WO2016182189A1 - Method for continuously preparing hydroxypivaldehyde - Google Patents

Method for continuously preparing hydroxypivaldehyde Download PDF

Info

Publication number
WO2016182189A1
WO2016182189A1 PCT/KR2016/002991 KR2016002991W WO2016182189A1 WO 2016182189 A1 WO2016182189 A1 WO 2016182189A1 KR 2016002991 W KR2016002991 W KR 2016002991W WO 2016182189 A1 WO2016182189 A1 WO 2016182189A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
aldol condensation
reactor
continuous
condensation reaction
Prior art date
Application number
PCT/KR2016/002991
Other languages
French (fr)
Korean (ko)
Inventor
장남진
김기돈
김지연
박진호
이선옥
조재억
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Publication of WO2016182189A1 publication Critical patent/WO2016182189A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/75Reactions with formaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/80Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/19Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing hydroxy groups

Definitions

  • Hydroxyfivalaldehyde (synonyms: 3-hydroxy-2,2-dimethylpropanal, or HPA) is an intermediate for the synthesis of neopentyl glycol, mainly aqueous formaldehyde solution and isobutylaldehyde (synonyms: 2-methylpropanal). Aldol condensation reaction is mainly produced. Neopentyl glycol is obtained by reacting HPA with hydrogenation.
  • HPA can be used by using improved performance of the reaction vessel, by adjusting the molar ratio or catalyst composition of the reaction product in the aldol condensation reaction reactor, or by applying a plurality of continuous stirred-tank reactors (CSTRs). Attempts have been made to improve the yield. However, the methods proposed so far require complex ' processes ' to overrun the installation and operating costs, or still need to be improved due to the low yield of HPA.
  • CSTRs continuous stirred-tank reactors
  • Patent Document 1 United States Patent No. 3935274 (1976.01.27)
  • Patent Document 2 Republic of Korea Registered Patent No. 0231644 (1999.08.31)
  • the present invention is to provide a process for the continuous production of HPA in high yield.
  • the aldol condensation reaction is carried out in three or more continuous stirred reaction reactor in series,
  • the isobutyl aldehyde is branched into each reaction at different ratios
  • the reaction mixture of the aldol condensation reaction is provided under a different residence time in each reaction period, providing a continuous method of HPA.
  • a method of continuously manufacturing HPA according to an embodiment of the present invention will be described.
  • the aldol condensation reaction for preparing HPA was sequentially performed in a series of three or more continuous stirring reaction reactors, and isobutyl aldehyde in the raw material compound at different ratios in each reaction vessel.
  • the reaction of the aldol condensation reaction is carried out under different residence times in each reaction period at the same time as the branching It was confirmed that HPA can be produced continuously in yield.
  • the continuous manufacturing method to maximize the mixing efficiency of the raw material compound to significantly improve the efficiency of the aldol condensation reaction.
  • the product containing the HPA obtained through the continuous manufacturing method is low in the content of unbanung formaldehyde and by-products, it can be used more suitably for the synthesis of neopentyl glycol. According to one embodiment of this invention,
  • the isobutyl aldehyde is branched into each reaction at different ratios
  • the reaction product of the aldol condensation reaction is provided under a different residence time in each reaction vessel, thereby providing a continuous production method of HPA.
  • the continuous production method of HPA includes a step of obtaining a product containing HPA through an aldol condensation reaction of aqueous formaldehyde solution and isobutylaldehyde in the presence of a catalyst.
  • the aldol condensation reaction can be carried out in a series of three or more, preferably 3 to 5, more preferably 3 or 4 groups of continuous stirring reaction. Condensation of the aldol by increasing the number of continuous stirring reactions Although improvement in the efficiency of the reaction can be expected, it is preferable to determine the number of the reactions in consideration of the efficiency of the process and the complexity of the equipment.
  • FIG. 1 schematically shows one embodiment of an aldol condensation reaction system 100 comprising three continuous stirred reactors.
  • the continuous production method of the HPA may be performed in an aldol condensation reaction system 100 including three consecutive stirring agitators (R1, R2, and R3).
  • the catalyst (F0-TEA) and the raw material compounds (FO-iBAL and F0-FA) applied to the aldol condensation reaction are introduced into the first reactor (R1) to start reaction.
  • the reaction product is sequentially delivered to the other reactors R2 and R3 through the connecting pipes F1 and F2 to proceed with the reaction.
  • isobutylaldehyde (FO-iBAL) in the raw material is branched (S1, S2 and S3) in different ratios to each of the semi-unggi (R1, R2 and R3), the aldol condensation
  • the reactions of the reactions occur under different residence times in each reaction.
  • the ratio of isobutyl aldehyde branched to each of the half aerator in the aldol condensation semi-aerator is sequentially reduced, the residence time of the semi-agitator in each of the semi-unggi may be performed to increase sequentially.
  • the deceleration width of the isobutylaldehyde content branched into each reaction vessel and the increase width of the reaction water residence time are not particularly limited.
  • the aldol condensation reaction system 100 including three continuous stirred reactors R1, R2 and R3, 89 to 94 weight 0 / based on the total content of isobutylaldehyde added to the reaction system.
  • Isobutyl aldehyde is charged into the first reaction vessel (R1), 5 to 10 weight 0 / ⁇ isobutyl aldehyde is charged into the second reaction reactor (R2), 1 to 3 weight 0 / ⁇ isobutyl Aldehyde may be added to the third reaction stage (R3).
  • the first reactor (R1) is 89 is preferable, and the third half such that input weight 0/0 or more isobutyl aldehyde unggi (R3) It is preferable to inject isobutylaldehyde of 3 weight 0 /. Or less.
  • the residence time of the reaction product in the three consecutive stirred agitators is increased sequentially, 10 to 13 minutes in the first reaction stage (R1), the second 13 to 17 minutes in the reaction period (R2), and 1 7 to 19 minutes in the third reaction period (R3).
  • LHSV Reactant Liquid Flow Rate I Reactor Volume
  • the Reynolds number, the linear velocity at the tip of the impeller, the line at the wall of the reaction vessel Factors such as speed should be considered.
  • the Reynolds number of each semi-unggi is 50000 or more, and the difference between the linear velocity at the tip of the impeller and the wall of the reactor may be adjusted to 2 to 5 m / sec.
  • the aldol condensation reaction of formaldehyde aqueous solution and isobutylaldehyde is exothermic reaction.
  • the aldol condensation reaction may be performed in three or more continuous stirring reactors connected in series via a reaction medium circulation unit including a circulation pump, a heat exchanger, and a reaction water injector, respectively.
  • FIG. 2 ′ schematically shows an embodiment in which the reaction water circulation unit is applied to the aldol condensation reaction system according to FIG. 1.
  • the aldol condensation reaction can be carried out in three continuous stirred reactors (R1, R2 and R3) connected in series via a semi-acupuncture circulation unit (CU), respectively.
  • the semi-ungmul circulation unit (CU) for circulating a portion of the semi-ungmul in each half-unggi through the circulation pipe to the outside of the half-unggi Circulation pump (P), a heat exchanger (E) for removing the reaction heat from the reactionary water passing through the circulation pipe, and a semi-atomizer injecting a portion of the reaction product passing through the circulation pipe through the venturi nozzle to the next reactor ( V).
  • the venturi nozzle may be provided where not only the semi-atom water injector (V) but also the semi-ung water passing through the heat exchanger (E) flows into each of the half aungers.
  • the reaction heat is removed while circulating 5 to 20 times the total amount of the reaction product through the reaction water circulation unit (CU), and at this time, by applying kinetic energy to the reaction water through a venturi nozzle, Stirring efficiency can be increased significantly.
  • CU reaction water circulation unit
  • the ratio of isobutylaldehyde branched to each of the half aungers may be sequentially decreased, and the residence time of the counterungung at each of the semiaunggi may be sequentially increased.
  • the reactant circulation unit (CU) since the reaction product is circulated to the outside of the reaction vessel, the residence time of the reactants in each reaction vessel may be relatively short.
  • the residence time of the reaction product in the three continuous stirred reaction reactors to which the reaction water circulation unit (CU) is applied is increased in sequence, 1 to 2 minutes at the first reaction period (R1), It can be adjusted from 1.5 to 5 minutes in the second reaction stage (R2), and from 5 to 9 minutes in the third reaction stage (R3).
  • isobutyl aldehyde as is advantageous in that the amount of isomer used to 0.5 0/0 of less than suppressing the formation of by-products. ⁇
  • isobutylaldehyde may be used in a molar ratio of 1 1 to 1.5, preferably 1/1 to 1.2 with respect to 1 mol of formaldehyde. That is, in order to induce a complete reaction of the formaldehyde used in the aldol condensation reaction, isobutylaldehyde may be used in excess of formaldehyde, preferably in a molar ratio of 1: 1.1 or more. However, when isobutyl aldehyde is used too much, the production of by-products due to Tishchenko banung may be increased. Therefore, isobutyl aldehyde is less than 1: 1.5 compared to formaldehyde It is preferable to use in molar ratio.
  • the catalyst may be a hydroxide such as LiOH, NaOH, KOH, Ca (OH) 2 ; Alkali metal carbonates such as NaCO 3 , LiCO 3 , KCO 3 , Ca (CO 3 ) 2 , NH 4 CO 3 ; Tertiary amine compounds such as trimethylamine, triethylamine, tripropylamine can be used.
  • the tertiary amine compound, especially triethylamine, in the catalyst may be more preferably used in view of improving the efficiency of the aldol condensation reaction reaction.
  • the catalyst may be used in a molar ratio of 0.01 to 0.5, preferably 0.15 to 0.25, and more preferably 0.18 to 0.22, per mole of formaldehyde. That is, for the expression of the catalytic effect, the catalyst may be used in a molar ratio of 1: 0.01 or more relative to formaldehyde. However, if the catalyst is used excessively, recovery of the catalyst may be required and generation of by-products may be caused. Therefore, the catalyst is preferably used in a molar ratio of 1: 0.5 or less relative to formaldehyde.
  • the reaction temperature may be maintained at 70 to 100 ° C, preferably 70 to 85 ° C. In order to ensure the yield of the reaction, the reaction temperature is preferably 70 ° C or more. However, when the reaction temperature is too high, the production of by-products may be accelerated, and the reaction temperature is preferably loo or lower.
  • the aldol condensation reaction may be performed under pressure to ensure yield.
  • the continuous production method of HPA performed under the above-described conditions enables the maximization of the mixing efficiency with respect to the raw material compound, thereby improving the efficiency of the aldol condensation reaction, and together with the remaining and byproducts of unreacted formaldehyde. The production can be minimized. Specifically, a high HPA yield of 99% or more and a low residual formaldehyde concentration of 2000 ppm or less can be secured through the continuous production method of HPA.
  • HPA continuous production method of HPA according to the present invention enables the production of high yield HPA, and the HPA obtained through this can be suitably used for the synthesis of neopentyl glycol.
  • FIG. 1 and 2 schematically show a method and a reaction system of continuous production of HPA according to one embodiment of the present invention, respectively.
  • F0-FA formaldehyde aqueous solution supply line
  • V Semi-atomizer with Venturi nozzle
  • an aldol condensation reaction system including three continuous stirring reactors (R1, R2 and R3) connected in series was prepared.
  • an isobutyl aldehyde and an aqueous formaldehyde solution containing an aldehyde concentration of 42% by weight 0 /., Containing 1% by weight 0 /. Triethylamine was prepared as a catalyst.
  • Formaldehyde isobutylaldehyde: triethylamine was used in a molar ratio of 1: 1.1: 0.2. Formaldehyde aqueous solution and catalyst were added to the first reaction period. And, based on the total content of isobutyl aldehyde, 91 weight 0 /. Isobutyl aldehyde is in the first reaction period (R1), 7.5 weight 0 /. Isobutyl aldehyde is in the second reaction period (R2) , 1.5 weight 0 /. Isobutylaldehyde was branched into the third reactor (R3), respectively.
  • Example 2 In the same manner as in Example 1, except that an aldol condensation reaction system including three continuous stirring reactors R1, R2, and R3 connected in series through a semi-ungmul circulation unit (CU) as shown in FIG. 2 was used. Aldol condensation reaction was performed.
  • CU semi-ungmul circulation unit
  • the semi-heated heat was removed through the heat exchanger E while circulating the semi-coated water to the outside of each of the semi-ungungers by operating the circulation pump P of each semi-coupling water circulation unit CU. And, the venturi provided in the reaction water injector (V) a part of the circulating reaction water Sprayed through the nozzle to the next reaction vessel.
  • Comparative Example 1 showed a conversion rate equivalent to that of the examples, the concentration of residual formaldehyde in the product was found to be about 20% higher, and the yield of HPA was also lower.
  • the embodiment 1 and 2 showed a low concentration of residual formaldehyde as low as 2000 ppm and a high yield of HPA of 99% or more.
  • Example 2 to which the reactant circulation unit was applied showed a high HPA yield of 99.80%.

Abstract

The present invention relates to a method for continuously preparing hydroxypivaldehyde. A method for continuously preparing hydroxypivaldehyde, according to the present invention, enables preparation of hydroxypivaldehyde in a high yield, and the hydroxypivaldehyde obtained by means of same is suitable for synthesizing neopentyl glycol.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
하이드록시피브알데하이드의 연속 제조 방법  Continuous production method of hydroxyfibaldehyde
【기술분야】  Technical Field
관련 출원과의 상호 인용  Cross Citation with Related Applications
본 출원은 2015년 5월 13일자 한국 특허 출원 게 10-2015-0066893호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 높은 수율로 하이드록시피브알데하이드를 연속 제조하는 방법에 관한 것이다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0066893 filed May 13, 2015, and all content disclosed in the literature of that Korean patent application is incorporated as part of this specification. The present invention relates to a process for the continuous production of hydroxyfibaldehyde in high yield.
【배경기술】 Background Art
하이드록시피브알데하이드 (hydroxypivalaldehyde, synonyms: 3-hydroxy-2,2-dimethylpropanal, 이하 HPA)는 네오펜틸 글리콜의 합성을 위한 중간체로써, 주로 포름알데하이드 수용액과 아이소부틸알데하이드 (isobutyraldehyde, synonyms: 2-methylpropanal)의 알돌 축합 반웅을 통해 주로 제조된다. 그리고, 네오펜틸 글리콜은 HPA를 수소화 반웅시킴으로써 얻어진다.
Figure imgf000002_0001
Hydroxyfivalaldehyde (synonyms: 3-hydroxy-2,2-dimethylpropanal, or HPA) is an intermediate for the synthesis of neopentyl glycol, mainly aqueous formaldehyde solution and isobutylaldehyde (synonyms: 2-methylpropanal). Aldol condensation reaction is mainly produced. Neopentyl glycol is obtained by reacting HPA with hydrogenation.
Figure imgf000002_0001
Isobutyraldehyde Formaldehyde Hydroxypivalaldehyde
Figure imgf000002_0002
Isobutyraldehyde Formaldehyde Hydroxypivalaldehyde
Figure imgf000002_0002
Hydroxypivalaldehyde Neopentyl glycol 그런데, HPA의 제조를 위한 원료 화합물인 포름알데하이드 수용액과 아이소부틸알데하이드는 밀도의 차이가 크다. 그에 따라, 상기 원료 화합물의 불균일한 반웅에 의해 부산물의 생성이 많아지고, HPA의 제조 수율이 저하되는 문제점이 있다. 상기 알돌 축합 반웅의 주요 부산물로서, 2,2,4-트리메틸 -1 ,3-펜탄디올, 네오펜틸 글리콜 하이드록시 피발레이트, 네오펜틸 글리콜 아이소부틸레이트 등을 예로 들 수 있다. 이러한 부산물들은 비점이 네오펜틸 글리콜과 유사하여 최종 생성물로부터 분리가 어렵고, 분리 공정이 복잡해지기 때문에, HPA에서의 부산물 생성을 최소화하는 것이 중요하다. Hydroxypivalaldehyde Neopentyl glycol However, aqueous formaldehyde and isobutylaldehyde, which are raw materials for the preparation of HPA, have a large difference in density. Accordingly, there is a problem in that by-products of non-uniform reaction of the raw material compound increase the production of by-products and lower the production yield of HPA. As a main by-product of the aldol condensation reaction, 2,2,4-trimethyl-l, 3-pentanediol, neopentyl glycol hydroxy pivalate, neopentyl glycol isobutylate, etc. are mentioned. Because these byproducts have boiling points similar to neopentyl glycol, which make it difficult to separate from the final product and complicate the separation process, it is important to minimize byproduct generation in HPA.
특히, HPA의 제조를 위한 원료 화합물 중 포름알데하이드는 HPA의 수소화 반웅에 촉매 독으로써 작용할 수 있기 때문에, 상기 알돌 축합의 생성물에는 포름알데하이드의 잔류가 최소화되어야 한다.  In particular, since formaldehyde in the raw material for the production of HPA can act as a catalyst poison to the hydrogenation reaction of HPA, the product of the aldol condensation should be minimized the residual of formaldehyde.
이처럼 HPA의 제조 과정에서 부산물의 생성을 방지하고 포름알데하이드의 잔류를 최소화하기 위해서는, 포름알데하이드 수용액과 아이소부틸알데하이드의 반웅 효율의 향상이 요구된다.  In order to prevent the formation of by-products and minimize the formation of formaldehyde in the manufacturing process of HPA, it is required to improve the reaction efficiency of aqueous formaldehyde solution and isobutylaldehyde.
이와 관련하여, 개선된 성능의 반웅기를 이용하거나, 알돌 축합 반웅에서 반웅물의 몰비 또는 촉매 조성을 조절하거나, 복수의 연속 교반 반웅기 (continuous stirred-tank reactor, CSTR)를 적용하는 등의 방법을 통해 HPA의 수율을 향상시키려는 시도들이 있었다. 하지만, 지금까지 제안된 방법들은 복잡한' 공정으로 인해 설비 비용과 운전 비용이 과다해지거나, 여전히 낮은 HPA의 수율로 인해, 이에 대한 개선이 요구된다. In this regard, HPA can be used by using improved performance of the reaction vessel, by adjusting the molar ratio or catalyst composition of the reaction product in the aldol condensation reaction reactor, or by applying a plurality of continuous stirred-tank reactors (CSTRs). Attempts have been made to improve the yield. However, the methods proposed so far require complex ' processes ' to overrun the installation and operating costs, or still need to be improved due to the low yield of HPA.
【선행기술문헌】 Prior Art Documents
【특허문헌】  [Patent literature]
(특허문헌 1 ) 미국 등록특허 제 3935274 호 (1976.01.27)  (Patent Document 1) United States Patent No. 3935274 (1976.01.27)
(특허문헌 2) 대한민국 등록특허 제 0231644 호 (1999.08.31 )  (Patent Document 2) Republic of Korea Registered Patent No. 0231644 (1999.08.31)
【발명의 내용】 [Content of invention]
【해결하려는 과제]  [Action to be solved]
본 발명은 높은 수율로 HPA를 연속 제조하는 방법을 제공하기 위한 것이다.  The present invention is to provide a process for the continuous production of HPA in high yield.
【과제의 해결 수단】 [Measures of problem]
본 발명에 따르면 촉매의 존재 하에 포름알데하이드 수용액과 아이소부틸알데하이드의 알돌 축합 반웅을 통해 HPA가 함유된 생성물을 얻는 단계를 포함하고; According to the invention Obtaining a product containing HPA through an aldol condensation reaction of an aqueous formaldehyde solution with isobutylaldehyde in the presence of a catalyst;
상기 알돌 축합 반웅은 직렬 연결된 3 기 이상의 연속 교반 반웅기에서 수행되며,  The aldol condensation reaction is carried out in three or more continuous stirred reaction reactor in series,
상기 아이소부틸알데하이드는 각 반웅기에 서로 다른 비율로 분기 투입되고,  The isobutyl aldehyde is branched into each reaction at different ratios,
상기 알돌 축합 반웅의 반웅물은 각 반웅기에서 서로 다른 체류 시간 하에 반웅하는, HPA의 연속 제조 방법이 제공된다. 이하, 발명의 구현 예에 따른 HPA의 연속 제조 방법 에 대하여 설명하기로 한다.  The reaction mixture of the aldol condensation reaction is provided under a different residence time in each reaction period, providing a continuous method of HPA. Hereinafter, a method of continuously manufacturing HPA according to an embodiment of the present invention will be described.
그에 앞서, 본 명세서 전체에서 명시적인 언급이 없는 한, 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 그리고, 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 또한, 명세서에서 사용되는 '포함 '의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 또는 성분의 부가를 제외시키는 것은 아니다. 한편, HPA의 제조를 위한 원료 화합물인 포름알데하이드 수용액과 아이소부틸알데하이드는 밀도의 차이가 커서, 이들의 알돌 축합 반웅이 불균일하게 진행될 가능성이 높다. 상기 알돌 축합 반웅이 불균일하게 진행될 경우, 미반웅 원료 화합물 (특히 포름알데하이드)이 최종 생성물에 잔존하여 후속 공정의 반웅 효율을 떨어트리거나, 최종 생성물로부터 분리가 어려운 부산물의 생성이 증가하는 문제를 유발한다.  Prior to this, unless otherwise stated throughout the specification, the terminology is for the purpose of referring only to particular embodiments and is not intended to limit the invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. In addition, the meaning of "included" as used in the specification specifies a specific characteristic, region, integer, step, operation, element or component, excluding the addition of other specific characteristics, region, integer, step, operation, element, or component. It is not meant to be. On the other hand, formaldehyde aqueous solution and isobutylaldehyde, which are raw materials for the production of HPA, have a large difference in density, and their aldol condensation reaction is highly likely to proceed unevenly. If the aldol condensation reaction proceeds unevenly, unbanung raw material compounds (especially formaldehyde) remain in the final product, causing the reaction efficiency of the subsequent process to decrease or increase in the formation of by-products that are difficult to separate from the final product. do.
그런데, 본 발명자들의 계속적인 연구 결과, HPA의 제조를 위한 알돌 축합 반웅을 직렬 연결된 3 기 이상의 연속 교반 반웅기에서 순차로 수행하고, 상기 원료 화합물 중 아이소부틸알데하이드를 각 반웅기에 서로 다른 비율로 분기 투입함과 동시에, 상기 알돌 축합 반웅의 반웅물이 각 반웅기에서 서로 다른 체류 시간 하에 반웅하도록 할 경우, 현저히 향상된 수율로 HPA를 연속 제조할 수 있음이 확인되었다. However, as a result of the continuous study of the present inventors, the aldol condensation reaction for preparing HPA was sequentially performed in a series of three or more continuous stirring reaction reactors, and isobutyl aldehyde in the raw material compound at different ratios in each reaction vessel. Significantly improved if the reaction of the aldol condensation reaction is carried out under different residence times in each reaction period at the same time as the branching It was confirmed that HPA can be produced continuously in yield.
그리고, 이러한 연속 제조 방법은 HPA가 함유된 생성물에 미반웅 포름알데하이드의 잔류량을 현저히 낮출 수 있을 뿐 아니라, 네오펜틸 글리콜 하이드록시 피발레이트와 같은 부산물의 생성도 효과적으로 억제할 수 있음이 확인되었다.  In addition, it was confirmed that such a continuous production method can not only significantly reduce the residual amount of unbanung formaldehyde in the product containing HPA, but also effectively suppress the formation of by-products such as neopentyl glycol hydroxy pivalate.
특히, 상기 알돌 축합 반웅에서 각 반응기에 분기 투입되는 아이소부틸알데하이드의 비율을 순차적으로 감소시키고, 각 반웅기에서 반웅물의 체류시간을 순차적으로 증가시킴으로써, 보다 향상된 효과가 발현될 수 있다.  In particular, by reducing the ratio of isobutyl aldehyde branched into each reactor in the aldol condensation reaction, sequentially increasing the residence time of the reaction in each reaction, more improved effect can be expressed.
이러한 효과는, 상기 연속 제조 방법이 원료 화합물의 흔합 효율을 극대화하여 상기 알돌 축합 반웅의 효율을 현저히 향상시킴에 따른 것으로 예측된다. 그리고, 상기 연속 제조 방법을 통해 얻어진 HPA가 함유된 생성물은 미반웅 포름알데하이드와 부산물의 함량이 낮아, 네오펜틸 글리콜의 합성에 보다 적합하게 사용될 수 있다. 이러한 발명의 일 구현 예에 따르면,  This effect is expected to be due to the continuous manufacturing method to maximize the mixing efficiency of the raw material compound to significantly improve the efficiency of the aldol condensation reaction. In addition, the product containing the HPA obtained through the continuous manufacturing method is low in the content of unbanung formaldehyde and by-products, it can be used more suitably for the synthesis of neopentyl glycol. According to one embodiment of this invention,
촉매의 존재 하에 포름알데하이드 수용액과 아이소부틸알데하이드의 알돌 축합 반웅을 통해 HPA가 함유된 생성물을 얻는 단계를 포함하고; 상기 알돌 축합 반웅은 직렬 연결된 3 기 이상의 연속 교반 반웅기에서 수행되며,  Obtaining a product containing HPA through an aldol condensation reaction of an aqueous formaldehyde solution with isobutylaldehyde in the presence of a catalyst; The aldol condensation reaction is carried out in three or more continuous stirred reaction reactor in series,
상기 아이소부틸알데하이드는 각 반웅기에 서로 다른 비율로 분기 투입되고,  The isobutyl aldehyde is branched into each reaction at different ratios,
상기 알돌 축합 반응의 반웅물은 각 반웅기에서 서로 다른 체류 시간 하에 반웅하는, HPA의 연속 제조 방법이 제공된다.  The reaction product of the aldol condensation reaction is provided under a different residence time in each reaction vessel, thereby providing a continuous production method of HPA.
상기 HPA의 연속 제조 방법에는, 촉매의 존재 하에 포름알데하이드 수용액과 아이소부틸알데하이드의 알돌 축합 반웅을 통해 HPA가 함유된 생성물을 얻는 단계가 포함된다.  The continuous production method of HPA includes a step of obtaining a product containing HPA through an aldol condensation reaction of aqueous formaldehyde solution and isobutylaldehyde in the presence of a catalyst.
상기 알돌 축합 반웅은 직렬 연결된 3 기 이상, 바람직하게 3 기 내지 5 기, 보다 바람직하게는 3 기 또는 4기의 연속 교반 반웅기에서 수행될 수 있다. 상기 연속 교반 반웅기의 개수를 증가시킴으로써 상기 알돌 축합 반웅의 효율 향상이 기대될 수 있지만, 공정의 효율과 설비의 복잡성 등을 고려하여 , 상기 반웅기의 개수를 결정하는 것이 바람직하다. The aldol condensation reaction can be carried out in a series of three or more, preferably 3 to 5, more preferably 3 or 4 groups of continuous stirring reaction. Condensation of the aldol by increasing the number of continuous stirring reactions Although improvement in the efficiency of the reaction can be expected, it is preferable to determine the number of the reactions in consideration of the efficiency of the process and the complexity of the equipment.
도 1은 3 기의 연속 교반 반응기를 포함한 알돌 축합 반웅 시스템 (100)에 대한 일 구현 예를 모식적으로 나타낸 것이다.  FIG. 1 schematically shows one embodiment of an aldol condensation reaction system 100 comprising three continuous stirred reactors.
도 1을 참고하면, 상기 HPA의 연속 제조 방법은 3 기의 연속 교반 반웅기 (R1 , R2 및 R3)를 포함한 알돌 축합 반응 시스템 (100)에서 수행될 수 있다. 상기 알돌 축합 반응 시스템 (100)에서, 알돌 축합 반응에 적용되는 촉매 (F0-TEA)와 원료 화합물 (FO-iBAL 및 F0-FA)은 첫 번째 반응기 (R1 )에 투입되어 반웅이 시작된다. 그리고, 그 반웅물은 연결관 (F1 및 F2)을 통해 다른 반응기 (R2 및 R3)에 순차로 전달되어 반응이 진행된다.  Referring to FIG. 1, the continuous production method of the HPA may be performed in an aldol condensation reaction system 100 including three consecutive stirring agitators (R1, R2, and R3). In the aldol condensation reaction system 100, the catalyst (F0-TEA) and the raw material compounds (FO-iBAL and F0-FA) applied to the aldol condensation reaction are introduced into the first reactor (R1) to start reaction. The reaction product is sequentially delivered to the other reactors R2 and R3 through the connecting pipes F1 and F2 to proceed with the reaction.
특히, 발명의 구현 예에 따르면, 원료 화합물 중 아이소부틸알데하이드 (FO-iBAL)는 각 반웅기 (R1 , R2 및 R3)에 서로 다른 비율로 분기 투입 (S1 , S2 및 S3)되고, 상기 알돌 축합 반웅의 반웅물은 각 반웅기에서 서로 다른 체류 시간 하에서 반응이 이루어진다.  In particular, according to an embodiment of the present invention, isobutylaldehyde (FO-iBAL) in the raw material is branched (S1, S2 and S3) in different ratios to each of the semi-unggi (R1, R2 and R3), the aldol condensation The reactions of the reactions occur under different residence times in each reaction.
바람직하게는, 상기 알돌 축합 반웅기에서 각 반웅기에 분기 투입되는 아이소부틸알데하이드의 비율은 순차적으로 감소하고, 각 반웅기에서 반웅물의 체류 시간은 순차적으로 증가하도록 수행될 수 있다. 여기서, 각 반웅기에 분기 투입되는 아이소부틸알데하이드 함량의 감속 폭과 반웅물 체류 시간의 증가 폭은 특별히 제한되지 않는다.  Preferably, the ratio of isobutyl aldehyde branched to each of the half aerator in the aldol condensation semi-aerator is sequentially reduced, the residence time of the semi-agitator in each of the semi-unggi may be performed to increase sequentially. Here, the deceleration width of the isobutylaldehyde content branched into each reaction vessel and the increase width of the reaction water residence time are not particularly limited.
구체적으로, 3 기의 연속 교반 반응기 (R1 , R2 및 R3)를 포함한 알돌 축합 반웅 시스템 (100)의 경우, 상기 반웅 시스템에 투입되는 아이소부틸알데하이드의 전체 함량을 기준으로, 89 내지 94 중량0 /。의 아이소부틸알데하이드는 첫 번째 반웅기 (R1 )에 투입되고, 5 내지 10 중량 0/。의 아이소부틸알데하이드는 두 번째 반웅기 (R2)에 투입되고, 1 내지 3 중량0 /。의 아이소부틸알데하이드는 세 번째 반웅기 (R3)에 투입될 수 있다. 즉, 촉매가 나타내는 활성의 양상과 알돌 축합 반웅의 전체적인 효율을 고려하여, 첫 번째 반응기 (R1 )에는 89 중량0 /0 이상의 아이소부틸알데하이드가 투입되도록 하는 것이 바람직하고, 세 번째 반웅기 (R3)에는 3 중량0 /。 이하의 아이소부틸알데하이드가 투입되도록 하는 것이 바람직하다. 특히, 상기 아이소부틸알데하이드의 분기 투입과 함께, 상기 3 기의 연속 교반 반웅기에서 반웅물의 체류 시간은, 순차적으로 증가함을 전제로, 첫 번째 반웅기 (R1 )에서 10 내지 13 분, 두 번째 반웅기 (R2)에서 13 내지 17 분, 그리고 세 번째 반웅기 (R3)에서 1 7 내지 19 분으로 조절될 수 있다. 여기서, 각 반웅기에서의 반웅물의 체류 시간은 반웅물의 공간 속도, 특히 상기 알돌 축합 반웅에서 반웅물의 액체 공간 속도 (liquid hourly space velocity; LHSV = Reactant Liquid Flow Rate I Reactor Volume)의 측정을 통해 상술한 범위 내에서 조절될 수 있다. Specifically, in the case of the aldol condensation reaction system 100 including three continuous stirred reactors R1, R2 and R3, 89 to 94 weight 0 / based on the total content of isobutylaldehyde added to the reaction system. Isobutyl aldehyde is charged into the first reaction vessel (R1), 5 to 10 weight 0 /。 isobutyl aldehyde is charged into the second reaction reactor (R2), 1 to 3 weight 0 /。 isobutyl Aldehyde may be added to the third reaction stage (R3). That is, in consideration of the overall efficiency of the active pattern and aldol condensation banung represented by the catalyst, the first reactor (R1) is 89 is preferable, and the third half such that input weight 0/0 or more isobutyl aldehyde unggi (R3) It is preferable to inject isobutylaldehyde of 3 weight 0 /. Or less. In particular, with the branching of the isobutylaldehyde, the residence time of the reaction product in the three consecutive stirred agitators is increased sequentially, 10 to 13 minutes in the first reaction stage (R1), the second 13 to 17 minutes in the reaction period (R2), and 1 7 to 19 minutes in the third reaction period (R3). Here, the residence time of the reaction product in each reaction vessel is described above by measuring the space velocity of the reaction product, in particular, the liquid hourly space velocity (LHSV = Reactant Liquid Flow Rate I Reactor Volume) in the aldol condensation reaction reactor. It can be adjusted within the range.
그리고, 발명의 구현 예에 따르면, 각 반웅기에서 반웅물의 효과적인 교반을 위해서는 레이놀즈 수 (Reynolds number), 임펠러 (impeller)의 팁 (tip)에서의 선속도 (linear velocity), 반웅기 벽면에서의 선속도 등의 인자가 고려되어야 한다. 바람직하게는, 상기 알돌 축합 반웅기 시스템에서 각 반웅기의 레이놀즈 수는 50000 이상, 임펠러의 팁과 반응기의 벽면에서의 선속도의 차이는 2 내지 5 m/sec로 조절될 수 있다. 한편, 포름알데하이드 수용액과 아이소부틸알데하이드의 알돌 축합 반웅은 발열 반웅이다. 따라서, 각 반웅기의 반웅물을 반웅기의 외부로 순환시키면서 반웅열을 제거하는 것이 바람직하다. 특히, 상기 반웅물을 외부로 순환시킴에 있어서, 벤츄리 노즐 (venturi nozzle)이 구비된 분사기를 이용하여 반응물을 반웅기 내에 강력하게 분사함으로써 보다 향상된 반웅 효율을 확보할 수 있다.  In addition, according to the embodiment of the present invention, in order to effectively stir the reaction water in each reaction vessel, the Reynolds number, the linear velocity at the tip of the impeller, the line at the wall of the reaction vessel Factors such as speed should be considered. Preferably, in the aldol condensation semi-agitator system, the Reynolds number of each semi-unggi is 50000 or more, and the difference between the linear velocity at the tip of the impeller and the wall of the reactor may be adjusted to 2 to 5 m / sec. On the other hand, the aldol condensation reaction of formaldehyde aqueous solution and isobutylaldehyde is exothermic reaction. Therefore, it is preferable to remove the semiungung heat while circulating the semiungung of each halfunggi to the outside of the semiungunggi. In particular, in circulating the reaction product to the outside, by using the injector equipped with a venturi nozzle (strong) spraying the reactant in the reaction vessel it can be ensured more improved reaction efficiency.
이와 관련한 발명의 구현 예에 따르면, 상기 알돌 축합 반웅은 각각 순환 펌프, 열 .교환기 및 반웅물 분사기를 포함한 반웅물 순환 유닛을 매개로 직렬 연결된 3 기 이상의 연속 교반 반웅기에서 수행될 수 있다. 도 2 '는 도 1에 따른 알돌 축합 반웅 시스템에 상기 반웅물 순환 유닛이 적용된 구현 예를 모식적으로 나타낸 것이다. According to the embodiment of the present invention, the aldol condensation reaction may be performed in three or more continuous stirring reactors connected in series via a reaction medium circulation unit including a circulation pump, a heat exchanger, and a reaction water injector, respectively. FIG. 2 schematically shows an embodiment in which the reaction water circulation unit is applied to the aldol condensation reaction system according to FIG. 1.
도 2를 참고하면, 상기 알돌 축합 반웅은 각각 반웅물 순환 유닛 (CU)을 매개로 직렬 연결된 3 기의 연속 교반 반응기 (R1 , R2 및 R3)에서 수행될 수 있다. 여기서, 상기 반웅물 순환 유닛 (CU)은 각 반웅기에서 반웅물 중 일부를 순환관을 통해 반웅기의 외부로 순환시키는 순환 핍프 (P), 상기 순환관을 통과하는 반웅물로부터 반옹열을 제거하는 열 교환기 (E), 및 상기 순환관을 통과하는 반웅물의 일부를 벤츄리 노즐을 통해 다음 반응기에 분사하는 반웅물 분사기 (V)를 포함한다. 여기서, 상기 벤츄리 노즐은 상기 반웅물 분사기 (V)뿐 아니라, 열 교환기 (E)를 통과한 반웅물이 각 반웅기로 유입되는 곳에 구비될 수 있다. Referring to Figure 2, the aldol condensation reaction can be carried out in three continuous stirred reactors (R1, R2 and R3) connected in series via a semi-acupuncture circulation unit (CU), respectively. Here, the semi-ungmul circulation unit (CU) for circulating a portion of the semi-ungmul in each half-unggi through the circulation pipe to the outside of the half-unggi Circulation pump (P), a heat exchanger (E) for removing the reaction heat from the reactionary water passing through the circulation pipe, and a semi-atomizer injecting a portion of the reaction product passing through the circulation pipe through the venturi nozzle to the next reactor ( V). Here, the venturi nozzle may be provided where not only the semi-atom water injector (V) but also the semi-ung water passing through the heat exchanger (E) flows into each of the half aungers.
상기 알돌 축합 반웅 시스템에서 상기 반웅물 순환 유닛 (CU)을 통해 전체 생산량의 5 내지 20 배의 반응물을 순환시키면서 반응열을 제거하고, 이때 벤츄리 노즐을 통해 반웅물에 운동 에너지를 부여함으로써 반웅기에서의 교반 효율을 획기적으로 증대시킬 수 있다.  In the aldol condensation reaction system, the reaction heat is removed while circulating 5 to 20 times the total amount of the reaction product through the reaction water circulation unit (CU), and at this time, by applying kinetic energy to the reaction water through a venturi nozzle, Stirring efficiency can be increased significantly.
상기 반웅물 순환 유닛 (CU)이 적용된 알돌 축합 반응 시스템 하에서도 각 반웅기에 분기 투입되는 아이소부틸알데하이드의 비율은 순차적으로 감소하고, 각 반웅기에서 반웅물의 체류 시간은 순차적으로 증가하도록 수행될 수 있다. 다만, 상기 반응물 순환 유닛 (CU)이 적용될 경우 반웅물이 반웅기의 외부로 순환되기 때문에, 각 반웅기에서 반응물의 체류 시간은 상대적으로 짧아질 수 있다.  Even under the aldol condensation reaction system to which the semi-aungrel circulation unit (CU) is applied, the ratio of isobutylaldehyde branched to each of the half aungers may be sequentially decreased, and the residence time of the counterungung at each of the semiaunggi may be sequentially increased. have. However, when the reactant circulation unit (CU) is applied, since the reaction product is circulated to the outside of the reaction vessel, the residence time of the reactants in each reaction vessel may be relatively short.
비제한적인 예로, 상기 반웅물 순환 유닛 (CU)이 적용된 3 기의 연속 교반 반웅기에서 반웅물의 체류 시간은, 순차적으로 증가함을 전제로, 첫 번째 반웅기 (R1 )에서 1 내지 2 분, 두 번째 반웅기 (R2)에서 1.5 내지 5 분, 그리고 세 번째 반웅기 (R3)에서 5 내지 9 분으로 조절될 수 있다. 한편, 상기 알돌 축합 반웅에 있어서, 아이소부틸알데하이드로는 이성질체의 함량이 0.5 중량0 /0 미만인 것을 사용하는 것이 부산물의 생성을 억제하는데 유리하다. ᅳ By way of non-limiting example, the residence time of the reaction product in the three continuous stirred reaction reactors to which the reaction water circulation unit (CU) is applied, is increased in sequence, 1 to 2 minutes at the first reaction period (R1), It can be adjusted from 1.5 to 5 minutes in the second reaction stage (R2), and from 5 to 9 minutes in the third reaction stage (R3). On the other hand, in the aldol condensation banung, isobutyl aldehyde as is advantageous in that the amount of isomer used to 0.5 0/0 of less than suppressing the formation of by-products. ᅳ
그리고, 아이소부틸알데하이드는 포름알데하이드 1몰에 대하여 1 1 내지 1.5의 몰비, 바람직하게는 1 /1 내지 1 .2의 몰비로 사용될 수 있다. 즉, 알돌 축합 반웅에 사용된 포름알데하이드의 완전한 반응을 유도하기 위하여, 아이소부틸알데하이드는 포름알데하이드 대비 과량으로, 바람직하게는 1 : 1.1 이상의 몰비로 사용될 수 있다. 다만, 아이소부틸알데하이드가 너무 과하게 사용될 경우 티쉬첸코 반웅 등에 의한 부산물의 생성이 증가할 수 있다. 그러므로, 아이소부틸알데하이드는 포름알데하이드 대비 1 : 1 .5 이하의 몰비로 사용되는 것이 바람직하다. In addition, isobutylaldehyde may be used in a molar ratio of 1 1 to 1.5, preferably 1/1 to 1.2 with respect to 1 mol of formaldehyde. That is, in order to induce a complete reaction of the formaldehyde used in the aldol condensation reaction, isobutylaldehyde may be used in excess of formaldehyde, preferably in a molar ratio of 1: 1.1 or more. However, when isobutyl aldehyde is used too much, the production of by-products due to Tishchenko banung may be increased. Therefore, isobutyl aldehyde is less than 1: 1.5 compared to formaldehyde It is preferable to use in molar ratio.
상기 알돌 축합 반웅에 있어서, 포름알데하이드 수용액으로는 포름알데하이드의 농도 35 내지 45 중량。/。의 포르말린 (formalin)을 사용하는 것이 반웅 효율의 향상과 폐수 발생의 저감을 위해 유리하다. 그리고, 일반적으로 포름알데하이드 수용액에는 포름알데하이드의 중합을 방지하기 위해 메탄을이 첨가되는데, 그 함량은 포름알데하이드 수용액에 대하여 0.1 -5 중량0 /。인 것이 바람직하다. In the above-mentioned aldol condensation reaction, it is advantageous to use formin having a concentration of formaldehyde in an amount of 35 to 45 wt./°. For the improvement of reaction efficiency and reduction of waste water generation. And, in general, there is a formaldehyde aqueous solution was added to methane in order to prevent the polymerization of formaldehyde, the content is preferably 0.1 -5 weight 0 /. With respect to the formaldehyde solution.
상기 알돌 축합 반웅에 있어서, 상기 촉매로는 LiOH, NaOH, KOH, Ca(OH)2 와 같은 수산화물; NaC03, LiC03, KCO3, Ca(CO3)2, NH4CO3와 같은 알칼리금속 카보네이트; 트리메틸아민, 트리에틸아민, 트리프로필아민과 같은 3차 아민 화합물이 사용될 수 있다. 상기 촉매 중 3차 아민 화합물, 특히 트리에틸아민은 알돌 축합 반웅의 효율 향상 측면에서 보다 바람직하게 사용될 수 있다. In the aldol condensation reaction, the catalyst may be a hydroxide such as LiOH, NaOH, KOH, Ca (OH) 2 ; Alkali metal carbonates such as NaCO 3 , LiCO 3 , KCO 3 , Ca (CO 3 ) 2 , NH 4 CO 3 ; Tertiary amine compounds such as trimethylamine, triethylamine, tripropylamine can be used. The tertiary amine compound, especially triethylamine, in the catalyst may be more preferably used in view of improving the efficiency of the aldol condensation reaction reaction.
그리고, 상기 촉매는 포름알테하이드 1몰에 대하여 0.01 내지 0.5의 몰비, 바람직하게는 0.15 내지 0.25의 몰비, 보다 바람직하게는 0.18 내지 0.22의 몰비로 사용될 수 있다. 즉, 촉매 효과의 발현을 위하여, 상기 촉매는 포름알데하이드 대비 1 : 0.01 이상의 몰비로 사용될 수 있다. 다만, 촉매가 너무 과하게 사용될 경우 촉매의 회수가 요구되고 부산물의 생성이 유발될 수 있다. 그러므로, 상기 촉매는 포름알데하이드 대비 1 : 0.5 이하의 몰비로 사용되는 것이 바람직하다.  The catalyst may be used in a molar ratio of 0.01 to 0.5, preferably 0.15 to 0.25, and more preferably 0.18 to 0.22, per mole of formaldehyde. That is, for the expression of the catalytic effect, the catalyst may be used in a molar ratio of 1: 0.01 or more relative to formaldehyde. However, if the catalyst is used excessively, recovery of the catalyst may be required and generation of by-products may be caused. Therefore, the catalyst is preferably used in a molar ratio of 1: 0.5 or less relative to formaldehyde.
한편, 상기 알돌 축합 반웅에 있어서, 반웅 온도는 70 내지 100 °C , 바람직하게는 70 내지 85 °C로 유지될 수 있다. 상기 반웅의 수율 확보를 위하여, 상기 반웅 온도는 70 °C 이상인 것이 바람직하다. 다만, 반웅 온도가 너무 높을 경우 부산물의 생성이 가속화될 수 있으므로, 상기 반웅 온도는 loo 이하인 것이 바람직하다. 그리고, 상기 알돌 축합 반웅은 가압 하에서 수행되는 것이 수율의 확보를 위해 바람직할 수 있다. 상술한 조건 하에서 수행되는 HPA의 연속 제조 방법은 원료 화합물에 대한 흔합 효율의 극대화를 가능케 하여, 상기 알돌 축합 반웅의 효율을 향상시키고, 이와 함께 미반응 포름알데하이드의 잔존과 부산물의 생성을 최소화할 수 있다. 구체적으로, 상기 HPA의 연속 제조 방법을 통해 99 % 이상의 높은 HPA 수율과 2000 ppm 이하의 낮은 잔류 포름알데하이드의 농도가 확보될 수 있다. 【발명의 효과】 On the other hand, in the aldol condensation reaction, the reaction temperature may be maintained at 70 to 100 ° C, preferably 70 to 85 ° C. In order to ensure the yield of the reaction, the reaction temperature is preferably 70 ° C or more. However, when the reaction temperature is too high, the production of by-products may be accelerated, and the reaction temperature is preferably loo or lower. The aldol condensation reaction may be performed under pressure to ensure yield. The continuous production method of HPA performed under the above-described conditions enables the maximization of the mixing efficiency with respect to the raw material compound, thereby improving the efficiency of the aldol condensation reaction, and together with the remaining and byproducts of unreacted formaldehyde. The production can be minimized. Specifically, a high HPA yield of 99% or more and a low residual formaldehyde concentration of 2000 ppm or less can be secured through the continuous production method of HPA. 【Effects of the Invention】
본 발명에 따른 HPA의 연속 제조 방법은 높은 수율의 HPA의 제조를 가능케 하며, 이를 통해 얻어진 HPA는 네오펜틸 글리콜의 합성에 적합하게 사용될 수 있다. 【도면의 간단한 설명】  The continuous production method of HPA according to the present invention enables the production of high yield HPA, and the HPA obtained through this can be suitably used for the synthesis of neopentyl glycol. [Brief Description of Drawings]
도 1 및 도 2는 각각 본 발명의 일 구현 예에 따른 HPA의 연속 제조 방법 및 반웅 시스템을 모식적으로 나타낸 것이다.  1 and 2 schematically show a method and a reaction system of continuous production of HPA according to one embodiment of the present invention, respectively.
【부호의 설명】 [Explanation of code]
100: 알돌 축합 반웅 시스템  100: Aldol condensation reaction system
FO-iBAL: 아이소부틸알데하이드 공급 라인  FO-iBAL: Isobutylaldehyde Supply Line
F0-FA: 포름알데하이드 수용액 공급 라인  F0-FA: formaldehyde aqueous solution supply line
F0-TEA: 촉매 공급 라인  F0-TEA: catalyst supply line
SO: 분배기  SO: distributor
S1 , S2, S3: 아이소부틸알데하이드 분기 투입 라인  S1, S2, S3: Isobutylaldehyde Branch Input Line
R1 , R2, R3: 연속 교반 반웅기  R1, R2, R3: Continuous Stirring Reactor
CU: 순환 유닛  CU: Circulation Unit
P: 순환 펌프  P: circulation pump
E: 열 교환기  E: heat exchanger
V: 벤츄리 노즐이 구비된 반웅물 분사기  V : Semi-atomizer with Venturi nozzle
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예들은 본 발명올 예시하기 위한 것일 뿐, 본 발명을 이들만으^ 한정하는 것은 아니다. 실시예 1 Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are only intended to illustrate the present invention, and the invention is not limited thereto. Example 1
도 1과 같이 직렬 연결된 3 기의 연속 교반 반웅기 (R1 , R2 및 R3)를 포함한 알돌 축합 반응 시스템을 준비하였다.  As shown in FIG. 1, an aldol condensation reaction system including three continuous stirring reactors (R1, R2 and R3) connected in series was prepared.
HPA의 제조를 위한 원료 화합물로, 아이소부틸알데하이드와 포름알데하이드 수용액 (알데하이드 농도 42 중량0 /。, 메탄을 1 중량0 /。 함유)을 준비하였다. 촉매로 트리에틸아민을 준비하였다. As a raw material compound for the production of HPA, an isobutyl aldehyde and an aqueous formaldehyde solution (containing an aldehyde concentration of 42% by weight 0 /., Containing 1% by weight 0 /. Triethylamine was prepared as a catalyst.
포름알데하이드: 아이소부틸알데하이드: 트리에틸아민은 1 : 1 .1 : 0.2의 몰비로 사용되었다. 포름알데하이드 수용액과 촉매는 첫 번째 반웅기에 투입되었다. 그리고, 아이소부틸알데하이드의 전체 함량을 기준으로, 91 중량 0/。의 아이소부틸알데하이드는 첫 번째 반웅기 (R1 )에, 7.5 중량0 /。의 아이소부틸알데하이드는 두 번째 반웅기 (R2)에, 1.5 중량0 /。의 아이소부틸알데하이드는 세 번째 반응기 (R3)에 각각 분기 투입되었다. 동시에, 각 반응기에서 반웅물의 체류 시간은 아래 표 1과 같이 조절되었다. 그리고, 상기 알돌 축합 반웅은 72 내지 78 °C의 온도와 3 atm의 압력 하에서 연속적으로 수행되었고, 그 결과를 아래 표 4에 나타내었다. Formaldehyde: isobutylaldehyde: triethylamine was used in a molar ratio of 1: 1.1: 0.2. Formaldehyde aqueous solution and catalyst were added to the first reaction period. And, based on the total content of isobutyl aldehyde, 91 weight 0 /. Isobutyl aldehyde is in the first reaction period (R1), 7.5 weight 0 /. Isobutyl aldehyde is in the second reaction period (R2) , 1.5 weight 0 /. Isobutylaldehyde was branched into the third reactor (R3), respectively. At the same time, the residence time of the reactants in each reactor was adjusted as shown in Table 1 below. And, the aldol condensation reaction was carried out continuously at a temperature of 72 to 78 ° C and a pressure of 3 atm, the results are shown in Table 4 below.
【표 1】 Table 1
Figure imgf000011_0001
실시예 2
Figure imgf000011_0001
Example 2
도 2와 같이 각각 반웅물 순환 유닛 (CU)을 매개로 직렬 연결된 3 기의 연속 교반 반웅기 (R1 , R2 및 R3)를 포함한 알돌 축합 반응 시스템을 이용한 것을 제외하고, 실시예 1과 동일한 방법으로 알돌 축합 반웅을 수행하였다.  In the same manner as in Example 1, except that an aldol condensation reaction system including three continuous stirring reactors R1, R2, and R3 connected in series through a semi-ungmul circulation unit (CU) as shown in FIG. 2 was used. Aldol condensation reaction was performed.
이때, 각 반웅물 순환 유닛 (CU)의 순환 펌프 (P)를 가동하여 반웅물을 각 반웅기의 외부로 순환시키면서 열 교환기 (E)를 통해 반웅열을 제거하였다. 그리고, 순환되는 반웅물의 일부를 반웅물 분사기 (V)에 구비된 벤츄리 노즐을 통해 다음 반웅기로 분사하였다. At this time, the semi-heated heat was removed through the heat exchanger E while circulating the semi-coated water to the outside of each of the semi-ungungers by operating the circulation pump P of each semi-coupling water circulation unit CU. And, the venturi provided in the reaction water injector (V) a part of the circulating reaction water Sprayed through the nozzle to the next reaction vessel.
각 반응기에서 반웅물의 체류 시간은 아래 표 2와 같이 조절되었고, 상기 알돌 축합 반웅의 결과를 아래 표 4에 나타내었다. 【표 2】  The residence time of the reactants in each reactor was adjusted as shown in Table 2 below, and the results of the aldol condensation reaction were shown in Table 4 below. Table 2
Figure imgf000012_0001
비교예 1
Figure imgf000012_0001
Comparative Example 1
아이소부틸알데하이드의 분기 투입 비율을 R1 : R2: R3 = 91 중량0 /0: 5.97 중량0 /0: 3.03 중량0 /。로 조절하였고, 각 반웅기에서 반웅물의 체류시간을 아래 표 3과 같이 조절한 것을쎄외하고, 실시예 1과 동일한 방법으로 알돌 축합 반웅을 수행하였다. 그 결과를 아래 표 4에 나타내었다. A quarter charge ratio of isobutyl aldehyde R1: R2: R3 = 91 weight 0/0: 5.97 wt. 0/0: 3.03 by weight was adjusted to 0 /, adjusted as the residence time banung water in each half unggi in the below table 3 Except for one, aldol condensation reaction was carried out in the same manner as in Example 1. The results are shown in Table 4 below.
【표 3】 Table 3
Figure imgf000012_0002
Figure imgf000012_0002
【표 4] [Table 4]
Figure imgf000012_0003
상기 표 4를 참고하면, 비교예 1은 실시예들과 동등한 정도의 전환율을 나타내었으나, 생성물 내 잔류 포름알데하이드의 농도가 20% 정도 높게 나타났고, HPA의 수율도 낮은 것으로 나타났다. 그에 비하여, 실시예 1 및 2는 잔류 포름알데하이드의 농도가 2000 ppm 정도로 낮았고, HPA의 수율도 99% 이상으로 높게 나타났다. 특히, 반응물 순환 유닛이 적용된 실시예 2는 99.80 %의 높은 HPA수율을 나타내었다.
Figure imgf000012_0003
Referring to Table 4, Comparative Example 1 showed a conversion rate equivalent to that of the examples, the concentration of residual formaldehyde in the product was found to be about 20% higher, and the yield of HPA was also lower. In contrast, the embodiment 1 and 2 showed a low concentration of residual formaldehyde as low as 2000 ppm and a high yield of HPA of 99% or more. In particular, Example 2 to which the reactant circulation unit was applied showed a high HPA yield of 99.80%.

Claims

【청구범위】 [Claim]
【청구항 1 1 [Claim 1 1
촉매의 존재 하에 포름알데하이드 수용액과 아이소부틸알데하이드의 알돌 축합 반웅을 통해 하이드록시피브알데하이드가 함유된 생성물을 얻는 단계를 포함하고;  Obtaining a product containing hydroxyfibaldehyde through an aldol condensation reaction of an aqueous formaldehyde solution with isobutylaldehyde in the presence of a catalyst;
상기 알돌 축합 반웅은 직렬 연결된 3 기 이상의 연속 교반 반웅기에서 수행되며,  The aldol condensation reaction is carried out in three or more continuous stirred reaction reactor in series,
상기 아이소부틸알데하이드는 각 반웅기에 서로 다른 비율로 분기 투입되고,  The isobutyl aldehyde is branched into each reaction at different ratios,
상기 알돌 축합 반웅의 반응물은 각 반웅기에서 서로 다른 체류 시간 하에 반웅하는, 하이드록시피브알데하이드의 연속 제조 방법.  The reactants of the aldol condensation reaction are reacted under different residence times in each reaction vessel, hydroxyfibaldehyde.
【청구항 2】 [Claim 2]
제 1 항에 있어서,  The method of claim 1,
상기 알돌 축합 반웅에서 각 반웅기에 분기 투입되는 아이소부틸알데하이드의 비율은 순차적으로 감소하고,  In the aldol condensation reaction, the ratio of isobutyl aldehyde branched into each reaction is sequentially reduced,
각 반웅기에서 반웅물의 체류 시간은 순차적으로 증가하는, 하이드록시피브알데하이드의 연속 제조 방법.  The residence time of the reaction product in each reaction system is sequentially increased, wherein the hydroxyfibaldehyde.
【청구항 3】 [Claim 3]
제 2 항에 있어서,  The method of claim 2,
상기 알돌 축합 반웅은 직렬 연결된 3 기의 연속 교반 반웅기에서 수행되는, 하이드록시피브알데하이드의 연속 제조 방법.  The aldol condensation reaction is carried out in a series of three continuous stirred reaction reactor in series, hydroxyfibaldehyde.
【청구항 4】 [Claim 4]
제 3 항에 있어서,  The method of claim 3, wherein
상기 3 기의 연속 교반 반웅기에 투입되는 아이소부틸알데하이드의 전체 함량을 기준으로, 89 내지 94 중량。/。의 아이소부틸알데하이드는 첫 번째 반웅기에 투입되고, 5 내지 10 중량0 /。의 아이소부틸알데하이드는 두 번째 반웅기에 투입되고, 1 내지 3 중량0 /。의 아이소부틸알데하이드는 세 번째 반응기에 투입되는, 하이드록시피브알데하이드의 연속 제조 방법. Based on the total content of isobutylaldehyde added to the three continuous stirring reactors, isobutylaldehyde of 89 to 94% by weight is added to the first reactor and iso to 5 to 10% by weight of 0 /. Butylaldehyde is two 1 to 3 weight 0 /. Isobutyl aldehyde is added to the third reactor, the method of continuous production of hydroxyfibaldehyde.
【청구항 5】 [Claim 5]
제 3 항에 있어서,  The method of claim 3, wherein
상기 3 기의 연속 교반 반웅기에서 반웅물의 체류 시간은, 첫 번째 반웅기에서 10 내지 13 분, 두 번째 반웅기에서 13 내지 17 분, 그리고 세 번째 반웅기에서 17 내지 19 분인, 하이드록시피브알데하이드의 연속 제조 방법.  The residence time of the reaction product in the three continuous stirring reactions is 10-13 minutes in the first reaction period, 13-17 minutes in the second reaction period and 17-19 minutes in the third reaction period. Process for Continuous Production of Aldehydes.
【청구항 6】 [Claim 6]
게 1 항에 있어서,  According to claim 1,
상기 알돌 축합 반웅은 각각 반웅물 순환 유닛을 매개로 직렬 연결된 3 기 이상의 연속 교반 반웅기에서 수행되고;  The aldol condensation reactions are carried out in three or more continuous stirring reactions, each connected in series via a reaction medium circulation unit;
상기 반웅물 순환 유닛은, 각 반응기에서 반웅물 중 일부를 순환관올 통해 반웅기의 외부로 순환시키는 순환 펌프, 상기 순환관을 통과하는 반응물로부터 반웅열을 제거하는 열 교환기, 및 상기 순환관을 통과하는 반웅물의 일부를 벤츄리 노즐을 통해 다음 반웅기에 분사하는 반응물 분사기를 포함하는, 하이드록시피브알데하이드의 연속 제조 방법.  The semi-ungmul circulation unit, a circulation pump for circulating a portion of the semi-ungmul in each reactor to the outside of the semi-ungunggi through the circulation pipe, a heat exchanger for removing the semi-heat heat from the reactants passing through the circulation pipe, and the circulation pipe And a reactant injector for spraying a portion of the reaction product to a next reaction vessel through a venturi nozzle.
【청구항 7】 [Claim 7]
제 6 항에 있어서,  The method of claim 6,
상기 알돌 축합 반웅은 각각 상기 반웅물 순환 유¾을 매개로 직렬 연결된 3 기의 연속 교반 반응기에서 수행되고;  The aldol condensation reaction is carried out in three continuous stirred reactors each connected in series via the reaction mixture circulating oil;
상기 3 기의 연속 교반 반웅기에서 반웅물의 체류 시간은, 첫 번째 반응기에서 1 내지 2 분, 두 번째 반웅기에서 1.5 내지 5 분, 그리고 세 번째 반웅기에서 5 내지 9 분인, 하이드록시피브알데하이드의 연속 제조 방법.  The residence time of the reactants in the three continuous stirred reactors is 1 to 2 minutes in the first reactor, 1.5 to 5 minutes in the second reactor and 5 to 9 minutes in the third reactor, hydroxyfibaldehyde Continuous production process.
PCT/KR2016/002991 2015-05-13 2016-03-24 Method for continuously preparing hydroxypivaldehyde WO2016182189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150066893A KR101856763B1 (en) 2015-05-13 2015-05-13 A continuous process for preparing hydroxypivaldehyde
KR10-2015-0066893 2015-05-13

Publications (1)

Publication Number Publication Date
WO2016182189A1 true WO2016182189A1 (en) 2016-11-17

Family

ID=57248265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002991 WO2016182189A1 (en) 2015-05-13 2016-03-24 Method for continuously preparing hydroxypivaldehyde

Country Status (2)

Country Link
KR (1) KR101856763B1 (en)
WO (1) WO2016182189A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315484B1 (en) * 2016-10-25 2019-02-27 OXEA GmbH Method for co-production of polyols in the presence of an inorganic base

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782192A (en) * 1993-09-10 1995-03-28 Mitsubishi Gas Chem Co Inc Production of neopentyl glycol
KR19980028459A (en) * 1996-10-22 1998-07-15 성재갑 Method for producing high purity hydroxy fibaldehyde
KR20060073044A (en) * 2004-12-24 2006-06-28 주식회사 엘지화학 Process for preparing neopentyl glycol
KR20070017908A (en) * 2005-08-08 2007-02-13 미츠비시 가스 가가쿠 가부시키가이샤 Method of producing high-purity hydroxypivalaldehyde and/or dimer thereof
KR20110031164A (en) * 2008-07-02 2011-03-24 옥세아 게엠베하 Method of producing neopentyl glycol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100231644B1 (en) 1996-10-22 1999-11-15 성재갑 Process for producing neopentylglycol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782192A (en) * 1993-09-10 1995-03-28 Mitsubishi Gas Chem Co Inc Production of neopentyl glycol
KR19980028459A (en) * 1996-10-22 1998-07-15 성재갑 Method for producing high purity hydroxy fibaldehyde
KR20060073044A (en) * 2004-12-24 2006-06-28 주식회사 엘지화학 Process for preparing neopentyl glycol
KR20070017908A (en) * 2005-08-08 2007-02-13 미츠비시 가스 가가쿠 가부시키가이샤 Method of producing high-purity hydroxypivalaldehyde and/or dimer thereof
KR20110031164A (en) * 2008-07-02 2011-03-24 옥세아 게엠베하 Method of producing neopentyl glycol

Also Published As

Publication number Publication date
KR101856763B1 (en) 2018-05-10
KR20160133842A (en) 2016-11-23

Similar Documents

Publication Publication Date Title
US6410801B1 (en) Continuous process for the production of polyether polyols
JP5422853B2 (en) Co-production of isotype aldehyde and alcohol from olefins
CN103130611B (en) Neopentyl glycol condensation hydrogenation production technique and device thereof
CN101497572B (en) Method for producing tert-butylamine based on coupling reaction-separation
CN108623437B (en) Method for continuously producing neopentyl glycol
JP6762395B2 (en) Improved production of methylolalkanes
HUE024984T2 (en) Process for preparing polyether alcohols
EP2910542B2 (en) Method for preparing methylol alkanal
CN105061167A (en) Method for preparing hydroxy neovaleraldehyde by condensing formaldehyde and isobutyraldehyde
WO2016182190A1 (en) Method for continuously preparing neopentyl glycol
WO2016182189A1 (en) Method for continuously preparing hydroxypivaldehyde
CN102516051B (en) Method for preparing isophorone by acetone liquid condensation with alkali catalyst
CN112004791B (en) Method for preparing dimethylolbutanal and method for preparing trimethylolpropane using the same
CN115650825A (en) Method for synthesizing dihydric alcohol monovinyl ether
CN100371308C (en) Method for synthesizing alkynol by ketone and acetylene
CN103524317A (en) Synthesis method of pseudoionone
US6380367B1 (en) Continuous process for the production of sucrose based polyether polyols
CN113045451B (en) Method for preparing methoxylamine hydrochloride by adopting microreactor
CN114249640A (en) Continuous production of methylpentene ketones using cation exchange resins in a fixed bed reactor
KR20130018427A (en) Apparatus for producing alcohol from olefin
JP6521372B2 (en) Process for producing 1,2-disubstituted imidazole
CN104478683A (en) Synthetic method of 2-heptanone
CN106146353A (en) A kind of preparation method of methyl phenyl carbamate
CN109232213A (en) The method of hydroxy pivalin aldehyde is prepared under a kind of super critical condition
US20240100497A1 (en) Continuous stirred tank reactor for aldol condensation reaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792835

Country of ref document: EP

Kind code of ref document: A1