WO2016182291A1 - 무선 통신 시스템에서 상향링크 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 상향링크 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016182291A1
WO2016182291A1 PCT/KR2016/004824 KR2016004824W WO2016182291A1 WO 2016182291 A1 WO2016182291 A1 WO 2016182291A1 KR 2016004824 W KR2016004824 W KR 2016004824W WO 2016182291 A1 WO2016182291 A1 WO 2016182291A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
symbols
frequency
pusch
uplink signal
Prior art date
Application number
PCT/KR2016/004824
Other languages
English (en)
French (fr)
Inventor
김봉회
양석철
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020167026001A priority Critical patent/KR101882280B1/ko
Priority to US15/327,624 priority patent/US9936506B2/en
Priority to JP2016566202A priority patent/JP6276425B2/ja
Priority to EP16792937.1A priority patent/EP3297378B1/en
Priority to CN201680001632.7A priority patent/CN106797305B/zh
Publication of WO2016182291A1 publication Critical patent/WO2016182291A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting or receiving an uplink MTC signal in a wireless communication system that supports machine type communication (MTC).
  • MTC machine type communication
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is located at an end of a user equipment (UE), an eNode B (eNB), and a network (E-UTRAN) and connected to an external network (Access Gateway; AG). It includes.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.44, 3, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, flexible use of frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • An object of the present invention is to provide a method for transmitting an uplink signal through different subbands by performing frequency re-tuning and an apparatus for performing the same.
  • a method of transmitting an uplink signal by a machine type communication (MTC) terminal the first uplink through a first subband in a first subframe Transmitting a signal; Re-tuning the frequency of the MTC terminal from the first subband to a second subband; And transmitting a second uplink signal through the second subband in a second subframe, wherein in the re-tuning of the frequency, the first subframe and the second subframe are continuous with each other.
  • MTC machine type communication
  • the at least some symbols used for the frequency re-tuning within the range of the first n symbols of the second subframe from the last n symbols of the first subframe instead of transmitting may be determined according to a preset priority between the first uplink signal and the second uplink signal.
  • a machine type communication (MTC) terminal transmits a first uplink signal through a first subband in a first subframe and a second in a second subframe.
  • a transmitter for transmitting a second uplink signal through the subbands;
  • a processor for re-tuning the frequency of the MTC terminal from the first subband to the second subband, wherein the processor is configured such that the first subframe and the second subframe are continuous with each other. If, instead of transmitting the first uplink signal or the second uplink signal in at least some of the last n symbols of the first subframe and the first n symbols of the second subframe.
  • the location of the at least some symbols used for the frequency re-tuning within the range of the first n symbols of the second subframe from the last n symbols of the first subframe is It may be determined according to a preset priority between the first uplink signal and the second uplink signal.
  • the frequency re-tuning is performed on the first n symbols of the second subframe, and the second uplink signal is In case of priority over the first uplink signal, the frequency re-tuning may be performed in the last n symbols of the first subframe.
  • At least some symbols for which the frequency re-tuning is performed may be performed on the first subframe and the second subframe. It can be set evenly divided.
  • the first uplink signal includes a sounding reference signal (SRS)
  • the second uplink signal includes a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH)
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the first uplink signal is a PUCCH (physical uplink control channel) and the second uplink signal is a PUSCH (physical uplink shared channel)
  • the at least some symbols for which the frequency re-tuning is performed are performed on the first n symbols of the second subframe. It may be set on the last n symbols of the first subframe.
  • a sounding reference signal is set on the same subframe as a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH), and a subband of the SRS is associated with a subband of the PUCCH or the PUSCH. If different, the transmission of the SRS may be dropped.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • a physical uplink control channel may take precedence over a physical uplink shared channel (PUSCH), and the PUSCH may take precedence over a sounding reference signal (SRS).
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • the MTC terminal receives a radio resource control configuration (RRC) configuration for a subband in which a physical uplink shared channel (PUSCH) is transmitted, wherein the subband in which the PUSCH is transmitted is based on a frequency of the RRC configuration May be hopped.
  • RRC radio resource control configuration
  • the frequency re-tuning is performed in the first n symbols of the second subframe
  • the second uplink signal is When including the PRACH, the frequency re-tuning may be performed in the last n symbols of the first subframe.
  • PRACH physical random access channel
  • the MTC terminal determines the symbols required for the frequency re-tuning according to the priority in performing frequency re-tuning to transmit the uplink signal through different subbands, more efficiently and accurately
  • the uplink signal may be transmitted.
  • FIG. 1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
  • FIG. 5 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • FIG. 6 illustrates a structure of a radio frame in an LTE TDD system.
  • FIG. 7 is a conceptual diagram illustrating a carrier aggregation technique.
  • FIG. 8 illustrates RB allocation according to an embodiment.
  • FIG 11 illustrates an uplink channel of an MTC terminal according to an embodiment of the present invention.
  • FIG. 12 illustrates a UL signal transmission method of an MTC terminal according to an embodiment of the present invention.
  • FIG. 13 illustrates a terminal and a base station according to an embodiment of the present invention.
  • a base station is used in a generic term including a remote radio head (RRH), a transmission point (TP), a reception point (RP), an eNB, a relay, and the like. do.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • eNB eNode B
  • relay eNode B
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a trans-antenna port channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • IPv4 Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers.
  • the radio bearer refers to a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting an eNB is set to one of bandwidths such as 1.4, 3, 5, 10, 15, and 20 MHz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the above-described procedure, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • uplink / downlink data packet transmission is performed in units of subframes, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • Resource Element The smallest frequency-time unit to which modulation symbols of data or other control channels are mapped. If a signal is transmitted through M subcarriers in one OFDM symbol and N OFDM symbols are transmitted in one subframe, MxN REs exist in one subframe.
  • Physical Resource Block PRB
  • PRB Physical Resource Block
  • one PRB consists of consecutive REs in the frequency-time domain, and a plurality of PRBs are defined in one subframe.
  • Virtual Resource Block VRB: A virtual unit resource for data transmission.
  • the number of REs included in one VRB is equal to the number of REs included in one PRB, and in the actual data transmission, one VRB is mapped to one PRB or one VRB is part of a plurality of PRBs. Can be mapped to.
  • LVRB Localized Virtual Resource Block
  • One LVRB is mapped to one PRB, and PRBs to which different LVRBs are mapped do not overlap. The LVRB may soon be interpreted as a PRB.
  • DVRB Distributed Virtual Resource Block
  • a type of VRB One DVRB is mapped to some REs in multiple PRBs and REs mapped to different DVRBs do not overlap.
  • N PRB number of PRBs in the system
  • N LVRB number of LVRBs available in the system
  • N DVRB number of DVRBs available in the system
  • N LVRB _ UE one Maximum number of LVRBs allocated by UE
  • N DVRB_UE Number of maximum DVRBs allocated to one UE
  • N subset Number of subsets.
  • one RB is composed of 12 subcarriers and the number of OFDM symbols configuring one slot. That is, in case of using a normal CP (Cyclic Prefix), since there are 7 OFDM symbols in one slot, 12x7 REs constitute one RB. This RB is allocated to the UE in a pair of RBs of the first slot and the RB of the second slot of one subframe.
  • FIG. 4 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four resource element groups (REGs), and each REG is distributed in a control region based on a cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for uplink HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
  • the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode the PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is masked with a cyclic redundancy check (CRC) with a Radio Network Temporary Identity (RNTI) of "A", a radio resource (eg, a frequency location) of "B” and a transmission of "C”.
  • CRC cyclic redundancy check
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors the PDCCH using the RNTI information it has, and if there is at least one terminal having an "A" RNTI, the terminals receive the PDCCH, and through the information of the received PDCCH " Receive the PDSCH indicated by B " and " C ".
  • FIG. 5 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating downlink channel status, RI (Rank Indicator) for MIMO, and scheduling request (SR), which is an uplink resource allocation request. There is this.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • the time at which the sounding reference signal can be transmitted in one subframe is a section having a symbol located last on the time axis in one subframe, and is transmitted through a data transmission band on a frequency. Sounding reference signals of various terminals transmitted as the last symbol of the same subframe may be distinguished according to frequency positions.
  • a radio frame in an LTE TDD system, consists of two half frames, each half frame comprising four general subframes including two slots, a downlink pilot time slot (DwPTS), and a guard period (GP). And a special subframe including an Uplink Pilot Time Slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS Uplink Pilot Time Slot
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal. That is, DwPTS is used for downlink transmission and UpPTS is used for uplink transmission.
  • UpPTS is used for PRACH preamble or SRS transmission.
  • the guard period is a period for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • uplink / downlink subframe configuration (UL / DL configuration) is shown in Table 1 below.
  • D denotes a downlink subframe
  • U denotes an uplink subframe
  • S denotes the special subframe.
  • Table 1 also shows the downlink-uplink switching period in the uplink / downlink subframe configuration in each system.
  • FIG. 7 is a conceptual diagram illustrating carrier aggregation.
  • Carrier aggregation includes a plurality of frequency blocks or (logically) cells in which a terminal is composed of uplink resources (or component carriers) and / or downlink resources (or component carriers) in order for a wireless communication system to use a wider frequency band.
  • a terminal is composed of uplink resources (or component carriers) and / or downlink resources (or component carriers) in order for a wireless communication system to use a wider frequency band.
  • uplink resources or component carriers
  • downlink resources or component carriers
  • the entire system bandwidth has a bandwidth of up to 100 MHz as a logical band.
  • the entire system band includes five component carriers, each component carrier having a bandwidth of up to 20 MHz.
  • a component carrier includes one or more contiguous subcarriers that are physically contiguous.
  • each component carrier has the same bandwidth, but this is only an example and each component carrier may have a different bandwidth.
  • each component carrier is shown as being adjacent to each other in the frequency domain, the figure is shown in a logical concept, each component carrier may be physically adjacent to each other, or may be separated.
  • the center frequency may be used differently for each component carrier or may use one common common carrier for component carriers that are physically adjacent to each other. For example, in FIG. 7, if all component carriers are physically adjacent to each other, center carrier A may be used. In addition, assuming that the component carriers are not physically adjacent to each other, the center carrier A, the center carrier B, and the like may be used separately for each component carrier.
  • the component carrier may correspond to the system band of the legacy system.
  • provision of backward compatibility and system design may be facilitated in a wireless communication environment in which an evolved terminal and a legacy terminal coexist.
  • each component carrier may correspond to a system band of the LTE system.
  • the component carrier may have any one of 1.25, 2.5, 5, 10 or 20 Mhz bandwidth.
  • the frequency band used for communication with each terminal is defined in component carrier units.
  • UE A may use the entire system band 100 MHz and performs communication using all five component carriers.
  • Terminals B 1 to B 5 may use only 20 MHz bandwidth and perform communication using one component carrier.
  • Terminals C 1 and C 2 may use a 40 MHz bandwidth and perform communication using two component carriers, respectively.
  • the two component carriers may or may not be logically / physically adjacent to each other.
  • UE C 1 represents a case of using two component carriers which are not adjacent
  • UE C 2 represents a case of using two adjacent component carriers.
  • a method of scheduling a data channel by the control channel may be classified into a conventional linked carrier scheduling method and a cross carrier scheduling method.
  • link carrier scheduling like a conventional LTE system using a single component carrier, a control channel transmitted through a specific component carrier schedules only a data channel through the specific component carrier.
  • a control channel transmitted through a primary component carrier (Crimary CC) using a carrier indicator field (CIF) is transmitted through the primary component carrier or transmitted through another component carrier.
  • CMF carrier indicator field
  • the method of controlling the uplink transmission power of the terminal includes an open loop power control (OLPC) and a closed loop power control (CLPC).
  • OLPC open loop power control
  • CLPC closed loop power control
  • the former is a factor for power control in the form of estimating the downlink signal attenuation from the base station of the cell to which the terminal belongs and compensating for it.
  • the downlink signal attenuation is large.
  • the uplink power is controlled by increasing the uplink transmission power.
  • the latter controls the uplink power by directly transmitting information (ie, a control signal) necessary for adjusting the uplink transmission power at the base station.
  • Equation 1 is a formula for determining a transmission power of a UE when only a PUSCH is transmitted without simultaneously transmitting a PUSCH and a PUCCH on a subframe index i in a serving cell c in a system supporting a carrier aggregation scheme.
  • Equation 2 is a formula for determining PUSCH transmission power when a PUCCH and a PUSCH are simultaneously transmitted in a subframe index i of a serving cell c in a system supporting a carrier aggregation technique.
  • Equation 1 determines the uplink transmit power of the UE in the serving cell c.
  • P CMAX, c (i) of Equation 1 represents the maximum transmittable power of the UE at the subframe index i
  • P ⁇ CMAX, c (i) of Equation 2 is P CMAX, c (i ) Is a linear value.
  • the P ⁇ PUCCH (i) in equation (2) represents a linear value (linear value) of P PUCCH (i) (where, P PUCCH (i) represents the transmit power of the PUCCH in the subframe index i.
  • M PUSCH, c (i) is a parameter indicating a bandwidth of PUSCH resource allocation expressed by the number of effective resource blocks for subframe index i, and is a value allocated by the base station.
  • P 0_ PUSCH, c (i) is a cell-specific nominal component P 0_NOMINAL_ PUSCH, c (j) provided from a higher layer and a UE-specific component provided from a higher layer P 0_ UE _ PUSCH, c (j) A parameter configured by the sum of a value, which the base station informs the terminal.
  • J is 1 for PUSCH transmission / retransmission according to an uplink grant and j is 2 for PUSCH transmission / retransmission according to a random access response.
  • ⁇ c (j) is a pathloss compensation factor, a cell-specific parameter provided by the upper layer and transmitted by the base station in 3 bits.
  • ⁇ c (j) 1.
  • ⁇ c (j) is a value that the base station informs the terminal.
  • f c (i) is a value indicating the current PUSCH power control adjustment state for the subframe index i, and may be expressed as a current absolute value or an accumulated value.
  • DCI format 0 for serving cell c where accumulation is enabled based on parameters provided from higher layers or the TPC command ⁇ PUSCH, c is scrambled with a CRC Temporary C-RNTI
  • f c (i) f c (i-1) + ⁇ PUSCH, c (iK PUSCH ) is satisfied.
  • ⁇ PUSCH, c (iK PUSCH ) is signaled in PDCCH with DCI format 0/4 or 3 / 3A in subframe iK PUSCH , where f c (0) is the first value after a reset of the accumulated value .
  • K PUSCH The value of K PUSCH is defined as follows in the LTE standard.
  • K PUSCH For FDD (Frequency Division Duplex), the value of K PUSCH is 4.
  • the values of K PUSCH in TDD are shown in Table 2 below.
  • the UE has a PDCCH of DCI format 0/4 with a C-RNTI of the UE or a PDCCH and SPS C- of DCI format 3 / 3A with a TPC-PUSCH-RNTI of the UE. Attempt to decode DCI format for RNTI. If DCI format 0/4 and DCI format 3 / 3A for the serving cell c are detected in the same subframe, the terminal should use ⁇ PUSCH, c provided in DCI format 0/4. ⁇ PUSCH, c is 0 dB for a subframe in which there is no TPC command decoded for serving cell c, a DRX is generated, or an index i is not an uplink subframe in TDD.
  • ⁇ PUSCH, c accumulation values signaled on the PDCCH with DCI format 0/4 are shown in Table 3 below.
  • ⁇ PUSCH, c is 0 dB.
  • the ⁇ PUSCH, c accumulation value signaled on the PDCCH with DCI format 3 / 3A is either one of SET1 of the following Table 3 or one of SET2 of the following Table 4 determined by the TPC-index parameter provided in the upper layer.
  • Equation 3 is an equation related to uplink power control for PUCCH in LTE system.
  • Equation 3 i is a subframe index and c is a cell index. If the UE is set by the higher layer to transmit PUCCH on two antenna ports, the value of ⁇ TxD (F ′) is provided to the UE by the higher layer and 0 otherwise.
  • the parameter described below is for a serving cell having a cell index c.
  • P CMAX, c (i) represents the maximum transmittable power of the UE
  • P 0_ PUCCH is a parameter consisting of a sum of cell-specific parameters
  • the base station informs through higher layer signaling, PL C
  • h (n) is a value that depends on the PUCCH format
  • n CQI is the number of information bits for channel quality information (CQI)
  • n HARQ indicates the number of HARQ bits.
  • ⁇ F_PUCCH (F) is a value corresponding to PUCCH format #F as a value relative to PUCCH format 1a and is a value reported by the base station through higher layer signaling.
  • g (i) represents the current PUCCH power control adjustment state of the index i subframe.
  • ⁇ msg2 is a TPC command indicated in the random access response, and ⁇ P rampup corresponds to the total power ramp-up from the first to the last preamble provided by the higher layer.
  • Tables 5 and 6 show ⁇ PUCCH values indicated by the TPC command field in the DCI format.
  • Table 5 is a delta PUCCH value indicated by DCI except for DCI format 3A
  • Table 6 is a delta PUCCH value indicated by DCI format 3A.
  • Equation 4 is a power control equation of the sounding reference signal (SRS) in the LTE system.
  • Equation 4 i is a subframe index and c is a cell index.
  • P CMAX, c (i) represents the maximum transmittable power of the UE
  • P SRS _ OFFSET, C (m) is set to a higher layer, when m is 0, refer to periodic sounding
  • M SRS, c is a sounding reference signal bandwidth on the subframe index i of the serving cell c and is represented by the number of resource blocks.
  • f c (i) is a value indicating the current PUSCH power control adjustment state for the subframe index i of the serving cell c
  • P 0_ PUCCH, c (j) and ⁇ c (j) are also described in Equations 1 and 2 above. Same as
  • the sounding reference signal will be described below.
  • the sounding reference signal is composed of a constant amplitude zero auto correlation (CAZAC) sequence, and the sounding reference signals transmitted from various terminals are CAZAC sequences having different cyclic shift values ( ⁇ ) according to Equation 5 below.
  • CAZAC constant amplitude zero auto correlation
  • n CS SRS is a value set for each terminal by a higher layer and has an integer value between 0 and 7. Therefore, the cyclic shift value may have eight values according to n CS SRS .
  • CAZAC sequences generated through a cyclic shift from one CAZAC sequence have a characteristic of having zero-correlation with sequences having a cyclic shift value different from itself. Using these characteristics, sounding reference signals in the same frequency domain may be distinguished according to CAZAC sequence cyclic shift values.
  • the sounding reference signal of each terminal is allocated on the frequency according to the parameter set in the base station. The terminal performs frequency hopping of the sounding reference signal to transmit the sounding reference signal over the entire uplink data transmission bandwidth.
  • the sounding reference signal sequence r SRS (n) is first multiplied by an amplitude scaling factor ⁇ SRS to satisfy the transmission power P SRS of the terminal, and then r to a resource element (RE) having an index of (k, l). From SRS (0) is mapped by the following equation (6).
  • k 0 refers to a frequency domain starting point of the sounding reference signal, and is defined as in Equation 7 below.
  • n b indicates a frequency position index.
  • the average "is 0 is defined as shown in Equation 8 below, k for the uplink pilot time slot (UpPTS), k for the uplink subframe 0 is defined as shown in Equation 9 below.
  • k TC is a transmission comb parameter signaled to the terminal through an upper layer and has a value of 0 or 1.
  • n hf is 0 in an uplink pilot time slot of a first half frame and 0 in an uplink pilot time slot of a second half frame.
  • M RS sc, b is a length, that is, bandwidth, of a sounding reference signal sequence expressed in subcarrier units defined as in Equation 10 below.
  • Equation 10 m SRS, b is a value signaled from a base station according to an uplink bandwidth N UL RB .
  • the terminal may perform frequency hopping of the sounding reference signal to transmit the sounding reference signal over the entire uplink data transmission bandwidth, and the frequency hopping is a parameter having a value of 0 to 3 given from an upper layer. set by b hop
  • n b has a constant value as shown in Equation 11 below.
  • n RRC is a parameter given in the upper layer.
  • the frequency position index n b is defined by Equations 12 and 13 below.
  • n n SRS is a parameter that calculates the number of times the sounding reference signal is transmitted by Equation 14 below.
  • T SRS is a period of a sounding reference signal
  • T OFFSET refers to a subframe offset of the sounding reference signal.
  • n s denotes a slot number
  • n f denotes a frame number.
  • the sounding reference signal setting index (I SRS ) for setting the period T SRS and the subframe offset T OFFSET of the sounding reference signal is defined as shown in Tables 7 to 10 below depending on whether the FDD system and the TDD system are used.
  • Table 7 shows a case of FDD system
  • Table 8 shows a case of TDD system.
  • Tables 7 and 8 below show triggering type 0, that is, period and offset information regarding periodic SRS.
  • k SRS for the TDD system is determined according to Table 9 below.
  • Tables 10 and 11 below show period and offset information regarding triggering type 1, that is, aperiodic SRS.
  • Table 10 shows a case of FDD system
  • Table 11 shows a case of TDD system.
  • Equation 17 is for an FDD system or a TDD system with T SRS > 2 in Table 11
  • k SRS ⁇ 0,1, ..., 9 ⁇ for the FDD system
  • k SRS for the TDD system is determined according to Table 9 above.
  • RB resource block
  • N PRBs the number of PRBs (N PRBs ) of a system with one PRB density
  • N PRBs bitmap of N PRB bits per UE to be scheduled. If the number of PRBs (N PRBs ) of the system is large, it is a burden on the amount of control information. Therefore, there is a need for a method such as reducing the density or dividing a band to increase the density in only some bands.
  • FIG. 8 illustrates RB allocation according to an embodiment.
  • Signaling for resource allocation consists of a header and a bitmap.
  • the header informs the signaling method so that the bitmap can be interpreted differently.
  • bitmap is divided into two methods, RBG method and Subset method.
  • the size of the RBG is defined according to the number of RBs set in the system frequency band as shown in Table 13.
  • the subset scheme is used to complement the RBG scheme.
  • header information is needed because the bitmap needs to inform whether the RBG uses unit allocation or subset method, and if the subset method indicates which subset to display. If the header information indicates only the RBG type or the subset type, and the subset type uses some bits of the bitmap used for the RBG, the RB of the entire subset cannot be indicated. To solve this problem, one additional bit can be extracted from the RBG bitmap to shift the position of the RB referred to by the subset bitmap.
  • the information of the allocated RBs can be expressed by the starting point and the number of RBs.
  • the lengths of the RBs that can be used vary according to each starting point, and finally, the number of combinations of RB allocations becomes N RB (N RB +1) / 2. Therefore, the number of bits required for this becomes ceiling (log 2 (N RB (N RB +1) / 2)) bits.
  • ceiling (x) is the rounding up to the nearest integer.
  • the N Gap value, which is the size of the gap , and the M RBG value, which is the size of the RBG, are determined according to the system band. Accordingly, the size of the interleaver is determined.
  • pre-arranged DVRB indexes are distributed so that they do not correspond to adjacent PRBs.
  • the Cyclic Shift is added to map away from the first slot.
  • values corresponding to more than half of the total number of DVRBs are mapped with an offset value added to meet the N Gap condition defined above.
  • This mapping method is considered to be a combination of the RBG method and the bitmap method using the subset method described above, adjacent DVRB indexes are included in the same subset as possible, it is configured to fill the RBG sequentially.
  • LTE-A next system is considering configuring low-cost / low-end terminals for data communication such as meter reading, water level measurement, surveillance camera utilization, and vending machine inventory reporting.
  • a terminal is collectively referred to as a Machine Type Communication (MTC) terminal or a bandwidth reduced low complexity (BL) / Coverage Enhancement (CE) UE.
  • MTC Machine Type Communication
  • BL bandwidth reduced low complexity
  • CE Coverage Enhancement
  • the size of the supported bandwidth may be set smaller than 20 MHz (e.g., 6 RB).
  • Such bandwidth reduction can be applied to uplink / downlink, RF / baseband devices and data / control channels.
  • the uplink / downlink operation of the MTC terminal may be performed on a bandwidth reduced to 6 RB, unlike the operating system bandwidth of the corresponding cell.
  • a reduced band may be referred to as a narrow band or a subband.
  • FIG. 11 illustrates an uplink channel of an MTC terminal according to an embodiment of the present invention.
  • an uplink bandwidth of a system is 20 MHz and a bandwidth set for a terminal is 1.08 MHz.
  • some frequency resources may not be used for data transmission within the bandwidth of the terminal.
  • the bandwidth of one subband is 6 RBs, but other sizes of subbands may be supported.
  • the bandwidth of a specific cell is N RB , there may be a maximum number of integer subbands not exceeding 'N RB / 6' in the bandwidth.
  • the bandwidth of one cell may be referred to as a system bandwidth for convenience.
  • the bandwidth may mean DL bandwidth or UL bandwidth.
  • the DL bandwidth and the UL bandwidth may be set identically or differently according to the system environment.
  • MTC terminal is less mobile, and thus has a characteristic that the channel environment hardly changes.
  • various CE techniques are discussed in LTE-A such that the MTC terminal has wide uplink / downlink coverage.
  • a repetitive transmission scheme may be used as an exemplary method for improving coverage of the MTC terminal and overcoming a poor propagation environment.
  • the redundancy version may be set to be the same or different for each repetitive transmission.
  • a subband in which a signal is repeatedly transmitted may be changed over time (e.g., frequency hopping or frequency hopping subband). As the subband is changed, diversity gain is generated, and the number of repetitive transmissions can be reduced. Accordingly, frequency hopping may improve signal transmission / reception performance of the MTC terminal and reduce battery consumption of the MTC terminal.
  • the base station may set information on whether frequency hopping and frequency hopping subbands in the MTC terminal.
  • frequency hopping of the MTC signal the frequency at which the signal is transmitted in the same subband (or band) is not hopped, but the subband itself is changed (e.g., hopping) and transmitted.
  • the MTC terminal operates by receiving a PUSCH resource within its operating bandwidth from the base station.
  • PUSCH resources may be allocated, for example, by the following method.
  • the base station may divide the uplink system bandwidth into a plurality of subbands, and allocate PUSCH resources of a specific subband to the MTC terminal.
  • the base station may indicate information on the subband to which the PUSCH resource is allocated through higher layer signaling (e.g, RRC signaling) or MTC PDCCH (e.g, DCI).
  • higher layer signaling e.g, RRC signaling
  • MTC PDCCH e.g, DCI
  • the location to which the PUSCH resource is allocated may be fixed to a predefined location.
  • the subband to which the PUSCH resource is allocated may be changed according to frequency hopping.
  • a subband including PUSCH resources can be changed along a predefined frequency hopping pattern.
  • the MTX terminal hops the subbands in every subframe in the order of subbands 0, 2, 4, etc. and may transmit a PUSCH.
  • the subband hopping pattern for PUSCH transmission may be cell-specific or UE-specific. For example, hopping pattern setting of a terminal specific subband may be used to reduce a collision that may occur between multiple terminals.
  • a PUSCH resource may be allocated to an MTC terminal through an MTC PDCCH (e.g DCI) within an uplink system bandwidth.
  • MTC PDCCH e.g DCI
  • DL data transmission e.g, PDSCH
  • UL data transmission e.g, PUSCH
  • the UE may receive UL resource allocation information through the PDCCH, then tune to an RF frequency corresponding to the allocated UL resource (e.g., within 4 subframe times) and transmit UL data.
  • the base station may signal information on the PUCCH resources in order to configure the PUCCH resources to the MTC terminal.
  • the method for signaling information on the PUCCH resource may be, for example, (i) a method of signaling the RB index at which the PUCCH resource is started, and additionally an ACK / NACK resource index and / or a CSI resource index may be signaled. (ii) signaling the start index of the RB through which the ACK / NACK is transmitted; (iii) signaling the start index of the RB transmitting the CSI; and (iv) signaling the center frequency when transmitting the PUCCH. May be used.
  • the PUCCH resource may be set in a subband configured for PUSCH transmission.
  • both the PUSCH resource and the PUCCH resource may exist in the same subband.
  • the PUSCH resource and the PUCCH resource may be configured in different subbands, respectively.
  • the positions of the PUCCH and the PUSCH are preferably set in one subband.
  • the PUSCH is dynamically configured by higher layer signaling or DCI
  • the PUSCH and the PUCCH are respectively assigned to different subbands in order to reduce the overhead of changing the location of the PUCCH every time the PUSCH location is changed. Can also be set.
  • the PUSCH resource may be changed by the PDCCH transmitting the DCI in the downlink system band.
  • PUCCH resources may be semi-statically configured using higher layer signaling (e.g, RRC).
  • the MTC terminal may transmit the SRS so that the base station can obtain UL channel information of each subband.
  • SRS transmission is limited within a subband, and if the MTC terminal is configured to perform SRS transmission for a band other than the corresponding subband, SRS transmission (for a band other than the corresponding subband) may not be performed.
  • the MTC terminal may perform SRS transmission over two subbands, SRS transmission may not be performed. Alternatively, the MTC terminal may transmit the SRS only for the band belonging to the corresponding subband.
  • the MTC terminal may sequentially transmit SRS for each subband in order to support selection of an optimal subband.
  • the SRS transmission band may be set to a specific frequency resource instead of the corresponding subband as a whole.
  • the MTC terminal may be allocated the initial subband after sequentially transmitting the SRS for each subband after performing random access.
  • the SRS is limited to be transmitted in the last SC-FDMA symbol of the subframe, but such a restriction may not be applied to the SRS transmission of the MTC terminal.
  • the SRS may be transmitted in a symbol other than the last SC-FDMA symbol.
  • the first slot of the subframe may not be used for UL / DL transmission and reception (eg, higher layer signaling).
  • a subband through which the uplink physical channel is transmitted may be changed (e.g., frequency hopping, etc.).
  • the MTC terminal transmits a first UL physical channel through a first subband in a first subframe, and transmits a second physical channel through a second subband in a second subframe.
  • the second UL physical after the MTC terminal transmits the first UL physical channel. Frequency retuning must be performed to transmit the channel.
  • the MTC terminal needs frequency re-tuning unlike the general terminal is that the MTC terminal can be limited to a size-specific subband of a frequency band that can be processed at once for low cost and low complexity.
  • the non-MTC terminal since the non-MTC terminal may process the entire system band (eg, including the first subband + the second subband) at one time, the non-MTC terminal may signal through the first subband in the first subframe.
  • a signal may be transmitted on the second subband in the second subframe immediately after transmitting the signal (eg, a GP period for frequency re-tuning is not required).
  • the MTC terminal can process only some bands (eg, 1 subband) of the entire system band at once, the MTC terminal transmits a signal through the first subband in the first subframe and then frequency to the second subband. Realignment should be performed.
  • the MTC terminal may transmit a signal through the second subband in the second subframe after performing frequency retuning to the second subband.
  • a time required for frequency re-tuning must be secured in order to transmit a signal through different subbands in consecutive subframes.
  • At least some of the last n symbols of the first subframe and / or the first n symbols of the second subframe may be set for frequency re-tuning.
  • the MTC terminal cannot perform UL signal transmission while performing frequency retuning. That is, the symbols for which frequency re-tuning is performed do not transmit the UL signal.
  • the time required for frequency retuning is illustrated as, for example, n SC-FDMA symbols (e.g., 2 symbols), but is not limited thereto.
  • n SC-FDMA symbols e.g., 2 symbols
  • the last n symbols of the first subframe or the first n symbols of the second subframe are used for frequency re-tuning
  • the last n / 2 symbols (eg, 1 symbol) and the first n / 2 symbols (eg, 1 symbol) of the second subframe may be set for frequency re-tuning.
  • symbols for which UL / DL transmission is not performed for frequency re-tuning may be configured through higher layer signaling, but are not limited thereto.
  • the SRS may be configured to be transmitted in a symbol other than the last symbol of the first subframe. For example, when the last n symbols are set for frequency re-tuning in the first subframe, the SRS may be transmitted in the last symbol or another symbol among the remaining available symbols except the last n symbols.
  • the symbol on which the SRS is transmitted may be set by higher layer signaling.
  • Higher layer signaling may set (i) the first symbol and the last symbol number of each subframe, and (ii) the index of the symbol on which the SRS is transmitted (e.g., terminal specific).
  • Upper layer signaling for setting the first symbol and the last symbol number of each subframe The base station may configure the start and end of each subframe to be UE-specific. Such configuration may be applied to a downlink subframe. In addition, this configuration reduces the damage to the transmission of the next terminal or the half-duplex when the MTC terminal fails to meet the requirement for the transient period that occurs when the transmission on / off switching between subframes is performed.
  • the terminal may be used to avoid setting a gap for a delay that occurs when the UE switches from DL to UL.
  • the MTC terminal may transmit the SRS so that the base station can obtain channel information on the UL system bandwidth.
  • a PUSCH resource allocation scheme such as PUSCH resource allocation method 1 or 2
  • RF frequency tuning eg, when a PUSCH is transmitted in a first subframe and a PUSCH is transmitted in a second subframe
  • RF frequency tuning eg, when a PUSCH is transmitted in a first subframe and a PUSCH is transmitted in a second subframe
  • transmission restrictions may occur.
  • the time required for RF re-tuning may be a time corresponding to some or all symbols corresponding to one subframe, but is not limited thereto.
  • the time required for RF retuning may correspond to two symbol lengths.
  • SRS transmission is scheduled in a time resource (eg, subframe) allocated for PUSCH transmission, and a frequency resource (eg, subband for SRS) configured for SRS transmission is operating bandwidth (eg, PUSCH) of the MTC terminal.
  • a frequency resource eg, subband for SRS
  • the MTC terminal may transmit PUSCH data in a symbol for SRS transmission without performing SRS transmission because RF frequency re-tuning time is required for SRS transmission. .
  • the MTC UE may perform SRS transmission and may secure time for RF frequency re-tuning through some initial symbols of the subframe of the PUSCH. Accordingly, the PUSCH data may be rate matched by an amount corresponding to the secured time interval (e.g, number of symbols) and transmitted.
  • the secured time interval e.g, number of symbols
  • the SRS symbol may be shortened and transmitted by the corresponding time interval.
  • the MTC terminal transmits the SRS, and the PUSCH data is the SRS transmission symbol. Rate matching may be possible.
  • SRS transmission is scheduled in a time resource (eg, subframe or symbol) configured for PUCCH transmission, and a frequency resource (eg, subband for PUCCH) for PUCCH transmission is used for frequency resource (eg, SRS transmission) for SRS transmission.
  • a frequency resource eg, subband for PUCCH
  • SRS transmission frequency resource for SRS transmission.
  • Subband the MTC UE cannot transmit the PUCCH and the SRS in the same symbol.
  • the MTC terminal does not perform transmission of the SRS (e.g., transmit only PUCCH).
  • the MTC terminal can secure the time for RF frequency re-tuning. For example, the MTC terminal may set some symbols of the second subframe as a time for RF frequency re-tuning. Accordingly, the PUSCH data is transmitted by rate matching by an amount corresponding to the secured time interval (e.g, number of symbols). If the time required for re-tuning is a time corresponding to one subframe, the PUSCH may not be transmitted.
  • the MTC terminal may transmit the PUSCH in the second subframe without performing the transmission of the SRS in the first subframe.
  • the PUSCH transmission may be set to have a higher priority than the SRS transmission.
  • the UE may drop an aperiodic SRS with a priority on a PUSCH including HARQ-ACK and / or a scheduling request (SR).
  • Aperiodic SRS transmission is scheduled in subframe #n, and a PUSCH transmission including periodic CSI reporting is scheduled in subframe # (n + 1):
  • the MTC UE includes periodic CSI reporting.
  • Aperiodic SRS may be dropped with priority in PUSCH. The reverse operation is also possible.
  • the MTC terminal PUSCH transmission can be performed without securing time for RF frequency re-tuning.
  • the MTC terminal may reduce the SRS symbol by the corresponding time interval and transmit the same.
  • the same method may be applied to transmitting a PUSCH in a previous subframe and an SRS in a next subframe.
  • the MTC UE If the resource allocated for PUSCH transmission in the next subframe is outside the operating bandwidth of the MTC UE (eg, belongs to different subbands) from the resource allocated for PUSCH transmission in the previous subframe, the MTC UE This allows time for RF frequency re-tuning. For example, PUSCH transmission is scheduled in the first subband of the first subframe, PUSCH transmission is scheduled in the second subband of the second subframe located immediately after the first subframe, and the first subband and the second subband. If the subbands are different (eg, exceeding an operating bandwidth supported by the MTC terminal), the MTC terminal may secure time for RF frequency re-tuning. In this case, the PUSCH may be the same PUSCH repeatedly transmitted on the basis of frequency hopping or different PUSCHs.
  • the MTC terminal may set the last n symbols of the first subframe and / or the first n symbols of the second subframe as a time for RF frequency re-tuning. For example, in case of the same PUSCH repeatedly transmitted based on frequency hopping, the MTC terminal may use the last 1 symbol of the first subframe and the first 1 symbol of the second subframe as a time for RF frequency re-tuning.
  • the PUSCH data of the first subframe and / or the second subframe is rate matched by an amount corresponding to the secured time interval (e.g, number of symbols) and transmitted.
  • the MTC terminal is RF.
  • PUSCH can be transmitted without securing time for frequency retuning.
  • the base station allocates the same resources (eg, resources in the same subband) so as not to require time for RF frequency re-tuning when scheduling the PUSCH continuously, or the distance in the frequency domain between the resources May allocate resources so as not to exceed the maximum operating bandwidth supported by the MTC terminal.
  • the same resources eg, resources in the same subband
  • the MTC terminal can secure time for RF frequency re-tuning. For example, PUCCH transmission is scheduled in the first subband of the first subframe, PUSCH transmission is scheduled in the second subband of the second subframe located immediately after the first subframe, and the first subband and the second subband. If the subbands are different, the MTC terminal may secure time for RF frequency retuning.
  • the MTC terminal secures time for RF frequency re-tuning through some initial symbols of the second subframe. Accordingly, the PUSCH data is transmitted by rate matching by an amount corresponding to the secured time interval (e.g, number of symbols).
  • the MTC terminal can secure time for RF frequency re-tuning. For example, a PUSCH transmission is scheduled in a first subband of a first subframe, a PUCCH transmission is scheduled in a second subband of a second subframe located immediately after the first subframe, and a first subband and a second subband. If the subbands are different, the MTC terminal may secure time for RF frequency retuning. For example, the MTC terminal secures time for RF frequency re-tuning through the last partial symbol of the first subframe. Accordingly, the PUSCH data is transmitted by rate matching by an amount corresponding to the secured time interval (e.g, number of symbols). Thereafter, PUCCH transmission is performed.
  • a PUSCH transmission is scheduled in a first subband of a first subframe
  • a PUCCH transmission is scheduled in a second subband of a second subframe located immediately after the first subframe, and a first subband and a second subband.
  • the MTC terminal may secure
  • the MTC terminal secures time for RF frequency re-tuning during the initial or last some symbols of the subframe of the PUSCH, PUSCH data is rate matched by an amount corresponding to the corresponding time interval.
  • the amount of rate matched symbols may be all symbols of one subframe, but is not limited thereto.
  • the MTC UE may perform rate matching by dropping the PUSCH transmission for PUCCH transmission or by puncturing the PUSCH symbol for a time required for re-tuning. have.
  • the PUCCH includes periodic CSI reporting
  • the subframe #n, subframe # (n-1) and / or subframe # (n + 1) including the periodic CSI include the periodic CSI.
  • PUCCH may not be transmitted.
  • a periodic CSI report may be piggybacked on the PUSCH and transmitted in subframe #n.
  • the MTC UE may transmit the next subframe without performing the transmission of the SRS. For example, SRS transmission is scheduled in the first subband of the first subframe, PUCCH transmission is scheduled in the second subband of the second subframe located immediately after the first subframe, and the first subband and the second subband. If the subbands are different, the MTC terminal may drop the SRS transmission to secure time for RF frequency re-tuning.
  • Aperiodic SRS transmission is scheduled in subframe #n, and PUCCH transmission for HARQ-ACK or SR is scheduled in subframe # (n + 1): priority to PUCCH for HARQ-ACK or SR In this case, aperiodic SRS may not be transmitted.
  • the SRS is transmitted and the PUCCH is not transmitted. It may not be, but is not limited thereto.
  • the same method as above may be applied even when the PUCCH is transmitted in the previous subframe and the SRS is transmitted in the next subframe.
  • the MTC terminal When UL data / signal is transmitted in different subbands on consecutive subframes by another method other than the above-mentioned methods (1) to (7), the MTC terminal first transmits UL data / signal in the time domain. Can be prioritized. In detail, the MTC terminal may transmit the data / signal transmitted in the first subframe prior to the UL data / signal except for the periodic CSI and the periodic SRS, but may not transmit the data / signal in the second subframe.
  • the MTC terminal may perform subframe n and subframe. Priority is given to UL transmission on subframe n or UL transmission on n + 1 based on the priority between channels transmitted in n + 1.
  • a time for RF retuning may not be set, and a time for RF retuning may be set only in a subframe in which a low priority UL transmission is performed. If the UL transmission priority is the same, the RF re-tuning time may be set equally divided into the front and rear subframes.
  • the priority of the UL transmission may be determined by the type of the physical channel transmitted UL or information included in the physical channel, but is not limited thereto.
  • the UE may give priority to subframe n.
  • the MTC terminal may determine the priority according to at least some of the schemes mentioned in the above-described embodiments.
  • PRACH transmission> HARQ-ACK or SR transmission eg, PUCCH transmission for HARQ-ACK or SR>
  • Aperiodic CSI reporting eg, PUSCH transmission for aperiodic CSI reporting
  • Aperiodic SRS transmission UL data transmission (eg, PUSCH transmission for UL data)> periodic CSI report transmission (eg, PUCCH)> priority may be set in order of periodic SRS transmission.
  • the MTC terminal may give priority to the SR.
  • the network or the terminal knows which transmission is to be performed in advance (eg, in subframe n-1), It can be (i) when the MTC terminal receives an uplink grant (eg, DCI), an aperiodic CSI request, or an aperiodic SRS request before or after subframe n-3, (ii) a UL to be transmitted in subframe n + 1
  • the data / signal is a periodically set SPS PUSCH, periodic CSI or periodic SRS
  • MTC short-mai subframe n-5 or earlier PDCCH order eg, indicating that the base station to transmit the PRACH to the UE If the PRACH transmission is reserved in subframe n-1 by receiving the PDCCH) or by the UE-initiated PRACH, there may be other cases (iv). For example, cases may be included in which UL data / signals to be transmitted in subframe n + 1 are known
  • the MTC terminal receives an RRC configuration (radio resource control configuration) (S1105).
  • the RRC configuration may include information on a subband in which a physical uplink shared channel (PUSCH) is transmitted.
  • PUSCH physical uplink shared channel
  • the subband in which the PUSCH is transmitted may be frequency hopped based on the RRC configuration.
  • the MTC terminal transmits the first uplink signal through the first subband in the first subframe (S1110).
  • the MTC terminal re-tunes the frequency from the first subband to the second subband (S1115).
  • the MTC terminal transmits a second uplink signal through the second subband in the second subframe (S1120).
  • the MTC terminal If the first subframe and the second subframe are continuous with each other, the MTC terminal, the first uplink signal in at least some symbols of the last n symbols of the first subframe and the first n symbols of the second subframe.
  • frequency re-tuning may be performed instead of transmitting the second uplink signal.
  • the positions of the at least some symbols used for frequency re-tuning within the range of the last n symbols of the first subframe to the first n symbols of the second subframe may include the first uplink signal and the second uplink. It may be determined according to a preset priority between signals.
  • frequency re-tuning is performed in the first n symbols of the second subframe, and the second uplink signal takes precedence over the first uplink signal.
  • frequency re-tuning may be performed in the last n symbols of the first subframe.
  • At least some symbols for which frequency re-tuning is performed may be equally divided into the first subframe and the second subframe.
  • the first uplink signal includes a sounding reference signal (SRS) and the second uplink signal includes a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH)
  • SRS sounding reference signal
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the first uplink signal is a PUCCH (physical uplink control channel) and the second uplink signal is a PUSCH (physical uplink shared channel)
  • at least some symbols for which frequency re-tuning is performed include the first n symbols of the second subframe. Can be set on symbols.
  • the first uplink signal is a PUSCH and the second uplink signal is a PUCCH
  • at least some symbols for which frequency re-tuning is performed may be set on the last n symbols of the first subframe.
  • SRS sounding reference signal
  • a physical uplink control channel may take precedence over a physical uplink shared channel (PUSCH), and the PUSCH may take precedence over a sounding reference signal (SRS).
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • frequency re-tuning may be performed in the first n symbols of the second subframe.
  • frequency re-tuning may be performed in the last n symbols of the first subframe.
  • FIG. 13 illustrates a base station and a terminal applicable to an embodiment of the present invention.
  • the base station and the terminal illustrated in FIG. 14 may perform operations according to the above-described embodiments.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • BS base station
  • UE terminal
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments of the present invention have been described mainly based on the data transmission and reception relationship between the terminal and the base station. Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the term "terminal” may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • embodiments of the present invention may be applied to various wireless communication systems, including 3GPP based wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예에 따르면 MTC 단말이, 서로 연속하는 제1 서브프레임과 제2 서브프레임 상에서 서로 다른 서브밴드들을 통해서 상향링크 전송을 수행하기 위하여 주파수를 재조율을 수행하되, 제1 서브프레임의 마지막 n개 심볼들부터 제2 서브프레임의 처음 n개 심볼들의 범위 내에서 주파수 재조율에 사용되는 심볼들의 위치는, 전송하고자 하는 상향링크 신호들 간의 우선 순위에 따라서 결정될 수 있다.

Description

무선 통신 시스템에서 상향링크 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, MTC (machine type communication)을 지원하는 무선 통신 시스템에서 상향링크 MTC 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification 그룹 Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB), 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.44, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 전력 소모 등이 요구된다.
본 발명이 이루고자 하는 기술적 과제는, MTC 단말이 주파수 재조율을 수행함으로써 서로 다른 서브밴드들을 통해서 상향링크 신호를 전송하는 방법 및 이를 수행하는 장치를 제공하는데 있다.
본 발명의 다른 기술적 과제들이 상세한 설명으로부터 유출될 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에 따른 무선 통신 시스템에서 MTC (machine type communication) 단말이 상향링크 신호를 송신하는 방법은, 제1 서브프레임에서 제1 서브밴드를 통해서 제1 상향링크 신호를 전송하는 단계; 상기 MTC 단말의 주파수를 상기 제1 서브밴드로부터 제2 서브밴드로 재조율(re-tuning)하는 단계; 및 제2 서브프레임에서 상기 제2 서브밴드를 통해서 제2 상향링크 신호를 전송하는 단계를 포함하되, 상기 주파수를 재조율하는 단계에 있어서, 상기 제1 서브프레임과 상기 제2 서브프레임이 서로 연속하는 경우 상기 MTC 단말은, 상기 제1 서브프레임의 마지막 n개 심볼들 및 상기 제2 서브프레임의 처음 n개 심볼들 중 적어도 일부 심볼들에서 상기 제1 상향링크 신호 또는 상기 제2 상향링크 신호를 전송하는 대신에 상기 주파수 재조율을 수행하고, 상기 제1 서브프레임의 마지막 n개 심볼들부터 상기 제2 서브프레임의 처음 n개 심볼들의 범위 내에서 상기 주파수 재조율에 사용되는 상기 적어도 일부의 심볼들의 위치는, 상기 제1 상향링크 신호와 상기 제2 상향링크 신호 간에 사전 설정된 우선 순위에 따라서 결정될 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에 따른 MTC (machine type communication) 단말은, 제1 서브프레임에서 제1 서브밴드를 통해서 제1 상향링크 신호를 전송하고, 제2 서브프레임에서 제2 서브밴드를 통해서 제2 상향링크 신호를 전송하는 송신기; 및 상기 MTC 단말의 주파수를 상기 제1 서브밴드로부터 상기 제2 서브밴드로 재조율(re-tuning)하는 프로세서를 포함하되, 상기 프로세서는, 상기 제1 서브프레임과 상기 제2 서브프레임이 서로 연속하는 경우, 상기 제1 서브프레임의 마지막 n개 심볼들 및 상기 제2 서브프레임의 처음 n개 심볼들 중 적어도 일부 심볼들에서 상기 제1 상향링크 신호 또는 상기 제2 상향링크 신호를 전송하는 대신에 상기 주파수 재조율을 수행하고, 상기 제1 서브프레임의 마지막 n개 심볼들부터 상기 제2 서브프레임의 처음 n개 심볼들의 범위 내에서 상기 주파수 재조율에 사용되는 상기 적어도 일부의 심볼들의 위치는, 상기 제1 상향링크 신호와 상기 제2 상향링크 신호 간에 사전 설정된 우선 순위에 따라서 결정될 수 있다.
바람직하게는, 상기 제1 상향링크 신호가 상기 제2 상향링크 신호보다 우선하는 경우, 상기 주파수 재조율은 상기 제2 서브프레임의 처음 n개 심볼들에서 수행되고, 상기 제2 상향링크 신호가 상기 제1 상향링크 신호보다 우선하는 경우, 상기 주파수 재조율은 상기 제1 서브프레임의 마지막 n개 심볼들에서 수행될 수 있다.
보다 바람직하게는, 상기 제1 상향링크 신호와 상기 제2 상향링크 신호가 동일한 우선 순위를 갖는 경우, 상기 주파수 재조율이 수행되는 적어도 일부의 심볼들은 상기 제1 서브프레임과 상기 제2 서브프레임에 균등하게 나누어 설정될 수 있다.
바람직하게는, 상기 제1 상향링크 신호가 SRS(sounding reference signal)를 포함하고, 상기 제2 상향링크 신호가 신호가 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)를 포함하는 경우, 상기 주파수 재조율이 수행되는 적어도 일부의 심볼들은 상기 제1 서브프레임의 마지막 심볼을 포함하고, 상기 SRS의 전송은 드롭(drop)될 수 있다.
바람직하게는, 상기 제1 상향링크 신호가 PUCCH(physical uplink control channel)이고, 상기 제2 상향링크 신호가 PUSCH(physical uplink shared channel)인 경우, 상기 주파수 재조율이 수행되는 적어도 일부의 심볼들은 상기 제2 서브프레임의 처음 n개 심볼들 상에 설정되고, 상기 제1 상향링크 신호가 상기 PUSCH이고 상기 제2 상향링크 신호가 상기 PUCCH인 경우, 상기 주파수 재조율이 수행되는 적어도 일부의 심볼들은 상기 제1 서브프레임의 마지막 n개 심볼들 상에 설정될 수 있다.
바람직하게는, SRS(sounding reference signal)가 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)와 동일한 서브프레임 상에 설정되고, 상기 SRS의 서브밴드가 상기 PUCCH 또는 상기 PUSCH의 서브밴드와 상이하면, 상기 SRS의 전송은 드롭될 수 있다.
바람직하게는, 상기 사전 설정된 우선 순위에 따르면, PUCCH(physical uplink control channel)는 PUSCH(physical uplink shared channel)보다 우선하고, 상기 PUSCH는 SRS(sounding reference signal)보다 우선할 수 있다.
바람직하게는, 상기 MTC 단말은 PUSCH(physical uplink shared channel)가 전송되는 서브밴드에 대한 RRC 설정(radio resource control configuration)을 수신하되, 상기 PUSCH가 전송되는 서브밴드는, 상기 RRC 설정에 기초하여 주파수 호핑될 수 있다.
바람직하게는, 상기 제1 상향링크 신호가 PRACH(physical random access channel)를 포함하는 경우, 상기 주파수 재조율은 상기 제2 서브프레임의 처음 n개 심볼들에서 수행되고, 상기 제2 상향링크 신호가 상기 PRACH를 포함하는 경우, 상기 주파수 재조율은 상기 제1 서브프레임의 마지막 n개 심볼들에서 수행될 수 있다.
본 발명의 일 실시예에 따르면, MTC 단말이 서로 다른 서브밴드들을 통해서 상향링크 신호를 전송하기 위하여 주파수 재조율을 수행하는데 있어서 우선 순위에 따라서 주파수 재조율에 필요한 심볼을 결정함으로써, 보다 효율적이고 정확하게 상향링크 신호가 전송될 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 4는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면이다.
도 5는 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 6은 LTE TDD 시스템에서 무선 프레임의 구조를 예시한다.
도 7은 반송파 집성(carrier aggregation) 기법을 설명하는 개념도이다.
도 8은 일 실시예에 따른 RB 할당을 예시한다.
도 9는 RB 할당의 다른 일 실시예를 나타낸다.
도 10은 DVRB의 할당을 예시한다.
도 11은 본 발명의 일 실시예에 따른 MTC 단말의 상향링크 채널을 예시한다.
도 12는 본 발명의 일 실시예에 따른 MTC 단말의 UL 신호 송신 방법을 예시한다.
도 13은 본 발명의 일 실시예에 따른 단말과 기지국을 도시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서에서, 기지국의 명칭은 RRH(remote radio head), 송신 포인트(transmission point; TP), 수신 포인트(reception point; RP), eNB, 중계기(relay)등을 포함하는 포괄적인 용어로 사용된다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Trans안테나 포트 Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.4, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
셀룰라 OFDM 무선 패킷 통신 시스템에서 상/하향링크 데이터 패킷 전송은 서브프레임 단위로 이루어지며 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다.
본 발명에서는 기술상의 편의를 위하여 다음과 같은 용어를 정의한다. (i) RE(Resource Element): 데이터 또는 그 밖의 제어 채널의 변조 심볼이 매핑되는 가장 작은 주파수-시간 단위. 한 OFDM 심볼에 M개의 부반송파를 통하여 신호가 전송되고 한 서브프레임에 N개의 OFDM 심볼이 전송된다면 한 서브프레임에는 MxN개의 RE가 존재한다. (ii) PRB(Physical Resource Block): 데이터를 전송하는 단위 주파수-시간 자원. 일반적으로 한 PRB는 주파수-시간 영역에서 연속하는 RE들로 구성되며, 한 서브프레임 안에는 다수의 PRB가 정의된다. (iii) VRB(Virtual Resource Block): 데이터 전송을 위한 가상적인 단위 자원. 일반적으로 하나의 VRB가 포함하는 RE의 개수는 하나의 PRB가 포함하는 RE의 개수와 같으며, 실제 데이터 전송에서 하나의 VRB는 하나의 PRB에 매핑되거나 혹은 하나의 VRB가 다수의 PRB의 일부 영역에 매핑될 수 있다. (iv) LVRB(Localized Virtual Resource Block): VRB의 한 타입. 하나의 LVRB는 하나의 PRB에 매핑되며 서로 다른 LVRB가 매핑되는 PRB는 중복되지 않는다. LVRB는 곧 PRB로 해석될 수도 있다. (v) DVRB(Distributed Virtual Resource Block): VRB의 한 타입. 하나의 DVRB는 다수의 PRB 내의 일부 RE들에매핑되며 서로 다른 DVRB에 매핑되는 RE는 중복되지 않는다. (vi) NPRB: 시스템의 PRB의 개수, (vii) NLVRB: 시스템에서 사용 가능한 LVRB의 개수, (viii) NDVRB: 시스템에서 사용 가능한 DVRB의 개수, (ix) NLVRB _ UE: 하나의 UE가 할당 받는 최대 LVRB의 개수, (x) NDVRB_UE: 하나의 UE가 할당 받는 최대 DVRB의 개수 (xi)Nsubset: Subset의 개수.
3GPP LTE에서는 1개의 RB는 12개의 subcarrier와 한 slot을 구성하는 OFDM심볼의 수로 이루어진다. 즉, Normal CP(Cyclic Prefix)를 사용하는 경우 1개의 slot에는 7개의 OFDM심볼이 있으므로 12x7개의 RE가 하나의 RB를 이룬다. 이러한 RB는 한 서브프레임의 첫번째 slot의 RB와 두번째 slot의 RB가 pair를 이루어 (RB-pair) 단말에게 할당되게 된다.
도 4는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 4를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 참조 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element 그룹)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 상향링크 HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산 인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE(Control Channel Element)로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원 할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야하는지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC(cyclic redundancy check) 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 5는 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 5을 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히, 도 5는 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
또한, 한 서브프레임 내에서 사운딩 참조 신호가 전송될 수 있는 시간은 하나의 서브프레임에서 시간 축 상에서 가장 마지막에 위치하는 심볼이 있는 구간이며, 주파수 상으로는 데이터 전송 대역을 통하여 전송된다. 동일한 서브프레임의 마지막 심볼로 전송되는 여러 단말의 사운딩 참조 신호들은 주파수 위치에 따라 구분이 가능하다.
도 6은 LTE TDD 시스템에서 무선 프레임의 구조를 예시한다. LTE TDD 시스템에서 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 2개의 슬롯을 포함하는 4개의 일반 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(Guard Period, GP) 및 UpPTS(Uplink Pilot Time Slot)을 포함하는 특별 서브프레임(special subframe)으로 구성된다.
상기 특별 서브프레임에서, DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 즉, DwPTS는 하향링크 전송으로, UpPTS는 상향링크 전송으로 사용되며, 특히 UpPTS는 PRACH 프리앰블이나 SRS 전송의 용도로 활용된다. 또한, 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
한편, LTE TDD 시스템에서 상향링크/하향링크 서브프레임 설정(UL/DL configuration)은 아래의 표 1과 같다.
[표 1]
Figure PCTKR2016004824-appb-I000001
상기 표 1에서 D는 하향링크 서브프레임, U는 상향링크 서브프레임을 지시하며, S는 상기 특별 서브프레임을 의미한다. 또한, 상기 표 1는 각각의 시스템에서 상향링크/하향링크 서브프레임 설정에서 하향링크-상향링크 스위칭 주기 역시 나타나있다.
이하에서는 반송파 집성(carrier aggregation) 기법에 관하여 설명한다. 도 7은 반송파 집성(carrier aggregation)을 설명하는 개념도이다.
반송파 집성은 무선 통신 시스템이 보다 넓은 주파수 대역을 사용하기 위하여, 단말이 상향링크 자원(또는 콤포넌트 반송파) 및/또는 하향링크 자원(또는 콤포넌트 반송파)으로 구성된 주파수 블록 또는 (논리적 의미의) 셀을 복수 개 사용하여 하나의 커다란 논리 주파수 대역으로 사용하는 방법을 의미한다. 이하에서는 설명의 편의를 위하여 콤포넌트 반송파라는 용어로 통일하도록 한다.
도 7을 참조하면, 전체 시스템 대역(System Bandwidth; System BW)은 논리 대역으로서 최대 100 MHz의 대역폭을 가진다. 전체 시스템 대역은 다섯 개의 콤포넌트 반송파를 포함하고, 각각의 콤포넌트 반송파는 최대 20 MHz의 대역폭을 가진다. 콤포넌트 반송파는 물리적으로 연속된 하나 이상의 연속된 부반송파를 포함한다. 도 7에서는 각각의 콤포넌트 반송파가 모두 동일한 대역폭을 가지는 것으로 도시하였으나, 이는 예시일 뿐이며 각각의 콤포넌트 반송파는 서로 다른 대역폭을 가질 수 있다. 또한, 각각의 콤포넌트 반송파는 주파수 영역에서 서로 인접하고 있는 것으로 도시되었으나, 상기 도면은 논리적인 개념에서 도시한 것으로서, 각각의 콤포넌트 반송파는 물리적으로 서로 인접할 수도 있고, 떨어져 있을 수도 있다.
중심 반송파(Center frequency)는 각각의 콤포넌트 반송파에 대해 서로 다르게 사용하거나 물리적으로 인접된 콤포넌트 반송파에 대해 공통된 하나의 중심 반송파를 사용할 수도 있다. 일 예로, 도 7에서 모든 콤포넌트 반송파가 물리적으로 인접하고 있다고 가정하면 중심 반송파 A를 사용할 수 있다. 또한, 각각의 콤포넌트 반송파가 물리적으로 인접하고 있지 않은 경우를 가정하면 각각의 콤포넌트 반송파에 대해서 별도로 중심 반송파 A, 중심 반송파 B 등을 사용할 수 있다.
본 명세서에서 콤포넌트 반송파는 레거시 시스템의 시스템 대역에 해당될 수 있다. 콤포넌트 반송파를 레거시 시스템을 기준으로 정의함으로써 진화된 단말과 레거시 단말이 공존하는 무선 통신 환경에서 역지원성(backward compatibility)의 제공 및 시스템 설계가 용이해질 수 있다. 일 예로, LTE-A 시스템이 반송파 집성을 지원하는 경우에 각각의 콤포넌트 반송파는 LTE 시스템의 시스템 대역에 해당될 수 있다. 이 경우, 콤포넌트 반송파는 1.25, 2.5, 5, 10 또는 20 Mhz 대역폭 중에서 어느 하나를 가질 수 있다.
반송파 집성으로 전체 시스템 대역을 확장한 경우에 각 단말과의 통신에 사용되는 주파수 대역은 콤포넌트 반송파 단위로 정의된다. 단말 A는 전체 시스템 대역인 100 MHz를 사용할 수 있고 다섯 개의 콤포넌트 반송파를 모두 사용하여 통신을 수행한다. 단말 B1~B5는 20 MHz 대역폭만을 사용할 수 있고 하나의 콤포넌트 반송파를 사용하여 통신을 수행한다. 단말 C1 및 C2는 40 MHz 대역폭을 사용할 수 있고 각각 두 개의 콤포넌트 반송파를 이용하여 통신을 수행한다. 상기 두 개의 콤포넌트 반송파는 논리/물리적으로 인접하거나 인접하지 않을 수 있다. 단말 C1은 인접하지 않은 두 개의 콤포넌트 반송파를 사용하는 경우를 나타내고, 단말 C2는 인접한 두 개의 콤포넌트 반송파를 사용하는 경우를 나타낸다.
LTE 시스템의 경우 1개의 하향링크 콤포넌트 반송파와 1개의 상향링크 콤포넌트 반송파를 사용하는 반면, LTE-A 시스템의 경우 도 6과 같이 여러 개의 콤포넌트 반송파들이 사용될 수 있다. 이때 제어 채널이 데이터 채널을 스케줄링하는 방식은 기존의 링크 반송파 스케쥴링 (Linked carrier scheduling) 방식과 크로스 반송파 스케쥴링 (Cross carrier scheduling) 방식으로 구분될 수 있다.
보다 구체적으로, 링크 반송파 스케쥴링은 단일 콤포넌트 반송파를 사용하는 기존 LTE 시스템과 같이 특정 콤포넌트 반송파를 통하여 전송되는 제어채널은 상기 특정 콤포넌트 반송파를 통하여 데이터 채널만을 스케줄링 한다.
한편, 크로스 반송파 스케쥴링은 반송파 지시자 필드(Carrier Indicator Field; CIF)를 이용하여 주 콤포넌트 반송파(Primary CC)를 통하여 전송되는 제어채널이 상기 주 콤포넌트 반송파를 통하여 전송되는 혹은 다른 콤포넌트 반송파를 통하여 전송되는 데이터 채널을 스케줄링 한다.
이하, LTE 시스템에서 상향링크 전송 전력 제어 방법에 관하여 설명한다.
단말이 자신의 상향링크 전송 전력을 제어하는 방법은 개루프 전력 제어 (Open Loop Power Control; OLPC)와 폐루프 전력 제어 (Closed Loop Power Control; CLPC))를 포함한다. 이 중에서, 전자는 단말이 속하는 셀의 기지국으로부터의 하향링크 신호 감쇄를 추정하고 이를 보상하는 형태로 전력 제어를 하기 위한 인자로서, 단말에서부터 기지국까지의 거리가 더 멀어져서 하향링크의 신호 감쇄가 크면 상향링크의 전송 전력을 더 높이는 방식으로 상향링크 전력을 제어한다. 그리고 후자는 기지국에서 상향링크 전송 전력을 조절하는데 필요한 정보(즉, 제어 신호)를 직접 전달하는 방식으로 상향링크 전력을 제어한다.
다음 수학식 1은 반송파 집성 기법을 지원하는 시스템에 있어서 서빙 셀 c 에서 서브프레임 인덱스 i 상에서 PUSCH와 PUCCH를 동시에 전송하지 않고 PUSCH만 전송하는 경우의 단말의 전송 전력을 결정하기 위한 식이다
[수학식 1]
Figure PCTKR2016004824-appb-I000002
다음 수학식 2는 반송파 집성 기법을 지원하는 시스템에 있어서 서빙 셀 c 의 서브프레임 인덱스 i 에서 PUCCH와 PUSCH를 동시에 전송하는 경우에, PUSCH 전송 전력을 결정하기 위한 식이다.
[수학식 2]
Figure PCTKR2016004824-appb-I000003
이하에서 상기 수학식 1 및 수학식 2와 관련하여 기술할 파라미터들은 서빙 셀 c 에서의 단말의 상향링크 전송 전력을 결정하는 것이다. 여기서, 상기 수학식 1의 PCMAX,c(i)는 서브프레임 인덱스 i 에서의 단말의 전송 가능한 최대 전력을 나타내고, 상기 수학식 2의 P^ CMAX,c(i)는 PCMAX,c(i)의 선형 값(linear value)을 나타낸다. 상기 수학식 2의 P^ PUCCH(i)는 PPUCCH(i)의 선형 값(linear value)을 나타낸다(여기서, PPUCCH(i)는 서브프레임 인덱스 i 에서의 PUCCH 전송 전력을 나타낸다.
다시 수학식 1에서, MPUSCH,c(i)는 서브프레임 인덱스 i에 대해 유효한 자원 블록 수로 표현된 PUSCH 자원 할당의 대역폭을 나타내는 파라미터로서, 기지국이 할당하는 값이다. P0_ PUSCH,c(i) 는 상위 계층으로부터 제공된 셀-특정 노미널 콤포넌트(nominal component) P0_NOMINAL_ PUSCH,c(j)와 상위 계층에서 제공된 단말-특정 콤포넌트 P0_ UE _ PUSCH,c(j)의 합으로 구성된 파라미터로서, 기지국이 단말에게 알려주는 값이다.
상향링크 그랜트에 따른 PUSCH 전송/재전송의 경우 j 는 1이고, 랜덤 액세스 응답에 따른 PUSCH 전송/재전송의 경우 j 는 2이다. 그리고, P0 _ UE _ PUSCH,c(2)=0 및 P0_NOMINAL_PUSCH,c(2)=P0_PRE +△PREAMBLE_ Msg3 이며, 파라미터 P0_PRE 와 △PREAMBLE_ Msg3는 상위 계층에서 시그널링된다.
αc(j)는 경로손실 보상 인자(pathloss compensation factor)로서, 상위 계층에서 제공되어 기지국이 3 비트로 전송해 주는 셀-특정 파라미터로서 j는 0 또는 1일 때, α∈{0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}이고, j는 2일 때, αc(j)=1 이다. αc(j)는 기지국이 단말에게 알려주는 값이다.
경로 손실 PLC는 단말이 dB 단위로 계산한 하향링크 경로손실(또는 신호 손실) 추정치로서, PLC = referenceSignalPower - higher layer filteredRSRP 로 표현되며 여기서 referenceSignalPower는 기지국이 상위 계층으로 단말에게 알려줄 수 있다.
fc(i)는 서브프레임 인덱스 i에 대해 현재 PUSCH 전력 제어 조정 상태를 나타내는 값으로서, 현재의 절대값 또는 축적된 값으로 표현될 수 있다. 축적(accumulation)이 상위 계층으로부터 제공되는 파라미터에 기초하여 인에이블(enable)되거나 또는 TPC command δPUSCH,c가 CRC가 임시(Temporary) C-RNTI로 스크램블링된 서빙 셀 c에 대한 DCI 포맷 0와 함께 PDCCH에 포함되면 fc(i)=fc(i-1)+δPUSCH,c(i-KPUSCH)을 만족한다. δPUSCH,c(i-KPUSCH)는 서브프레임 i-KPUSCH에서 DCI 포맷 0/4 또는3/3A와 함께 PDCCH로 시그널링되며, 여기서, fc(0)는 축적값의 리셋(reset) 후의 첫 번째 값이다.
KPUSCH 의 값은 LTE 표준에서 다음과 같이 정의되어 있다.
FDD(Frequency Division Duplex)에 대해서는, KPUSCH의 값은 4이다. TDD에서 KPUSCH의 값은 다음 표 2와 같다.
[표 2]
Figure PCTKR2016004824-appb-I000004
DRX 상태일 경우를 제외하고, 매 서브프레임에서 단말은 단말의 C-RNTI를 가지고 DCI 포맷 0/4의 PDCCH를 또는 단말의 TPC-PUSCH-RNTI를 가지고 DCI 포맷 3/3A의 PDCCH 및 SPS C-RNTI에 대한 DCI 포맷을 디코딩하려고 시도한다. 서빙 셀 c에 대한 DCI 포맷 0/4 및 DCI 포맷 3/3A는 동일 서브프레임에서 검출되면, 단말은 DCI 포맷 0/4에서 제공되는 δPUSCH,c를 이용하여야 한다. 서빙 셀 c를 위해 디코딩되는 TPC 명령(command)가 없거나 DRX가 생기거나 또는 인덱스 i인 서브프레임이 TDD에서 상향링크 서브프레임이 아닌 서브프레임에 대해 δPUSCH,c은 0 dB 이다.
DCI 포맷 0/4와 함께 PDCCH 상에서 시그널링되는 δPUSCH,c축적값은 다음 표 3과와 같다. DCI 포맷 0과 함께하는 PDCCH는 SPS activation으로 인증(validation)되거나 PDCCH를 릴리즈(release)하면, δPUSCH,c는 0dB 이다. DCI 포맷 3/3A와 함께 PDCCH 상에서 시그널링되는 δPUSCH,c축적값은 다음 표 3의 SET1의 하나이거나 상위 계층에서 제공되는 TPC-인덱스(index) 파라미터에 의해 결정되는 다음 표 4의 SET2의 하나이다.
[표 3]
Figure PCTKR2016004824-appb-I000005
[표 4]
Figure PCTKR2016004824-appb-I000006
서빙 셀 c에서의 전송 최대 전력 P^ CMAX(i)에 도달하면, 서빙 셀 c에 대해 양(positive)의 TPC 명령(command)이 축적되지 않는다. 반면, 단말이 최저 전력에 도달하면, 음(negative)의 TPC 명령이 축적되지 않는다.
다음 수학식 3은 LTE 시스템에서의 PUCCH에 대한 상향링크 전력 제어 관련 식이다.
[수학식 3]
Figure PCTKR2016004824-appb-I000007
상기 수학식 3에서, i는 서브프레임 인덱스, c는 셀(cell) 인덱스이다. 단말이 두 개의 안테나 포트 상에서 PUCCH를 전송하도록 상위 계층에 의해 설정되어 있다면 △TxD(F')의 값은 상위 계층에 의해 단말에 제공되며 그 이외의 경우에는 0이다. 이하 설명하는 파라미터는 셀 인덱스 c인 서빙 셀에 대한 것이다.
여기서, PCMAX,c(i)는 단말의 전송가능한 최대 전력을 나타내고, P0_ PUCCH는 셀-특정(cell-specific) 파라미터의 합으로 구성된 파라미터로서 기지국이 상위 계층 시그널링을 통해 알려주며, PLC은 단말이 dB 단위로 계산한 하향링크 경로손실(또는 신호 손실) 추정치로서, PLC=referenceSignalPower - higher layer filteredRSRP 로 표현된다. h(n)은 PUCCH 포맷에 따라 달라지는 값이고, nCQI는 채널 품질 정보(CQI)에 대한 정보 비트의 수이고, nHARQ는 HARQ 비트의 수를 나타낸다. △F_PUCCH(F) 값은 PUCCH 포맷 1a에 대해 상대적인 값으로 PUCCH 포맷 #F에 대응하는 값으로 기지국이 상위 계층 시그널링을 통해 알려주는 값이다. g(i)는 인덱스 i 서브프레임의 현재 PUCCH 전력 제어 조정 스테이트(adjustment state)를 나타낸다.
P0_ UE _ PUCCH값이 상위 계층에서 변경될 때, g(0)=0이고 그렇지 않으면, g(0)=△Prampup + δmsg2이다. δmsg2는 랜덤 액세스 응답에서 지시되는 TPC 명령(command)이며, △Prampup는 상위 계층에서 제공하는 첫 번째부터 마지막 프리앰블까지 총 전력 램프-업(ramp-up)에 해당한다.
프라이머리 셀에서의 전송 최대 전력 PCMAX,c(i)에 도달하면, 프라이머리 셀에 대해 양(positive)의 TPC 명령이 축적되지 않는다. 반면, 단말이 최저 전력에 도달하면, 음(negative)의 TPC 명령이 축적되지 않는다. 단말은 P0 _ UE _ PUCCH값이 상위 계층에 의해 변경되거나 랜덤 액세스 응답 메시지를 수신할 때 축적(accumulation)을 리셋한다.
한편, 다음 표 5 및 표 6은 DCI 포맷에서의 TPC 명령(Command) 필드가 지시하는 δPUCCH값을 나타낸다. 특히, 표 5는 DCI 포맷 3A를 제외한 나머지 DCI에서 지시하는 δPUCCH값이고, 표 6은 DCI 포맷 3A에서 지시하는 δPUCCH값이다.
[표 5]
Figure PCTKR2016004824-appb-I000008
[표 6]
Figure PCTKR2016004824-appb-I000009
다음 수학식 4은 LTE 시스템에서의 사운딩 참조 신호(SRS)의 전력 제어 관련 식이다.
[수학식 4]
Figure PCTKR2016004824-appb-I000010
상기 수학식 4에서 i는 서브프레임 인덱스, c는 셀(cell) 인덱스이다. 여기서, PCMAX,c(i) 는 단말의 전송가능한 최대 전력을 나타내고, PSRS _ OFFSET,C(m)는 상위 계층으로 설정되는 값으로, m이 0인 경우는 주기적(periodic) 사운딩 참조 신호를, m이 0이 아닌 경우 경우는 비주기적(aperiodic) 사운딩 참조 신호를 송신하는 경우에 대응한다. MSRS,c는 서빙 셀 c의 서브프레임 인덱스 i상에서의 사운딩 참조 신호 대역폭으로서, 자원 블록의 개수로 표현된다.
fc(i)는 서빙 셀 c의 서브프레임 인덱스 i에 대해 현재 PUSCH 전력 제어 조정 상태를 나타내는 값이고, P0_ PUCCH,c(j) 및 αc(j) 역시 상기 수학식 1 및 2에서 설명한 것과 같다.
이하, 사운딩 참조 신호에 대하여 설명한다.
사운딩 참조 신호는 CAZAC(Constant Amplitude Zero Auto Correlation) 시퀀스로 구성되며, 여러 단말로부터 전송된 사운딩 참조 신호들은 아래 수학식 5에 따른 서로 다른 순환 천이(cyclic shift) 값(α)을 갖는 CAZAC 시퀀스(rSRS(n)=ru,v (a)(n))이다.
[수학식 5]
Figure PCTKR2016004824-appb-I000011
여기서 nCS SRS는 상위 계층에 의하여 각 단말에 설정되는 값으로, 0 내지 7 사이의 정수 값을 갖는다. 따라서, 순환 천이 값은 nCS SRS에 따라 8개의 값을 가질 수 있다.
하나의 CAZAC 시퀀스로부터 순환 천이를 통하여 발생된 CAZAC 시퀀스들은 각자 자신과 다른 순환 천이 값을 갖는 시퀀스들과 영의 상관 값(zero-correlation)을 갖는 특성이 있다. 이러한 특성을 이용하여 동일한 주파수 영역의 사운딩 참조 신호들은 CAZAC 시퀀스 순환 천이 값에 따라 구분될 수 있다. 각 단말의 사운딩 참조 신호는 기지국에서 설정하는 파라미터에 따라 주파수 상에 할당된다. 단말은 상향링크 데이터 전송 대역폭 전체로 사운딩 참조 신호를 전송할 수 있도록 사운딩 참조 신호의 주파수 도약을 수행한다.
이하에서는 LTE 시스템에서 사운딩 참조 신호를 송신하기 위한 물리 자원을 맵핑하는 구체적인 방법에 관하여 살펴본다.
사운딩 참조 신호 시퀀스 rSRS(n)는 우선 단말의 전송 전력 PSRS를 만족하기 위하여 진폭 스케일링 인자 βSRS가 곱해진 후, 인덱스가 (k,l)인 자원 요소(Resource Element; RE)에 rSRS(0)부터 아래 수학식 6에 의하여 맵핑된다.
[수학식 6]
Figure PCTKR2016004824-appb-I000012
여기서 k0는 사운딩 참조 신호의 주파수 영역 시작 지점을 지칭하며, 아래 수학식 7과 같이 정의된다.
[수학식 7]
Figure PCTKR2016004824-appb-I000013
단, nb는 주파수 위치 인덱스를 지시한다. 또한, 일반적인 상향링크 서브프레임을 위한 k'0는 아래 수학식 8과 같이 정의되며, 상향링크 파일럿 타임 슬롯(UpPTS)를 위한 k'0는 아래 수학식 9와 같이 정의된다.
[수학식 8]
Figure PCTKR2016004824-appb-I000014
[수학식 9]
Figure PCTKR2016004824-appb-I000015
수학식 8 및 수학식 9에서 kTC는 상위 계층을 통하여 단말로 시그널링되는 송신 콤(transmissionComb) 파라미터로서, 0 또는 1의 값을 갖는다. 또한, nhf는 제 1 하프프레임(half frame)의 상향링크 파일럿 타임 슬롯에서는 0이고, 제 2 하프프레임의 상향링크 파일럿 타임 슬롯에서는 0이다. MRS sc,b는 아래 수학식 10과 같이 정의된 부반송파 단위로 표현된 사운딩 참조 신호 시퀀스의 길이, 즉 대역폭이다.
[수학식 10]
Figure PCTKR2016004824-appb-I000016
수학식 10에서 mSRS,b는 상향링크 대역폭 NUL RB에 따라 기지국으로부터 시그널링되는 값이다.
상향링크 데이터 전송 대역폭 전체로 사운딩 참조 신호를 전송할 수 있도록 단말은 사운딩 참조 신호의 주파수 도약(frequency hopping)을 수행할 수 있으며, 이러한 주파수 도약은 상위 계층으로부터 주어진 0 내지 3의 값을 갖는 파라미터 bhop에 의하여 설정된다.
사운딩 참조 신호의 주파수 도약이 비활성화된 경우, 즉 bhop≥BSRS 인 경우, 주파수 위치 인덱스 nb는 아래 수학식 11과 같이 일정한 값을 갖는다. 여기서 nRRC 는 상위 계층에서 주어지는 파라미터이다.
[수학식 11]
Figure PCTKR2016004824-appb-I000017
한편, 사운딩 참조 신호의 주파수 도약이 활성화된 경우, 즉 bhop<BSRS 인 경우, 주파수 위치 인덱스 nb는 아래 수학식 12 및 수학식 13에 의하여 정의된다.
[수학식 12]
Figure PCTKR2016004824-appb-I000018
[수학식 13]
Figure PCTKR2016004824-appb-I000019
여기서 nSRS는 사운딩 참조 신호를 송신한 횟수를 계산하는 파라미터이며 아래 수학식 14에 의한다.
[수학식 14]
Figure PCTKR2016004824-appb-I000020
수학식 14에서 TSRS는 사운딩 참조 신호의 주기이며, TOFFSET은 사운딩 참조 신호의 서브프레임 오프셋을 지칭한다. 또한, ns는 슬롯 번호, nf는 프레임 번호를 지칭한다.
사운딩 참조 신호의 주기 TSRS와 서브프레임 오프셋 TOFFSET를 설정하기 위한 사운딩 참조 신호 설정 인덱스(ISRS)는 FDD 시스템과 TDD 시스템인지 여부에 따라 아래 표 7 내지 표 10 와 같이 정의된다. 특히 표 7은 FDD 시스템인 경우, 표 8은 TDD 시스템인 경우를 나타낸다. 또한, 아래 표 7 및 표 8은 트리거링 타입 0, 즉 주기적 SRS에 관한 주기와 오프셋 정보이다.
[표 7]
Figure PCTKR2016004824-appb-I000021
[표 8]
Figure PCTKR2016004824-appb-I000022
한편, 상기 주기적 SRS의 경우, FDD 시스템 혹은 상기 표 8에서 TSRS > 2인 TDD 시스템에서는 아래 수학식 15를 만족하는 서브프레임에서 전송이 이루어진다. 단, 수학식 15에서 FDD 시스템의 경우 kSRS={0,1,...,9}이고, TDD 시스템의 경우 kSRS는 아래 표 9에 따라 결정된다.
[수학식 15]
Figure PCTKR2016004824-appb-I000023
[표 9]
Figure PCTKR2016004824-appb-I000024
또한, 상기 표 8에서 TSRS=2 인 TDD 시스템에서는 아래 수학식 16을 만족하는 서브프레임에서 전송이 이루어진다.
[수학식 16]
Figure PCTKR2016004824-appb-I000025
아래 표 10 및 표 11은 트리거링 타입 1, 즉 비주기적 SRS에 관한 주기와 오프셋 정보이다. 특히 표 10은 FDD 시스템인 경우, 표 11은 TDD 시스템인 경우를 나타낸다.
[표 10]
Figure PCTKR2016004824-appb-I000026
[표 11]
Figure PCTKR2016004824-appb-I000027
한편, 서브프레임 #n 에서 상기 비주기적 SRS의 트리거링 비트를 검출한다면, 서브프레임 인덱스 #n+k (단, k≥4) 이후 아래 수학식 17 또는 수학식 18을 만족하는 첫 번째 서브프레임에서 상기 트리거링 비트에 대응하는 비주기적 SRS이 전송된다. 특히, 아래 수학식 17은 FDD 시스템 혹은 상기 표 11에서 TSRS > 2인 TDD 시스템을 위한 것이고, 아래 수학식 18은 상기 표 11에서 TSRS = 2 인 TDD 시스템을 위한 것이다. 단, 수학식 17에서 FDD 시스템의 경우 kSRS={0,1,...,9}이고, TDD 시스템의 경우 kSRS는 상기 표 9에 따라 결정된다.
[수학식 17]
Figure PCTKR2016004824-appb-I000028
[수학식 18]
Figure PCTKR2016004824-appb-I000029
자원 할당 타입 (Resource Allocation Type)
이하, 자원할당 단위인 RB(resource block)를 스케줄링하는 방법을 살펴본다.
시스템의 PRB의 수 (NPRB)를 PRB 하나의 조밀도로 자유롭게 스케줄링을 하기 위해서는 스케줄링을 받는 UE당 NPRB 비트의 비트맵이 필요하게 된다. 시스템의 PRB의 수 (NPRB)가 클 경우 이를 전송하는 것은 제어정보량에 부담이 된다. 따라서 조밀도를 줄이거나 대역을 분할하여 일부 대역에서만 조밀도를 높여서 전송하는 등의 방법이 필요하다.
3GPP LTE에서는 앞서 제기한 바와 같이 bitmap을 이용한 전송시의 오버헤드를 고려하여 bitmap을 구성하는 방식이 제안되었다.
도 8은 일 실시예에 따른 RB 할당을 예시한다.
자원할당을 위한 시그널링은 헤더와 비트맵으로 구성된다. 헤더는 시그널링 방식을 알려주어 비트맵의 해석하는 방법을 달리 할 수 있게 된다. 먼저 비트맵의 활용은 크게 RBG방식과 Subset방식의 두 가지 방법으로 나뉜다.
RBG방식은 RB를 몇 개씩 묶어 그룹핑하여 이를 기본단위로 할당하는 방식을 취한다. 그룹의 크기에 따라서 자원할당의 조밀도가 낮아지게 되는 반면 비트맵의 비트 수를 감소시킬 수 있다. 도 8 예시에서는 NPRB=32이므로 1개 RB단위의 자원할당을 위해서는 총 32비트의 비트맵이 필요하게 된다. 그러나 RB 3개를 그룹핑하여 (P= MRBG =3) RBG (RB group)단위의 조밀도로 자원을 할당한다면 총 11개의 그룹이 존재하므로 11비트의 비트맵만이 필요하게 되어 제어정보량을 크게 줄일 수 있다. 반면에, 이러한 RBG그룹 단위로 할당할 경우 조밀도의 감소로 인해서 3개 미만의 RB할당이 불가능하여 세밀한 자원할당이 불가능하게 된다. RBG의 크기는 표13과 같이 시스템 주파수 대역에 설정된 RB의 수에 따라서 정의되어 있다.
[표 13]
Figure PCTKR2016004824-appb-I000030
RBG방식을 보완하기 위하여 서브셋 방식이 사용된다. 서브셋 방식은 RBG 몇 개를 서브셋으로 설정하고 해당 서브셋안에서 RB단위로 자원을 할당한다. RBG방식에서의 11비트의 비트맵을 이용하여 위해서 RBG단위와 같은 수인 3개의 서브셋을 설정하면, NRB/P=ceiling(32/3)=11 이다. 따라서, 동일한 11비트로 서브셋 내의 RB들을 RB단위로 지시가 가능해 진다. 다만, 비트맵이 RBG를 단위 할당을 사용하는지 아니면 서브셋 방식을 사용하는지, 서브셋 방식이면 어느 서브셋을 표시하는지 알려줘야 하기 때문에 헤더 정보가 필요하다. 만일, header 정보가 RBG방식인지 subset방식인지만 지시하고, 서브셋의 종류는 RBG에 사용되는 bitmap의 일부 비트를 이용한다고 하면, 전체 subset안의 RB를 지시하지 못하는 경우가 발생한다. 이를 해결하기 위해서 RBG bitmap에서 추가로 1비트를 빼내어서 subset bitmap이 지칭하는 RB의 위치를 shift 시킬 수 있다.
도 9는 RB 할당의 다른 일 실시예를 나타낸다.
단말기에 한 덩어리의 인접한 RB들만을 할당하는 경우를 고려 하면, 할당 되는 RB의 정보는 RB의 시작점과 그 개수로 표현이 가능하다. 이 경우 도 9와 같이 각 시작점에 따라서 사용할 수 있는 RB의 길이는 각각 달라지게 되어 최종적으로 RB 할당의 조합의 수는 NRB(NRB+1)/2 가지가 된다. 따라서 이에 필요한 비트의 수는 ceiling(log2(NRB(NRB+1)/2)) 비트가 된다. 여기서 ceiling(x) 는 가장 가까운 정수로의 올림 값을 의미한다.
결국 비트맵 방식에 비해서, NRB수의 증가에 따른 비트수의 증가가 그리 크지 않은 장점이 있다. 이후부터는 이러한 방식을 compact 방식이라 칭하자.
예를 들어, 전체 RB수가 32일 때 1 RB 단위의 조밀도로 자원을 스케줄링 할 경우 비트맵을 사용한다면 32비트가 필요한 반면, Compact 방식을 사용할 경우 ceiling(log2(32(32+1)/2))=10 비트가 필요하게 된다. 위에서 RBG단위로 할당할 경우의 11비트에 비해서는 필요 비트의 수가 크게 감소하지 않으나 1RB 의 조밀도로 자원을 할당할 수 있는 장점이 있으며, 반면에 두 개 이상의 비연속적인 자원을 할당할 수 없는 단점이 존재한다.
도 10은 DVRB의 할당을 예시한다.
먼저 시스템 대역에 따라서 Gap의 크기인 NGap 값과 RBG의 크기인 MRBG 값이 결정되고, 이에 따라서 인터리버의 크기가 결정된다. DVRB index를 인터리빙하여 PRB에 대응 시킬 때 연속적인 DVRB 인덱스가 인접하는 PRB로 대응하지 않고 분산되도록 미리 배치하며, 두 번째 슬롯의 경우 첫 번째 슬롯과 떨어져서 매핑되도록 Cyclic Shift를 추가하여 매핑하여 분할부 집합의 분산도 가능하게 하며, 이 값들에 추가로 전체 DVRB 개수의 반 이상에 해당되는 값들은 앞서 정의된 NGap 조건에 맞도록 Offset 값이 추가되어 매핑된다. 이러한 매핑방법은 앞서 설명한 RBG방식과 subset방식을 이용한 bitmap방식과의 조합을 고려하여 인접 DVRB인덱스는 가급적 동일 Subset에 포함되고, RBG를 순차적으로 채워나갈 수 있도록 구성되어 있다.
이와 같은 절차를 통해서 UE가 2개의 DVRB를 할당 받은 경우 다이버시티 차수가 4로 증가하여 다이버시티 이득을 더 얻을 수 있도록 하고 있다.
MTC (Machine Type Communication)
상술된 LTE-A 시스템에 대한 사항들 중 적어도 일부는 후술하는 MTC를 지원하는 무선 통신 시스템, 기지국 및/또는 MTC 단말에 적용될 수 있다. LTE-A의 차기 시스템은 계량기 검침, 수위측정, 감시 카메라의 활용, 자판기의 재고보고 등의 데이터 통신을 위주로 하는 저가/저사양의 단말을 구성하는 것을 고려하고 있다. 이러한 단말을 편의상 MTC (Machine Type Communication) 단말 또는 BL(Bandwidth reduced Low complexity)/CE(Coverage Enhancement) UE라고 통칭한다. MTC 단말의 경우 전송 데이터량이 적고 상/하향 링크 데이터 송수신이 가끔씩 발생한다. 따라서, 이와 같은 낮은 데이터 전송률에 맞춰서 단말기의 단가를 낮추고 배터리 소모를 줄이는 것이 효율적이다.
일반적인, Non-MTC 단말에 대해서는 캐리어 당 최대 20MHz 대역폭이 지원된다. 하지만, MTC 단말의 비용을 저감하기 위해서 지원되는 대역폭의 크기가 20MHz 보다 작게 설정될 수 있다(e.g., 6 RB). 이와 같은 대역폭 저감은 상/하향링크, RF/베이스밴드 장치 및 데이터/제어 채널에 적용될 수 있다. 구체적으로 MTC 단말의 경우, 실제 해당 셀의 동작 시스템 대역폭과는 다르게, 예를 들어 6 RB로 저감된 대역폭 상에서 MTC 단말의 상/하향링크 동작이 수행될 수 있다. 이하에서, 저감된 대역(reduced band)은, 협대역(narrow band) 또는 서브 밴드(subband)로 명칭 될 수 있다.
도 11은 본 발명의 일 실시예에 따른 MTC 단말의 상향링크 채널을 예시한다. 도 11을 참조하면, 시스템의 상향링크 대역폭은 20 MHz이고, 단말에 설정된 대역폭은 1.08 MHz 이라고 가정한다. 이 때, MTC 단말의 구현의 편의를 위해서 단말의 대역폭 내에서 일부 주파수 자원은 데이터 전송에 사용되지 않을 수 있다.
이하에서는, 설명의 편의상 하나의 서브밴드의 크기가 6 RB인 것을 가정하지만, 다른 크기의 서브밴드도 지원될 수 있다. 특정 셀의 대역폭의 크기가 NRB 일 때, 해당 대역폭에는 'NRB / 6'을 초과하지 않는 최대의 정수개의 서브밴드들이 존재할 수 있다. 이하에서, 하나의 셀의 대역폭은 편의상 시스템 대역폭으로 명칭 될 수 있다. 대역폭은 DL 대역폭 또는 UL 대역폭을 의미할 수 있다. DL 대역폭과 UL 대역폭은 시스템 환경에 따라서 동일하게 설정되거나 상이하게 설정될 수도 있다.
MTC 단말은 이동성이 적고, 따라서 채널 환경이 거의 변하지 않는 특성을 지니고 있다. 현재 LTE-A에서는 이러한 MTC 단말이 넓은 상/하향링크 커버리지(coverage)를 갖도록 다양한 CE 기법들이 논의되고 있다. MTC 단말의 커버리지 향상 및 열악한 전파 환경을 극복하기 위한 예시적 방안로서, 반복 전송 기법이 사용될 수 있다 반복 전송 마다 리던던시 버전은 동일하거나 상이하게 설정될 수 있다.
한편, 시스템 대역 중 MTC 단말이 사용하는 서브밴드의 채널 상태가 열악하다면, 신호가 열화되는 문제점뿐 아니라 열악한 서브밴드에서 장시간 동안 신호를 반복적으로 송수신하는 MTC 단말의 배터리가 빠르게 소모되는 문제점이 있다. 이와 같은 문제점을 해결하기 위하여, 신호가 반복 전송되는 서브밴드가 시간에 따라 변경될 수 있다(e.g., 주파수 호핑 또는 주파수 호핑 서브밴드). 서브밴드가 변경됨에 따라서 다이버시티 이득(diversity gain)이 발생되고, 반복 전송의 회수가 감소될 수 있다. 따라서, 주파수 호핑은 MTC 단말의 신호 송수신 성능을 향상시키고 및 MTC 단말의 배터리 소모를 감소시킬 수 있다. 따라서, 기지국은 MTC 단말에 주파수 호핑 여부 및 주파수 호핑 서브밴드에 대한 정보를 설정할 수 있다. MTC 신호의 주파수 호핑의 경우 동일한 서브밴드 (또는 대역) 내에서 신호가 전송되는 주파수가 호핑되는 것이 아니라, 서브밴드 자체가 변경되어(e.g., 호핑) 전송된다.
1. PUSCH 자원 할당 및 PUCCH 자원 할당
MTC 단말은 기지국으로부터 자신의 동작 대역폭 내에서 PUSCH 자원을 할당받아 동작한다. PUSCH 자원은 예컨대, 다음과 같은 방법에 의해 할당될 수 있다.
(1) PUSCH 자원 할당 방법 1
기지국은 상향링크 시스템 대역폭(Uplink system bandwidth)을 다수의 서브밴드들로 분할하고, 특정 서브밴드의 PUSCH 자원을 MTC 단말에게 할당할 수 있다. 기지국은 PUSCH 자원이 할당되는 서브밴드에 대한 정보를 상위 계층 시그널링 (e.g, RRC signaling)이나 MTC PDCCH (e.g, DCI)를 통해서 지시할 수 있다.
다른 방법으로 PUSCH 자원이 할당되는 위치를 사전 정의된 위치로 고정할 수도 있다.
또 다른 방안으로써, PUSCH 자원이 할당되는 서브밴드가 주파수 호핑에 따라서 변경될 수도 있다. 예컨대, PUSCH 자원을 포함하는 서브밴드가 사전 정의된 주파수 호핑 패턴을 따라서 변경될 수 있다. 구체적으로, MTC 단말을 위해 총 N개의 서브밴드들이 존재하고, 한 무선 프레임 내에서 각 서브프레임에 대응하는 서브밴드의 인덱스가 순차적으로 {0, 2, 4, 0, 2, 4, 0, 2, 4, 1}이라고 가정한다. MTX 단말은 서브밴드 0번, 2번, 4번..등 순으로 매 서브프레임 마다 서브밴드를 호핑하며 PUSCH를 전송할 수 있다. PUSCH 전송을 위한 서브밴드의 호핑 패턴은 셀 특정(cell-specific) 할 수도 있고, 단말 특정하게 설정될 수도 있다. 예를 들어, 단말 특정한 서브밴드의 호핑 패턴 설정은 다중의 단말들 사이에 발생될 수 있는 충돌을 저감하기 위하여 사용될 수 있다.
(2) PUSCH resource 할당 방법 2
본 발명의 다른 일 실시예에 따르면 상향링크 시스템 대역폭 내에서 MTC PDCCH (e.g DCI)를 통하여 MTC 단말에 PUSCH 자원이 할당될 수 있다. 일반적으로 DL 데이터 전송(e.g., PDSCH)은 PDCCH를 통해 DL 자원 할당이 수신된 서브프레임과 동일한 서브프레임에서 수행되지만, UL 데이터 전송(e.g., PUSCH)는 PDCCH를 통해 UL 자원 할당이 수신된 서브프레임으로부터 4개의 서브프레임 이후에 수행된다. 따라서, 일반적인 상향링크 전송의 경우 단말은 PDCCH를 통해서 UL 자원 할당 정보를 수신한 후, 할당된 UL 자원에 대응하는 RF 주파수로 튜닝하고(e.g., 4 서브프레임 시간 이내에) UL 데이터를 전송할 수 있다.
기지국은 PUCCH 자원을 MTC 단말에게 설정하기 위하여 PUCCH 자원에 대한 정보를 시그널링할 수 있다. PUCCH 자원에 대한 정보를 시그널링하는 방법은 예컨대, (i) PUCCH 자원이 시작되는 RB 인덱스를 시그널링하는 방안, 추가적으로 ACK/NACK 자원 인덱스 및/또는 CSI 자원 인덱스가 시그널링될 수 있다. (ii) ACK/NACK이 전송되는 RB의 시작 인덱스를 시그널링하는 방안, (iii) CSI를 전송하는 RB의 시작 인덱스를 시그널링하는 방안, (iv) PUCCH를 전송할 때의 중심 주파수(center frequency)를 시그널링하는 방안 등이 사용될 수 있다.
(3) PUCCH 자원 할당
일 실시예에 따르면(e.g., PUSCH 자원 할당 방법 1), PUCCH 자원은 PUSCH 전송을 위해 설정된 서브밴드 내에 설정될 수도 있다. 예컨대, PUSCH 자원 및 PUCCH 자원이 모두 같은 서브밴드에 존재할 수 있다.
다른 예에 따르면, PUSCH 자원과 PUCCH 자원은 각각 서로 다른 서브밴드에 설정될 수도 있다.
PUSCH가 정적으로 고정되는 경우 또는 PUSCH가 준 정적으로 설정되는 경우에는 PUCCH와 PUSCH의 위치가 하나의 서브밴드에 설정되는 바람직하다. 하지만, PUSCH가 상위 계층 시그널링(higher layer signaling) 이나 DCI에 의해 동적으로 설정되는 경우, PUSCH 위치 변경에 따라서 PUCCH의 위치를 매번 변경하는 오버헤드를 줄이기 위하여 PUSCH와 PUCCH는 각각 서로 다른 서브밴드들에 설정될 수 도 있다.
PUSCH 자원 할당 방법 2의 경우는 PUSCH 자원은 샇향링크 시스템 대역 내에서 DCI를 전송하는 PDCCH에 의해서 가변할 수 있다. PUCCH 자원은 상위 계층 시그널링 (e.g, RRC)을 이용하여 준 정적으로 설정될 수 있다.
2. MTC 단말의 UL 전송
(1) SRS 전송
본 발명의 일 실시예에 따르면(e.g., PUSCH 자원 할당 방법 1을 지원하기 위해서) MTC 단말은 기지국이 각 서브밴드의 UL 채널 정보를 획득 할 수 있도록 SRS를 전송할 수 있다.
SRS 전송은 서브밴드 내로 제한되며, MTC 단말이 해당 서브밴드 이외의 대역에 대한 SRS 전송을 하도록 설정되었다면, (해당 서브밴드 이외의 대역에 대한) SRS 전송은 수행하지 않을 수 있다.
만약 MTC 단말이 두 서브밴드들에 걸쳐서 SRS 전송을 하도록 설정되었을 경우에도 SRS 전송은 수행하지 않을 수 있다. 또, 다른 방법으로 MTC 단말은 해당 서브밴드에 속하는 대역에 대해서만 SRS를 전송할 수도 있다.
MTC 단말은 최적의 서브밴드를 선택을 지원하기 위하여 순차적으로 각 서브밴드에 대한 SRS를 전송할 수 있다. 이 경우 SRS 전송 대역은, 해당 서브 밴드 전체가 아니라 특정 주파수 자원으로 설정될 수도 있다.
초기 서브밴드의 선택에 있어서, MTC 단말은 랜덤 엑세스를 수행한 후 각 서브밴드에 대한 SRS를 순차적으로 전송하고 나서 초기 서브밴드를 할당 받을 수 있다.
기존의 SRS 전송 방식에 따르면 서브프레임의 마지막 SC-FDMA 심볼에서 SRS가 전송되도록 제한되었지만, 이와 같은 제약 사항은 MTC 단말의 SRS 전송에 적용되지 않을 수 있다. 예컨대, MTC 단말의 SRS의 전송 대역이 특정 서브밴드로 한정되는 경우, 마지막 SC-FDMA 심볼외에 다른 심볼에서 SRS가 전송될 수도 있다.
본 발명의 일 실시예에 따르면, 주파수 조율(frequency tuning)등에 필요한 지연(e.g., Guard Period)을 고려하여 서브프레임의 마지막 n개 심볼(e.g., 서브프레임의 두 번째 슬롯) 또는 처음 n개 심볼(e.g., 서브프레임의 첫 번째 슬롯) 에는 UL/DL 송수신에 이용되지 않을 수 있다(e.g., 상위 계층 시그널링). 예컨대, MTC 단말이 상향링크 물리 채널을 전송하는 경우 상향링크 물리 채널이 전송되는 서브밴드가 변경될 수 있다(e.g., 주파수 호핑 등). 구체적으로, MTC 단말이 제1 서브프레임에서는 제1 서브밴드를 통해서 제1 UL 물리 채널을 전송하고, 제2 서브프레임에서는 제2 서브밴드를 통해서 제2 물리 채널을 전송한다고 가정한다. 이 때, 제1 서브프레임과 제2 서브프레임은 서로 연속하는 서브프레임이고, 제1 서브밴드와 제2 서브밴드가 서로 상이하다면, MTC 단말이 제1 UL 물리 채널을 전송한 이후 제2 UL 물리 채널을 전송하기 위해서는 주파수 재조율(frequency retuning)이 수행되어야 한다.
MTC 단말이 일반 단말과 달리 주파수 재조율이 필요한 이유는, MTC 단말은 저 비용, 낮은 복잡도를 위하여 한번에 처리할 수 있는 주파수 대역의 크기 특정 서브밴드로 제한될 수 있기 때문이다. 다시 말해, non-MTC 단말은 전체 시스템 대역(e.g., 제1 서브밴드+제2 서브밴드를 포함)을 한번에 처리할 수 있으므로, non-MTC 단말은 제1 서브프레임에서 제1 서브밴드를 통해 신호를 전송한 뒤 곧바로 제2 서브프레임에서 제2 서브밴드를 통해서 신호를 전송할 수도 있다(e.g., 주파수 재조율을 위한 GP 기간이 요구되지 않음). 하지만, MTC 단말은 전체 시스템 대역 중 일부 대역(e.g., 1 서브밴드)만 한번에 처리할 수 있으므로, MTC 단말은 제1 서브프레임에서 제1 서브밴드를 통해 신호를 전송한 뒤 제2 서브밴드로 주파수 재조율을 수행하여야 한다. MTC 단말은 제2 서브밴드로 주파수 재조율을 수행한 뒤에 제2 서브프레임에서 제2 서브밴드를 통해서 신호를 전송할 수 있다. 이와 같이, MTC 단말의 경우 연속된 서브프레임들에서 서로 다른 서브밴드들을 통해서 신호를 전송하기 위해서는 주파수 재조율에 필요한 시간이 확보되어야 한다. 주파수 재조율에 필요한 시간을 확보하기 위하여, 제1 서브프레임의 마지막 n개 심볼들 및/또는 제2 서브프레임의 처음 n개 심볼들 중 적어도 일부가 주파수 재조율을 위하여 설정될 수 있다. MTC 단말은 주파수 재조율을 수행하는 동안 UL 신호 전송을 수행할 수 없다. 즉, 주파수 재조율이 수행되는 심볼들은 UL 신호의 전송이 수행되지 않는다.
주파수 재조율에 요구되는 시간은 예컨대, n개 SC-FDMA 심볼(e.g., 2 심볼)이라고 예시하지만, 이에 한정되지 않는다. 또한, 상술된 실시예에서, 제1 서브프레임의 마지막 n개 심볼들 또는 제2 서브프레임의 처음 n개 심볼들이 주파수 재조율에 사용되는 것을 예시하였으나, 또 다른 실시예에 따르면 제1 서브프레임의 마지막 n/2 심볼(e.g., 1심볼) 및 제2 서브프레임의 처음 n/2 심볼(e.g., 1심볼)이 주파수 재조율을 위해 설정될 수도 있다. 이와 같이, 주파수 재조율을 위하여 UL/DL 전송이 수행되지 않는 심볼들은 상위 계층 시그널링을 통해 설정될 수도 있으며, 이에 한정되지 않는다.
한편, 제1 서브프레임의 제1 서브밴드에 SRS 전송이 스케줄링된 상황에서 SRS가 전송되지 않는 것을 방지하기 위해 SRS가 제1 서브프레임의 마지막 심볼외에 다른 심볼에서 전송되도록 설정될 수도 있다. 예컨대, 제1 서브프레임에서 주파수 재조율을 위해서 마지막 n 심볼들이 설정될 때, 마지막 n 심볼들을 제외한 나머지 가용한 심볼들 중에서 마지막 심볼 또는 다른 심볼에서 SRS 가 전송될 수도 있다.
SRS가 전송되는 심볼은 상위 계층 시그널링에 의해서 설정될 수 있다. 상위 계층 시그널링은 (i) 각 서브프레임의 처음 심볼 및 마지막 심볼 넘버, (ii) SRS가 전송되는 심볼의 인덱스를 설정(e.g., 단말 특정)할 수 있다. (i) 각 서브프레임의 처음 심볼 및 마지막 심볼 넘버 설정을 위한 상위 계층 시그널링: 기지국은 각 서브프레임의 시작과 끝을 단말 특정하게 설정할 수 있다. 이와 같은 설정은 하향링크 서브프레임에 적용될 수도 있다. 또한 이러한 설정은 MTC 단말이 서브프레임들간의 송신 온/오프 전환시 발생하는 과도 기간(transient period)에 대한 요구조건(requirement)를 맞추지 못했을 경우 다음 단말의 송신에 대한 피해를 줄이거나, half-duplex 단말이 DL에서 UL로 전환시 발생하는 딜레이에 대한 갭(gap) 설정을 회피하기 위하여 사용될 수도 있다.
일 실시예에 따르면(e.g., PUSCH 자원 할당 방법 2를 지원하기 위해서), MTC 단말은 기지국이 UL 시스템 대역폭에 대한 채널 정보를 획득할 수 있도록 SRS를 전송할 수 있다.
한편, 일 실시예에 따르면(e.g., PUSCH 자원 할당 방법 1 혹은 2와 같은 PUSCH 자원 할당 방식의 경우), (i) SRS 및 PUCCH의 연속 전송이 스케줄되는 경우, (ii) PUSCH의 연속 전송이 스케줄되는 경우(e.g., 제1 서브프레임에서 PUSCH를 전송하고, 제2 서브프레임에서 PUSCH를 전송하는 경우), 또는 (iii) PUCCH 및 PUSCH의 연속 전송이 스케줄링되는 경우 등에 있어서, RF 주파수 조율(tuning)을 위해 전송의 제한이 발생할 수 있다. RF 재조율을 위해 필요한 시간은 한 서브프레임에 해당하는 일부 또는 모든 심볼에 해당하는 시간일 수 있으며, 이에 한정되지 않는다. 예컨대, RF 재조율에 필요한 시간은 2 심볼 길이에 대응할 수 있다.
(2) 하나의 서브프레임에서 PUSCH SRS 전송
PUSCH 전송을 위해 할당받은 시간 자원(e.g., 서브프레임)에서 SRS 전송이 스케줄되고, SRS 전송을 위해 설정된 주파수 자원(e.g., SRS를 위한 서브밴드)이 MTC 단말의 동작(operating) 대역폭(e.g., PUSCH를 위한 서브밴드)을 벗어나 있을 경우, SRS 전송을 위한 RF 주파수 재조율(re-tuning) 시간이 필요하기 때문에 MTC 단말은 SRS 전송을 수행하지 않고, SRS 전송을 위한 심볼에 PUSCH 데이터를 전송할 수 있다.
다른 방법으로 MTC 단말은 SRS 전송을 수행하고, PUSCH의 서브프레임의 초기 일부 심볼을 통해서 RF 주파수 재조율(re-tuning)을 위한 시간을 확보할 수도 있다. 따라서, PUSCH 데이터는 확보된 시간 구간(e.g, 심볼 개수)에 해당하는 양만큼 레이트 매칭(rate matching)이 되어 전송될 수 있다.
또, 다른 방법으로 RF 주파수 재조율(re-tuning)을 위한 시간 구간이 심볼 길이보다 작을 경우, SRS 심볼을 해당 시간 구간만큼 줄여서 전송할 수 있다.
PUSCH 전송을 위해 할당받은 시간 자원에서 SRS 전송이 스케줄되고, SRS 전송이 스케줄된 주파수 자원이 MTC 단말의 동작(operating) 대역폭 내에 있을 경우, MTC 단말은 SRS를 전송하고, PUSCH 데이터는 SRS 전송 심볼 만큼 레이트 매칭(rate matching)할 수 있다.
(3) 하나의 서브프레임에서 PUCCH SRS 전송
PUCCH 전송을 위해 설정된 시간 자원(e.g., 서브프레임 또는 심볼)에서 SRS 전송이 스케줄되고, PUCCH 전송을 위한 주파수 자원(e.g., PUCCH를 위한 서브밴드)가 SRS 전송을 위한 주파수 자원(e.g., SRS를 위한 서브밴드)가 다르면, MTC 단말은 PUCCH와 SRS를 같은 심볼에서 전송할 수 없다. MTC 단말은, SRS의 전송을 수행하지 않는다(e.g., PUCCH만 전송) .
(4) 이전 서브프레임에서 SRS 전송 및 다음 서브프레임에서 PUSCH 전송
제1 서브프레임의 제1 서브밴드에서 SRS 전송이 스케줄되고, 제1 서브프레임 바로 다음에 위치하는 제2 서브프레임의 제2 서브밴드에서 PUSCH 전송이 스케줄되고, 제1 서브밴드와 제2 서브밴드가 상이한 경우(e.g., MTC 단말이 지원하는 동작 대역폭을 초과하는 경우), MTC 단말은 RF 주파수 재조율을 위한 시간을 확보할 수 있다. 예컨대, MTC 단말은 제2 서브프레임의 일부 심볼을 RF 주파수 재조율을 위한 시간으로 설정할 수 있다. 따라서, PUSCH 데이터는 확보된 시간 구간(e.g, 심볼 개수)에 해당하는 양만큼 레이트 매칭(rate matching)이 되어 전송된다. 만약, 재조율에 요구되는 시간이 한 서브프레임에 해당하는 시간인 경우, PUSCH는 전송되지 않을 수 있다.
다른 다른 방법으로, MTC 단말은 제1 서브프레임에서 SRS의 전송을 수행하지 않고, 제2 서브프레임에서 PUSCH를 전송할 수 있다. 예컨대, SRS 의 전송보다는 PUSCH 전송의 우선 순위가 높은 것으로 설정될 수 있다.
(i) 주기적(periodic) SRS 전송이 서브프레임 #n에서 스케줄되고, PUSCH 전송이 서브프레임 #(n+1)에서 스케줄 되는 경우: MTC 단말은 PUSCH에 우선 순위를 두고 주기적(periodic) SRS를 드롭(drop)할 수 있다.
(ii) 비주기적(aperiodic) SRS 전송이 서브프레임 #n에서 스케줄되고, HARQ-ACK 및/또는 SR(Scheduling Request)를 포함하는 PUSCH 전송이 서브프레임 #(n+1)에서 스케줄되는 경우: MTC 단말은 HARQ-ACK 및/또는 SR(Scheduling Request)를 포함하는 PUSCH 에 우선 순위를 두고 비주기적(aperiodic) SRS를 드롭 할 수 있다.
(iii) 비주기적 SRS 전송이 서브프레임 #n에서 스케줄되고, 주기적(periodic) CSI 보고를 포함하는 PUSCH 전송이 서브프레임 #(n+1)에서 스케줄되는 경우: MTC 단말은 주기적 CSI 보고를 포함하는 PUSCH에 우선 순위를 두고 비주기적 SRS를 드롭 할 수 있다. 그 반대의 동작도 가능하다.
(iv) 비주기적 SRS 전송이 서브프레임 #n에서 스케줄되고, 비주기적 CSI 보고를 포함하는 PUSCH 전송이 서브프레임 #(n+1)에서 스케줄되는 경우: MTC 단말은 비주기적 CSI 보고를 포함하는 PUSCH에 우선 순위를 두고 비주기적 SRS를 드롭 할 수 있다. 그 반대의 동작도 가능하다.
(v) 비주기적 SRS 전송이 서브프레임 #n에서 스케줄되고, SPS(semi persistent scheduling) PUSCH 전송이 서브프레임 #(n+1)에서 스케줄되는 경우: MTC 단말은 비주기적 SRS에 우선 순위를 두고 SPS PUSCH를 드롭 할 수 있다. 그 반대의 동작도 가능하다.
(vi) 이전 서브프레임에서 SRS 전송을 위해 설정된 주파수 자원과 PUSCH 전송을 위해 할당 받은 주파수 자원이 MTC 단말의 동작(operating) 대역폭 내에 있을 경우(e.g., 동일한 서브밴드에 위치하는 경우), MTC 단말은 RF 주파수 재조율을 위하여 시간을 확보할 필요 없이 PUSCH 전송을 할 수 있다.
또 다른 방법으로 RF 주파수 재조율(re-tuning)을 위한 시간 구간이 심볼 길이보다 작을 경우, MTC 단말은 SRS 심볼을 해당 시간 구간만큼 줄여서 전송할 수 있다.
이전 서브프레임에서 PUSCH를 전송하고 다음 서브프레임에서 SRS를 전송하는 경우도 동일한 방법이 적용될 수 있다.
(5) PUSCH 연속 전송
이전 서브프레임에서 PUSCH 전송을 위해 할당된 자원에서 다음 서브프레임의 PUSCH 전송을 위해 할당받은 자원이 MTC 단말의 동작(operating) 대역폭 보다 벗어나 있을 경우(e.g., 서로 다른 서브밴드에 속하는 경우), MTC 단말은 RF 주파수 재조율(re-tuning)을 위한 시간을 확보 할 수 있다. 예컨대, 제1 서브프레임의 제1 서브밴드에서 PUSCH 전송이 스케줄되고, 제1 서브프레임 바로 다음에 위치하는 제2 서브프레임의 제2 서브밴드에서 PUSCH 전송이 스케줄되고, 제1 서브밴드와 제2 서브밴드가 상이한 경우(e.g., MTC 단말이 지원하는 동작 대역폭을 초과하는 경우), MTC 단말은 RF 주파수 재조율을 위한 시간을 확보할 수 있다. 이 때, PUSCH는 주파수 호핑 기반으로 반복 전송되는 동일한 PUSCH일 수도 있고, 또는 서로 다른 PUSCH들일 수도 있다.
MTC 단말은 제1 서브프레임의 마지막 n 심볼 및/또는 제2 서브프레임의 처음 n 심볼을 RF 주파수 재조율을 위한 시간으로 설정할 수 있다. 예컨대, 주파수 호핑 기반으로 반복 전송되는 동일한 PUSCH인 경우, MTC 단말은 제1 서브프레임의 마지막 1 심볼 및 제2 서브프레임의 처음 1 심볼을 RF 주파수 재조율을 위한 시간으로 이용할 수 있다.
따라서, 제1 서브프레임 및/또는 제2 서브프레임의 PUSCH 데이터는 확보된 시간 구간(e.g, 심볼 개수)에 해당하는 양만큼 레이트 매칭(rate matching)이 되어 전송된다.
이전 서브프레임에서 PUSCH 전송을 위해 할당된 자원과 다음 서브프레임의 PUSCH 전송을 위해 할당받은 자원이 MTC 단말의 동작(operating) 대역폭 내에 있을 경우(e.g., 동일한 서브밴드에 속하는 경우), MTC 단말은 RF 주파수 재조율을 위한 시간 확보 없이 PUSCH를 전송할 수 있다.
한편, 기지국은 PUSCH를 연속적으로 스케줄링하는 경우, RF 주파수 재조율(re-tuning)을 위한 시간이 필요하지 않도록 같은 자원(e.g., 동일한 서브밴드 내의 자원)을 할당하거나, 자원들 간의 주파수 도메인상 거리가 MTC 단말이 지원하는 최대 동작(operating) 대역폭을 벗어나지 않도록 자원을 할당할 수 있다.
(6) PUCCH와 PUSCH의 연속 전송
(i) 이전 서브프레임에서 PUCCH 전송을 위해 할당된 자원에서 다음 서브프레임의 PUSCH 전송을 위해 할당받은 자원이 MTC 단말의 동작(operating) 대역폭 보다 벗어나 있을 경우(e.g., 서로 다른 서브밴드에 속하는 경우), MTC 단말은 RF 주파수 재조율(re-tuning)을 위한 시간을 확보 할 수 있다. 예컨대, 제1 서브프레임의 제1 서브밴드에서 PUCCH 전송이 스케줄되고, 제1 서브프레임 바로 다음에 위치하는 제2 서브프레임의 제2 서브밴드에서 PUSCH 전송이 스케줄되고, 제1 서브밴드와 제2 서브밴드가 상이한 경우, MTC 단말은 RF 주파수 재조율을 위한 시간을 확보할 수 있다. 예컨대, MTC 단말은 제1 서브프레임에서 PUCCH를 전송한 후, 제2 서브프레임의 초기 일부 심볼을 통해서 RF 주파수 재조율(re-tuning)을 위한 시간을 확보한다. 따라서, PUSCH 데이터는 확보된 시간 구간(e.g, 심볼 개수)에 해당하는 양만큼 레이트 매칭(rate matching)이 되어 전송된다.
(ii) 이전 서브프레임에서 PUSCH 전송을 위해 할당된 자원에서 다음 서브프레임의 PUCCH 전송을 위해 할당받은 자원이 MTC 단말의 동작(operating) 대역폭 보다 벗어나 있을 경우(e.g., 서로 다른 서브밴드에 속하는 경우), MTC 단말은 RF 주파수 재조율(re-tuning)을 위한 시간을 확보 할 수 있다. 예컨대, 제1 서브프레임의 제1 서브밴드에서 PUSCH 전송이 스케줄되고, 제1 서브프레임 바로 다음에 위치하는 제2 서브프레임의 제2 서브밴드에서 PUCCH 전송이 스케줄되고, 제1 서브밴드와 제2 서브밴드가 상이한 경우, MTC 단말은 RF 주파수 재조율을 위한 시간을 확보할 수 있다. 예컨대, MTC 단말은 제1 서브프레임의 마지막 일부 심볼을 통해서 RF 주파수 재조율(re-tuning)을 위한 시간을 확보한다. 따라서, PUSCH 데이터는 확보된 시간 구간(e.g, 심볼 개수)에 해당하는 양만큼 레이트 매칭(rate matching)이 되어 전송된다. 이후 PUCCH 전송이 수행된다.
예건대, PUCCH와 PUSCH의 연속 전송의 경우, PUCCH를 손실없이 전송하기 위해서, MTC 단말은 PUSCH의 서브프레임의 초기 또는 마지막 일부 심볼 동안 RF 주파수 재조율(re-tuning)을 위한 시간을 확보하고, PUSCH 데이터는 해당 시간 구간에 해당하는 양만큼 레이트 매칭(rate matching) 된다.
일 실시예에 따르면, 레이트 매칭(rate matching)되는 심볼의 양은 한 서브프레임의 모든 심볼일 수 있으며, 이에 한정되지 않는다.
PUCCH가 HARQ-ACK 또는 SR을 포함하는 경우, MTC 단말은 PUCCH 전송을 위해 PUSCH 전송을 드롭하거나 재조율을 위해 필요한 시간만큼 PUSCH 심볼을 펑처링(puncturing)하여 레이트 매칭(rate matching)을 수행할 수 있다.
PUCCH가 주기적(periodic) CSI 보고를 포함하는 경우, PUSCH 전송이 수행되는 서브프레임 #n, 서브프레임 #(n-1) 및/또는 서브프레임 #(n+1)에는 주기적(periodic) CSI를 포함하는 PUCCH가 전송되지 않을 수 있다. 이 때, 서브프레임 #n에서 주기적(periodic) CSI 보고가 PUSCH에 피기백(piggy-back)되어 전송될 수 있다.
(7) SRS와 PUCCH의 연속 전송
이전 서브프레임에서 SRS 전송을 위해 설정된 주파수 자원에서 다음 서브프레임의 PUCCH 전송을 위해 설정된 자원이 MTC 단말의 동작(operating) 대역폭 보다 벗어나 있을 경우(e.g., 서로 다른 서브밴드에 속하는 경우), MTC 단말은 SRS의 전송을 수행하지 않고, PUCCH를 다음 서브프레임에서 전송할 수 있다. 예컨대, 제1 서브프레임의 제1 서브밴드에서 SRS 전송이 스케줄되고, 제1 서브프레임 바로 다음에 위치하는 제2 서브프레임의 제2 서브밴드에서 PUCCH 전송이 스케줄되고, 제1 서브밴드와 제2 서브밴드가 상이한 경우, MTC 단말은 RF 주파수 재조율을 위한 시간을 확보를 위하여 SRS 전송을 드롭할 수 있다.
(i) 주기적 SRS 전송이 서브프레임 #n에서 스케줄되고, PUCCH for HARQ-ACK, SR, or 주기적(periodic) CSI 전송이 서브프레임 #(n+1)에서 스케줄되는 경우: HARQ-ACK, SR, 또는 주기적(periodic) CSI를 전송하는 PUCCH에 우선 순위를 두고 주기적(periodic) SRS를 전송하지 않을 수 있다.
(ii) 비주기적 SRS 전송이 서브프레임 #n에서 스케줄되고, HARQ-ACK 또는 SR 을 위한 PUCCH 전송이 서브프레임 #(n+1) 에서 스케줄되는 경우: HARQ-ACK 또는 SR을 위한 PUCCH에 우선 순위를 두고 비주기적 SRS를 전송하지 않을 수 있다.
(iii) 이전 서브프레임에서 SRS 전송을 위해 설정된 주파수 자원에서 다음 서브프레임의 PUCCH 전송을 위해 설정된 자원이 MTC 단말의 동작(operating) 대역폭 보다 벗어나 있을 경우, SRS의 전송을 수행하고, PUCCH를 전송하지 않을 수도 있으며, 이에 한정되지 않는다.
(iv) 비주기적 SRS 전송이 서브프레임 #n에서 스케줄되고, 주기적 CSI 보고를 위한 PUCCH 전송이 서브프레임 #(n+1) 에서 스케줄되는 경우: 비주기적 SRS에 우선 순위를 두고 주기적 CSI 보고를 위한 PUCCH를 드롭할 수 있으며, 이에 한정되지 않는다.
이전 서브프레임에서 PUCCH가 전송되고, 다음 서브프레임에서 SRS가 전송되는 경우에도 위와 동일한 방법이 적용될 수 있다.
위에서 언급한 (1)~(7) 방법 이외의 또 다른 방법으로 연속된 서브프레임들 상에서 UL 데이터/신호가 서로 다른 서브밴드로 전송되는 경우, MTC 단말은 시간 영역에서 먼저 전송되는 UL 데이터/신호를 우선 할 수 있다. 구체적으로, MTC 단말은 제1 서브프레임에서 전송되는 데이터/신호가 주기적 CSI, 주기적 SRS를 제외한 다른 UL 데이터/신호이면 우선하여 전송하되, 제2 서브프레임의 데이터/신호는 전송하지 않을 수 있다. 예컨대, 서브프레임 n과 서브프레임 n+1에서의 연속적인 UL 전송의 서브밴드가 상이하고, (i) 서브프레임 n+1에서 SRS 이외의 전송이 있을 경우, 또는 (ii) 서브프레임 n+1에서 주파수 재조율 지연을 설정하고 UL 전송을 수행할 수 없는 경우, 또는 (iii) 서브프레임 n-1 에서 서브프레임 n+1에 전송할 채널에 대한 정보를 아는 경우 MTC 단말은 서브프레임 n과 서브프레임 n+1에서 전송되는 채널간의 우선 순위에 기초하여 서브프레임 n 상의 UL 전송 또는 n+1의 UL 전송에 우선순위를 둔다. 우선 순위가 높은 UL 전송이 수행되는 서프프레임에서는 RF 재조율을 위한 시간이 설정되지 않고, 우선 순위가 낮은 UL 전송이 수행되는 서프프레임에서만 RF 재조율을 위한 시간이 설정될 수 있다. 만약, UL 전송의 우선 순위가 같다면, RF 재조율 시간이 앞뒤 서브프레임에 균등하게 나누어 설정될 수도 있다. UL 전송의 우선 순위는 UL 전송되는 물리 채널의 타입이나 물리 채널에 포함된 정보에 의해서 결정될 수 있으며, 이에 한정되지 않는다.
만약, 단말이 우선 순위를 알지 못하는 경우는 서브프레임 n에 우선순위를 둘 수 있다.
MTC 단말은 상술된 실시예들 에서 언급한 방식 중 적어도 일부에 따라서 우선 순위를 결정할 수도 있다.
예컨대, PRACH 전송 > HARQ-ACK 또는 SR 전송(e.g., HARQ-ACK 또는 SR을 위한 위한 PUCCH 전송 > 비주기적 CSI 보고(e.g., 비주기적 CSI 보고를 위한 PUSCH 전송) > 비주기적 SRS 전송 > UL 데이터 전송(e.g., UL 데이터를 위한 PUSCH 전송) > 주기적 CSI 보고 전송(e.g., PUCCH) > 주기적 SRS 전송 순으로 우선 순위가 설정될 수 있다.
한편, HARQ-ACK 전송과 SR 전송이 연속하는 두 서브프레임들에서 스케줄된 경우(e.g., 충돌하는 경우), MTC 단말은 SR을 우선 시 할 수도 있다.
이와 같은 우선 순위에 대한 네트워크(e.g., 기지국)과 단말 간의 일관성(consistency)을 위해서, 사전에(e.g., 서브프레임 n-1에서) 네트워크 또는 단말이 어떤 전송이 수행될 것인지를 알 수 있는 경우는 다음과 같을 수 있다. (i) MTC 단말이 서브프레임 n-3 혹은 그 이전에 상향링크 승인(e.g., DCI), 비주기적 CSI 요청 또는 비주기적 SRS 요청을 수신하는 경우, (ii) 서브프레임 n+1에서 전송될 UL 데이터/신호가 주기적으로 설정되는된 SPS PUSCH, 주기적 CSI 또는 주기적 SRS인 경우, (iii) MTC 단마이 서브프레임 n-5 혹은 그 이전에 PDCCH order(e.g., 기지국이 단말에게 PRACH 전송 할 것을 지시하는 PDCCH)를 수신하거나 또는 UE-initiated PRACH 에 의해 서브프레임 n-1에서 PRACH 전송이 예약된 경우, (iv) 그 밖에 다른 경우들이 있을 수 있다. 예컨대, 단말 프로세싱 시간에 기초하여 서브프레임 n+1에서 전송될 UL 데이터/신호가 알려진 경우들이 포함될 수 있다.
도 12는 본 발명의 일 실시예에 따른 MTC 단말이 UL 신호를 송신 하는 방법을 예시한다. 상술된 설명과 중복되는 설명은 생략된다.
도 12를 참조하면, MTC 단말은 RRC 설정(radio resource control configuration)을 수신한다(S1105). RRC 설정은 PUSCH(physical uplink shared channel)가 전송되는 서브밴드에 대한 정보를 포함할 수 있다. 예컨대 PUSCH가 전송되는 서브밴드는 RRC 설정에 기초하여 주파수 호핑될 수 있다.
MTC 단말은 제1 서브프레임에서 제1 서브밴드를 통해서 제1 상향링크 신호를 전송한다(S1110).
MTC 단말은 주파수를 제1 서브밴드로부터 제2 서브밴드로 재조율(re-tuning)한다(S1115).
MTC 단말은 제2 서브프레임에서 제2 서브밴드를 통해서 제2 상향링크 신호를 전송한다(S1120).
제1 서브프레임과 제2 서브프레임이 서로 연속하는 경우 MTC 단말은, 제1 서브프레임의 마지막 n개 심볼들 및 제2 서브프레임의 처음 n개 심볼들 중 적어도 일부 심볼들에서 제1 상향링크 신호 또는 제2 상향링크 신호를 전송하는 대신에 주파수 재조율을 수행할 수 있다.
예컨대, 제1 서브프레임의 마지막 n개 심볼들부터 제2 서브프레임의 처음 n개 심볼들의 범위 내에서 주파수 재조율에 사용되는 적어도 일부의 심볼들의 위치는, 제1 상향링크 신호와 제2 상향링크 신호 간에 사전 설정된 우선 순위에 따라서 결정될 수 있다.
또한, 제1 상향링크 신호가 제2 상향링크 신호보다 우선하는 경우, 주파수 재조율은 제2 서브프레임의 처음 n개 심볼들에서 수행되고, 제2 상향링크 신호가 제1 상향링크 신호보다 우선하는 경우, 주파수 재조율은 제1 서브프레임의 마지막 n개 심볼들에서 수행될 수 있다.
아울러, 제1 상향링크 신호와 제2 상향링크 신호가 동일한 우선 순위를 갖는 경우, 주파수 재조율이 수행되는 적어도 일부의 심볼들은 제1 서브프레임과 제2 서브프레임에 균등하게 나누어 설정될 수 있다.
제1 상향링크 신호가 SRS(sounding reference signal)를 포함하고, 제2 상향링크 신호가 신호가 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)를 포함하는 경우, 주파수 재조율이 수행되는 적어도 일부의 심볼들은 제1 서브프레임의 마지막 심볼을 포함하고, SRS의 전송은 드롭(drop)될 수 있다.
제1 상향링크 신호가 PUCCH(physical uplink control channel)이고, 제2 상향링크 신호가 PUSCH(physical uplink shared channel)인 경우, 주파수 재조율이 수행되는 적어도 일부의 심볼들은 제2 서브프레임의 처음 n개 심볼들 상에 설정될 수 있다. 제1 상향링크 신호가 PUSCH이고 제2 상향링크 신호가 PUCCH인 경우, 주파수 재조율이 수행되는 적어도 일부의 심볼들은 제1 서브프레임의 마지막 n개 심볼들 상에 설정될 수 있다.
SRS(sounding reference signal)가 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)와 동일한 서브프레임 상에 설정되고, SRS의 서브밴드가 PUCCH 또는 PUSCH의 서브밴드와 상이하면, SRS의 전송은 드롭될 수 있다.
사전 설정된 우선 순위에 따르면, PUCCH(physical uplink control channel)는 PUSCH(physical uplink shared channel)보다 우선하고, PUSCH는 SRS(sounding reference signal)보다 우선할 수 있다.
제1 상향링크 신호가 PRACH(physical random access channel)를 포함하는 경우, 주파수 재조율은 제2 서브프레임의 처음 n개 심볼들에서 수행될 수 있다. 제2 상향링크 신호가 PRACH를 포함하는 경우, 주파수 재조율은 제1 서브프레임의 마지막 n개 심볼들에서 수행될 수 있다.
도 13은 본 발명에 실시예에 적용될 수 있는 기지국과 단말을 예시한다. 도 14에 도시된 기지국 및 단말은 상술된 실시예들에 따른 동작을 수행할 수 있다.
도 13을 참조하면, 무선 통신 시스템은 기지국(BS, 110) 및 단말(UE, 120)을 포함한다. 하향링크에서 송신기는 기지국(110)의 일부이고 수신기는 단말(120)의 일부이다. 상향링크에서 송신기는 단말(120)의 일부이고 수신기는 기지국(110)의 일부이다. 기지국(110)은 프로세서(112), 메모리(114) 및 무선 주파수(Radio 주파수; RF) 유닛(116)을 포함한다. 프로세서(112)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. 단말(120)은 프로세서(122), 메모리(124) 및 RF 유닛(126)을 포함한다. 프로세서(122)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다. 기지국(110) 및/또는 단말(120)은 단일 안테나 또는 다중 안테나를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명의 실시예들은 주로 단말과 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국'은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(억세스 point) 등의 용어에 의해 대체될 수 있다. 또한, '단말'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술된 바와 같이 본 발명의 실시예들은 3GPP 기반의 무선 통신 시스템을 비롯한 다양한 무선 통신 시스템에 적용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 MTC (machine type communication) 단말이 상향링크 신호를 송신하는 방법에 있어서,
    제1 서브프레임에서 제1 서브밴드를 통해서 제1 상향링크 신호를 전송하는 단계;
    상기 MTC 단말의 주파수를 상기 제1 서브밴드로부터 제2 서브밴드로 재조율(re-tuning)하는 단계; 및
    제2 서브프레임에서 상기 제2 서브밴드를 통해서 제2 상향링크 신호를 전송하는 단계를 포함하되,
    상기 주파수를 재조율하는 단계에 있어서, 상기 제1 서브프레임과 상기 제2 서브프레임이 서로 연속하는 경우 상기 MTC 단말은, 상기 제1 서브프레임의 마지막 n개 심볼들 및 상기 제2 서브프레임의 처음 n개 심볼들 중 적어도 일부 심볼들에서 상기 제1 상향링크 신호 또는 상기 제2 상향링크 신호를 전송하는 대신에 상기 주파수 재조율을 수행하고,
    상기 제1 서브프레임의 마지막 n개 심볼들부터 상기 제2 서브프레임의 처음 n개 심볼들의 범위 내에서 상기 주파수 재조율에 사용되는 상기 적어도 일부의 심볼들의 위치는, 상기 제1 상향링크 신호와 상기 제2 상향링크 신호 간에 사전 설정된 우선 순위에 따라서 결정되는, 상향링크 신호 송신 방법.
  2. 제 1 항에 있어서, 상기 주파수를 재조율하는 단계에서,
    상기 제1 상향링크 신호가 상기 제2 상향링크 신호보다 우선하는 경우, 상기 주파수 재조율은 상기 제2 서브프레임의 처음 n개 심볼들에서 수행되고,
    상기 제2 상향링크 신호가 상기 제1 상향링크 신호보다 우선하는 경우, 상기 주파수 재조율은 상기 제1 서브프레임의 마지막 n개 심볼들에서 수행되는, 상향링크 신호 송신 방법.
  3. 제 2 항에 있어서,
    상기 제1 상향링크 신호와 상기 제2 상향링크 신호가 동일한 우선 순위를 갖는 경우, 상기 주파수 재조율이 수행되는 적어도 일부의 심볼들은 상기 제1 서브프레임과 상기 제2 서브프레임에 균등하게 나누어 설정되는, 상향링크 신호 송신 방법.
  4. 제 1 항에 있어서, 상기 제1 상향링크 신호가 SRS(sounding reference signal)를 포함하고, 상기 제2 상향링크 신호가 신호가 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)를 포함하는 경우,
    상기 주파수 재조율이 수행되는 적어도 일부의 심볼들은 상기 제1 서브프레임의 마지막 심볼을 포함하고, 상기 SRS의 전송은 드롭(drop)되는, 상향링크 신호 송신 방법.
  5. 제 1 항에 있어서,
    상기 제1 상향링크 신호가 PUCCH(physical uplink control channel)이고, 상기 제2 상향링크 신호가 PUSCH(physical uplink shared channel)인 경우, 상기 주파수 재조율이 수행되는 적어도 일부의 심볼들은 상기 제2 서브프레임의 처음 n개 심볼들 상에 설정되고,
    상기 제1 상향링크 신호가 상기 PUSCH이고 상기 제2 상향링크 신호가 상기 PUCCH인 경우, 상기 주파수 재조율이 수행되는 적어도 일부의 심볼들은 상기 제1 서브프레임의 마지막 n개 심볼들 상에 설정되는, 상향링크 신호 송신 방법.
  6. 제 1 항에 있어서,
    SRS(sounding reference signal)가 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)와 동일한 서브프레임 상에 설정되고, 상기 SRS의 서브밴드가 상기 PUCCH 또는 상기 PUSCH의 서브밴드와 상이하면, 상기 SRS의 전송은 드롭되는, 상향링크 신호 송신 방법.
  7. 제 1 항에 있어서,
    상기 사전 설정된 우선 순위에 따르면, PUCCH(physical uplink control channel)는 PUSCH(physical uplink shared channel)보다 우선하고, 상기 PUSCH는 SRS(sounding reference signal)보다 우선하는, 상향링크 신호 송신 방법.
  8. 제 1 항에 있어서,
    PUSCH(physical uplink shared channel)가 전송되는 서브밴드에 대한 RRC 설정(radio resource control configuration)을 수신하는 단계를 더 포함하되,
    상기 PUSCH가 전송되는 서브밴드는, 상기 RRC 설정에 기초하여 주파수 호핑되는, 상향링크 신호 송신 방법.
  9. 제 1 항에 있어서, 상기 주파수를 재조율하는 단계에서,
    상기 제1 상향링크 신호가 PRACH(physical random access channel)를 포함하는 경우, 상기 주파수 재조율은 상기 제2 서브프레임의 처음 n개 심볼들에서 수행되고,
    상기 제2 상향링크 신호가 상기 PRACH를 포함하는 경우, 상기 주파수 재조율은 상기 제1 서브프레임의 마지막 n개 심볼들에서 수행되는, 상향링크 신호 송신 방법.
  10. MTC (machine type communication) 단말에 있어서,
    제1 서브프레임에서 제1 서브밴드를 통해서 제1 상향링크 신호를 전송하고, 제2 서브프레임에서 제2 서브밴드를 통해서 제2 상향링크 신호를 전송하는 송신기; 및
    상기 MTC 단말의 주파수를 상기 제1 서브밴드로부터 상기 제2 서브밴드로 재조율(re-tuning)하는 프로세서를 포함하되,
    상기 프로세서는, 상기 제1 서브프레임과 상기 제2 서브프레임이 서로 연속하는 경우, 상기 제1 서브프레임의 마지막 n개 심볼들 및 상기 제2 서브프레임의 처음 n개 심볼들 중 적어도 일부 심볼들에서 상기 제1 상향링크 신호 또는 상기 제2 상향링크 신호를 전송하는 대신에 상기 주파수 재조율을 수행하고,
    상기 제1 서브프레임의 마지막 n개 심볼들부터 상기 제2 서브프레임의 처음 n개 심볼들의 범위 내에서 상기 주파수 재조율에 사용되는 상기 적어도 일부의 심볼들의 위치는, 상기 제1 상향링크 신호와 상기 제2 상향링크 신호 간에 사전 설정된 우선 순위에 따라서 결정되는, MTC 단말.
  11. 제 10 항에 있어서,
    상기 제1 상향링크 신호가 상기 제2 상향링크 신호보다 우선하는 경우, 상기 주파수 재조율은 상기 제2 서브프레임의 처음 n개 심볼들에서 수행되고,
    상기 제2 상향링크 신호가 상기 제1 상향링크 신호보다 우선하는 경우, 상기 주파수 재조율은 상기 제1 서브프레임의 마지막 n개 심볼들에서 수행되는, MTC 단말.
  12. 제 10 항에 있어서, 상기 제1 상향링크 신호가 SRS(sounding reference signal)를 포함하고, 상기 제2 상향링크 신호가 신호가 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)를 포함하는 경우,
    상기 주파수 재조율이 수행되는 적어도 일부의 심볼들은 상기 제1 서브프레임의 마지막 심볼을 포함하고, 상기 SRS의 전송은 드롭(drop)되는, MTC 단말.
  13. 제 10 항에 있어서,
    상기 제1 상향링크 신호가 PUCCH(physical uplink control channel)이고, 상기 제2 상향링크 신호가 PUSCH(physical uplink shared channel)인 경우, 상기 주파수 재조율이 수행되는 적어도 일부의 심볼들은 상기 제2 서브프레임의 처음 n개 심볼들 상에 설정되고,
    상기 제1 상향링크 신호가 상기 PUSCH이고 상기 제2 상향링크 신호가 상기 PUCCH인 경우, 상기 주파수 재조율이 수행되는 적어도 일부의 심볼들은 상기 제1 서브프레임의 마지막 n개 심볼들 상에 설정되는, MTC 단말.
  14. 제 10 항에 있어서,
    SRS(sounding reference signal)가 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)와 동일한 서브프레임 상에 설정되고, 상기 SRS의 서브밴드가 상기 PUCCH 또는 상기 PUSCH의 서브밴드와 상이하면, 상기 SRS의 전송은 드롭되는, MTC 단말.
  15. 제 10 항에 있어서,
    상기 사전 설정된 우선 순위에 따르면, PUCCH(physical uplink control channel)는 PUSCH(physical uplink shared channel)보다 우선하고, 상기 PUSCH는 SRS(sounding reference signal)보다 우선하는, MTC 단말.
PCT/KR2016/004824 2015-05-08 2016-05-09 무선 통신 시스템에서 상향링크 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치 WO2016182291A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167026001A KR101882280B1 (ko) 2015-05-08 2016-05-09 무선 통신 시스템에서 상향링크 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치
US15/327,624 US9936506B2 (en) 2015-05-08 2016-05-09 Method for receiving or transmitting uplink signal in wireless communication system and apparatus therefor
JP2016566202A JP6276425B2 (ja) 2015-05-08 2016-05-09 無線通信システムにおいて上りリンク信号を送信又は受信するための方法及びこのための装置
EP16792937.1A EP3297378B1 (en) 2015-05-08 2016-05-09 Method for transmitting or receiving uplink signal in wireless communication system and device therefor
CN201680001632.7A CN106797305B (zh) 2015-05-08 2016-05-09 在无线通信系统中接收或发送上行链路信号的方法及设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562158556P 2015-05-08 2015-05-08
US62/158,556 2015-05-08

Publications (1)

Publication Number Publication Date
WO2016182291A1 true WO2016182291A1 (ko) 2016-11-17

Family

ID=57249254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004824 WO2016182291A1 (ko) 2015-05-08 2016-05-09 무선 통신 시스템에서 상향링크 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (1) US9936506B2 (ko)
EP (1) EP3297378B1 (ko)
JP (1) JP6276425B2 (ko)
KR (1) KR101882280B1 (ko)
CN (1) CN106797305B (ko)
WO (1) WO2016182291A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018144209A1 (en) * 2017-02-03 2018-08-09 Qualcomm Incorporated Method and apparatus for retuning in machine type communications
WO2018217073A1 (ko) * 2017-05-26 2018-11-29 엘지전자 주식회사 무선 통신 시스템에서 단말이 전송 블록에 대한 전송 자원을 선택하는 방법 및 이를 위한 장치
CN110199556A (zh) * 2017-01-24 2019-09-03 华为技术有限公司 一种调谐方法及装置
EP3596966A4 (en) * 2017-03-15 2020-11-18 Qualcomm Incorporated PROCEDURE FOR DISPLAYING PDSCH / PUSCH RESOURCE ELEMENT MAPPING

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163805A1 (ko) 2015-04-10 2016-10-13 엘지전자 주식회사 기계타입통신을 지원하는 무선 접속 시스템에서 사운딩 참조 신호의 전송을 제어하는 방법 및 장치
US11202183B2 (en) 2015-06-25 2021-12-14 Qualcomm Incorporated Retuning for enhanced machine type communication
US11637593B2 (en) * 2015-07-09 2023-04-25 Qualcomm Incorporated Machine type communication (MTC) configuration, interference management, and retuning time for uplink transmissions
US10454646B2 (en) * 2015-11-14 2019-10-22 Qualcomm Incorporated Sounding reference signal transmissions in enhanced machine type communication
US10560171B2 (en) * 2016-06-30 2020-02-11 Lg Electronics Inc. Method for reporting channel state information in wireless communication system supporting unlicensed band, and apparatus for supporting same
US11553464B2 (en) * 2016-08-10 2023-01-10 Kyocera Corporation Radio terminal
US10448414B2 (en) * 2017-03-23 2019-10-15 Sharp Kabushiki Kaisha Downlink control channel for uplink ultra-reliable and low-latency communications
CN110546913B (zh) * 2017-04-27 2022-03-08 Lg 电子株式会社 用于发送srs的方法及其终端
US10873435B2 (en) * 2017-05-04 2020-12-22 Qualcomm Incorporated Configurable intra-slot frequency hopping for a variable length uplink control channel
WO2019017614A1 (ko) * 2017-07-19 2019-01-24 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 상향 채널 전송 방법 및 장치
KR102496875B1 (ko) 2017-07-19 2023-02-08 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 상향 채널 전송 방법 및 장치
JP2019050472A (ja) * 2017-09-08 2019-03-28 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
CN109511171B (zh) * 2017-09-15 2022-04-12 华为技术有限公司 一种通信方法及设备
KR102174647B1 (ko) 2018-04-05 2020-11-05 엘지전자 주식회사 무선 통신 시스템에서 신호를 전송 또는 수신하는 방법 및 이를 위한 장치
KR102516433B1 (ko) * 2018-06-12 2023-03-31 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 Mtc 하향 링크 제어 정보 전송 방법 및 장치, 기지국 및 사용자 장비
BR112021000793A2 (pt) * 2018-07-17 2021-04-13 Beijing Xiaomi Mobile Software Co., Ltd. Método, aparelho e dispositivo de transmissão de dados, e, mídia de armazenamento legível por computador .
WO2020027535A1 (ko) * 2018-07-30 2020-02-06 주식회사 케이티 비면허 대역에서 상향링크 제어 정보를 송수신하는 방법 및 장치
CN110831179A (zh) 2018-08-10 2020-02-21 索尼公司 用于无线通信系统的电子设备、方法和存储介质
US11166267B2 (en) 2018-08-17 2021-11-02 Qualcomm Incorporated DCI triggered SRS enhancements
US11147072B2 (en) * 2018-09-28 2021-10-12 Qualcomm Incorporated Retuning for flexible resource allocation
CN114375032B (zh) * 2019-01-30 2024-05-10 维沃移动通信有限公司 一种数据处理方法及用户设备
BR112021019335A2 (pt) * 2019-03-28 2021-12-07 Ericsson Telefon Ab L M Métodos, dispositivo terminal e estação base para alocação de recursos
CN111614449B (zh) * 2019-04-26 2023-12-19 维沃移动通信有限公司 传输导频信号的方法和中继节点
US10863508B1 (en) * 2019-06-12 2020-12-08 Qualcomm Incorporated Techniques for subband based resource allocation for NR-U
CN112532353A (zh) * 2019-09-17 2021-03-19 普天信息技术有限公司 Pusch数据处理方法及装置
WO2021062856A1 (en) * 2019-10-01 2021-04-08 Qualcomm Incorporated Handling uplink channel and carrier switching gap collisions
EP4085717A4 (en) * 2020-01-19 2022-12-28 Qualcomm Incorporated DETERMINATION OF AN RF RETUNE COLUMN FOR UPLINK CROSS-BWP FREQUENCY HOPPING
EP4108026A4 (en) * 2020-02-21 2024-03-27 Commscope Technologies Llc EFFICIENT USE OF THE SPECTRUM OF AN UPLINK CONTROL CHANNEL
US20230246794A1 (en) * 2020-08-13 2023-08-03 Beijing Xiaomi Mobile Software Co., Ltd. Frequency switching method
WO2022178689A1 (zh) * 2021-02-23 2022-09-01 北京小米移动软件有限公司 射频重调方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150036566A1 (en) * 2013-08-02 2015-02-05 Blackberry Limited Uplink power sharing control
US20150036601A1 (en) * 2011-11-01 2015-02-05 Lg Electronics Inc. Method for determining the transmission of a sounding reference signal in a wireless communication system, and terminal therefor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673952B2 (en) * 2009-04-10 2017-06-06 Qualcomm Inc. Method and apparatus for supporting user equipments on different system bandwidths
US8848638B2 (en) * 2011-06-27 2014-09-30 Telefonaktiebolaget L M Ericsson (Publ) Cellular communication system support for limited bandwidth communication devices
WO2013104119A1 (en) * 2012-01-11 2013-07-18 Renesas Mobile Corporation Control channel design for low bandwidth users
WO2013137699A1 (ko) 2012-03-16 2013-09-19 엘지전자 주식회사 상향 링크 전송 방법 및 장치
US9622230B2 (en) * 2012-05-17 2017-04-11 Qualcomm Incorporated Narrow band partitioning and efficient resource allocation for low cost user equipments
CN103716841A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 信息传输方法及装置
GB2509912B (en) 2013-01-16 2018-08-15 Sony Corp Telecommunications Apparatus and Methods
GB2509973A (en) 2013-01-21 2014-07-23 Sony Corp Reporting channel state information in a wireless communications system
KR20230051636A (ko) 2014-03-28 2023-04-18 인터디지탈 패튼 홀딩스, 인크 단일 발진기를 갖는 반이중 fdd wtru
US9955356B2 (en) * 2014-09-25 2018-04-24 Intel IP Corporation System and method of handling uplink transmission collision for enhanced coverage mode UEs
US10516517B2 (en) * 2015-01-29 2019-12-24 Intel IP Corporation System and methods for support of frequency hopping for UEs with reduced bandwidth support

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150036601A1 (en) * 2011-11-01 2015-02-05 Lg Electronics Inc. Method for determining the transmission of a sounding reference signal in a wireless communication system, and terminal therefor
US20150036566A1 (en) * 2013-08-02 2015-02-05 Blackberry Limited Uplink power sharing control

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "PUCCH Transmission for MTC", R1-151217, 3GPP TSG RAN WG1 MEETING #80B, 11 April 2015 (2015-04-11), Belgrade, Serbia, XP050934097 *
LG ELECTRONICS: "Discussions on Frequency Hopping and Subband for Rel-13 MTC UEs", R1-151486, 3GPP TSG RAN WG1 MEETING #80B, 11 April 2015 (2015-04-11), Belgrade, Serbia, XP050934358 *
See also references of EP3297378A4 *
ZTE: "Consideration on Physical Uplink Control Channel for MTC Enhancement", R1-151731, 3GPP TSG RANWG1 MEETING #80B, 11 April 2015 (2015-04-11), Belgrade, Serbia, XP050934592 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11057895B2 (en) 2017-01-24 2021-07-06 Huawei Technologies Co., Ltd. Retuning method and apparatus for SRS coverage enhancement
CN110199556A (zh) * 2017-01-24 2019-09-03 华为技术有限公司 一种调谐方法及装置
EP3565345A4 (en) * 2017-01-24 2019-12-18 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR TUNING
CN110199556B (zh) * 2017-01-24 2021-08-31 华为技术有限公司 一种调谐方法及装置
EP3917246A1 (en) * 2017-01-24 2021-12-01 Huawei Technologies Co., Ltd. Retuning method and apparatus
US11632763B2 (en) 2017-01-24 2023-04-18 Huawei Technologies Co., Ltd. Retuning method and apparatus
US10856310B2 (en) 2017-02-03 2020-12-01 Qualcomm Incorporated Retuning in machine type communications
WO2018144209A1 (en) * 2017-02-03 2018-08-09 Qualcomm Incorporated Method and apparatus for retuning in machine type communications
EP3596966A4 (en) * 2017-03-15 2020-11-18 Qualcomm Incorporated PROCEDURE FOR DISPLAYING PDSCH / PUSCH RESOURCE ELEMENT MAPPING
US11178669B2 (en) 2017-03-15 2021-11-16 Qualcomm Incorporated Method for indicating PDSCH/PUSCH resource element mapping
US11917661B2 (en) 2017-03-15 2024-02-27 Qualcomm Incorporated Method for indicating PDSCH/PUSCH resource element mapping
WO2018217073A1 (ko) * 2017-05-26 2018-11-29 엘지전자 주식회사 무선 통신 시스템에서 단말이 전송 블록에 대한 전송 자원을 선택하는 방법 및 이를 위한 장치
US11265877B2 (en) 2017-05-26 2022-03-01 Lg Electronics Inc. Method for selecting transmission resource for transport block by user equipment in wireless communication system and apparatus therefor

Also Published As

Publication number Publication date
KR20160143657A (ko) 2016-12-14
EP3297378B1 (en) 2020-10-28
JP6276425B2 (ja) 2018-02-07
CN106797305A (zh) 2017-05-31
US20170208590A1 (en) 2017-07-20
US9936506B2 (en) 2018-04-03
EP3297378A4 (en) 2018-12-12
KR101882280B1 (ko) 2018-07-26
JP2017519401A (ja) 2017-07-13
CN106797305B (zh) 2020-04-07
EP3297378A1 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
WO2016182291A1 (ko) 무선 통신 시스템에서 상향링크 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치
WO2016163847A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2019164302A1 (ko) 무선 통신 시스템에서 bwp 또는 빔 전환에 따라 제어 채널을 구성하는 방법 및 장치
WO2017003156A1 (ko) 무선 통신 시스템에서 d2d 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2021221381A1 (ko) 무선 통신 시스템에서 저감 캐퍼빌리티 단말을 위한 랜덤 액세스 방법 및 장치
WO2018143689A9 (ko) 선점된 자원 정보를 지시하는 방법 및 이를 위한 장치
WO2017122949A1 (ko) 무선 통신 시스템에서 d2d 자원을 측정 보고하는 방법 및 이를 위한 장치
WO2017014549A1 (ko) 하향링크 제어 정보 수신 방법 및 사용자기기와, 하향링크 제어 정보 전송 방법 및 기지국
WO2017074160A1 (ko) 비면허 대역에서의 채널 액세스 방법, 장치 및 시스템
WO2017010767A1 (ko) 무선 통신 시스템에서 d2d 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2017034258A1 (ko) 무선 통신 시스템에서 v2x 신호를 송신 또는 수신하기 위한 방법 및 이를 수행하는 장치
WO2017034238A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치
WO2016167606A1 (ko) 무선 통신 시스템에서 단말이 피드백을 수행하는 방법 및 이를 위한 장치
WO2018016923A1 (ko) 하향링크 채널 수신 방법 및 사용자기기와, 하향링크 채널 전송 방법 및 기지국
WO2017099461A1 (ko) 상향링크 채널 전송 방법 및 사용자기기와, 상향링크 채널 수신 방법 및 기지국
WO2017034296A1 (ko) D2d 통신을 지원하는 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 수행하는 장치
WO2017135573A1 (ko) 무선 통신 시스템에서 다중 무선 접속 기술에 기반한 신호 송신 방법 및 이를 위한 장치
WO2016122258A1 (ko) 신호 수신 방법 및 사용자기기와, 신호 수신 방법 및 기지국
WO2017018761A1 (ko) 제어 정보 수신 방법 및 사용자기기와, 제어 정보 수신 방법 및 기지국
WO2016111549A1 (ko) 하향링크 신호 수신 방법과 사용자기기와, 하향링크 신호 전송 방법과 기지국
WO2021230726A1 (ko) 무선 통신을 위한 신호 송수신 방법 및 이를 위한 장치
WO2022154652A1 (ko) 무선 통신 시스템에서 drx 동작 방법 및 장치
WO2021194185A1 (ko) 무선 통신 시스템에서 채널 접속 절차 판단 방법 및 장치
WO2021206395A1 (en) Method and apparatus for transmitting or receiving uplink data channel in wireless communication system
WO2022075828A1 (ko) 무선 통신 시스템에서 상향링크 채널을 전송하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167026001

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016566202

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016792937

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15327624

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016792937

Country of ref document: EP