WO2016183760A1 - 基于接触作用的电阻抗调控装置及方法 - Google Patents

基于接触作用的电阻抗调控装置及方法 Download PDF

Info

Publication number
WO2016183760A1
WO2016183760A1 PCT/CN2015/079148 CN2015079148W WO2016183760A1 WO 2016183760 A1 WO2016183760 A1 WO 2016183760A1 CN 2015079148 W CN2015079148 W CN 2015079148W WO 2016183760 A1 WO2016183760 A1 WO 2016183760A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
contact
electrical impedance
impedance
functional material
Prior art date
Application number
PCT/CN2015/079148
Other languages
English (en)
French (fr)
Inventor
方岱宁
周浩
裴永茂
李法新
赵宏伟
付际
Original Assignee
北京大学
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学, 吉林大学 filed Critical 北京大学
Priority to PCT/CN2015/079148 priority Critical patent/WO2016183760A1/zh
Priority to US15/533,121 priority patent/US10084424B2/en
Publication of WO2016183760A1 publication Critical patent/WO2016183760A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based

Definitions

  • the invention relates to a device and a method for regulating the electrical impedance of a functional material by using local contact action, belonging to the field of impedance matching design and nanotechnology of an alternating current circuit.
  • the circuit impedance is adjusted by parallel or series connection of standard resistors, capacitors or inductor components on the basis of the original circuit, but this method is mostly used in the product design phase; in the service process, it is adjusted by the access circuit.
  • the volume or number of resistors, capacitors or inductors is realized. This method is feasible at the macro scale. It is difficult to operate at the micrometer scale, and it will face great challenges at the nanoscale. Therefore, it is severely constrained. Design and application of micro/nano electromechanical systems with adjustable electrical impedance.
  • the method has the advantages of convenient operation, real-time regulation and advantages in the micro/nano electromechanical system without changing the constituent elements of the circuit.
  • An electrical impedance regulation device based on contact action comprising a driving unit 1, a contact unit 2, a monitoring unit 3 and a control unit 4 (see FIG. 1), wherein: the contact unit 2 is used for contacting an electromagnetic functional material to be regulated; 3 for measuring the impedance signal of the electromagnetic functional material, and transmitting the impedance signal to the control unit 4; the driving unit 1 is fixedly connected with the contact unit 2; the control unit 4 controls the driving unit 1 according to the impedance signal measured by the monitoring unit 3, The driving unit 1 is mechanically loaded on the contact unit 2 to cause the contact unit 2 to contact the electromagnetic functional material and regulate the contact load magnitude, thereby regulating the electrical impedance of the electromagnetic functional material.
  • the driving unit 1 may specifically be a piezoelectric actuator, such as a lead zirconate titanate ceramic piezoelectric actuator or bismuth magnesium. Lead acid-lead titanate single crystal piezoelectric actuator.
  • the piezoelectric actuator is fixedly connected to the contact unit 2 and is electrically connected to the control unit 4, and the contact unit 2 is driven to be slightly displaced by the control unit 4.
  • the contact unit 2 may specifically be a conductive voltage head.
  • the material of the lead voltage tip may be boron doped diamond or cemented carbide, and the shape may be spherical or frustum shape, and the size may be on the nanometer or micrometer level, by gluing or A screw connection or the like is fixedly connected to the drive unit 1.
  • the monitoring unit 3 may specifically be an impedance measuring instrument connected to the voltage guiding head and the bottom electrode of the electromagnetic functional material through two wires. Further, the monitoring unit 3 may further comprise a precision displacement sensor, such as a capacitive displacement sensor, wherein the upper and lower capacitor plates of the capacitive sensor head are respectively fixed on the main structure of the device and the end of the driving unit 1 The displacement of the contact unit 2 is measured.
  • a precision displacement sensor such as a capacitive displacement sensor
  • the control unit 4 is connected to the monitoring unit 3 and the driving unit 2 respectively, which may specifically be a data reading and controller.
  • the present invention provides a contact-based electrical impedance regulation method, comprising the following steps (as shown in FIG. 2):
  • the contact unit 2 is mechanically loaded by the driving unit 1, so that the contact unit 2 is in contact with the electromagnetic functional material to be regulated in the AC circuit;
  • the mechanical loading of the driving unit 1 is adjusted by the control unit 4 according to the impedance signal measured by the monitoring unit 3, thereby adjusting the contact load of the contact unit 2 with respect to the electromagnetic functional material, and realizing the electrical impedance of the electromagnetic functional material. Adjust to achieve the purpose of real-time regulation of impedance matching of AC circuits.
  • the layered electromagnetic composite material can be predicted at a certain contact depth by using the above formula (1).
  • the electrical impedance amplitude therefore, in the step (3) of the above-mentioned electrical impedance regulation method, the electrical resistance of the corresponding magnitude can be obtained by controlling the contact load to reach a certain contact depth.
  • the invention is based on the contact-resistance electrical impedance regulation method, and realizes the regulation of the impedance of the electromagnetic functional film and the like in the micro/nano electromechanical system circuit by applying the micro-nano-scale contact action, thereby realizing the load change or the service environment temperature change.
  • the circuit impedance is matched in real time.
  • the invention has the following advantages and outstanding effects: (1) a method for regulating the impedance of an electromagnetic functional material by using mechanical contact is first proposed; (2) the control process does not need to change the constituent elements of the circuit; (3) the load can be changed or the ambient temperature changes. Under the circumstances, the circuit impedance is controlled in real time to achieve impedance matching and easy operation. (4) Since the contact occurs at the micro-nano scale, it has unique advantages in micro/nano electromechanical systems.
  • FIG. 1 is a block diagram of a technical unit of an electrical impedance regulating device provided by the present invention.
  • FIG. 2 is a flow chart of an electrical impedance regulation method provided by the present invention.
  • FIG. 3 is a diagram showing an experimental apparatus for electrical impedance regulation according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing the relationship between electrical impedance and alternating current frequency of layered electromagnetic composite La 0.7 Sr 0.3 MnO 3 /PMN-PT of different thicknesses in different thicknesses according to an embodiment of the present invention, wherein (a), (b), The ferromagnetic layer La 0.7 Sr 0.3 MnO 3 of c) has thicknesses of 200 nm, 400 nm and 600 nm, respectively.
  • FIG. 5 is a diagram showing the relationship between electrical impedance and contact depth of a layered electromagnetic composite material La 0.7 Sr 0.3 MnO 3 /PMN-PT of different thicknesses according to an embodiment of the present invention, wherein the irons of (a), (b), and (c)
  • the magnetic layer La 0.7 Sr 0.3 MnO 3 has thicknesses of 200 nm, 400 nm, and 600 nm, respectively.
  • 1-drive unit 2-contact unit; 3-monitoring unit; 4-control unit; 5-piezoelectric driver; 6-conducting voltage head; 7-electromagnetic functional material; 8-impedance measuring instrument; Displacement sensor; 10-data read and controller.
  • a contact-based electrical impedance control experimental device provided by the present embodiment is provided by a PZT ceramic piezoelectric actuator 5, a voltage guiding head 6, an electromagnetic functional material 7, an impedance measuring instrument 8, and a capacitive precision displacement sensor. And the data reading is composed with the controller 10.
  • the tip of the voltage guiding head 6 is spherical, and the radius of curvature of the spherical portion is 500 ⁇ m; the data reading and controller 10 causes the PZT ceramic piezoelectric actuator 5 to vertically extend, causing the voltage guiding head 6 to contact the electromagnetic functional material 7, and Adjusting the contact load size to regulate the electrical impedance of the electromagnetic functional material 7; the capacitive precision displacement sensor 9 measures the displacement of the contact process
  • the impedance measuring instrument 8 is respectively connected with the guiding voltage head 6 and the electromagnetic functional material 7, and measures the electrical impedance change law of the electromagnetic functional material 7 under different contact loads.
  • La 0.7 Sr 0.3 MnO 3 /PMN-PT a layered electromagnetic composite material with three thicknesses, was selected as the experimental material for electromagnetic function.
  • the thickness of the ferromagnetic layer La 0.7 Sr 0.3 MnO 3 was 200 nm, 400 nm and 600 nm, respectively.
  • the ferroelectric layer PMN The thickness of the -PT is 500 ⁇ m.
  • the PZT ceramic piezoelectric actuator 5 is controlled to perform contact addition and unloading processes. During the contact loading process, the load is carried out at loads of 4, 8, 12, 16, 24, 32, 40 mN (corresponding contact deformation in the range of 18 to 80 nm), and the electrical impedance of the sample is measured, in seven kinds.
  • the present invention provides an electrical impedance regulation method based on contact action.
  • the precision displacement sensor 9 and the impedance measuring instrument 8 are used for testing and demonstrating that the electrical contact performance of the material can be controlled by local contact, and the impedance and the nanometer are given.
  • the relationship between the contact depths of the stages may not include the precision displacement sensor 9 in actual device applications, and the impedance measuring instrument 8 may be replaced by a device that monitors other physical quantities. This is readily understood by those skilled in the art.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种基于接触作用的电阻抗调控装置及方法。所述装置包括驱动单元(1)、接触单元(2)、监测单元(3)和控制单元(4),其中:监测单元(3)测量交流电路中电磁功能材料(7)的阻抗信号,并将阻抗信号传递给控制单元(4);控制单元(4)根据监测单元(3)测量的阻抗信号调控驱动单元(1)对接触单元(2)进行力学加载,促使接触单元(2)接触电磁功能材料(7),并调控接触载荷大小,从而调控电磁功能材料(7)的电阻抗,实现对交流电路阻抗匹配实时调控的目的。

Description

基于接触作用的电阻抗调控装置及方法 技术领域
本发明涉及一种利用局部接触作用调控功能材料电阻抗的装置和方法,属于交流电路的阻抗匹配设计和纳米技术领域。
背景技术
近些年,随着材料制备技术的不断发展,功能材料的特征尺寸已进入纳米尺度,各类电磁学器件越来越小,新的微/纳机电系统不断涌现。在电路设计和器件应用当中,为了使各种负载功率能够达到最大值、激励源的输出功率不随环境温度变化而发生明显变化,或在其它元件接入电路时不对原有元件的正常工作产生明显影响或安全隐患,需要在产品设计阶段和服役过程进行电路阻抗匹配设计和调控。那么,如何调节和实时调控电路中某一元件的阻抗,成为该领域科学家和工程师所关心的重要问题之一。
通常,电路阻抗的调节是通过在原有电路基础上并联或串联标准电阻、电容或电感元件来实现,但这种方法大多用于产品设计阶段;而在服役过程中,则是通过调节接入电路中的电阻、电容或电感元件体积或数量来实现,这种方法在宏观尺度是可行的,在微米尺度的操作较为困难,而在纳米尺度下将面临极大挑战,因此,严重制约了具有可调电阻抗的微/纳机电系统的设计与应用。
发明内容
本发明的目的在于提供一种利用微纳米尺度接触作用实现对电磁功能材料电阻抗调控的装置及其方法。该方法,无需改变电路的组成元件,具有操作便捷、实时调控和在微/纳机电系统具有优势等优点。
本发明提供的技术方案如下:
一种基于接触作用的电阻抗调控装置,包括驱动单元1、接触单元2、监测单元3和控制单元4(参见图1),其中:接触单元2用于接触待调控的电磁功能材料;监测单元3用于测量电磁功能材料的阻抗信号,同时将阻抗信号传递给控制单元4;驱动单元1与接触单元2固定连接;由控制单元4根据监测单元3测量的阻抗信号对驱动单元1进行控制,使驱动单元1对接触单元2进行力学加载,促使接触单元2接触电磁功能材料,并调控接触载荷大小,从而调控电磁功能材料的电阻抗。
可选的,所述驱动单元1具体可以是压电驱动器,例如锆钛酸铅陶瓷压电驱动器或铌镁 酸铅-钛酸铅单晶压电驱动器。压电驱动器与接触单元2固定连接,同时与控制单元4电连接,在控制单元4的作用下驱使接触单元2发生微小位移。
所述接触单元2具体可以是一导电压头,导电压头尖端的材料可以是硼掺杂金刚石或硬质合金,形状可以是球形或锥台形,尺寸可以在纳米或微米级,通过胶接或螺纹连接等方式与驱动单元1进行固定连接。
所述监测单元3具体可以是一阻抗测量仪,其通过两根导线分别与导电压头和电磁功能材料的底面电极进行连接。进一步的,所述监测单元3还可以包含一精密位移传感器,例如电容式位移传感器,其组成电容传感器头的上下两个电容器极板分别固定在装置的主体结构上和驱动单元1的末端,用于测量接触单元2的位移。
所述控制单元4分别与监测单元3和驱动单元2连接,其具体可以是一个数据读取与控制器。
基于上述电阻抗调控装置,本发明提供了一种基于接触作用的电阻抗调控方法,包括如下步骤(如图2所示):
(1)在控制单元4的控制下,由驱动单元1对接触单元2进行力学加载,使接触单元2与交流电路中待调控的电磁功能材料产生接触作用;
(2)由监测单元3实时监测所述电磁功能材料的阻抗信号;
(3)由控制单元4根据监测单元3测得的阻抗信号调整驱动单元1的力学加载,从而调节接触单元2对所述电磁功能材料的接触载荷大小,实现对所述电磁功能材料电阻抗的调节,达到对交流电路阻抗匹配实时调控的目的。
对于层状电磁复合材料,利用上述方法进行电阻抗调控时,在任一交流频率f下,其电阻抗幅值|Z(f)|与力学加载的接触深度h(f)之间存在如下的经验关系:
Figure PCTCN2015079148-appb-000001
其中,|Z0(f)|和h(f)*分别为阻抗幅值参数和接触深度参数,与层状电磁复合材料的厚度以及交流频率有关,可由实验来确定。
可见,通过预先的实验确定了阻抗幅值参数|Z0(f)|和接触深度参数h(f)*后,利用上述公式(1)可以预测出层状电磁复合材料在一定接触深度下的电阻抗幅值,因此,在上述电阻 抗调控方法的步骤(3)中,控制接触载荷大小达到某一接触深度即可获得相应大小的电阻抗。
本发明基于接触作用的电阻抗调控方法,通过施加微纳米尺度的接触作用,实现对电磁功能薄膜等材料在微/纳机电系统电路中阻抗的调控,从而实现在负载改变或服役环境温度变化时的电路阻抗实时匹配。
本发明具有以下优点及突出性效果:(1)首次提出利用力学接触作用调控电磁功能材料阻抗的方法;(2)调控过程无需改变电路的组成元件;(3)可在负载变化或环境温度变化等情况下对电路阻抗进行实时调控,达到阻抗匹配,操作便捷;(4)由于接触作用发生在微纳米尺度,所以在微/纳机电系统应用中具有独特优势。
附图说明
图1为本发明提供的电阻抗调控装置的技术单元框图。
图2为本发明提供的电阻抗调控方法流程图。
图3为本发明实施例中的电阻抗调控实验装置图。
图4为本发明实施例中不同厚度的层状电磁复合材料La0.7Sr0.3MnO3/PMN-PT在不同接触载荷时电阻抗与交流频率的关系图,其中(a)、(b)、(c)的铁磁层La0.7Sr0.3MnO3厚度分别为200nm、400nm和600nm。
图5为本发明实施例中不同厚度的层状电磁复合材料La0.7Sr0.3MnO3/PMN-PT的电阻抗与接触深度的关系图,其中(a)、(b)、(c)的铁磁层La0.7Sr0.3MnO3厚度分别为200nm、400nm和600nm。
图中:1-驱动单元;2-接触单元;3-监测单元;4-控制单元;5-压电驱动器;6-导电压头;7-电磁功能材料;8-阻抗测量仪;9-精密位移传感器;10-数据读取与控制器。
具体实施方式
下面结合附图进一步说明本发明的具体技术内容及实施方式:
参考图3,本实施例提供的一种基于接触作用的电阻抗调控实验装置,由PZT陶瓷压电驱动器5,导电压头6,电磁功能材料7,阻抗测量仪8,电容式精密位移传感器9和数据读取与控制器10组成。
导电压头6的尖端为球状,该球状部分的曲率半径为500μm;数据读取与控制器10使PZT陶瓷压电驱动器5产生竖向伸长,促使导电压头6接触电磁功能材料7,并调控接触载荷大小,从而调控电磁功能材料7的电阻抗;电容式精密位移传感器9测量接触过程的位移 信号;阻抗测量仪8分别连接导电压头6和电磁功能材料7,测量电磁功能材料7在不同接触载荷作用时的电阻抗变化规律。
选取3种厚度的层状电磁复合材料La0.7Sr0.3MnO3/PMN-PT作为电磁功能实验材料,其中铁磁层La0.7Sr0.3MnO3的厚度分别为200nm、400nm和600nm,铁电层PMN-PT的厚度均为500μm。控制PZT陶瓷压电驱动器5进行接触加、卸载过程。在接触加载过程中,分别在载荷为4、8、12、16、24、32、40mN时进行保载(对应的接触变形量在18~80nm范围),测量试样的电阻抗,在七种接触载荷作用下的电阻抗(包括幅值Z和相位phase)与交流频率(f)的关系结果,如图4所示。可以看出,对于任一样品,在任一频率下,随着接触载荷的增加,层状电磁复合材料的阻抗(幅值和相位)不断减小。
对于3种样品,分别任取三个交流频率:3kHz、6kHz和9kHz,对阻抗模|Z|取平方,对接触深度h取倒数,画出二者之间的关系,如图5所示。可以看出,在实验参数取值范围内,在任一交流频率下,阻抗幅值的平方与接触深度的倒数之间存在近似的线性关系,可以用以下函数表示:
Figure PCTCN2015079148-appb-000002
其中,|Z(f)|为电阻抗幅值,h(f)为接触深度,f为交流电信号的频率。两个特征参数,即阻抗幅值参数|Z0(f)|和接触深度参数h(f)*,与层状电磁复合材料的厚度以及交流频率有关,可通过对图5中的数据点进行线性拟合得到。
此外,本发明提供的是一种基于接触作用的电阻抗调控方法,精密位移传感器9和阻抗测量仪8是为了测试和说明利用局部接触作用可以调控材料的电阻抗性能,并给出阻抗与纳米级接触深度之间的关系,在实际器件应用中可以不包含精密位移传感器9,也可以采用监测其它物理量的器件来替代阻抗测量仪8。这是本领域专业人员所容易理解的。

Claims (10)

  1. 一种基于接触作用的电阻抗调控装置,包括驱动单元、接触单元、监测单元和控制单元,其中:接触单元用于接触待调控的电磁功能材料;监测单元用于测量电磁功能材料的阻抗信号,同时将阻抗信号传递给控制单元;驱动单元与接触单元固定连接;由控制单元根据监测单元测量的阻抗信号对驱动单元进行控制,使驱动单元对接触单元进行力学加载,促使接触单元接触电磁功能材料,并调控接触载荷大小,从而调控电磁功能材料的电阻抗。
  2. 如权利要求1所述的电阻抗调控装置,其特征在于,所述驱动单元是压电驱动器,所述压电驱动器与接触单元固定连接,同时与控制单元电连接。
  3. 如权利要求2所述的电阻抗调控装置,其特征在于,所述驱动单元是锆钛酸铅陶瓷压电驱动器或铌镁酸铅-钛酸铅单晶压电驱动器。
  4. 如权利要求1所述的电阻抗调控装置,其特征在于,所述接触单元是一导电压头,具有纳米级或微米级尺寸的球形或锥台形尖端。
  5. 如权利要求1所述的电阻抗调控装置,其特征在于,所述监测单元包括一阻抗测量仪,其通过两根导线分别与导电压头和电磁功能材料的底面电极进行连接。
  6. 如权利要求5所述的电阻抗调控装置,其特征在于,所述监测单元还包括一用于测量接触单元位移的精密位移传感器。
  7. 如权利要求6所述的电阻抗调控装置,其特征在于,所述精密位移传感器为电容式位移传感器,其组成电容传感器头的上下两个电容器极板分别固定在电阻抗调控装置的主体结构上和驱动单元的末端。
  8. 一种基于接触作用的电阻抗调控方法,利用权利要求1~7任一所述的电阻抗调控装置对交流电路阻抗匹配进行实时调控,包括以下步骤:
    1)在控制单元的控制下,由驱动单元对接触单元进行力学加载,使接触单元与交流电路中待调控的电磁功能材料产生接触作用;
    2)由监测单元实时监测所述电磁功能材料的阻抗信号;
    3)由控制单元根据监测单元测得的阻抗信号调整驱动单元的力学加载,从而调节接触单元对所述电磁功能材料的接触载荷大小,实现对所述电磁功能材料电阻抗的调节。
  9. 如权利要求8所述的电阻抗调控方法,其特征在于,所述方法是对层状电磁复合材料的电阻抗进行调控。
  10. 如权利要求9所述的电阻抗调控方法,其特征在于,利用下述公式实现对层状电磁复合材料电阻抗幅值的调控:
    Figure PCTCN2015079148-appb-100001
    其中,h(f)代表在交流频率f下对材料进行力学加载的接触深度,|Z(f)|代表相应的电阻抗幅值;|Z0(f)|和h(f)*分别为阻抗幅值参数和接触深度参数,与层状电磁复合材料的厚度以及交流频率相关;在步骤3)控制接触载荷大小达到某一接触深度,根据公式(1)即可预测出相应的电阻抗幅值。
PCT/CN2015/079148 2015-05-18 2015-05-18 基于接触作用的电阻抗调控装置及方法 WO2016183760A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/079148 WO2016183760A1 (zh) 2015-05-18 2015-05-18 基于接触作用的电阻抗调控装置及方法
US15/533,121 US10084424B2 (en) 2015-05-18 2015-05-18 Device and a method for adjusting electrical impedance based on contact action

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/079148 WO2016183760A1 (zh) 2015-05-18 2015-05-18 基于接触作用的电阻抗调控装置及方法

Publications (1)

Publication Number Publication Date
WO2016183760A1 true WO2016183760A1 (zh) 2016-11-24

Family

ID=57319123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079148 WO2016183760A1 (zh) 2015-05-18 2015-05-18 基于接触作用的电阻抗调控装置及方法

Country Status (2)

Country Link
US (1) US10084424B2 (zh)
WO (1) WO2016183760A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210174777A1 (en) * 2019-12-05 2021-06-10 Cirrus Logic International Semiconductor Ltd. Methods and systems for estimating coil impedance of an electromagnetic transducer
CN113933398B (zh) * 2021-10-26 2024-03-15 中国石油化工股份有限公司 一种基于阻抗分析法的电磁超声传感器驱动优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336496A (en) * 1979-10-02 1982-06-22 W. C. Heraeus Gmbh Electrical contact test apparatus to test contact resistance of a sample terminal
US20070080696A1 (en) * 2005-10-11 2007-04-12 Intel Corporation Integrated circuit package resistance measurement
CN101236220A (zh) * 2008-03-07 2008-08-06 北京邮电大学 一种测试微动接触电阻的系统和方法
CN101236221A (zh) * 2008-03-07 2008-08-06 北京邮电大学 一种精密定位测试接触电阻的方法及装置
CN201364363Y (zh) * 2009-05-26 2009-12-16 北京东宝亿通科技股份有限公司 一种在线层间电阻测量系统
CN202794338U (zh) * 2012-09-04 2013-03-13 东莞市华兰海电子有限公司 一种电化学腐蚀式应变计自动调阻装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336496A (en) * 1979-10-02 1982-06-22 W. C. Heraeus Gmbh Electrical contact test apparatus to test contact resistance of a sample terminal
US20070080696A1 (en) * 2005-10-11 2007-04-12 Intel Corporation Integrated circuit package resistance measurement
CN101236220A (zh) * 2008-03-07 2008-08-06 北京邮电大学 一种测试微动接触电阻的系统和方法
CN101236221A (zh) * 2008-03-07 2008-08-06 北京邮电大学 一种精密定位测试接触电阻的方法及装置
CN201364363Y (zh) * 2009-05-26 2009-12-16 北京东宝亿通科技股份有限公司 一种在线层间电阻测量系统
CN202794338U (zh) * 2012-09-04 2013-03-13 东莞市华兰海电子有限公司 一种电化学腐蚀式应变计自动调阻装置

Also Published As

Publication number Publication date
US20180076787A1 (en) 2018-03-15
US10084424B2 (en) 2018-09-25

Similar Documents

Publication Publication Date Title
Singh et al. Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires
Bruno et al. Properties of piezoceramic materials in high electric field actuator applications
Zhu et al. A credit card sized self powered smart sensor node
Lee et al. Piezoelectric properties of Pb (Zr, Ti) O3-Pb (Ni, Nb) O3 ceramics and their application in energy harvesters
Shin et al. Multi-layered piezoelectric energy harvesters based on PZT ceramic actuators
Lee et al. Energy harvesting performance of unimorph piezoelectric cantilever generator using interdigitated electrode lead zirconate titanate laminate
WO2009128546A1 (ja) 圧電/電歪デバイスの検査方法及び検査装置、並びに圧電/電歪デバイスの調整方法
CN107438942B (zh) 超声波电动机的控制方法和相应的控制机构
WO2016183760A1 (zh) 基于接触作用的电阻抗调控装置及方法
Choi et al. Quantitative electrode design modeling of an electroadhesive lifting device based on the localized charge distribution and interfacial polarization of different objects
CA2898763A1 (en) Dielectric geometry for capacitive-based tactile sensor
US10763424B2 (en) Composite articles with dielectric layer
Sadeghi et al. Design, analysis, and optimization of a magnetoelectric actuator using regression modeling, numerical simulation and metaheuristics algorithm
Uchino High-Power Piezoelectrics and Loss Mechanisms
Kim et al. Vibration reduction of MLCC considering piezoelectric and electrostriction effect
Gu et al. Temperature-dependent properties of a 1–3 connectivity piezoelectric ceramic–polymer composite
US20190189899A1 (en) Kinetic piezoelectric device
Hufenbach et al. Sensitivity analysis for the process integrated online polarization of piezoceramic modules in thermoplastic composites
US10763422B2 (en) Composite article with co-planar electrodes
US20190189894A1 (en) Inertial piezoelectric capacitor with co-planar patterned electrodes
KR101642716B1 (ko) 압전 나노 소재의 압전 특성 측정 장치, 시스템 및 방법
US20190189890A1 (en) Piezoelectric capacitor with co-planar patterned electrodes
US20190189900A1 (en) Inertial piezoelectric device
Wojnar Exploring the kinetics of domain switching in ferroelectrics for structural applications
Ambrosio et al. Study of cantilever structures based on piezoelectric materials for energy harvesting at low frequency of vibration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892139

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15533121

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/03/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15892139

Country of ref document: EP

Kind code of ref document: A1