WO2016183720A1 - Lte系统的非标准带宽的下行、上行压缩方法和装置 - Google Patents
Lte系统的非标准带宽的下行、上行压缩方法和装置 Download PDFInfo
- Publication number
- WO2016183720A1 WO2016183720A1 PCT/CN2015/079045 CN2015079045W WO2016183720A1 WO 2016183720 A1 WO2016183720 A1 WO 2016183720A1 CN 2015079045 W CN2015079045 W CN 2015079045W WO 2016183720 A1 WO2016183720 A1 WO 2016183720A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- signal
- base station
- standard bandwidth
- lte system
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/66—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0096—Indication of changes in allocation
- H04L5/0098—Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/04—Protocols for data compression, e.g. ROHC
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
Definitions
- the embodiments of the present invention relate to communication technologies, and in particular, to a non-standard bandwidth downlink and uplink compression method and apparatus for a Long Term Evolution (LTE) system.
- LTE Long Term Evolution
- Refarming refers to the re-planning of spectrum resources.
- low-standard systems give up a spectrum to high-system systems.
- GL Refarming refers to the Global System for Mobile (GSM) system giving out a spectrum.
- GSM Global System for Mobile
- the LTE system uses the 850M/900M spectrum as an example.
- the 850M/900M is originally used by the GSM system.
- the operator gives up part of the spectrum from the spectrum of the GSM system to the LTE system. Due to the limited spectrum resources available, operators cannot provide standard bandwidth to LTE systems.
- LTE systems use standard 5M bandwidth, but operators can only provide 4.4M or 4.6M non-standard bandwidth.
- the standard bandwidth of LTE systems is 1.4. , 3, 5, 10, 15 or 20M.
- the prior art is implemented by compressing a transition band of a spectrum or a resource block (RB).
- a transition band of a spectrum or a resource block RB
- the prior art solution uses a 4.6M symmetric filter to filter the 5M bandwidth, as shown in FIG. 1.
- FIG. 1 is a prior art spectrum compression scheme, which uses 4.6M symmetric filtering. The signal is symmetrically filtered, and one RB at each end of the spectrum is filtered out (black in Figure 1 indicates the filtered RB). Through the filter, the signal at the frequency outside the filter bandwidth is filtered out, and the bandwidth actually transmitted by the base station is 4.6M.
- the embodiments of the present invention provide a downlink and uplink compression method and device for a non-standard bandwidth of an LTE system, which can improve utilization of spectrum resources.
- a first aspect of the present invention provides a base station, including:
- At least one processor configured to shift a center frequency point of the baseband signal to a preset direction by a frequency change amount, the frequency change amount being pre-configured;
- a filter configured to filter the frequency-shifted baseband signal to filter an edge signal of the frequency-shifted baseband signal on a side of the preset direction, where a center frequency of the filter
- the center frequency of the baseband signal is the same, the bandwidth of the filter is a non-standard bandwidth of the Long Term Evolution (LTE) system, and the non-standard bandwidth of the LTE system is smaller than the standard bandwidth of the LTE system;
- LTE Long Term Evolution
- the at least one processor is further configured to perform frequency conversion processing on the filtered baseband signal to obtain an intermediate frequency signal, and move a center frequency of the intermediate frequency signal to the opposite direction of the preset direction to move the frequency
- the amount of change, the center frequency of the frequency-shifted intermediate frequency signal is the same as the center frequency of the baseband signal;
- the at least one processor is further configured to perform frequency conversion processing on the frequency-shifted intermediate frequency signal to obtain a radio frequency signal;
- a transmitter configured to send the radio frequency signal to a terminal, where a bandwidth of the radio frequency signal is a non-standard bandwidth of the LTE.
- the frequency change amount is a size of N resource blocks, and N is greater than 0.
- the frequency change amount is a size of N guard bands of a standard bandwidth of the LTE system, and N is greater than 0.
- the transmitter is further configured to:
- a second aspect of the present invention provides a base station, including:
- a receiver configured to receive a radio frequency signal sent by the terminal, where the radio frequency signal is sent by the terminal to the base station according to a non-standard bandwidth of the Long Term Evolution (LTE) system;
- LTE Long Term Evolution
- At least one processor configured to: move a center frequency point of the radio frequency signal received by the receiver to a preset direction by a frequency change amount, where the frequency change amount is pre-configured;
- a filter configured to filter the frequency-shifted radio frequency signal to filter an edge signal of the frequency-shifted radio frequency signal on a side of the preset direction, where a center frequency point of the filter
- the center frequency of the radio frequency signal is the same, and the bandwidth of the filter is non-standard of the LTE system. Quasi-bandwidth, the non-standard bandwidth of the LTE system is smaller than the standard bandwidth of the LTE system;
- the at least one processor is further configured to perform frequency conversion processing on the filter-filtered radio frequency signal to obtain an intermediate frequency signal, and move the center frequency of the intermediate frequency signal to the opposite direction of the preset direction to move the frequency The amount of change, the center frequency of the frequency-shifted intermediate frequency signal is the same as the center frequency of the radio frequency signal;
- the at least one processor is further configured to perform frequency conversion processing on the frequency-shifted intermediate frequency signal to obtain a baseband signal.
- the frequency change amount is a size of N resource blocks, and N is greater than 0.
- the frequency change amount is a size of N guard bands of a standard bandwidth of the LTE system, and N is greater than 0.
- the method further includes:
- a transmitter configured to send the non-standard bandwidth of the LTE system to the terminal, so that the terminal sends data to the base station according to a non-standard bandwidth of the LTE system.
- a third aspect of the present invention provides a downlink compression method for a non-standard bandwidth of an LTE system, including:
- the base station moves the center frequency of the baseband signal to a preset direction by a frequency change amount, where the frequency change amount is pre-configured;
- the base station filters the frequency-shifted baseband signal by using a filter to filter an edge signal of the frequency-shifted baseband signal on a side of the preset direction, where a center frequency of the filter is The center frequency of the baseband signal is the same, the bandwidth of the filter is a non-standard bandwidth of the Long Term Evolution (LTE) system, and the non-standard bandwidth of the LTE system is smaller than the standard bandwidth of the LTE system;
- LTE Long Term Evolution
- the base station performs frequency conversion processing on the filtered baseband signal to obtain an intermediate frequency signal, and moves the center frequency of the intermediate frequency signal to the opposite direction of the preset direction by the frequency variation, and the center of the frequency shifted intermediate frequency signal
- the frequency point is the same as the center frequency of the baseband signal
- the base station performs frequency conversion processing on the frequency-shifted intermediate frequency signal to obtain a radio frequency signal, and sends the radio frequency signal to the terminal, where the bandwidth of the radio frequency signal is a non-standard bandwidth of the LTE.
- the frequency change amount is a size of N resource blocks, and N is greater than 0.
- the frequency change amount is a size of N guard bands of a standard bandwidth of the LTE system, and N is greater than 0.
- the method further includes:
- the base station sends the non-standard bandwidth of the LTE system to the terminal, so that the terminal sends data to the base station according to the non-standard bandwidth of the LTE system.
- a fourth aspect of the present invention provides a non-standard bandwidth uplink compression method for an LTE system, including:
- the base station moves a frequency change point of the radio frequency signal to a preset direction by a frequency change amount, where the frequency change amount is pre-configured;
- the base station filters the frequency-shifted radio frequency signal by using a filter to filter an edge signal of the frequency-shifted radio frequency signal on a side of the preset direction, where a center frequency of the filter is The center frequency of the radio frequency signal is the same, the bandwidth of the filter is a non-standard bandwidth of the LTE system, and the non-standard bandwidth of the LTE system is smaller than the standard bandwidth of the LTE system;
- the base station performs frequency conversion processing on the filtered radio frequency signal to obtain an intermediate frequency signal, and moves the center frequency point of the intermediate frequency signal to the opposite direction of the preset direction by the frequency change amount, and the center of the frequency shifted intermediate frequency signal
- the frequency point is the same as the center frequency of the radio frequency signal
- the base station performs frequency conversion processing on the frequency-shifted intermediate frequency signal to obtain a baseband signal.
- the frequency change amount is a size of N resource blocks, and N is greater than 0.
- the frequency change amount is a size of N guard bands of a standard bandwidth of the LTE system, where N is greater than 0.
- the method further includes:
- the base station sends the non-standard bandwidth of the LTE system to the terminal, so that the terminal sends data to the base station according to the non-standard bandwidth of the LTE system.
- a fifth aspect of the present invention provides a communication system, including:
- a base station for performing the first to third aspects of the first aspect of the present invention, and the first aspect a method as claimed in any of the possible implementations;
- the terminal is configured to receive a radio frequency signal sent by the base station, where a bandwidth of the radio frequency signal is a non-standard bandwidth of the LTE.
- a sixth aspect of the present invention provides a communication system, including:
- a terminal configured to send, to the base station, a radio frequency signal, where the radio frequency signal is sent by the terminal to the base station according to a non-standard bandwidth of a long-term evolution LTE system;
- the base station is configured to perform the method according to any of the second aspect of the present invention and the first to third possible implementations of the second aspect.
- the base station filters the baseband signal by using a filter with a bandwidth of LTE non-standard bandwidth, and filters out signals other than the LTE non-standard bandwidth.
- the base station can transmit signals to the terminal using the non-standard bandwidth of the LTE that the operator can provide. For example, the operation can only provide 1-2M non-standard bandwidth of 3M LTE, while the standard bandwidth of LTE is 5M, then the filter needs to filter out the signals in the bandwidth of 0-1M and 4-5M, and the base station is at the end.
- the 3M LTE non-standard bandwidth is used for transmission, and the terminal uses 5M LTE standard bandwidth for reception when receiving, and the base station within 0-1M and 4-5M bandwidth has no signal.
- the base station also needs to send the non-standard bandwidth of the LTE system to the terminal, so that the terminal sends data to the base station according to the non-standard bandwidth of the LTE system.
- FIG. 2 is a flowchart of a method for downlink compression of a non-standard bandwidth of an LTE system according to Embodiment 1 of the present invention
- FIG. 3 is a schematic diagram of a comparison of a downlink compression process of a non-standard bandwidth of an LTE system according to an embodiment of the present invention
- FIG. 5 is a flowchart of a method for uplink compression of a non-standard bandwidth of an LTE system according to Embodiment 2 of the present invention
- FIG. 6 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
- FIG. 7 is a schematic structural diagram of a base station according to Embodiment 4 of the present invention.
- FIG. 8 is a schematic structural diagram of a communication system according to Embodiment 5 of the present invention.
- FIG. 2 is a flowchart of a non-standard bandwidth downlink compression method of an LTE system according to Embodiment 1 of the present invention. As shown in FIG. 2, the method in this embodiment may include the following steps:
- Step 101 The base station moves the center frequency of the baseband signal to a preset direction by a frequency change amount, where the frequency change amount is preset.
- the base station uses the non-standard bandwidth of the LTE system
- the terminal uses the standard bandwidth of the LTE system
- the non-standard bandwidth of the LTE system is smaller than the standard bandwidth of the LTE system.
- the base station moves the center frequency of the baseband signal to the preset direction by a frequency change amount, and the frequency change amount is preset, and the base station shifts the center frequency of the baseband signal to the preset direction.
- the amount is specifically as follows: the baseband uses the center frequency of the baseband signal plus the frequency variation to obtain the frequency-shifted baseband signal.
- FIG. 3 is a schematic diagram of a comparison of the downlink compression process of the non-standard bandwidth of the LTE system according to the prior art and the embodiment of the present invention.
- the left side of FIG. 3 is a non-standard bandwidth compression of the prior art LTE system.
- the process in the third embodiment of FIG. 3 is a non-standard bandwidth compression process of the LTE system of the embodiment.
- the base station first performs frequency conversion processing on the baseband signal to obtain an intermediate frequency signal, and then filters the intermediate frequency signal by using a filter.
- the spectrum of the leftmost and rightmost edges of the IF signal is filtered out symmetrically by the filter.
- the base station first point frequency shift of the center of the base band signal frequency, center is assumed that the baseband signal frequency to the left by the amount of frequency variation ⁇ f of F 1, the center of the base band signal of frequency F 1, the frequency shift of the present embodiment
- the center frequency of the baseband signal is shifted to the left, that is, the left side of the center frequency point is used as the preset direction.
- the right side of the center frequency point of the baseband signal can also be used as the preset direction.
- the center frequency of the baseband signal is shifted to the right by the amount of frequency change, and the preset direction and frequency variation of the movement of the center frequency point may be pre-configured by the base station or manually pre-configured.
- the amount of frequency change may be preset by the base station according to the standard bandwidth of the LTE system and the non-standard bandwidth that the operator can provide.
- the amount of frequency change is a size of N resource blocks (RBs), and N is greater than 0.
- the standard bandwidth of the LTE system is 5 M.
- the non-standard bandwidth of the LTE system that the operator can provide is 4.6 M.
- the value of N can be set to 0.5. If the non-standard bandwidth of the LTE system is 3.8, the value of N can be set. Is 1.
- the amount of frequency change may also be a size of N guard bands of a standard bandwidth of the LTE system, where N is greater than 0, and a guard band is disposed between the frequency point and the frequency point in the LTE system.
- Step 102 The base station filters the frequency-shifted baseband signal by using a filter, so as to filter out the signal of the frequency-shifted baseband signal at the edge of the preset direction side, where the center frequency of the filter and the center of the baseband signal are filtered.
- the frequency is the same, the bandwidth of the filter is the non-standard bandwidth of the LTE system, and the non-standard bandwidth of the LTE system is smaller than the standard bandwidth of the LTE system.
- the center frequency of the filter is the same as the center frequency of the baseband signal, and the base station first filters the baseband signal and then filters the signal, and only needs to filter the edge of the frequency-shifted baseband signal on one side of the preset direction.
- the signal of the frequency-shifted baseband signal on the opposite side of the preset direction is not filtered out.
- the black portion of the right end of the frequency-shifted baseband signal is the filtered edge signal, and the edge signal of the left side of the frequency-shifted baseband signal is intact and is not filtered out.
- the center frequency of the filtered baseband signal is the same as the center frequency of the frequency-shifted baseband signal. Therefore, the center frequency of the filtered baseband signal is also F 2 .
- Step 103 The base station performs frequency conversion processing on the filtered baseband signal to obtain an intermediate frequency signal, and shifts a center frequency of the intermediate frequency signal to a reverse direction of the preset direction, and a center frequency point and a baseband of the frequency shifted intermediate frequency signal.
- the center frequency of the signal is the same.
- the base station performs frequency conversion processing on the filtered baseband signal to obtain an intermediate frequency signal, and specifically, the intermediate frequency module in the base station performs frequency conversion processing on the filtered baseband signal, and the intermediate frequency frequency of the intermediate frequency signal is the same as the center frequency of the baseband signal after the frequency shifting. .
- the base station moves the center frequency of the intermediate frequency signal to the opposite direction of the preset direction to change the frequency of the center frequency of the intermediate frequency signal to the frequency of the baseband signal.
- the frequency is twice. Frequency shift to maintain the intermediate frequency letter
- the center frequency of the number is the same as the center frequency of the baseband signal.
- the edge signals on both sides of the intermediate frequency signal are symmetrically filtered. In this embodiment, only the edge signal on the side of the intermediate frequency signal and the edge signal on the other side of the intermediate frequency signal are filtered out. Not filtered out.
- the edge signals filtered by the two edges of the intermediate frequency signal are not integer multiples of RB, the entire RB where the filtered edge signal is located cannot be used.
- the IF signals are respectively flanked by When 0.5 RBs are filtered out, one RB on each side of the IF signal cannot be used, causing the radio resources of the two RBs to be wasted.
- the center frequency of the baseband signal is shifted to the right by 0.5 RB, so that the right edge of the intermediate frequency signal after the baseband signal is converted is filtered out by one RB, and the left edge of the intermediate frequency signal is not filtered.
- the method in this embodiment only needs to waste one RB. Compared with the prior art, the spectrum resource of one RB can be saved, and the utilization of spectrum resources is improved.
- the RB is not filtered on both sides of the IF signal, only the guard band of the spectrum is filtered out.
- the guard bands on both sides of the IF signal are filtered out, and after the guard band is filtered, the heterogeneous system is applied to the LTE system. Both sides of the IF signal will cause large interference.
- only one side of the guard band of the intermediate frequency signal is filtered, and the guard band on the other side of the intermediate frequency signal is completely retained, and the heterogeneous system generates a large interference to one side of the intermediate frequency signal of the LTE system.
- the interference on the other side is small. Therefore, the solution of this embodiment can also reduce the interference of the heterogeneous system on the LTE system compared to the prior art solution.
- FIG. 4 is a schematic diagram of a conventional networking. As shown in FIG. 4, the LTE system is sandwiched between the GSM system and the UMTS. The prior art solution is to use the leftmost RB and the rightmost RB of the LTE spectrum. Filtered out separately, the leftmost RB of the LTE spectrum is filtered out for use by the GSM system, but the GSM system has a large interference to the LTE system.
- the center frequency of the spectrum of the LTE system is shifted to the left by one RB, so that the RB of the left edge of the spectrum of the LTE system is completely reserved, and the RB of the left edge of the spectrum of the LTE system can be utilized by the LTE system, GSM.
- the spectrum of the system is located on the right side of the LTE system, the GSM system The spectrum is no longer adjacent to the spectrum of the LTE system, so the GSM system does not interfere with the LTE system.
- the center frequency of the spectrum of the LTE system is shifted to the left by one RB, so that there is one RB interval between the UMTS system and the LTE system, which increases the interference of the UMTS system to the LTE system, but the UMTS system
- the interference to the LTE system is less than the interference of the GSM system to the LTE system. Therefore, even if the spectrum resource utilization is the same, the solution of the embodiment can reduce the interference of the heterogeneous system to the LTE system compared with the prior art solution. .
- Step 104 The base station performs frequency conversion processing on the frequency-shifted intermediate frequency signal to obtain a radio frequency signal, and sends the radio frequency signal to the terminal, where the bandwidth of the radio frequency signal is a non-standard bandwidth of the LTE.
- the base station filters the baseband signal by using a filter whose bandwidth is LTE non-standard bandwidth, and filters out the signal other than the LTE non-standard bandwidth, and the base station can use the non-standard bandwidth of the LTE that the operator can provide to the terminal.
- Send a signal For example, the operation can only provide 1-2M non-standard bandwidth of 3M LTE, while the standard bandwidth of LTE is 5M, then the filter needs to filter out the signals in the bandwidth of 0-1M and 4-5M, and the base station is at the end.
- the 3M LTE non-standard bandwidth is used for transmission, and the terminal uses 5M LTE standard bandwidth for reception when receiving, and the base station within 0-1M and 4-5M bandwidth has no signal.
- the base station also needs to send the non-standard bandwidth of the LTE system to the terminal, so that the terminal sends data to the base station according to the non-standard bandwidth of the LTE system.
- the base station moves the frequency change of the baseband signal to the preset direction before filtering, and then filters the frequency-shifted baseband signal through the filter to filter the frequency-shifted baseband signal.
- the edge signal on the side of the preset direction the edge signal of the baseband signal is not filtered out on the opposite side of the preset direction.
- the bandwidth of the filter is the non-standard bandwidth of the LTE system, and the center frequency of the intermediate frequency signal is used in the intermediate frequency processing stage.
- the point moves the frequency change amount in the opposite direction to the preset direction to restore the center frequency point of the baseband signal.
- the frequency spectrum of one side of the data to be transmitted is filtered out by two frequency shifting, and the spectrum of the other side edge remains intact, which not only can utilize the spectrum, but also reduce the interference of the heterogeneous system to the LTE system. .
- FIG. 5 is a flowchart of the non-standard bandwidth uplink compression method of the LTE system according to the second embodiment of the present invention. As shown in FIG. 5, the method provided in this embodiment may include the following steps:
- Step 201 The base station receives a radio frequency signal sent by the terminal, where the radio frequency signal is a terminal according to LTE.
- the non-standard bandwidth of the system is sent to the base station.
- the base station since the base station uses the non-standard bandwidth of the LTE system, the base station sends the non-standard bandwidth of the LTE system to the terminal.
- the terminal When the terminal has uplink data transmission, since the base station cannot receive data other than the non-standard bandwidth of the LTE system, the terminal can only send data to the base station in the non-standard bandwidth of the LTE system when transmitting data.
- the standard bandwidth of the LTE system is 0-5M
- the non-standard bandwidth of the LTE system is 1-4M.
- the terminal transmits data only the 1-4M bandwidth can be used to send data to the base station, and the terminal is at 0-1M and 4-5M. The data is not transmitted on the bandwidth.
- the bandwidth of the terminal transmitting the RF signal is still not 5M.
- Step 202 The base station moves the center frequency point of the radio frequency signal to a preset direction to change the frequency change amount, where the frequency change amount is preset.
- the radio frequency signal received by the base station is the standard bandwidth of the LTE system, but the data of the terminal is only transmitted on the non-standard bandwidth of the LTE system, and the base station moves the center frequency of the radio frequency signal to the preset direction to change the frequency variation.
- the frequency change amount is a size of N resource blocks, or the frequency change amount is a size of N guard bands of a standard bandwidth of the LTE system, and N is greater than 0.
- Step 203 The base station filters the frequency-shifted radio frequency signal by using a filter to filter out the edge signal of the frequency-shifted radio frequency signal on a side of the preset direction, where the center frequency of the filter and the center frequency of the radio frequency signal The point is the same, the bandwidth of the filter is the non-standard bandwidth of the LTE system, and the non-standard bandwidth of the LTE system is smaller than the standard bandwidth of the LTE system.
- Step 204 The base station performs frequency conversion processing on the filtered radio frequency signal to obtain an intermediate frequency signal, and moves a center frequency point of the intermediate frequency signal to a frequency change direction in a direction opposite to the preset direction, and a center frequency point and a radio frequency signal of the frequency shifted intermediate frequency signal.
- the center frequency is the same.
- Step 205 The base station performs frequency conversion processing on the frequency-shifted intermediate frequency signal to obtain a baseband signal.
- FIG. 6 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
- the base station provided in this embodiment includes: at least one processor 11, a filter 12, and a transmitter 13, and only FIG. 6 shows only A processor 11.
- the at least one processor 11 is configured to move a center frequency point of the baseband signal to a preset direction by a frequency change amount, where the frequency change amount is pre-configured;
- a filter 12 configured to filter the frequency-shifted baseband signal to filter an edge signal of the frequency-shifted baseband signal on a side of the preset direction, where a center frequency of the filter The same as the center frequency of the baseband signal, the bandwidth of the filter is a non-standard bandwidth of the Long Term Evolution (LTE) system, and the non-standard bandwidth of the LTE system is smaller than the standard bandwidth of the LTE system;
- LTE Long Term Evolution
- the at least one processor 11 is further configured to perform frequency conversion processing on the baseband signal filtered by the filter 12 to obtain an intermediate frequency signal, and move a center frequency of the intermediate frequency signal to an opposite direction of the preset direction.
- the frequency change amount, the center frequency of the frequency-shifted intermediate frequency signal is the same as the center frequency of the baseband signal;
- the at least one processor 11 is further configured to perform frequency conversion processing on the frequency-shifted intermediate frequency signal to obtain a radio frequency signal;
- the transmitter 13 is configured to send the radio frequency signal to the terminal, where the bandwidth of the radio frequency signal is a non-standard bandwidth of the LTE.
- the base station includes only one processor 11, the frequency shift operation of the baseband signal, the operation of the baseband signal to the intermediate frequency signal, and the operation of the intermediate frequency signal to the radio frequency signal can be performed by the same processor 11.
- the base station includes a plurality of processors 11, the above operations may be performed by different processors 11, for example, a total of three processors 11 for performing a frequency shift operation of the baseband signal and a baseband signal to the intermediate frequency signal. Operation and operation of the intermediate frequency signal to change the RF signal.
- the frequency change amount is a size of N resource blocks, and N is greater than 0.
- the frequency change amount is a size of N guard bands of a standard bandwidth of the LTE system, where N is greater than 0.
- the transmitter 13 is further configured to: send the non-standard bandwidth of the LTE system to the terminal, so that the terminal sends data to the base station according to a non-standard bandwidth of the LTE system.
- the base station in this embodiment may be used to perform the method in the first embodiment.
- the specific implementation manners and technical effects are similar, and details are not described herein again.
- FIG. 7 is a schematic structural diagram of a base station according to Embodiment 4 of the present invention.
- the base station provided in this embodiment includes: a receiver 21, at least one processor 22, and a filter 23. Only FIG. 6 shows A processor 22.
- the receiver 21 is configured to receive a radio frequency signal sent by the terminal, where the radio frequency signal is sent by the terminal to the base station according to a non-standard bandwidth of the LTE system;
- At least one processor 22 configured to move a center frequency point of the radio frequency signal received by the receiver 21 to a preset direction by a frequency change amount, where the frequency change amount is pre-configured;
- a filter 23 configured to filter the frequency-shifted radio frequency signal to filter an edge signal of the frequency-shifted radio frequency signal on a side of the preset direction, where a center frequency of the filter is The center frequency of the radio frequency signal is the same, the bandwidth of the filter is a non-standard bandwidth of the LTE system, and the non-standard bandwidth of the LTE system is smaller than the standard bandwidth of the LTE system;
- the at least one processor 22 is further configured to perform frequency conversion processing on the RF signal filtered by the filter 23 to obtain an intermediate frequency signal, and move a center frequency of the intermediate frequency signal to an opposite direction of the preset direction.
- the frequency change amount, the center frequency of the frequency-shifted intermediate frequency signal is the same as the center frequency of the radio frequency signal;
- the at least one processor 22 is further configured to perform frequency conversion processing on the frequency-shifted intermediate frequency signal to obtain a baseband signal.
- the frequency shift operation of the radio frequency signal, the operation of the radio frequency signal to the intermediate frequency signal, and the operation of the intermediate frequency signal to the baseband signal can be performed by the same processor 11.
- the base station includes multiple processors 22, the foregoing operations may be performed by different processors 22, for example, a total of three processors 22 for performing frequency shift operations of radio frequency signals and frequency signals of intermediate frequency signals. Operation and operation of the intermediate frequency signal to the baseband signal.
- the frequency change amount is a size of N resource blocks, and N is greater than 0.
- the frequency change amount is a size of N guard bands of a standard bandwidth of the LTE system, where N is greater than 0.
- the base station further includes: a transmitter 24, configured to send the non-standard bandwidth of the LTE system to the terminal, so that the terminal sends data to the base station according to a non-standard bandwidth of the LTE system.
- the base station in this embodiment may be used to perform the method in the second embodiment.
- the specific implementation manner and the technical effects are similar, and details are not described herein again.
- FIG. 8 is a schematic structural diagram of a communication system according to Embodiment 5 of the present invention.
- the communication system provided in this embodiment includes: a base station 31 and a terminal 32.
- the base station 31 is configured to perform the method according to the first embodiment
- the terminal 32 is configured to receive the radio frequency signal sent by the base station 31, where the bandwidth of the radio frequency signal is a non-standard bandwidth of the LTE, and the specific implementation manner of this embodiment may be Reference The description of the first example will not be repeated here.
- the sixth embodiment of the present invention provides a communication system.
- the structure of the communication system provided in this embodiment is as shown in FIG. 8.
- the terminal 32 is configured to send a radio frequency signal to the base station, where the radio frequency signal is
- the terminal 32 is sent to the base station 31 according to the non-standard bandwidth of the LTE system.
- the base station 31 is used to perform the method of the second embodiment.
- the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
- the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Computer Security & Cryptography (AREA)
Abstract
本发明实施例提供一种LTE系统的非标准带宽的下行、上行压缩方法和装置,基站通过使用带宽为LTE非标准带宽的滤波器对基带信号进行滤波,将LTE非标准带宽之外的信号滤除,基站可以使用运营商能够提供的LTE的非标准带宽向终端发送信号。例如,运营上只能提供1-4M大小为3M的LTE的非标准带宽,而LTE的标准带宽为5M,那么滤波器需要滤除0-1M和4-5M的带宽内的信号,基站在最后发送时使用3M的LTE的非标准带宽,而终端在接收时使用5M的LTE标准带宽进行接收,在0-1M和4-5M的带宽内的基站没有信号。基站还需要将LTE系统的非标准带宽发送给终端,以使终端根据LTE系统的非标准带宽向基站发送数据。
Description
本发明实施例涉及通信技术,尤其涉及一种长期演进(Long Term Evolution,简称LTE)系统的非标准带宽的下行、上行压缩方法和装置。
Refarming是指对频谱资源进行重新规划,通常指低制式系统让出一段频谱给高制式系统使用,例如:GL Refarming就是指全球移动通信系统(Global System for Mobile,简称GSM)系统让出一段频谱给LTE系统使用,以850M/900M频谱为例,850M/900M原本是供GSM系统使用的,为了提高LTE系统的深层覆盖,运营商从GSM系统的频谱上让出部分频谱给LTE系统使用。由于现有的频谱资源有限,运营商无法给LTE系统提供标准带宽,例如,LTE系统采用标准5M带宽,但运营商只能提供4.4M或4.6M的非标准带宽,LTE系统的标准带宽为1.4、3、5、10、15或20M。
为了使得运营商提供的非标准带宽也能在LTE系统中使用,现有技术中通过压缩频谱的过渡带或者资源块(resource block,简称RB)实现。以4.6M非标准带宽为例,现有技术的方案是使用4.6M对称滤波器对5M带宽进行滤波,如图1所示,图1为现有技术的频谱压缩方案,通过使用4.6M对称滤波器对信号进行对称滤波,频谱两端各有一个RB被滤掉(图1中黑色表示被滤掉的RB)。通过滤波器,滤波器带宽外的频率的信号被滤除掉,基站实际上发送的信号的带宽为4.6M。
现有技术的方案中,通过对称滤波在频谱两端各滤掉了半个RB,导致这两个RB均不能使用,因此,现有的技术方案会造成频谱资源的浪费。
发明内容
本发明实施例提供一种LTE系统的非标准带宽的下行、上行压缩方法和装置,能够提高频谱资源的利用率。
本发明第一方面提供一种基站,包括:
至少一个处理器,用于将基带信号的中心频点向预设方向移动频率变化量,所述频率变化量是预先配置的;
滤波器,用于对移频后的基带信号进行滤波,以滤除所述移频后的基带信号在所述预设方向一侧的边缘信号,其中,所述滤波器的中心频点与所述基带信号的中心频点相同,所述滤波器的带宽为长期演进LTE系统的非标准带宽,所述LTE系统的非标准带宽小于所述LTE系统的标准带宽;
所述至少一个处理器,还用于对所述滤波器滤波后的基带信号进行变频处理得到中频信号,并将所述中频信号的中心频点向所述预设方向的相反方向移动所述频率变化量,移频后的中频信号的中心频点与所述基带信号的中心频点相同;
所述至少一个处理器,还用于对所述移频后的中频信号进行变频处理得到射频信号;
发射器,用于将所述射频信号发送给终端,所述射频信号的带宽为所述LTE的非标准带宽。
结合第一方面,在第一方面第一种可能的实现方式中,所述频率变化量为N个资源块的大小,N大于0。
结合第一方面,在第一方面第二种可能的实现方式中,所述频率变化量为所述LTE系统的标准带宽的N个保护带的大小,N大于0。
结合第一方面、以及第一方面的第一种至第二种可能的实现方式中的任一种,在第一方面第三种可能的实现方式中,所述发射器还用于:
将所述LTE系统的非标准带宽发送给所述终端,以使所述终端根据所述LTE系统的非标准带宽向所述基站发送数据。
本发明第二方面提供一种基站,包括:
接收器,用于接收终端发送的射频信号,所述射频信号是所述终端根据长期演进LTE系统的非标准带宽向所述基站发送的;
至少一个处理器,用于将所述接收器接收到的所述射频信号的中心频点向预设方向移动频率变化量,所述频率变化量是预先配置的;
滤波器,用于对移频后的射频信号进行滤波,以滤除所述移频后的射频信号在所述预设方向一侧的边缘信号,其中,所述滤波器的中心频点与所述射频信号的中心频点相同,所述滤波器的带宽为所述LTE系统的非标
准带宽,所述LTE系统的非标准带宽小于LTE系统的标准带宽;
所述至少一个处理器,还用于对所述滤波器滤波后的射频信号进行变频处理得到中频信号,并将所述中频信号的中心频点向所述预设方向的相反方向移动所述频率变化量,移频后的中频信号的中心频点与所述射频信号的中心频点相同;
所述至少一个处理器,还用于对所述移频后的中频信号进行变频处理得到基带信号。
结合第二方面,在第二方面的第一种可能的实现方式中,所述频率变化量为N个资源块的大小,N大于0。
结合第二方面,在第二方面的第二种可能的实现方式中,所述频率变化量为所述LTE系统的标准带宽的N个保护带的大小,N大于0。
结合第二方面、以及第二方面的第一种至第二种可能的实现方式中的任一一种,在第二方面的第三种可能的实现方式中,还包括:
发射器,用于将所述LTE系统的非标准带宽发送给所述终端,以使所述终端根据所述LTE系统的非标准带宽向所述基站发送数据。
本发明第三方面提供一种LTE系统的非标准带宽的下行压缩方法,包括:
基站将基带信号的中心频点向预设方向移动频率变化量,所述频率变化量是预先配置的;
所述基站通过滤波器对移频后的基带信号进行滤波,以滤除所述移频后的基带信号在所述预设方向一侧的边缘信号,其中,所述滤波器的中心频点与所述基带信号的中心频点相同,所述滤波器的带宽为长期演进LTE系统的非标准带宽,所述LTE系统的非标准带宽小于所述LTE系统的标准带宽;
所述基站对滤波后的基带信号进行变频处理得到中频信号,并将所述中频信号的中心频点向所述预设方向的相反方向移动所述频率变化量,移频后的中频信号的中心频点与所述基带信号的中心频点相同;
所述基站对所述移频后的中频信号进行变频处理得到射频信号,将所述射频信号发送给终端,所述射频信号的带宽为所述LTE的非标准带宽。
结合第三方面,在第三方面第一种可能的实现方式中,所述频率变化量为N个资源块的大小,N大于0。
结合第三方面,在第三方面第二种可能的实现方式中,所述频率变化量为所述LTE系统的标准带宽的N个保护带的大小,N大于0。
结合第三方面、以及第三方面第一种至第二种可能的实现方式中的任一一种,在第三方面第二种可能的实现方式中,所述方法还包括:
所述基站将所述LTE系统的非标准带宽发送给所述终端,以使所述终端根据所述LTE系统的非标准带宽向所述基站发送数据。
本发明第四方面提供一种LTE系统的非标准带宽的上行压缩方法,包括:
基站接收终端发送的射频信号,所述射频信号是所述终端根据LTE系统的非标准带宽向所述基站发送的;
所述基站将所述射频信号的中心频点向预设方向移动频率变化量,所述频率变化量是预先配置的;
所述基站通过滤波器对移频后的射频信号进行滤波,以滤除所述移频后的射频信号在所述预设方向一侧的边缘信号,其中,所述滤波器的中心频点与所述射频信号的中心频点相同,所述滤波器的带宽为所述LTE系统的非标准带宽,所述LTE系统的非标准带宽小于LTE系统的标准带宽;
所述基站对滤波后的射频信号进行变频处理得到中频信号,并将所述中频信号的中心频点向所述预设方向的相反方向移动所述频率变化量,移频后的中频信号的中心频点与所述射频信号的中心频点相同;
所述基站对所述移频后的中频信号进行变频处理得到基带信号。
结合第四方面,在第四方面第一种可能的实现方式中,所述频率变化量为N个资源块的大小,N大于0。
结合第四方面,在第四方面第二种可能的实现方式中,所述频率变化量为所述LTE系统的标准带宽的N个保护带的大小,N大于0。
结合第四方面、以及第四方面第一种至第二种可能的实现方式中的任一一种,在第四方面第三种可能的实现方式中,所述方法还包括:
所述基站将所述LTE系统的非标准带宽发送给所述终端,以使所述终端根据所述LTE系统的非标准带宽向所述基站发送数据。
本发明第五方面提供一种通信系统,包括:
基站,用于执行如本发明第一方面、以及第一方面的第一种至第三种
可能的实现方式中的任一所述的方法;
终端,用于接收所述基站发送的射频信号,所述射频信号的带宽为所述LTE的非标准带宽。
本发明第六方面提供一种通信系统,包括:
终端,用于向基站发送射频信号,所述射频信号是所述终端根据长期演进LTE系统的非标准带宽向所述基站发送的;
所述基站,用于执行如本发明第二方面、以及第二方面的第一种至第三种可能的实现方式中的任一所述的方法。
本发明实施例提供的LTE系统的非标准带宽的下行、上行压缩方法和装置,基站通过使用带宽为LTE非标准带宽的滤波器对基带信号进行滤波,将LTE非标准带宽之外的信号滤除,基站可以使用运营商能够提供的LTE的非标准带宽向终端发送信号。例如,运营上只能提供1-4M大小为3M的LTE的非标准带宽,而LTE的标准带宽为5M,那么滤波器需要滤除0-1M和4-5M的带宽内的信号,基站在最后发送时使用3M的LTE的非标准带宽,而终端在接收时使用5M的LTE标准带宽进行接收,在0-1M和4-5M的带宽内的基站没有信号。基站还需要将LTE系统的非标准带宽发送给终端,以使终端根据LTE系统的非标准带宽向基站发送数据。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术的频谱压缩方案;
图2为本发明实施例一提供的LTE系统的非标准带宽的下行压缩方法的流程图;
图3为现有技术和本发明实施例提供的LTE系统的非标准带宽的下行压缩过程比较示意图;
图4为现有的一种组网的示意图;
图5为本发明实施例二提供的LTE系统的非标准带宽的上行压缩方法的流程图;
图6为本发明实施例三提供的基站的结构示意图;
图7为本发明实施例四提供的基站的结构示意图;
图8为本发明实施例五提供的通信系统的结构示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2为本发明实施例一提供的LTE系统的非标准带宽的下行压缩方法的流程图,如图2所示,本实施例的方法可以包括以下步骤:
步骤101、基站将基带信号的中心频点向预设方向移动频率变化量,该频率变化量是预先设置的。
本实施例中,基站使用的是LTE系统的非标准带宽,而终端使用的是LTE系统的标准带宽,LTE系统的非标准带宽小于LTE系统的标准带宽。当基站有数据向终端发送时,基站将基带信号的中心频点向预设方向移动频率变化量,该频率变化量是预先设置的,基站将基带信号的中心频点向预设方向移动频率变化量具体为:基站用基带信号的中心频点加上该频率变化量得到移频后的基带信号。
图3为现有技术和本发明实施例提供的LTE系统的非标准带宽的下行压缩过程比较示意图,如图3所示,图3中左侧为现有技术的LTE系统的非标准带宽的压缩过程,图3中右侧为本实施例的LTE系统的非标准带宽的压缩过程,现有技术中,基站先对基带信号进行变频处理得到中频信号,然后,使用滤波器对中频信号进行滤波,通过滤波器对称的滤除了中频信号最左侧和最右侧边缘的频谱。本实施例中,基站先对基带信号的中心频点进行移频,假设基带信号的中心频点为F1,将基带信号的中心频点F1的向左移频率变化量Δf,移频后的基带信号的中心频点F2=F1+Δf。图3所示例子中将基带信号
的中心频点向左移动了,即将中心频点的左侧作为预设方向,当然,也可以把基带信号的中心频点的右侧作为预设方向,将基带信号的中心频点向右移动频率变化量,中心频点的移动的预设方向和频率变化量可以是基站预先配置的,或者,人工预先配置的。
本实施例中,频率变化量可以由基站根据LTE系统的标准带宽和运营商能够提供的非标准带宽预先设置好。可选地,频率变化量为N个资源块(resource block,简称RB)的大小,N大于0。例如,LTE系统的标准带宽为5M,运营商能够提供的LTE系统的非标准带宽为4.6M,可以设置N的取值为0.5,若LTE系统的非标准带宽为3.8,可以设置N的取值为1。可选地,频率变化量还可以为LTE系统的标准带宽的N个保护带的大小,N大于0,在LTE系统中频点和频点之间设置有保护带。
步骤102、基站通过滤波器对移频后的基带信号进行滤波,以滤除移频后的基带信号在预设方向一侧的边缘的信号,其中,滤波器的中心频点与基带信号的中心频点相同,滤波器的带宽为LTE系统的非标准带宽,该LTE系统的非标准带宽小于LTE系统的标准带宽。
本实施例中,滤波器的中心频点与基带信号的中心频点相同,基站通过对基带信号先移频后再滤波,只需要滤除移频后的基带信号在预设方向一侧的边缘信号,移频后的基带信号在预设方向的相反一侧的边缘信号没有被滤除。如图3所示,移频后的基带信号的右端的黑色部分为被滤除掉的边缘信号,移频后的基带信号的左侧的边缘信号是完整的,没有被滤除。滤波后的基带信号的中心频点与移频后的基带信号的中心频点相同,因此,滤波后的基带信号的中心频点也为F2。
步骤103、基站对滤波后的基带信号进行变频处理得到中频信号,并将中频信号的中心频点向预设方向的相反反向移动频率变化量,移频后的中频信号的中心频点与基带信号的中心频点相同。
基站对滤波后的基带信号进行变频处理得到中频信号,具体可以由基站中的中频模块对滤波后的基带信号进行变频处理,中频信号的中频频点与移频后的基带信号的中心频点相同。基站在得到中频信号之后,将中频信号的中心频点向预设方向的相反方向移动频率变化量,以将中频信号的中心频点还原为基带信号的频点,本实施例中,通过两次移频保持中频信
号中心频点与基带信号的中心频点相同。
如图3所示,基站将中频信号的中心频点向左移动频率变化量Δf,移频后的中频信号的中心频点为F3=F2-Δf=F1+Δf-Δf=F1,与基带信号的中心频点F1相同。通过图3可知,现有技术中,中频信号两侧的边缘信号都被对称的滤除了,而本实施例中,只滤除了中频信号一侧的边缘信号,中频信号的另一侧的边缘信号没有被滤除。现有技术的方案中,若中频信号的两侧边缘被滤除掉的边缘信号不为RB的整数倍,滤除掉的边缘信号所在的整个RB都不能使用,例如,中频信号两侧各被滤除了0.5个RB,那么中频信号两侧各有1个RB不能使用,造成两个RB的无线资源被浪费掉。而本实施例的方案中,通过将基带信号的中心频点向右频移0.5个RB,使得基带信号变频后的中频信号右侧边缘被滤除1个RB,中频信号左侧边缘没有被滤除,那么本实施例的方法只需要浪费1个RB,相比于现有技术,可以节省1个RB的频谱资源,提高了频谱资源的利用率。
若中频信号的两侧没有滤除RB,只是滤除了频谱的保护带,现有技术的方案中,中频信号两侧的保护带都被滤除,保护带滤除之后,异制式系统对LTE系统的中频信号两侧均会产生较大的干扰。而本实施例的方案,中频信号的保护带只有一侧被滤除,中频信号另一侧的保护带被完整保留,异制式系统对LTE系统的中频信号的一侧产生较大的干扰,对另一侧干扰较小,因此,相比于现有技术的方案,本实施例的方案还可以降低异制式系统对LTE系统的干扰。
以下将以GUL组网进行说明,根据分析,GSM功率谱密度较LTE强14dBm,不管是上行还是下行对LTE的干扰都是非常强的。利用本实施例的方法在某些组网中可以有效降低异制式系统对LTE系统的干扰。图4为现有的一种组网的示意图,如图4所示,LTE系统夹在GSM系统和UMTS之间,现有技术方案是将LTE频谱的最左侧的RB和最右侧的RB分别滤除掉,LTE频谱最左侧的RB滤除之后供GSM系统使用,但是GSM系统对LTE系统干扰较大。
本实施例中,将LTE系统的频谱的中心频点向左移动一个RB,使得LTE系统的频谱左侧边缘的RB被完整保留,LTE系统的频谱左侧边缘的RB可以被LTE系统利用,GSM系统的频谱都位于LTE系统的右侧,GSM系统的
频谱与LTE系统的频谱不再相邻,因此,GSM系统对LTE系统不会产生干扰。该组网方式中,将LTE系统的频谱的中心频点向左移动一个RB,使得UMTS系统和LTE系统之间少了一个RB的间隔,会增大UMTS系统对LTE系统的干扰,但是UMTS系统对LTE系统的干扰小于GSM系统对LTE系统的干扰,因此,即使频谱资源利用率相同的情况下,本实施例的方案相比与现有技术的方案也能够降低异制式系统对LTE系统的干扰。
步骤104、基站对移频后的中频信号进行变频处理得到射频信号,将射频信号发送给终端,射频信号的带宽为LTE的非标准带宽。
本实施例中,基站通过使用带宽为LTE非标准带宽的滤波器对基带信号进行滤波,将LTE非标准带宽之外的信号滤除,基站可以使用运营商能够提供的LTE的非标准带宽向终端发送信号。例如,运营上只能提供1-4M大小为3M的LTE的非标准带宽,而LTE的标准带宽为5M,那么滤波器需要滤除0-1M和4-5M的带宽内的信号,基站在最后发送时使用3M的LTE的非标准带宽,而终端在接收时使用5M的LTE标准带宽进行接收,在0-1M和4-5M的带宽内的基站没有信号。基站还需要将LTE系统的非标准带宽发送给终端,以使终端根据LTE系统的非标准带宽向基站发送数据。
本实施例中,基站在滤波之前通过将基带信号的中心频点向预设方向移动频率变化量,然后再通过滤波器对移频后的基带信号进行滤波,以滤除移频后的基带信号在预设方向一侧的边缘信号,基带信号在预设方向相反一侧边缘信号不会被滤除,滤波器的带宽为LTE系统的非标准带宽,并在中频处理阶段将中频信号的中心频点向预设方向的相反方向移动频率变化量,以恢复基带信号的中心频点。本实施例中,通过两次移频使得待发送数据一侧边缘的频谱被滤除,另一侧边缘的频谱保持完整,不仅可以频谱的利用率,还可以降低异制式系统对LTE系统的干扰。
实施例一从下行数据发送的角度进行说明,本发明实施例二将从上行数据接收角度进行说明,图5为本发明实施例二提供的LTE系统的非标准带宽的上行压缩方法的流程图,如图5所示,本实施例提供的方法可以包括以下步骤:
步骤201、基站接收终端发送的射频信号,该射频信号是终端根据LTE
系统的非标准带宽向基站发送的。
本实施例中,由于基站使用的是LTE系统的非标准带宽,因此,基站会将LTE系统的非标准带宽发送给终端。当终端有上行数据发送时,由于基站不能接收LTE系统的非标准带宽之外的数据,因此,终端在发送数据时只能在LTE系统的非标准带宽向基站发送数据。例如,LTE系统的标准带宽为0-5M,LTE系统的非标准带宽为1-4M,那么,终端发送数据时只能使用1-4M带宽向基站发送数据,终端在0-1M和4-5M带宽上不发送数据,对于终端来说,终端发送射频信号的带宽仍未5M。
步骤202、基站将射频信号的中心频点向预设方向移动频率变化量,该频率变化量是预先设置的。
基站收到的射频信号为LTE系统的标准带宽,但是终端的数据只在LTE系统的非标准带宽上发送,基站将射频信号的中心频点向预设方向移动频率变化量。可选地,频率变化量为N个资源块的大小,或者,频率变化量为所述LTE系统的标准带宽的N个保护带的大小,N大于0。
步骤203、基站通过滤波器对移频后的射频信号进行滤波,以滤除移频后的射频信号在预设方向一侧的边缘信号,其中,滤波器的中心频点与射频信号的中心频点相同,滤波器的带宽为LTE系统的非标准带宽,LTE系统的非标准带宽小于LTE系统的标准带宽。
步骤204、基站对滤波后的射频信号进行变频处理得到中频信号,并将中频信号的中心频点向预设方向的相反方向移动频率变化量,移频后的中频信号的中心频点与射频信号的中心频点相同。
步骤205、基站对移频后的中频信号进行变频处理得到基带信号。
需说明的是,本发明实施例的方法可以应用在任何频段。
图6为本发明实施例三提供的基站的结构示意图,如图6所示,本实施例提供的基站包括:至少一个处理器11、滤波器12和发射器13,图6中只示出了一个处理器11。
其中,至少一个处理器11,用于将基带信号的中心频点向预设方向移动频率变化量,所述频率变化量是预先配置的;
滤波器12,用于对移频后的基带信号进行滤波,以滤除所述移频后的基带信号在所述预设方向一侧的边缘信号,其中,所述滤波器的中心频点
与所述基带信号的中心频点相同,所述滤波器的带宽为长期演进LTE系统的非标准带宽,所述LTE系统的非标准带宽小于所述LTE系统的标准带宽;
所述至少一个处理器11,还用于对所述滤波器12滤波后的基带信号进行变频处理得到中频信号,并将所述中频信号的中心频点向所述预设方向的相反方向移动所述频率变化量,移频后的中频信号的中心频点与所述基带信号的中心频点相同;
所述至少一个处理器11,还用于对所述移频后的中频信号进行变频处理得到射频信号;
发射器13,用于将所述射频信号发送给终端,所述射频信号的带宽为所述LTE的非标准带宽。
需要说明的时,当基站只包括一个处理器11时,可以由同一个处理器11执行基带信号的移频操作、基带信号变中频信号的操作以及中频信号变射频信号的操作。当基站包括多个处理器11时,可以分别由不同的处理器11执行上述的操作,例如,共包括三个处理器11,分别用于执行基带信号的移频操作、基带信号变中频信号的操作以及中频信号变射频信号的操作。
可选的,所述频率变化量为N个资源块的大小,N大于0。
可选的,所述频率变化量为所述LTE系统的标准带宽的N个保护带的大小,N大于0。
可选的,所述发射器13还用于:将所述LTE系统的非标准带宽发送给所述终端,以使所述终端根据所述LTE系统的非标准带宽向所述基站发送数据。
本实施例的基站,可用于执行实施例一的方法,具体实现方式和技术效果类似,这里不再赘述。
图7为本发明实施例四提供的基站的结构示意图,如图7所示,本实施例提供的基站包括:接收器21、至少一个处理器22和滤波器23,图6中只示出了一个处理器22。
其中,接收器21,用于接收终端发送的射频信号,所述射频信号是所述终端根据LTE系统的非标准带宽向所述基站发送的;
至少一个处理器22,用于将所述接收器21接收到的所述射频信号的中心频点向预设方向移动频率变化量,所述频率变化量是预先配置的;
滤波器23,用于对移频后的射频信号进行滤波,以滤除所述移频后的射频信号在所述预设方向一侧的边缘信号,其中,所述滤波器的中心频点与所述射频信号的中心频点相同,所述滤波器的带宽为所述LTE系统的非标准带宽,所述LTE系统的非标准带宽小于LTE系统的标准带宽;
所述至少一个处理器22,还用于对所述滤波器23滤波后的射频信号进行变频处理得到中频信号,并将所述中频信号的中心频点向所述预设方向的相反方向移动所述频率变化量,移频后的中频信号的中心频点与所述射频信号的中心频点相同;
所述至少一个处理器22,还用于对所述移频后的中频信号进行变频处理得到基带信号。
需要说明的时,当基站只包括一个处理器22时,可以由同一个处理器11执行射频信号的移频操作、射频信号变中频信号的操作以及中频信号变基带信号的操作。当基站包括多个处理器22时,可以分别由不同的处理器22执行上述的操作,例如,共包括三个处理器22,分别用于执行射频信号的移频操作、射频信号变中频信号的操作以及中频信号变基带信号的操作。
可选的,所述频率变化量为N个资源块的大小,N大于0。
可选的,所述频率变化量为所述LTE系统的标准带宽的N个保护带的大小,N大于0。
进一步,所述基站还包括:发射器24,用于将所述LTE系统的非标准带宽发送给所述终端,以使所述终端根据所述LTE系统的非标准带宽向所述基站发送数据。
本实施例的基站,可用于执行实施例二的方法,具体实现方式和技术效果类似,这里不再赘述。
图8为本发明实施例五提供的通信系统的结构示意图,如图8所示,本实施例提供的通信系统包括:基站31和终端32。基站31用于执行实施例一所述的方法,终端32用于接收所述基站31发送的射频信号,所述射频信号的带宽为所述LTE的非标准带宽,本实施例的具体实现方式可参照实
施例一的描述,这里不再赘述。
本发明实施例六提供一种通信系统,本实施例提供的通信系统的结构示意图可参照图8所示,本实施例中,终端32,用于向基站发送射频信号,所述射频信号是所述终端32根据LTE系统的非标准带宽向所述基站31发送的;所述基站31用于执行实施例二的方法,本实施例的具体实现方式可参照实施例二的描述,这里不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (16)
- 一种基站,其特征在于,包括:至少一个处理器,用于将基带信号的中心频点向预设方向移动频率变化量,所述频率变化量是预先配置的;滤波器,用于对移频后的基带信号进行滤波,以滤除所述移频后的基带信号在所述预设方向一侧的边缘信号,其中,所述滤波器的中心频点与所述基带信号的中心频点相同,所述滤波器的带宽为长期演进LTE系统的非标准带宽,所述LTE系统的非标准带宽小于所述LTE系统的标准带宽;所述至少一个处理器,还用于对所述滤波器滤波后的基带信号进行变频处理得到中频信号,并将所述中频信号的中心频点向所述预设方向的相反方向移动所述频率变化量,移频后的中频信号的中心频点与所述基带信号的中心频点相同;所述至少一个处理器,还用于对所述移频后的中频信号进行变频处理得到射频信号;发射器,用于将所述射频信号发送给终端,所述射频信号的带宽为所述LTE的非标准带宽。
- 根据权利要求1所述的基站,其特征在于,所述频率变化量为N个资源块的大小,N大于0。
- 根据权利要求1所述的基站,其特征在于,所述频率变化量为所述LTE系统的标准带宽的N个保护带的大小,N大于0。
- 根据权利要求1-3中任一项所述的基站,其特征在于,所述发射器还用于:将所述LTE系统的非标准带宽发送给所述终端,以使所述终端根据所述LTE系统的非标准带宽向所述基站发送数据。
- 一种基站,其特征在于,包括:接收器,用于接收终端发送的射频信号,所述射频信号是所述终端根据长期演进LTE系统的非标准带宽向所述基站发送的;至少一个处理器,用于将所述接收器接收到的所述射频信号的中心频点向预设方向移动频率变化量,所述频率变化量是预先配置的;滤波器,用于对移频后的射频信号进行滤波,以滤除所述移频后的射 频信号在所述预设方向一侧的边缘信号,其中,所述滤波器的中心频点与所述射频信号的中心频点相同,所述滤波器的带宽为所述LTE系统的非标准带宽,所述LTE系统的非标准带宽小于LTE系统的标准带宽;所述至少一个处理器,还用于对所述滤波器滤波后的射频信号进行变频处理得到中频信号,并将所述中频信号的中心频点向所述预设方向的相反方向移动所述频率变化量,移频后的中频信号的中心频点与所述射频信号的中心频点相同;所述至少一个处理器,还用于对所述移频后的中频信号进行变频处理得到基带信号。
- 根据权利要求5所述的基站,其特征在于,所述频率变化量为N个资源块的大小,N大于0。
- 根据权利要求5所述的基站,其特征在于,所述频率变化量为所述LTE系统的标准带宽的N个保护带的大小,N大于0。
- 根据权利要求5-7中任一项所述的基站,其特征在于,还包括:发射器,用于将所述LTE系统的非标准带宽发送给所述终端,以使所述终端根据所述LTE系统的非标准带宽向所述基站发送数据。
- 一种LTE系统的非标准带宽的下行压缩方法,其特征在于,包括:基站将基带信号的中心频点向预设方向移动频率变化量,所述频率变化量是预先配置的;所述基站通过滤波器对移频后的基带信号进行滤波,以滤除所述移频后的基带信号在所述预设方向一侧的边缘信号,其中,所述滤波器的中心频点与所述基带信号的中心频点相同,所述滤波器的带宽为长期演进LTE系统的非标准带宽,所述LTE系统的非标准带宽小于所述LTE系统的标准带宽;所述基站对滤波后的基带信号进行变频处理得到中频信号,并将所述中频信号的中心频点向所述预设方向的相反方向移动所述频率变化量,移频后的中频信号的中心频点与所述基带信号的中心频点相同;所述基站对所述移频后的中频信号进行变频处理得到射频信号,将所述射频信号发送给终端,所述射频信号的带宽为所述LTE的非标准带宽。
- 根据权利要求8所述的方法,其特征在于,所述频率变化量为N 个资源块的大小,N大于0。
- 根据权利要求8所述的方法,其特征在于,所述频率变化量为所述LTE系统的标准带宽的N个保护带的大小,N大于0。
- 根据权利要求8-11中任一项所述的方法,其特征在于,所述方法还包括:所述基站将所述LTE系统的非标准带宽发送给所述终端,以使所述终端根据所述LTE系统的非标准带宽向所述基站发送数据。
- 一种LTE系统的非标准带宽的上行压缩方法,其特征在于,包括:基站接收终端发送的射频信号,所述射频信号是所述终端根据长期演进LTE系统的非标准带宽向所述基站发送的;所述基站将所述射频信号的中心频点向预设方向移动频率变化量,所述频率变化量是预先配置的;所述基站通过滤波器对移频后的射频信号进行滤波,以滤除所述移频后的射频信号在所述预设方向一侧的边缘信号,其中,所述滤波器的中心频点与所述射频信号的中心频点相同,所述滤波器的带宽为所述LTE系统的非标准带宽,所述LTE系统的非标准带宽小于LTE系统的标准带宽;所述基站对滤波后的射频信号进行变频处理得到中频信号,并将所述中频信号的中心频点向所述预设方向的相反方向移动所述频率变化量,移频后的中频信号的中心频点与所述射频信号的中心频点相同;所述基站对所述移频后的中频信号进行变频处理得到基带信号。
- 根据权利要求13所述的方法,其特征在于,所述频率变化量为N个资源块的大小,N大于0。
- 根据权利要求13所述的方法,其特征在于,所述频率变化量为所述LTE系统的标准带宽的N个保护带的大小,N大于0。
- 根据权利要求13-15中任一项所述的方法,其特征在于,所述方法还包括:所述基站将所述LTE系统的非标准带宽发送给所述终端,以使所述终端根据所述LTE系统的非标准带宽向所述基站发送数据。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/079045 WO2016183720A1 (zh) | 2015-05-15 | 2015-05-15 | Lte系统的非标准带宽的下行、上行压缩方法和装置 |
CN201580001005.9A CN106416341B (zh) | 2015-05-15 | 2015-05-15 | Lte系统的非标准带宽的下行、上行压缩方法和装置 |
EP15892101.5A EP3288303A4 (en) | 2015-05-15 | 2015-05-15 | Downlink and uplink compression method and device using non-standard bandwidth of lte system |
US15/812,984 US10440608B2 (en) | 2015-05-15 | 2017-11-14 | Method and apparatus for downlink and uplink compression of nonstandard bandwidth of LTE system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/079045 WO2016183720A1 (zh) | 2015-05-15 | 2015-05-15 | Lte系统的非标准带宽的下行、上行压缩方法和装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/812,984 Continuation US10440608B2 (en) | 2015-05-15 | 2017-11-14 | Method and apparatus for downlink and uplink compression of nonstandard bandwidth of LTE system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016183720A1 true WO2016183720A1 (zh) | 2016-11-24 |
Family
ID=57319130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/079045 WO2016183720A1 (zh) | 2015-05-15 | 2015-05-15 | Lte系统的非标准带宽的下行、上行压缩方法和装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10440608B2 (zh) |
EP (1) | EP3288303A4 (zh) |
CN (1) | CN106416341B (zh) |
WO (1) | WO2016183720A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107484203A (zh) * | 2017-07-24 | 2017-12-15 | 武汉虹信通信技术有限责任公司 | 一种用于支持扩展带宽的数据传输方法 |
WO2019033290A1 (en) * | 2017-08-16 | 2019-02-21 | Telefonaktiebolaget Lm Ericsson (Publ) | METHOD AND APPARATUS FOR IMPLEMENTING NON-STANDARD BANDWIDTH AND NETWORK DEVICE INCLUDING THE APPARATUS |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11057066B2 (en) * | 2017-12-22 | 2021-07-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Altering filtering by changing mixing frequency when interferer present |
CN110891288B (zh) * | 2018-09-10 | 2022-09-16 | 中国电信股份有限公司 | 物理下行控制信道配置方法、装置以及基站和存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101247140A (zh) * | 2007-02-16 | 2008-08-20 | 华为技术有限公司 | 一种减小无线系统中邻频干扰的方法、基站及滤波器 |
WO2011082548A1 (zh) * | 2010-01-11 | 2011-07-14 | 华为技术有限公司 | 数据传输方法、基站及终端 |
CN102300267A (zh) * | 2011-09-28 | 2011-12-28 | 电信科学技术研究院 | 一种确定终端工作带宽的方法及终端 |
CN102724149A (zh) * | 2012-05-16 | 2012-10-10 | 华为技术有限公司 | 频偏预补偿方法、随机接入方法、设备及系统 |
US20140126498A1 (en) * | 2012-11-02 | 2014-05-08 | Telefonaktiebolaget L M Ericsson (Publ) | Flexible spectrum support in cellular wireless communications |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5613234A (en) * | 1994-10-28 | 1997-03-18 | Lucent Technologies Inc. | Receive filter using frequency translation for or in cellular telephony base station |
DE60037722T2 (de) * | 2000-05-17 | 2009-01-15 | Sony Deutschland Gmbh | AM Empfänger |
EP2030389A4 (en) * | 2006-06-16 | 2013-07-17 | Preco Electronics Inc | NARROW BAND DETECTIONS OF A RECEIVED SIGNAL |
US20090147735A1 (en) * | 2007-12-05 | 2009-06-11 | Motorola, Inc. | System and method for non-standard wireless bandwidth communications |
CN102045865A (zh) * | 2009-10-23 | 2011-05-04 | 华为技术有限公司 | 基站和用户终端之间的通信方法及相应设备 |
US8725085B2 (en) * | 2010-06-03 | 2014-05-13 | Broadcom Corporation | RF front-end module |
JP5662913B2 (ja) * | 2011-09-16 | 2015-02-04 | 株式会社日立製作所 | 無線通信システム及び基地局 |
-
2015
- 2015-05-15 EP EP15892101.5A patent/EP3288303A4/en not_active Ceased
- 2015-05-15 CN CN201580001005.9A patent/CN106416341B/zh active Active
- 2015-05-15 WO PCT/CN2015/079045 patent/WO2016183720A1/zh active Application Filing
-
2017
- 2017-11-14 US US15/812,984 patent/US10440608B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101247140A (zh) * | 2007-02-16 | 2008-08-20 | 华为技术有限公司 | 一种减小无线系统中邻频干扰的方法、基站及滤波器 |
WO2011082548A1 (zh) * | 2010-01-11 | 2011-07-14 | 华为技术有限公司 | 数据传输方法、基站及终端 |
CN102300267A (zh) * | 2011-09-28 | 2011-12-28 | 电信科学技术研究院 | 一种确定终端工作带宽的方法及终端 |
CN102724149A (zh) * | 2012-05-16 | 2012-10-10 | 华为技术有限公司 | 频偏预补偿方法、随机接入方法、设备及系统 |
US20140126498A1 (en) * | 2012-11-02 | 2014-05-08 | Telefonaktiebolaget L M Ericsson (Publ) | Flexible spectrum support in cellular wireless communications |
Non-Patent Citations (1)
Title |
---|
See also references of EP3288303A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107484203A (zh) * | 2017-07-24 | 2017-12-15 | 武汉虹信通信技术有限责任公司 | 一种用于支持扩展带宽的数据传输方法 |
WO2019033290A1 (en) * | 2017-08-16 | 2019-02-21 | Telefonaktiebolaget Lm Ericsson (Publ) | METHOD AND APPARATUS FOR IMPLEMENTING NON-STANDARD BANDWIDTH AND NETWORK DEVICE INCLUDING THE APPARATUS |
EP3662696A4 (en) * | 2017-08-16 | 2020-07-22 | Telefonaktiebolaget LM Ericsson (publ) | METHOD AND DEVICE FOR IMPLEMENTING A NON-STANDARD BANDWIDTH AND NETWORK DEVICE WITH THE DEVICE |
US11296842B2 (en) | 2017-08-16 | 2022-04-05 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for implementing nonstandard bandwidth as well as network device comprising the apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20180070267A1 (en) | 2018-03-08 |
CN106416341B (zh) | 2019-10-22 |
EP3288303A1 (en) | 2018-02-28 |
US10440608B2 (en) | 2019-10-08 |
CN106416341A (zh) | 2017-02-15 |
EP3288303A4 (en) | 2018-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10797771B2 (en) | Reference signal for receive beam refinement in cellular systems | |
US12004095B2 (en) | Communication method and communications device | |
US11304236B2 (en) | Random access method, random access response method, terminal device, and network device | |
US10397949B2 (en) | PUCCH resource configuration method in carrier aggregation and equipments thereof | |
KR102409304B1 (ko) | 무선통신시스템에서 단말의 대역폭을 조정하는 방법 및 장치 | |
WO2019201350A1 (zh) | 信号处理方法及装置 | |
KR101907326B1 (ko) | 원격 무선 유닛(rru)을 결정하기 위한 방법 및 장치 | |
US10440608B2 (en) | Method and apparatus for downlink and uplink compression of nonstandard bandwidth of LTE system | |
EP3703454A1 (en) | Communication method, network device, and terminal device | |
EP4231729A1 (en) | Apparatus for signaling of control messages for fronthaul interface | |
EP3852463A1 (en) | Method and apparatus for transmitting data | |
WO2017075826A1 (zh) | 一种确定频点的方法及装置 | |
US9271268B2 (en) | Wireless transmission device, wireless reception device, and bandwidth allocation method for setting a band where other bands indicated by continuous band allocation information do not overlap | |
WO2018196505A1 (zh) | 星座图旋转方法及装置 | |
US10194420B2 (en) | Communication method and apparatus thereof | |
CN110035548B (zh) | 通信的方法和通信设备 | |
US20240129170A1 (en) | Spectral shaping | |
CN107342899B (zh) | 蜂窝网聚合链路控制方法 | |
CN115551089A (zh) | 通信方法及装置 | |
WO2020030255A1 (en) | Reducing dmrs overhead | |
WO2016197921A1 (zh) | 用于小区搜索的无线帧传输方法、系统、基站、终端 | |
CN110073707B (zh) | 数据传输方法、终端设备和网络设备 | |
WO2011099421A1 (ja) | マルチバンド無線通信システムおよび端末装置 | |
CN118101398A (zh) | 频偏纠正方法及通信装置 | |
CN118202599A (zh) | 无线通信的方法、终端设备和网络设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15892101 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015892101 Country of ref document: EP |