WO2016182148A1 - Insoluble anode having porous film layer containing electrode active material nano-spheres, and method for producing same - Google Patents

Insoluble anode having porous film layer containing electrode active material nano-spheres, and method for producing same Download PDF

Info

Publication number
WO2016182148A1
WO2016182148A1 PCT/KR2015/011403 KR2015011403W WO2016182148A1 WO 2016182148 A1 WO2016182148 A1 WO 2016182148A1 KR 2015011403 W KR2015011403 W KR 2015011403W WO 2016182148 A1 WO2016182148 A1 WO 2016182148A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
porous film
film layer
nanospheres
Prior art date
Application number
PCT/KR2015/011403
Other languages
French (fr)
Korean (ko)
Inventor
박광석
서보성
심은정
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2016182148A1 publication Critical patent/WO2016182148A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to an insoluble anode having a porous film layer containing an electrode active material nanospheres, comprising: a positive electrode substrate, a porous film layer comprising a sintered compact powder of the metal and an electrode active material nanospheres, and inside and outside the porous film layer
  • an electrode active material coating layer formed on the surface, to significantly reduce the resistance of the electrode to improve the efficiency of the electrode, characterized in that to improve the life of the electrode, porous, including the electrode active material nanospheres It relates to an insoluble anode having a film layer.
  • insoluble anodes which do not participate in the plating reaction in electrolytic processes such as electroplating, have been used in spite of their high price due to high capacity and uniform operation compared to soluble anodes. It is becoming a trend.
  • An electrode coated with a titanium (Ti) positive electrode substrate with an active material such as iridium (Ir) or ruthenium (Ru) oxide has a relatively low overvoltage for oxygen or chlorine generation and a long lifetime of the electrode, which is called “Dimensionally Stable Anode (DSA)". It is widely used for the purpose of producing chlorine or oxygen in aqueous solution.
  • DSA Dissionally Stable Anode
  • FIG 1 is a schematic representation of the flow of the DSA manufacturing process according to the prior art, referring to Figure 1, after applying the Ir or Ru precursor in a liquid state on a titanium (Ti) positive electrode substrate, the electrode activity through drying and heat treatment IrO 2 or RuO 2 is coated on the titanium substrate.
  • the electrode activity through drying and heat treatment IrO 2 or RuO 2 is coated on the titanium substrate.
  • the precursor coating and drying or heat treatment at high temperature are repeated to make the final desired thickness.
  • the electrode active material layer of several micro ⁇ 50 ⁇ m thickness actually used in the product, it is necessary to repeat the application and heat treatment process 5 to 8 times, more than 20 times.
  • the use of expensive catalyst materials increases the problem of product price increase.
  • the resistance value of the material used is considered an important factor. That is, the resistance of titania (TiO 2 ) is 0.29 ⁇ 3 W ⁇ cm, much higher than that of IrO 2 (about 30 mW ⁇ cm), and the resistance of the porous film made of titania powder is the resistance of titania material itself due to the high interfacial tension. The problem is that it is much higher.
  • the present invention has been made in view of the above problems to provide an insoluble anode having a porous film layer containing an electrode active material nanosphere as a problem.
  • Another object of the present invention is to provide a method of manufacturing an insoluble anode having a porous film layer including an electrode active material nanosphere.
  • a positive electrode substrate made of a metal capable of anodizing
  • a porous film layer comprising the sintered powder of the metal and the nanospheres of an electrode active material
  • the porous film layer includes 60 to 90% by volume of the sintered powder of the metal and 10 to 40% by volume of the electrode active material nanospheres,
  • the electroactive material coating layer may include a first electroactive material coating layer including IrO 2 particles and a second electroactive material coating layer formed on the first electroactive material coating layer and including Ta 2 O 5 particles. Characterized in that there is provided an insoluble anode having a porous film layer comprising an electroactive material nanosphere.
  • the porous film layer is made of 60 to 90% by volume of the sintered compact powder of the metal and 10 to 40% by volume of the polymer nanospheres,
  • the electrode active material coating layer is insoluble having a porous film layer including an electrode active material nanospheres, characterized in that the nano-pores formed by the polymer nanospheres comprises an electrode active material nanospheres coated with an electrode active material precursor.
  • a method for producing a positive electrode is provided.
  • the porous film layer has an advantage of ensuring a sufficient reaction area as having a high surface area.
  • the electrode active material coating layer when the electrode active material coating layer is formed, the electrode active material is introduced into the porous film layer and introduced into some or all of the pores inside the electrode active material nanospheres, so that the nanospheres are coated with some or all of the internal pores with the electrode active material. do. Accordingly, the electrode active material nanospheres can easily act as a passage of electrons and reactants, as well as act as a reaction site, and can significantly reduce the resistance of the electrode compared to the insoluble anodes up to now.
  • the insoluble anode according to the present invention the first electrode active material coating layer containing IrO 2 particles as the electrode active material coating layer, and the second electrode formed on the first electrode active material coating layer and comprising Ta 2 O 5 particles
  • the active material coating layer By including the active material coating layer, most of the outermost surface is exposed to a second electroactive material comprising Ta 2 O 5 particles, which is highly stable and does not participate in amorphous electrochemical reactions, thereby improving electrode life.
  • the surface of the porous film layer is rich in a first electroactive material including IrO 2 particles, which acts as a catalyst in an electrochemical reaction, substantially as a conductive oxide, thereby irradiating the IrO 2 particles exposed to the surface.
  • the first electrode active material can be easily connected to the first electrode active material including the IrO 2 particles therein, thereby effectively exhibiting electrode activity.
  • 1 is a schematic diagram showing the flow of the DSA manufacturing process according to the prior art.
  • Figure 2 shows a DSA manufacturing process including a porous film layer according to the prior art.
  • FIG. 3 (a) and 3 (b) is a schematic representation of the effect of the insoluble anode including the electrode active material nanospheres according to an embodiment of the present invention to the electron passage or the reaction site
  • Figure 3 (c ) Is a schematic representation of the effect of the insoluble anode, which does not contain the electrode active material nanospheres, into the electron passage or reaction site.
  • FIG 4 schematically shows an example of an insoluble anode of the present invention.
  • FIG 5 illustrates (a) SEM image and (b) CLSM image of an insoluble anode according to an embodiment of the present invention.
  • a porous film layer comprising the sintered powder of the metal and the nanospheres of an electrode active material
  • the porous film layer includes 60 to 90% by volume of the sintered powder of the metal and 10 to 40% by volume of the electrode active material nanospheres,
  • the electroactive material coating layer may include a first electroactive material coating layer including IrO 2 particles and a second electroactive material coating layer formed on the first electroactive material coating layer and including Ta 2 O 5 particles. Characterized by providing an insoluble anode having a porous film layer comprising an electroactive material nanospheres.
  • FIG. 3 (a) and 3 (b) is a schematic representation of the effect of the insoluble anode including the electrode active material nanospheres according to an embodiment of the present invention to the electron passage or the reaction site
  • Figure 3 (c ) Is a schematic representation of the effect of the insoluble anode, which does not contain the electrode active material nanospheres, into the electron passage or reaction site.
  • the insoluble anode of the present invention a porous film layer and a porous film comprising a positive electrode substrate (10) made of a metal capable of anodizing, the sintered body powder 20 of the metal and the electrode active material nanospheres (30a, 30b) It characterized in that it comprises an electrode active material coating layer 40 formed on the surface of the inside and outside of the film layer.
  • the anode substrate 10 is made of a metal capable of anodizing, and the metal capable of being anodized is made of titanium, tantalum, zirconium, niobium, tungsten, and an alloy thereof. It is 1 or more types of metals chosen from the group which consists of these.
  • the shape and size of the anode substrate may be appropriately selected according to the shape and size of the insoluble anode to be manufactured.
  • the porous film layer includes a sintered compact powder 20 of the metal and the electrode active material nanospheres 30a and 30b.
  • the sintered compact powder 20 of the metal is characterized in that the sintered compact powder of the same metal as the positive electrode substrate 10. Accordingly, the formed porous film layer has a very large surface area (40 ⁇ 80m 2 g -1 ), even if a thin coating layer of the electrode active material is much wider than when the electrode active material is applied in the conventional two-dimensional planar form It has a reaction place of reactants.
  • the sintered powder of the metal is not limited to its shape, such as spherical and irregular, but is preferably spherical metal sintered powder in terms of permeability of the electrode active material, adhesion to the positive electrode substrate, and the like. Do.
  • the anode substrate is made of titanium
  • the porous film layer is formed of titanium dioxide (TiO 2 ) nanopowder, which is a sintered compact powder of the same metal as the titanium. It is done.
  • the sintered powder of the metal may not be the same as the cathode substrate.
  • the porous film layer made of a metal that is not the same as the anode substrate may be a highly economical anode, depending on the type of metal capable of anodizing, so that the cathode substrate is made of titanium.
  • the porous film layer may be formed of a sintered powder of a metal other than titanium.
  • a porous film layer made of tantalum is preferable.
  • the electrode active material nanospheres (30a, 30b) included in the porous film layer together with the metal sintered powder 20 is characterized in that the nanospheres having pores filled with the electrode active material. It is done.
  • the electroactive material nanospheres 30a and 30b are characterized in that they include pores in a portion of the inside, the electrode active material is introduced into the porous film layer of the present invention to form an electrode active material coating layer As the electroactive material is introduced into some or all of the pores inside the nanospheres, the nanospheres are filled with some or all of the inner pores of the electroactive material.
  • the electrode active material nanospheres 30a and 30b included in the porous film layer according to the present invention are filled with the electrode active material in the entire pore inside as shown in FIG. As shown in b), the electrode active material is filled in a part of the pores, thereby having pores partially or entirely filled with the electrode active material. Accordingly, the electroactive nanospheres 30a and 30b not only easily act as passages of electrons and passages of the reactants, but also reduce the resistance of the electrodes together with the reaction sites.
  • the electrode active material nanospheres 30b of FIG. 3 (b) include an electrode active material in a part of the pores, and maximize the action as a reaction site as well as the passage of the reactants with sufficient pore securing. You can do it.
  • Figure 3 (c) is a case that does not include the electrode active material nanospheres in the porous film layer, the electrons are moved only by passing through the sintered body powder of the metal forming the porous film layer, the limit of electron transfer There is.
  • the porous film layer includes the sintered compact powder 20 of the metal and the electrode active material nanospheres 30a and 30b, thereby acting as an electron path, a path of a reactant, and a reaction site.
  • the electrode active material nanospheres it is possible to reduce the resistance of the electrode by the electrode active material nanospheres.
  • the electron path of the porous film layer the action such as the path of the reactant is affected by the ratio of the sintered body powder of the metal contained in the porous film layer and the electrode active material nanospheres.
  • the content of the electrode active material nanospheres contained in the porous film layer is low, the content of the sintered body powder of the high resistance metal included together is relatively increased, thereby degrading the performance of the electrode, and acting as an electron path. It is difficult to maximize the function of the reactants as passages and reaction sites.
  • the porous film layer of the present invention preferably contains 60 to 90% by volume of the sintered compact powder of the metal and 10 to 40% by volume of the electrode active material nanospheres.
  • the action of the porous film layer is affected by the respective sizes in addition to the ratio of the sintered body powder and the electrode active material nanospheres of the metal contained in the porous film layer, the sintered body powder or electroactive material nano of the metal It is preferable that a sphere is 50-1000 nm in diameter.
  • the porous film layer preferably has a thickness of 1 ⁇ 50 ⁇ m the durability and penetration amount of the electrode active material.
  • the electrode active material coating layer 40 is characterized in that formed on the surface inside and outside the porous film layer.
  • the electroactive material is IrO 2 , Ta 2 O 5, RuO 2 , SnO 2 , PtO 2 , Co 3 O 4 , NiCo 2 O 4 , CoFe 2 O 4 , NiO 2 , WO 3 , MoO 3 and It is characterized in that the at least one electroactive material selected from the group consisting of perovskite.
  • the electrode active material coating layer 40 a first electrode active material coating layer containing IrO 2 particles, and a second electrode formed on the first electrode active material coating layer and including Ta 2 O 5 particles It characterized in that it comprises an active material coating layer.
  • the electrode active material coating layer 40 may include a first electrode active material coating layer including the IrO 2 particles formed on the surface of the porous film layer, and a first electrode including IrO 2 particles on the surface of the porous film layer.
  • the active material is present in abundance, and the second electrode active material coating layer including the Ta 2 O 5 particles is formed on the first electrode active material coating layer to be the outermost coating layer surrounding the first electrode active material coating layer. do.
  • the first electrode active material coating layer 50 to 85 mol% by weight of Ir precursor
  • the second electrode active material coating layer characterized in that it comprises 25 to 55 mol% by weight of Ir precursor.
  • the insoluble anode of the present invention includes a coating layer of the second electrode active material 40b covering the first electrode active material 40a coating layer.
  • the first electrode active material 40a formed of the outermost coating layer and including the IrO 2 particles exposed to the surface is not much, as shown in FIGS. 4 (a) and 4 (b), the insoluble anode Most of the electrode active material coating layer 40 is shown to be formed by the second electrode active material 40b. However, as shown in FIG. 4 (c), the second electrode active material 40b may be formed inside the coating layer. 1 electrode active material (40a) coating layer is formed on the surface of the porous film closely.
  • the electrode active material coating layer 40 is characterized in that it is formed in some or all of the internal pores of the electrode active material nanospheres (30a, 30b) of the porous film layer.
  • the first electrode active material 40a and the second electrode active material 40b are introduced into the porous film layer, so that a part of pores inside the electrode active material nanospheres 30a and 30b or As introduced throughout, the nanospheres contain an electroactive material in some or all of the internal pores. Accordingly, the electrode active material nanospheres can easily act as passages of electrons and reactants, as well as act as reaction sites, thereby reducing the resistance of the electrodes.
  • the insoluble anode of the present invention is exposed to a second electroactive material containing Ta 2 O 5 particles, most of the outermost surface of which is not involved in a highly stable amorphous electrochemical reaction, thereby improving electrode life.
  • the porous film layer surface of the insoluble anode of the present invention is rich in a first electrode active material containing IrO 2 particles, which serves as a catalyst in the electrochemical reaction substantially as a conductive oxide, the porous film
  • the first electrode active material comprising the IrO 2 particles present therein is not many but the first electroactive material comprising the IrO 2 particles exposed to the surface in the electrode as the layer ensures a sufficient reaction area by the high surface area. It can be easily connected with the so as to effectively represent the electrode activity.
  • Figure 5 shows (a) SEM image and (b) CLSM image of an insoluble anode according to an embodiment of the present invention.
  • the concentration of IrO 2 particles decreases. That is, the IrO 2 particles are present at a high concentration on the surface of the porous film layer, but the IrO 2 particles are present at a low concentration on the surface where the electrode is exposed.
  • the first electrode active material coating layer or the second electrode active material coating layer is RuO 2 , SnO 2 , PtO 2 , Co 3 O 4 , NiCo 2 O 4 , CoFe 2 O 4 , NiO 2 , WO 3 , MoO 3 and perovskite It is preferable to further include at least one electroactive material selected from the group consisting of the sky.
  • the porous film layer is made of 60 to 90% by volume of the sintered compact powder of the metal and 10 to 40% by volume of the polymer nanospheres,
  • the electrode active material coating layer is insoluble having a porous film layer including an electrode active material nanospheres, characterized in that the nano-pores formed by the polymer nanospheres comprises an electrode active material nanospheres coated with an electrode active material precursor.
  • a method for producing a positive electrode is provided.
  • a porous film layer is formed in a first step.
  • the nano-pores 30 formed of the polymer nanospheres are formed by applying and heat-treating the metal sintered powder 20 and the polymer nanospheres of the metal on the positive electrode substrate 10 made of a metal capable of anodizing.
  • a step of forming the porous film layer as shown in Figure 6 (a).
  • the polymer nanospheres are burned and sintered at 400 ° C. to 600 ° C. so that metal sintered powder may be deposited on the cathode substrate.
  • the porous film layer of the present invention is a sintered compact of the metal 60 to 90% by volume of the powder, and 10 to 40% by volume of the polymer nanospheres, the nano-pores formed in the porous film layer while reducing the resistance of the electrode while the electron path, the reaction path and the reaction site It can be easily acted as.
  • the porous film layer is also affected by the effect of its action, such as the electron passage and the path of the reactant also by the size of the metal sintered powder and the polymer nanospheres.
  • the amount of the sintered body powder of the metal to be mixed is increased more than necessary to deteriorate the economic efficiency.
  • the size of the polymer nanospheres is too large, the amount of the sintered body powder of the metal to be mixed. This decreases, making it difficult to obtain electron paths and effective reactant paths and effects as reaction sites.
  • the metal sintered powder or the electrode active material nanospheres preferably have a diameter of 50 nm to 1000 nm.
  • the thickness of the formed porous film layer needs to be appropriately adjusted. Specifically, if the thickness of the film layer is too thin, the durability of the porous film layer or the amount of penetration of the electrode active material is insufficient, so that a predetermined effect is difficult to be obtained. On the contrary, if the thickness of the film layer is too thick, the amount of the sintered material or the electrode activity is insufficient. The infiltration amount of the material is increased more than necessary, and the economic efficiency is deteriorated.
  • the thickness of the porous film layer is preferably 1 ⁇ 50 ⁇ m.
  • the positive electrode substrate is made of a metal that can be anodized, and the metal that can be anodized is at least one metal selected from the group consisting of titanium, tantalum, zirconium, niobium, tungsten, and alloys thereof. desirable.
  • the sintered compact powder of the metal is a sintered compact powder of the same metal as the positive electrode substrate, so that the formed porous film layer has a very large surface area (40 ⁇ 80m 2 g -1 ), the electrode active of a thin thickness Even if the material coating layer is formed, it has a much wider reaction place than when the electroactive material is applied in the conventional two-dimensional plane form.
  • the sintered powder of the metal is not limited to its shape such as spherical and irregular, but is preferably spherical metal sintered powder in terms of permeability of the electrode active material, adhesion to the positive electrode substrate, and the like. .
  • the sintered powder of the metal may not be the same as the cathode substrate.
  • the porous film layer made of a metal that is not the same as the anode substrate may be a highly economical anode, depending on the type of metal capable of anodizing, so that the cathode substrate is made of titanium.
  • the porous film layer may be formed of a sintered powder of a metal other than titanium.
  • a porous film layer made of tantalum is preferable.
  • the polymer nanospheres are preferably formed of at least one polymer selected from the group consisting of polystyrene (PS), polyvinyl chloride (PVC), polycarbonate (PC), and polymethyl methacrylate (PMMA).
  • PS polystyrene
  • PVC polyvinyl chloride
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • the next step is to form an electrode active material coating layer on the surface inside and outside the porous film layer.
  • an insoluble anode is manufactured by applying an electrode active material precursor to the porous film layer and heat treatment to form an electrode active material coating layer on the inside and outside surfaces of the porous film layer.
  • the electrode active material coating layer is characterized in that the nano-pores formed by the polymer nanospheres comprises an electrode active material nanospheres coated with an electrode active material precursor.
  • the electrode active material is IrO 2 , Ta 2 O 5, RuO 2 , SnO 2 , PtO 2 , Co 3 O 4 , NiCo 2 O 4 , CoFe 2 O 4 , NiO 2 , WO 3 , MoO 3 and perovskite It is characterized in that at least one electrode active material selected from the group consisting of the sky.
  • the forming of the electroactive material coating layer comprises the steps of forming a first electroactive material coating layer comprising IrO 2 particles and comprising Ta 2 O 5 particles on the first electroactive material coating layer. Forming an electrode active material coating layer.
  • a first electrode active material coating layer comprising IrO 2 particles on the surface of the inside and outside of the porous film layer by applying an electrode active material precursor including Ir to the porous film layer and heat treatment;
  • a second electrode active material coating layer including Ta 2 O 5 particles on the first electrode active material coating layer by applying and heat-treating an electrode active material precursor including Ta to the first electrode active material coating layer It is made to include.
  • the first electrode active material coating layer or the second electrode active material coating layer is RuO 2 , SnO 2 , PtO 2 , Co 3 O 4 , NiCo 2 O 4 , CoFe 2 O 4 , NiO 2 , WO 3 , MoO 3 and It is characterized in that it further comprises at least one electroactive material selected from the group consisting of perovskite.
  • 6 (b) to 6 (e) schematically illustrate the steps of forming the first electrode active material coating layer and the second electrode active material coating layer.
  • the step of forming the first electrode active material coating layer containing the IrO 2 particles as shown in Figure 6 (b) and 6 (c), the first containing Ir in the porous film layer
  • the first electrode active material 40a coating layer including IrO 2 particles is formed on the inner and outer surfaces of the porous film layer. Accordingly, the first electrode active material 40a including IrO 2 particles is abundantly present on the surface of the porous film layer.
  • the second electrode active material coating layer including the Ta 2 O 5 particles after the first electrode active material 40a coating layer is formed, shown in Figure 6 (d) to Figure 6 (e).
  • Ta 2 O 5 particles are coated on the first electrode active material 40a coating layer by applying and heat-treating the second electrode active material 40b precursor including Ta to the first electrode active material 40a coating layer. It is to form a second electrode active material (40b) coating layer comprising a. Accordingly, the second electrode active material 40b including amorphous Ta 2 O 5 particles having high stability is exposed to most of the outermost surface.
  • the first electroactive material coating layer comprises 50 to 85 mol% by weight of Ir precursor, and the second electroactive material coating layer comprises 25 to 55 mol% by weight of Ir precursor. do.
  • the electrode active material coating layer 40 formed by the present invention is exposed to the second electrode active material containing amorphous Ta 2 O 5 particles of high stability on most of the outermost surface to improve the life of the electrode , in addition, the inside porous film layer to the surface of the first electrode active material containing the IrO 2 particles which are exposed on the surface as the first electrode active material is abundant containing IrO 2 particles is not much IrO 2 As it can be easily connected to the first electrode active material containing particles, it is possible to effectively exhibit the electrode activity.
  • the porous film layer has a high surface area, the content of the first electrode active material including the IrO 2 particles exposed to the surface may be at least sufficient to secure a reaction area.
  • the electrode active material coating layer as the nano-pores formed by the polymer nanospheres include the electrode active material nanospheres coated with the electrode active material precursor, as well as the reduction of resistance, the movement of electrons, the path of the reactant and It is characterized by being able to maximize the effect as a reaction place.
  • a first electrode active material 40a including Ir and a precursor including Ta The second electrode active material 40b is introduced into the nano-pores 30 formed by the polymer nanospheres on the porous film layer and coated, respectively, so that the nano-pores 30 include IrO 2 particles.
  • the electrode active material nanospheres 30b including both the material 40a coating layer and the coating layer of the second electrode active material 40b including Ta 2 O 5 particles are formed.
  • the electrode active material nanospheres are characterized in that it comprises pores in a portion of the inside, as shown in Figure 6 (e) the electrode active material nanospheres containing an electrode active material in a portion of the internal pores (3b) ) Will be formed.
  • FIG. 7 also schematically illustrates a manufacturing process of an insoluble anode according to an embodiment of the present invention.
  • the electrode active material nanospheres include pores in a portion of the inside, the electrode active material nanospheres (3a) including the electroactive material in the entire inner pores It will form.
  • the present invention forms an electrode active material nanosphere coated with an electrode active material in the pores, thereby significantly reducing the resistance of the electrode and improving electron movement. In addition to facilitating, it is also intended to maximize the function of the reactants as a path and a reaction site.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to an insoluble anode having a porous film layer containing electrode active material nano-spheres and, specifically, to an insoluble anode having a porous film layer containing electrode active material nano-spheres, the anode comprising: an anode substrate made of a metal which can be anodized; a porous film layer containing sintered powder of the metal and electrode active material nano-spheres; and an electrode active material coating layer formed on the inner and outer surfaces of the porous film layer, wherein the porous film layer comprises 60-90 % by volume of the sintered powder of the metal and 10-40 % by volume of the electrode active material nano-spheres; and the electrode active material coating layer comprises a first electrode active material coating layer which contains IrO2 particles, and a second electrode active material coating layer which is formed on the first electrode active material coating layer and contains Ta2O5 particles. In addition, the present invention relates to a method for manufacturing the insoluble anode.

Description

전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극 및 이의 제조방법Insoluble anode having a porous film layer including an electrode active material nanospheres and a manufacturing method thereof
본 발명은 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극에 관한 것으로서, 양극기판, 상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층 및 상기 다공성 필름층 내·외부의 표면에 형성된 전극활성물질 코팅층을 포함하여 이루어짐으로써, 상기 전극의 저항을 현저히 감소시켜 전극의 효율을 향상시킴은 물론이고, 전극의 수명을 향상시키는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극에 관한 것이다. The present invention relates to an insoluble anode having a porous film layer containing an electrode active material nanospheres, comprising: a positive electrode substrate, a porous film layer comprising a sintered compact powder of the metal and an electrode active material nanospheres, and inside and outside the porous film layer By including the electrode active material coating layer formed on the surface, to significantly reduce the resistance of the electrode to improve the efficiency of the electrode, characterized in that to improve the life of the electrode, porous, including the electrode active material nanospheres It relates to an insoluble anode having a film layer.
지금까지 가용성(soluble) 양극(anode) 대비 고용량 및 균일한 작업이 가능하다는 이유로 비싼 가격임에도 불구하고 전기 도금 등의 전해 공정에서 도금 반응에 관여하지 않는 불용성 양극이 종래부터 사용되고 있고, 그 사용이 증대되고 있는 추세이다. In the past, insoluble anodes, which do not participate in the plating reaction in electrolytic processes such as electroplating, have been used in spite of their high price due to high capacity and uniform operation compared to soluble anodes. It is becoming a trend.
종래부터 불용성 양극으로서 납 또는 납 합금이 다수 사용되어 왔지만 용출된 납에 의한 환경오염 및 막질의 저하 등의 문제가 있다. 이로 인해 납계 양극 대신 깨끗한 불용성 양극의 개발이 진행되고 있고, 이 중에서도 특히 티타늄(Ti)을 사용한 티탄계 양극이다. Conventionally, many lead or lead alloys have been used as insoluble anodes, but there are problems such as environmental pollution and film quality deterioration due to eluted lead. For this reason, the development of a clean insoluble anode instead of a lead-based anode is in progress, and among these, the titanium-based anode using titanium (Ti) is especially.
티타늄(Ti) 양극기판에 이리듐(Ir) 혹은 루테늄(Ru) 산화물 같은 활성물질을 피복시킨 전극은 산소나 염소 발생에 대해 과전압이 비교적 낮으며 전극의 수명이 길어 "Dimensionally Stable Anode(DSA)"라는 이름으로 수용액에서 염소나 산소를 생산하기 위한 목적으로 널리 이용되고 있다.An electrode coated with a titanium (Ti) positive electrode substrate with an active material such as iridium (Ir) or ruthenium (Ru) oxide has a relatively low overvoltage for oxygen or chlorine generation and a long lifetime of the electrode, which is called "Dimensionally Stable Anode (DSA)". It is widely used for the purpose of producing chlorine or oxygen in aqueous solution.
도 1은 종래기술에 따른 DSA 제작 공정의 흐름을 모식화하여 나타낸 것으로, 도 1을 참고하면 티타늄(Ti) 양극기판 위에 액상상태의 Ir 또는 Ru 전구체를 도포한 후, 건조 및 열처리를 통해 전극활성물질인 IrO2 또는 RuO2을 티타늄 기판위에 코팅하게 된다. 이 경우 필요한 두께를 한 번의 전구체 도포로 만들지 못하는 단점이 있어서, 전구체 도포와 건조 혹은 고온에서의 열처리를 반복해 최종 원하는 두께를 만드는 공정을 거치게 된다. 실제로 제품에 사용되는 수마이크로 ~ 50 ㎛ 두께의 전극활성물질층을 만들기 위해서는 5~8번, 많게는 20회 이상의 도포 및 열처리 공정을 반복해야만하기 때문에, 높은 두께의 전극활성물질층은 반복 작업에 의한 작업시간의 증대뿐만 아니라 고가의 촉매재료의 사용을 늘리게 되어 제품 가격 인상의 요인이 되는 문제점이 있다. Figure 1 is a schematic representation of the flow of the DSA manufacturing process according to the prior art, referring to Figure 1, after applying the Ir or Ru precursor in a liquid state on a titanium (Ti) positive electrode substrate, the electrode activity through drying and heat treatment IrO 2 or RuO 2 is coated on the titanium substrate. In this case, there is a disadvantage in that it is not possible to make the required thickness in one precursor coating, and the precursor coating and drying or heat treatment at high temperature are repeated to make the final desired thickness. In order to make the electrode active material layer of several micro ~ 50 ㎛ thickness actually used in the product, it is necessary to repeat the application and heat treatment process 5 to 8 times, more than 20 times. In addition to the increase of working time, the use of expensive catalyst materials increases the problem of product price increase.
상기 문제점을 해결하기 위해서, 국내출원 제10-2007-7015579호는 구상 티탄(TiO2) 분말의 소결체로 이루어진 다공질층을 형성시킨 후, 다공질층 표면으로부터 내부에 걸쳐서 전극 활성 물질층을 형성시킴으로써 내구성 향상과 고가의 전극 활성 물질 사용량을 크게 감소시킨 바 있다(도 2 참고).In order to solve the above problem, domestic application No. 10-2007-7015579 forms a porous layer made of a sintered body of spherical titanium (TiO 2 ) powder, and then durable by forming an electrode active material layer from the porous layer surface to the inside. The use of the improved and expensive electrode active materials has been greatly reduced (see FIG. 2).
그러나 상기 DSA 구조를 가진 제품의 성능은 인가된 전류값에 대해 제품의 저항으로 결정되는 전압값에 의해 결정되기 때문에 사용되는 재료의 저항값이 중요한 요소로 고려된다. 즉, 티타니아(TiO2)의 저항은 0.29~3 W·cm로 IrO2의 저항(약 30 mW·cm)보다 훨씬 높고 실제 티타니아 분말로 이루어진 다공성 필름의 저항은 높은 계면장력으로 인해 티타니아 재료 자체 저항보다 훨씬 높아진다는 문제점이 있다. However, since the performance of the product having the DSA structure is determined by the voltage value determined by the resistance of the product with respect to the applied current value, the resistance value of the material used is considered an important factor. That is, the resistance of titania (TiO 2 ) is 0.29 ~ 3 W · cm, much higher than that of IrO 2 (about 30 mW · cm), and the resistance of the porous film made of titania powder is the resistance of titania material itself due to the high interfacial tension. The problem is that it is much higher.
이에 본 발명은 상기과 같은 문제점에 착안하여 안출된 것으로 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극을 제공하는 것을 그 해결과제로 한다.Accordingly, the present invention has been made in view of the above problems to provide an insoluble anode having a porous film layer containing an electrode active material nanosphere as a problem.
또한, 본 발명은 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극의 제조방법을 제공하는 것을 다른 해결과제로 한다.Another object of the present invention is to provide a method of manufacturing an insoluble anode having a porous film layer including an electrode active material nanosphere.
상기 과제를 해결하기 위한 본 발명의 일 측면에 따르면,According to an aspect of the present invention for solving the above problems,
양극산화가 가능한 금속으로 이루어진 양극기판;A positive electrode substrate made of a metal capable of anodizing;
상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층; 및A porous film layer comprising the sintered powder of the metal and the nanospheres of an electrode active material; And
상기 다공성 필름층 내·외부의 표면에 형성된 전극활성물질 코팅층;을 포함하고,And an electrode active material coating layer formed on the inside and outside surfaces of the porous film layer.
상기 다공성 필름층은 상기 금속의 소결체 분말 60~90 부피%와, 전극활성물질 나노스피어 10~40 부피%를 포함하고, The porous film layer includes 60 to 90% by volume of the sintered powder of the metal and 10 to 40% by volume of the electrode active material nanospheres,
상기 전극활성물질 코팅층은, IrO2 입자를 포함하는 제1 전극활성물질 코팅층과, 상기 제1 전극활성물질 코팅층 상에 형성되고 Ta2O5 입자를 포함하는 제2 전극활성물질 코팅층을 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극이 제공된다.The electroactive material coating layer may include a first electroactive material coating layer including IrO 2 particles and a second electroactive material coating layer formed on the first electroactive material coating layer and including Ta 2 O 5 particles. Characterized in that there is provided an insoluble anode having a porous film layer comprising an electroactive material nanosphere.
또한, 과제를 해결하기 위한 본 발명의 다른 측면에 따르면,In addition, according to another aspect of the present invention for solving the problem,
(a) 양극산화가 가능한 금속으로 이루어지는 양극기판 상에, 금속의 소결체 분말과 고분자 나노스피어를 도포하고 열처리함으로써, 고분자 나노스피어로 형성된 나노-기공을 포함하는 다공성 필름층을 형성하는 단계; 및(a) forming a porous film layer including nano-pores formed by polymer nanospheres by applying and heat-treating a metal sintered powder and a polymer nanosphere on a positive electrode substrate made of an anodized metal; And
(b) 상기 다공성 필름층에 전극활성물질 전구체를 도포하고 열처리함으로써, 상기 다공성 필름층 내·외부의 표면에 전극활성물질 코팅층을 형성하는 단계;를 포함하여 불용성 양극이 제조되고,(b) forming an electrode active material coating layer on a surface of the porous film layer inside and outside by applying an electrode active material precursor and heat treatment to the porous film layer, wherein an insoluble anode is prepared,
상기 다공성 필름층은, 상기 금속의 소결체 분말 60~90 부피%와, 고분자 나노스피어 10~40 부피%를 포함하여 이루어지고,The porous film layer is made of 60 to 90% by volume of the sintered compact powder of the metal and 10 to 40% by volume of the polymer nanospheres,
상기 전극활성물질 코팅층은, 상기 고분자 나노스피어로 형성된 나노-기공이 전극활성물질 전구체로 코팅된 전극활성물질 나노스피어를 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극의 제조방법이 제공된다.The electrode active material coating layer is insoluble having a porous film layer including an electrode active material nanospheres, characterized in that the nano-pores formed by the polymer nanospheres comprises an electrode active material nanospheres coated with an electrode active material precursor. A method for producing a positive electrode is provided.
본 발명에 따른 불용성 양극에 있어서, 다공성 필름층은 높은 표면적을 가짐에 따라 충분한 반응면적을 확보할 수 있는 이점이 있다.In the insoluble anode according to the present invention, the porous film layer has an advantage of ensuring a sufficient reaction area as having a high surface area.
또한 전극활성물질 코팅층 형성시, 전극활성물질이 다공성 필름층으로 도입되어 전극활성물질 나노스피어 내부의 기공 일부 또는 전체에 도입됨에 따라, 상기 나노스피어는 내부 기공 일부 또는 전체에 전극활성물질로 코팅되게 된다. 이에 따라, 상기 전극활성물질 나노스피어는 전자의 이동 및 반응물의 통로로서 용이하게 작용할 뿐만 아니라 반응장소로서의 작용과 함께 전극의 저항을 지금까지의 불용성 양극에 비하여 현저히 감소시킬 수 있다.In addition, when the electrode active material coating layer is formed, the electrode active material is introduced into the porous film layer and introduced into some or all of the pores inside the electrode active material nanospheres, so that the nanospheres are coated with some or all of the internal pores with the electrode active material. do. Accordingly, the electrode active material nanospheres can easily act as a passage of electrons and reactants, as well as act as a reaction site, and can significantly reduce the resistance of the electrode compared to the insoluble anodes up to now.
더욱이 본 발명에 따른 불용성 양극은, 전극활성물질 코팅층으로 IrO2 입자를 포함하는 제1 전극활성물질 코팅층과, 상기 제1 전극활성물질 코팅층 상에 형성되고 Ta2O5 입자를 포함하는 제2 전극활성물질 코팅층을 포함함에 따라, 최외각 표면 대부분이 안정성이 높고 비정질의 전기화학 반응에 관여하지 않는, Ta2O5 입자를 포함하는 제2 전극활성물질로 노출되어 전극 수명을 향상시킨다. 또한, 이와 함께 다공성 필름층 표면에는 전도성 산화물로 실질적으로 전기화학 반응에서 촉매 역할을 하는, IrO2 입자를 포함하는 제1 전극활성물질이 풍부하게 존재함에 따라, 표면에 노출되는 상기 IrO2 입자를 포함하는 제1 전극활성물질이 많지 않지만 내부에 있는 상기 IrO2 입자를 포함하는 제1 전극활성물질과 용이하게 연결될 수 있음에 따라 전극활성을 효과적으로 나타낼 수 있다.Furthermore, the insoluble anode according to the present invention, the first electrode active material coating layer containing IrO 2 particles as the electrode active material coating layer, and the second electrode formed on the first electrode active material coating layer and comprising Ta 2 O 5 particles By including the active material coating layer, most of the outermost surface is exposed to a second electroactive material comprising Ta 2 O 5 particles, which is highly stable and does not participate in amorphous electrochemical reactions, thereby improving electrode life. In addition, the surface of the porous film layer is rich in a first electroactive material including IrO 2 particles, which acts as a catalyst in an electrochemical reaction, substantially as a conductive oxide, thereby irradiating the IrO 2 particles exposed to the surface. Although there are not many first electrode active materials included therein, the first electrode active material can be easily connected to the first electrode active material including the IrO 2 particles therein, thereby effectively exhibiting electrode activity.
도 1은 종래기술에 따른 DSA 제작 공정의 흐름을 나타낸 모식도이다.1 is a schematic diagram showing the flow of the DSA manufacturing process according to the prior art.
도 2는 종래기술에 따른 다공성 필름층을 포함하는 DSA 제작공정도를 나타낸 것이다. Figure 2 shows a DSA manufacturing process including a porous film layer according to the prior art.
도 3(a) 및 도 3(b)는 본 발명의 일 실시예에 따른 전극활성물질 나노스피어를 포함하는 불용성 양극의 전자통로 또는 반응장소로의 효과를 모식화하여 나타낸 것이고, 도 3(c)는 전극활성물질 나노스피어를 포함하지 않는 불용성 양극의 전자통로 또는 반응장소로의 효과를 모식화하여 나타낸 것이다. 3 (a) and 3 (b) is a schematic representation of the effect of the insoluble anode including the electrode active material nanospheres according to an embodiment of the present invention to the electron passage or the reaction site, Figure 3 (c ) Is a schematic representation of the effect of the insoluble anode, which does not contain the electrode active material nanospheres, into the electron passage or reaction site.
도 4는 본 발명의 불용성 양극의 예를 모식도로 나타낸 것이다.4 schematically shows an example of an insoluble anode of the present invention.
도 5는 본 발명의 일 실시예에 따른 불용성 양극의 (a) SEM 이미지 및 (b) CLSM 이미지를 나타낸 것이다.5 illustrates (a) SEM image and (b) CLSM image of an insoluble anode according to an embodiment of the present invention.
도 6 및 도 7은 본 발명의 일 실시예에 따른 불용성 양극의 제조공정을 모식화하여 나타낸 것이다. 6 and 7 schematically illustrate the manufacturing process of the insoluble anode according to an embodiment of the present invention.
*도면의 주요 부호* Major sign in the drawing
10: 양극기판10: positive electrode substrate
20: 금속의 소결체 분말20: sintered powder of metal
30: 고분자 나노스피어에 의한 나노-기공30: nano-pores by polymer nanospheres
30a, 30b: 전극활성물질 나노스피어30a, 30b: Electroactive Material Nanospheres
40: 전극활성물질 코팅층 40: electrode active material coating layer
40a: 제1 전극활성물질40a: first electrode active material
40b: 제2 전극활성물질40b: second electrode active material
이하 첨부한 도면들을 참조하여 본 발명의 불용성 양극 및 그 제조방법에 대한 내용을 자세히 설명하기로 한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위한 예로서 제공되는 것이다.Hereinafter, with reference to the accompanying drawings will be described in detail the insoluble anode and the manufacturing method of the present invention. The drawings introduced below are provided as an example to sufficiently convey the spirit of the present invention to those skilled in the art.
따라서 본 발명은, 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 이때, 사용되는 기술용어 및 과학용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other forms. At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art to which the present invention belongs, the gist of the present invention in the following description and the accompanying drawings Descriptions of well-known functions and configurations that may be unnecessarily blurred are omitted.
본 발명의 일 측면에 따르면,According to one aspect of the invention,
양극산화가 가능한 금속으로 이루어진 양극기판;A cathode substrate made of a metal capable of anodization;
상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층; 및A porous film layer comprising the sintered powder of the metal and the nanospheres of an electrode active material; And
상기 다공성 필름층 내·외부의 표면에 형성된 전극활성물질 코팅층;을 포함하고,And an electrode active material coating layer formed on the inside and outside surfaces of the porous film layer.
상기 다공성 필름층은 상기 금속의 소결체 분말 60~90 부피%와, 전극활성물질 나노스피어 10~40 부피%를 포함하고, The porous film layer includes 60 to 90% by volume of the sintered powder of the metal and 10 to 40% by volume of the electrode active material nanospheres,
상기 전극활성물질 코팅층은, IrO2 입자를 포함하는 제1 전극활성물질 코팅층과, 상기 제1 전극활성물질 코팅층 상에 형성되고 Ta2O5 입자를 포함하는 제2 전극활성물질 코팅층을 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극을 제공한다.The electroactive material coating layer may include a first electroactive material coating layer including IrO 2 particles and a second electroactive material coating layer formed on the first electroactive material coating layer and including Ta 2 O 5 particles. Characterized by providing an insoluble anode having a porous film layer comprising an electroactive material nanospheres.
도 3(a) 및 도 3(b)는 본 발명의 일 실시예에 따른 전극활성물질 나노스피어를 포함하는 불용성 양극의 전자통로 또는 반응장소로의 효과를 모식화하여 나타낸 것이고, 도 3(c)는 전극활성물질 나노스피어를 포함하지 않는 불용성 양극의 전자통로 또는 반응장소로의 효과를 모식화하여 나타낸 것이다. 3 (a) and 3 (b) is a schematic representation of the effect of the insoluble anode including the electrode active material nanospheres according to an embodiment of the present invention to the electron passage or the reaction site, Figure 3 (c ) Is a schematic representation of the effect of the insoluble anode, which does not contain the electrode active material nanospheres, into the electron passage or reaction site.
이를 참고하면 본 발명의 불용성 양극은, 양극산화가 가능한 금속으로 이루어진 양극기판(10), 금속의 소결체 분말(20)과 전극활성물질 나노스피어(30a, 30b)를 포함하는 다공성 필름층 및 상기 다공성 필름층 내·외부의 표면에 형성된 전극활성물질 코팅층(40)을 포함하는 것을 특징으로 한다.Referring to this, the insoluble anode of the present invention, a porous film layer and a porous film comprising a positive electrode substrate (10) made of a metal capable of anodizing, the sintered body powder 20 of the metal and the electrode active material nanospheres (30a, 30b) It characterized in that it comprises an electrode active material coating layer 40 formed on the surface of the inside and outside of the film layer.
상세하게는 상기 본 발명의 불용성 양극에 있어서 양극기판(10)은, 양극산화가 가능한 금속으로 이루어지고, 상기 양극산화가 가능한 금속은, 티타늄, 탄탈늄, 지르코늄, 니오븀, 텅스텐 및 이들의 합금으로 이루어진 군 중에서 선택되는 1종 이상의 금속으로 한다. 이때, 상기 양극 기판의 형상 및 사이즈는 제조해야 할 불용성 양극의 형상 및 사이즈에 따라 적절하게 선택될 수 있다.In detail, in the insoluble anode of the present invention, the anode substrate 10 is made of a metal capable of anodizing, and the metal capable of being anodized is made of titanium, tantalum, zirconium, niobium, tungsten, and an alloy thereof. It is 1 or more types of metals chosen from the group which consists of these. In this case, the shape and size of the anode substrate may be appropriately selected according to the shape and size of the insoluble anode to be manufactured.
상기 본 발명의 불용성 양극에 있어서 다공성 필름층은, 금속의 소결체 분말(20)과 전극활성물질 나노스피어(30a, 30b)를 포함하여 이루어진다.In the insoluble anode of the present invention, the porous film layer includes a sintered compact powder 20 of the metal and the electrode active material nanospheres 30a and 30b.
상세하게는, 상기 금속의 소결체 분말(20)은, 상기 양극기판(10)과 동일한 금속의 소결체 분말인 것을 특징으로 한다. 이에 따라 상기 형성된 다공성 필름층은 매우 큰 표면적(40~80m2g-1)을 가지게 되어, 얇은 두께의 전극활성물질 코팅층을 형성하더라도 종래 2차원 평면 형태로 전극활성물질을 적용한 경우에 비하여 훨씬 넓은 반응물의 반응장소를 갖게 된다. In detail, the sintered compact powder 20 of the metal is characterized in that the sintered compact powder of the same metal as the positive electrode substrate 10. Accordingly, the formed porous film layer has a very large surface area (40 ~ 80m 2 g -1 ), even if a thin coating layer of the electrode active material is much wider than when the electrode active material is applied in the conventional two-dimensional planar form It has a reaction place of reactants.
보다 상세하게는, 상기 금속의 소결체 분말은 구형(球刑), 부정형 등 그 형상에 구애를 받지 않으나, 전극활성물질의 침투성, 양극 기판과의 밀착성 등의 점에서 구형의 금속 소결체 분말인 것이 바람직하다.More specifically, the sintered powder of the metal is not limited to its shape, such as spherical and irregular, but is preferably spherical metal sintered powder in terms of permeability of the electrode active material, adhesion to the positive electrode substrate, and the like. Do.
이에 따라 보다 바람직하게는, 본 발명의 불용성 양극에서 상기 양극기판은 티타늄으로 이루어지고, 상기 다공성 필름층은 상기 티타늄과 동일 한 금속의 소결체 분말인 이산화 타이타늄(TiO2) 나노분말로 형성되는 것을 특징으로 한다. Accordingly, more preferably, in the insoluble anode of the present invention, the anode substrate is made of titanium, and the porous film layer is formed of titanium dioxide (TiO 2 ) nanopowder, which is a sintered compact powder of the same metal as the titanium. It is done.
그러나, 상기 불용성 양극에 있어서, 상기 금속의 소결체 분말이 상기 양극기판과 동일하지 않은 경우도 있다. 상세하게는, 상기 불용성 양극에 있어서, 양극산화가 가능한 금속의 종류에 따라서는 양극기판과 동일하지 않은 금속으로 이루어진 다공성 필름층이 상당히 경제성이 높은 양극이 될 수 있으므로, 상기 양극기판이 티타늄으로 이루어진 경우, 다공성 필름층은 티타늄 이외의 금속의 소결체 분말로 형성될 수 있는 것이다. 이 경우, 탄탈늄으로 이루어진 다공성 필름층이 바람직하다. However, in the above insoluble anode, the sintered powder of the metal may not be the same as the cathode substrate. Specifically, in the insoluble anode, the porous film layer made of a metal that is not the same as the anode substrate may be a highly economical anode, depending on the type of metal capable of anodizing, so that the cathode substrate is made of titanium. In this case, the porous film layer may be formed of a sintered powder of a metal other than titanium. In this case, a porous film layer made of tantalum is preferable.
또한 상기 본 발명의 불용성 양극에 있어서, 다공성 필름층에 금속의 소결체 분말(20)과 함께 포함되는 전극활성물질 나노스피어(30a, 30b)는, 전극활성물질로 채워진 기공을 갖는 나노스피어인 것을 특징으로 한다. In addition, in the insoluble anode of the present invention, the electrode active material nanospheres (30a, 30b) included in the porous film layer together with the metal sintered powder 20 is characterized in that the nanospheres having pores filled with the electrode active material. It is done.
상세하게는 상기 전극활성물질 나노스피어(30a, 30b)는 내부의 일부에 기공을 포함하는 것을 특징으로 하고 있어, 상기 본 발명의 다공성 필름층으로 전극활성물질이 도입되어 전극활성물질 코팅층을 형성할 시, 상기 전극활성물질이 상기 나노스피어의 내부의 기공 일부 또는 전체에도 도입됨에 따라, 상기 나노스피어는 내부 기공 일부 또는 전체에 전극활성물질로 채워지게 되는 것이다.In detail, the electroactive material nanospheres 30a and 30b are characterized in that they include pores in a portion of the inside, the electrode active material is introduced into the porous film layer of the present invention to form an electrode active material coating layer As the electroactive material is introduced into some or all of the pores inside the nanospheres, the nanospheres are filled with some or all of the inner pores of the electroactive material.
보다 상세하게는, 본 발명에 따라 다공성 필름층에 포함되는 전극활성물질 나노스피어(30a, 30b)는 도 3(a)에 나타난 바와 같이 상기 기공 내부 전체에 전극활성물질이 채워지거나 또는 도 3(b)에 나타난 바와 같이 상기 기공 내부 일부에 전극활성물질이 채워짐으로써, 상기 전극활성물질로 일부 또는 전체가 채워진 기공을 갖게 된다. 이에 따라, 상기 전극활성 나노스피어(30a, 30b)는 전자의 이동 및 반응물의 통로로서 용이하게 작용할 뿐만 아니라 반응장소로서의 작용과 함께 전극의 저항을 감소시킬 수 있는 것이다.In more detail, the electrode active material nanospheres 30a and 30b included in the porous film layer according to the present invention are filled with the electrode active material in the entire pore inside as shown in FIG. As shown in b), the electrode active material is filled in a part of the pores, thereby having pores partially or entirely filled with the electrode active material. Accordingly, the electroactive nanospheres 30a and 30b not only easily act as passages of electrons and passages of the reactants, but also reduce the resistance of the electrodes together with the reaction sites.
더욱이, 도 3(b)의 전극활성물질 나노스피어(30b)는, 기공 내부의 일부에 전극활성물질을 포함하는 경우로서, 충분한 기공확보로 반응물의 통로로서의 작용뿐만 아니라, 반응장소로서의 작용을 극대화할 수 있게 된다.In addition, the electrode active material nanospheres 30b of FIG. 3 (b) include an electrode active material in a part of the pores, and maximize the action as a reaction site as well as the passage of the reactants with sufficient pore securing. You can do it.
반면, 도 3(c)는 다공성 필름층에 전극활성물질 나노스피어를 포함하지 않는 경우로서, 상기 다공성 필름층을 형성하는 금속의 소결체 분말 통과에 의해서만 전자의 이동이 이루어짐에 따라, 전자이동에 한계가 있다.On the other hand, Figure 3 (c) is a case that does not include the electrode active material nanospheres in the porous film layer, the electrons are moved only by passing through the sintered body powder of the metal forming the porous film layer, the limit of electron transfer There is.
따라서, 본 발명의 불용성 양극에 있어서 상기 다공성 필름층은, 금속의 소결체 분말(20)과 전극활성물질 나노스피어(30a, 30b)를 포함함으로써, 전자통로, 반응물의 경로 및 반응장소로서의 작용을 함은 물론이고, 상기 전극활성물질 나노스피어에 의해 전극의 저항을 감소시킬 수 있는 것이다.Therefore, in the insoluble anode of the present invention, the porous film layer includes the sintered compact powder 20 of the metal and the electrode active material nanospheres 30a and 30b, thereby acting as an electron path, a path of a reactant, and a reaction site. Of course, it is possible to reduce the resistance of the electrode by the electrode active material nanospheres.
이때, 상기 다공성 필름층의 전자통로, 반응물의 경로와 같은 작용은 상기 다공성 필름층에 포함되는 금속의 소결체 분말과 전극활성물질 나노스피어의 비율에 의해 영향을 받게 된다. 상세하게는, 상기 다공성 필름층에 포함되는 전극활성물질 나노스피어의 함량이 낮은 경우 함께 포함되는 저항이 높은 금속의 소결체 분말 함량이 상대적으로 증대되어 전극의 성능을 떨어뜨리게 되고, 전자통로로서의 작용과 반응물의 통로 및 반응장소로서의 작용의 극대화가 어렵다. 반대로 금속의 소결체 분말 함량이 감소되어 상대적으로 상기 전극활성물질 나노스피어의 함량이 높은 경우 상기 나노스피어의 기공내에 도입된 전극활성물질이 필요이상으로 증대되어 경제성이 악화된다. 이에, 본 발명의 상기 다공성 필름층은 상기 금속의 소결체 분말 60~90 부피%와, 전극활성물질 나노스피어 10~40 부피%를 포함하는 것이 바람직하다.At this time, the electron path of the porous film layer, the action such as the path of the reactant is affected by the ratio of the sintered body powder of the metal contained in the porous film layer and the electrode active material nanospheres. Specifically, in the case where the content of the electrode active material nanospheres contained in the porous film layer is low, the content of the sintered body powder of the high resistance metal included together is relatively increased, thereby degrading the performance of the electrode, and acting as an electron path. It is difficult to maximize the function of the reactants as passages and reaction sites. On the contrary, when the content of the sintered compact powder of the metal is reduced and the content of the electroactive material nanosphere is relatively high, the electrode active material introduced into the pores of the nanosphere is increased more than necessary, thereby deteriorating economic efficiency. Accordingly, the porous film layer of the present invention preferably contains 60 to 90% by volume of the sintered compact powder of the metal and 10 to 40% by volume of the electrode active material nanospheres.
또한, 상기 다공성 필름층의 작용은 상기 다공성 필름층에 포함되는 금속의 소결체 분말과 전극활성물질 나노스피어의 비율 이외에도 상기 각각의 크기에 영향을 받음에 따라, 상기 금속의 소결체 분말 또는 전극활성물질 나노스피어는 직경이 50~1000nm인 것이 바람직하다.In addition, the action of the porous film layer is affected by the respective sizes in addition to the ratio of the sintered body powder and the electrode active material nanospheres of the metal contained in the porous film layer, the sintered body powder or electroactive material nano of the metal It is preferable that a sphere is 50-1000 nm in diameter.
또한, 상기 다공성 필름층은 두께가 지나치게 얇은 경우 다공질 필름층의 내구성이나 전극 활성 물질의 침투량이 부족하여 소정의 효과를 수득하기 어렵고, 반대로 상기 다공성 필름층의 두께가 지나치게 두꺼운 경우, 소결 물질의 사용량이나 전극 활성 물질의 침투량이 필요 이상으로 증대되어 경제성이 악화되는 문제가 있다. 이에, 상기 다공성 필름층은 내구성 및 전극활성물질의 침투량의 두께가 1~50㎛인 것이 바람직하다.In addition, when the thickness of the porous film layer is too thin, the durability of the porous film layer or the amount of penetration of the electrode active material is insufficient to obtain a predetermined effect. On the contrary, when the thickness of the porous film layer is too thick, the amount of sintered material used However, there is a problem that the amount of penetration of the electrode active material is increased more than necessary and the economic efficiency is deteriorated. Thus, the porous film layer preferably has a thickness of 1 ~ 50㎛ the durability and penetration amount of the electrode active material.
상기 본 발명의 불용성 양극에 있어서, 전극활성물질 코팅층(40)은 상기 다공성 필름층 내·외부의 표면에 형성되는 것을 특징으로 한다. In the insoluble anode of the present invention, the electrode active material coating layer 40 is characterized in that formed on the surface inside and outside the porous film layer.
상세하게는, 상기 전극활성물질은 IrO2, Ta2O5, RuO2, SnO2, PtO2, Co3O4, NiCo2O4, CoFe2O4, NiO2, WO3, MoO3 및 페로브스카이트로 이루어진 군 중에서 선택되는 1종 이상의 전극활성물질인 것을 특징으로 한다.Specifically, the electroactive material is IrO 2 , Ta 2 O 5, RuO 2 , SnO 2 , PtO 2 , Co 3 O 4 , NiCo 2 O 4 , CoFe 2 O 4 , NiO 2 , WO 3 , MoO 3 and It is characterized in that the at least one electroactive material selected from the group consisting of perovskite.
바람직하게는, 상기 전극활성물질 코팅층(40)은, IrO2 입자를 포함하는 제1 전극활성물질 코팅층과, 상기 제1 전극활성물질 코팅층 상에 형성되고 Ta2O5 입자를 포함하는 제2 전극활성물질 코팅층을 포함하는 것을 특징으로 한다.Preferably, the electrode active material coating layer 40, a first electrode active material coating layer containing IrO 2 particles, and a second electrode formed on the first electrode active material coating layer and including Ta 2 O 5 particles It characterized in that it comprises an active material coating layer.
상세하게는 상기 전극활성물질 코팅층(40)은, 상기 IrO2 입자를 포함하는 제1 전극활성물질 코팅층이 상기 다공성 필름층 표면에 형성되어 상기 다공성 필름층 표면에는 IrO2 입자를 포함하는 제1 전극활성물질이 풍부하게 존재하도록 하고, 상기 Ta2O5 입자를 포함하는 제2 전극활성물질 코팅층이 상기 제1 전극활성물질 코팅층 상에 형성되어 상기 제1 전극활성물질 코팅층을 감싸는 최외각 코팅층이 되도록 한다.In detail, the electrode active material coating layer 40 may include a first electrode active material coating layer including the IrO 2 particles formed on the surface of the porous film layer, and a first electrode including IrO 2 particles on the surface of the porous film layer. The active material is present in abundance, and the second electrode active material coating layer including the Ta 2 O 5 particles is formed on the first electrode active material coating layer to be the outermost coating layer surrounding the first electrode active material coating layer. do.
이 때, 상기 제1 전극활성물질 코팅층은, 50~85 몰중량%의 Ir 전구체를 포함하고, 상기 제2 전극활성물질 코팅층은, 25~55 몰중량%의 Ir 전구체를 포함하는 것을 특징으로 한다. In this case, the first electrode active material coating layer, 50 to 85 mol% by weight of Ir precursor, the second electrode active material coating layer, characterized in that it comprises 25 to 55 mol% by weight of Ir precursor. .
이는 실질적으로 전기화학 반응에서 촉매 역할을 하는, Ir 전극활성물질이 불용성 양극의 표면으로부터 내부에 이르기까지 용이하게 연결되도록 하여 전극활성 성능을 향상시키기 위한 것이다.This is to improve the electrode activity performance by allowing the Ir electrode active material, which substantially serves as a catalyst in the electrochemical reaction, to be easily connected from the surface of the insoluble anode to the inside.
관련하여, 본 발명의 불용성 양극의 예를 모식화하여 나타낸 도 4를 참고하면, 본 발명의 불용성 양극은 상기 제2 전극활성물질(40b) 코팅층이 상기 제1 전극활성물질(40a) 코팅층을 감싸는 최외각 코팅층으로 형성되고, 표면에 노출되는 IrO2 입자를 포함하는 제1 전극활성물질(40a)이 많지 않음에 따라 도 4(a) 및 도 4(b)에 나타난 바와 같이, 상기 불용성 양극의 전극활성물질 코팅층(40)은 대부분 제2 전극활성물질(40b)에 의해 형성된 것으로 보여지나, 실제적으로는 도 4(c)에 나타난 바와 같이 상기 제2 전극활성물질(40b) 코팅층 내부에는 상기 제1 전극활성물질(40a) 코팅층이 다공성 필름 표면에 촘촘히 형성되어 있다.In relation to this, referring to FIG. 4 schematically illustrating an example of the insoluble anode of the present invention, the insoluble anode of the present invention includes a coating layer of the second electrode active material 40b covering the first electrode active material 40a coating layer. As the first electrode active material 40a formed of the outermost coating layer and including the IrO 2 particles exposed to the surface is not much, as shown in FIGS. 4 (a) and 4 (b), the insoluble anode Most of the electrode active material coating layer 40 is shown to be formed by the second electrode active material 40b. However, as shown in FIG. 4 (c), the second electrode active material 40b may be formed inside the coating layer. 1 electrode active material (40a) coating layer is formed on the surface of the porous film closely.
더욱이, 상기 전극활성물질 코팅층(40)은 상기 다공성 필름층의 전극활성물질 나노스피어(30a, 30b)의 내부 기공 일부 또는 전체에도 형성되는 것을 특징으로 한다. 상세하게는 전극활성물질 코팅층 형성시, 제1 전극활성물질(40a) 및 제2 전극활성물질(40b)이 다공성 필름층으로 도입되어 전극활성물질 나노스피어(30a, 30b)의 내부의 기공 일부 또는 전체에 도입됨에 따라, 상기 나노스피어는 내부 기공 일부 또는 전체에 전극활성물질을 포함하게 된다. 이에 따라, 상기 전극활성물질 나노스피어는 전자의 이동 및 반응물의 통로로서 용이하게 작용할 뿐만 아니라 반응장소로서의 작용과 함께 전극의 저항을 감소시킬 수 있는 것이다.In addition, the electrode active material coating layer 40 is characterized in that it is formed in some or all of the internal pores of the electrode active material nanospheres (30a, 30b) of the porous film layer. In detail, when forming the electrode active material coating layer, the first electrode active material 40a and the second electrode active material 40b are introduced into the porous film layer, so that a part of pores inside the electrode active material nanospheres 30a and 30b or As introduced throughout, the nanospheres contain an electroactive material in some or all of the internal pores. Accordingly, the electrode active material nanospheres can easily act as passages of electrons and reactants, as well as act as reaction sites, thereby reducing the resistance of the electrodes.
이와 같이, 본 발명의 불용성 양극은, 최외각 표면 대부분이 안정성이 높은 비정질의 전기화학 반응에 관여하지 않는, Ta2O5 입자를 포함하는 제2 전극활성물질로 노출되어 전극 수명을 향상시킨다. 또한, 이와 함께 본 발명의 불용성 양극에 있어서 다공성 필름층 표면에는 전도성 산화물로 실질적으로 전기화학 반응에서 촉매 역할을 하는, IrO2 입자를 포함하는 제1 전극활성물질이 풍부하게 존재하고, 상기 다공성 필름층은 높은 표면적에 의해 충분한 반응면적을 확보함에 따라 전극에 있어서 표면에 노출되는 상기 IrO2 입자를 포함하는 제1 전극활성물질은 많지 않지만 내부에 있는 상기 IrO2 입자를 포함하는 제1 전극활성물질과 용이하게 연결될 수 있으므로 전극활성을 효과적으로 나타낼 수 있도록 한다.As such, the insoluble anode of the present invention is exposed to a second electroactive material containing Ta 2 O 5 particles, most of the outermost surface of which is not involved in a highly stable amorphous electrochemical reaction, thereby improving electrode life. In addition, the porous film layer surface of the insoluble anode of the present invention is rich in a first electrode active material containing IrO 2 particles, which serves as a catalyst in the electrochemical reaction substantially as a conductive oxide, the porous film The first electrode active material comprising the IrO 2 particles present therein is not many but the first electroactive material comprising the IrO 2 particles exposed to the surface in the electrode as the layer ensures a sufficient reaction area by the high surface area. It can be easily connected with the so as to effectively represent the electrode activity.
관련하여, 도 5는 본 발명의 일 실시예에 따른 불용성 양극의 (a) SEM 이미지 및 (b) CLSM 이미지를 나타낸 것이다. In this regard, Figure 5 shows (a) SEM image and (b) CLSM image of an insoluble anode according to an embodiment of the present invention.
이를 참고하면, 상기 제1 전극활성물질 코팅층 및 제2 전극활성물질 코팅층을 포함하는 전극활성물질 코팅층에 있어서 실질적으로 촉매역할을 하는 IrO2 입자는 다공성 필름층 표면에서 멀어질수록 농도가 감소한다. 즉, 상기 IrO2 입자는 상기 다공성 필름층 표면에 고농도로 존재하나 전극이 노출되는 표면에서는 IrO2 입자가 저농도로 존재하는 것이다.Referring to this, in the electrode active material coating layer including the first electrode active material coating layer and the second electrode active material coating layer, the concentration of IrO 2 particles, which are substantially catalysed away from the surface of the porous film layer, decreases. That is, the IrO 2 particles are present at a high concentration on the surface of the porous film layer, but the IrO 2 particles are present at a low concentration on the surface where the electrode is exposed.
상기 제1 전극활성물질 코팅층 또는 제2 전극활성물질 코팅층은 RuO2, SnO2, PtO2, Co3O4, NiCo2O4, CoFe2O4, NiO2, WO3, MoO3 및 페로브스카이트로 이루어진 군 중에서 선택되는 1종이상의 전극활성물질을 더 포함하는 것이 바람직하다.The first electrode active material coating layer or the second electrode active material coating layer is RuO 2 , SnO 2 , PtO 2 , Co 3 O 4 , NiCo 2 O 4 , CoFe 2 O 4 , NiO 2 , WO 3 , MoO 3 and perovskite It is preferable to further include at least one electroactive material selected from the group consisting of the sky.
본 발명의 다른 측면에 따르면,According to another aspect of the invention,
(a) 양극산화가 가능한 금속으로 이루어지는 양극기판 상에, 금속의 소결체 분말과 고분자 나노스피어를 도포하고 열처리함으로써, 고분자 나노스피어로 형성된 나노-기공을 포함하는 다공성 필름층을 형성하는 단계; 및(a) forming a porous film layer including nano-pores formed by polymer nanospheres by applying and heat-treating a metal sintered powder and a polymer nanosphere on a positive electrode substrate made of an anodized metal; And
(b) 상기 다공성 필름층에 전극활성물질 전구체를 도포하고 열처리함으로써, 상기 다공성 필름층 내·외부의 표면에 전극활성물질 코팅층을 형성하는 단계;를 포함하여 불용성 양극이 제조되고,(b) forming an electrode active material coating layer on a surface of the porous film layer inside and outside by applying an electrode active material precursor and heat treatment to the porous film layer, wherein an insoluble anode is prepared,
상기 다공성 필름층은, 상기 금속의 소결체 분말 60~90 부피%와, 고분자 나노스피어 10~40 부피%를 포함하여 이루어지고,The porous film layer is made of 60 to 90% by volume of the sintered compact powder of the metal and 10 to 40% by volume of the polymer nanospheres,
상기 전극활성물질 코팅층은, 상기 고분자 나노스피어로 형성된 나노-기공이 전극활성물질 전구체로 코팅된 전극활성물질 나노스피어를 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극의 제조방법이 제공된다.The electrode active material coating layer is insoluble having a porous film layer including an electrode active material nanospheres, characterized in that the nano-pores formed by the polymer nanospheres comprises an electrode active material nanospheres coated with an electrode active material precursor. A method for producing a positive electrode is provided.
본 발명의 불용성 양극의 제조방법은, 첫 단계로 다공성 필름층을 형성한다. 상세하게는, 양극산화가 가능한 금속으로 이루어지는 양극기판(10) 상에, 금속의 소결체 분말(20)과 고분자 나노스피어를 도포하고 열처리함으로써, 고분자 나노스피어로 형성된 나노-기공(30)을 포함하는 다공성 필름층을 형성하는 단계로서, 도 6(a)에 나타낸 바와 같다.In the method of manufacturing an insoluble anode of the present invention, a porous film layer is formed in a first step. Specifically, the nano-pores 30 formed of the polymer nanospheres are formed by applying and heat-treating the metal sintered powder 20 and the polymer nanospheres of the metal on the positive electrode substrate 10 made of a metal capable of anodizing. As a step of forming the porous film layer, as shown in Figure 6 (a).
보다 상세하게는, 상기 양극기판(10)상에 금속의 소결체 분말(20)과 고분자 나노스피어를 혼합하여 제조한 슬러리를 도포하고 열처리에 의하여 소결함으로써, 상기 금속의 소결체 분말 간의 공극에 의한 기공과 함께, 상기 소결 시 연소되어 제거된 고분자 나노스피어에 의한 나노-기공(30)을 갖는, 다공성 필름층을 형성하는 것이다.In more detail, by applying a slurry prepared by mixing the metal sintered powder 20 and the polymer nanospheres on the positive electrode substrate 10 and sintering by heat treatment, pores due to voids between the sintered powder of the metal and Together, to form a porous film layer having nano-pores 30 by the polymer nanospheres burned and removed during the sintering.
이 때, 상기 고분자 나노스피어가 연소되고 금속의 소결체 분말이 양극기판에 증착될 수 있도록 400~600℃에서 소결하는 것이 바람직하다.At this time, it is preferable that the polymer nanospheres are burned and sintered at 400 ° C. to 600 ° C. so that metal sintered powder may be deposited on the cathode substrate.
또한, 상기 다공성 필름층은, 상기 금속의 소결체 분말과 고분자 나노스피어의 혼합비에 의해 전자통로 및 반응물의 경로와 같은 작용의 효과에 영향을 받으므로, 본 발명의 상기 다공성 필름층은 상기 금속의 소결체 분말 60~90 부피%와, 고분자 나노스피어 10~40 부피%를 포함하는 것을 특징으로 하여, 상기 다공성 필름층에 형성된 나노-기공에 의해 전극의 저항이 감소되면서도 전자통로, 반응물의 경로 및 반응장소로서 용이하게 작용될 수 있도록 한다.In addition, since the porous film layer is affected by the effects of the electron passage and the path of the reactant by the mixing ratio of the sintered compact powder of the metal and the polymer nanospheres, the porous film layer of the present invention is a sintered compact of the metal 60 to 90% by volume of the powder, and 10 to 40% by volume of the polymer nanospheres, the nano-pores formed in the porous film layer while reducing the resistance of the electrode while the electron path, the reaction path and the reaction site It can be easily acted as.
또한, 상기 다공성 필름층은, 상기 금속의 소결체 분말과 고분자 나노스피어의 크기에 의해서도 전자통로 및 반응물의 경로와 같은 그 작용의 효과에 영향을 받는다. 상세하게는, 상기 고분자 나노스피어가 지나치게 작은 경우, 혼합되는 금속의 소결체 분말의 양이 필요이상으로 증대되어 경제성이 악화되고 반대로 고분자 나노스피어의 크기가 지나치게 큰 경우, 혼합되는 금속의 소결체 분말의 양이 감소되어 전자통로와 효과적인 반응물의 경로 및 반응장소로서의 효과를 수득하기가 어렵게 된다. In addition, the porous film layer is also affected by the effect of its action, such as the electron passage and the path of the reactant also by the size of the metal sintered powder and the polymer nanospheres. Specifically, when the polymer nanospheres are too small, the amount of the sintered body powder of the metal to be mixed is increased more than necessary to deteriorate the economic efficiency. On the contrary, when the size of the polymer nanospheres is too large, the amount of the sintered body powder of the metal to be mixed. This decreases, making it difficult to obtain electron paths and effective reactant paths and effects as reaction sites.
이에 따라, 상기 금속의 소결체 분말 또는 전극활성물질 나노스피어는 직경이 50~1000nm인 것이 바람직하다.Accordingly, the metal sintered powder or the electrode active material nanospheres preferably have a diameter of 50 nm to 1000 nm.
또한, 상기 형성된 다공성 필름층의 두께는 적절히 조절될 필요가 있다. 상세하게는, 상기 필름층 두께가 지나치게 얇으면 다공질 필름층의 내구성이나 전극 활성 무질의 침투량이 부족하여 소정의 효과를 수득하기 어렵고, 반대로 상기 필름층 두께가 지나치게 두꺼우면 소결 물질의 사용량이나 전극 활성 물질의 침투량이 필요 이상으로 증대되어 경제성이 악화된다. In addition, the thickness of the formed porous film layer needs to be appropriately adjusted. Specifically, if the thickness of the film layer is too thin, the durability of the porous film layer or the amount of penetration of the electrode active material is insufficient, so that a predetermined effect is difficult to be obtained. On the contrary, if the thickness of the film layer is too thick, the amount of the sintered material or the electrode activity is insufficient. The infiltration amount of the material is increased more than necessary, and the economic efficiency is deteriorated.
이에 따라, 상기 다공성 필름층의 두께는 1~50㎛인 것이 바람직하다. Accordingly, the thickness of the porous film layer is preferably 1 ~ 50㎛.
또한, 상기 양극기판은, 양극산화가 가능한 금속으로 이루어진 것으로서, 상기 양극산화가 가능한 금속은, 티타늄, 탄탈늄, 지르코늄, 니오븀, 텅스텐 및 이들의 합금으로 이루어진 군 중에서 선택되는 1종 이상의 금속인 것이 바람직하다.In addition, the positive electrode substrate is made of a metal that can be anodized, and the metal that can be anodized is at least one metal selected from the group consisting of titanium, tantalum, zirconium, niobium, tungsten, and alloys thereof. desirable.
또한, 상기 금속의 소결체 분말은, 상기 양극기판과 동일한 금속의 소결체 분말인 것을 특징으로 하여 상기 형성된 다공성 필름층이 매우 큰 표면적(40~80m2g-1)을 가게 함으로써, 얇은 두께의 전극활성물질 코팅층을 형성하더라도 종래 2차원 평면 형태로 전극활성물질을 적용한 경우에 비하여 훨씬 넓은 반응물의 반응장소를 갖도록 한다. In addition, the sintered compact powder of the metal is a sintered compact powder of the same metal as the positive electrode substrate, so that the formed porous film layer has a very large surface area (40 ~ 80m 2 g -1 ), the electrode active of a thin thickness Even if the material coating layer is formed, it has a much wider reaction place than when the electroactive material is applied in the conventional two-dimensional plane form.
상세하게는, 상기 금속의 소결체 분말은 구형(球刑), 부정형 등 그 형상에 구애를 받지 않으나, 전극활성물질의 침투성, 양극 기판과의 밀착성 등의 점에서 구형의 금속 소결체 분말인 것이 바람직하다.Specifically, the sintered powder of the metal is not limited to its shape such as spherical and irregular, but is preferably spherical metal sintered powder in terms of permeability of the electrode active material, adhesion to the positive electrode substrate, and the like. .
그러나, 상기 불용성 양극에 있어서, 상기 금속의 소결체 분말이 상기 양극기판과 동일하지 않은 경우도 있다. 상세하게는, 상기 불용성 양극에 있어서, 양극산화가 가능한 금속의 종류에 따라서는 양극기판과 동일하지 않은 금속으로 이루어진 다공성 필름층이 상당히 경제성이 높은 양극이 될 수 있으므로, 상기 양극기판이 티타늄으로 이루어진 경우, 다공성 필름층은 티타늄 이외의 금속의 소결체 분말로 형성될 수 있는 것이다. 이 경우, 탄탈늄으로 이루어진 다공성 필름층이 바람직하다. However, in the above insoluble anode, the sintered powder of the metal may not be the same as the cathode substrate. Specifically, in the insoluble anode, the porous film layer made of a metal that is not the same as the anode substrate may be a highly economical anode, depending on the type of metal capable of anodizing, so that the cathode substrate is made of titanium. In this case, the porous film layer may be formed of a sintered powder of a metal other than titanium. In this case, a porous film layer made of tantalum is preferable.
또한, 상기 고분자 나노스피어는 폴리스티렌(PS), 폴리염화비닐(PVC), 폴리카보네이트(PC) 및 폴리메틸메타크릴레이트(PMMA)로 이루어진 군 중에서 선택된 1종 이상의 고분자로 형성되는 것이 바람직하다.In addition, the polymer nanospheres are preferably formed of at least one polymer selected from the group consisting of polystyrene (PS), polyvinyl chloride (PVC), polycarbonate (PC), and polymethyl methacrylate (PMMA).
본 발명의 불용성 양극의 제조방법에 있어서 다음단계는, 상기 다공성 필름층 내·외부의 표면에 전극활성물질 코팅층을 형성하는 단계이다.In the method of manufacturing an insoluble anode of the present invention, the next step is to form an electrode active material coating layer on the surface inside and outside the porous film layer.
상세하게는, 상기 다공성 필름층에 전극활성물질 전구체를 도포하고 열처리함으로써, 상기 다공성 필름층 내·외부의 표면에 전극활성물질 코팅층을 형성함으로써, 불용성 양극을 제조하는 것이다. 이때, 상기 전극활성물질 코팅층은 상기 고분자 나노스피어로 형성된 나노-기공이 전극활성물질 전구체로 코팅된 전극활성물질 나노스피어를 포함하는 것을 특징으로 한다.In detail, an insoluble anode is manufactured by applying an electrode active material precursor to the porous film layer and heat treatment to form an electrode active material coating layer on the inside and outside surfaces of the porous film layer. In this case, the electrode active material coating layer is characterized in that the nano-pores formed by the polymer nanospheres comprises an electrode active material nanospheres coated with an electrode active material precursor.
이때, 상기 전극활성물질은 IrO2, Ta2O5, RuO2, SnO2, PtO2, Co3O4, NiCo2O4, CoFe2O4, NiO2, WO3, MoO3 및 페로브스카이트로 이루어진 군 중에서 선택되는 1종이상의 전극활성물질인 것을 특징으로 한다.In this case, the electrode active material is IrO 2 , Ta 2 O 5, RuO 2 , SnO 2 , PtO 2 , Co 3 O 4 , NiCo 2 O 4 , CoFe 2 O 4 , NiO 2 , WO 3 , MoO 3 and perovskite It is characterized in that at least one electrode active material selected from the group consisting of the sky.
바람직하게는, 상기 전극활성물질 코팅층을 형성하는 단계는, IrO2 입자를 포함하는 제1 전극활성물질 코팅층을 형성하는 단계 및 상기 제1 전극활성물질 코팅층 상에 Ta2O5 입자를 포함하는 제2 전극활성물질 코팅층을 형성하는 단계를 포함한다.Preferably, the forming of the electroactive material coating layer comprises the steps of forming a first electroactive material coating layer comprising IrO 2 particles and comprising Ta 2 O 5 particles on the first electroactive material coating layer. Forming an electrode active material coating layer.
상세하게는, 상기 다공성 필름층에 Ir을 포함하는 전극활성물질 전구체를 도포하고 열처리함으로써, 상기 다공성 필름층 내·외부의 표면에 IrO2 입자를 포함하는 제1 전극활성물질 코팅층을 형성하는 단계 및 상기 제1 전극활성물질 코팅층에 Ta를 포함하는 전극활성물질 전구체를 도포하여 열처리함으로써, 상기 제1 전극활성물질 코팅층 상에 Ta2O5 입자를 포함하는 제2 전극활성물질 코팅층을 형성하는 단계를 포함하여 이루어지는 것이다.Specifically, forming a first electrode active material coating layer comprising IrO 2 particles on the surface of the inside and outside of the porous film layer by applying an electrode active material precursor including Ir to the porous film layer and heat treatment; Forming a second electrode active material coating layer including Ta 2 O 5 particles on the first electrode active material coating layer by applying and heat-treating an electrode active material precursor including Ta to the first electrode active material coating layer. It is made to include.
이때, 상기 제1 전극활성물질 코팅층 또는 제2 전극활성물질 코팅층은 RuO2, SnO2, PtO2, Co3O4, NiCo2O4, CoFe2O4, NiO2, WO3, MoO3 및 페로브스카이트로 이루어진 군 중에서 선택되는 1종이상의 전극활성물질을 더 포함하는 것을 특징으로 한다.At this time, the first electrode active material coating layer or the second electrode active material coating layer is RuO 2 , SnO 2 , PtO 2 , Co 3 O 4 , NiCo 2 O 4 , CoFe 2 O 4 , NiO 2 , WO 3 , MoO 3 and It is characterized in that it further comprises at least one electroactive material selected from the group consisting of perovskite.
도 6(b) 내지 도 6(e)는, 상기 제1 전극활성물질 코팅층 및 제2 전극활성물질 코팅층 형성단계를 모식화하여 나타낸다.6 (b) to 6 (e) schematically illustrate the steps of forming the first electrode active material coating layer and the second electrode active material coating layer.
이를 참고하면, 상기 IrO2 입자를 포함하는 제1 전극활성물질 코팅층을 형성하는 단계는, 도 6(b) 및 도 6(c)에 나타낸 바와 같이, 상기 다공성 필름층에 Ir을 포함하는 제1 전극활성물질(40a) 전구체가 도포되어 열처리됨에 따라, 상기 다공성 필름층 내·외부의 표면에 IrO2 입자를 포함하는 제1 전극활성물질(40a) 코팅층을 형성하는 것이다. 이에 따라, 상기 다공성 필름층 표면에 IrO2 입자를 포함하는 제1 전극활성물질(40a)이 풍부하게 존재하게 된다. Referring to this, the step of forming the first electrode active material coating layer containing the IrO 2 particles, as shown in Figure 6 (b) and 6 (c), the first containing Ir in the porous film layer As the electrode active material 40a precursor is applied and heat-treated, the first electrode active material 40a coating layer including IrO 2 particles is formed on the inner and outer surfaces of the porous film layer. Accordingly, the first electrode active material 40a including IrO 2 particles is abundantly present on the surface of the porous film layer.
또한, 상기 Ta2O5 입자를 포함하는 제2 전극활성물질 코팅층을 형성하는 단계는, 상기 제1 전극활성물질(40a) 코팅층이 형성된 후, 도 6(d) 내지 도 6(e)에 나타낸 바와 같이, 상기 제1 전극활성물질(40a) 코팅층에 Ta를 포함하는 제2 전극활성물질(40b) 전구체를 도포하여 열처리함으로써, 상기 제1 전극활성물질(40a) 코팅층 상에 Ta2O5 입자를 포함하는 제2 전극활성물질(40b) 코팅층을 형성하는 것이다. 이에 따라, 안정성이 높은 비정질의 Ta2O5 입자를 포함하는 제2 전극활성물질(40b)이 최외각 표면 대부분에 노출되게 된다.In addition, forming the second electrode active material coating layer including the Ta 2 O 5 particles, after the first electrode active material 40a coating layer is formed, shown in Figure 6 (d) to Figure 6 (e). As described above, Ta 2 O 5 particles are coated on the first electrode active material 40a coating layer by applying and heat-treating the second electrode active material 40b precursor including Ta to the first electrode active material 40a coating layer. It is to form a second electrode active material (40b) coating layer comprising a. Accordingly, the second electrode active material 40b including amorphous Ta 2 O 5 particles having high stability is exposed to most of the outermost surface.
바람직하게는, 상기 제1 전극활성물질 코팅층은, 50~85 몰중량%의 Ir 전구체를 포함하고, 상기 제2 전극활성물질 코팅층은, 25~55 몰중량%의 Ir 전구체를 포함하는 것을 특징으로 한다.Preferably, the first electroactive material coating layer comprises 50 to 85 mol% by weight of Ir precursor, and the second electroactive material coating layer comprises 25 to 55 mol% by weight of Ir precursor. do.
이는 실질적으로 전기화학 반응에서 촉매 역할을 하는, Ir 전극활성물질이 불용성 양극의 표면으로부터 내부에 이르기까지 용이하게 연결되도록 하여 전극활성 성능을 향상시키기 위한 것이다.This is to improve the electrode activity performance by allowing the Ir electrode active material, which substantially serves as a catalyst in the electrochemical reaction, to be easily connected from the surface of the insoluble anode to the inside.
이에 따라, 본 발명에 의해 형성된 상기 전극활성물질 코팅층(40)은, 최외각 표면 대부분에 안정성이 높은 비정질의 Ta2O5 입자를 포함하는 제2 전극활성물질이 노출되어 전극의 수명을 향상시키고, 이와 함께 다공성 필름층 표면에는 IrO2 입자를 포함하는 제1 전극활성물질이 풍부하게 존재함에 따라 표면에 노출되는 상기 IrO2 입자를 포함하는 제1 전극활성물질이 많지 않지만 내부에 있는 상기 IrO2 입자를 포함하는 제1 전극활성물질과 용이하게 연결될 수 있음에 따라 전극활성을 효과적으로 나타낼 수 있도록 한다. 또한, 이때 상기 다공성 필름층은 높은 표면적을 가지기 때문에 표면에 노출되는 상기 IrO2 입자를 포함하는 제1 전극활성물질의 함량이 적어도 충분한 반응면적을 확보할 수 있도록 하는 것이다.Accordingly, the electrode active material coating layer 40 formed by the present invention is exposed to the second electrode active material containing amorphous Ta 2 O 5 particles of high stability on most of the outermost surface to improve the life of the electrode , in addition, the inside porous film layer to the surface of the first electrode active material containing the IrO 2 particles which are exposed on the surface as the first electrode active material is abundant containing IrO 2 particles is not much IrO 2 As it can be easily connected to the first electrode active material containing particles, it is possible to effectively exhibit the electrode activity. In addition, since the porous film layer has a high surface area, the content of the first electrode active material including the IrO 2 particles exposed to the surface may be at least sufficient to secure a reaction area.
더욱이, 상기 전극활성물질 코팅층은, 고분자 나노스피어로 형성된 나노-기공이 전극활성물질 전구체로 코팅된 전극활성물질 나노스피어를 포함함에 따라 저항의 감소는 물론이고, 전자의 이동, 반응물질의 경로 및 반응장소로서 효과를 극대화시킬 수 있는 것을 특징으로 한다.Furthermore, the electrode active material coating layer, as the nano-pores formed by the polymer nanospheres include the electrode active material nanospheres coated with the electrode active material precursor, as well as the reduction of resistance, the movement of electrons, the path of the reactant and It is characterized by being able to maximize the effect as a reaction place.
상세하게는, 도 6(b) 내지 도 6(e)에 나타낸 바와 같이, 상기 전극활성물질 코팅층(40) 형성시, Ir을 포함하는 제1 전극활성물질(40a) 전구체 및 Ta를 포함하는 제2 전극활성물질(40b) 전구체가 상기 다공성 필름층 상의 고분자 나노스피어로 형성된 나노-기공(30)에 도입되어 각각 코팅됨으로써, 상기 나노-기공(30)이 IrO2 입자를 포함하는 제1 전극활성물질(40a) 코팅층 및 Ta2O5 입자를 포함하는 제2 전극활성물질(40b) 코팅층을 모두 포함하는 전극활성물질 나노스피어(30b)를 형성하게 되는 것이다.In detail, as shown in FIGS. 6 (b) and 6 (e), when the electrode active material coating layer 40 is formed, a first electrode active material 40a including Ir and a precursor including Ta The second electrode active material 40b is introduced into the nano-pores 30 formed by the polymer nanospheres on the porous film layer and coated, respectively, so that the nano-pores 30 include IrO 2 particles. The electrode active material nanospheres 30b including both the material 40a coating layer and the coating layer of the second electrode active material 40b including Ta 2 O 5 particles are formed.
이 때, 상기 전극활성물질 나노스피어는 내부의 일부에 기공을 포함하는 것을 특징으로 함에 따라, 도 6(e)에 나타난 바와 같이 내부 기공 일부에 전극활성물질을 포함하는 전극활성물질 나노스피어(3b)를 형성하게 되는 것이다. At this time, the electrode active material nanospheres are characterized in that it comprises pores in a portion of the inside, as shown in Figure 6 (e) the electrode active material nanospheres containing an electrode active material in a portion of the internal pores (3b) ) Will be formed.
도 7 또한 본 발명의 일 실시예에 따른 불용성 양극의 제조공정을 모식화하여 나타낸 것이다. 7 also schematically illustrates a manufacturing process of an insoluble anode according to an embodiment of the present invention.
이를 참고하면, 도 7(e)에 나타낸 바와 같이, 상기 전극활성물질 나노스피어는 내부의 일부에 기공을 포함함에 따라, 내부 기공 전체에 전극활성물질을 포함하는 전극활성물질 나노스피어(3a)를 형성하게 되는 것이다. Referring to this, as shown in Figure 7 (e), as the electrode active material nanospheres include pores in a portion of the inside, the electrode active material nanospheres (3a) including the electroactive material in the entire inner pores It will form.
상기 도 6(e) 및 도 7(e)에 나타낸 바와 같이, 본 발명은 기공 내에 전극활성물질이 코팅된 전극활성물질 나노스피어를 형성함에 따라, 전극의 저항을 현저히 감소시키고 전자의 이동을 보다 용이하게 함은 물론이고, 반응물의 경로 및 반응 장소로서의 작용도 극대화될 수 있도록 하는 것이다.As shown in FIGS. 6 (e) and 7 (e), the present invention forms an electrode active material nanosphere coated with an electrode active material in the pores, thereby significantly reducing the resistance of the electrode and improving electron movement. In addition to facilitating, it is also intended to maximize the function of the reactants as a path and a reaction site.
이상과 같이 본 발명의 불용성 양극 및 그 제조방법에 관하여 한정된 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로 부터 다양한 수정 및 변형이 가능하다.As described above, the insoluble positive electrode of the present invention and the manufacturing method thereof have been described with limited drawings. However, these are provided only to help a more general understanding of the present invention. Various modifications and variations are possible.
따라서, 본 발명의 사상은 설명된 도면에 국한되어 정해져서는 아니되며, 후술하는 특허 청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the described drawings, but all of the equivalents and equivalents of the claims as well as the appended claims will belong to the scope of the present invention.

Claims (11)

  1. 양극산화가 가능한 금속으로 이루어진 양극기판;A cathode substrate made of a metal capable of anodization;
    상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층; 및A porous film layer comprising the sintered powder of the metal and the nanospheres of an electrode active material; And
    상기 다공성 필름층 내·외부의 표면에 형성된 전극활성물질 코팅층;을 포함하고,And an electrode active material coating layer formed on the inside and outside surfaces of the porous film layer.
    상기 다공성 필름층은 상기 금속의 소결체 분말 60~90 부피%와, 전극활성물질 나노스피어 10~40 부피%를 포함하고, The porous film layer includes 60 to 90% by volume of the sintered powder of the metal and 10 to 40% by volume of the electrode active material nanospheres,
    상기 전극활성물질 코팅층은, IrO2 입자를 포함하는 제1 전극활성물질 코팅층과, 상기 제1 전극활성물질 코팅층 상에 형성되고 Ta2O5 입자를 포함하는 제2 전극활성물질 코팅층을 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극.The electroactive material coating layer may include a first electroactive material coating layer including IrO 2 particles and a second electroactive material coating layer formed on the first electroactive material coating layer and including Ta 2 O 5 particles. An insoluble anode having a porous film layer comprising an electrode active material nanospheres.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1 전극활성물질 코팅층은, 50~85 몰중량%의 Ir 전구체를 포함하고,The first electrode active material coating layer, 50 to 85 mol% by weight of Ir precursor,
    상기 제2 전극활성물질 코팅층은, 25~55 몰중량%의 Ir 전구체를 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극. The second electrode active material coating layer, insoluble anode having a porous film layer containing an electrode active material nanospheres, characterized in that containing 25 to 55 mol% by weight of Ir precursor.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제1 전극활성물질 코팅층 또는 제2 전극활성물질 코팅층은 RuO2, SnO2, PtO2, Co3O4, NiCo2O4, CoFe2O4, NiO2, WO3, MoO3 및 페로브스카이트로 이루어진 군 중에서 선택되는 1종 이상의 전극활성물질을 더 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극.The first electrode active material coating layer or the second electrode active material coating layer is RuO 2 , SnO 2 , PtO 2 , Co 3 O 4 , NiCo 2 O 4 , CoFe 2 O 4 , NiO 2 , WO 3 , MoO 3 and perovskite Insoluble anode having a porous film layer comprising an electrode active material nanospheres, characterized in that it further comprises at least one electroactive material selected from the group consisting of the sky.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 전극활성물질 나노스피어는 내부의 일부에 기공을 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극.The insoluble anode having a porous film layer comprising an electrode active material nanospheres, characterized in that the electrode active material nanospheres comprise pores in a portion thereof.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 금속의 소결체 분말 또는 전극활성물질 나노스피어는 직경이 50~1000nm인 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극.The insoluble anode having a porous film layer containing the electrode active material nanospheres, characterized in that the metal sintered powder or the electrode active material nanospheres of 50 ~ 1000nm in diameter.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 다공성 필름층의 두께는 1~50㎛인 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극.The insoluble anode having a porous film layer containing an electrode active material nanospheres, characterized in that the thickness of the porous film layer is 1 ~ 50㎛.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 양극산화가 가능한 금속은, 티타늄, 탄탈늄, 지르코늄, 니오븀, 텅스텐 및 이들의 합금으로 이루어진 군 중에서 선택되는 1종 이상의 금속인 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극.The metal capable of anodizing is at least one metal selected from the group consisting of titanium, tantalum, zirconium, niobium, tungsten and alloys thereof, having a porous film layer including an electroactive material nanospheres. Insoluble anode.
  8. (a) 양극산화가 가능한 금속으로 이루어지는 양극기판 상에, 금속의 소결체 분말과 고분자 나노스피어를 도포하고 열처리함으로써, 고분자 나노스피어로 형성된 나노-기공을 포함하는 다공성 필름층을 형성하는 단계; 및(a) forming a porous film layer including nano-pores formed by polymer nanospheres by applying and heat-treating a metal sintered powder and a polymer nanosphere on a positive electrode substrate made of an anodized metal; And
    (b) 상기 다공성 필름층에 전극활성물질 전구체를 도포하고 열처리함으로써, 상기 다공성 필름층 내·외부의 표면에 전극활성물질 코팅층을 형성하는 단계;를 포함하여 불용성 양극이 제조되고,(b) forming an electrode active material coating layer on a surface of the porous film layer inside and outside by applying an electrode active material precursor and heat treatment to the porous film layer, wherein an insoluble anode is prepared,
    상기 다공성 필름층은, 상기 금속의 소결체 분말 60~90 부피%와, 고분자 나노스피어 10~40 부피%를 포함하여 이루어지고,The porous film layer is made of 60 to 90% by volume of the sintered compact powder of the metal and 10 to 40% by volume of the polymer nanospheres,
    상기 전극활성물질 코팅층은, 상기 고분자 나노스피어로 형성된 나노-기공이 전극활성물질 전구체로 코팅된 전극활성물질 나노스피어를 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극의 제조방법.The electrode active material coating layer is insoluble having a porous film layer including an electrode active material nanospheres, characterized in that the nano-pores formed by the polymer nanospheres comprises an electrode active material nanospheres coated with an electrode active material precursor. Method for producing a positive electrode.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 (b)단계는, In step (b),
    상기 다공성 필름층에 Ir을 포함하는 전극활성물질 전구체를 도포하고 열처리함으로써, 상기 다공성 필름층 내·외부의 표면에 IrO2 입자를 포함하는 제1 전극활성물질 코팅층을 형성하는 단계; 및Forming a first electrode active material coating layer including IrO 2 particles on the inner and outer surfaces of the porous film layer by applying and heat treating an electrode active material precursor including Ir to the porous film layer; And
    상기 제1 전극활성물질 코팅층에 Ta를 포함하는 전극활성물질 전구체를 도포하여 열처리함으로써, 상기 제1 전극활성물질 코팅층 상에 Ta2O5 입자를 포함하는 제2 전극활성물질 코팅층을 형성하는 단계;를 포함하여 이루어지는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극의 제조방법.Forming a second electrode active material coating layer including Ta 2 O 5 particles on the first electrode active material coating layer by applying and heat-treating an electrode active material precursor including Ta to the first electrode active material coating layer; Method for producing an insoluble anode having a porous film layer comprising an electrode active material nanospheres, characterized in that comprising a.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 제조된 불용성 양극은 제 1 항 내지 제 7 항 중 어느 한 항에 따른 불용성 양극인 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극의 제조방법.The prepared insoluble anode is an insoluble anode according to any one of claims 1 to 7, characterized in that, a method for producing an insoluble anode having a porous film layer containing an electrode active material nanospheres.
  11. 제 8 항에 있어서,The method of claim 8,
    상기 고분자 나노스피어는 폴리스티렌(PS), 폴리염화비닐(PVC), 폴리카보네이트(PC) 및 폴리메틸메타크릴레이트(PMMA)로 이루어진 군 중에서 선택된 1종 이상의 고분자로 형성되는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극의 제조방법.The polymer nanospheres are formed of at least one polymer selected from the group consisting of polystyrene (PS), polyvinyl chloride (PVC), polycarbonate (PC), and polymethyl methacrylate (PMMA), electrode activity A method of making an insoluble anode having a porous film layer comprising material nanospheres.
PCT/KR2015/011403 2015-05-11 2015-10-28 Insoluble anode having porous film layer containing electrode active material nano-spheres, and method for producing same WO2016182148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150065284A KR101577313B1 (en) 2015-05-11 2015-05-11 insoluble anode having porous film layer containing electrode active material nanosphere and a method of manufacturing the insoluble anode
KR10-2015-0065284 2015-05-11

Publications (1)

Publication Number Publication Date
WO2016182148A1 true WO2016182148A1 (en) 2016-11-17

Family

ID=55021308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011403 WO2016182148A1 (en) 2015-05-11 2015-10-28 Insoluble anode having porous film layer containing electrode active material nano-spheres, and method for producing same

Country Status (2)

Country Link
KR (1) KR101577313B1 (en)
WO (1) WO2016182148A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407355A1 (en) * 1989-06-07 1991-01-09 Permelec Electrode Ltd Insoluble electrode for electroplating and process for producing the same
JP2000178791A (en) * 1998-12-11 2000-06-27 Nikon Corp Production of porous titanium oxide film
KR20070095932A (en) * 2005-01-07 2007-10-01 다이소 가부시키가이샤 Insoluble electrode
KR20110011001A (en) * 2009-07-27 2011-02-08 일진머티리얼즈 주식회사 Insoluble anode and method of preparing insoluble anode
KR20120001896A (en) * 2010-06-30 2012-01-05 서강대학교산학협력단 Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407355A1 (en) * 1989-06-07 1991-01-09 Permelec Electrode Ltd Insoluble electrode for electroplating and process for producing the same
JP2000178791A (en) * 1998-12-11 2000-06-27 Nikon Corp Production of porous titanium oxide film
KR20070095932A (en) * 2005-01-07 2007-10-01 다이소 가부시키가이샤 Insoluble electrode
KR20110011001A (en) * 2009-07-27 2011-02-08 일진머티리얼즈 주식회사 Insoluble anode and method of preparing insoluble anode
KR20120001896A (en) * 2010-06-30 2012-01-05 서강대학교산학협력단 Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell having the same

Also Published As

Publication number Publication date
KR101577313B1 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
Takasu et al. Design of oxide electrodes with large surface area
WO2012093880A2 (en) Nano-porous electrode for super capacitor and manufacturing method thereof
AU682031B2 (en) High-temperature fuel cell with improved solid electrolyte/electrode contact surface, and method of producing the contact surface
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
DE69735159T2 (en) Solar cell and process for its production
KR20040035820A (en) Bipolar plate for fuel cell and method for production thereof
JPH0796719B2 (en) Method for producing a composite as a diaphragm having an electrode, which comprises a cermet layer and a porous metal layer on one side or both sides of the cermet layer
CN101245469A (en) Method for manufacturing titanium base lead dioxide electrode capable of controlling coating granularity
JP2006188742A (en) Insoluble anode
US4086157A (en) Electrode for electrochemical processes
JPH06302332A (en) Method for bonding interconnection to electrode
US9365940B2 (en) Method for producing porous copper foil
WO2016182148A1 (en) Insoluble anode having porous film layer containing electrode active material nano-spheres, and method for producing same
CN1842934A (en) Solid oxide fuel cell device with a component having a protective coatings and a method for making such
WO2020171509A1 (en) Electrode for electrolysis
CN113881962A (en) Preparation method of high-conductivity Ir-Ta-Mn composite oxide coating anode
EP3456866A1 (en) Interconnector, method for the preparation of an interconnector and its use
Liu et al. Effect of molar ratio of ruthenium and antimony on corrosion mechanism of Ti/Sn-Sb-RuOx electrode for zinc electrowinning
CN101107740A (en) Anode-supported solid oxide fuel cells using a cermet electrolyte
WO2011013911A2 (en) Insoluble anode and preparation method thereof
WO2015170808A1 (en) Insoluble anode with porous film layer comprising nanosphere of electrode active material, and method for preparing same
JP2003317738A (en) Method for manufacturing fuel cell
KR101311784B1 (en) Coating method of anti-corrosion for sepertator of molten cabonate fuel cell
US9595397B2 (en) High energy density asymmetric pseudocapacitor and method of making the same
JP7377853B2 (en) Protection of metal substrates for solid oxide fuel cells by inkjet printing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891964

Country of ref document: EP

Kind code of ref document: A1