 51d.
 図28に示すように、入力軸53を反時計回りに回転させると、ギヤ部53bと内周ギヤ部52dの噛み合いによって中間回転体52も反時計回りに回転する。同時に、外周ギヤ部52bと内周ギヤ部51eの噛み合いによって中間回転体52の軸部52aが回動溝51fに沿って入力軸53の周りを時計回りに公転する。つまり、中間回転体52は、反時計回りに自転しながら時計回りに公転するように構成されている。 As shown in FIG. 28, when the input shaft 53 is rotated counterclockwise, the intermediate rotating body 52 is also rotated counterclockwise due to the engagement of the gear portion 53b and the inner peripheral gear portion 52d. At the same time, the shaft portion 52a of the intermediate rotating body 52 revolves around the input shaft 53 in the clockwise direction along the rotation groove 51f by the meshing of the outer peripheral gear portion 52b and the inner peripheral gear portion 51e. That is, the intermediate rotating body 52 is configured to revolve clockwise while rotating counterclockwise.
 入力軸53の回転に伴って、中間回転体52は、図29(a)~(d)及び図30(a)~(b)に示す軌跡を辿って、図30(c)に示すように、規制突起52cが係止部51dで係止される位置にまで回動される。 As the input shaft 53 rotates, the intermediate rotator 52 follows the trajectories shown in FIGS. 29 (a) to 29 (d) and FIGS. 30 (a) to (b), as shown in FIG. 30 (c). Then, the restricting projection 52c is rotated to a position where it is locked by the locking portion 51d.
 規制突起52cが係止部51dによって係止されていない間は、入力軸53はケース51に対して相対回転し、規制突起52cが係止部51dに到達すると、入力軸53の回転が中間回転体52を介してケース51に伝達されて、入力軸53がケース51と一体回転する。このように、本実施形態においても、入力軸53の回転が遅延されて出力軸(ケース51)に伝達される。 While the restricting projection 52c is not locked by the locking portion 51d, the input shaft 53 rotates relative to the case 51. When the restricting projection 52c reaches the locking portion 51d, the input shaft 53 rotates to an intermediate rotation. It is transmitted to the case 51 via the body 52 and the input shaft 53 rotates integrally with the case 51. Thus, also in this embodiment, the rotation of the input shaft 53 is delayed and transmitted to the output shaft (case 51).
 図28の状態から図30(c)になるまでの入力軸53の回転回数は、本実施形態では4.5回程度であるが、ギヤの歯数や規制突起52c又は係止部51dの形状や位置を変更することによって、この回転回数は適宜変更可能である。 The number of rotations of the input shaft 53 from the state of FIG. 28 to FIG. 30C is about 4.5 in this embodiment, but the number of gear teeth, the shape of the restricting protrusion 52c or the locking portion 51d The number of rotations can be appropriately changed by changing the position.
4.第4実施形態
 本発明の第4実施形態では、図31を用いて、伝達遅延ユニット25をロールスクリーンへの応用した例を示す。このロールスクリーンでは、駆動ギヤ61と伝達ギヤ62が噛み合っており、伝達ギヤ62と従動ギヤ63が噛み合っている。伝達ギヤ62及び従動ギヤ63は、それぞれ、支軸62a,63aを有し、支軸62a,63aがそれぞれ支持フレーム(不図示)に回転可能に支持されている。駆動ギヤ61は係合軸61aを有し、係合軸61aが操作プーリー23aに係合されている。このような構成によれば、操作プーリー23aの回転に伴って駆動ギヤ61,伝達ギヤ62,従動ギヤ63が回転する。駆動ギヤ61と巻取軸64の間には伝達遅延ユニット25が設けられている。このため、駆動ギヤ61の回転が遅延されて巻取軸64に伝達される。巻取軸64にはスクリーン64aの上端が取着されている。スクリーン64aの下端にはウェイトバー64bが取着されている。従動ギヤ63と巻取軸65の間には伝達遅延ユニットが設けられていないので、従動ギヤ63の回転は遅延されることなく巻取軸65に伝達される。巻取軸65にはスクリーン65aの上端が取着されている。スクリーン65aの下端にはウェイトバー65bが取着されている。
4). Fourth Embodiment In the fourth embodiment of the present invention, an example in which the transmission delay unit 25 is applied to a roll screen will be described with reference to FIG. In this roll screen, the drive gear 61 and the transmission gear 62 are engaged, and the transmission gear 62 and the driven gear 63 are engaged. The transmission gear 62 and the driven gear 63 have support shafts 62a and 63a, respectively, and the support shafts 62a and 63a are rotatably supported by a support frame (not shown). The drive gear 61 has an engagement shaft 61a, and the engagement shaft 61a is engaged with the operation pulley 23a. According to such a configuration, the drive gear 61, the transmission gear 62, and the driven gear 63 rotate with the rotation of the operation pulley 23a. A transmission delay unit 25 is provided between the drive gear 61 and the winding shaft 64. For this reason, the rotation of the drive gear 61 is delayed and transmitted to the winding shaft 64. The upper end of the screen 64a is attached to the winding shaft 64. A weight bar 64b is attached to the lower end of the screen 64a. Since no transmission delay unit is provided between the driven gear 63 and the winding shaft 65, the rotation of the driven gear 63 is transmitted to the winding shaft 65 without being delayed. The upper end of the screen 65a is attached to the winding shaft 65. A weight bar 65b is attached to the lower end of the screen 65a.
 操作プーリー23aに掛装された操作コード7を操作して操作プーリー23aをスクリーン64a,65aの巻取方向に回転させると、操作プーリー23aの回転が遅延されることなく巻取軸65に伝達される。一方、操作プーリー23aの回転は、伝達遅延ユニット25によって遅延されて巻取軸64に伝達される。このため、スクリーン64a,65aは、スクリーン65aがスクリーン64aよりも上側にずれた状態で巻取軸64,65に巻き取られる。 When the operation cord 7 hung on the operation pulley 23a is operated to rotate the operation pulley 23a in the winding direction of the screens 64a and 65a, the rotation of the operation pulley 23a is transmitted to the winding shaft 65 without being delayed. The On the other hand, the rotation of the operation pulley 23 a is delayed by the transmission delay unit 25 and transmitted to the winding shaft 64. For this reason, the screens 64a and 65a are wound around the winding shafts 64 and 65 in a state in which the screen 65a is shifted upward from the screen 64a.
 スクリーン64a,65aの下端が所望の位置に到達するまでスクリーン64a,65aを巻きとった後に、操作コード7を操作して操作プーリー23aをスクリーン64a,65aの巻戻し方向に回転させると、操作プーリー23aの回転が遅延されることなく巻取軸65に伝達される。一方、操作プーリー23aの回転は、伝達遅延ユニット25によって遅延されて巻取軸64に伝達される。このため、回転の伝達が遅延されている間は、スクリーン65aのみが巻き戻されて、スクリーン64a,65aの上下方向のずれが小さくなる。このように、伝達遅延ユニット25を用いることによって、2枚のスクリーン64a,65aの上下方向の相対位置を変化させることができる。例えば、スクリーン64a,65aとして、図31(c)に示すように、遮光部66と透光部67が交互に設けられているスクリーンを用いた場合、スクリーン64a,65aの上下方向の相対位置を変化させることによって、2枚のスクリーン64a,65aを透過する光の透過量を容易に変化させることができる。 After winding the screens 64a and 65a until the lower ends of the screens 64a and 65a reach a desired position, the operation pulley 7a is operated to rotate the operation pulley 23a in the rewinding direction of the screens 64a and 65a. The rotation of 23a is transmitted to the winding shaft 65 without being delayed. On the other hand, the rotation of the operation pulley 23 a is delayed by the transmission delay unit 25 and transmitted to the winding shaft 64. For this reason, while the transmission of rotation is delayed, only the screen 65a is rewound, and the vertical displacement of the screens 64a and 65a is reduced. Thus, by using the transmission delay unit 25, the relative position in the vertical direction of the two screens 64a and 65a can be changed. For example, as shown in FIG. 31C, when the screens 64a and 65a are provided with the light shielding portions 66 and the light transmitting portions 67 alternately, the relative positions of the screens 64a and 65a in the vertical direction are set. By changing it, the amount of light transmitted through the two screens 64a and 65a can be easily changed.
1:ヘッドボックス、2:ラダーコード、3:スラット、4:ボトムレール、5:昇降コード、6:操作部ユニット、7:操作コード、8:昇降軸、9:巻取軸、10,11:サポート部材、15:コードゲート、17:チルト軸、19:チルターユニット、22:速度調整機、23:遊星ギヤ・操作プーリー部、24:チルト伝達部、25:伝達遅延ユニット、26:ブレーキ部、27:クラッチユニット、28:入力軸、29,30:第1及び第2ケース、31:中間回転体、32:チルタードラム、32a:V状溝、33:サポートキャップ、33a:V状突起、34:チルターギヤ、35:軸受プレート、41:入力軸、42:カム軸、43:出力軸、44:ボール、45:操作部ケース、46:別体パーツ、51:ケース、52:中間回転体、53:入力軸、54:ケース、55:中間回転体、56:入力軸 1: Head box, 2: Ladder cord, 3: Slat, 4: Bottom rail, 5: Lifting cord, 6: Operation unit, 7: Operation cord, 8: Lifting shaft, 9: Winding shaft, 10, 11: Support member, 15: cord gate, 17: tilt shaft, 19: tilter unit, 22: speed adjuster, 23: planetary gear / operation pulley section, 24: tilt transmission section, 25: transmission delay unit, 26: brake section 27: clutch unit, 28: input shaft, 29, 30: first and second cases, 31: intermediate rotating body, 32: tilter drum, 32a: V-shaped groove, 33: support cap, 33a: V-shaped protrusion, 34 : Tilter gear, 35: bearing plate, 41: input shaft, 42: cam shaft, 43: output shaft, 44: ball, 45: operation part case, 46: separate part, 51: case, 52: During rotary member, 53: input shaft, 54: Case, 55: intermediate rotor, 56: input shaft

Claims (10)

  1. 第1入力軸と、第1入力軸の回転に伴って第1入力軸よりも遅い回転速度で回転するように構成された中間回転体と、前記中間回転体を介して第1入力軸の回転が伝達される第1出力軸を備え、
    前記中間回転体は、所定角度回転後に、第1出力軸に対して相対回転不能になるように構成される、伝達遅延ユニット。
    A first input shaft, an intermediate rotator configured to rotate at a lower rotational speed than the first input shaft as the first input shaft rotates, and the rotation of the first input shaft via the intermediate rotator Is provided with a first output shaft,
    The transmission delay unit, wherein the intermediate rotating body is configured to be unable to rotate relative to the first output shaft after rotating by a predetermined angle.
  2. 前記中間回転体の外周面が第1入力軸の外周面に噛み合うように構成される、請求項1に記載の伝達遅延ユニット。 The transmission delay unit according to claim 1, wherein an outer peripheral surface of the intermediate rotating body is configured to mesh with an outer peripheral surface of the first input shaft.
  3. 前記中間回転体は、第1入力軸の回転に伴って断続的に回転するように構成される、請求項2に記載の伝達遅延ユニット。 The transmission delay unit according to claim 2, wherein the intermediate rotating body is configured to rotate intermittently as the first input shaft rotates.
  4. 前記中間回転体は、複数設けられ、
    第1入力軸の回転に伴って複数の前記中間回転体が同時に回転するように構成される、請求項2又は請求項3に記載の伝達遅延ユニット。
    A plurality of the intermediate rotating bodies are provided,
    The transmission delay unit according to claim 2 or 3, wherein the plurality of intermediate rotating bodies are configured to rotate simultaneously with the rotation of the first input shaft.
  5. 前記中間回転体の内周面が第1入力軸の外周面に噛み合うように構成される、請求項1に記載の伝達遅延ユニット。 The transmission delay unit according to claim 1, wherein an inner peripheral surface of the intermediate rotating body is configured to mesh with an outer peripheral surface of the first input shaft.
  6. 前記中間回転体は、第1入力軸の回転に伴って自転すると共に第1入力軸の周りを前記自転の方向とは逆方向に公転するように構成される、請求項1に記載の伝達遅延ユニット。 The transmission delay according to claim 1, wherein the intermediate rotating body is configured to rotate with the rotation of the first input shaft and to revolve around the first input shaft in a direction opposite to the direction of the rotation. unit.
  7. 前記中間回転体は、規制突起を備え、前記中間回転体の回転に伴って前記規制突起が第1出力軸によって係止されることによって、前記中間回転体が第1出力軸に対して相対回転不能になるように構成される、請求項1~請求項6の何れか1つに記載の伝達遅延ユニット。 The intermediate rotator includes a regulation protrusion, and the intermediate rotator rotates relative to the first output shaft by being locked by the first output shaft as the intermediate rotator rotates. The propagation delay unit according to any one of claims 1 to 6, which is configured to be disabled.
  8. 操作コードの操作によって昇降軸を回転させて遮蔽材を昇降させる遮蔽材昇降装置であって、
    前記操作コードの操作に伴って回転する入力軸の回転が請求項1~請求項7の何れか1つに記載の伝達遅延ユニット及びクラッチユニットを介して前記昇降軸に伝達されるように構成され、
    前記クラッチユニットは、第1出力軸の回転に伴って回転する第2入力軸と、前記昇降軸と一体回転する第2出力軸を備え、
    前記クラッチユニットは、第2入力軸の回転に伴って回転するカム軸の回転に伴って前記カム軸をその軸方向に移動させるカム部と、前記カム軸の移動に伴って前記カム軸と第2出力軸の間の連結・非連結状態を切り替えるクラッチ部を備える、遮蔽材昇降装置。
    A shielding material lifting device that rotates the lifting shaft by operating the operation code to raise and lower the shielding material,
    The rotation of the input shaft that rotates in accordance with the operation of the operation code is transmitted to the lift shaft via the transmission delay unit and the clutch unit according to any one of claims 1 to 7. ,
    The clutch unit includes a second input shaft that rotates as the first output shaft rotates, and a second output shaft that rotates integrally with the lifting shaft,
    The clutch unit includes a cam portion that moves the cam shaft in the axial direction with the rotation of the cam shaft that rotates with the rotation of the second input shaft, and the cam shaft and the cam shaft that move with the movement of the cam shaft. A shielding material elevating device including a clutch unit that switches between a connected state and a non-connected state between two output shafts.
  9. 操作コードの操作によって昇降軸及びチルト軸を回転させるように構成された遮蔽材昇降装置であって、
    前記操作コードの操作に伴って回転する入力軸の回転が伝達遅延ユニットを介して前記昇降軸に伝達されるように構成され、
    前記伝達遅延ユニットは、前記入力軸の回転に伴って回転する第1入力軸と、第1入力軸の回転が遅延されて伝達される第1出力軸を備え、
    第1入力軸と一体回転する伝達ギヤと、前記チルト軸と一体回転し且つ前記伝達ギヤに噛み合うように設けられたチルト軸ギヤを備え、前記伝達ギヤは、前記伝達遅延ユニットの入力側に配置される、遮蔽材昇降装置。
    A shielding material elevating device configured to rotate an elevating axis and a tilt axis by operating an operation code,
    The rotation of the input shaft that rotates in accordance with the operation of the operation code is configured to be transmitted to the lifting shaft via a transmission delay unit,
    The transmission delay unit includes a first input shaft that rotates with the rotation of the input shaft, and a first output shaft that is transmitted with the rotation of the first input shaft delayed.
    A transmission gear that rotates integrally with the first input shaft; and a tilt shaft gear that rotates integrally with the tilt shaft and meshes with the transmission gear, the transmission gear being disposed on the input side of the transmission delay unit Shielding material lifting device.
  10. 操作コードの操作によって昇降軸を回転させて遮蔽材を昇降させる遮蔽材昇降装置であって、
    前記操作コードの操作に伴って回転する入力軸の回転が伝達遅延ユニット及びクラッチユニットを介して前記昇降軸に伝達されるように構成され、
    前記伝達遅延ユニットは、前記入力軸の回転に伴って回転する第1入力軸と、第1入力軸の回転が遅延されて伝達される第1出力軸を備え、
    前記クラッチユニットは、第1出力軸の回転に伴って回転する第2入力軸と、前記昇降軸と一体回転する第2出力軸を備え、
    前記クラッチユニットは、第2入力軸の回転に伴って回転するカム軸の回転に伴って前記カム軸をその軸方向に移動させるカム部と、前記カム軸の移動に伴って前記カム軸と第2出力軸の間の連結・非連結状態を切り替えるクラッチ部を備え、
    前記伝達遅延ユニットと前記クラッチユニットの間にブレーキ部を備え、
    前記ブレーキ部は、第1出力軸の回転を第2入力軸に伝達すると共に、前記遮蔽材の自重によって発生するトルクによる第2入力軸の回転を阻止するように構成される、遮蔽材昇降装置。
    A shielding material lifting device that rotates the lifting shaft by operating the operation code to raise and lower the shielding material,
    The rotation of the input shaft that rotates in accordance with the operation of the operation code is configured to be transmitted to the lifting shaft via a transmission delay unit and a clutch unit,
    The transmission delay unit includes a first input shaft that rotates with the rotation of the input shaft, and a first output shaft that is transmitted with the rotation of the first input shaft delayed.
    The clutch unit includes a second input shaft that rotates as the first output shaft rotates, and a second output shaft that rotates integrally with the lifting shaft,
    The clutch unit includes a cam portion that moves the cam shaft in the axial direction with the rotation of the cam shaft that rotates with the rotation of the second input shaft, and the cam shaft and the cam shaft that move with the movement of the cam shaft. It has a clutch part that switches the connection / disconnection state between the two output shafts,
    A brake part is provided between the transmission delay unit and the clutch unit,
    The brake unit is configured to transmit the rotation of the first output shaft to the second input shaft and to block the rotation of the second input shaft due to the torque generated by the weight of the shielding material. .
PCT/JP2016/064421 2015-05-19 2016-05-16 Transmission delay unit and shielding material raising/lowering device WO2016186064A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017519201A JP6925266B2 (en) 2015-05-19 2016-05-16 Transmission delay unit, shielding material lifting device
CN201680027803.3A CN107532699B (en) 2015-05-19 2016-05-16 Transmission delay unit and shutter lifting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-102229 2015-05-19
JP2015102229 2015-05-19

Publications (1)

Publication Number Publication Date
WO2016186064A1 true WO2016186064A1 (en) 2016-11-24

Family

ID=57319956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064421 WO2016186064A1 (en) 2015-05-19 2016-05-16 Transmission delay unit and shielding material raising/lowering device

Country Status (3)

Country Link
JP (1) JP6925266B2 (en)
CN (1) CN107532699B (en)
WO (1) WO2016186064A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186543A (en) * 2019-05-10 2020-11-19 立川ブラインド工業株式会社 Shield device and power transmission device
US10900280B2 (en) 2017-09-20 2021-01-26 Hunter Douglas Inc. Architectural structure covering having a speed regulating assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349890B2 (en) * 2019-11-28 2023-09-25 立川ブラインド工業株式会社 Dimmable roll screen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378813B2 (en) * 1998-11-10 2003-02-17 立川ブラインド工業株式会社 Shielding material elevating device for solar shading device and slat drive device for horizontal blind
JP2006016804A (en) * 2004-06-30 2006-01-19 Lonseal Corp Slat drive device of transverse type blind
JP4074420B2 (en) * 2000-03-27 2008-04-09 株式会社ニチベイ blind
JP2010255386A (en) * 2009-04-28 2010-11-11 Tachikawa Blind Mfg Co Ltd Slat driving device of horizontal blind

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003289068A1 (en) * 2003-12-12 2005-06-29 Tachikawa Corporation Lift unit of sun shade
CN102369334B (en) * 2009-04-28 2014-07-23 立川窗饰工业株式会社 Slat drive device for horizontal blinds
CN102597408B (en) * 2009-11-02 2014-12-17 立川窗饰工业株式会社 Shielding device and clutch used therefor
JP5666965B2 (en) * 2011-04-08 2015-02-12 トーソー株式会社 Solar shading device
JP6262415B2 (en) * 2012-06-15 2018-01-17 立川ブラインド工業株式会社 Solar shading device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378813B2 (en) * 1998-11-10 2003-02-17 立川ブラインド工業株式会社 Shielding material elevating device for solar shading device and slat drive device for horizontal blind
JP4074420B2 (en) * 2000-03-27 2008-04-09 株式会社ニチベイ blind
JP2006016804A (en) * 2004-06-30 2006-01-19 Lonseal Corp Slat drive device of transverse type blind
JP2010255386A (en) * 2009-04-28 2010-11-11 Tachikawa Blind Mfg Co Ltd Slat driving device of horizontal blind

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900280B2 (en) 2017-09-20 2021-01-26 Hunter Douglas Inc. Architectural structure covering having a speed regulating assembly
JP2020186543A (en) * 2019-05-10 2020-11-19 立川ブラインド工業株式会社 Shield device and power transmission device

Also Published As

Publication number Publication date
CN107532699A (en) 2018-01-02
JP6925266B2 (en) 2021-08-25
CN107532699B (en) 2020-09-08
JPWO2016186064A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6346352B2 (en) Operation device for solar shading device
WO2016186064A1 (en) Transmission delay unit and shielding material raising/lowering device
US11448009B2 (en) Shading device
JP2016216991A (en) clutch
JP5721343B2 (en) Lifting device, operation cord
JP6608169B2 (en) Tilt device, horizontal blind
JP2006304984A (en) Roman shade with selection of lifting up/down cord
JP5521149B2 (en) blind
KR20160007553A (en) Cam Unit, Horizontal Blind, and Drive Unit for Sunlight Blocking Device
KR102199482B1 (en) Double blind curtain with tape-belt divided into two
JP2017066675A (en) Driving force transmission device of solar shading device
TWM613462U (en) Bidirectional open-close type window curtain
JP7475234B2 (en) Sunshading device and operating device for a sunshading device
JP6782126B2 (en) Roll screen
JP7274371B2 (en) power transmission and shielding
JP6586001B2 (en) Solar shading device
JP7438049B2 (en) Solar shading devices and operating devices for solar shading devices
JP7002362B2 (en) Driving force transmission device and shielding device using this
JP7143544B1 (en) Lock type two-way clutch
JP4953916B2 (en) Blinds, vertical blinds and horizontal blinds
JP2022011359A (en) Rolling up curtain
JP6710044B2 (en) Horizontal blinds
WO2020095724A1 (en) Shielding device
JP6951959B2 (en) Braking device and shielding device equipped with it
JP6133699B2 (en) Driving operation device for solar radiation shielding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519201

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796457

Country of ref document: EP

Kind code of ref document: A1