WO2016185877A1 - Wearable robot control device, wearable robot, and wearable robot control method - Google Patents

Wearable robot control device, wearable robot, and wearable robot control method Download PDF

Info

Publication number
WO2016185877A1
WO2016185877A1 PCT/JP2016/062885 JP2016062885W WO2016185877A1 WO 2016185877 A1 WO2016185877 A1 WO 2016185877A1 JP 2016062885 W JP2016062885 W JP 2016062885W WO 2016185877 A1 WO2016185877 A1 WO 2016185877A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearable robot
worn
wearable
user
acceleration
Prior art date
Application number
PCT/JP2016/062885
Other languages
French (fr)
Japanese (ja)
Inventor
ダメラウ・ヨッヘン
峰生 渡邉
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Publication of WO2016185877A1 publication Critical patent/WO2016185877A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators

Definitions

  • the present invention relates to a control device for a wearable robot that is attached to a user's body and assists the user by executing an auxiliary operation according to the user's state, a wearable robot including such a control device, and the user's body And a wearable robot control method for assisting a user by executing an assisting operation according to the user's state.
  • the auxiliary operation is executed regardless of the user's state. For example, even if the user loses the balance due to the auxiliary operation, the auxiliary operation to avoid it is not executed. Is not prevented from falling.
  • the posture of the user is monitored, and the auxiliary motion is changed so that the posture is always in a highly stable state, that is, the posture is not always fallen by the user. In some cases, the user is prevented from falling (for example, see Non-Patent Document 1).
  • the user's posture is always stable in order to prevent the user from falling
  • the auxiliary operation is changed so as to be in a highly probable state, that is, so as not to be in a posture in which the user always falls.
  • a period during which the user's posture is in a low stability state, that is, a period during which the user falls.
  • the user feels uncomfortable that there is no such period.
  • a period in which the user is forced to have an unnatural posture occurs, and the user feels burdened. That is, the conventional wearable robot has a problem that it is difficult to ensure both the user's safety and the feeling of use.
  • the present invention has been made against the background of the above problems, and provides a wearable robot control device that ensures both user safety and usability. Moreover, the wearable robot provided with such a control apparatus is obtained. Further, the present invention provides a control method for a wearable robot in which both user safety and usability are ensured.
  • a wearable robot control device is a wearable robot control device that is attached to a user's body and assists the user by performing an auxiliary operation in accordance with the user's state, wherein the wearable robot is attached to the wearable robot control device.
  • a posture information acquisition unit that acquires measured data of at least one physical quantity related to the posture of the body that is being used, and the body on which the wearable robot is mounted when the measured data falls outside an allowable range
  • An auxiliary action execution unit that causes the wearable robot to execute the auxiliary action for avoiding the fall of the wearable robot, and the allowable range is acquired in a posture in which the body on which the wearable robot is worn falls. The actually measured data is set within an allowable range.
  • the wearable robot according to the present invention includes the above-described wearable robot control device.
  • the wearable robot control method is a wearable robot control method that is attached to a user's body and assists the user by performing an assist operation according to the user's state, the wearable robot
  • the actual measurement data acquired in step 1 is set within an allowable range.
  • the wearable robot is attached to the user's body and assists the user by performing an auxiliary operation according to the user's state, and at least one related to the posture of the body on which the wearable robot is attached.
  • an auxiliary action is performed to prevent the body wearing the wearable robot from falling, and the allowable range is worn by the wearable robot. It is set in a range that allows the actual measurement data acquired in the posture in which the body that is being fallen. Therefore, for example, when a user wears a wearable robot and performs a walking motion, a period during which the user's posture is low in stability, that is, a posture in which the user falls over. A period is allowed to occur, and the user is prevented from feeling uncomfortable. In addition, the period during which the user is forced to have an unnatural posture is shortened, and the user is prevented from feeling burdened. That is, it is possible to ensure both user safety and usability.
  • FIG. 1 is a diagram showing a system configuration of a wearable robot according to a first embodiment. It is a figure which shows the gravity center CoG, the pressure center CoP, and zero moment point ZMP in the solid model of the wearable robot which concerns on Embodiment 1.
  • FIG. It is a figure which shows the support polygon SP and pressure center CoP in a solid model of the wearable robot which concerns on Embodiment 1.
  • FIG. 10 is a diagram showing a specific example of a processing flow of an auxiliary action execution unit of the wearable robot according to the first embodiment.
  • FIG. 6 is a diagram illustrating a system configuration of a wearable robot according to a second embodiment.
  • FIG. 10 is a diagram illustrating a specific example of a processing flow of an auxiliary operation executing unit of the wearable robot according to the second embodiment.
  • the wearable robot which concerns on this invention is demonstrated using drawing.
  • movement, etc. which are demonstrated below are examples, and the wearable robot which concerns on this invention is not limited to the case where it is such a structure, operation
  • the drive mechanism may be attached to only a limited part of the lower body, or may be attached to the upper part of the upper body, or the upper part or a part of the upper part that is limited. It may be attached only to.
  • the wearable robot according to the present invention may be worn by a user other than a human. The user includes all animals including humans.
  • the wearable robot which concerns on this invention may assist other motions other than a user's walking motion.
  • FIG. 1 is a diagram illustrating an overall configuration of the wearable robot according to the first embodiment.
  • the wearable robot 1 includes a drive mechanism 10 attached to a user's body 100 and a control device 30 that controls the operation of the drive mechanism 10.
  • the drive mechanism 10 is attached to the right leg 11 that is attached to the right leg of the body 100, the left leg 12 that is attached to the left leg of the body 100, and the trunk (such as the waist) of the body 100. And a connecting portion 13 that connects the portion 11 and the left leg portion 12.
  • Each of the right leg portion 11 and the left leg portion 12 is a multi-link mechanism.
  • the right leg part 11 and the left leg part 12 are connected to the connection part 13 via a link mechanism.
  • the rotation angle of each link mechanism is controlled by the control device 30, whereby the user's assisting operation in the wearable robot 1 is executed.
  • a part or all of the control device 30 may communicate with a wire or may communicate wirelessly. Further, a part or all of the control device 30 may be held by the connecting portion 13, may be held by a portion other than the connecting portion 13 of the driving mechanism 10, and is held by other than the driving mechanism 10. May be. That is, a part or all of the control device 30 may be disposed at a location away from the body 100.
  • a part or all of the control device 30 may be constituted by, for example, a microcomputer, a microprocessor unit, etc., may be constituted by an updatable device such as firmware, and is executed by a command from the CPU or the like. It may be a program module or the like.
  • FIG. 2 is a diagram illustrating a system configuration of the wearable robot according to the first embodiment.
  • the control device 30 includes an attitude information acquisition unit 40 and an auxiliary operation execution unit 50.
  • the detected value of the sensor group 21 of the drive mechanism 10 is input to the attitude information acquisition unit 40.
  • the sensor group 21 includes, for example, an inertial measurement sensor 21a (6-axis IMU sensor) that measures a triaxial angle or angular velocity and a triaxial acceleration, an encoder 21b that measures a rotation angle of each link mechanism, And a pressure distribution measurement sensor 21c that measures the pressure distribution at the bottom. If necessary, each sensor of the sensor group 21 may be omitted, and other sensors may be added.
  • the posture information acquisition unit 40 acquires measured data MD of at least one physical quantity Q related to the posture of the body 100 on which the wearable robot 1 is worn using the input detection value of the sensor group 21.
  • the posture information acquisition unit 40 includes, for example, a three-dimensional model acquisition unit 41, a support polygon acquisition unit 42, a gravity center acquisition unit 43, a pressure center acquisition unit 44, and a zero moment point acquisition unit 45.
  • the stereo model acquisition unit 41 acquires the stereo model SM of the body 100 to which the wearable robot 1 is attached.
  • the support polygon acquisition unit 42 acquires information of the support polygon SP of the body 100 on which the wearable robot 1 is worn as the actual measurement data MD of the physical quantity Q related to the posture.
  • the center-of-gravity acquisition unit 43 acquires information on the center of gravity CoG of the body 100 on which the wearable robot 1 is worn as the actual measurement data MD of the physical quantity Q related to the posture.
  • the pressure center acquisition unit 44 acquires information on the pressure center CoP of the pressure distribution of the sole of the body 100 on which the wearable robot 1 is worn as the actual measurement data MD of the physical quantity Q related to the posture.
  • the zero moment point acquisition unit 45 may be called zero moment point ZMP (“cZMP”, “calculation ZMP”, etc.) of the body 100 on which the wearable robot 1 is worn as the actual measurement data MD of the physical quantity Q related to the posture. .) Information is acquired. If necessary, each acquisition unit of the posture information acquisition unit 40 may be omitted, and an acquisition unit that acquires information on other physical quantities Q related to the posture may be added.
  • the auxiliary operation executing unit 50 executes the auxiliary operation of the wearable robot 1 using the actual measurement data MD acquired by the posture information acquiring unit 40.
  • the auxiliary operation execution unit 50 includes an allowable range setting unit 51, an actual measurement data determination unit 52, an auxiliary operation determination unit 53, and an auxiliary operation output unit 54.
  • the allowable range AR of the actual measurement data MD acquired by the attitude information acquisition unit 40 is set.
  • the actual measurement data determination unit 52 it is determined whether or not the actual measurement data MD acquired by the posture information acquisition unit 40 is out of the allowable range AR set by the allowable range setting unit 51.
  • the operation parameter BP of the auxiliary motion performed by the wearable robot 1 is determined according to the determination result of the actual measurement data determination unit 52.
  • an instruction according to the operation parameter BP determined by the auxiliary operation determination unit 53 is output to each link mechanism (link mechanisms 22 a, 22 b, 22 c, etc.) of the link mechanism group 22 of the drive mechanism 10. .
  • FIG. 3 is a diagram illustrating the center of gravity CoG, the pressure center CoP, and the zero moment point ZMP in the three-dimensional model of the wearable robot according to the first embodiment.
  • FIG. 4 is a diagram showing the support polygon SP and the pressure center CoP in the three-dimensional model SM of the wearable robot according to the first embodiment. Note that FIG. 3 shows a state in which the entirety of the three-dimensional model SM is viewed from the right in the traveling direction, and FIG. 4 shows a state in which the ground contact portion SMa of the three-dimensional model SM is viewed from above.
  • the three-dimensional model acquisition unit 41 generates a three-dimensional model SM of the body 100 on which the wearable robot 1 is worn, as shown in FIG. 3, using the measurement value of the encoder 21b.
  • the support polygon acquisition unit 42 uses the stereo model SM generated by the stereo model acquisition unit 41 to calculate the position, shape, and the like of the support polygon SP of the body 100 on which the wearable robot 1 is worn.
  • the support polygon SP is defined as a figure having the shortest perimeter that surrounds all the ground contact portions SMa of the three-dimensional model SM.
  • the support polygon SP has the grounding portions of both legs as shown in FIG. 4.
  • the figure surrounds SMa.
  • the support polygon SP is a figure that surrounds only the grounded part SMa of one leg.
  • the center-of-gravity acquisition unit 43 uses the three-dimensional model SM generated by the three-dimensional model acquisition unit 41 to calculate the coordinates (x CoG , y CoG , z CoG ) of the center of gravity CoG of the body 100 on which the wearable robot 1 is worn. calculate.
  • the coordinates of the center of gravity CoG are as shown in FIG.
  • the pressure center acquisition unit 44 uses the information of the support polygon SP acquired by the stereo model SM generated by the stereo model acquisition unit 41 or the support polygon acquisition unit 42 and the measurement value of the pressure distribution measurement sensor 21c. Then, the coordinates (x CoP , y CoP , z CoP ) of the pressure center CoP of the pressure distribution of the sole of the body 100 to which the wearable robot 1 is worn are calculated.
  • the pressure center CoP is located inside the support polygon SP as shown in FIG.
  • the zero moment point acquisition unit 45 calculates the measurement value of the inertial measurement sensor 21 a, the coordinates of the center of gravity CoG calculated by the center of gravity acquisition unit 43 (x CoG , y CoG , z CoG ), and the pressure center acquisition unit 44.
  • the coordinates (x ZMP , y ZMP , z ZMP ) of the zero moment point ZMP of the body 100 to which the wearable robot 1 is worn are used using the coordinates (x CoP , y CoP , z CoP ) of the pressure center CoP that has been applied.
  • the coordinate x ZMP in the traveling direction of the zero moment point ZMP can be calculated by the following equation (1).
  • Iy is the y-axis component of the moment of inertia
  • ⁇ y is the y-axis component of the upper body angle
  • m is the mass
  • g gravitational acceleration.
  • FIG. 5 is a diagram illustrating a specific example of a processing flow of the auxiliary motion execution unit of the wearable robot according to the first embodiment.
  • the actual measurement data MD determined by the actual measurement data determination unit 52 is the coordinate x ZMP in the traveling direction of the zero moment point ZMP of the body 100 on which the wearable robot 1 is worn as the physical quantity Q related to the posture.
  • the differential value as the physical quantity Q related to the posture is actually measured, but the other physical quantity Q related to the posture and the differential value are actually measured.
  • the other physical quantity Q related to the posture may be, for example, the coordinate in the other direction of the zero moment point ZMP of the body 100 to which the wearable robot 1 is worn, and the body to which the wearable robot 1 is worn.
  • the coordinates of the center of gravity CoG of 100 may be used, and the angle or position of at least a part of the body 100 to which the wearable robot 1 is attached (for example, the angle ⁇ or position of the upper body, link mechanisms 22a, 22b, 22c, etc. Rotation angle, position of each link, etc.).
  • the actual measurement data MD may be data obtained by actually measuring the physical quantity Q related to one posture, may be data obtained by actually measuring the physical quantity Q related to three or more postures, and The differential value may not be actually measured.
  • the motion parameter BP determined by the auxiliary motion determination unit 53 is the coordinate of the zero moment point ZMP of the body 100 to which the wearable robot 1 is worn.
  • the motion parameter BP determined in 53 may be another physical quantity Q related to the posture.
  • the allowable range setting unit 51 in S102 sets the zero moment point ZMP of the body 100 on which the wearable robot 1 is worn.
  • the allowable range AR of the coordinate x ZMP and its differential value in the traveling direction, that is, the allowable range AR of the actual measurement data MD acquired by the posture information acquisition unit 40 is set.
  • the allowable range AR is set to an allowable range for the actual measurement data MD acquired in a posture in which the body 100 on which the wearable robot 1 is worn falls. Further, the allowable range AR is a posture in which the actual measurement data MD is a posture in which the body 100 to which the wearable robot 1 is worn falls, and a posture in which the fall cannot be avoided by an auxiliary operation after the posture becomes the posture. Is set in a range that does not reach the actual measurement data MD acquired in step (1). The allowable range AR may be set in consideration of the height of the body 100 on which the wearable robot 1 is worn.
  • the actual measurement data determination unit 52 obtains the coordinate x ZMP in the traveling direction of the zero moment point ZMP of the body 100 on which the wearable robot 1 is worn, acquired by the zero moment point acquisition unit 45, and its differential value. That is, the actual measurement data MD acquired by the posture information acquisition unit 40 is acquired.
  • the actual measurement data determination unit 52 obtains the coordinate x ZMP in the traveling direction of the zero moment point ZMP of the body 100 on which the wearable robot 1 is worn, acquired by the zero moment point acquisition unit 45, and its differential value. That is, it is determined whether or not the actual measurement data MD acquired by the posture information acquisition unit 40 is out of the allowable range AR set by the allowable range setting unit 51. If No, the process proceeds to S105, and if Yes, the process proceeds to S106.
  • the auxiliary action determining unit 53 sets an operation parameter BP so that the auxiliary action performed by the wearable robot 1 becomes a normal auxiliary action, and outputs the operation parameter BP to the auxiliary action output unit 54.
  • the auxiliary operation output unit 54 outputs an instruction according to the operation parameter BP to each link mechanism (link mechanisms 22a, 22b, 22c, etc.) of the link mechanism group 22 of the drive mechanism 10, and proceeds to S103.
  • the body 100 on which the wearable robot 1 is worn may be in a posture of falling or a posture in which the body 100 is not overturned by a normal assisting operation.
  • the auxiliary action determination unit 53 sets an operation parameter BP so that the auxiliary action performed by the wearable robot 1 becomes an auxiliary action that avoids the body 100 to which the wearable robot 1 is attached from falling.
  • the auxiliary operation output unit 54 outputs an instruction according to the operation parameter BP to each link mechanism (link mechanisms 22a, 22b, 22c, etc.) of the link mechanism group 22 of the drive mechanism 10, and proceeds to S103.
  • the motion parameter BP is the coordinate of the zero moment point ZMP of the body 100 to which the wearable robot 1 is worn, and the coordinate is the support polygon SP of the body 100 to which the wearable robot 1 is worn or the wearable robot 1 It is set so as to approach the pressure center CoP of the pressure distribution of the sole of the body 100 to which it is attached.
  • FIG. 6 is a diagram illustrating a specific example of changes in actual measurement data of the wearable robot according to the first embodiment.
  • the actual measurement data MD changes, for example, as shown in FIG.
  • the operation parameter BP is set in S105 so that a normal auxiliary operation is performed.
  • the body 100 on which the wearable robot 1 is worn is allowed to fall.
  • an operation parameter BP that is, a reference trajectory that is an auxiliary operation for avoiding the fall of the body 100 on which the wearable robot 1 is worn.
  • An operation parameter BP is set so as to be an auxiliary operation for returning to RT, and the body 100 on which the wearable robot 1 is worn is prevented from falling.
  • the allowable range AR may be set so as to vary according to the actual measurement data MD acquired by the posture information acquisition unit 40, or may be set to a fixed range.
  • the allowable range AR may be set using the support polygon SP acquired immediately before by the support polygon acquisition unit 42.
  • the allowable range AR may be set according to the speed or acceleration of at least a part of the body 100 on which the wearable robot 1 is worn immediately before. In such a case, the allowable range AR when the speed of at least a part of the body 100 on which the wearable robot 1 is worn is high is set to be smaller than the allowable range AR when the speed is low. It is good to be done.
  • the allowable range AR when the acceleration of at least a part of the body 100 on which the wearable robot 1 is worn is large may be set to be smaller than the allowable range AR when the acceleration is small.
  • FIG. 7 is a diagram illustrating a change in a three-dimensional model in an assisting operation for assisting walking in a conventional wearable robot.
  • FIG. 8 is a diagram illustrating a change in the three-dimensional model in the assisting operation that assists the walking of the wearable robot according to the first embodiment.
  • the posture of the body 100 on which the wearable robot is worn is always in a highly stable state, that is, the body 100 on which the wearable robot is always worn does not fall.
  • the auxiliary operation changes. That is, in the conventional wearable robot, for example, the auxiliary motion is performed so that the zero moment point ZMP of the body 100 to which the wearable robot is attached is positioned within the support polygon SP of the body 100 to which the wearable robot is always attached. Change. Therefore, for example, when the wearable robot performs an assisting operation to assist walking, as shown in FIG. 7, the body 100 to which the wearable robot is attached particularly at the step of stepping on the leg (step iv). A period in which the user is warped and a user is forced to take an unnatural posture occurs.
  • the allowable range AR is set to an allowable range of the actual measurement data MD acquired in a posture in which the body 100 to which the wearable robot 1 is worn falls, and the wearable robot 1 is worn. It is allowed that a period in which the posture of the body 100 is in a low stability state, that is, a period in which the posture of the body 100 falls is allowed. Therefore, for example, when the wearable robot 1 performs an assisting operation to assist walking, the body 100 to which the wearable robot 1 is worn falls at the step of stepping on the leg (step iv) as shown in FIG. Therefore, the period of forcing the user to take an unnatural posture is shortened. That is, in the wearable robot 1, it is possible to prevent the user from feeling uncomfortable and the user from feeling burdened.
  • the allowable range AR may be set using the support polygon SP acquired by the support polygon acquisition unit 42.
  • the setting of the allowable range AR in the allowable range setting unit 51 is made highly accurate, and the actual measurement data MD acquired by the posture information acquisition unit 40 in the actual measurement data determination unit 52 is out of the allowable range AR.
  • the determination of whether or not it is accurate is, the wearable robot 1 can further improve the safety of the user while suppressing the user from feeling uncomfortable and the user feeling burdened.
  • the allowable range AR may be set according to the speed or acceleration of at least a part of the body 100 on which the wearable robot 1 is worn.
  • the speed or acceleration of at least a part of the body 100 on which the wearable robot 1 is worn is large, the body 100 on which the wearable robot 1 is worn is in a posture that falls and after that posture There is a high possibility that the posture cannot be prevented from falling by the auxiliary operation.
  • the allowable range AR is set according to the speed or acceleration of at least a part of the body 100 to which the wearable robot 1 is worn, the body 100 to which the wearable robot 1 is worn falls.
  • the posture is set to the safe side when the possibility of becoming a posture in which the posture cannot be avoided by the auxiliary operation after the posture is reached is set to the safe side, and such a posture is obtained. It is possible to ensure the suppression of this. That is, the wearable robot 1 can further improve the safety of the user while suppressing the user from feeling uncomfortable and the user feeling burdened.
  • an auxiliary operation according to the state of the user may be executed constantly or temporarily.
  • the allowable range AR may be constantly set or temporarily set to a range in which the actual measurement data MD acquired in a posture in which the body 100 on which the wearable robot 1 is worn falls is allowed. May be.
  • Embodiment 2 FIG.
  • the wearable robot according to the second embodiment will be described below.
  • the description which overlaps with the wearable robot which concerns on Embodiment 1 is abbreviate
  • FIG. 9 is a diagram showing a system configuration of the wearable robot according to the second embodiment.
  • the auxiliary operation execution unit 50A includes an allowable range setting unit 51, an actual measurement data determination unit 52, an auxiliary operation determination unit 53A, and an auxiliary operation output unit 54.
  • the operation parameter BP of the auxiliary operation performed by the wearable robot 1 is determined according to the determination result of the actual measurement data determination unit 52.
  • the operation parameter BP includes a parameter VP related to the driving speed of the wearable robot 1.
  • the parameter VP related to the driving speed may be a driving speed of the wearable robot 1 or may be a driving acceleration.
  • FIG. 10 is a diagram illustrating a specific example of a processing flow of the auxiliary motion execution unit of the wearable robot according to the second embodiment.
  • the auxiliary action determination unit 53 sets an operation parameter BP so that the auxiliary action performed by the wearable robot 1 becomes an auxiliary action that avoids the fall of the body 100 on which the wearable robot 1 is worn, Output to the operation output unit 54.
  • the auxiliary motion output unit 54 determines a parameter VP related to the driving speed of the wearable robot 1 according to the speed or acceleration of at least a part of the body 100 on which the wearable robot 1 is worn, and the driving speed An instruction according to the parameter VP related to is output to each link mechanism (link mechanisms 22a, 22b, 22c, etc.) of the link mechanism group 22 of the drive mechanism 10, and the process proceeds to S203.
  • the driving speed of the wearable robot 1 when the speed of at least a part of the body 100 on which the wearable robot 1 is worn is high is set to be lower than the driving speed of the wearable robot 1 when the speed is low. Good. Further, the driving speed of wearable robot 1 when the acceleration of at least a part of body 100 to which wearable robot 1 is attached is large is smaller than the driving speed of wearable robot 1 when the acceleration is small. It should be set. In addition, the drive acceleration of wearable robot 1 when the speed of at least a part of body 100 to which wearable robot 1 is attached is high is smaller than the drive acceleration of wearable robot 1 when the speed is low. It should be set.
  • the driving acceleration of the wearable robot 1 when the acceleration of at least a part of the body 100 on which the wearable robot 1 is worn is large is smaller than the driving acceleration of the wearable robot 1 when the acceleration is small. It should be set.
  • the speed or acceleration of at least a part of the body 100 on which the wearable robot 1 is worn may be data acquired when the actual measurement data MD deviates from the allowable range AR.
  • the wearable robot 1 The operation of the wearable robot according to the second embodiment will be described.
  • the parameter VP related to the driving speed of the wearable robot 1 is set according to the speed or acceleration of at least a part of the body 100 on which the wearable robot 1 is worn.
  • an auxiliary operation for avoiding the body 100 to which the wearable robot 1 is attached is started.
  • sudden acceleration in the body 100 on which the wearable robot 1 is worn is suppressed. That is, the wearable robot 1 can further improve the safety of the user while suppressing the user from feeling uncomfortable and the user feeling burdened.
  • Embodiment 1 and Embodiment 2 were demonstrated, this invention is not limited to description of each embodiment. For example, all or some of the embodiments can be combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

The present invention provides a wearable robot control device and control method that ensure both user safety and usability. The present invention also provides a wearable robot that ensures both user safety and usability. If measured data (MD) for at least one physical quantity related to the position of a body on which a wearable robot is mounted deviates outside of the acceptable region (AR), a supplementary operation to prevent the body on which the wearable robot is mounted from falling is performed, wherein the acceptable region (AR) is set as a region that allows the measured data (MD) acquired at the position where the body on which the wearable robot is mounted falls.

Description

ウェアラブルロボットの制御装置、ウェアラブルロボット、及び、ウェアラブルロボットの制御方法Wearable robot control device, wearable robot, and wearable robot control method
 本発明は、ユーザの身体に装着され、ユーザの状態に応じた補助動作を実行してユーザを補助するウェアラブルロボットの制御装置と、そのような制御装置を備えているウェアラブルロボットと、ユーザの身体に装着され、ユーザの状態に応じた補助動作を実行してユーザを補助するウェアラブルロボットの制御方法と、に関するものである。 The present invention relates to a control device for a wearable robot that is attached to a user's body and assists the user by executing an auxiliary operation according to the user's state, a wearable robot including such a control device, and the user's body And a wearable robot control method for assisting a user by executing an assisting operation according to the user's state.
 従来のウェアラブルロボットとして、ユーザの身体に装着され、事前に設定された補助動作をユーザの状態と無関係に実行してユーザを補助するもの(いわゆる、「自律型のウェアラブルロボット」)と、ユーザの身体に装着され、ユーザの状態に応じた補助動作を実行してユーザを補助するもの(いわゆる、「随意型のウェアラブルロボット」)と、がある。 Conventional wearable robots that are worn on the user's body and assist the user by performing preset auxiliary actions regardless of the user's state (so-called “autonomous wearable robots”), There are those that are worn on the body and assist the user by performing an assisting operation according to the user's condition (so-called “optional wearable robot”).
 前者のウェアラブルロボットでは、補助動作がユーザの状態と無関係に実行されるため、例えば、その補助動作によってユーザがバランスを崩したとしても、それを回避する補助動作が実行されないこととなって、ユーザの転倒が防止されない。一方、後者のウェアラブルロボットにおいては、ユーザの姿勢がモニタされ、その姿勢が常時安定性の高い状態になるように、つまり、常時ユーザが転倒してしまう姿勢にならないように、補助動作が移り変わることで、ユーザの転倒が防止されるものがある(例えば、非特許文献1を参照。)。 In the former wearable robot, the auxiliary operation is executed regardless of the user's state. For example, even if the user loses the balance due to the auxiliary operation, the auxiliary operation to avoid it is not executed. Is not prevented from falling. On the other hand, in the latter wearable robot, the posture of the user is monitored, and the auxiliary motion is changed so that the posture is always in a highly stable state, that is, the posture is not always fallen by the user. In some cases, the user is prevented from falling (for example, see Non-Patent Document 1).
 従来のウェアラブルロボットのうちの、ユーザの身体に装着され、ユーザの状態に応じた補助動作を実行してユーザを補助するものにおいては、ユーザの転倒を防止するために、ユーザの姿勢が常時安定性の高い状態になるように、つまり、常時ユーザが転倒してしまう姿勢にならないように、補助動作が移り変わる。しかし、例えば、自然な歩行動作においては、その動作サイクル中に、ユーザの姿勢が安定性の低い状態になる期間、つまり、ユーザが転倒してしまう姿勢になる期間が生じるのが通常であり、ユーザが、そのようなウェアラブルロボットを装着して歩行動作を行うと、ユーザがそのような期間がないことに違和感を覚えてしまう。また、ユーザに不自然な姿勢を強いる期間が生じることとなって、ユーザが負担に感じてしまう。つまり、従来のウェアラブルロボットでは、ユーザの安全性と使用感との両方を確保することが困難であるという問題点があった。 Among conventional wearable robots that are attached to the user's body and assist the user by performing an assist operation according to the user's condition, the user's posture is always stable in order to prevent the user from falling The auxiliary operation is changed so as to be in a highly probable state, that is, so as not to be in a posture in which the user always falls. However, for example, in natural walking motion, during the motion cycle, there is usually a period during which the user's posture is in a low stability state, that is, a period during which the user falls. When a user wears such a wearable robot and performs a walking motion, the user feels uncomfortable that there is no such period. In addition, a period in which the user is forced to have an unnatural posture occurs, and the user feels burdened. That is, the conventional wearable robot has a problem that it is difficult to ensure both the user's safety and the feeling of use.
 本発明は、上記のような課題を背景としてなされたものであり、ユーザの安全性と使用感との両方が確保されたウェアラブルロボットの制御装置を得るものである。また、そのような制御装置を備えているウェアラブルロボットを得るものである。また、ユーザの安全性と使用感との両方が確保されたウェアラブルロボットの制御方法を得るものである。 The present invention has been made against the background of the above problems, and provides a wearable robot control device that ensures both user safety and usability. Moreover, the wearable robot provided with such a control apparatus is obtained. Further, the present invention provides a control method for a wearable robot in which both user safety and usability are ensured.
 本発明に係るウェアラブルロボットの制御装置は、ユーザの身体に装着され、前記ユーザの状態に応じた補助動作を実行して前記ユーザを補助するウェアラブルロボットの制御装置であって、前記ウェアラブルロボットが装着されている前記身体の姿勢に関連する少なくとも1つの物理量の、実測データを取得する姿勢情報取得部と、前記実測データが許容範囲外になった場合に、前記ウェアラブルロボットが装着されている前記身体の転倒を回避する前記補助動作を、前記ウェアラブルロボットに実行させる補助動作実行部と、を備えており、前記許容範囲は、前記ウェアラブルロボットが装着されている前記身体が転倒してしまう姿勢で取得される前記実測データを、許容する範囲に設定されるものである。 A wearable robot control device according to the present invention is a wearable robot control device that is attached to a user's body and assists the user by performing an auxiliary operation in accordance with the user's state, wherein the wearable robot is attached to the wearable robot control device. A posture information acquisition unit that acquires measured data of at least one physical quantity related to the posture of the body that is being used, and the body on which the wearable robot is mounted when the measured data falls outside an allowable range An auxiliary action execution unit that causes the wearable robot to execute the auxiliary action for avoiding the fall of the wearable robot, and the allowable range is acquired in a posture in which the body on which the wearable robot is worn falls. The actually measured data is set within an allowable range.
 また、本発明に係るウェアラブルロボットは、上記のようなウェアラブルロボットの制御装置を備えているものである。 Further, the wearable robot according to the present invention includes the above-described wearable robot control device.
 また、本発明に係るウェアラブルロボットの制御方法は、ユーザの身体に装着され、前記ユーザの状態に応じた補助動作を実行して前記ユーザを補助するウェアラブルロボットの制御方法であって、前記ウェアラブルロボットが装着されている前記身体の姿勢に関連する少なくとも1つの物理量の、実測データを取得する姿勢情報取得ステップと、前記実測データが許容範囲外になった場合に、前記ウェアラブルロボットが装着されている前記身体の転倒を回避する前記補助動作を、前記ウェアラブルロボットに実行させる補助動作実行ステップと、を備えており、前記許容範囲は、前記ウェアラブルロボットが装着されている前記身体が転倒してしまう姿勢で取得される前記実測データを、許容する範囲に設定されるものである。 The wearable robot control method according to the present invention is a wearable robot control method that is attached to a user's body and assists the user by performing an assist operation according to the user's state, the wearable robot A posture information acquisition step of acquiring measured data of at least one physical quantity related to the posture of the body on which the wearable is worn, and the wearable robot is worn when the measured data falls outside the allowable range An auxiliary action execution step for causing the wearable robot to execute the auxiliary action for avoiding the fall of the body, and the allowable range is an attitude in which the body on which the wearable robot is worn falls. The actual measurement data acquired in step 1 is set within an allowable range.
 本発明では、ウェアラブルロボットが、ユーザの身体に装着され、ユーザの状態に応じた補助動作を実行してユーザを補助するものであり、ウェアラブルロボットが装着されている身体の姿勢に関連する少なくとも1つの物理量の実測データが取得され、その実測データが許容範囲外になった場合に、ウェアラブルロボットが装着されている身体の転倒を回避する補助動作が実行され、その許容範囲が、ウェアラブルロボットが装着されている身体が転倒してしまう姿勢で取得される実測データを許容する範囲に設定される。そのため、例えば、ユーザが、ウェアラブルロボットを装着して歩行動作を行う際に、その動作サイクル中に、ユーザの姿勢が安定性の低い状態になる期間、つまり、ユーザが転倒してしまう姿勢になる期間が生じることが許容されることとなって、ユーザが違和感を覚えてしまうことが抑制される。また、ユーザに不自然な体勢を強いる期間が短縮されることとなって、ユーザが負担に感じてしまうことが抑制される。つまり、ユーザの安全性と使用感との両方を確保することが可能である。 In the present invention, the wearable robot is attached to the user's body and assists the user by performing an auxiliary operation according to the user's state, and at least one related to the posture of the body on which the wearable robot is attached. When measured data for one physical quantity is acquired and the measured data falls outside the allowable range, an auxiliary action is performed to prevent the body wearing the wearable robot from falling, and the allowable range is worn by the wearable robot. It is set in a range that allows the actual measurement data acquired in the posture in which the body that is being fallen. Therefore, for example, when a user wears a wearable robot and performs a walking motion, a period during which the user's posture is low in stability, that is, a posture in which the user falls over. A period is allowed to occur, and the user is prevented from feeling uncomfortable. In addition, the period during which the user is forced to have an unnatural posture is shortened, and the user is prevented from feeling burdened. That is, it is possible to ensure both user safety and usability.
実施の形態1に係るウェアラブルロボットの、全体構成を示す図である。It is a figure which shows the whole structure of the wearable robot which concerns on Embodiment 1. FIG. 実施の形態1に係るウェアラブルロボットの、システム構成を示す図である。1 is a diagram showing a system configuration of a wearable robot according to a first embodiment. 実施の形態1に係るウェアラブルロボットの、立体モデルにおける重心CoGと圧力中心CoPとゼロモーメントポイントZMPとを示す図である。It is a figure which shows the gravity center CoG, the pressure center CoP, and zero moment point ZMP in the solid model of the wearable robot which concerns on Embodiment 1. FIG. 実施の形態1に係るウェアラブルロボットの、立体モデルにおけるサポートポリゴンSPと圧力中心CoPとを示す図である。It is a figure which shows the support polygon SP and pressure center CoP in a solid model of the wearable robot which concerns on Embodiment 1. FIG. 実施の形態1に係るウェアラブルロボットの、補助動作実行部の処理フローの具体例を示す図である。FIG. 10 is a diagram showing a specific example of a processing flow of an auxiliary action execution unit of the wearable robot according to the first embodiment. 実施の形態1に係るウェアラブルロボットの、実測データの変化の具体例を示す図である。It is a figure which shows the specific example of the change of the measurement data of the wearable robot which concerns on Embodiment 1. FIG. 従来のウェアラブルロボットの、歩行を補助する補助動作での立体モデルの変化を示す図である。It is a figure which shows the change of the solid model in the auxiliary | assistant operation | movement which assists walking of the conventional wearable robot. 実施の形態1に係るウェアラブルロボットの、歩行を補助する補助動作での立体モデルの変化を示す図である。It is a figure which shows the change of the solid model in the auxiliary | assistant operation | movement which assists the walk of the wearable robot which concerns on Embodiment 1. FIG. 実施の形態2に係るウェアラブルロボットの、システム構成を示す図である。6 is a diagram illustrating a system configuration of a wearable robot according to a second embodiment. FIG. 実施の形態2に係るウェアラブルロボットの、補助動作実行部の処理フローの具体例を示す図である。FIG. 10 is a diagram illustrating a specific example of a processing flow of an auxiliary operation executing unit of the wearable robot according to the second embodiment.
 以下に、本発明に係るウェアラブルロボットについて、図面を用いて説明する。
 なお、以下で説明する構成、動作等は、一例であり、本発明に係るウェアラブルロボットは、そのような構成、動作等である場合に限定されない。つまり、以下では、本発明に係るウェアラブルロボットが、人間の下半身に装着される駆動機構によって人間の歩行動作を補助するものである場合を示しているが、本発明に係るウェアラブルロボットは、そのようなものに限定されない。例えば、駆動機構が、下半身のごく限られた部位のみに装着されるものであってもよく、また、上半身にも装着されるものであってもよく、また、上半身又はそのごく限られた部位のみに装着されるものであってもよい。また、例えば、本発明に係るウェアラブルロボットが、人間以外のユーザに装着されるものであってもよい。なお、ユーザには、人間を含む動物全般が含まれる。また、本発明に係るウェアラブルロボットが、ユーザの歩行動作以外の他の動作を補助するものであってもよい。
Below, the wearable robot which concerns on this invention is demonstrated using drawing.
In addition, the structure, operation | movement, etc. which are demonstrated below are examples, and the wearable robot which concerns on this invention is not limited to the case where it is such a structure, operation | movement, etc. That is, in the following, a case is shown in which the wearable robot according to the present invention assists a human walking motion by a drive mechanism attached to the lower body of the human, but the wearable robot according to the present invention is It is not limited to anything. For example, the drive mechanism may be attached to only a limited part of the lower body, or may be attached to the upper part of the upper body, or the upper part or a part of the upper part that is limited. It may be attached only to. For example, the wearable robot according to the present invention may be worn by a user other than a human. The user includes all animals including humans. Moreover, the wearable robot which concerns on this invention may assist other motions other than a user's walking motion.
 また、各図においては、同一又は類似の機能を有する部材又は部分に、同一の符号が付されている、又は、符号を付すことが省略されている場合がある。また、細かい構造についての説明又は図示が、適宜簡略化又は省略されている。また、重複する説明が、適宜簡略化又は省略されている。 Further, in each drawing, members or parts having the same or similar functions may be given the same reference numerals or omitted in some cases. Further, the description or illustration of the fine structure is appropriately simplified or omitted. In addition, overlapping descriptions are simplified or omitted as appropriate.
実施の形態1.
 以下に、実施の形態1に係るウェアラブルロボットを説明する。
<ウェアラブルロボットの全体構成>
 まず、実施の形態1に係るウェアラブルロボットの全体構成について説明する。
 図1は、実施の形態1に係るウェアラブルロボットの、全体構成を示す図である。
 図1に示されるように、ウェアラブルロボット1は、ユーザの身体100に装着される駆動機構10と、駆動機構10の動作を司る制御装置30と、を備えている。
Embodiment 1 FIG.
The wearable robot according to the first embodiment will be described below.
<Overall configuration of wearable robot>
First, the overall configuration of the wearable robot according to the first embodiment will be described.
FIG. 1 is a diagram illustrating an overall configuration of the wearable robot according to the first embodiment.
As shown in FIG. 1, the wearable robot 1 includes a drive mechanism 10 attached to a user's body 100 and a control device 30 that controls the operation of the drive mechanism 10.
 駆動機構10は、身体100の右脚に装着される右脚部11と、身体100の左脚に装着される左脚部12と、身体100の体幹(腰等)に装着され、右脚部11と左脚部12とを連結する連結部13と、を有する。右脚部11及び左脚部12のそれぞれは、多リンク機構である。また、右脚部11及び左脚部12は、連結部13にリンク機構を介して連結される。各リンク機構の回転角度が、制御装置30によって制御されることで、ウェアラブルロボット1における、ユーザの補助動作が実行される。 The drive mechanism 10 is attached to the right leg 11 that is attached to the right leg of the body 100, the left leg 12 that is attached to the left leg of the body 100, and the trunk (such as the waist) of the body 100. And a connecting portion 13 that connects the portion 11 and the left leg portion 12. Each of the right leg portion 11 and the left leg portion 12 is a multi-link mechanism. Moreover, the right leg part 11 and the left leg part 12 are connected to the connection part 13 via a link mechanism. The rotation angle of each link mechanism is controlled by the control device 30, whereby the user's assisting operation in the wearable robot 1 is executed.
 制御装置30の一部又は全ては、有線で通信するものであってもよく、また、無線で通信するものであってもよい。また、制御装置30の一部又は全ては、連結部13に保持されてもよく、また、駆動機構10の連結部13以外の部位に保持されてもよく、また、駆動機構10以外に保持されてもよい。つまり、制御装置30の一部又は全ては、身体100から離れた場所に配設されてもよい。制御装置30の一部又は全ては、例えば、マイコン、マイクロプロセッサユニット等で構成されてもよく、また、ファームウェア等の更新可能なもので構成されてもよく、また、CPU等からの指令によって実行されるプログラムモジュール等であってもよい。 A part or all of the control device 30 may communicate with a wire or may communicate wirelessly. Further, a part or all of the control device 30 may be held by the connecting portion 13, may be held by a portion other than the connecting portion 13 of the driving mechanism 10, and is held by other than the driving mechanism 10. May be. That is, a part or all of the control device 30 may be disposed at a location away from the body 100. A part or all of the control device 30 may be constituted by, for example, a microcomputer, a microprocessor unit, etc., may be constituted by an updatable device such as firmware, and is executed by a command from the CPU or the like. It may be a program module or the like.
<ウェアラブルロボットのシステム構成及び動作>
 次に、実施の形態1に係るウェアラブルロボットのシステム構成及び動作について説明する。
 図2は、実施の形態1に係るウェアラブルロボットの、システム構成を示す図である。
 図2に示されるように、制御装置30は、姿勢情報取得部40と、補助動作実行部50と、を有している。
<System configuration and operation of wearable robot>
Next, the system configuration and operation of the wearable robot according to the first embodiment will be described.
FIG. 2 is a diagram illustrating a system configuration of the wearable robot according to the first embodiment.
As illustrated in FIG. 2, the control device 30 includes an attitude information acquisition unit 40 and an auxiliary operation execution unit 50.
 姿勢情報取得部40には、駆動機構10のセンサ群21の検出値が入力される。センサ群21には、例えば、3軸の角度又は角速度と3軸の加速度とを計測する慣性計測センサ21a(6-axis IMU sensor)と、各リンク機構の回転角度を計測するエンコーダー21bと、足底の圧力分布を計測する圧力分布計測センサ21cと、が含まれる。必要に応じて、センサ群21の各センサが省略されてもよく、また、他のセンサが追加されてもよい。 The detected value of the sensor group 21 of the drive mechanism 10 is input to the attitude information acquisition unit 40. The sensor group 21 includes, for example, an inertial measurement sensor 21a (6-axis IMU sensor) that measures a triaxial angle or angular velocity and a triaxial acceleration, an encoder 21b that measures a rotation angle of each link mechanism, And a pressure distribution measurement sensor 21c that measures the pressure distribution at the bottom. If necessary, each sensor of the sensor group 21 may be omitted, and other sensors may be added.
 姿勢情報取得部40は、入力されたセンサ群21の検出値を用いて、ウェアラブルロボット1が装着されている身体100の姿勢に関連する少なくとも1つの物理量Qの実測データMDを取得する。姿勢情報取得部40には、例えば、立体モデル取得部41と、サポートポリゴン取得部42と、重心取得部43と、圧力中心取得部44と、ゼロモーメントポイント取得部45と、が含まれる。 The posture information acquisition unit 40 acquires measured data MD of at least one physical quantity Q related to the posture of the body 100 on which the wearable robot 1 is worn using the input detection value of the sensor group 21. The posture information acquisition unit 40 includes, for example, a three-dimensional model acquisition unit 41, a support polygon acquisition unit 42, a gravity center acquisition unit 43, a pressure center acquisition unit 44, and a zero moment point acquisition unit 45.
 立体モデル取得部41では、ウェアラブルロボット1が装着されている身体100の立体モデルSMが取得される。サポートポリゴン取得部42では、姿勢に関連する物理量Qの実測データMDとして、ウェアラブルロボット1が装着されている身体100のサポートポリゴンSPの情報が取得される。重心取得部43では、姿勢に関連する物理量Qの実測データMDとして、ウェアラブルロボット1が装着されている身体100の重心CoGの情報が取得される。圧力中心取得部44では、姿勢に関連する物理量Qの実測データMDとして、ウェアラブルロボット1が装着されている身体100の足底の圧力分布の圧力中心CoPの情報が取得される。ゼロモーメントポイント取得部45では、姿勢に関連する物理量Qの実測データMDとして、ウェアラブルロボット1が装着されている身体100のゼロモーメントポイントZMP(「cZMP」、「計算ZMP」等と呼ばれることもある。)の情報が取得される。必要に応じて、姿勢情報取得部40の各取得部が省略されてもよく、また、姿勢に関連する他の物理量Qの情報を取得する取得部が追加されてもよい。 The stereo model acquisition unit 41 acquires the stereo model SM of the body 100 to which the wearable robot 1 is attached. The support polygon acquisition unit 42 acquires information of the support polygon SP of the body 100 on which the wearable robot 1 is worn as the actual measurement data MD of the physical quantity Q related to the posture. The center-of-gravity acquisition unit 43 acquires information on the center of gravity CoG of the body 100 on which the wearable robot 1 is worn as the actual measurement data MD of the physical quantity Q related to the posture. The pressure center acquisition unit 44 acquires information on the pressure center CoP of the pressure distribution of the sole of the body 100 on which the wearable robot 1 is worn as the actual measurement data MD of the physical quantity Q related to the posture. The zero moment point acquisition unit 45 may be called zero moment point ZMP (“cZMP”, “calculation ZMP”, etc.) of the body 100 on which the wearable robot 1 is worn as the actual measurement data MD of the physical quantity Q related to the posture. .) Information is acquired. If necessary, each acquisition unit of the posture information acquisition unit 40 may be omitted, and an acquisition unit that acquires information on other physical quantities Q related to the posture may be added.
 補助動作実行部50は、姿勢情報取得部40で取得された実測データMDを用いて、ウェアラブルロボット1の補助動作を実行する。補助動作実行部50は、許容範囲設定部51と、実測データ判定部52と、補助動作決定部53と、補助動作出力部54と、を有する。 The auxiliary operation executing unit 50 executes the auxiliary operation of the wearable robot 1 using the actual measurement data MD acquired by the posture information acquiring unit 40. The auxiliary operation execution unit 50 includes an allowable range setting unit 51, an actual measurement data determination unit 52, an auxiliary operation determination unit 53, and an auxiliary operation output unit 54.
 許容範囲設定部51では、姿勢情報取得部40で取得される実測データMDの許容範囲ARが設定される。実測データ判定部52では、姿勢情報取得部40で取得された実測データMDが、許容範囲設定部51で設定された許容範囲ARから外れているか否かが判定される。補助動作決定部53では、実測データ判定部52の判定結果に応じてウェアラブルロボット1で行われる補助動作の動作パラメータBPが決定される。補助動作出力部54では、補助動作決定部53で決定された動作パラメータBPに応じた指示が駆動機構10のリンク機構群22の各リンク機構(リンク機構22a、22b、22c等)に出力される。 In the allowable range setting unit 51, the allowable range AR of the actual measurement data MD acquired by the attitude information acquisition unit 40 is set. In the actual measurement data determination unit 52, it is determined whether or not the actual measurement data MD acquired by the posture information acquisition unit 40 is out of the allowable range AR set by the allowable range setting unit 51. In the auxiliary motion determination unit 53, the operation parameter BP of the auxiliary motion performed by the wearable robot 1 is determined according to the determination result of the actual measurement data determination unit 52. In the auxiliary operation output unit 54, an instruction according to the operation parameter BP determined by the auxiliary operation determination unit 53 is output to each link mechanism (link mechanisms 22 a, 22 b, 22 c, etc.) of the link mechanism group 22 of the drive mechanism 10. .
(姿勢情報取得部の処理)
 姿勢情報取得部40の各取得部における処理の具体例を、以下に説明する。
 図3は、実施の形態1に係るウェアラブルロボットの、立体モデルにおける重心CoGと圧力中心CoPとゼロモーメントポイントZMPとを示す図である。図4は、実施の形態1に係るウェアラブルロボットの、立体モデルSMにおけるサポートポリゴンSPと圧力中心CoPとを示す図である。なお、図3では、立体モデルSMの全体を進行方向の右方から見た状態が示されており、図4では、立体モデルSMの接地部SMaを上方から見た状態が示されている。
(Processing of posture information acquisition unit)
A specific example of processing in each acquisition unit of the posture information acquisition unit 40 will be described below.
FIG. 3 is a diagram illustrating the center of gravity CoG, the pressure center CoP, and the zero moment point ZMP in the three-dimensional model of the wearable robot according to the first embodiment. FIG. 4 is a diagram showing the support polygon SP and the pressure center CoP in the three-dimensional model SM of the wearable robot according to the first embodiment. Note that FIG. 3 shows a state in which the entirety of the three-dimensional model SM is viewed from the right in the traveling direction, and FIG. 4 shows a state in which the ground contact portion SMa of the three-dimensional model SM is viewed from above.
 例えば、立体モデル取得部41は、エンコーダー21bの計測値を用いて、図3に示されるような、ウェアラブルロボット1が装着されている身体100の立体モデルSMを生成する。 For example, the three-dimensional model acquisition unit 41 generates a three-dimensional model SM of the body 100 on which the wearable robot 1 is worn, as shown in FIG. 3, using the measurement value of the encoder 21b.
 例えば、サポートポリゴン取得部42は、立体モデル取得部41で生成された立体モデルSMを用いて、ウェアラブルロボット1が装着されている身体100のサポートポリゴンSPの位置、形状等を算出する。サポートポリゴンSPは、立体モデルSMの全ての接地部SMaを囲む、周長が最短の図形と定義される。図3に示される立体モデルSMのように、ウェアラブルロボット1が装着されている身体100の両脚が接地している場合には、サポートポリゴンSPは、図4に示されるように、両脚の接地部SMaを囲む図形になる。また、ウェアラブルロボット1が装着されている身体100の片脚のみが接地している場合には、サポートポリゴンSPは、片脚の接地部SMaのみを囲む図形になる。 For example, the support polygon acquisition unit 42 uses the stereo model SM generated by the stereo model acquisition unit 41 to calculate the position, shape, and the like of the support polygon SP of the body 100 on which the wearable robot 1 is worn. The support polygon SP is defined as a figure having the shortest perimeter that surrounds all the ground contact portions SMa of the three-dimensional model SM. When both legs of the body 100 to which the wearable robot 1 is attached are grounded as in the three-dimensional model SM shown in FIG. 3, the support polygon SP has the grounding portions of both legs as shown in FIG. 4. The figure surrounds SMa. Further, when only one leg of the body 100 to which the wearable robot 1 is attached is grounded, the support polygon SP is a figure that surrounds only the grounded part SMa of one leg.
 例えば、重心取得部43は、立体モデル取得部41で生成された立体モデルSMを用いて、ウェアラブルロボット1が装着されている身体100の重心CoGの座標(xCoG、yCoG、zCoG)を算出する。例えば、重心CoGの座標は、図3に示されるような位置になる。 For example, the center-of-gravity acquisition unit 43 uses the three-dimensional model SM generated by the three-dimensional model acquisition unit 41 to calculate the coordinates (x CoG , y CoG , z CoG ) of the center of gravity CoG of the body 100 on which the wearable robot 1 is worn. calculate. For example, the coordinates of the center of gravity CoG are as shown in FIG.
 例えば、圧力中心取得部44は、立体モデル取得部41で生成された立体モデルSM又はサポートポリゴン取得部42で取得されたサポートポリゴンSPの情報と、圧力分布計測センサ21cの計測値と、を用いて、ウェアラブルロボット1が装着されている身体100の足底の圧力分布の圧力中心CoPの座標(xCoP、yCoP、zCoP)を算出する。圧力中心CoPは、図4に示されるように、サポートポリゴンSPの内側に位置する。 For example, the pressure center acquisition unit 44 uses the information of the support polygon SP acquired by the stereo model SM generated by the stereo model acquisition unit 41 or the support polygon acquisition unit 42 and the measurement value of the pressure distribution measurement sensor 21c. Then, the coordinates (x CoP , y CoP , z CoP ) of the pressure center CoP of the pressure distribution of the sole of the body 100 to which the wearable robot 1 is worn are calculated. The pressure center CoP is located inside the support polygon SP as shown in FIG.
 例えば、ゼロモーメントポイント取得部45は、慣性計測センサ21aの計測値と、重心取得部43で算出された重心CoGの座標(xCoG、yCoG、zCoG)と、圧力中心取得部44で算出された圧力中心CoPの座標(xCoP、yCoP、zCoP)と、を用いて、ウェアラブルロボット1が装着されている身体100のゼロモーメントポイントZMPの座標(xZMP、yZMP、zZMP)を算出する。例えば、ゼロモーメントポイントZMPの進行方向における座標xZMPは、以下の式(1)で算出することができる。ここで、Iyは慣性モーメントのy軸成分であり、θyは上体の角度のy軸成分であり、mは質量であり、gは重力加速度である。 For example, the zero moment point acquisition unit 45 calculates the measurement value of the inertial measurement sensor 21 a, the coordinates of the center of gravity CoG calculated by the center of gravity acquisition unit 43 (x CoG , y CoG , z CoG ), and the pressure center acquisition unit 44. The coordinates (x ZMP , y ZMP , z ZMP ) of the zero moment point ZMP of the body 100 to which the wearable robot 1 is worn are used using the coordinates (x CoP , y CoP , z CoP ) of the pressure center CoP that has been applied. Is calculated. For example, the coordinate x ZMP in the traveling direction of the zero moment point ZMP can be calculated by the following equation (1). Here, Iy is the y-axis component of the moment of inertia, θy is the y-axis component of the upper body angle, m is the mass, and g is the gravitational acceleration.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(補助動作実行部の処理)
 補助動作実行部50における処理の具体例を、以下に説明する。
 図5は、実施の形態1に係るウェアラブルロボットの、補助動作実行部の処理フローの具体例を示す図である。
(Processing of auxiliary operation execution unit)
A specific example of processing in the auxiliary operation execution unit 50 will be described below.
FIG. 5 is a diagram illustrating a specific example of a processing flow of the auxiliary motion execution unit of the wearable robot according to the first embodiment.
 なお、以下では、実測データ判定部52で判定される実測データMDが、姿勢に関連する物理量Qとしての、ウェアラブルロボット1が装着されている身体100のゼロモーメントポイントZMPの進行方向における座標xZMPと、姿勢に関連する物理量Qとしての、その微分値と、が実測されたものである場合を説明しているが、姿勢に関連する他の物理量Qとその微分値とが実測されたものであってもよい。姿勢に関連する他の物理量Qは、例えば、ウェアラブルロボット1が装着されている身体100のゼロモーメントポイントZMPの他の方向における座標であってもよく、また、ウェアラブルロボット1が装着されている身体100の重心CoGの座標であってもよく、また、ウェアラブルロボット1が装着されている身体100の少なくとも一部分の角度又は位置(例えば、上体の角度θ又は位置、リンク機構22a、22b、22c等の回転角度、各リンクの位置等)であってもよい。また、実測データMDが、1つの姿勢に関連する物理量Qが実測されたものであってもよく、また、3つ以上の姿勢に関連する物理量Qが実測されたものであってもよく、また、微分値が実測されないものであってもよい。 In the following, the actual measurement data MD determined by the actual measurement data determination unit 52 is the coordinate x ZMP in the traveling direction of the zero moment point ZMP of the body 100 on which the wearable robot 1 is worn as the physical quantity Q related to the posture. And the differential value as the physical quantity Q related to the posture is actually measured, but the other physical quantity Q related to the posture and the differential value are actually measured. There may be. The other physical quantity Q related to the posture may be, for example, the coordinate in the other direction of the zero moment point ZMP of the body 100 to which the wearable robot 1 is worn, and the body to which the wearable robot 1 is worn. The coordinates of the center of gravity CoG of 100 may be used, and the angle or position of at least a part of the body 100 to which the wearable robot 1 is attached (for example, the angle θ or position of the upper body, link mechanisms 22a, 22b, 22c, etc. Rotation angle, position of each link, etc.). The actual measurement data MD may be data obtained by actually measuring the physical quantity Q related to one posture, may be data obtained by actually measuring the physical quantity Q related to three or more postures, and The differential value may not be actually measured.
 また、以下では、補助動作決定部53で決定される動作パラメータBPが、ウェアラブルロボット1が装着されている身体100のゼロモーメントポイントZMPの座標である場合を説明しているが、補助動作決定部53で決定される動作パラメータBPが、姿勢に関連する他の物理量Qであってもよい。 In the following description, a case is described in which the motion parameter BP determined by the auxiliary motion determination unit 53 is the coordinate of the zero moment point ZMP of the body 100 to which the wearable robot 1 is worn. The motion parameter BP determined in 53 may be another physical quantity Q related to the posture.
 図5に示されるように、S101において、補助動作実行部50における処理が開始されると、S102において、許容範囲設定部51は、ウェアラブルロボット1が装着されている身体100のゼロモーメントポイントZMPの進行方向における座標xZMPとその微分値の許容範囲AR、つまり、姿勢情報取得部40で取得される実測データMDの許容範囲ARを設定する。 As shown in FIG. 5, when the process in the auxiliary motion execution unit 50 is started in S101, the allowable range setting unit 51 in S102 sets the zero moment point ZMP of the body 100 on which the wearable robot 1 is worn. The allowable range AR of the coordinate x ZMP and its differential value in the traveling direction, that is, the allowable range AR of the actual measurement data MD acquired by the posture information acquisition unit 40 is set.
 ここで、許容範囲ARは、ウェアラブルロボット1が装着されている身体100が転倒してしまう姿勢で取得される実測データMDを、許容する範囲に設定される。また、許容範囲ARは、実測データMDが、ウェアラブルロボット1が装着されている身体100が転倒してしまう姿勢であって、且つ、その姿勢になった後の補助動作でその転倒を回避できない姿勢で取得される実測データMDに至らなくなるような範囲に設定される。許容範囲ARが、ウェアラブルロボット1が装着されている身体100の身長を加味して設定されてもよい。 Here, the allowable range AR is set to an allowable range for the actual measurement data MD acquired in a posture in which the body 100 on which the wearable robot 1 is worn falls. Further, the allowable range AR is a posture in which the actual measurement data MD is a posture in which the body 100 to which the wearable robot 1 is worn falls, and a posture in which the fall cannot be avoided by an auxiliary operation after the posture becomes the posture. Is set in a range that does not reach the actual measurement data MD acquired in step (1). The allowable range AR may be set in consideration of the height of the body 100 on which the wearable robot 1 is worn.
 次に、S103において、実測データ判定部52は、ゼロモーメントポイント取得部45で取得された、ウェアラブルロボット1が装着されている身体100のゼロモーメントポイントZMPの進行方向における座標xZMPとその微分値、つまり、姿勢情報取得部40で取得された実測データMDを取得する。 Next, in S103, the actual measurement data determination unit 52 obtains the coordinate x ZMP in the traveling direction of the zero moment point ZMP of the body 100 on which the wearable robot 1 is worn, acquired by the zero moment point acquisition unit 45, and its differential value. That is, the actual measurement data MD acquired by the posture information acquisition unit 40 is acquired.
 次に、S104において、実測データ判定部52は、ゼロモーメントポイント取得部45で取得された、ウェアラブルロボット1が装着されている身体100のゼロモーメントポイントZMPの進行方向における座標xZMPとその微分値、つまり、姿勢情報取得部40で取得された実測データMDが、許容範囲設定部51で設定された許容範囲ARから外れているか否かを判定する。Noである場合にはS105に進み、Yesである場合にはS106に進む。 Next, in S104, the actual measurement data determination unit 52 obtains the coordinate x ZMP in the traveling direction of the zero moment point ZMP of the body 100 on which the wearable robot 1 is worn, acquired by the zero moment point acquisition unit 45, and its differential value. That is, it is determined whether or not the actual measurement data MD acquired by the posture information acquisition unit 40 is out of the allowable range AR set by the allowable range setting unit 51. If No, the process proceeds to S105, and if Yes, the process proceeds to S106.
 S105において、補助動作決定部53は、ウェアラブルロボット1で行われる補助動作が、通常の補助動作になるような、動作パラメータBPを設定し、補助動作出力部54に出力する。補助動作出力部54は、その動作パラメータBPに応じた指示を駆動機構10のリンク機構群22の各リンク機構(リンク機構22a、22b、22c等)に出力して、S103に進む。通常の補助動作によって、ウェアラブルロボット1が装着されている身体100が、転倒してしまう姿勢になってもよく、また、転倒してしまわない姿勢になってもよい。 In S105, the auxiliary action determining unit 53 sets an operation parameter BP so that the auxiliary action performed by the wearable robot 1 becomes a normal auxiliary action, and outputs the operation parameter BP to the auxiliary action output unit 54. The auxiliary operation output unit 54 outputs an instruction according to the operation parameter BP to each link mechanism (link mechanisms 22a, 22b, 22c, etc.) of the link mechanism group 22 of the drive mechanism 10, and proceeds to S103. The body 100 on which the wearable robot 1 is worn may be in a posture of falling or a posture in which the body 100 is not overturned by a normal assisting operation.
 S106において、補助動作決定部53は、ウェアラブルロボット1で行われる補助動作が、ウェアラブルロボット1が装着されている身体100の転倒を回避する補助動作になるような、動作パラメータBPを設定し、補助動作出力部54に出力する。補助動作出力部54は、その動作パラメータBPに応じた指示を駆動機構10のリンク機構群22の各リンク機構(リンク機構22a、22b、22c等)に出力して、S103に進む。動作パラメータBPは、ウェアラブルロボット1が装着されている身体100のゼロモーメントポイントZMPの座標であり、その座標が、ウェアラブルロボット1が装着されている身体100のサポートポリゴンSP、又は、ウェアラブルロボット1が装着されている身体100の足底の圧力分布の圧力中心CoPに近づくように設定される。 In S106, the auxiliary action determination unit 53 sets an operation parameter BP so that the auxiliary action performed by the wearable robot 1 becomes an auxiliary action that avoids the body 100 to which the wearable robot 1 is attached from falling. Output to the operation output unit 54. The auxiliary operation output unit 54 outputs an instruction according to the operation parameter BP to each link mechanism (link mechanisms 22a, 22b, 22c, etc.) of the link mechanism group 22 of the drive mechanism 10, and proceeds to S103. The motion parameter BP is the coordinate of the zero moment point ZMP of the body 100 to which the wearable robot 1 is worn, and the coordinate is the support polygon SP of the body 100 to which the wearable robot 1 is worn or the wearable robot 1 It is set so as to approach the pressure center CoP of the pressure distribution of the sole of the body 100 to which it is attached.
 図6は、実施の形態1に係るウェアラブルロボットの、実測データの変化の具体例を示す図である。
 S101~S106の処理によって、実測データMDは、例えば、図6に示されるように変化する。つまり、実測データMDが何らかの原因により基準軌跡RTから逸れたとしても、許容範囲ARから外れていない状況では、S105において、通常の補助動作になるような動作パラメータBPが設定されることとなって、ウェアラブルロボット1が装着されている身体100が転倒してしまう姿勢になることが許容される。そして、実測データMDが許容範囲ARから外れる状況になった際に、S106において、ウェアラブルロボット1が装着されている身体100の転倒を回避する補助動作になるような動作パラメータBP、つまり、基準軌跡RTに戻る補助動作になるような動作パラメータBPが設定されて、ウェアラブルロボット1が装着されている身体100の転倒が回避される。
FIG. 6 is a diagram illustrating a specific example of changes in actual measurement data of the wearable robot according to the first embodiment.
By the processing of S101 to S106, the actual measurement data MD changes, for example, as shown in FIG. In other words, even if the actual measurement data MD deviates from the reference trajectory RT for some reason, in a situation where it does not deviate from the allowable range AR, the operation parameter BP is set in S105 so that a normal auxiliary operation is performed. The body 100 on which the wearable robot 1 is worn is allowed to fall. Then, when the actual measurement data MD is out of the allowable range AR, in S106, an operation parameter BP, that is, a reference trajectory that is an auxiliary operation for avoiding the fall of the body 100 on which the wearable robot 1 is worn. An operation parameter BP is set so as to be an auxiliary operation for returning to RT, and the body 100 on which the wearable robot 1 is worn is prevented from falling.
 なお、S102において、許容範囲ARは、姿勢情報取得部40で取得された実測データMDに応じて変動するように設定されてもよく、また、固定の範囲に設定されてもよい。例えば、許容範囲ARが、サポートポリゴン取得部42で直前に取得されたサポートポリゴンSPを用いて設定されてもよい。また、許容範囲ARが、直前の、ウェアラブルロボット1が装着されている身体100の少なくとも一部分の速度又は加速度に応じて設定されてもよい。そのような場合には、ウェアラブルロボット1が装着されている身体100の少なくとも一部分の速度が大きい場合の許容範囲ARが、その速度が小さい場合の許容範囲ARと比較して、小さくなるように設定されるとよい。また、ウェアラブルロボット1が装着されている身体100の少なくとも一部分の加速度が大きい場合の許容範囲ARが、その加速度が小さい場合の許容範囲ARと比較して、小さくなるように設定されるとよい。 In S102, the allowable range AR may be set so as to vary according to the actual measurement data MD acquired by the posture information acquisition unit 40, or may be set to a fixed range. For example, the allowable range AR may be set using the support polygon SP acquired immediately before by the support polygon acquisition unit 42. In addition, the allowable range AR may be set according to the speed or acceleration of at least a part of the body 100 on which the wearable robot 1 is worn immediately before. In such a case, the allowable range AR when the speed of at least a part of the body 100 on which the wearable robot 1 is worn is high is set to be smaller than the allowable range AR when the speed is low. It is good to be done. The allowable range AR when the acceleration of at least a part of the body 100 on which the wearable robot 1 is worn is large may be set to be smaller than the allowable range AR when the acceleration is small.
<ウェアラブルロボットの作用>
 実施の形態1に係るウェアラブルロボットの作用について説明する。
 図7は、従来のウェアラブルロボットの、歩行を補助する補助動作での立体モデルの変化を示す図である。図8は、実施の形態1に係るウェアラブルロボットの、歩行を補助する補助動作での立体モデルの変化を示す図である。
<Action of wearable robot>
The operation of the wearable robot according to the first embodiment will be described.
FIG. 7 is a diagram illustrating a change in a three-dimensional model in an assisting operation for assisting walking in a conventional wearable robot. FIG. 8 is a diagram illustrating a change in the three-dimensional model in the assisting operation that assists the walking of the wearable robot according to the first embodiment.
 従来のウェアラブルロボットでは、ウェアラブルロボットが装着されている身体100の姿勢が、常時安定性の高い状態になるように、つまり、常時ウェアラブルロボットが装着されている身体100が転倒してしまう姿勢にならないように、補助動作が移り変わる。つまり、従来のウェアラブルロボットでは、例えば、ウェアラブルロボットが装着されている身体100のゼロモーメントポイントZMPが、常時ウェアラブルロボットが装着されている身体100のサポートポリゴンSP内に位置するように、補助動作が移り変わる。そのため、例えば、ウェアラブルロボットが歩行を補助する補助動作を実行する場合には、図7に示されるように、特に、脚を踏み出す段階(段階iv)において、ウェアラブルロボットが装着されている身体100がのけ反るような状態となって、ユーザに不自然な姿勢を強いる期間が生じることとなる。 In a conventional wearable robot, the posture of the body 100 on which the wearable robot is worn is always in a highly stable state, that is, the body 100 on which the wearable robot is always worn does not fall. As such, the auxiliary operation changes. That is, in the conventional wearable robot, for example, the auxiliary motion is performed so that the zero moment point ZMP of the body 100 to which the wearable robot is attached is positioned within the support polygon SP of the body 100 to which the wearable robot is always attached. Change. Therefore, for example, when the wearable robot performs an assisting operation to assist walking, as shown in FIG. 7, the body 100 to which the wearable robot is attached particularly at the step of stepping on the leg (step iv). A period in which the user is warped and a user is forced to take an unnatural posture occurs.
 一方、ウェアラブルロボット1では、許容範囲ARが、ウェアラブルロボット1が装着されている身体100が転倒してしまう姿勢で取得される実測データMDを、許容する範囲に設定されて、ウェアラブルロボット1が装着されている身体100の姿勢が安定性の低い状態になる期間、つまり、転倒してしまう姿勢になる期間が生じることが許容される。そのため、例えば、ウェアラブルロボット1が歩行を補助する補助動作を実行する場合において、図8に示されるように、脚を踏み出す段階(段階iv)で、ウェアラブルロボット1が装着されている身体100が転倒してしまう姿勢になることが許容されることとなって、ユーザに不自然な姿勢を強いる期間が短縮されることとなる。つまり、ウェアラブルロボット1では、ユーザが違和感を覚えてしまい、また、ユーザが負担に感じてしまうことが抑制される。 On the other hand, in the wearable robot 1, the allowable range AR is set to an allowable range of the actual measurement data MD acquired in a posture in which the body 100 to which the wearable robot 1 is worn falls, and the wearable robot 1 is worn. It is allowed that a period in which the posture of the body 100 is in a low stability state, that is, a period in which the posture of the body 100 falls is allowed. Therefore, for example, when the wearable robot 1 performs an assisting operation to assist walking, the body 100 to which the wearable robot 1 is worn falls at the step of stepping on the leg (step iv) as shown in FIG. Therefore, the period of forcing the user to take an unnatural posture is shortened. That is, in the wearable robot 1, it is possible to prevent the user from feeling uncomfortable and the user from feeling burdened.
 また、ウェアラブルロボット1では、許容範囲ARが、サポートポリゴン取得部42で取得されたサポートポリゴンSPを用いて設定されてもよい。そのような場合には、許容範囲設定部51における許容範囲ARの設定が高精度化されて、実測データ判定部52における、姿勢情報取得部40で取得された実測データMDが許容範囲ARから外れているか否かの判定が、高精度化される。つまり、ウェアラブルロボット1では、ユーザが違和感を覚えてしまうこととユーザが負担に感じてしまうこととを抑制しつつ、ユーザの安全性を更に向上することが可能である。 In the wearable robot 1, the allowable range AR may be set using the support polygon SP acquired by the support polygon acquisition unit 42. In such a case, the setting of the allowable range AR in the allowable range setting unit 51 is made highly accurate, and the actual measurement data MD acquired by the posture information acquisition unit 40 in the actual measurement data determination unit 52 is out of the allowable range AR. The determination of whether or not it is accurate. That is, the wearable robot 1 can further improve the safety of the user while suppressing the user from feeling uncomfortable and the user feeling burdened.
 また、ウェアラブルロボット1では、許容範囲ARが、ウェアラブルロボット1が装着されている身体100の少なくとも一部分の速度又は加速度に応じて設定されてもよい。ウェアラブルロボット1が装着されている身体100の少なくとも一部分の速度又は加速度が大きいと、ウェアラブルロボット1が装着されている身体100が、転倒してしまう姿勢であって、且つ、その姿勢になった後の補助動作でその転倒を回避できない姿勢になる可能性が高くなる。そして、許容範囲ARが、ウェアラブルロボット1が装着されている身体100の少なくとも一部分の速度又は加速度に応じて設定される場合には、ウェアラブルロボット1が装着されている身体100が、転倒してしまう姿勢であって、且つ、その姿勢になった後の補助動作でその転倒を回避できない姿勢になる可能性が高くなる際の、許容範囲ARを安全側に設定して、そのような姿勢になることの抑制を確実化することが可能である。つまり、ウェアラブルロボット1では、ユーザが違和感を覚えてしまうこととユーザが負担に感じてしまうこととを抑制しつつ、ユーザの安全性を更に向上することが可能である。 In the wearable robot 1, the allowable range AR may be set according to the speed or acceleration of at least a part of the body 100 on which the wearable robot 1 is worn. When the speed or acceleration of at least a part of the body 100 on which the wearable robot 1 is worn is large, the body 100 on which the wearable robot 1 is worn is in a posture that falls and after that posture There is a high possibility that the posture cannot be prevented from falling by the auxiliary operation. When the allowable range AR is set according to the speed or acceleration of at least a part of the body 100 to which the wearable robot 1 is worn, the body 100 to which the wearable robot 1 is worn falls. The posture is set to the safe side when the possibility of becoming a posture in which the posture cannot be avoided by the auxiliary operation after the posture is reached is set to the safe side, and such a posture is obtained. It is possible to ensure the suppression of this. That is, the wearable robot 1 can further improve the safety of the user while suppressing the user from feeling uncomfortable and the user feeling burdened.
 なお、ウェアラブルロボット1では、ユーザの状態に応じた補助動作が常時実行されてもよく、また、一時的に実行されてもよい。また、許容範囲ARが、ウェアラブルロボット1が装着されている身体100が転倒してしまう姿勢で取得される実測データMDを許容する範囲に、常時設定されてもよく、また、一時的に設定されてもよい。 Note that in the wearable robot 1, an auxiliary operation according to the state of the user may be executed constantly or temporarily. In addition, the allowable range AR may be constantly set or temporarily set to a range in which the actual measurement data MD acquired in a posture in which the body 100 on which the wearable robot 1 is worn falls is allowed. May be.
実施の形態2.
 以下に、実施の形態2に係るウェアラブルロボットについて説明する。
 なお、実施の形態1に係るウェアラブルロボットと重複する説明は、適宜省略している。
Embodiment 2. FIG.
The wearable robot according to the second embodiment will be described below.
In addition, the description which overlaps with the wearable robot which concerns on Embodiment 1 is abbreviate | omitted suitably.
<ウェアラブルロボットのシステム構成及び動作>
 実施の形態2に係るウェアラブルロボットのシステム構成及び動作について説明する。
 図9は、実施の形態2に係るウェアラブルロボットの、システム構成を示す図である。
 図9に示されるように、補助動作実行部50Aは、許容範囲設定部51と、実測データ判定部52と、補助動作決定部53Aと、補助動作出力部54と、を有する。
<System configuration and operation of wearable robot>
The system configuration and operation of the wearable robot according to the second embodiment will be described.
FIG. 9 is a diagram showing a system configuration of the wearable robot according to the second embodiment.
As illustrated in FIG. 9, the auxiliary operation execution unit 50A includes an allowable range setting unit 51, an actual measurement data determination unit 52, an auxiliary operation determination unit 53A, and an auxiliary operation output unit 54.
 補助動作決定部53Aでは、実測データ判定部52の判定結果に応じてウェアラブルロボット1で行われる補助動作の動作パラメータBPが決定される。動作パラメータBPには、ウェアラブルロボット1の駆動速度に関連するパラメータVPが含まれる。駆動速度に関連するパラメータVPは、ウェアラブルロボット1の駆動速度であってもよく、また、駆動加速度であってもよい。 In the auxiliary operation determination unit 53A, the operation parameter BP of the auxiliary operation performed by the wearable robot 1 is determined according to the determination result of the actual measurement data determination unit 52. The operation parameter BP includes a parameter VP related to the driving speed of the wearable robot 1. The parameter VP related to the driving speed may be a driving speed of the wearable robot 1 or may be a driving acceleration.
(補助動作実行部の処理)
 補助動作実行部50Aにおける処理の具体例を、以下に説明する。
 図10は、実施の形態2に係るウェアラブルロボットの、補助動作実行部の処理フローの具体例を示す図である。
(Processing of auxiliary operation execution unit)
A specific example of processing in the auxiliary operation execution unit 50A will be described below.
FIG. 10 is a diagram illustrating a specific example of a processing flow of the auxiliary motion execution unit of the wearable robot according to the second embodiment.
 図10におけるS201~S205では、図5におけるS101~S105と同様の処理が行われる。 In S201 to S205 in FIG. 10, processing similar to S101 to S105 in FIG. 5 is performed.
 S206において、補助動作決定部53は、ウェアラブルロボット1で行われる補助動作が、ウェアラブルロボット1が装着されている身体100の転倒を回避する補助動作になるような、動作パラメータBPを設定し、補助動作出力部54に出力する。その際、補助動作出力部54は、ウェアラブルロボット1が装着されている身体100の少なくとも一部分の速度又は加速度に応じて、ウェアラブルロボット1の駆動速度に関連するパラメータVPを決定して、その駆動速度に関連するパラメータVPに応じた指示を駆動機構10のリンク機構群22の各リンク機構(リンク機構22a、22b、22c等)に出力して、S203に進む。 In S206, the auxiliary action determination unit 53 sets an operation parameter BP so that the auxiliary action performed by the wearable robot 1 becomes an auxiliary action that avoids the fall of the body 100 on which the wearable robot 1 is worn, Output to the operation output unit 54. At this time, the auxiliary motion output unit 54 determines a parameter VP related to the driving speed of the wearable robot 1 according to the speed or acceleration of at least a part of the body 100 on which the wearable robot 1 is worn, and the driving speed An instruction according to the parameter VP related to is output to each link mechanism (link mechanisms 22a, 22b, 22c, etc.) of the link mechanism group 22 of the drive mechanism 10, and the process proceeds to S203.
 ウェアラブルロボット1が装着されている身体100の少なくとも一部分の速度が大きい場合のウェアラブルロボット1の駆動速度が、その速度が小さい場合のウェアラブルロボット1の駆動速度と比較して、小さくなるように設定されるとよい。また、ウェアラブルロボット1が装着されている身体100の少なくとも一部分の加速度が大きい場合のウェアラブルロボット1の駆動速度が、その加速度が小さい場合のウェアラブルロボット1の駆動速度と比較して、小さくなるように設定されるとよい。また、ウェアラブルロボット1が装着されている身体100の少なくとも一部分の速度が大きい場合のウェアラブルロボット1の駆動加速度が、その速度が小さい場合のウェアラブルロボット1の駆動加速度と比較して、小さくなるように設定されるとよい。また、ウェアラブルロボット1が装着されている身体100の少なくとも一部分の加速度が大きい場合のウェアラブルロボット1の駆動加速度が、その加速度が小さい場合のウェアラブルロボット1の駆動加速度と比較して、小さくなるように設定されるとよい。ウェアラブルロボット1が装着されている身体100の少なくとも一部分の速度又は加速度は、実測データMDが許容範囲ARから外れる時点で取得されるデータであるとよい。 The driving speed of the wearable robot 1 when the speed of at least a part of the body 100 on which the wearable robot 1 is worn is high is set to be lower than the driving speed of the wearable robot 1 when the speed is low. Good. Further, the driving speed of wearable robot 1 when the acceleration of at least a part of body 100 to which wearable robot 1 is attached is large is smaller than the driving speed of wearable robot 1 when the acceleration is small. It should be set. In addition, the drive acceleration of wearable robot 1 when the speed of at least a part of body 100 to which wearable robot 1 is attached is high is smaller than the drive acceleration of wearable robot 1 when the speed is low. It should be set. In addition, the driving acceleration of the wearable robot 1 when the acceleration of at least a part of the body 100 on which the wearable robot 1 is worn is large is smaller than the driving acceleration of the wearable robot 1 when the acceleration is small. It should be set. The speed or acceleration of at least a part of the body 100 on which the wearable robot 1 is worn may be data acquired when the actual measurement data MD deviates from the allowable range AR.
<ウェアラブルロボットの作用>
 実施の形態2に係るウェアラブルロボットの作用について説明する。
 ウェアラブルロボット1では、ウェアラブルロボット1の駆動速度に関連するパラメータVPが、ウェアラブルロボット1が装着されている身体100の少なくとも一部分の速度又は加速度に応じて設定される。そのように構成されることで、例えば、ウェアラブルロボット1が装着されている身体100の動きが活発な状況下で、ウェアラブルロボット1が装着されている身体100の転倒を回避する補助動作が開始されて、ウェアラブルロボット1が装着されている身体100に突発的な加速度が生じることが抑制される。つまり、ウェアラブルロボット1では、ユーザが違和感を覚えてしまうこととユーザが負担に感じてしまうこととを抑制しつつ、ユーザの安全性を更に向上することが可能である。
<Action of wearable robot>
The operation of the wearable robot according to the second embodiment will be described.
In the wearable robot 1, the parameter VP related to the driving speed of the wearable robot 1 is set according to the speed or acceleration of at least a part of the body 100 on which the wearable robot 1 is worn. With such a configuration, for example, in a situation where the movement of the body 100 to which the wearable robot 1 is attached is active, an auxiliary operation for avoiding the body 100 to which the wearable robot 1 is attached is started. Thus, sudden acceleration in the body 100 on which the wearable robot 1 is worn is suppressed. That is, the wearable robot 1 can further improve the safety of the user while suppressing the user from feeling uncomfortable and the user feeling burdened.
 以上、実施の形態1及び実施の形態2について説明したが、本発明は各実施の形態の説明に限定されない。例えば、実施の形態の全て又は一部を組み合わせることも可能である。 As mentioned above, although Embodiment 1 and Embodiment 2 were demonstrated, this invention is not limited to description of each embodiment. For example, all or some of the embodiments can be combined.

Claims (12)

  1.  ユーザの身体に装着され、前記ユーザの状態に応じた補助動作を実行して前記ユーザを補助するウェアラブルロボットの制御装置であって、
     前記ウェアラブルロボットが装着されている前記身体の姿勢に関連する少なくとも1つの物理量の、実測データを取得する姿勢情報取得部と、
     前記実測データが許容範囲外になった場合に、前記ウェアラブルロボットが装着されている前記身体の転倒を回避する前記補助動作を、前記ウェアラブルロボットに実行させる補助動作実行部と、
     を備えており、
     前記許容範囲は、前記ウェアラブルロボットが装着されている前記身体が転倒してしまう姿勢で取得される前記実測データを、許容する範囲に設定される、
     ウェアラブルロボットの制御装置。
    A control device for a wearable robot that is worn on a user's body and assists the user by performing an auxiliary operation according to the user's state,
    A posture information acquisition unit that acquires measured data of at least one physical quantity related to the posture of the body on which the wearable robot is mounted;
    An auxiliary action execution unit for causing the wearable robot to execute the auxiliary action for avoiding the fall of the body on which the wearable robot is worn when the measured data is out of an allowable range;
    With
    The permissible range is set to a permissible range for the actual measurement data acquired in a posture in which the body on which the wearable robot is worn falls.
    Wearable robot control device.
  2.  前記許容範囲は、前記ウェアラブルロボットが装着されている前記身体のサポートポリゴンを用いて設定される、
     請求項1に記載のウェアラブルロボットの制御装置。
    The allowable range is set using a support polygon of the body on which the wearable robot is mounted.
    The control apparatus of the wearable robot according to claim 1.
  3.  前記許容範囲は、前記ウェアラブルロボットが装着されている前記身体の少なくとも一部分の速度又は加速度に応じて設定される、
     請求項1又は2に記載のウェアラブルロボットの制御装置。
    The allowable range is set according to a speed or acceleration of at least a part of the body on which the wearable robot is worn.
    The control apparatus of the wearable robot according to claim 1 or 2.
  4.  前記速度が大きい場合の前記許容範囲は、前記速度が小さい場合の前記許容範囲と比較して、小さく設定される、又は、
     前記加速度が大きい場合の前記許容範囲は、前記加速度が小さい場合の前記許容範囲と比較して、小さく設定される、
     請求項3に記載のウェアラブルロボットの制御装置。
    The allowable range when the speed is large is set smaller than the allowable range when the speed is small, or
    The allowable range when the acceleration is large is set smaller than the allowable range when the acceleration is small.
    The control apparatus of the wearable robot according to claim 3.
  5.  前記ウェアラブルロボットが装着されている前記身体の転倒を回避する前記補助動作における、前記ウェアラブルロボットの駆動速度に関連するパラメータは、前記ウェアラブルロボットが装着されている前記身体の少なくとも一部分の速度又は加速度に応じて設定される、
     請求項1~4の何れか一項に記載のウェアラブルロボットの制御装置。
    The parameter related to the driving speed of the wearable robot in the auxiliary operation for avoiding the fall of the body on which the wearable robot is worn is the speed or acceleration of at least a part of the body on which the wearable robot is worn. Set according to the
    The control device for the wearable robot according to any one of claims 1 to 4.
  6.  前記速度が大きい場合の前記ウェアラブルロボットの駆動速度は、前記速度が小さい場合の前記ウェアラブルロボットの駆動速度と比較して、小さく設定される、又は、
     前記加速度が大きい場合の前記ウェアラブルロボットの駆動速度は、前記加速度が小さい場合の前記ウェアラブルロボットの駆動速度と比較して、小さく設定される、
     請求項5に記載のウェアラブルロボットの制御装置。
    The driving speed of the wearable robot when the speed is large is set smaller than the driving speed of the wearable robot when the speed is small, or
    The driving speed of the wearable robot when the acceleration is large is set smaller than the driving speed of the wearable robot when the acceleration is small.
    The control apparatus of the wearable robot according to claim 5.
  7.  前記速度が大きい場合の前記ウェアラブルロボットの駆動加速度は、前記速度が小さい場合の前記ウェアラブルロボットの駆動加速度と比較して、小さく設定される、又は、
     前記加速度が大きい場合の前記ウェアラブルロボットの駆動加速度は、前記加速度が小さい場合の前記ウェアラブルロボットの駆動加速度と比較して、小さく設定される、
     請求項5又は6に記載のウェアラブルロボットの制御装置。
    The driving acceleration of the wearable robot when the speed is large is set smaller than the driving acceleration of the wearable robot when the speed is small, or
    The driving acceleration of the wearable robot when the acceleration is large is set smaller than the driving acceleration of the wearable robot when the acceleration is small.
    The control apparatus of the wearable robot according to claim 5 or 6.
  8.  前記物理量は、前記ウェアラブルロボットが装着されている前記身体のゼロモーメントポイントの座標である、
     請求項1~7の何れか一項に記載のウェアラブルロボットの制御装置。
    The physical quantity is a coordinate of a zero moment point of the body to which the wearable robot is attached.
    The wearable robot control device according to any one of claims 1 to 7.
  9.  前記物理量は、前記ウェアラブルロボットが装着されている前記身体の重心の座標である、
     請求項1~8の何れか一項に記載のウェアラブルロボットの制御装置。
    The physical quantity is a coordinate of the center of gravity of the body on which the wearable robot is worn.
    The wearable robot control device according to any one of claims 1 to 8.
  10.  前記物理量は、前記ウェアラブルロボットが装着されている前記身体の少なくとも一部分の角度又は位置である、
     請求項1~9の何れか一項に記載のウェアラブルロボットの制御装置。
    The physical quantity is an angle or position of at least a part of the body on which the wearable robot is worn.
    The control device for the wearable robot according to any one of claims 1 to 9.
  11.  請求項1~10の何れか一項に記載のウェアラブルロボットの制御装置を備えている、
     ウェアラブルロボット。
    A control device for the wearable robot according to any one of claims 1 to 10,
    Wearable robot.
  12.  ユーザの身体に装着され、前記ユーザの状態に応じた補助動作を実行して前記ユーザを補助するウェアラブルロボットの制御方法であって、
     前記ウェアラブルロボットが装着されている前記身体の姿勢に関連する少なくとも1つの物理量の、実測データを取得する姿勢情報取得ステップと、
     前記実測データが許容範囲外になった場合に、前記ウェアラブルロボットが装着されている前記身体の転倒を回避する前記補助動作を、前記ウェアラブルロボットに実行させる補助動作実行ステップと、
     を備えており、
     前記許容範囲は、前記ウェアラブルロボットが装着されている前記身体が転倒してしまう姿勢で取得される前記実測データを、許容する範囲に設定される、
     ウェアラブルロボットの制御方法。
    A method for controlling a wearable robot that is worn on a user's body and that assists the user by performing an auxiliary operation according to the user's condition,
    A posture information acquisition step of acquiring measured data of at least one physical quantity related to the posture of the body on which the wearable robot is mounted;
    An auxiliary operation execution step for causing the wearable robot to execute the auxiliary operation for avoiding the fall of the body on which the wearable robot is worn when the measured data is out of an allowable range;
    With
    The permissible range is set to a permissible range for the actual measurement data acquired in a posture in which the body on which the wearable robot is worn falls.
    A control method for a wearable robot.
PCT/JP2016/062885 2015-05-20 2016-04-25 Wearable robot control device, wearable robot, and wearable robot control method WO2016185877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015103102 2015-05-20
JP2015-103102 2015-05-20

Publications (1)

Publication Number Publication Date
WO2016185877A1 true WO2016185877A1 (en) 2016-11-24

Family

ID=57320073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062885 WO2016185877A1 (en) 2015-05-20 2016-04-25 Wearable robot control device, wearable robot, and wearable robot control method

Country Status (1)

Country Link
WO (1) WO2016185877A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082583A1 (en) * 2004-02-27 2005-09-09 Honda Motor Co., Ltd. Gait producing device for moving robot
JP2006334200A (en) * 2005-06-03 2006-12-14 Honda Motor Co Ltd Limb assisting device and program
JP2009285816A (en) * 2008-05-30 2009-12-10 Toyota Motor Corp Leg type robot and control method of the same
JP2014018536A (en) * 2012-07-20 2014-02-03 Kyushu Univ Swing leg pendular movement assisting tool for walking and method for controlling assist force

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082583A1 (en) * 2004-02-27 2005-09-09 Honda Motor Co., Ltd. Gait producing device for moving robot
JP2006334200A (en) * 2005-06-03 2006-12-14 Honda Motor Co Ltd Limb assisting device and program
JP2009285816A (en) * 2008-05-30 2009-12-10 Toyota Motor Corp Leg type robot and control method of the same
JP2014018536A (en) * 2012-07-20 2014-02-03 Kyushu Univ Swing leg pendular movement assisting tool for walking and method for controlling assist force

Similar Documents

Publication Publication Date Title
KR101772974B1 (en) Method for generating human-like motion of humanoid robot
US9980842B2 (en) Motion assist device and motion assist method, computer program, and program recording medium
JP4503311B2 (en) Method for controlling generated torque of leg exercise assistive device
US7873436B2 (en) Gait generator for mobile robot
US7319919B2 (en) Control device and footstep determination device for legged mobile robot
US9533415B2 (en) Control device for mobile robot
US20130144439A1 (en) Walking robot and control method thereof
EP2574527A2 (en) Robot and control method thereof
JP6568940B2 (en) Robot system to support users
US20040164697A1 (en) Legged mobile robot and actuator device applicable to join shaft of the robot
US9682474B2 (en) Control device for mobile body
US20170183047A1 (en) Control device for mobile robot
JP4440759B2 (en) Method for estimating floor reaction force of biped walking object
US10099378B2 (en) Mobile robot
WO2003090978A1 (en) Control device of legged mobile robot
JP5987742B2 (en) Walking assistance device and walking assistance method
JP2007020672A (en) Walking aid
JP2015217053A (en) Movement measuring apparatus and movement measuring method
US20200290209A1 (en) Control device for robot
US9802315B2 (en) Controller for mobile robot
JP4910552B2 (en) Operation data creation apparatus and method
JP2016043092A (en) Movement measuring device
WO2016185877A1 (en) Wearable robot control device, wearable robot, and wearable robot control method
JP6887059B2 (en) Walking phase estimation device and walking assist device equipped with this
JP2008126382A (en) Biped mobile robot and its control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16796271

Country of ref document: EP

Kind code of ref document: A1