WO2016182210A1 - 전기화학공정을 이용한 전자소재 및 이의 제조방법 - Google Patents

전기화학공정을 이용한 전자소재 및 이의 제조방법 Download PDF

Info

Publication number
WO2016182210A1
WO2016182210A1 PCT/KR2016/003796 KR2016003796W WO2016182210A1 WO 2016182210 A1 WO2016182210 A1 WO 2016182210A1 KR 2016003796 W KR2016003796 W KR 2016003796W WO 2016182210 A1 WO2016182210 A1 WO 2016182210A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
thermoelectric semiconductor
metal
semiconductor device
thermoelectric
Prior art date
Application number
PCT/KR2016/003796
Other languages
English (en)
French (fr)
Inventor
임재홍
이규환
심지훈
임동찬
송영섭
허나리
노상현
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2016182210A1 publication Critical patent/WO2016182210A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Definitions

  • the present invention relates to an electronic material using an electrochemical process and a manufacturing method thereof, and more particularly, to a thermoelectric semiconductor module including an organic-inorganic hybrid thermoelectric material capable of stably exhibiting excellent thermoelectric properties among the electronic materials. will be.
  • thermoelectric semiconductor modules are used for optical communication semiconductor lasers, charge coupled device (CCD) cameras, photomultipliers, various thermographs, infrared gas analyzers, black body standard thermoplates, and heat tracking missile sensors in the optoelectronic field. It is used in thermo-process bath for semiconductor process, thermo-plate for semiconductor process, circulator for semiconductor process, and large scale integrated circuit (LSI) temperature cycle tester, and is used for instant cold / hot water purifier and kimchi refrigerator of general household electronics. It is possible to maintain the proper or to be applied as a generator by the temperature difference.
  • CCD charge coupled device
  • photomultipliers various thermographs
  • infrared gas analyzers infrared gas analyzers
  • black body standard thermoplates black body standard thermoplates
  • heat tracking missile sensors in the optoelectronic field. It is used in thermo-process bath for semiconductor process, thermo-plate for semiconductor process, circulator for semiconductor process, and large scale integrated circuit (LSI) temperature cycle tester, and is used for instant cold /
  • thermoelectric phenomenon a phenomenon relating to the change between thermal energy and electrical energy is generally called a thermoelectric phenomenon, which has a Seebeck effect and a Peltier effect.
  • Seebeck Effeck uses two types of materials, such as antimony (Sb) and bismuth (Bi), to make loops by connecting two ends of two different types of metal, respectively, one junction at high temperature and the other at low temperature.
  • Sb antimony
  • Bi bismuth
  • the Peltier Effect refers to a phenomenon in which heat is generated or absorbed when current flows to junctions of different materials.
  • thermoelectric semiconductor may be used as a generic term for a semiconductor module that converts electrical energy into thermal energy or vice versa by using the Seebeck effect and the Peltier effect.
  • thermoelectric semiconductor in the thermoelectric semiconductor module using this phenomenon is the phenomenon that the electromotive force is generated due to the movement of the carrier inside the device when there is a temperature difference across the device, or the opposite phenomenon, it is eco-friendly noise-free cooling and pollution-free electric power generation Is making it possible.
  • thermoelectric semiconductor using the Seebeck effect is that if a temperature difference occurs at both ends of a fixed metal rod, for example, in the case of n-type, the electrons in the hot end have higher kinetic energy than the electrons in the cold end. The electrons in the hot end are diffused into the cold end to lower the energy because the electrons in the hot end are in an energy state above the Fermi level on average.
  • thermoelectromotive force As the electrons move to the low temperature stage, the low temperature stage is charged with "-", and the high temperature portion is charged with "+” to generate a potential difference between both ends of the metal rod. This potential difference is called thermoelectromotive force. .
  • the inorganic material inorganic thermoelectric material
  • the inorganic thermoelectric material has the advantage of high Seebeck coefficient and high electrical conductivity, but has a problem of high thermal conductivity.
  • the organic material (organic thermoelectric material) has a low Seebeck coefficient, but has a low thermal conductivity.
  • the organic-inorganic hybrid thermoelectric material has a low thermal conductivity and at the same time a high Seebeck coefficient and electrical conductivity, and thus can be said to be a thermoelectric material having an effective thermoelectric conversion function.
  • thermoelectric materials to date have a high Seebeck coefficient and electrical conductivity with low thermal conductivity, it is difficult to exhibit stable thermoelectric characteristics when hybridized, and the thickness is thin, which causes a large temperature difference in the vertical direction. There is no problem. ⁇ Elazem, 2013 # 68 ⁇
  • the problem to be solved by the present invention is to provide an organic-inorganic hybrid thermoelectric material having a low Seek coefficient, high Seebeck coefficient and conductivity, and capable of stably exhibiting excellent thermoelectric properties.
  • the present invention provides an inorganic structure including a first hole; And it provides a thermoelectric semiconductor device comprising an organic device layer positioned in the first hole.
  • thermoelectric semiconductor device further comprises a metal structure, the inorganic structure is formed on the metal structure.
  • the present invention also provides a thermoelectric semiconductor device including a plurality of metal supports, the second hole portion having a polygonal shape formed according to the arrangement of the plurality of metal supports.
  • the metal structure the first metal support; A second metal support disposed to intersect the first metal support; And it provides a thermoelectric semiconductor device comprising a second hole formed by the intersection of the first metal support and the second metal support.
  • thermoelectric semiconductor device the inorganic structure, the first inorganic element layer surrounding the first metal support; And a second inorganic element layer surrounding the second metal support and intersecting with the first inorganic element layer, wherein the first hole is formed by an intersection of the first inorganic element layer and the second inorganic element layer.
  • the metal structure the first metal support disposed in the x direction; A second metal support disposed in the y direction and intersecting with the first metal support; And a third metal support disposed in the z direction and intersecting the first metal support and the second metal support.
  • the present invention provides a thermoelectric semiconductor module in which a P-type thermoelectric semiconductor element and an N-type thermoelectric semiconductor element are bonded together with a metal electrode to form a PN element pair, wherein the P-type thermoelectric semiconductor element and the N-type At least one of the thermoelectric semiconductor devices of the thermoelectric semiconductor device, the metal structure; An inorganic structure formed on the metal structure and including a first hole part; And it provides a thermoelectric semiconductor module comprising an organic device layer positioned in the first hole.
  • the metal structure the first metal support; A second metal support disposed to intersect the first metal support; And it provides a thermoelectric semiconductor module comprising a second hole formed by the intersection of the first metal support and the second metal support.
  • thermoelectric semiconductor module is provided.
  • an organic-inorganic hybrid thermoelectric material having a high Seebeck coefficient and an electrical conductivity and capable of stably exhibiting excellent thermoelectric properties through the thermoconductor element of the organic-inorganic composite structure having a new structure is provided. can do.
  • thermoelectric semiconductor device having a general structure.
  • thermoelectric semiconductor device 2 to 10 are schematic diagrams for explaining a method of manufacturing a thermoelectric semiconductor device according to the present invention.
  • FIG. 11 is a schematic view showing an electrodeposition process by the electroplating method according to the present invention.
  • thermoelectric semiconductor device 12 is an illustration of an inorganic structure of the thermoelectric semiconductor device according to the present invention.
  • FIGS. 14, 16, and 18 show another example of the inorganic structure of the thermoelectric semiconductor device according to the present invention.
  • 13, 15, and 17 are actual photographs showing the inorganic structure
  • FIGS. 14, 16, and 18 are graphs showing components in a predetermined region.
  • thermoelectric semiconductor device 19 is a graph illustrating Seebeck coefficient characteristics of the thermoelectric semiconductor device according to the present invention.
  • thermoelectric semiconductor device 20 is a graph showing the power factor characteristics of the thermoelectric semiconductor device according to the present invention.
  • first, second, etc. are used to describe various components, these components are of course not limited by these terms. These terms are only used to distinguish one component from another. Therefore, of course, the first component mentioned below may be a second component within the technical spirit of the present invention.
  • spatially relative terms below “, “ beneath “, “ lower”, “ above “, “ upper” It can be used to easily describe a component's correlation with other components. Spatially relative terms are to be understood as including terms in different directions of components in use or operation in addition to the directions shown in the figures. For example, when flipping a component shown in the drawing, a component described as “below” or “beneath” of another component may be placed “above” the other component. Can be. Thus, the exemplary term “below” can encompass both an orientation of above and below. The components can be oriented in other directions as well, so that spatially relative terms can be interpreted according to the orientation.
  • thermoelectric semiconductor device having a general structure.
  • the apparatus for thermoelectric cooling, thermoelectric heating and thermoelectric power generation using the thermoelectric properties of the thermoelectric semiconductor may include the structure shown in Figure 1 as its basic configuration.
  • thermoelectric semiconductor module 10 having a general structure may be bonded to a P-type thermoelectric semiconductor device 30 and an N-type thermoelectric semiconductor device 40 with a metal electrode 50 interposed therebetween. It may include a configuration in which a plurality of thermoelectric elements formed by forming a pair are connected in series.
  • the metal electrode 50 may include a lower metal electrode 50a and an upper metal electrode 50b, and the lower metal electrode 50a may be sputtered on a separate lower support substrate 20.
  • the upper metal electrode 50b may be formed on a separate upper support substrate 60 through a sputtering method.
  • thermoelectric semiconductor module 10 having a general structure may include two layers of support substrates arranged in parallel at intervals up and down, that is, an upper support substrate 60 and a lower support substrate 20, each supporting Metal electrodes 50 may be formed on the substrate through sputtering, respectively.
  • the support substrate may be a silicon substrate or an alumina (Al 2 O 3 ) substrate
  • the metal electrode may be used a common metal, specifically, a single film or a multilayer film such as Cu, Ni, Au, Ag, etc. Can be. Since this is obvious in the art, the following detailed description will be omitted.
  • the thermoelectric semiconductor element material for forming the thermoelectric semiconductor element 30, 40 is one or two kinds selected from bismuth (Bi) and antimony (Sb) of Group 5B. It may include a compound and a compound compound consisting of one or two elements selected from the group 6B tellurium (Te) and selenium (Se), mainly the number of atoms of group 5B (Bi and Sb), and group 6B And alloys having a composition ratio of the number of atoms of (Te and Se) of 2 ⁇ 0.5: 3 ⁇ 0.5.
  • thermoelectric semiconductor devices Bi 2 Te 3 , Bi 2 Se 3 , and Sb 2 Te 3 having excellent thermoelectric functions may be used.
  • the electrons in the high end have higher kinetic energy than the electrons in the low end, so the electrons in the high end have an average Fermi level ( Because of the higher energy state than the Fermi lever, electrons in the hot end diffuse into the cold end to lower the energy.
  • the low temperature stage is charged with "-"
  • the high temperature portion is charged with "+” to generate a potential difference between both ends of the metal electrode. Will occur.
  • thermoelectric performance of the material used for manufacturing the thermoelectric semiconductor can be evaluated by the following equation.
  • ZT performance index
  • Seebeck coefficient
  • electrical conductivity
  • thermal conductivity
  • specific resistance
  • thermoelectric performance performance index: ZT
  • the raw material alloy material which increases the value of the Seebeck coefficient ( ⁇ ) or the electrical conductivity ( ⁇ ) or decreases the thermal conductivity ( ⁇ ) or the specific resistance ( ⁇ ). You can see that it is good to use.
  • thermoelectric materials to date have a high Seebeck coefficient and electrical conductivity as well as low thermal conductivity when hybridized, and it is difficult to exhibit stable thermoelectric properties.
  • an object of the present invention is to provide an organic-inorganic hybrid thermoelectric material having a low Seed coefficient, a high Seebeck coefficient and an conductivity, and capable of stably exhibiting excellent thermoelectric properties.
  • thermoelectric semiconductor device 2 to 10 are schematic diagrams for explaining a method of manufacturing a thermoelectric semiconductor device according to the present invention.
  • thermoelectric semiconductor device according to the present invention may be manufactured by the manufacturing process of FIGS. 2 to 10, and the thermoelectric semiconductor device corresponds to the thermoelectric semiconductor device of the thermoelectric semiconductor module of FIG. 1.
  • thermoelectric semiconductor device according to the present invention will be described, and another configuration of the thermoelectric semiconductor module may be referred to FIG. 1.
  • FIG. 2 is a perspective view illustrating a metal structure of a thermoelectric semiconductor device according to the present invention
  • FIG. 3 is a cross-sectional view taken along line II of FIG. 2.
  • the metal structure 100 of the thermoelectric semiconductor device according to the present invention may include a first metal support 110 and a second metal support 120 disposed to intersect the first metal support 110. ) And a first hole part 130 formed by the intersection of the first metal support 110 and the second metal support 120.
  • the metal structure 100 may be a known metal material, for example, titanium (Ti), nickel (Ni), molybdenum (Mo), cadmium (Cd), platinum (Pt), gold (Au) And it may be made of an alloy thereof, but is not limited to the material of the metal structure in the present invention.
  • the drawing is formed in the shape of a rectangle, on the other hand, in the arrangement of the first metal support 110 and the second metal support 120 Accordingly, it may be formed of polygons of various shapes such as triangles, pentagons, and hexagons.
  • the metal structure may include a plurality of metal supports, and according to the arrangement of the plurality of metal supports, the first hole may have a polygonal shape having various shapes.
  • the first hole may have a quadrangular shape and four metal supports may be disposed.
  • the first hole may have a triangular shape and three metal supports may be disposed.
  • the shape of the first hole is not limited.
  • thermoelectric semiconductor device 4 is a perspective view showing another example of the metal structure of the thermoelectric semiconductor device according to the present invention.
  • the first metal support 110 and the second metal support 120 are disposed in the x direction and the y direction, respectively, in FIGS. 2 and 3 to form a two-dimensional metal structure. Shows that is formed.
  • the first metal support 110 and the second metal support 120 are disposed in the x direction and the y direction, respectively, and the third metal support 410 in the z direction. ) May be disposed to form the metal structure 400 in a three-dimensional shape.
  • the three-dimensional metal structure may include a first hole 130 formed by the intersection of the first metal support 110 and the second metal support 120 as shown in FIG.
  • it may include a three-dimensional hole portion 430 formed by the intersection of the first metal support 110, the second metal support 120 and the third metal support 410.
  • FIG. 5 is a perspective view illustrating an inorganic structure of the thermoelectric semiconductor device according to the present invention
  • FIG. 6 is a cross-sectional view taken along the line II-II of FIG. 5.
  • the inorganic structure 200 of the thermoelectric semiconductor device according to the present invention includes a first inorganic element layer 210 and the second metal support 120 surrounding the first metal support 110. ) And a second inorganic element layer 220 disposed to intersect the first inorganic element layer 210, wherein the first inorganic element layer 210 and the second inorganic element layer 220 are formed. It may include a second hole 230 formed by the intersection.
  • the inorganic structure 200 of the thermoelectric semiconductor device according to the present invention corresponds to a structure in which the inorganic element layers 210 and 220 are formed on the metal structure 100.
  • the first inorganic element layer and the second inorganic element layer are Bi-Te-based, Sb-Te-based, Pb-Se-based, Ag-Te-based, Ag-Se-based, Bi- (Te, Se) -based, Si- Ge, Pb-Te-based, GeTe-AgSbTe-based and (Co, Ir, Ru) -Sb-based at least one selected from, but in the present invention of the first inorganic element layer and the second inorganic element layer It does not limit kind.
  • thermoelectric semiconductor device 7 is a perspective view showing another example of the inorganic structure of the thermoelectric semiconductor device according to the present invention.
  • the first inorganic element layer 210 and the second metal support 120 surrounding the first metal support 110 are enclosed, and the first The inorganic structure is formed in a two-dimensional shape including the second inorganic element layer 220 disposed to intersect the inorganic element layer 210.
  • the first inorganic element layer 210 surrounding the first metal support 110 and the second metal support 120 surround the first inorganic element layer 210.
  • An inorganic structure 500 having a three-dimensional shape including the third inorganic element layer 510 may be formed.
  • the three-dimensional inorganic structure as shown in FIG. 5 includes a second hole 230 formed by the intersection of the first inorganic element layer 210 and the second inorganic element layer 220.
  • it may include a three-dimensional hole portion 530 formed by the intersection of the first inorganic element layer 210, the second inorganic element layer 220 and the third inorganic element layer 510. can do.
  • forming the inorganic element layers 210 and 220 on the metal structure 100 may be formed by a known electrochemical process.
  • the electrochemical process may be electroplating, electroless plating, substitution plating, electrophoresis, etc., but the method of forming the inorganic element layer is not limited in the present invention.
  • FIG. 11 is a schematic diagram showing an electrodeposition process by the electroplating method according to the present invention.
  • the electrodeposition process by the electroplating method is electrodeposition by electrochemical method, using the donor substrate as the working electrode 250, to support the substrate in a liquid electrolyte 280 containing ions for forming the thermoelectric semiconductor element After that, it refers to a method of applying a constant current or a constant voltage using the counter electrode 260 and the reference electrode 270.
  • the electrochemical method may use the constant current method, the electrostatic potential method, the circulating current method, and the like, and each method may adjust each factor to freely control the thickness of the thermoelectric semiconductor device.
  • the applied current is in the range of 0.01 to -100 mA / cm 2
  • the current application time is in the range of 1 minute to 500 minutes
  • the potentiostatic method has an applied potential in the range of 0.1 to 1.5 V, and the potential application time.
  • the circulating current method has a potential scanning speed in the range of 1 to 1000 mV / s, and the cyclic potential recovery can be performed in the range of 1 to 500 minutes.
  • the electrochemical method is typically carried out at room temperature and atmospheric pressure, which can be maintained in a mild condition compared to the high temperature, high pressure process generally proceeds.
  • the working electrode may be a donor substrate on which a metal electrode having a structure in which Ni / Au is stacked by a sputtering method is formed on a silicon substrate.
  • a substrate that is conductive and does not react with an electrolyte is suitable. Titanium (Ti), nickel (Ni), molybdenum (Mo), cadmium (Cd), platinum (Pt), gold (Au), indium-tin-oxide (ITO), glass, stainless steel And carbon substrates and the like, respectively.
  • the reference electrode may use Ag / AgCl.
  • thermoelectric semiconductor device is formed by forming at least one inorganic material selected from (Te, Se), Si-Ge, Pb-Te, GeTe-AgSbTe and (Co, Ir, Ru) -Sb
  • the inorganic structure 200 can be formed.
  • thermoelectric element in forming an n-type thermoelectric material and a p-type thermoelectric material, in general, a sintering method is used for the bulk type, and a CSVT (Close Space Vapor Transport) method for the thin film. Co-evaporation or MOCVD is used.
  • the deposition temperature is high, and the deposition process is performed in a vacuum state, but the electrochemical method according to the present invention is generally performed at room temperature and atmospheric pressure, and is generally used for high temperature and high pressure processes. It is possible to maintain mild conditions.
  • thermoelectric semiconductor device since the process of forming the thermoelectric semiconductor device is performed at low temperature and atmospheric pressure conditions compared to the high temperature and high pressure processes which are generally performed, damage to the thermoelectric semiconductor device due to high temperature and high pressure can be prevented.
  • FIG. 8 is a perspective view illustrating an organic-inorganic composite structure of the thermoelectric semiconductor device according to the present invention
  • FIG. 9 is a cross-sectional view taken along the line III-III of FIG. 8.
  • the organic-inorganic composite structure 300 of the thermoelectric semiconductor device according to the present invention includes an organic device layer 310 positioned in the second hole 230.
  • the inorganic structure of the thermoelectric semiconductor device surrounds the first inorganic element layer 210 and the second metal support 120 surrounding the first metal support 110 and the first metal support 120.
  • the organic-inorganic composite structure of the thermoelectric semiconductor device according to the present invention may include the organic device layer 310 in the second hole 230, thereby implementing a thermoelectric semiconductor device of the organic-inorganic composite structure.
  • the organic device layer may be made of polyaniline or derivatives thereof, polypyrrole or derivatives thereof, polythiophene or derivatives thereof, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polyacene or derivatives thereof and copolymers thereof.
  • the type of the organic device layer is not limited in the present invention.
  • the organic device layer may be formed in the second hole by a known dipping method or spin coating method, but the method of forming the organic device layer is not limited in the present invention.
  • thermoelectric semiconductor device 10 is a perspective view showing another example of the organic-inorganic composite structure of the thermoelectric semiconductor device according to the present invention.
  • the organic device layer 310 is formed.
  • the three-dimensional inorganic structure includes a second hole formed by the intersection of the first inorganic element layer 210 and the second inorganic element layer 220.
  • the organic device layer 310 is formed at 230, but also formed by the intersection of the first inorganic device layer 210, the second inorganic device layer 220, and the third inorganic device layer 510.
  • the organic device layer 630 may also be formed in a three-dimensional hole (not shown).
  • thermoelectric semiconductor device Accordingly, the inorganic structure of the thermoelectric semiconductor device according to the present invention will be described.
  • thermoelectric semiconductor device In the inorganic structure of the thermoelectric semiconductor device according to the present invention, an inorganic structure was prepared on the metal structure made of Ni by electroplating under the following conditions.
  • the liquid electrolyte in the electroplating method contained 10 mM SbO 2 and 10 mM TeO 2 .
  • thermoelectric semiconductor device 12 is an illustration of an inorganic structure of the thermoelectric semiconductor device according to the present invention.
  • an inorganic structure of a thermoelectric semiconductor device surrounds a first inorganic element layer surrounding a first metal support of Ni and a second metal support of Ni, and intersects with the first inorganic element layer. It can be seen that includes a second inorganic element layer disposed to include a second hole formed by the intersection of the first inorganic element layer and the second inorganic element layer.
  • the inorganic element layer can be satisfactorily formed on the metal structure of Ni.
  • FIGS. 14, 16, and 18 show another example of the inorganic structure of the thermoelectric semiconductor device according to the present invention.
  • 13, 15, and 17 are actual photographs showing the inorganic structure
  • FIGS. 14, 16, and 18 are graphs showing components in a predetermined region.
  • the inorganic element layer can be formed well on the metal structure of Ni, and also includes the components of Ni, Sb, and Te at each point. Can be confirmed.
  • the organic-inorganic composite structure of the thermoelectric semiconductor device according to the present invention may be manufactured by placing the organic device layer on the second hole.
  • thermoelectric semiconductor device 19 is a graph illustrating Seebeck coefficient characteristics of the thermoelectric semiconductor device according to the present invention.
  • PSS films doped with DMSO: PSS disperses PEDOT well but decreases electrical conductivity, so after forming PEDOT: PSS thin film by spin coating, PSS is removed by DMSO
  • PEDOT PSS drop casting to form a thin film
  • PSS films (PH 750 doped with DMSO): Samples from which PSS was removed using PH 750 doped with DMSO to increase the electrical conductivity of PEDOT: PSS thin film.
  • PP-PEDOT PEDOT sample formed using pyridine and PEPG
  • thermoelectric semiconductor device of FIG. 19 an organic device of polyaniline (PANI) is positioned in a hole of the inorganic structure of FIG. 12, thereby manufacturing a thermoelectric semiconductor device of an organic-inorganic composite structure.
  • PANI polyaniline
  • thermoelectric performance performance index: ZT
  • the value of the Seebeck coefficient ( ⁇ ) or the electrical conductivity ( ⁇ ) is increased, or the thermal conductivity ( ⁇ ) or the specific resistance ( ⁇ ) is decreased. It is preferable.
  • thermoelectric semiconductor device located in the blue circle region, and the Seebeck coefficient ( ⁇ ) or the electrical conductivity ( ⁇ ) is higher than that of the PEDOT: PSS (conductive polymer) film made of organic material. have.
  • thermoelectric semiconductor device according to the present invention can be seen that the value of Seebeck coefficient ( ⁇ ) or electrical conductivity ( ⁇ ) is higher than that of the organic-inorganic composite structure of Bi 2 Te 3 / PANI.
  • the organic-inorganic composite structure of Bi 2 Te 3 / PANI illustrated in FIG. 19 corresponds to a configuration in which an organic material and an inorganic material are simply mixed, and the organic-inorganic composite structure prepared according to the present invention is a conventional organic It can be seen that the thermoelectric properties are improved compared to the case of the inorganic hybrid thermoelectric material.
  • thermoelectric semiconductor device 20 is a graph showing the power factor characteristics of the thermoelectric semiconductor device according to the present invention.
  • thermoelectric semiconductor device of FIG. 20 a thermoelectric semiconductor device of an organic-inorganic composite structure was manufactured by placing an organic device of polyaniline (PANI) in the second hole of the inorganic structure of FIG. 11.
  • PANI polyaniline
  • the power factor corresponds to a performance index considering the change of the electrical conductivity and the Seebeck coefficient at the same time.
  • thermoelectric semiconductor device according to the present invention is located in the blue circle region, it can be seen that the value of the power factor is higher than the case of the PEDOT: PSS (conductive polymer) film made of an organic material have.
  • thermoelectric semiconductor device in addition, the thermoelectric semiconductor device according to the present invention can be seen that the value of the power factor is higher than that of the organic-inorganic composite structure of Bi 2 Te 3 / PANI.
  • thermoelectric performance performance index: ZT
  • the Seebeck coefficient ( ⁇ ) or the electrical conductivity ( ⁇ ) may be increased, but in the case of the thermoelectric semiconductor device according to the present invention. Since the Seebeck Coefficient increases, and the power factor considering the change of the electrical conductivity and the Seebeck coefficient simultaneously increases, the performance index of the thermoelectric semiconductor is improved.
  • thermoelectric material having a high Seebeck coefficient and electrical conductivity and stably exhibiting excellent thermoelectric properties through the thermoconductor element of the organic-inorganic composite structure having a new structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 제1홀부를 포함하는 무기물 구조체; 및 상기 제1홀부에 위치하는 유기물 소자층을 포함하는 열전 반도체 소자 및 이를 포함하는 열전 반도체 모듈에 관한 것으로, 새로운 구조의 유기물-무기물 복합 구조체의 열전반도체 소자를 통하여, 높은 제베크계수 및 전기전도율을 가지며, 우수한 열전특성을 안정되게 발휘할 수 있는 유기-무기 하이브리드열전 재료를 제공할 수 있다.

Description

전기화학공정을 이용한 전자소재 및 이의 제조방법
본 발명은 전기화학 공정을 이용한 전자소재 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 상기 전자소재 중, 우수한 열전특성을 안정되게 발휘할 수 있는 유기-무기 하이브리드 열전 재료를 포함하는 열전 반도체 모듈에 관한 것이다.
한편, 본 출원은 하기 국가연구개발사업에 의해 지원받았다.
[이 발명을 지원한 국가연구개발사업]
[과제고유번호] 2013M3A6B1078870
[부처명] 미래창조과학부
[연구사업명] 글로벌프론티어연구개발사업(하이브리드 인터페이스 기반 미래소재연구)
[연구과제명] 고효율 유/무기 하이브리드 열전 모듈 원천기술
[연구관리전문기관] (재)하이브리드 인터페이스 기반 미래소재 연구단
[연구기간] 2013. 09. 25~2022. 08. 31 (총연구기간)
일반적으로 열전반도체 모듈은 광전자 분야의 광통신 반도체 레이저, CCD(Charge Coupled Device)카메라, 광전자 증배관, 각종 써모그래프(Thermograph), 적외선 가스분석기, 흑체 표준 항온플레이트 및 열추적 미사일 센서 등에 사용되고, 일반 전자 분야의 반도체 공정용 항온조, 반도체 공정용 항온플레이트, 반도체 공정용 순환기 및 LSI(Large Scale Integrated circuit) 온도 사이클 테스터 등에 사용되며, 일반 가정용 전자 제품의 순간 냉온 정수기 및 김치 냉장고 등에 사용되어 이들 장치의 온도를 적정하게 유지시키거나, 온도 차이에 의한 발전기로 응용이 가능하게 된다.
한편, 열 에너지와 전기 에너지 사이의 변화에 관한 현상을 일반적으로 열전 현상이라고 부르는데, 이러한 열전 현상에는 제벡 효과와 펠티에 효과가 있다.
제벡 효과(Seebeck Effeck)는 두 종류의 물질, 이를테면 안티몬(Sb)과 비스무트(Bi)와 같은 종류가 다른 두 금속선의 양단을 각각 접속하여 루우프를 만들고 한쪽 접속점을 고온으로, 다른 쪽 접속점을 저온으로 하면 전류가 흐르는 현상을 말하고, 이와는 반대로 펠티에 효과(Peltier Effect)는 종류가 다른 물질의 접합점에 전류를 흘리면 열의 발생이나 흡수가 일어나는 현상을 말한다.
이하에서 열전 반도체라는 용어는 이러한 제벡 효과와 펠티에 효과를 이용하여 전기 에너지를 열 에너지로 변환시키거나 이와 반대로 열 에너지를 전기 에너지로 변환시키는 반도체 모듈을 총칭하는 개념으로 사용될 수 있다.
이러한 현상을 이용하는 열전 반도체 모듈에서의 열전 반도체는 소자의 양단에 온도 차이가 있을 때 소자 내부의 캐리어(Carrier)가 이동함으로 인해 기전력이 발생하는 현상 또는 반대 현상을 이용한 것으로서 친환경 무소음 냉각 및 무공해 전기 발전을 가능케 하고 있다.
그중 제벡 효과를 이용하는 열전 반도체의 원리는 일정한 금속막대의 양단에 온도 차이가 발생하게 되면, 예를 들어 n-type의 경우, 고온단에 있는 전자들은 저온단에 있는 전자들 보다 더 높은 운동에너지를 가지게 됨으로써 고온단에 있는 전자들은 평균적으로 페르미 레벨(Fermi level)보다 높은 에너지 상태로 되기 때문에 고온단에 있는 전자들은 에너지를 낮추기 위해 저온단으로 확산된다.
또한, 전자들이 저온단으로 이동함에 따라 저온단은 " - " 로 대전되고, 고온부는 " + " 로 대전되어 금속막대의 양단 간에 전위 차이가 발생하게 되는데 이러한 전위차이를 열기전력(Thermoelectromotive force)이라 한다.
한편, 이러한 열전 반도체 모듈에서, 무기 재료(무기열전 재료)는 제벡 계수가 높고, 전기전도율이 높은 장점이 있으나, 열전도율이 높다는 문제점 있다.
이에 반하여, 유기 재료(유기열전 재료)는 제벡계수가 낮은 반면, 열전도율이 낮다는 장점이 있다.
따라서, 이와 같은 무기 재료와 유기 재료를 하이브리드화함으로써, 유기 재료와 무기 재료의 2종의 성질을 동시에 발현시킬 수 있는 유기-무기 하이브리드 열전 재료의 개발이 진행되고 있다
즉, 유기-무기 하이브리드 열전 재료는 낮은 열전도율을 가지면서, 이와 동시에 제벡 계수와 전기전도율이 높아, 효과적인 열전변환 기능을 갖는 열전 재료라고 할 수 있다.
하지만, 현재까지의 열전 재료는 하이브리드화했을 때에, 낮은 열전도율과 함께, 높은 제벡계수 및 전기전도율을 가지며, 안정된 열전특성을 발휘하는 것이 곤란한 상태이며, 두께가 얇아 수직방향으로 온도차이를 많이 발생시킬 수 없는 문제점이 있다. {Elazem, 2013 #68}
본 발명이 해결하고자 하는 과제는 낮은 열전도율과 함께, 높은 제벡계수 및 전기전도율을 가지며, 우수한 열전특성을 안정되게 발휘할 수 있는 유기-무기 하이브리드 열전 재료를 제공하는데 있다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 지적된 문제점을 해결하기 위해서 본 발명은 제1홀부를 포함하는 무기물 구조체; 및 상기 제1홀부에 위치하는 유기물 소자층을 포함하는 열전 반도체 소자를 제공한다.
또한, 본 발명은 상기 열전 반도체 소자는 금속 구조체를 더 포함하며, 상기 무기물 구조체는 상기 금속 구조체 상에 형성되는 열전 반도체 소자를 제공한다.
또한, 본 발명은 상기 금속 구조체는 복수개의 금속지지체를 포함하고, 상기 복수개의 금속지지체의 배치에 따라 형성되는 다각형 형상의 제2홀부를 포함하는 열전 반도체 소자를 제공한다.
또한, 본 발명은 상기 금속 구조체는, 제1금속 지지체; 상기 제1금속 지지체와 교차하여 배치되는 제2금속 지지체; 및 상기 제1금속 지지체와 상기 제2금속 지지체의 교차에 의해 형성되는 제2홀부를 포함하는 열전 반도체 소자를 제공한다.
또한, 본 발명은 상기 무기물 구조체는, 상기 제1금속 지지체를 둘러싸는 제1무기물 소자층; 및 상기 제2금속 지지체를 둘러싸고, 상기 제1무기물 소자층과 교차하여 배치되는 제2무기물 소자층을 포함하며, 상기 제1무기물 소자층과 상기 제2무기물 소자층의 교차에 의해 상기 제1홀부가 형성되는 열전 반도체 소자를 제공한다.
또한, 본 발명은 상기 금속 구조체는, x방향으로 배치되는 제1금속 지지체; 상기 제1금속 지지체와 교차하여 배치되고, y방향으로 제2금속 지지체; 및 z 방향으로 배치되고, 상기 제1금속 지지체와 상기 제2금속 지지체와 교차하여 배치되는 제3금속 지지체를 포함하는 열전 반도체 소자를 제공한다.
또한, 본 발명은 P형의 열전 반도체 소자와 N형의 열전 반도체 소자가 금속전극을 사이에 두고 접합하여 PN소자 쌍을 형성하는 열전 반도체 모듈에 있어서, 상기 P형의 열전 반도체 소자 및 상기 N형의 열전 반도체 소자 중 적어도 어느 하나의 열전 반도체 소자는, 금속 구조체; 상기 금속 구조체 상에 형성되어, 제1홀부를 포함하는 무기물 구조체; 및 상기 제1홀부에 위치하는 유기물 소자층을 포함하는 열전 반도체 모듈을 제공한다.
또한, 본 발명은 상기 금속 구조체는, 제1금속 지지체; 상기 제1금속 지지체와 교차하여 배치되는 제2금속 지지체; 및 상기 제1금속 지지체와 상기 제2금속 지지체의 교차에 의해 형성되는 제2홀부를 포함하는 열전 반도체 모듈을 제공한다.
또한, 본 발명은 상기 무기물 구조체는, 상기 제1금속 지지체를 둘러싸는 제1무기물 소자층; 및 상기 제2금속 지지체를 둘러싸고, 상기 제1무기물 소자층과 교차하여 배치되는 제2무기물 소자층을 포함하며, 상기 제1무기물 소자층과 상기 제2무기물 소자층의 교차에 의해 상기 제1홀부가 형성되는 열전 반도체 모듈을 제공한다.
상기한 바와 같은 본 발명에 따르면, 새로운 구조의 유기물-무기물 복합 구조체의 열전반도체 소자를 통하여, 높은 제벡계수 및 전기전도율을 가지며, 우수한 열전특성을 안정되게 발휘할 수 있는 유기-무기 하이브리드 열전 재료를 제공할 수 있다.
도 1은 일반적인 구조의 열전 반도체 소자를 설명하기 위한 개략적인 사시도이다.
도 2 내지 도 10은 본 발명에 따른 열전 반도체 소자를 제조하는 방법을 설명하기 위한 개략적인 도면이다.
도 11은 본 발명에 따른 전해도금법에 의한 전착 공정을 도시하는 개략적인 도면이다.
도 12는 본 발명에 따른 열전 반도체 소자의 무기물 구조체의 실사진이다.
도 13 내지 18은 본 발명에 따른 열전 반도체 소자의 무기물 구조체를 도시하는 다른 예이다. 이때, 도 13, 도 15 및 도 17은 무기물 구조체를 도시하는 실사진이며, 도 14, 도 16 및 도 18은 일정 영역에서의 성분을 도시한 그래프이다.
도 19는 본 발명에 따른 열전 반도체 소자의 제벡 계수 특성을 도시한 그래프이다.
도 20은 본 발명에 따른 열전 반도체 소자의 파워 팩터 특성을 도시한 그래프이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
아래 첨부된 도면을 참조하여 본 발명의 실시를 위한 구체적인 내용을 상세히 설명한다. 도면에 관계없이 동일한 부재번호는 동일한 구성요소를 지칭하며, "및/또는"은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성 요소와 다른 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 구성요소들의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)" 또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 일반적인 구조의 열전 반도체 소자를 설명하기 위한 개략적인 사시도이다. 한편, 열전 반도체의 열전 특성을 이용하여 열전 냉각, 열전 가열 및 열전 발전을 시키는 장치는 모두 그 기본 구성으로서 도 1과 같은 구조를 포함할 수 있다.
도 1을 참조하면, 일반적인 구조의 열전 반도체 모듈(10)은 P형의 열전 반도체 소자(30)와, N형의 열전 반도체 소자(40)를 금속전극(50)을 사이에 두고 접합하여 PN소자 쌍을 형성하여 이루어진 열전 소자를, 복수개 직렬로 배열하여 접속한 구성을 포함할 수 있다. 이때, 상기 금속전극(50)은 하부 금속전극(50a) 및 상부 금속전극(50b)을 포함할 수 있으며, 상기 하부 금속전극(50a)은 별도의 하부 지지기판(20) 상에 스퍼터링법을 통해 형성할 수 있고, 상기 상부 금속전극(50b)은 별도의 상부 지지기판(60) 상에 스퍼터링법을 통해 형성할 수 있다.
즉, 일반적인 구조의 열전 반도체 모듈(10)은 상하로 간격을 두고 평행하게 배열된 두층의 지지기판, 즉, 상부 지지기판(60) 및 하부 지지기판(20)을 포함할 수 있으며, 각각의 지지기판 상에 금속전극(50)이 각각 스퍼터링법을 통해 형성될 수 있다. 이때, 상기 지지기판은 실리콘 기판 또는 알루미나(Al2O3) 기판을 사용할 수 있고, 상기 금속전극은 일반적인 금속을 사용할 수 있으며, 구체적으로 Cu, Ni, Au, Ag 등의 단일막 또는 다층막을 사용할 수 있다. 이는 당업계에서 자명한 사항이므로, 이하 구체적인 설명은 생략하기로 한다.
한편, 일반적인 구조의 열전 반도체 모듈(10)에서, 상기 열전 반도체 소자(30, 40)를 형성시키는 열전 반도체 소자 물질은 5B족인 비스무트(Bi) 및 안티몬(Sb)으로부터 선택되는 1종 또는 2종의 원소와, 6B족인 텔루륨(Te) 및 셀레늄(Se)으로부터 선택되는 1종 또는 2종의 원소로 이루어진 복합 화합물을 포함할 수 있으며, 주로 5B족(Bi 및 Sb)의 원자수와, 6B족(Te 및 Se)의 원자수의 비가 2±0.5:3±0.5가 되는 조성의 합금을 포함할 수 있다.
예를 들어, 열전 반도체 소자들로는 열전 기능이 탁월한 Bi2Te3, Bi2Se3, Sb2Te3 등을 사용할 수 있다.
이때, 금속전극의 양단에 온도 차이가 발생하게 되면 n-type의 경우, 고온단에 있는 전자들은 저온단에 있는 전자들 보다 더 높은 운동에너지를 가지게 됨으로써 고온단에 있는 전자들은 평균적으로 페르미레벨(Fermi lever)보다 높은 에너지 상태로 되기 때문에 고온단에 있는 전자들은 에너지를 낮추기 위해 저온단으로 확산된다.
또한, 전자들이 저온단으로 이동함에 따라 저온단은 " - " 로 대전되고, 고온부는 " + " 로 대전되어 금속전극의 양단 간에 전위 차이가 발생하게 되는데 이러한 전위차이를 통해 열기전력(Thermoelectromotive force)이 발생하게 된다.
이때, 일반적으로 열전 반도체의 제조에 사용하는 재료의 열전 성능은 이하의 식으로 평가될 수 있다.
Figure PCTKR2016003796-appb-I000001
여기서, ZT:성능지수, α:제벡계수, σ:전기 전도율, κ:열 전도율, ρ:비저항이다.
따라서 열전 반도체 재료의 열전 성능(성능지수: ZT)을 향상시키기 위해서는 제벡계수(α) 또는 전기 전도율(σ)의 값을 증가시키거나 열전도율(κ) 또는 비저항(ρ)을 저하하게 한 원료합금 재료를 사용하면 좋다는 것을 알 수 있다.
이를 위하여, 상술한 바와 같이, 제벡 계수가 높고, 전기전도율이 높은 장점이 있는 무기재료와 열전도율이 낮은 유기재료를 하이브리드화함으로써, 유기 재료와 무기 재료의 2종의 성질을 동시에 발현시킬 수 있는 유기-무기 하이브리드 열전 재료의 개발이 진행되고 있다
하지만, 현재까지의 열전 재료는 하이브리드화했을 때에, 낮은 열전도율과 함께, 높은 제벡계수 및 전기전도율을 가지며, 안정된 열전특성을 발휘하는 것이 곤란한 상태이다.
따라서, 본 발명에서는 낮은 열전도율과 함께, 높은 제벡계수 및 전기전도율을 가지며, 우수한 열전특성을 안정되게 발휘할 수 있는 유기-무기 하이브리드열전 재료를 제공하고자 한다.
도 2 내지 도 10은 본 발명에 따른 열전 반도체 소자를 제조하는 방법을 설명하기 위한 개략적인 도면이다.
즉, 도 2 내지 10의 제조공정에 의해 본 발명에 따른 열전 반도체 소자를 제조할 수 있으며, 이러한, 열전 반도체 소자는 상술한 도 1의 열전 반도체 모듈에서의 열전 반도체 소자에 해당한다.
이하에서는 설명의 편의를 위하여, 본 발명에 따른 열전 반도체 소자만을 설명하기로 하며, 열전 반도체 모듈에서의 다른 구성은 상술한 도 1을 참조할 수 있다.
도 2는 본 발명에 따른 열전 반도체 소자의 금속 구조체를 도시하는 사시도이고, 도 3은 도 2의 I-I선에 따른 단면도이다.
도 2 및 도 3을 참조하면, 본 발명에 따른 열전 반도체 소자의 금속 구조체(100)는 제1금속 지지체(110) 및 상기 제1금속 지지체(110)와 교차하여 배치되는 제2금속 지지체(120)를 포함하며, 상기 제1금속 지지체(110)와 상기 제2금속 지지체(120)의 교차에 의해 형성되는 제1홀부(130)를 포함할 수 있다.
이때, 상기 금속 구조체(100)는 공지된 금속 재질일 수 있으며, 예를 들어, 티타늄(Ti), 니켈(Ni), 몰리브덴(Mo), 카드뮴(Cd), 백금(Pt), 금(Au) 및 이들의 합금으로 이루어질 수 있고, 다만, 본 발명에서 상기 금속 구조체의 재질을 제한하는 것은 아니다.
또한, 상기 제1홀부(130)의 형상에 있어서, 도면에서는 사각형의 형상으로 형성되는 것을 도시하고 있으나, 이와는 달리, 상기 제1금속 지지체(110)와 상기 제2금속 지지체(120)의 배치에 따라, 삼각형, 오각형 및 육각형 등의 다양한 형상의 다각형으로 형성될 수 있다.
즉, 본 발명에서 상기 금속 구조체는 복수 개의 금속 지지체를 포함하여 구성될 수 있으며, 상기 복수개의 금속지지체의 배치에 따라, 상기 제1홀부의 형상이 다양한 형상의 다각형으로 구성될 수 있다.
예를 들어, 상기 제1홀부의 형상이 사각형인 것은 4개의 금속 지지체가 배치되는 것일 수 있고, 상기 제1홀부의 형상이 삼각형인 것은 3개의 금속 지지체가 배치되는 것일 수 있다.
다만, 본 발명에서 상기 제1홀부의 형상을 제한하는 것은 아니다.
도 4는 본 발명에 따른 열전 반도체 소자의 금속 구조체의 다른 예를 도시하는 사시도이다.
즉, 상기 금속 구조체의 형상에 있어서, 도 2 및 도 3에서는 상기 제1금속 지지체(110)와 상기 제2금속 지지체(120)가 각각 x방향 및 y방향으로 배치되어 2차원의 형상으로 금속 구조체가 형성됨을 도시하고 있다.
하지만, 이와는 달리, 도 4에서와 같이, 상기 제1금속 지지체(110)와 상기 제2금속 지지체(120)가 각각 x방향 및 y방향으로 배치되고, 또한, z 방향으로 제3금속 지지체(410)가 배치되어, 3차원의 형상으로 금속 구조체(400)가 형성될 수 있다.
이때, 상기 3차원 형상의 금속 구조체는, 상기 도 2에서와 같이 상기 제1금속 지지체(110)와 상기 제2금속 지지체(120)의 교차에 의해 형성되는 제1홀부(130)를 포함할 수 있을 뿐만 아니라, 상기 제1금속 지지체(110), 상기 제2금속 지지체(120) 및 상기 제3금속 지지체(410)의 교차에 의해 형성되는 입체적 형상의 홀부(430)를 포함할 수 있다.
도 5는 본 발명에 따른 열전 반도체 소자의 무기물 구조체를 도시하는 사시도이고, 도 6은 도 5의 II-II선에 따른 단면도이다.
도 5 및 도 6을 참조하면, 본 발명에 따른 열전 반도체 소자의 무기물 구조체(200)는 상기 제1금속 지지체(110)를 둘러싸는 제1무기물 소자층(210) 및 상기 제2금속 지지체(120)를 둘러싸고, 상기 제1무기물 소자층(210)과 교차하여 배치되는 제2무기물 소자층(220)을 포함하며, 상기 제1무기물 소자층(210)과 상기 제2무기물 소자층(220)의 교차에 의해 형성되는 제2홀부(230)를 포함할 수 있다.
즉, 본 발명에 따른 열전 반도체 소자의 무기물 구조체(200)는 상기 금속 구조체(100) 상에 무기물 소자층(210, 220)을 형성한 구조에 해당한다.
상기 제1무기물 소자층 및 상기 제2무기물 소자층은 Bi-Te 계, Sb-Te 계, Pb-Se 계, Ag-Te 계, Ag-Se 계, Bi-(Te, Se) 계, Si-Ge계, Pb-Te계, GeTe-AgSbTe계 및 (Co, Ir, Ru)-Sb 계로부터 선택된 적어도 1종일 수 있으며, 다만, 본 발명에서 상기 제1무기물 소자층 및 상기 제2무기물 소자층의 종류를 제한하는 것은 아니다.
도 7은 본 발명에 따른 열전 반도체 소자의 무기물 구조체의 다른 예를 도시하는 사시도이다.
즉, 상기 무기물 구조체의 형상에 있어서, 도 5 및 도 6에서는 상기 제1금속 지지체(110)를 둘러싸는 제1무기물 소자층(210) 및 상기 제2금속 지지체(120)를 둘러싸고, 상기 제1무기물 소자층(210)과 교차하여 배치되는 제2무기물 소자층(220)을 포함하는 2차원의 형상으로 무기물 구조체가 형성됨을 도시하고 있다.
하지만, 이와는 달리, 도 7에서와 같이, 상기 제1금속 지지체(110)를 둘러싸는 제1무기물 소자층(210), 상기 제2금속 지지체(120)를 둘러싸고, 상기 제1무기물 소자층(210)과 교차하여 배치되는 제2무기물 소자층(220) 및 상기 제3금속 지지체(410)를 둘러싸고, 상기 제1무기물 소자층(210)과 상기 제2무기물 소자층(220)과 교차하여 배치되는 제3무기물 소자층(510)을 포함하는 3차원의 형상의 무기물 구조체(500)가 형성될 수 있다.
이때, 상기 3차원 형상의 무기물 구조체는, 상기 도 5에서와 같이 상기 제1무기물 소자층(210)과 상기 제2무기물 소자층(220)의 교차에 의해 형성되는 제2홀부(230)를 포함할 수 있을 뿐만 아니라, 상기 제1무기물 소자층(210), 상기 제2무기물 소자층(220) 및 상기 제3무기물 소자층(510)의 교차에 의해 형성되는 입체적 형상의 홀부(530)를 포함할 수 있다.
이때, 본 발명에서 상기 금속 구조체(100) 상에 무기물 소자층(210, 220)을 형성하는 것은 공지된 전기화학 공정에 의해 형성할 수 있다.
상기 전기화학 공정은 전기도금, 무전해 도금, 치환도금, 전기영동법 등일 수 있으며, 다만, 본 발명에서 상기 무기물 소자층을 형성하는 방법을 제한하는 것은 아니다.
이하에서는 전기화학 공정의 일예인 전기도금법에 의한 무기물 소자층의 형성을 설명하기로 한다.
도 11은 본 발명에 따른 전기도금법에 의한 전착 공정을 도시하는 개략적인 도면이다.
상기 전기도금법에 의한 전착 공정은 전기화학적 방법으로 전착 형성하는 것으로, 도너기판을 작업전극(250)으로 하여, 상기 열전 반도체 소자를 형성하기 위한 이온을 포함하는 액체 전해질(280)에 상기 기판을 담지한 후, 상대전극(260) 및 기준전극(270)을 이용하여 일정전류 또는 일정전압을 인가하는 방식을 말한다.
상기 전기화학적 방법은 구체적으로 정전류법, 정전위법 및 순환전류법 등을 사용할 수 있는 바, 상기 각각의 방법은 열전 반도체 소자의 두께를 자유롭게 조절하기 위하여 각각의 인자를 조절할 수 있다.
예를 들어, 상기 정전류법은 인가전류가 0.01 내지 -100 mA/㎠ 범위이고, 전류인가시간이 1분 내지 500분 범위이며, 상기 정전위법은 인가전위가 0.1 내지 1.5 V 범위이고, 전위인가시간이 1분 내지 500분 범위이며, 상기 순환전류법은 전위주사속도가 1 내지 1000 mV/s 범위이고, 순환전위회수가 1 내지 500회 범위내에서 수행될 수 있다.
이때, 상기 전기화학적 방법은 통상적으로 상온 및 상압 하에서 수행되는 바, 이는 일반적으로 진행되는 고온, 고압 공정에 비해 온화한 조건 유지가 가능하다.
한편, 상기 작업전극은 실리콘 기판 상에 스퍼터링 방법에 의해 Ni/Au를 적층한 구조의 금속전극을 형성한 도너기판일 수 있으며, 상대전극으로는 전도성이면서 전해질과 반응하지 않는 기판이 적합하며, 구체적으로는, 티타늄(Ti), 니켈(Ni), 몰리브덴(Mo), 카드뮴(Cd), 백금(Pt), 금(Au), 인듐-주석-산화물(ITO), 유리, 스테인레스 스틸(stainless steel) 및 탄소 기판 등으로부터 각각 적절히 선택될 수 있다. 또한, 일반적으로 기준전극은 Ag/AgCl을 사용할 수 있다.
즉, 본 발명에서는 공지된 전기도금법을 통하여, 상기 금속 구조체 상에 무기물 소자층, 즉, Bi-Te 계, Sb-Te 계, Pb-Se 계, Ag-Te 계, Ag-Se 계, Bi-(Te, Se) 계, Si-Ge계, Pb-Te계, GeTe-AgSbTe계 및 (Co, Ir, Ru)-Sb 계로부터 선택된 적어도 1종의 무기물을 형성함으로써, 본 발명에 따른 열전 반도체 소자의 무기물 구조체(200)를 형성할 수 있다.
한편, 일반적인 열전소자의 형성방법의 경우, n-type의 열전소재와 p-type의 열전소재를 형성함에 있어서, 일반적으로 벌크형의 경우 소결법을 이용하고 박막의 경우 CSVT(Close Space Vapor Transport)법, 공증착법(co-evaporation) 또는 MOCVD법 등을 사용하고 있다.
하지만, 이러한 형성방법의 경우, 증착온도가 높고, 증착공정이 진공 상태에서 이루어지게 되나, 본 발명에 따른 전기화학적 방법은 통상적으로 상온 및 상압하에서 수행되는 바, 일반적으로 진행되는 고온, 고압 공정에 비해 온화한 조건 유지가 가능하다.
따라서, 본 발명에서는 상기 열전 반도체 소자를 형성하는 공정이, 일반적으로 진행되는 고온, 고압 공정에 비해 낮은 상온 및 상압 조건에서 수행되므로, 고온 및 고압에 의한 열전 반도체 소자의 손상을 방지할 수 있다.
도 8은 본 발명에 따른 열전 반도체 소자의 유기물-무기물 복합구조체를 도시하는 사시도이고, 도 9는 도 8의 III-III선에 따른 단면도이다.
도 8 및 도 9를 참조하면, 본 발명에 따른 열전 반도체 소자의 유기물-무기물 복합 구조체(300)는 상기 제2홀부(230)에 위치하는 유기물 소자층(310)을 포함한다.
상술한 바와 같이, 본 발명에 따른 열전 반도체 소자의 무기물 구조체는 상기 제1금속 지지체(110)를 둘러싸는 제1무기물 소자층(210) 및 상기 제2금속 지지체(120)를 둘러싸고, 상기 제1무기물 소자층(210)과 교차하여 배치되는 제2무기물 소자층(220)을 포함하며, 상기 제1무기물 소자층(210)과 상기 제2무기물 소자층(220)의 교차에 의해 형성되는 제2홀부(230)를 포함할 수 있다.
이때, 본 발명에 따른 열전 반도체 소자의 유기물-무기물 복합 구조체는 상기 제2홀부(230)에 유기물 소자층(310)을 포함함으로써, 유기물-무기물 복합 구조체의 열전 반도체 소자를 구현할 수 있다.
상기 유기물 소자층은 폴리 아닐린 또는 그 유도체, 폴리피롤 또는 그 유도체, 폴리 티오펜 또는 그 유도체, 폴리페닐렌 비닐렌 유도체, 폴리파라페닐렌 유도체, 폴리아센 또는 그 유도체와 이들의 공중합체로 이루어질 수 있으며, 다만, 본 발명에서 상기 유기물 소자층의 종류를 제한하는 것은 아니다.
또한, 상기 유기물 소자층은 공지된 딥핑법 또는 스핀 코팅법에 의하여, 상기 제2홀부에 형성될 수 있으며, 다만, 본 발명에서 상기 유기물 소자층의 형성방법을 제한하는 것은 아니다.
도 10은 본 발명에 따른 열전 반도체 소자의 유기물-무기물 복합 구조체의 다른 예를 도시하는 사시도이다.
즉, 상기 유기물-무기물 복합 구조체의 형상에 있어서, 도 8 및 도 9에서는 상기 제1무기물 소자층(210)과 상기 제2무기물 소자층(220)의 교차에 의해 형성되는 상기 제2홀부(230)에 유기물 소자층(310)이 형성된다.
하지만, 이와는 달리, 도 10에 도시된 바와 같이, 상기 3차원 형상의 무기물 구조체는, 상기 제1무기물 소자층(210)과 상기 제2무기물 소자층(220)의 교차에 의해 형성되는 제2홀부(230)에 유기물 소자층(310)이 형성될 뿐만 아니라, 상기 제1무기물 소자층(210), 상기 제2무기물 소자층(220) 및 상기 제3무기물 소자층(510)의 교차에 의해 형성되는 입체적 형상의 홀부(미도시)에도 유기물 소자층(630)이 형성될 수 있다.
이하에서는 본 발명에 따른 열전 반도체 소자의 무기물 구조체를 설명하기로 한다.
본 발명에 따른 열전 반도체 소자의 무기물 구조체는 Ni로 이루어진 금속 구조체 상에, 하기의 조건으로 전해도금법에 의해 무기물 구조체를 제조하였다.
전해도금법에 있어서의 액제 전해질은 10mM의 SbO2와 10mM의 TeO2를 포함하였다.
도 12는 본 발명에 따른 열전 반도체 소자의 무기물 구조체의 실사진이다.
도 12를 참조하면, 본 발명에 따른 열전 반도체 소자의 무기물 구조체는 Ni의 제1금속 지지체를 둘러싸는 제1무기물 소자층 및 상기 Ni의 제2금속 지지체를 둘러싸고, 상기 제1무기물 소자층과 교차하여 배치되는 제2무기물 소자층을 포함하며, 상기 제1무기물 소자층과 상기 제2무기물 소자층의 교차에 의해 형성되는 제2홀부를 포함함을 확인할 수 있다.
도 12에서 알 수 있는 바와 같이, Ni의 금속 구조체 상에, 무기물 소자층이 양호하게 형성될 수 있음을 알 수 있다.
도 13 내지 18은 본 발명에 따른 열전 반도체 소자의 무기물 구조체를 도시하는 다른 예이다. 이때, 도 13, 도 15 및 도 17은 무기물 구조체를 도시하는 실사진이며, 도 14, 도 16 및 도 18은 일정 영역에서의 성분을 도시한 그래프이다.
도 13 내지 도 18에서 알 수 있는 바와 같이, Ni의 금속 구조체 상에, 무기물 소자층이 양호하게 형성될 수 있음을 알 수 있고, 또한, 각각의 지점에서, Ni, Sb, Te의 성분을 포함함을 확인할 수 있다.
이때, 본 발명에 따른 열전 반도체 소자의 유기물-무기물 복합 구조체는 상술한 제2홀부에 유기물 소자층이 위치함에 의하여 제조될 수 있다.
도 19는 본 발명에 따른 열전 반도체 소자의 제벡 계수 특성을 도시한 그래프이다.
도 19에서의 약어들의 의미는 다음과 같다.
- Bi2Te3/PANI composite : Bi2Te3 나노파티클을 PANI 폴리머 용액에 분산시켜 스핀코팅한 박막
- HCl doped PANI : 전기전도도를 높이기 위하여 HCl 용액을 이용하여 도핑한 PANI 폴리머
- PEDOT:PSS films(doped with DMSO) : PSS는 PEDOT의 분산을 잘되게 하지만 전기전도도를 저하시키기 때문에 스핀코팅으로 PEDOT:PSS 박막을 형성한 후에 DMSO를 이용하여 PSS를 제거한 박막
- PEDOT:PSS/ Bi2Te3 with different volume : Bi2Te3 나노파티클의 양을 조절하여 PEDOT:PSS에 분산시킨 것
- PEDOT:PSS drop casting: PEDOT:PSS 용액을 drop시켜 박막을 형성한 것
- PEDOT:PSS films(PH 750 doped with DMSO) : PEDOT:PSS의 박막의 전기전도도를 높이기 위하여 PH 750 doped with DMSO를 이용하여 PSS를 제거한 샘플
- PEDOT:PSS spin coated : PEDOT:PSS를 스핀코팅한 샘플
- PEDOT:PSS : PEDOT:PSS를 스핀코팅한 샘플
- PEDOT:Tos : 분산제를 PSS대신 폴리머체인이 짧은 Tos를 이용하여 PEDOT의 전기전도도를 향상시킨 것
- PP-PEDOT: pyridine과 PEPG를 이용하여 형성한 PEDOT 샘플
- PEDOT:PSS/Te films : Te 나노와이어를 PEDOT:PSS 용액에 분산시켜 스핀코팅한 샘플
- Bi0.55Sb1.5Te3/PANI : Bi0.55Sb1.5Te3 나노파티클을 PANI 용액에 분산시켜 형성한 샘플
한편, 도 19에서의 본 발명에 따른 열전 반도체 소자는 상술한 도 12의 무기물 구조체의 홀부에 폴리 아닐린(PANI)의 유기물 소자를 위치시킴으로써, 유기물-무기물 복합 구조체의 열전 반도체 소자를 제조하였다.
상술한 바와 같이, 열전 반도체 재료의 열전 성능(성능지수: ZT)을 향상시키기 위해서는 제벡계수(α) 또는 전기 전도율(σ)의 값을 증가시키거나 열전도율(κ) 또는 비저항(ρ)을 저하하는 것이 바람직하다.
본 발명에 따른 열전 반도체 소자는 파란색 원 영역에 위치하는 것으로, 유기물 재료로 이루어진 PEDOT:PSS(전도성 고분자) 필름의 경우보다 제벡계수(α) 또는 전기 전도율(σ)의 값이 상승함을 알 수 있다.
또한, 본 발명에 따른 열전 반도체 소자는 Bi2Te3/PANI의 유기물-무기물 복합 구조체의 경우보다 제벡계수(α) 또는 전기 전도율(σ)의 값이 상승함을 알 수 있다.
즉, 도 19에 도시된 Bi2Te3/PANI의 유기물-무기물 복합 구조체는 유기물 재료와 무기물 재료를 단순 혼합한 구성에 해당하는 것으로, 본 발명에 따라 제조된 유기물-무기물 복합 구조체는 종래의 유기-무기 하이브리드 열전 재료의 경우보다 열전 특성이 향상됨을 확인할 수 있다.
도 20은 본 발명에 따른 열전 반도체 소자의 파워 팩터 특성을 도시한 그래프이다.
도 20에서의 열전 반도체 소자는 상술한 도 11의 무기물 구조체의 제2홀부에 폴리 아닐린(PANI)의 유기물 소자를 위치시킴으로써, 유기물-무기물 복합 구조체의 열전 반도체 소자를 제조하였다.
이때, 파워 팩터(Power Factor)는 전기 전도율과 제벡계수의 변화를 동시에 고려한 성능 지표에 해당한다.
도 20에서 알 수 있는 바와 같이, 본 발명에 따른 열전 반도체 소자는 파란색 원 영역에 위치하는 것으로, 유기물 재료로 이루어진 PEDOT:PSS(전도성 고분자) 필름의 경우보다 파워 팩터의 값이 상승함을 알 수 있다.
또한, 본 발명에 따른 열전 반도체 소자는 Bi2Te3/PANI의 유기물-무기물 복합 구조체의 경우보다 파워 팩터의 값이 상승함을 알 수 있다.
즉, 상술한 바와 같이, 열전 반도체 재료의 열전 성능(성능지수: ZT)을 향상시키기 위해서는 제벡계수(α) 또는 전기 전도율(σ)의 값을 증가시키면 되는데, 본 발명에 따른 열전 반도체 소자의 경우, 제벡계수(Seebeck Coefficient)가 증가하고, 또한, 전기 전도율과 제벡계수의 변화를 동시에 고려한 파워 팩터(Power Factor)가 증가하기 때문에 열전 반도체의 성능 지수가 향상된다.
이상과 같은 본 발명에 따르면, 새로운 구조의 유기물-무기물 복합 구조체의 열전반도체 소자를 통하여, 높은 제벡계수 및 전기전도율을 가지며, 우수한 열전특성을 안정되게 발휘할 수 있는 유기-무기 하이브리드열전 재료를 제공할 수 있다.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (8)

  1. 제1홀부를 포함하는 무기물 구조체; 및
    상기 제1홀부에 위치하는 유기물 소자층을 포함하는 열전 반도체 소자.
  2. 제 1 항에 있어서,
    상기 열전 반도체 소자는 금속 구조체를 더 포함하며,
    상기 무기물 구조체는 상기 금속 구조체 상에 형성되는 열전 반도체 소자.
  3. 제 2 항에 있어서,
    상기 금속 구조체는 복수개의 금속지지체를 포함하고,
    상기 복수개의 금속지지체의 배치에 따라 형성되는 다각형 형상의 제2홀부를 포함하는 열전 반도체 소자.
  4. 제 2 항에 있어서,
    상기 금속 구조체는,
    제1금속 지지체; 상기 제1금속 지지체와 교차하여 배치되는 제2금속 지지체; 및 상기 제1금속 지지체와 상기 제2금속 지지체의 교차에 의해 형성되는 제2홀부를 포함하는 열전 반도체 소자.
  5. 제 4 항에 있어서,
    상기 무기물 구조체는,
    상기 제1금속 지지체를 둘러싸는 제1무기물 소자층; 및 상기 제2금속 지지체를 둘러싸고, 상기 제1무기물 소자층과 교차하여 배치되는 제2무기물 소자층을 포함하며,
    상기 제1무기물 소자층과 상기 제2무기물 소자층의 교차에 의해 상기 제1홀부가 형성되는 열전 반도체 소자.
  6. 제 2 항에 있어서,
    상기 금속 구조체는,
    x방향으로 배치되는 제1금속 지지체; 상기 제1금속 지지체와 교차하여 배치되고, y방향으로 제2금속 지지체; 및 z 방향으로 배치되고, 상기 제1금속 지지체와 상기 제2금속 지지체와 교차하여 배치되는 제3금속 지지체를 포함하는 열전 반도체 소자.
  7. 제 2 항에 있어서,
    상기 금속 구조체 상에 상기 무기물 구조체를 형성하는 것은 전기화학 공정에 의해 형성하는 열전 반도체 소자.
  8. 제 1 항 내지 제 7 항 중 어느 한 항의 열전 반도체 소자를 포함하는 열전 반도체 모듈.
PCT/KR2016/003796 2015-05-14 2016-04-11 전기화학공정을 이용한 전자소재 및 이의 제조방법 WO2016182210A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0067358 2015-05-14
KR1020150067358A KR101767908B1 (ko) 2015-05-14 2015-05-14 열전 반도체 소자 및 이를 포함한 열전 반도체 모듈

Publications (1)

Publication Number Publication Date
WO2016182210A1 true WO2016182210A1 (ko) 2016-11-17

Family

ID=57248350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003796 WO2016182210A1 (ko) 2015-05-14 2016-04-11 전기화학공정을 이용한 전자소재 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101767908B1 (ko)
WO (1) WO2016182210A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102391643B1 (ko) * 2018-09-18 2022-04-29 한국전력공사 열전모듈 제조방법 및 이에 의해 제조된 열전모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192580A (ja) * 2009-02-17 2010-09-02 Fujitsu Ltd 熱電変換素子及びその製造方法
KR20120136963A (ko) * 2011-06-10 2012-12-20 서울대학교산학협력단 3차원 비휘발성 메모리 장치 및 이의 제조 방법
US20130153819A1 (en) * 2011-12-19 2013-06-20 Industrial Technology Research Institute Thermoelectric composite material
WO2013109729A1 (en) * 2012-01-17 2013-07-25 Silicium Energy, Inc. Systems and methods for forming thermoelectric devices
KR20130087730A (ko) * 2012-01-30 2013-08-07 연세대학교 산학협력단 열효율을 개선할 수 있는 구조를 갖는 열전 소자

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759586B2 (en) * 2001-03-26 2004-07-06 Kabushiki Kaisha Toshiba Thermoelectric module and heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192580A (ja) * 2009-02-17 2010-09-02 Fujitsu Ltd 熱電変換素子及びその製造方法
KR20120136963A (ko) * 2011-06-10 2012-12-20 서울대학교산학협력단 3차원 비휘발성 메모리 장치 및 이의 제조 방법
US20130153819A1 (en) * 2011-12-19 2013-06-20 Industrial Technology Research Institute Thermoelectric composite material
WO2013109729A1 (en) * 2012-01-17 2013-07-25 Silicium Energy, Inc. Systems and methods for forming thermoelectric devices
KR20130087730A (ko) * 2012-01-30 2013-08-07 연세대학교 산학협력단 열효율을 개선할 수 있는 구조를 갖는 열전 소자

Also Published As

Publication number Publication date
KR20160134009A (ko) 2016-11-23
KR101767908B1 (ko) 2017-08-16

Similar Documents

Publication Publication Date Title
WO2017119549A1 (ko) 전기화학공정을 이용한 유기-무기 복합 반도체 소자 및 이의 제조방법
Cao et al. Screen printable flexible BiTe–SbTe-based composite thermoelectric materials on textiles for wearable applications
Norouzi et al. Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods
Shakeel et al. A low-cost printed organic thermoelectric generator for low-temperature energy harvesting
CN102237447B (zh) 薄膜层光伏模块制品的处理
US6679064B2 (en) Wafer transfer system with temperature control apparatus
Jella et al. A novel approach to ambient energy (thermoelectric, piezoelectric and solar-TPS) harvesting: Realization of a single structured TPS-fusion energy device using MAPbI3
CN1836340A (zh) 小功率热电发生器
CN105870314B (zh) 一种柔性硅基纳米薄膜热电器件
WO2012026678A2 (en) Thermoelectric module comprising thermoelectric element doped with nanoparticles and manufacturing method of the same
Schmidl et al. 3D spacer fabrics for thermoelectric textile cooling and energy generation based on aluminum doped zinc oxide
KR101208065B1 (ko) 열전 반도체의 제조방법
Kim et al. A wearable organic photovoltaic-thermoelectric (OPV-TE) hybrid generator to minimize the open-circuit voltage losses of OPV module
Deyneko et al. Investigation of the combination of ITO/CdS/CdTe/Cu/Au solar cells in microassembly for electrical supply of field cables
Bourgault et al. Thermoelectrical devices based on bismuth-telluride thin films deposited by direct current magnetron sputtering process
WO2016182210A1 (ko) 전기화학공정을 이용한 전자소재 및 이의 제조방법
WO2020080664A1 (ko) 액체 금속 공융 갈륨인듐 전극을 기반으로 하는 열전 측정 시스템 및 열전 소자
WO2021145621A1 (ko) 발전장치
Kim et al. Electrodeposition and thermoelectric characteristics of Bi 2 Te 3 and Sb 2 Te 3 films for thermopile sensor applications
Duman et al. Electrical properties of Al/p–Ge and Al/methyl green/p–Ge diodes
Xie et al. Multisource energy harvester with coupling structure and multiplexing mechanism
Moiroux et al. High temperature difference in a new flexible thermoelectric bismuth telluride microgenerator
WO2017014567A1 (ko) 열전 소자 및 이를 포함하는 냉각 장치
WO2017209549A1 (ko) 열전 레그 및 이를 포함하는 열전 소자
WO2022060165A1 (ko) 열전소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792856

Country of ref document: EP

Kind code of ref document: A1