WO2016184260A1 - 一种适用于wia-pa网络的预填充时间戳同步方法 - Google Patents

一种适用于wia-pa网络的预填充时间戳同步方法 Download PDF

Info

Publication number
WO2016184260A1
WO2016184260A1 PCT/CN2016/077733 CN2016077733W WO2016184260A1 WO 2016184260 A1 WO2016184260 A1 WO 2016184260A1 CN 2016077733 W CN2016077733 W CN 2016077733W WO 2016184260 A1 WO2016184260 A1 WO 2016184260A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
beacon frame
source device
timestamp
slot
Prior art date
Application number
PCT/CN2016/077733
Other languages
English (en)
French (fr)
Inventor
王平
王恒
夏枢洋
Original Assignee
重庆邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆邮电大学 filed Critical 重庆邮电大学
Publication of WO2016184260A1 publication Critical patent/WO2016184260A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements

Definitions

  • the present invention relates to the field of industrial wireless communication technologies, and in particular, to a time synchronization method for pre-filling time stamps applicable to a WIA-PA network.
  • industrial wireless communication technology As a kind of wireless communication technology for short-range and low-rate information interaction between devices, industrial wireless communication technology has the advantages of ultra-low power consumption, anti-interference, real-time communication technology, simple installation, wide coverage and low maintenance cost.
  • the industrial site environment has been gradually promoted and used.
  • the wireless WIA-PA standard is a proprietary technical specification issued by the China Wireless Industry Alliance that provides solutions for industrial process measurement, monitoring and control applications.
  • time synchronization technology plays an important role in ensuring the real-time and reliability of communication during network operation.
  • the time synchronization technology provides a unified reference time for the entire network.
  • the traditional time synchronization process needs to be implemented by the synchronization algorithm. Although there are many excellent time synchronization algorithms, it has its own limitations in the application scenario, and the complex algorithm will increase the processing load of the software and improve the network. Communication overhead and later maintenance costs are not strictly guaranteed for the accuracy and reliability of time synchronization.
  • the time source device starts to send a beacon frame, and the local time of the time source device is captured by the radio frequency, and the beacon frame is specified.
  • the timestamp position is transmitted, and the local time is captured when the non-time source device receives the beacon frame, and the timestamp in the beacon frame is parsed, and the local time is synchronized after performing algorithm processing.
  • the hardware-assisted processing method has a large correlation with the radio frequency, and the versatility is poor, and there is a strict time requirement for the timing of the time stamp when transmitting the beacon frame during processing, and it is difficult to fully promote.
  • the present invention proposes a pre-filled timestamp synchronization method for the above disadvantages, and aims to improve the accuracy of time synchronization of the industrial wireless WIA-PA network and the communication overhead of the network, while reducing the software processing load and improving the versatility of the software processing method.
  • the present invention provides a hardware auxiliary function for effectively reducing software load and processing error while not relying on the time stamp to capture a time stamp when transmitting a beacon frame, and improving the generality of the software processing method in the time synchronization process.
  • the technical solution of the present invention is as follows: A pre-filled time stamp synchronization method suitable for a WIA-PA network, which includes the following steps:
  • a WIA-PA network including a time source device and a non-time source device
  • the time source device and the non-time source device operate according to a time slot communication mechanism, wherein the time source device periodically sends a beacon frame, and the time source device According to the location of the transmission slot of the beacon frame, the beacon frame is constructed in advance before the arrival of the transmission slot, and the TAI time at which the beacon frame is scheduled to generate the frame header delimiter SFD interrupt is pre-filled into the beacon frame as a time stamp.
  • the stamp domain Within the stamp domain;
  • the non-time source device After the non-time source device starts to receive the beacon frame, the non-time source device captures the local time when receiving the beacon frame and generates the frame first delimiter SFD interrupt, and parses the received beacon frame to obtain a letter. The frame timestamp, the non-event source device corrects the local time according to the captured local time and the beacon frame timestamp to complete the time synchronization process to the non-time source device.
  • step 101 the process of constructing a beacon frame in advance before the arrival of the transmission slot in step 101 is as follows:
  • the starting time T0 of the absolute slot number 0 of the time source device is the birth time of the network, and the fake Set the absolute time slot number SlotX of the current time source device, and the local TAI time is T1, then the running time of the time source device to the current time is (T1-T0);
  • the sending time slot of the next to-be-transmitted beacon frame is an absolute time slot SlotY (SlotY>SlotX)
  • the TAI time T4 when the time source device sends the beacon frame and generates the SFD interrupt time may be further expressed as
  • T4 T1-((T1-T0)%SlotPeriod)+(SlotY-SlotX) ⁇ SlotPeriod+t
  • the time T4 can be put into the beacon frame timestamp field as a timestamp, and sent to the non-time source device to complete the construction of the beacon frame.
  • the protocol stack needs to be scheduled according to the time slot scheduling rule, and all data packet transmission processes are scheduled to be scheduled to be performed through the protocol stack.
  • the step of transmitting ensures that the beacon frame is transmitted in the absolute time slot SlotY.
  • the time interval for calculating the radio frequency physical layer triggering preamble to generate the SFD interrupt in step 204 is specifically: calculating the obtained beacon frame according to the physical layer preamble length and the radio frequency data transmission rate, and generating the frame first delimiter SFD interruption time.
  • TAI time T4 when the IEEE802.15.4 radio preamble length is 4 bytes, the SFD field length is 1 byte, and the SFD interrupt is generated after the SFD domain reception is completed.
  • the method reduces the beacon frame by constructing a beacon frame in advance and filling the timestamp field in advance at the time source device end.
  • the software load and software processing time error of the start time slot of the transmission slot are transmitted, and the method does not depend on the hardware auxiliary function of capturing the time stamp when the radio frequency transmits the beacon frame, and has good versatility and code portability.
  • FIG. 1 is a flow chart of time synchronization of an industrial wireless WIA-PA network according to a preferred embodiment of the present invention
  • FIG. 2 is a process diagram of a beacon timestamp calculation for an industrial wireless WIA-PA network in accordance with a preferred embodiment of the present invention.
  • FIG. 1 The flow of the pre-filled timestamp synchronization method of the industrial wireless WIA-PA network is shown in FIG. 1.
  • FIG. 2 The flow of the pre-filled timestamp synchronization method of the industrial wireless WIA-PA network is shown in FIG. 1.
  • the processing steps of the WIA-PA network time synchronization process are as follows:
  • Step1 Assume that the absolute time slot number of the current time source device is SlotX, the transmission time slot of the to-be-transmitted beacon frame is SlotY (SlotY>SlotX), and the time source device obtains the local time T1.
  • T0 is the starting time of the absolute time slot number 0 of the time source device
  • SlotPeriod is the WIA-PA network
  • the slot length, (T1-T0)% SlotPeriod represents the time difference between the current time T2 and the start time of the current absolute time slot SlotX.
  • Step 4 Calculate the local TAI time T4 at which the to-be-transmitted beacon frame generates the SFD interrupt at the time slot SlotY.
  • the IEEE 802.15.4 radio preamble length is 4 bytes
  • the SFD field length is 1 byte.
  • the IEEE 802.15.4 radio data transmission rate is 250 kpbs
  • the radio physical layer triggers the preamble to generate.
  • Step 5 According to the calculation process of Step1-Step4, the TAI time T4 at which the time source device sends the beacon frame and generates the SFD interrupt time can be further expressed as
  • T4 T1-((T1-T0)%SlotPeriod)+(SlotY-SlotX) ⁇ SlotPeriod+t
  • the time T4 can be put into the beacon frame timestamp field as a timestamp and sent to the non-time source device.
  • Step 6 The time source device needs to pass the slot scheduling mechanism in the protocol stack to ensure that the beacon frame transmission process is triggered at the start time of the SlotY slot.
  • Step 7 After receiving the beacon frame in the absolute time slot SlotY, the non-time source device captures the local time T5 at the SFD interrupt position, parses the timestamp information T4 in the beacon frame, and completes the calculation of the clock offset according to T4 and T5. And calibrate the local clock.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明请求保护一种适用于WIA-PA网络的预填充时间戳同步方法。该方法利用WIA-PA网络中的时隙通信机制,在发送信标帧之前提前若干时隙构造信标帧,并通过计算获得时间源设备在信标帧发送时SFD中断产生时刻的本地TAI时间,将其作为时间戳放入信标帧的时间戳域内发送给非时间源设备;非时间源设备在接收到信标帧后,根据本地SFD中断时刻的TAI时间和信标帧中解析获得的时间戳,完成时钟偏差的计算,并对本地时间进行校正。利用时隙通信机制中信标帧预计发送时刻为已知条件的特征,通过时间源设备提前构造信标帧,计算预计发送时SFD中断时刻的本地TAI时间,将其作为时间戳放入时间戳域。

Description

一种适用于WIA-PA网络的预填充时间戳同步方法 技术领域
本发明涉及工业无线通信技术领域,具体涉及一种适用于WIA-PA网络的预填充时间戳的时间同步方法。
背景技术
工业无线通信技术作为一种面向设备间短程、低速率信息交互的无线通信技术,以其超低功耗、抗干扰、实时通信的技术特征和安装简单、覆盖范围广、维护成本低的优势在工业现场环境得到逐步推广和使用。
无线WIA-PA标准是中国无线工业联盟推出的一个具有自主知识产权技术规范,针对工业过程测量、监视与控制应用提供解决方案。时间同步技术作为工业无线WIA-PA网络的一项重要的支撑技术,在保证网络运行时通信的实时性,可靠性方面具有重要作用。在工业无线网络时隙通信、传输调度、节点定位、状态切换、数据融合等基础性或者复杂性的操作中,时间同步技术为整个网络提供统一的基准时间。
传统的时间同步过程需要通过同步算法进行实现,尽管目前存在多种优秀的时间同步算法,但在应用场景上都有自身的局限性,而且复杂的算法会加大软件的处理负担,提高网络的通信开销和后期的维护成本,对于时间同步的精度和可靠性也难以严格保证。
除此之外,市场上也存在硬件上提供时间同步辅助处理机制的射频芯片,通常选择在时间源设备开始发送信标帧,由射频捕获时间源设备的本地时间,并放入信标帧指定时间戳位置进行发送,在非时间源设备接收到信标帧时捕获本地时间,并解析信标帧中的时间戳,进行算法处理后对本地时间进行同步。 这种软件参与,硬件辅助的处理方式与射频关联性较大,通用性较差,且在处理时对发送信标帧时取时间戳的时机有严格的时间要求,难以做到全面推广。本发明针对以上缺点提出预填充时间戳的同步方法,目的在于提高工业无线WIA-PA网络时间同步的精确度和网络的通信开销,同时减轻软件处理负担,提高软件处理方法的通用性。
发明内容
针对现有技术中的问题,本发明提供了一种有效降低软件负担和处理误差,同时不依赖于射频发送信标帧时捕获时间戳的硬件辅助功能,提高时间同步过程中软件处理方法的通用性和代码可移植性,降低网络通信开销的适用于WIA-PA网络的预填充时间戳同步方法。本发明的技术方案如下:一种适用于WIA-PA网络的预填充时间戳同步方法,其包括以下步骤:
101、在WIA-PA网络中,包括时间源设备和非时间源设备,时间源设备和非时间源设备均按照时隙通信机制运行,其中时间源设备周期性地发送信标帧,时间源设备根据信标帧的发送时隙位置,在发送时隙到来之前提前构造信标帧,并将信标帧预定产生帧首定界符SFD中断的TAI时间作为时间戳预先填充进信标帧的时间戳域内;
102、非时间源设备开始接收信标帧后,非时间源设备在接收到信标帧并产生帧首定界符SFD中断时捕获本地时间,并对接收到的信标帧进行解析得出信标帧时间戳,非事件源设备根据捕获的本地时间和信标帧时间戳对本地时间进行校正,以完成向非时间源设备的时间同步过程。
进一步的,步骤101中的发送时隙到来之前提前构造信标帧的过程如下:
201、时间源设备的绝对时隙号0的起始时刻T0为网络的诞生时刻,假 设当前时间源设备所处绝对时隙号SlotX,本地TAI时间为T1,则时间源设备到当前时刻为止的运行时间为(T1-T0);
202、假设时隙长度固定为SlotPeriod,则当前时隙SlotX的起始时间T2表示为T2=T1-((T1-T0)%SlotPeriod),其中(T1-T0)%SlotPeriod表示当前时刻T2与当前绝对时隙SlotX起始时刻之间的时间差;
203、假设下一待发送信标帧的发送时隙为绝对时隙SlotY(SlotY>SlotX),则SlotY的起始TAI时间T3为T3=T2+(SlotY-SlotX)×SlotPeriod;
204、计算出射频物理层触发前导码到产生SFD中断的时间间隔为t=(4+1)*8/250=0.16ms,那么时间源设备发送信标帧时产生SFD中断时刻的TAI时间T4可表示为T4=T3+t;
205、时间源设备发送信标帧时产生SFD中断时刻的TAI时间T4可进一步表示为
T4=T1-((T1-T0)%SlotPeriod)+(SlotY-SlotX)×SlotPeriod+t
该时间T4即可作为时间戳放入信标帧时间戳域,发送给非时间源设备,完成构造信标帧。
进一步的,在步骤205中时间T4作为时间戳放入信标帧时间戳域后,还包括协议栈需根据时隙调度规则,所有数据包的发送过程需通过协议栈调度安排到指定时隙进行发送的步骤,保证该信标帧在绝对时隙SlotY进行发送。
进一步的,步骤204中计算射频物理层触发前导码到产生SFD中断的时间间隔具体为:根据物理层前导码长度和射频的数据发送速率计算获得信标帧预定产生帧首定界符SFD中断时刻的TAI时间T4,当IEEE802.15.4射频前导码长度为4字节,SFD域长度为1字节,在SFD域接收完成后产生SFD中断, IEEE802.15.4射频数据发送速率为250kpbs,则中断的时间间隔t=(4+1)*8/250=0.16ms。
本发明的优点及有益效果如下:
本发明相比于在信标帧发送时隙到来时构造信标帧和捕获时间戳的处理方式,该方法在时间源设备端通过提前构造信标帧及提前填充时间戳域,减少信标帧发送时隙开始边界的软件负担和软件处理时间误差,同时该方法不依赖于射频发送信标帧时捕获时间戳的硬件辅助功能,具有较好的通用性和代码的可移植性。
附图说明
图1是本发明优选实施例工业无线WIA-PA网络时间同步流程图;
图2是本发明优选实施例工业无线WIA-PA网络信标时间戳计算过程。
具体实施方式
以下结合附图,对本发明作进一步说明:
工业无线WIA-PA网络预填充时间戳同步方法的流程如图1,配合图2所示的WIA-PA网络信标帧时间戳的计算过程,WIA-PA网络时间同步流程的处理步骤如下:
Step1:假设当前时间源设备所处绝对时隙号为SlotX,待发送信标帧的发送时隙为SlotY(SlotY>SlotX),时间源设备获得本地时间T1。
Step2:计算SlotX的起始TAI时间T2,T2=T1-((T1-T0)%SlotPeriod),其中T0为时间源设备的绝对时隙号0的起始时刻,SlotPeriod为WIA-PA网络的时隙长度,(T1-T0)%SlotPeriod表示当前时刻T2与当前绝对时隙SlotX起始时刻之间的时间差。
Step3:计算待发送信标帧时隙SlotY的起始TAI时间T3,可表示为T3=T2+(SlotY-SlotX)×SlotPeriod。
Step4:计算待发送信标帧在时隙SlotY产生SFD中断时刻的本地TAI时间T4。通常IEEE802.15.4射频前导码长度为4字节,SFD域长度为1字节,在SFD域接收完成后产生SFD中断,IEEE802.15.4射频数据发送速率为250kpbs,则射频物理层触发前导码到产生SFD中断的时间间隔为t=(4+1)*8/250=0.16ms,那么时间源设备发送信标帧时产生SFD中断时刻的TAI时间T4可表示为T4=T3+t。
Step5:根据Step1-Step4的计算过程,时间源设备发送信标帧时产生SFD中断时刻的TAI时间T4可进一步表示为
T4=T1-((T1-T0)%SlotPeriod)+(SlotY-SlotX)×SlotPeriod+t
该时间T4即可作为时间戳放入信标帧时间戳域,发送给非时间源设备。
Step6:时间源设备需通过协议栈中的时隙调度机制,保证在SlotY时隙的起始时刻触发信标帧的发送过程。
Step7:非时间源设备在绝对时隙SlotY收到该信标帧后,在SFD中断位置捕获本地时间T5,并解析出信标帧中的时间戳信息T4,根据T4和T5完成时钟偏差的计算,并对本地时钟进行校准。
以上这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明的记载的内容之后,技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明权利要求所限定的范围。

Claims (4)

  1. 一种适用于WIA-PA网络的预填充时间戳同步方法,其特征在于,包括以下步骤:
    101、在WIA-PA网络中,包括时间源设备和非时间源设备,时间源设备和非时间源设备均按照时隙通信机制运行,其中时间源设备周期性地发送信标帧,时间源设备根据信标帧的发送时隙位置,在发送时隙到来之前提前构造信标帧,并将信标帧预定产生帧首定界符SFD中断的TAI时间作为时间戳预先填充进信标帧的时间戳域内;
    102、非时间源设备开始接收信标帧后,非时间源设备在接收到信标帧并产生帧首定界符SFD中断时捕获本地时间,并对接收到的信标帧进行解析获得信标帧中的时间戳,非时间源设备根据捕获的本地时间和信标帧中解析出的时间戳对本地时间进行校正,以完成向非时间源设备的时间同步过程。
  2. 根据权利要求1所述的一种适用于WIA-PA网络的预填充时间戳同步方法,其特征在于,步骤101中的发送时隙到来之前提前构造信标帧的过程如下:
    201、时间源设备的绝对时隙号0的起始时刻T0为网络的诞生时刻,假设当前时间源设备所处绝对时隙号SlotX,本地TAI时间为T1,则时间源设备到当前时刻为止的运行时间为(T1-T0);
    202、假设时隙长度固定为SlotPeriod,则当前时隙SlotX的起始时间T2表示为T2=T1-((T1-T0)%SlotPeriod),其中(T1-T0)%SlotPeriod表示当前时刻T2与当前绝对时隙SlotX起始时刻之间的时间差;
    203、假设下一待发送信标帧的发送时隙为绝对时隙SlotY(SlotY>SlotX), 则SlotY的起始TAI时间T3为T3=T2+(SlotY-SlotX)×SlotPeriod;
    204、计算出射频物理层触发前导码到产生SFD中断的时间间隔为t=(4+1)*8/250=0.16ms,那么时间源设备发送信标帧时产生SFD中断时刻的TAI时间T4可表示为T4=T3+t;
    205、时间源设备发送信标帧时产生SFD中断时刻的TAI时间T4可进一步表示为
    T4=T1-((T1-T0)%SlotPeriod)+(SlotY-SlotX)×SlotPeriod+t
    该时间T4即可作为时间戳放入信标帧时间戳域,发送给非时间源设备,完成构造信标帧。
  3. 根据权利要求2所述的一种适用于WIA-PA网络的预填充时间戳同步方法,其特征在于,在步骤205中时间T4作为时间戳放入信标帧时间戳域后,还包括协议栈需根据时隙调度规则,所有数据包的发送过程需通过协议栈调度安排到指定时隙进行发送的步骤,保证该信标帧在绝对时隙SlotY进行发送。
  4. 根据权利要求2所述的一种适用于WIA-PA网络的预填充时间戳同步方法,其特征在于,步骤204中计算射频物理层触发前导码到产生SFD中断的时间间隔具体为:根据物理层前导码长度和射频的数据发送速率计算获得信标帧预定产生帧首定界符SFD中断时刻的TAI时间T4,当IEEE802.15.4射频前导码长度为4字节,SFD域长度为1字节,在SFD域接收完成后产生SFD中断,IEEE802.15.4射频数据发送速率为250kpbs,则中断的时间间隔t=(4+1)*8/250=0.16ms。
PCT/CN2016/077733 2015-05-18 2016-03-29 一种适用于wia-pa网络的预填充时间戳同步方法 WO2016184260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510252509.XA CN104993897B (zh) 2015-05-18 2015-05-18 一种适用于wia‑pa网络的预填充时间戳同步方法
CN201510252509.X 2015-05-18

Publications (1)

Publication Number Publication Date
WO2016184260A1 true WO2016184260A1 (zh) 2016-11-24

Family

ID=54305658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077733 WO2016184260A1 (zh) 2015-05-18 2016-03-29 一种适用于wia-pa网络的预填充时间戳同步方法

Country Status (2)

Country Link
CN (1) CN104993897B (zh)
WO (1) WO2016184260A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112380355A (zh) * 2020-11-20 2021-02-19 华南理工大学 一种时隙异构知识图谱的表示与存储方法
CN113949698A (zh) * 2021-10-15 2022-01-18 深圳安德空间技术有限公司 基于Web RTC的探地雷达采集远程控制方法及系统
CN114845374A (zh) * 2022-04-15 2022-08-02 沈阳中科奥维科技股份有限公司 一种基于wia-pa无线网络的高频率同步方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993897B (zh) * 2015-05-18 2017-11-17 重庆邮电大学 一种适用于wia‑pa网络的预填充时间戳同步方法
EP3691175A4 (en) 2017-10-13 2020-10-28 Huawei Technologies Co., Ltd. CLOCK SYNCHRONIZATION MESSAGE TRANSMISSION AND RECEPTION METHOD AND DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472998A (zh) * 2010-06-09 2012-05-23 Abb研究有限公司 安全时钟同步
US8325616B2 (en) * 2008-01-17 2012-12-04 Broadcom Corporation Method and system for determination and exchange of network timing information
CN102869087A (zh) * 2012-09-26 2013-01-09 重庆邮电大学 工业物联网芯片的硬件时间同步实现方法
CN104993897A (zh) * 2015-05-18 2015-10-21 重庆邮电大学 一种适用于wia-pa网络的预填充时间戳同步方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631016B (zh) * 2009-04-14 2011-09-14 华中科技大学 一种现场总线的时间同步方法
CN102938676B (zh) * 2011-08-16 2017-11-10 中兴通讯股份有限公司 时间同步处理方法、装置及系统
CN104469854B (zh) * 2014-11-27 2017-09-19 重庆邮电大学 一种流量自适应的工业无线wia‑pa网络成簇方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8325616B2 (en) * 2008-01-17 2012-12-04 Broadcom Corporation Method and system for determination and exchange of network timing information
CN102472998A (zh) * 2010-06-09 2012-05-23 Abb研究有限公司 安全时钟同步
CN102869087A (zh) * 2012-09-26 2013-01-09 重庆邮电大学 工业物联网芯片的硬件时间同步实现方法
CN104993897A (zh) * 2015-05-18 2015-10-21 重庆邮电大学 一种适用于wia-pa网络的预填充时间戳同步方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112380355A (zh) * 2020-11-20 2021-02-19 华南理工大学 一种时隙异构知识图谱的表示与存储方法
CN113949698A (zh) * 2021-10-15 2022-01-18 深圳安德空间技术有限公司 基于Web RTC的探地雷达采集远程控制方法及系统
CN113949698B (zh) * 2021-10-15 2023-12-01 深圳安德空间技术有限公司 基于Web RTC的探地雷达采集远程控制方法及系统
CN114845374A (zh) * 2022-04-15 2022-08-02 沈阳中科奥维科技股份有限公司 一种基于wia-pa无线网络的高频率同步方法
CN114845374B (zh) * 2022-04-15 2024-03-29 沈阳中科奥维科技股份有限公司 一种基于wia-pa无线网络的高频率同步方法

Also Published As

Publication number Publication date
CN104993897A (zh) 2015-10-21
CN104993897B (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
WO2016184260A1 (zh) 一种适用于wia-pa网络的预填充时间戳同步方法
WO2018113397A1 (zh) 确定终端与基站时钟时间偏差的方法与装置
CN101778405B (zh) 结构健康监测的无线传感器网络同步采集方法及系统
CN102547969B (zh) 一种面向电力系统的高精度无线时钟同步系统
WO2015117501A1 (zh) 一种时间同步方法、可编程逻辑器件、单板及网元
CN102869087B (zh) 工业物联网芯片的硬件时间同步实现方法
WO2017179608A1 (ja) 時刻同期方法、センサ収容端末、およびセンサネットワークシステム
CN103108388B (zh) 无线传感器网络时钟同步方法、装置及系统
JP5127482B2 (ja) タイミング同期方法、同期装置、同期システム及び同期プログラム
CN101753578B (zh) Ethernet/e1协议转换方法及协议转换器
JP6570879B2 (ja) 通信システム、スマートメータ、ゲートウェイ装置及び通信プログラム
CN101453308B (zh) Ip时钟报文处理方法、设备及系统
WO2015196685A1 (zh) 时钟同步方法及装置
CN109996325B (zh) 一种无线传感器网络的时钟同步系统及方法
Wang et al. Linear estimation of clock frequency offset for time synchronization based on overhearing in wireless sensor networks
KR101643070B1 (ko) 무선 통신 시스템, 발신원 무선 통신 장치, 목적지 무선 통신 장치 및 무선 통신 방법
CN103874172A (zh) 无线体域网中的数据传输方法和系统
CN105281885A (zh) 用于网络设备的时间同步方法、装置及时间同步服务器
JP2013110677A5 (zh)
WO2020119214A1 (zh) 同步方法及装置、网元、计算机存储介质
JP2011101276A (ja) 無線通信装置
JP2013110670A5 (zh)
US11343007B2 (en) Time synchronization method and device
JP4282399B2 (ja) 無線親機及び無線子機
Ferrari et al. Time distribution in IPv6 wireless sensor networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795747

Country of ref document: EP

Kind code of ref document: A1