WO2016183793A1 - Systems and methods for pedestrian walking path prediction - Google Patents

Systems and methods for pedestrian walking path prediction Download PDF

Info

Publication number
WO2016183793A1
WO2016183793A1 PCT/CN2015/079256 CN2015079256W WO2016183793A1 WO 2016183793 A1 WO2016183793 A1 WO 2016183793A1 CN 2015079256 W CN2015079256 W CN 2015079256W WO 2016183793 A1 WO2016183793 A1 WO 2016183793A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution
group
frames
energy
stationary
Prior art date
Application number
PCT/CN2015/079256
Other languages
French (fr)
Inventor
Xiaogang Wang
Shuai Yi
Hongsheng LI
Original Assignee
Xiaogang Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiaogang Wang filed Critical Xiaogang Wang
Priority to PCT/CN2015/079256 priority Critical patent/WO2016183793A1/en
Priority to CN201580080173.1A priority patent/CN107646111B/en
Publication of WO2016183793A1 publication Critical patent/WO2016183793A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/277Analysis of motion involving stochastic approaches, e.g. using Kalman filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • G06V20/53Recognition of crowd images, e.g. recognition of crowd congestion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/23Recognition of whole body movements, e.g. for sport training
    • G06V40/25Recognition of walking or running movements, e.g. gait recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory

Definitions

  • the disclosures relate to a system and a method for pedestrian walking path prediction, in particular, relate to a system and a method for understanding pedestrian behaviors from stationary crowd groups.
  • Pedestrian behavior modeling and analysis is important in video surveillance and has drawn increasing attentions in recent years. It can be used for various applications including pedestrian walking path prediction, traffic flow segmentation, crowd counting and segmentation, and abnormal event detection.
  • Pedestrian behavior modeling is challenging, especially for scenes with crowds.
  • Previous studies have shown that the walking behavior of an individual can be influenced by a variety of factors including scene layout (e.g. entrances, exits, walls, and obstacles) , pedestrian beliefs (the choice of source and destination) , and interactions with other moving pedestrians.
  • scene layout e.g. entrances, exits, walls, and obstacles
  • pedestrian beliefs the choice of source and destination
  • interactions with other moving pedestrians e.g. stationary crowd groups
  • the stationary crowd groups have considerable influence on pedestrians and are crucial in pedestrian behavior modeling. As shown in Fig. 1 (d) , the walking path of a pedestrian is affected by a stationary crowd group. However, without modeling the stationary crowd group, it is difficult to explain why the pedestrian detours when approaching the destination, as shown in Fig. 1 (f) .
  • stationary crowd groups can serve as multiple roles for different pedestrians. For pedestrians that are leaving or joining a stationary crowd group, it can be regarded as the source or the destination. For other pedestrians that are moving near the stationary crowd group, it can be regarded as an obstacle. Although both stationary crowd groups and fixed scene obstacles can block traffic, a pedestrian can choose to walk through the stationary crowd group or to detour from it, while scene obstacles are solid and cannot be penetrated. Moreover, as shown in Figs. 1 (a) - (d) , the spatial distribution of stationary crowd groups might change over time, which leads to the dynamic variations of traffic patterns. Therefore, static models cannot be used for stationary crowd group modeling.
  • Pedestrian behavior modeling and analysis is important for crowd scene understanding and has various applications in video surveillance.
  • Stationary crowd groups are a key factor influencing pedestrian walking patterns but was largely ignored in literature.
  • a novel model is proposed for pedestrian behavior modeling by including stationary crowd groups as a key component. Through inference on the interactions between stationary crowd groups and pedestrians, the proposed model can be used to investigate pedestrian behaviors. The effectiveness of the proposed model is demonstrated through multiple applications, including walking path prediction, destination prediction, personality classification, and abnormal event detection.
  • the present application is proposed to at least address the problem of pedestrian walking path prediction. It aims at automatically simulating which walking route is one pedestrian likely to choose given the source and destination, based on the scene structure, moving pedestrians in the scene, and stationary groups in the scene.
  • the factor of stationary crowd groups is introduced for the first time to model pedestrian behaviors. Both walking through and walking bypass pedestrians can be well modeled.
  • the proposed model can be dynamically updated with time to adapt the change of stationary crowd groups.
  • the present application can investigate the influence of stationary crowd groups on pedestrian behaviors.
  • stationary crowd groups have greater influence on pedestrian walking paths than moving crowds, which shows the importance of monitoring stationary groups in a traffic control system.
  • a personality attribute is proposed to classify pedestrians into different categories. This attribute is a key factor that makes each individual behave differently.
  • people are more likely to behave in a conservative way when the scene is not that crowded. In contrast, a crowded scene leads to aggressive walking patterns because of the lack of space.
  • a system is provided to proceed with the video frames comprising at least one of a first group of frames including scene obstacles, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians.
  • the system comprises: an energy distribution generation device generating an energy distribution for the video frames, the generated energy distribution comprising a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames; and a walking path generation device determining a most probable walking path for current individuals, by minimizing an energy cost along a walking route according to the generated energy distribution.
  • a method for pedestrian walking path prediction from video frames may comprise: obtaining the video frames; segmenting the obtained video frames into at least one of a first group of frames including at least one scene obstacle, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians; generating, from the segmented video frames, an energy distribution for the video frames, the generated energy distribution comprises a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames; and determining a most probable walking path for current individuals, by minimizing a cost along a walking route according to the generated energy distribution.
  • a system for pedestrian walking path prediction from video frames comprises at least one of a first group of frames including scene obstacles, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians, and the system may comprises: a memory that stores executable components; and a processor electrically coupled to the memory to execute the executable components to perform operations of the system.
  • the executable components comprise: an energy distribution generation component generating an energy distribution for the video frames, the generated energy distribution comprising a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames; and a walking path generation component determining a most probable walking path for current individuals, by minimizing an energy cost along a walking route according to the generated energy distribution.
  • Figs. 1 (a) -1 (f) illustrate a schematic diagram of the pedestrian behaviors prediction, wherein Figs. 1 (a) - (b) show two video frames, Figs. 1 (c) - (d) illustrate energy maps calculated from Figs. 1 (a) - (b) using the proposed model.
  • Fig. 1 (e) is an illustration of multiple roles of a stationary crowd group, and Fig. 1 (f) illustrates an energy map calculated from Fig. 1 (b) without modeling the factor of stationary crowd groups.
  • Fig. 2 illustrates a schematic block diagram of a system for pedestrian walking path prediction according to one embodiment of the present application.
  • Fig. 3 illustrates a schematic block diagram of the energy distribution generation device as shown in Fig. 1 according to one embodiment of the present application.
  • Fig. 4 illustrates an example of a scene layout map/distribution according to one embodiment of the present application.
  • Fig. 5 illustrates an example of a moving pedestrian influence map/distribution according to one embodiment of the present application.
  • Fig. 6 illustrates an example of a stationary crowd group influence map/distribution according to one embodiment of the present application.
  • Fig. 7 illustrates an example of path generation according to one embodiment of the present application.
  • Fig. 8 illustrates a schematic block diagram of a system for pedestrian walking path prediction according to a further embodiment of the present application.
  • Fig. 9 is a schematic diagram illustrating a flow process for a method for pedestrian walking path prediction according to a further embodiment of the present application.
  • Fig. 10 a schematic diagram illustrating a flow process for the step of generating as shown in Fig. 9 according to one embodiment of the present application.
  • Fig. 11 is a schematic diagram illustrating a flow process for a method for pedestrian walking path prediction according to a further embodiment of the present application.
  • Fig. 12 illustrates a system for pedestrian walking path prediction from video frames according to a yet another embodiment of the present application.
  • Fig. 13 illustrates a system for pedestrian walking path prediction from video frames according to a yet another embodiment of the present application.
  • Fig. 2 illustrates a schematic block diagram of a system 1000 for pedestrian walking path prediction according to one embodiment of the present application.
  • the system 1000 comprises an energy distribution generation device 100 and a walking path generation device 200 electrically coupled to the device 100.
  • the energy distribution generation device 100 is configured to receive the video frames.
  • the video frames may be obtained from a surveillance system or other video frames.
  • the received video frames may comprise at least one of a first group of frames including at least one scene obstacle, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians.
  • the energy distribution generation device 100 generates an energy distribution for the video frames, which may be a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames.
  • the walking path generation device 200 is configured to calculate a most probable walking path for current individuals, by minimizing a cost along a walking route according to the generated energy distribution.
  • Fig. 3 illustrates a schematic block diagram of the energy distribution generation device 100 as shown in Fig. 2 according to one embodiment of the present application.
  • the energy distribution generation device 100 may comprise a scene factor segmentation unit 101, a scene layout distribution modeling unit 102, a moving pedestrian distribution modeling unit 103, a stationary group distribution modeling unit 104 and an energy distribution combination unit 105.
  • the factor segmentation unit 101 is configured to separate each influence factors, for example, scene obstacle, moving pedestrians, and stationary pedestrians.
  • the scene factor segmentation unit 101 is configured to receive a plurality of video frames and segment each input video frame into multiple types of frames, such as frames including scene obstacle, frames including moving pedestrians, and frames including stationary pedestrians.
  • the segmentation may be used any of the conventional technical means in the art.
  • Scene layout map/distribution modeling unit 102 is electronically communicated with the factor segmentation unit 101 or electronically coupled to the factor segmentation unit 101.
  • the scene layout map/distribution modeling unit 102 operates to receive the frames including the separated scene obstacle, and model these frames into a scene layout map/distribution.
  • Pedeatrian’a walking behavior is constrained by scene layout. The pedestrians cannot walk freely in a scene due to the constraints of walls and other static obstacles, and thus they cannot be observed at some locations. Moreover, people tends to keep a distance from these obstacles and are not likely to walk very close to them, and thus the probability of observing the pedestrian decreases when getting close to the obstacle regions.
  • the scene layout map/distribution modeling unit 102 is configured to firstly detect all the scene obstacle regions, such as walls, pillars in the received image frames. Because pedestrians can never walk through a scene obstacle, the scene layout map/distribution modeling unit 102 sets the energy value inside the scene obstacle regions as 0, and locations near the scene obstacle boundary should have a low energy value because people are not likely to walk near the obstacles. The energy values of the locations near the scene obstacles will decrease according to the distance to the scene obstacle boundaries.
  • the scene layout influence map/distribution is therefore modeled as
  • SL is a set of locations occupied by scene obstacles which are unreachable
  • FIG. 4 An example of a scene layout map/distribution is shown in Fig. 4, in which Fig. 4 (a) illustrates the scene background, Fig. 4 (b) illustrates the energy values along the white horizontal lines in Figs. 4 (c) and 4 (d) , in which the above curve presents the energy values with ⁇ 1 , and the bottom curve presents the energy values with ⁇ 2.
  • Figs. 4 (c) and (d) show two scene influence maps calculated by setting ⁇ 1 as 0.01 and 0.05, respectively. Energy drops near the scene boundaries.
  • the moving pedestrian map/distribution modeling unit 103 will model the moving pedestrians into moving pedestrian map/distribution.
  • the moving pedestrian map/distribution modeling unit 103 operates to locate all the moving pedestrians from frames including moving pedestrians, which are received from the factor segmentation unit 101. And then, the moving pedestrian map/distribution modeling unit 103 sets the energy value at the location of the current moving pedestrian as 0. Since the pedestrians are likely to keep a private space from other moving pedestrians, locations near the moving pedestrian should have a low energy value. Accordingly, the moving pedestrian map/distribution modeling unit 103 decreases the energy values of the locations near the moving pedestrians, and sums the energy values of all moving pedestrians together.
  • the moving pedestrian influence map/distribution is modeled as
  • MP i (i ⁇ [1; m] ) is the ith moving pedestrian
  • ⁇ 2 is the influence bandwidth of the moving pedestrian term.
  • An example of a moving pedestrian influence map/distribution is shown in Fig. 5, in which Fig. 5 (a) illustrates a video frame, Fig. 5 (b) illustrates the energy values along the dash horizontal lines in Figs. 5 (c) and 5 (d) .
  • Figs. 5 (c) - (d) illustrate two moving pedestrian influence maps calculated by setting ⁇ 2 as 0.01 (the top curve) and 0.05 (the bottom curve) , respectively. Energy drops around moving pedestrian.
  • the stationary group map/distribution modeling unit 104 will model the stationary pedestrians into stationary group map/distribution.
  • the stationary group map/distribution modeling unit 104 receives frames including stationary pedestrians from the factor segmentation unit 101, and then detects all the stationary groups from the received frames.
  • the stationary group map/distribution modeling unit 104 makes locations near the stationary group have a low energy value, i.e., to decrease the energy values of the locations near the stationary groups.
  • the pedestrian may walk through the stationary group, and sparse groups are more likely to walk through.
  • the stationary group map/distribution modeling unit 104 sets the energy value inside the stationary group region as a fix value smaller than 1. Sparse stationary groups are assigned with larger energy values in the stationary group map/distribution modeling unit 104. Finally, the effect (i.e., the energy values) of all stationary groups will be summed together.
  • Stationary crowd groups are modeled in two aspects. First, for pedestrians that bypass a stationary crowd group, this stationary crowd group acts similarly as a scene obstacle. The group has a repulsive force around the group region to keep moving pedestrians away. Second, for pedestrians that walk through a stationary crowd group, there should be a penalty inside the group region. This is the key difference with the scene layout factor, where obstacles cannot be penetrated. The penalty is related to crowd density. It is more difficult to walk through denser stationary crowds.
  • the Stationary Group influence map/distribution is modeled as
  • SG i (i ⁇ [1, n] ) is the ith stationary crowd group region automatically detected by using the conventional approaches, measures the distance from x to the stationary crowd group region SG i , ⁇ 3 is the influence bandwidth of the stationary crowd group term, and d 4 (SG i ) ⁇ (0,+ ⁇ ) is used to measure the sparsity of stationary crowd group region SG i .
  • d 4 is calculated as the average distance among group members. Larger d 4 represents lower crowd density.
  • the weight ⁇ 4 controls the influence of group sparsity on estimation result.
  • f SG (x; ⁇ ) at locations x ⁇ SG i inside the group is constant and is positively correlated with group sparsity d 4 (SG i ) .
  • f SG (x; ⁇ ) is in the range of (0, 1) , which means that the probability of observing a pedestrian walking through the group region decreases because of the influence of the stationary group, but it is still larger than 0.
  • FIG. 6 An example of a stationary crowd group influence map/distribution is shown in Fig. 6,
  • the left views illustrate three stationary crowd group influence maps calculated from the same frame by using different ⁇ 3 and ⁇ 4.
  • the right views illustrate the energy values along two vertical lines (a) and (b) in (Left) .
  • the stationary group regions may have non-zero energy values by setting a nonzero ⁇ 4 .
  • the scene layout energy map/distribution f SL , the moving pedestrian map/distribution f MP and the stationary group map/distribution f SG will be multiplied together to form the final general energy map/distribution M (x; ⁇ ) by rule of
  • [ ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 ] are weighting parameters for different terms.
  • M is also a probability map/distribution and can be used as the probability of pedestrian appearing at each location. It can be extended by including new channels.
  • the walking path generation device 200 will use fast marching algorithm to calculate a most probable walking path for the current individual using fast marching algorithm.
  • Fig. 6 illustrates an example of path generation.
  • the point 701 is a source
  • the points 702 are destinations
  • the curves between the point 701 and the points 702 are optimal walking routes calculated by Equation 5) .
  • Fig. 8 illustrates a schematic block diagram of a system 1000’ for pedestrian walking path prediction according to a further embodiment of the present application.
  • the system 1000’ further comprise a personalized energy map/distribution modeling device 300 and a walking path generation device 200’.
  • the functions and operations for the device 100 in this embodiment are the same of those in the embodiment as shown in Fig. 2, and thus the detailed description thereof are omitted.
  • personalized energy map/distribution is the same as general energy map/distribution; P>1 means this pedestrian cares more about these influence factors and is likely to walk a longer way to avoid close contact with these obstacles, and the energy values of different locations are decreased in the same scale; If P ⁇ 1, it means pedestrian is walking aggressively and cares less about obstacles, and the energy values of different locations are increased in the same scale.
  • Walking path generation device 200 will use fast marching algorithm to calculate a most probable walking path for the current individual using fast marching algorithm.
  • the well known Fast Marching may be used.Given the source x s and the destination x d , an optimal path is calculated based on the energy map/distribution M P :
  • the method 2000 obtains the video frames.
  • the video frames may be obtained from a surveillance system or other video frames.
  • it segments the obtained video frames into at least one of a first group of frames including at least one scene obstacle, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians.
  • it generates, from the segmented video frames, an energy distribution for the video frames, the generated energy distribution comprises a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames.
  • Fig. 10 is a schematic diagram illustrating a flow process for the step of generating as shown in Fig. 9 according to one embodiment of the present application.
  • it models one or more frames from the first group of frames into the scene layout energy distribution/map.
  • the scene layout energy distribution is modeled by rule of: setting energy values inside scene obstacle regions as 0, and decreasing energy values of locations near the scene obstacles according to distances to boundaries of the scene obstacle, which is the same as the functions of the scene layout map modeling unit 102.
  • the process locates all moving pedestrians from the second group of frames and models the located moving pedestrians into the moving pedestrian distribution.
  • the moving pedestrian distribution is modeled by rule of: setting the energy value at the location of the current moving pedestrian as 0; and decreasing the energy values of the locations near the moving pedestrians, which is the same as the functions of the moving pedestrian map modeling unit 103.
  • the process detects all stationary groups from the third group of frames to model the stationary pedestrians into the stationary group map/distribution.
  • the stationary group distribution is modeled by rule of: setting the energy value inside a stationary group region as a fix value smaller than 1; and assigning sparse stationary groups with larger energy values in the stationary group distribution, which is the same as the functions of the stationary group map modeling unit 104.
  • step S604 the scene layout map/distribution, the moving pedestrian map/distribution, and the stationary group map/distribution are combined into the energy map/distribution.
  • the scene layout energy distribution, the moving pedestrian distribution, and the stationary group distribution are multiplied together to form the energy distribution.
  • step S80 in which a most probable walking path for current individuals is determined, by minimizing a cost along a walking route according to the generated energy distribution.
  • the detailed description for step S80 may be the same as that of the walking path generation device 200.
  • Fig. 11 is a schematic diagram illustrating a flow process for a method for pedestrian walking path prediction according to a further embodiment of the present application.
  • the steps S20 ⁇ 60 are the same as those discussed in reference to Fig. 9, and thus the detailed description thereof will be omitted herein.
  • the energy distribution obtained at step S60 is transformed into a personalized energy distribution, in which a larger energy value denotes that a pedestrian cares more about these influence factors and is likely to walk a longer way to avoid close contact with these obstacles, and a smaller energy value means that the pedestrian is walking aggressively and cares less about obstacles.
  • the most probable walking path for current individuals is determined according to the generated personalized energy distribution, which is the same as the operations for the walking path generation device 200’.
  • the present invention may be embodied as a system, method or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment and hardware aspects that may all generally be referred to herein as a “unit” , “circuit, ” “module” or “system.”
  • ICs integrated circuits
  • Fig. 12 illustrates a system 3000 for pedestrian walking path prediction from video frames.
  • the system 3000 comprises a memory 3001 that stores executable components and a processor 3002, electrically coupled to the memory 3001 to execute the executable components to perform operations of the system 3000.
  • the executable components may comprise: an energy distribution generation component 1201 for generating an energy distribution for the video frames, the generated energy distribution comprising a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames; and a walking path generation device 1202 for determining a most probable walking path for current individuals, by minimizing a energy cost along a walking route according to the generated energy distribution.
  • an energy distribution generation component 1201 for generating an energy distribution for the video frames, the generated energy distribution comprising a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames
  • a walking path generation device 1202 for determining a most probable walking path for current individuals, by minimizing a energy cost along a walking route according to the generated energy distribution.
  • the energy distribution generation component 1201 may comprise: a scene factor segmentation component that segments each of the video frames into the first, the second and the third groups of the frames; a scene layout map modeling component that receives one or more frames from the first group of frames and models the received frames into the scene layout energy distribution; a moving pedestrian map modeling component that locates all moving pedestrians from the second group of frames and models the located moving pedestrians into the moving pedestrian distribution; a stationary group map modeling component that detects all stationary groups from the third group of frames, and models the stationary pedestrians into the stationary group distribution; and a general energy distribution combination unit that combines the scene layout distribution, the moving pedestrian distribution, and the stationary group distribution, into the energy distribution. Since the functions for the components 1201 ⁇ 1202 are the same as those for the devices 100 ⁇ 200, respectively, the detailed descriptions thereof are omitted herein.
  • Fig. 13 illustrates a system 3000’ for pedestrian walking path prediction from video frames.
  • the system 3000 comprises a memory 3001 that stores executable components and a processor 3002, electrically coupled to the memory 3001 to execute the executable components to perform operations of the system 3000.
  • the executable components may comprise: an energy distribution generation component 1201 for generating an energy distribution for the video frames, the generated energy distribution comprising a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames; and a personalized energy distribution modeling component 1203 that transforms the energy distribution into a personalized energy distribution, in which a larger energy value denotes that a pedestrian is likely to walk a longer way to avoid close contact with the obstacles, and a smaller energy value means that the pedestrian is walking aggressively and cares less about the obstacles.
  • the system 3000’ further comprises a walking path generation component 1202’ configured to calculate the most probable walking path for current individuals according to the generated personalized energy distribution. Since the functions for the components 1201, 1202’ and 1203 are the same as those for the devices 100, 300 and 200’, respectively, the detailed descriptions thereof are omitted herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Psychiatry (AREA)
  • Social Psychology (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Image Processing (AREA)

Abstract

Disclosed is a system for pedestrian walking path prediction from video frames. In one embodiment, the video frames may comprise at least one of a first group of frames including scene obstacles, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians. The system comprises: an energy distribution generation device generating an energy distribution for the video frames, wherein the generated energy distribution comprising a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames. The system further comprises a walking path generation device that is electrically communicated with the energy distribution generation device, and determines a most probable walking path for current individuals, by minimizing an energy cost along a walking route according to the generated energy distribution.

Description

Systems and Methods for Pedestrian Walking Path Prediction Technical Field
The disclosures relate to a system and a method for pedestrian walking path prediction, in particular, relate to a system and a method for understanding pedestrian behaviors from stationary crowd groups.
Background
Pedestrian behavior modeling and analysis is important in video surveillance and has drawn increasing attentions in recent years. It can be used for various applications including pedestrian walking path prediction, traffic flow segmentation, crowd counting and segmentation, and abnormal event detection.
Pedestrian behavior modeling is challenging, especially for scenes with crowds. Previous studies have shown that the walking behavior of an individual can be influenced by a variety of factors including scene layout (e.g. entrances, exits, walls, and obstacles) , pedestrian beliefs (the choice of source and destination) , and interactions with other moving pedestrians. However, an important factor, i.e. stationary crowd groups, is missing in literature of modeling pedestrian behaviors.
The stationary crowd groups have considerable influence on pedestrians and are crucial in pedestrian behavior modeling. As shown in Fig. 1 (d) , the walking path of a pedestrian is affected by a stationary crowd group. However, without modeling the stationary crowd group, it is difficult to explain why the pedestrian detours when approaching the destination, as shown in Fig. 1 (f) .
Studies also show that stationary crowd groups have greater influences on pedestrian behaviors than moving crowds. A pedestrian usually changes the walking speed rather than direction to avoid collision with other moving crowds. However, when moving  crowds become stationary, the walking pedestrian is forced to change his or her direction and the walking path is influenced significantly.
As shown in Fig. 1 (e) , stationary crowd groups can serve as multiple roles for different pedestrians. For pedestrians that are leaving or joining a stationary crowd group, it can be regarded as the source or the destination. For other pedestrians that are moving near the stationary crowd group, it can be regarded as an obstacle. Although both stationary crowd groups and fixed scene obstacles can block traffic, a pedestrian can choose to walk through the stationary crowd group or to detour from it, while scene obstacles are solid and cannot be penetrated. Moreover, as shown in Figs. 1 (a) - (d) , the spatial distribution of stationary crowd groups might change over time, which leads to the dynamic variations of traffic patterns. Therefore, static models cannot be used for stationary crowd group modeling.
Summary
The following presents a simplified summary of the disclosure in order to provide a basic understanding of some aspects of the disclosure. This summary is not an extensive overview of the disclosure. It is intended to neither identify key or critical elements of the disclosure nor delineate any scope of particular embodiments of the disclosure, or any scope of the claims. Its sole purpose is to present some concepts of the disclosure in a simplified form as a prelude to the more detailed description that is presented later.
Pedestrian behavior modeling and analysis is important for crowd scene understanding and has various applications in video surveillance. Stationary crowd groups are a key factor influencing pedestrian walking patterns but was largely ignored in literature. In this application, a novel model is proposed for pedestrian behavior modeling by including stationary crowd groups as a key component. Through inference on the interactions between stationary crowd groups and pedestrians, the proposed model can be used to investigate pedestrian behaviors. The effectiveness of the proposed model is demonstrated through multiple applications, including walking path prediction, destination prediction, personality  classification, and abnormal event detection.
In one aspect, the present application is proposed to at least address the problem of pedestrian walking path prediction. It aims at automatically simulating which walking route is one pedestrian likely to choose given the source and destination, based on the scene structure, moving pedestrians in the scene, and stationary groups in the scene.
In the proposed solutions of the present application, the factor of stationary crowd groups is introduced for the first time to model pedestrian behaviors. Both walking through and walking bypass pedestrians can be well modeled. The proposed model can be dynamically updated with time to adapt the change of stationary crowd groups.
Based on the proposed model, the present application can investigate the influence of stationary crowd groups on pedestrian behaviors. By learning model parameters, it is observed that stationary crowd groups have greater influence on pedestrian walking paths than moving crowds, which shows the importance of monitoring stationary groups in a traffic control system. Moreover, by modeling the interactions among stationary groups and moving pedestrians, a personality attribute is proposed to classify pedestrians into different categories. This attribute is a key factor that makes each individual behave differently. One interesting observation is that people are more likely to behave in a conservative way when the scene is not that crowded. In contrast, a crowded scene leads to aggressive walking patterns because of the lack of space.
In accordance with one or more embodiments and corresponding disclosure, various non-limiting aspects are described in connection with systems and methods for pedestrian walking path prediction. In an embodiment, a system is provided to proceed with the video frames comprising at least one of a first group of frames including scene obstacles, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians. The system comprises: an energy distribution generation device  generating an energy distribution for the video frames, the generated energy distribution comprising a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames; and a walking path generation device determining a most probable walking path for current individuals, by minimizing an energy cost along a walking route according to the generated energy distribution.
In an embodiment, a method for pedestrian walking path prediction from video frames is disclosed, which may comprise: obtaining the video frames; segmenting the obtained video frames into at least one of a first group of frames including at least one scene obstacle, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians; generating, from the segmented video frames, an energy distribution for the video frames, the generated energy distribution comprises a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames; and determining a most probable walking path for current individuals, by minimizing a cost along a walking route according to the generated energy distribution.
In a yet further embodiment, a system for pedestrian walking path prediction from video frames is disclosed. The video frames comprise at least one of a first group of frames including scene obstacles, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians, and the system may comprises: a memory that stores executable components; and a processor electrically coupled to the memory to execute the executable components to perform operations of the system. The executable components comprise: an energy distribution generation component generating an energy distribution for the video frames, the generated energy distribution comprising a combination of at least one of a scene layout energy distribution for the first group of frames,  a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames; and a walking path generation component determining a most probable walking path for current individuals, by minimizing an energy cost along a walking route according to the generated energy distribution.
The following description and the annexed drawings set forth certain illustrative aspects of the disclosure. These aspects are indicative, however, of but a few of the various ways in which the principles of the disclosure may be employed. Other aspects of the disclosure will become apparent from the following detailed description of the disclosure when considered in conjunction with the drawings.
Brief Description of the Drawing
Exemplary non-limiting embodiments of the present invention are described below with reference to the attached drawings. The drawings are illustrative and generally not to an exact scale. The same or similar elements on different figures are referenced with the same reference numbers.
Figs. 1 (a) -1 (f) illustrate a schematic diagram of the pedestrian behaviors prediction, wherein Figs. 1 (a) - (b) show two video frames, Figs. 1 (c) - (d) illustrate energy maps calculated from Figs. 1 (a) - (b) using the proposed model., Fig. 1 (e) is an illustration of multiple roles of a stationary crowd group, and Fig. 1 (f) illustrates an energy map calculated from Fig. 1 (b) without modeling the factor of stationary crowd groups.
Fig. 2 illustrates a schematic block diagram of a system for pedestrian walking path prediction according to one embodiment of the present application.
Fig. 3 illustrates a schematic block diagram of the energy distribution generation device as shown in Fig. 1 according to one embodiment of the present application.
Fig. 4 illustrates an example of a scene layout map/distribution according to one embodiment of the present application.
Fig. 5 illustrates an example of a moving pedestrian influence map/distribution  according to one embodiment of the present application.
Fig. 6 illustrates an example of a stationary crowd group influence map/distribution according to one embodiment of the present application.
Fig. 7 illustrates an example of path generation according to one embodiment of the present application.
Fig. 8 illustrates a schematic block diagram of a system for pedestrian walking path prediction according to a further embodiment of the present application.
Fig. 9 is a schematic diagram illustrating a flow process for a method for pedestrian walking path prediction according to a further embodiment of the present application.
Fig. 10 a schematic diagram illustrating a flow process for the step of generating as shown in Fig. 9 according to one embodiment of the present application.
Fig. 11 is a schematic diagram illustrating a flow process for a method for pedestrian walking path prediction according to a further embodiment of the present application.
Fig. 12 illustrates a system for pedestrian walking path prediction from video frames according to a yet another embodiment of the present application.
Fig. 13 illustrates a system for pedestrian walking path prediction from video frames according to a yet another embodiment of the present application.
Detailed Description
Reference will now be made in detail to some specific embodiments of the invention including the best modes contemplated by the inventors for carrying out the invention. Examples of these specific embodiments are illustrated in the accompanying drawings. While the invention is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to the described embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. In the  following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In other instances, well-known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a" , "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising, " when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Fig. 2 illustrates a schematic block diagram of a system 1000 for pedestrian walking path prediction according to one embodiment of the present application. As shown, the system 1000 comprises an energy distribution generation device 100 and a walking path generation device 200 electrically coupled to the device 100. The energy distribution generation device 100 is configured to receive the video frames. The video frames may be obtained from a surveillance system or other video frames. The received video frames may comprise at least one of a first group of frames including at least one scene obstacle, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians. The energy distribution generation device 100 generates an energy distribution for the video frames, which may be a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames. The walking path generation device 200 is configured to calculate a most probable walking path for current individuals, by minimizing a cost along a walking route according to the  generated energy distribution.
Fig. 3 illustrates a schematic block diagram of the energy distribution generation device 100 as shown in Fig. 2 according to one embodiment of the present application. As shown, the energy distribution generation device 100 may comprise a scene factor segmentation unit 101, a scene layout distribution modeling unit 102, a moving pedestrian distribution modeling unit 103, a stationary group distribution modeling unit 104 and an energy distribution combination unit 105.
In the present application, different influence factors should be factorized and modeled separately, so the factor segmentation unit 101 is configured to separate each influence factors, for example, scene obstacle, moving pedestrians, and stationary pedestrians. In particular, the scene factor segmentation unit 101 is configured to receive a plurality of video frames and segment each input video frame into multiple types of frames, such as frames including scene obstacle, frames including moving pedestrians, and frames including stationary pedestrians. The segmentation may be used any of the conventional technical means in the art.
Scene layout map/distribution modeling unit 102 is electronically communicated with the factor segmentation unit 101 or electronically coupled to the factor segmentation unit 101. The scene layout map/distribution modeling unit 102 operates to receive the frames including the separated scene obstacle, and model these frames into a scene layout map/distribution. Pedeatrian’a walking behavior is constrained by scene layout. The pedestrians cannot walk freely in a scene due to the constraints of walls and other static obstacles, and thus they cannot be observed at some locations. Moreover, people tends to keep a distance from these obstacles and are not likely to walk very close to them, and thus the probability of observing the pedestrian decreases when getting close to the obstacle regions. Accordingly, to set the scene layout influence map/distribution, the scene layout map/distribution modeling unit 102 is configured to firstly detect all the scene obstacle  regions, such as walls, pillars in the received image frames. Because pedestrians can never walk through a scene obstacle, the scene layout map/distribution modeling unit 102 sets the energy value inside the scene obstacle regions as 0, and locations near the scene obstacle boundary should have a low energy value because people are not likely to walk near the obstacles. The energy values of the locations near the scene obstacles will decrease according to the distance to the scene obstacle boundaries.
The scene layout influence map/distribution is therefore modeled as
Figure PCTCN2015079256-appb-000001
where SL is a set of locations occupied by scene obstacles which are unreachable, d1 (x, SL) =miny∈SL
Figure PCTCN2015079256-appb-000002
measures the distance from the current location x to its nearest scene obstacle location y, and θ1 is a parameter indicating the influence bandwidth (which also can be viewed as the importance) of the scene layout term. If x∈SL, there is an obstacle at location x, and d1 (x, SL) =0. In this case, fSL (x, Θ) is equal to 0, which means that pedestrians cannot appear at location x. When 
Figure PCTCN2015079256-appb-000003
 d1 (x, SL) >0. fSL (x, Θ) gets close to 0 when the current location x approaches to scene obstacles. An example of a scene layout map/distribution is shown in Fig. 4, in which Fig. 4 (a) illustrates the scene background, Fig. 4 (b) illustrates the energy values along the white horizontal lines in Figs. 4 (c) and 4 (d) , in which the above curve presents the energy values with θ1, and the bottom curve presents the energy values with θ2. Figs. 4 (c) and (d) show two scene influence maps calculated by setting θ1 as 0.01 and 0.05, respectively. Energy drops near the scene boundaries.
Pedestrian’s walking behavior can be influenced by the interactions with other moving pedestrians. The moving pedestrian map/distribution modeling unit 103 will model the moving pedestrians into moving pedestrian map/distribution. In particular, the moving pedestrian map/distribution modeling unit 103 operates to locate all the moving pedestrians from frames including moving pedestrians, which are received from the factor segmentation  unit 101. And then, the moving pedestrian map/distribution modeling unit 103 sets the energy value at the location of the current moving pedestrian as 0. Since the pedestrians are likely to keep a private space from other moving pedestrians, locations near the moving pedestrian should have a low energy value. Accordingly, the moving pedestrian map/distribution modeling unit 103 decreases the energy values of the locations near the moving pedestrians, and sums the energy values of all moving pedestrians together.
The moving pedestrian influence map/distribution is modeled as
Figure PCTCN2015079256-appb-000004
Where MPi (i∈ [1; m] ) is the ith moving pedestrian, 
Figure PCTCN2015079256-appb-000005
 is the spatial location of MPi at current time t, 
Figure PCTCN2015079256-appb-000006
 is used to estimate the spatial location of MPi at time t+1, 
Figure PCTCN2015079256-appb-000007
 measures the distance from the current location x to the moving pedestrian MPi, and θ2is the influence bandwidth of the moving pedestrian term. An example of a moving pedestrian influence map/distribution is shown in Fig. 5, in which Fig. 5 (a) illustrates a video frame, Fig. 5 (b) illustrates the energy values along the dash horizontal lines in Figs. 5 (c) and 5 (d) . Figs. 5 (c) - (d) illustrate two moving pedestrian influence maps calculated by setting θ2 as 0.01 (the top curve) and 0.05 (the bottom curve) , respectively. Energy drops around moving pedestrian.
In addition, the pedestrian’s walking behavior can be influenced by the interactions with other stationary groups. The stationary group map/distribution modeling unit 104 will model the stationary pedestrians into stationary group map/distribution. In particular, the stationary group map/distribution modeling unit 104 receives frames including stationary pedestrians from the factor segmentation unit 101, and then detects all the stationary groups from the received frames.
Pedestrians are likely to keep a private space from other stationary groups, and  thus the stationary group map/distribution modeling unit 104 makes locations near the stationary group have a low energy value, i.e., to decrease the energy values of the locations near the stationary groups. In addition, the pedestrian may walk through the stationary group, and sparse groups are more likely to walk through. Accordingly, the stationary group map/distribution modeling unit 104 sets the energy value inside the stationary group region as a fix value smaller than 1. Sparse stationary groups are assigned with larger energy values in the stationary group map/distribution modeling unit 104. Finally, the effect (i.e., the energy values) of all stationary groups will be summed together.
Stationary crowd groups are modeled in two aspects. First, for pedestrians that bypass a stationary crowd group, this stationary crowd group acts similarly as a scene obstacle. The group has a repulsive force around the group region to keep moving pedestrians away. Second, for pedestrians that walk through a stationary crowd group, there should be a penalty inside the group region. This is the key difference with the scene layout factor, where obstacles cannot be penetrated. The penalty is related to crowd density. It is more difficult to walk through denser stationary crowds.
The Stationary Group influence map/distribution is modeled as
Figure PCTCN2015079256-appb-000008
where SGi (i∈ [1, n] ) is the ith stationary crowd group region automatically detected by using the conventional approaches, 
Figure PCTCN2015079256-appb-000009
measures the distance from x to the stationary crowd group region SGi, θ3 is the influence bandwidth of the stationary crowd group term, and d4 (SGi) ∈ (0,+∞) is used to measure the sparsity of stationary crowd group region SGi. d4 is calculated as the average distance among group members. Larger d4 represents lower crowd density. The weight θ4 controls the influence of group sparsity on estimation result.
If x∈SGi, the location x is inside SGi, and d3 (x, SGi) =0. fSG (x; Θ) at locations x∈SGi inside the group is constant and is positively correlated with group sparsity d4 (SGi) . fSG (x; Θ) is in the range of (0, 1) , which means that the probability of observing a pedestrian walking through the group region decreases because of the influence of the stationary group, but it is still larger than 0.
If 
Figure PCTCN2015079256-appb-000010
 x is outside SGi, and d3 (x, SGi)>0. The influence value increases from group boundary to faraway locations. An example of a stationary crowd group influence map/distribution is shown in Fig. 6, In Fig. 6, the left views illustrate three stationary crowd group influence maps calculated from the same frame by using different θ3 and θ4. The right views illustrate the energy values along two vertical lines (a) and (b) in (Left) . In the energy curves obtained along lines (a) and (b) , the top curve represents the energy values with θ3 =0.08, θ4=0.005; θ3=0.08 and θ4=0 in the middle curve, and θ3=0.15 and θ4=0 in the bottom curve. Comparing the two the most top curves, it shall be noticed that the stationary group regions may have non-zero energy values by setting a nonzero θ4. Different groups may have different energy values due to the density differences. By setting θ4=0, the differences disappear and the energy values inside the groups turn to zero.
After the three map/distributions are generated, i.e. the scene layout map/distribution, the moving pedestrian map/distribution, and the stationary group map/distribution, all the three map/distributions will be combined into the final general energy map/distribution by the general energy map/distribution combination unit 105. According to one embodiment of the present application, the scene layout energy map/distribution fSL, the moving pedestrian map/distribution fMP and the stationary group map/distribution fSG will be multiplied together to form the final general energy map/distribution M (x; Θ) by rule of
M (x; Θ) =fSL (x; θ1) fMP (x; θ2) fSG (x; θ3, θ4)  4)
Where Θ= [θ1, θ2, θ3, θ4] are weighting parameters for different terms. M is also a probability map/distribution and can be used as the probability of pedestrian appearing at each location. It can be extended by including new channels.
After the energy distribution M for the video frames is generated, the walking path generation device 200 will use fast marching algorithm to calculate a most probable walking path for the current individual using fast marching algorithm.
To generate pedestrian walking paths, the well known Fast Marching may beused. Given the source xs and the destination xd, an optimal path 
Figure PCTCN2015079256-appb-000011
 is calculated based on the energy map/distribution M:
Figure PCTCN2015079256-appb-000012
where 
Figure PCTCN2015079256-appb-000013
 is the most efficient and probable route from xs to xd according to the current energy map/distribution M. Several examples are shown in Fig. 6. When using a personalized map/distribution MP, the optimal path is just for the specific individual. When using a general map/distribution M, the optimal path can be regarded as an average path for ordinary pedestrians. Fig. 7 illustrates an example of path generation. The point 701 is a source, the points 702 are destinations, and the curves between the point 701 and the points 702 are optimal walking routes calculated by Equation 5) .
Fig. 8 illustrates a schematic block diagram of a system 1000’ for pedestrian walking path prediction according to a further embodiment of the present application. Besides the energy distribution generation device 100, the system 1000’ further comprise a personalized energy map/distribution modeling device 300 and a walking path generation device 200’.
The functions and operations for the device 100 in this embodiment are the same of those in the embodiment as shown in Fig. 2, and thus the detailed description thereof are omitted.
People might behave differently under the same situation. It is modeled by a personality parameter P. Different personalized energy map/distributions MP are generated based on the general energy map/distribution M with different P values. For different individuals, the personalized energy map/distribution modeling device 300 will transform general energy map/distribution into personalized energy map/distribution MP by rule of:
MP (x; Θ) =exp (P×ln M (x; Θ) )  6)
If P is large for a pedestrian, the influence bandwidth of all the terms (θ1, θ2, θ3) would equivalently increase for this individual. The energy values are small at locations near obstacles and stationary crowd groups. It denotes that this pedestrian cares more about these influence factors and is likely to walk a longer way to avoid close contact with these obstacles. In contrast, smaller P means that the pedestrian is walking aggressively and cares less about obstacles. To be specific, if P=1, personalized energy map/distribution is the same as general energy map/distribution; P>1 means this pedestrian cares more about these influence factors and is likely to walk a longer way to avoid close contact with these obstacles, and the energy values of different locations are decreased in the same scale; If P<1, it means pedestrian is walking aggressively and cares less about obstacles, and the energy values of different locations are increased in the same scale.
Walking path generation device 200’ will use fast marching algorithm to calculate a most probable walking path for the current individual using fast marching algorithm. To generate pedestrian walking paths, the well known Fast Marching may be used.Given the source xs and the destination xd, an optimal path 
Figure PCTCN2015079256-appb-000014
 is calculated based on the energy map/distribution MP :
Figure PCTCN2015079256-appb-000015
where 
Figure PCTCN2015079256-appb-000016
 is the most efficient and probable route from xs to xd according to the current energy map/distribution Mp. Several examples are shown in Fig. 6. When using a personalized map/distribution MP, the optimal path is just for the specific individual.
Hereinabove, the systems 1000 and 1000’ according to the embodiments of the present application have been discussed. Now, a method 2000 and 2000’ for pedestrian walking path prediction from video frames will be discussed.
Referring Fig. 9, the method 2000 for pedestrian walking path prediction according to one embodiment of the present application is illustrated. At step S20, the method 2000 obtains the video frames. The video frames may be obtained from a surveillance system or other video frames. At step S40, it segments the obtained video frames into at least one of a first group of frames including at least one scene obstacle, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians. At step S60, it generates, from the segmented video frames, an energy distribution for the video frames, the generated energy distribution comprises a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames.
Fig. 10 is a schematic diagram illustrating a flow process for the step of generating as shown in Fig. 9 according to one embodiment of the present application. In particular, at step S601, it models one or more frames from the first group of frames into the scene layout energy distribution/map. The scene layout energy distribution is modeled by rule of: setting energy values inside scene obstacle regions as 0, and decreasing energy values of locations near the scene obstacles according to distances to boundaries of the scene obstacle, which is the same as the functions of the scene layout map modeling unit 102.
At step S602, the process locates all moving pedestrians from the second group of frames and models the located moving pedestrians into the moving pedestrian distribution. The moving pedestrian distribution is modeled by rule of: setting the energy value at the location of the current moving pedestrian as 0; and decreasing the energy values of the locations near the moving pedestrians, which is the same as the functions of the moving  pedestrian map modeling unit 103.
At step S603, the process detects all stationary groups from the third group of frames to model the stationary pedestrians into the stationary group map/distribution. In one embodiment of the present application, the stationary group distribution is modeled by rule of: setting the energy value inside a stationary group region as a fix value smaller than 1; and assigning sparse stationary groups with larger energy values in the stationary group distribution, which is the same as the functions of the stationary group map modeling unit 104.
At step S604, the scene layout map/distribution, the moving pedestrian map/distribution, and the stationary group map/distribution are combined into the energy map/distribution. The scene layout energy distribution, the moving pedestrian distribution, and the stationary group distribution are multiplied together to form the energy distribution.
Rerunning to Fig. 9 again, the process 200 then proceeds to step S80, in which a most probable walking path for current individuals is determined, by minimizing a cost along a walking route according to the generated energy distribution. The detailed description for step S80 may be the same as that of the walking path generation device 200.
Fig. 11 is a schematic diagram illustrating a flow process for a method for pedestrian walking path prediction according to a further embodiment of the present application. The steps S20~60 are the same as those discussed in reference to Fig. 9, and thus the detailed description thereof will be omitted herein.
At step S70, the energy distribution obtained at step S60 is transformed into a personalized energy distribution, in which a larger energy value denotes that a pedestrian cares more about these influence factors and is likely to walk a longer way to avoid close contact with these obstacles, and a smaller energy value means that the pedestrian is walking  aggressively and cares less about obstacles. And then at step S80’, the most probable walking path for current individuals is determined according to the generated personalized energy distribution, which is the same as the operations for the walking path generation device 200’.
As will be appreciated by one skilled in the art, the present invention may be embodied as a system, method or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment and hardware aspects that may all generally be referred to herein as a “unit” , “circuit, ” “module” or “system.” Much of the inventive functionality and many of the inventive principles when implemented, are best supported with or integrated circuits (ICs) , such as a digital signal processor and software therefore or application specific ICs. It is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating ICs with minimal experimentation. Therefore, in the interest of brevity and minimization of any risk of obscuring the principles and concepts according to the present invention, further discussion of such software and ICs, if any, will be limited to the essentials with respect to the principles and concepts used by the preferred embodiments.
In addition, the present invention may take the form of an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software. Furthermore, the present invention may take the form of a computer program product embodied in any tangible medium of expression having computer-usable program code embodied in the medium. Fig. 12 illustrates a system 3000 for pedestrian walking path prediction from video frames. The system 3000 comprises a memory 3001 that stores executable components and a processor 3002, electrically coupled to the memory 3001 to execute the executable components to perform operations of the system 3000. The executable components may comprise: an energy distribution generation component 1201 for  generating an energy distribution for the video frames, the generated energy distribution comprising a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames; and a walking path generation device 1202 for determining a most probable walking path for current individuals, by minimizing a energy cost along a walking route according to the generated energy distribution. Although they are not shown, the energy distribution generation component 1201 may comprise: a scene factor segmentation component that segments each of the video frames into the first, the second and the third groups of the frames; a scene layout map modeling component that receives one or more frames from the first group of frames and models the received frames into the scene layout energy distribution; a moving pedestrian map modeling component that locates all moving pedestrians from the second group of frames and models the located moving pedestrians into the moving pedestrian distribution; a stationary group map modeling component that detects all stationary groups from the third group of frames, and models the stationary pedestrians into the stationary group distribution; and a general energy distribution combination unit that combines the scene layout distribution, the moving pedestrian distribution, and the stationary group distribution, into the energy distribution. Since the functions for the components 1201~1202 are the same as those for the devices 100~200, respectively, the detailed descriptions thereof are omitted herein.
 Fig. 13 illustrates a system 3000’ for pedestrian walking path prediction from video frames. The system 3000 comprises a memory 3001 that stores executable components and a processor 3002, electrically coupled to the memory 3001 to execute the executable components to perform operations of the system 3000. The executable components may comprise: an energy distribution generation component 1201 for generating an energy distribution for the video frames, the generated energy distribution comprising a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for  the third group of frames; and a personalized energy distribution modeling component 1203 that transforms the energy distribution into a personalized energy distribution, in which a larger energy value denotes that a pedestrian is likely to walk a longer way to avoid close contact with the obstacles, and a smaller energy value means that the pedestrian is walking aggressively and cares less about the obstacles. The system 3000’ further comprises a walking path generation component 1202’ configured to calculate the most probable walking path for current individuals according to the generated personalized energy distribution. Since the functions for the  components  1201, 1202’ and 1203 are the same as those for the  devices  100, 300 and 200’, respectively, the detailed descriptions thereof are omitted herein.
Although the preferred examples of the present invention have been described, those skilled in the art can make variations or modifications to these examples upon knowing the basic inventive concept. The appended claims are intended to be considered as comprising the preferred examples and all the variations or modifications fell into the scope of the present invention.

Claims (20)

  1. A system for pedestrian walking path prediction from video frames, wherein, the video frames comprise at least one of a first group of frames including scene obstacles, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians, and the system comprises:
    an energy distribution generation device generating an energy distribution for the video frames, the generated energy distribution comprising a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames; and
    a walking path generation device being electrically communicated with the energy distribution generation device, and determining a most probable walking path for current individuals, by minimizing an energy cost along a walking route according to the generated energy distribution.
  2. The system according to claim 1, wherein the energy distribution generation device comprises:
    a scene factor segmentation unit that segments each of the video frames into the first, the second and the third groups of the frames;
    a scene layout map modeling unit that receives one or more frames from the first group of frames and models the received frames into the scene layout energy distribution;
    a moving pedestrian map modeling unit that locates all moving pedestrians from the second group of frames and models the located moving pedestrians into the moving pedestrian distribution;
    a stationary group map modeling unit that detects all stationary groups from the third group of frames, and models the stationary pedestrians into the stationary group distribution; and
    an energy distribution combination unit that combines the scene, moving pedestrian, and stationary group distributions into the energy distribution.
  3. The system according to claim 2, wherein the energy distribution combination unit multiplies the scene layout energy distribution, the moving pedestrian distribution, and the stationary group distribution together to form the energy distribution.
  4. The system according to claim 2, wherein the scene layout map modeling unit models the received frames into the scene layout energy distribution by rule of:
    setting energy values inside scene obstacle regions as 0, and
    decreasing energy values at locations near the scene obstacles according to distances to boundaries of the scene obstacle.
  5. The system according to claim 2, wherein the moving pedestrian map modeling unit models the located moving pedestrians into the moving pedestrian distribution by rule of:
    setting energy values at the location of the current moving pedestrian as 0;
    decreasing energy values at the locations near the moving pedestrians; and
    accumulating the energy values together.
  6. The system according to claim 2, wherein the stationary group map modeling unit models the stationary pedestrians into the stationary group distribution by rule of:
    setting energy values inside a stationary group region as a fix value smaller than 1;
    assigning sparse stationary groups with larger energy values in the stationary group distribution; and
    accumulating the energy values together.
  7. The system according to any one of claims 1-6, further comprising:
    a personalized energy distribution modeling device that transforms the energy  distribution into a personalized energy distribution, in which a larger energy value denotes that a pedestrian is likely to walk a longer way to avoid close contact with the obstacles, and a smaller energy value means that the pedestrian is walking aggressively and cares less about the obstacles.
  8. The system according to claim 7, wherein the walking path generation device is further configured to calculate the most probable walking path for current individuals according to the generated personalized energy distribution.
  9. A method for pedestrian walking path prediction from video frames, comprising:
    obtaining the video frames;
    segmenting the obtained video frames into at least one of a first group of frames including at least one scene obstacle, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians;
    generating, from the segmented video frames, an energy distribution for the video frames, the generated energy distribution comprises a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames; and
    determining a most probable walking path for current individuals, by minimizing a cost along a walking route according to the generated energy distribution.
  10. The method according to claim 9, wherein the generating comprises:
    modeling one or more frames from the first group of frames into the scene layout energy distribution;
    locating all moving pedestrians from the second group of frames and model the located moving pedestrians into the moving pedestrian distribution;
    detecting all stationary groups from the third group of frames to model the stationary pedestrians into the stationary group distribution; and
    combining the scene layout distribution, the moving pedestrian distribution, and the stationary group distribution into the energy distribution.
  11. The method according to claim 10, wherein the scene layout energy distribution, the moving pedestrian distribution, and the stationary group distribution are multiplied together to form the energy distribution.
  12. The method according to claim 10, wherein the scene layout energy distribution is modeled by rule of:
    setting energy values inside scene obstacle regions as 0, and
    decreasing energy values of locations near the scene obstacles according to distances to boundaries of the scene obstacle.
  13. The method according to claim 10, wherein the moving pedestrian distribution is modeled by rule of:
    setting energy values at the location of the current moving pedestrian as 0, decreasing energy values of the locations near the moving pedestrians, and
    accumulating the energy values together.
  14. The method according to claim 10, wherein the stationary group distribution is modeled by rule of:
    setting energy values inside a stationary group region as a fix value smaller than 1;
    assigning sparse stationary groups with larger energy values in the stationary group distribution, and
    accumulating the energy values together.
  15. The method according to any one of claims 9-14, further comprising:
    transforming the energy distribution into a personalized energy distribution, in which a  larger energy value denotes that a pedestrian is likely to walk a longer way to avoid close contact with the obstacles, and a smaller energy value means that the pedestrian is walking aggressively and cares less about obstacles.
  16. The method according to claim 15, wherein the determining a most probable walking path further comprises:
    determining the most probable walking path for current individuals from the generated personalized energy distribution.
  17. A system for pedestrian walking path prediction from video frames, wherein, the video frames comprise at least one of a first group of frames including scene obstacles, a second group of frames including moving pedestrians, and a third group of frames including stationary pedestrians, and the system comprises:
    a memory that stores executable components; and
    a processor electrically coupled to the memory to execute the executable components to perform operations of the system, wherein, the executable components comprise:
    an energy distribution generation component generating an energy distribution for the video frames, the generated energy distribution comprising a combination of at least one of a scene layout energy distribution for the first group of frames, a moving pedestrian distribution for the second group of frames, and a stationary group distribution for the third group of frames; and
    a walking path generation component determining a most probable walking path for current individuals, by minimizing a energy cost along a walking route from the generated energy distribution.
  18. The system according to claim 17, wherein the energy distribution generation component comprises:
    a scene factor segmentation component that segments each of the video frames into the  first, the second and the third groups of the frames;
    a scene layout map modeling component that receives one or more frames from the first group of frames and models the received frames into the scene layout energy distribution;
    a moving pedestrian map modeling component that locates all moving pedestrians from the second group of frames and models the located moving pedestrians into the moving pedestrian distribution;
    a stationary group map modeling component that detects all stationary groups from the third group of frames, and models the stationary pedestrians into the stationary group distribution; and
    a general energy distribution combination component that combines the scene layout distribution, the moving pedestrian distribution, and the stationary group distribution, into the energy distribution.
  19. The system according to any one of claim 17 or 18, further comprising:
    a personalized energy distribution modeling component that transforms the energy distribution into a personalized energy distribution, in which a larger energy value denotes that a pedestrian is likely to walk a longer way to avoid close contact with the obstacles, and a smaller energy value means that the pedestrian is walking aggressively and cares less about the obstacles.
  20. The system according to claim 19, wherein the walking path generation component is further configured to calculate the most probable walking path for current individuals according to the generated personalized energy distribution.
PCT/CN2015/079256 2015-05-19 2015-05-19 Systems and methods for pedestrian walking path prediction WO2016183793A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/079256 WO2016183793A1 (en) 2015-05-19 2015-05-19 Systems and methods for pedestrian walking path prediction
CN201580080173.1A CN107646111B (en) 2015-05-19 2015-05-19 System and method for pedestrian walkway prediction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/079256 WO2016183793A1 (en) 2015-05-19 2015-05-19 Systems and methods for pedestrian walking path prediction

Publications (1)

Publication Number Publication Date
WO2016183793A1 true WO2016183793A1 (en) 2016-11-24

Family

ID=57319161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079256 WO2016183793A1 (en) 2015-05-19 2015-05-19 Systems and methods for pedestrian walking path prediction

Country Status (2)

Country Link
CN (1) CN107646111B (en)
WO (1) WO2016183793A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112131756B (en) * 2020-10-10 2021-04-30 清华大学 Pedestrian crossing scene simulation method considering individual shock rate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031443A (en) * 2004-07-16 2006-02-02 Denso Corp Collision avoidance notification system
US20100002908A1 (en) * 2006-07-10 2010-01-07 Kyoto University Pedestrian Tracking Method and Pedestrian Tracking Device
CN104442571A (en) * 2014-11-26 2015-03-25 重庆长安汽车股份有限公司 Night vision navigation integration system and control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183445A (en) * 2007-12-20 2008-05-21 浙江大学 Personnel evacuation method for municipal traffic under calamity outburst surroundings
CN101895953B (en) * 2010-07-09 2012-10-03 中国科学院软件研究所 Sensor network-based indoor emergency navigation method
CN102682303B (en) * 2012-03-13 2014-04-30 上海交通大学 Crowd exceptional event detection method based on LBP (Local Binary Pattern) weighted social force model
CN103106302B (en) * 2013-01-23 2015-10-28 南京大学 A kind of simulation method of pedestrian stream based on geography cellular automata

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031443A (en) * 2004-07-16 2006-02-02 Denso Corp Collision avoidance notification system
US20100002908A1 (en) * 2006-07-10 2010-01-07 Kyoto University Pedestrian Tracking Method and Pedestrian Tracking Device
CN104442571A (en) * 2014-11-26 2015-03-25 重庆长安汽车股份有限公司 Night vision navigation integration system and control method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOLEI ZHOU ET AL.: "Understanding Collective Crowd Behaviors:Learning a Mixture Model of Dynamic Pedestrian-Agents", COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012 IEEE CONFERENCE ON, 21 June 2012 (2012-06-21), pages 2871 - 2878, XP032232412, ISSN: 1063-6919 *
GIANLUCA ANTONINI ET AL.: "Behavioral Priors for Detection and Tracking of Pedestrians in Video Sequences", INTERNATIONAL JOURNAL OF COMPUTER VISION, vol. 69, no. 2, 31 August 2006 (2006-08-31), pages 159 - 180, XP019410091, ISSN: 0922-5691 *

Also Published As

Publication number Publication date
CN107646111A (en) 2018-01-30
CN107646111B (en) 2021-04-09

Similar Documents

Publication Publication Date Title
JP6144656B2 (en) System and method for warning a driver that visual recognition of a pedestrian may be difficult
KR102099265B1 (en) System and method for pedestrian-vehicle collision warning based on pedestrian state
US8599252B2 (en) Moving object detection apparatus and moving object detection method
JP5102410B2 (en) Moving body detection apparatus and moving body detection method
KR20190019822A (en) System and method for semantic segmentation of images
KR101569411B1 (en) Pedestrian realization apparatus and method
US8447069B2 (en) Apparatus and method for moving object detection
CN102077250B (en) Moving object detection method and moving object detection apparatus
KR100364582B1 (en) System tracking and watching multi moving object
EP2858008A2 (en) Target detecting method and system
CN105654031B (en) System and method for object detection
KR101360349B1 (en) Method and apparatus for object tracking based on feature of object
CN107305635A (en) Object identifying method, object recognition equipment and classifier training method
KR20180046798A (en) Method and apparatus for real time traffic information provision
KR20150032789A (en) Method for estimating ego motion of an object
Ke et al. Motion-vector clustering for traffic speed detection from UAV video
EP2951783B1 (en) Method and system for detecting moving objects
US9904868B2 (en) Visual attention detector and visual attention detection method
JP2010244194A (en) Object identification device
JP7215390B2 (en) Road obstacle detection device, road obstacle detection method, and road obstacle detection program
WO2016179808A1 (en) An apparatus and a method for face parts and face detection
JP2010079582A (en) Apparatus, method and program for detecting object
KR101537559B1 (en) Device for detecting object, device for detecting object for vehicle and method thereof
WO2022215409A1 (en) Object tracking device
KR20180047149A (en) Apparatus and method for risk alarming of collision

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892172

Country of ref document: EP

Kind code of ref document: A1