WO2016181979A1 - Method for using syt7, mfsd4, and etnk2 expression levels to detect metastasis of gastric cancer to liver, detection kit, method for screening molecular targeted therapeutic agent, and pharmaceutical composition - Google Patents

Method for using syt7, mfsd4, and etnk2 expression levels to detect metastasis of gastric cancer to liver, detection kit, method for screening molecular targeted therapeutic agent, and pharmaceutical composition Download PDF

Info

Publication number
WO2016181979A1
WO2016181979A1 PCT/JP2016/063956 JP2016063956W WO2016181979A1 WO 2016181979 A1 WO2016181979 A1 WO 2016181979A1 JP 2016063956 W JP2016063956 W JP 2016063956W WO 2016181979 A1 WO2016181979 A1 WO 2016181979A1
Authority
WO
WIPO (PCT)
Prior art keywords
mfsd4
syt7
etnk2
gastric cancer
expression level
Prior art date
Application number
PCT/JP2016/063956
Other languages
French (fr)
Japanese (ja)
Inventor
光郎 神田
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2017517959A priority Critical patent/JPWO2016181979A1/en
Publication of WO2016181979A1 publication Critical patent/WO2016181979A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to a prognostic marker for gastric cancer and a method for testing using the same.
  • the present invention relates to a method for examining gastric cancer having a high risk of progressing to liver metastasis that affects the prognosis of gastric cancer, a test kit, a screening method for a molecular target therapeutic agent, and a pharmaceutical composition.
  • Gastric cancer is a common cancer in Asia, such as Japan, China, and South Korea, and South America. Looking at cancer mortality by region in Japan, the mortality rate of gastric cancer is decreasing year by year, but it is the second highest after lung cancer in men, and the third highest after colon cancer and lung cancer in women. (According to 2012 statistics.) With the spread of cancer screening, early detection has progressed and the mortality from gastric cancer has decreased. However, advanced gastric cancer still has a poor prognosis and is an important disease to be overcome in Japan, where gastric cancer prevalence is high.
  • gastric cancer with distant metastasis is treated in a lump and its treatment policy is not distinguished.
  • a multi-step process is required for free cancer cells arising from the primary lesion to engraft and proliferate to form a metastatic focus.
  • Adhesion molecules, proteolytic enzymes, growth factors, angiogenic factors, chemokines, and many other molecules Has been reported to be involved.
  • gastric cancer the three pathways of recurrent metastasis are greatly different, so the molecules involved in metastasis are also different, and the properties of metastasized cancer cells are also considered to be greatly different. Nevertheless, it is considered that the same treatment is performed by using three pathways with different metastasis formation mechanisms as distant metastases, which may contribute to the difficulty of complete cure of metastatic cancer.
  • Chemotherapy for recurrent gastric cancer and advanced gastric cancer that may recur is a therapy based on the administration of S-1, whose mechanism of action is inhibition of DNA synthesis.
  • S-1 is a drug that is generally effective for cancers with proliferating cells, and does not act specifically on metastatic gastric cancer.
  • the main cause of S-1 monotherapy significantly extending the survival period of patients with advanced gastric cancer is a decrease in the rate of recurrence of peritoneal dissemination, which is controlled in hematogenous and lymph node metastasis including liver metastasis. It's hard to say.
  • liver metastases As a form of recurrent metastasis of gastric cancer, hematogenous metastasis that metastasizes to other organs in the bloodstream is the second most common after peritoneal dissemination metastasis.
  • gastric cancer there are many liver metastases among the hematogenous metastases that metastasize to the liver. It is becoming important for follow-up of gastric cancer after surgery to detect and treat liver metastasis recurrence as soon as S-1 is not so effective against recurrence and subjective symptoms are difficult to occur.
  • Patent Documents 1 to 3 Methods for predicting and detecting recurrence of gastric cancer are also disclosed. Moreover, although there is a report regarding a marker having a high risk of liver metastasis regardless of the cancer type, research has not been made on a marker for predicting liver metastasis specific to gastric cancer (Patent Document 4).
  • a molecular target therapeutic agent refers to a drug that is made to act efficiently by capturing the properties of diseased cells such as cancer cells at the molecular level and targeting proteins or genes expressed on the surface.
  • diseased cells such as cancer cells at the molecular level and targeting proteins or genes expressed on the surface.
  • a molecular targeted therapeutic agent for gastric cancer There are only a few molecular targeted therapeutic agents for gastric cancer, and only Trastuzumab for HER2-positive gastric cancer has received domestic approval. In addition, ramucilumab is approved for advanced gastric cancer in the United States.
  • JP 2013-102716 A JP 2005-516215 Gazette International Publication No. 2005/010180 JP 2006-119064 A
  • markers for evaluating the risk of recurrence and metastasis have been disclosed, few markers specific to liver metastasis of gastric cancer have been reported. Moreover, since the accuracy is not so high, it has not been put into practical use yet. Therefore, identification of a marker specific to liver metastasis that can accurately evaluate the risk of recurrence is desired. If a marker highly specific for liver metastasis can be found, more effective individualized treatment can be provided.
  • trastuzumab which is currently approved in Japan as a molecular targeted therapy for gastric cancer, is only effective for HER2-positive gastric cancer, which accounts for about 20% of advanced and recurrent gastric cancer.
  • lamusilmab which is approved for the treatment of advanced gastric cancer in the United States, is not very effective in prognostic extension. Therefore, the development of new molecular targeted therapeutic agents for advanced and recurrent gastric cancer is desired.
  • Another object of the present invention is to develop a method for screening a molecular target drug using the marker as an index.
  • the present invention relates to the following test methods, kits, screening methods, and pharmaceutical compositions.
  • a test method for predicting liver metastasis after gastrectomy for gastric cancer wherein the patient serum collected from the subject and / or at least one of SYT7, MFSD4, and ETNK2 in gastric cancer tissue in gastrectomy
  • the above expression level is obtained, and when at least one expression level of SYT7, MFSD4, ETNK2 in the sample is significantly different from a predetermined value, it is determined that the risk of liver metastasis is high Inspection method.
  • a test kit for diagnosing or predicting liver metastasis after gastrectomy for gastric cancer a primer for quantitative PCR for measuring the expression level of SYT7, MFSD4, or ETNK2, an anti-SYT7 antibody, A test kit comprising one or more of an anti-MFSD4 antibody, an anti-ETNK2 antibody, or a methylation detection reagent for the MFSD4 gene promoter region.
  • a method for screening a molecular target therapeutic agent for treating liver metastasis after gastrectomy for gastric cancer comprising suppressing SYT7, ETNK2 expression level, increasing MFSD4 expression level, or MFSD4 gene promoter region
  • a molecular targeted therapeutic drug screening method comprising screening a substance using at least one of methylation as an index.
  • a pharmaceutical composition for suppressing liver metastasis after gastrectomy comprising at least one siRNA of SYT7 and ETNK2.
  • the risk of liver metastasis can be predicted immediately after gastrectomy, it can be used for subsequent treatment. Specifically, a group of patients with a high risk of liver metastasis can be treated with a follow-up plan with a view to liver metastasis after gastrectomy. Furthermore, it becomes possible to screen a medicine using the expression level of SYT7, MFSD4, and ETNK2 as an index. Therefore, it is possible to develop a medicament for treating recurrence of liver cancer metastasis targeting these molecules.
  • FIG. 1A shows SYT7
  • FIG. 1B shows MFSD4
  • FIG. 1C shows the correlation between the expression level of ETNK2 and liver metastasis.
  • the expression levels of SYT7, MFSD4, and ETNK2 in the resected tissue of 200 gastric cancer patients are shown as an average value and a plot diagram.
  • B The figure which shows the analysis result of the gastric cancer cell line by methylation specific PCR.
  • the present inventor classified the cases after gastrectomy according to the course, and conducted comprehensive expression analysis using a next-generation sequencer for mRNA obtained from gastric cancer primary tissue. As a result, it was revealed that SYT7 and ETNK2 were specifically highly expressed and the expression level of MFSD4 was specifically decreased in gastric cancer with liver metastasis. When the expression level is higher or lower than a certain value, it can be diagnosed that the case has a high risk of causing liver metastasis.
  • SYT7 is a membrane protein belonging to the synaptotagmin (SYT) family. It has been identified as a calcium / phospholipid-binding molecule present on synaptic vesicles, suggesting that it functions as a calcium sensor. In humans, the presence of 17 isoforms has been reported, and it is reported that it is mainly distributed in brain tissue. SYT7 is also mainly expressed in the brain and has been reported to be involved in neurotransmitter exocytosis (Non-Patent Documents 1 and 2).
  • ETNK2 (Ethanolamine kinase 2) is an enzyme involved in the first synthesis step in the CDP-ethanolamine pathway, which is one of the synthesis pathways of phosphatidylethanolamine, which is a major phospholipid of biological membranes. It is highly expressed in the liver and genital organs, and it has been suggested from knockout mouse experiments that it is involved in placental homeostasis (Non-patent Document 3).
  • MFSD4 major facilitator superfamily domaining 4
  • the risk of metastasis to the liver can be evaluated by quantifying the expression level of at least one of SYT7, MFSD4, and ETNK2.
  • SYT7, MFSD4, and ETNK2 are considered to be released from the gastric primary tissue or released from the disintegrated tumor into the blood and circulate in the blood. Therefore, by detecting the expression of SYT7, MFSD4, and ETNK2 in the serum using not only gastric cancer tissue but also serum as a sample, the risk of transition to liver metastasis can be evaluated. Moreover, methylation of MFSD4 described later can be detected not only by analyzing tissues but also by analyzing DNA obtained from serum samples.
  • SYT7, MFSD4, and ETNK2 can quantify their expression levels by quantifying mRNA and protein. Any method may be used as long as mRNA and protein can be quantitatively measured.
  • mRNA may be measured using quantitative PCR, next-generation sequencer, Northern blotting, DNA chip for gene expression analysis, or the like.
  • the quantitative PCR method is preferable because it can be measured in a short time.
  • a known method such as SYBR Green method, TaqMan probe method, RT-PCR method or the like can be used.
  • the protein may be measured using an anti-SYT7 antibody, an anti-MFSD4 antibody, or an anti-ETNK2 antibody.
  • Antibodies may be prepared by immunizing animals such as rabbits, goats, mice and the like with conventional methods.
  • the protein can be quantified by a known method such as a protein chip, ELISA method, RIA method, or Western blotting. By measuring mRNA and protein, the expression level of SYT7, MFSD4, and ETNK2 can be quantified with high sensitivity, and the risk of liver metastasis can be evaluated.
  • the promoter region of the MFSD4 gene has a CpG island and its expression is inactivated by DNA methylation. Therefore, the decrease in the expression of the MFSD4 gene may be analyzed for the degree of methylation of the promoter region.
  • known assay methods such as quantitative methylation-specific PCR, pyrosequencing, HELP assay, and chip-on-chip assay can be used.
  • the kit for examining the expression level of the SYT7, MFSD4, and ETNK2 genes can be configured to include enzymes, reagents, and the like that are optimal for quantification in addition to a PCR primer set that can quantify the expression level of each gene.
  • the primer any sequence may be used as long as it can quantitatively measure SYT7, MFSD4, and ETNK2.
  • a control primer such as a primer for amplifying GAPDH may be included.
  • kits for examining the expression levels of SYT7, MFSD4, and ETNK2 proteins include antibodies and aptamers for detecting proteins, and reagents necessary for detection in addition to molecules that bind to SYT7, MFSD4, and ETNK2 proteins. What is necessary is just composition.
  • the promoter region of the MFSD4 gene may be configured to include a reagent necessary for a known methylation detection method.
  • molecular target therapeutics can be selected by screening for compounds that suppress their expression.
  • a molecular target therapeutic agent can be selected by screening a compound that increases the expression of MFSD4.
  • a candidate for a molecular target therapeutic agent may be selected from a library composed of a low molecular compound, a natural product, or the like.
  • a library compound is added to a culture solution of a cancer cell line or gastric cancer cell line established from gastric cancer liver metastasis and a cell line that highly expresses SYT7 and ETNK2, and cell culture is performed to express SYT7 and ETNK2 What is to be suppressed may be selected.
  • a library compound may be added to a culture solution of a cell line with a low expression level of MFSD4, cell culture may be performed, and one that increases MFSD4 expression may be selected. Since the expression levels of SYT7, MFSD4, and ETNK2 can be quantified by measuring mRNA and protein as described above, a substance that suppresses expression with high sensitivity can be selected.
  • the present inventor has found that when SYT7, MFSD4, and ETNK2 are depleted by siRNA, a change occurs in the cell migration ability. With respect to SYT7 and ETNK2, which have a correlation between increased expression and liver metastasis, it is possible to suppress liver metastasis by suppressing it with siRNA. Therefore, there is a possibility that siRNA of SYT7 and ETNK2 can be used as a therapeutic agent.
  • SYT7 expression refers to gene and / or protein expression unless otherwise specified.
  • liver metastasis recurrence group ⁇ Analysis of genes specifically expressed in the liver recurrence group (1) ⁇ Previously, advanced gastric cancer cases that had undergone gastrectomy at Nagoya University School of Medicine were divided into 4 groups: long-term recurrence group over 5 years, peritoneal dissemination recurrence group, liver metastasis recurrence group, and lymph node recurrence group. Focusing on the recurrence of liver metastasis, which accounts for about 25% of recurrent gastric cancer, and oral S-1 after gastrectomy is not effective in advanced gastric cancer. We decided to detect genes with different expression levels.
  • RNA obtained from gastric cancer primary tissue, gastric non-cancerous part, and liver metastatic lesions of 4 patients with liver metastasis recurrence group were divided into groups according to their course.
  • the group was divided into four groups, a long-term recurrence group of 5 years or more, a peritoneal dissemination recurrence group, a liver metastasis recurrence group, and a lymph node recurrence group.
  • Expression profiling by transcriptome analysis was performed on RNA obtained from gastric cancer primary tissue, gastric non-cancerous part, and liver metastatic lesions of 4 patients with liver metastasis recurrence group.
  • RNA was extracted using RNeasy kit (manufactured by QIAGEN). The extracted total RNA was subjected to sequence library adjustment according to a standard protocol using TruSeq RNA Sample Prep Kit (manufactured by Illumina).
  • next-generation sequencer Hiseq manufactured by illumina
  • paired-end sequencing was performed, and transcriptome analysis was performed.
  • Data was acquired with a read base length of 100 bases / read, a reference acquisition number of reads of 100 million read pairs (200 million reads) / lane, and a reference acquisition data amount of 20 Gb / lane.
  • HiSeq software For analysis, use HiSeq software to perform mapping processing to the specified reference sequence, calculate the expression level for each gene based on the FPKM (Fragments per kilobase of exon per million mapped sequence reads) value, and create an inter-sample comparison table Was done.
  • FPKM Frragments per kilobase of exon per million mapped sequence reads
  • the expression level of 57551 molecules in the non-cancerous part of the stomach, the primary gastric lesion, and the liver metastatic lesion in 4 cases in the liver metastasis recurrence group was comprehensively analyzed by transcriptome analysis.
  • Table 1 shows the signals of non-cancerous stomach, primary gastric lesion, and liver metastatic lesion in the group in which recurrence of liver metastasis was observed.
  • the intensity ratio (log 2 ratio) is calculated and summarized. SYT7 and MFSD4 were extracted as genes in which a significant difference was observed in the gene expression level between the non-cancerous part of the stomach and the primary gastric lesion, and no significant difference was observed in the expression between the primary gastric lesion and the liver metastatic lesion.
  • SYT7 NCBI RefSeq ID accession number: NM_00125202065.1
  • SYT7 was found to be 21-fold or more upregulated in the primary gastric lesion compared to the non-cancerous part of the stomach.
  • MFSD4 NCBI RefSeq ID accession number: NM — 181644.4
  • the expression level of the ETNK2 (NCBI RefSeq ID accession number: NM_001297760.1) gene is significantly enhanced in the liver metastasis recurrence group as compared to the long-term recurrence-free group.
  • ETNK2 was found to be approximately 5.3 times as potent in expression as the relapse-free group.
  • no significant enhancement of ETNK2 expression was observed in other metastatic forms of peritoneal dissemination and lymph node recurrence. Therefore, the ETNK2 gene expression level and protein expression level function as biomarkers for gastric cancer liver metastasis.
  • PCR primers used the following sequences, ABI STEPOnePlus Real-Time PCR System (manufactured by Applied Biosystems) was heated at 95 ° C for 10 minutes, and then amplified at 40 ° C for 40 cycles at 95 ° C for 5 seconds and 60 ° C for 60 seconds. And analyzed.
  • FIG. 1A shows the expression level of SYT7 mRNA
  • FIG. 1B shows the expression level of MFSD4 mRNA
  • FIG. 1C shows the normalized value of ETNK2 mRNA expression level of GAPDH mRNA. Box-whisker plots (minimum value, 1st case) were observed in each group of cases in which liver metastasis was not observed at the time of gastrectomy. (Quarter point, median, third quarter point, maximum value).
  • the expression levels of SYT7 and ETNK2 in the group in which liver metastasis was observed were significantly higher than those in the group other than liver metastasis.
  • the expression of MFSD4 was significantly higher in the group other than liver metastasis compared to the group in which recurrence of liver metastasis was observed.
  • the optimal cut-off value should be verified with multiple specimens, it is possible to predict the risk of gastric cancer with recurrent liver metastases by measuring the expression levels of SYT7, MFSD4, and ETNK2.
  • SYT7 and ETNK2 expression is used as a marker of liver metastasis, as shown in FIGS. 1A and 1C, among the patient groups in which liver metastasis was not observed, simultaneous liver metastasis, liver metastasis within 2 years after surgery Since the number of patients exceeding the median value of any liver metastasis group is 25% or less, the risk of gastric cancer that recurs in the liver metastasis can be predicted based on the median value of cases in the liver metastasis group.
  • the cut-off value can be predicted to vary depending on the measurement method of SYT7, MFSD4, and ETNK2, and the sample to be measured. Therefore, the cut-off value can be appropriately determined, and a patient group with a high risk of liver metastasis can be selected and followed. desirable.
  • stage II / III is divided into liver recurrence (-) and liver recurrence (+) according to the presence or absence of later liver metastasis, and stage IV is analyzed according to the presence or absence of liver metastasis, even if it has distant metastasis .
  • the average value is shown on the left side of FIG. 2, and the plot is shown on the right side.
  • the expression level of SYT7 in gastric cancer tissues was confirmed in patients with liver metastases after staged curative resection (Stage II / III, liver recurrence (+)), among those with distant metastases (Stage IV liver metastasis ( +)) was significantly higher. Conversely, in cases where there is no future or present liver metastasis, there is no difference in the expression level from normal gastric tissue, and it is considered that the presence and prediction of gastric cancer liver metastasis have high specificity.
  • the expression level of MFSD4 in gastric cancer tissues was more highly suppressed in cases where liver metastasis or future liver metastasis recurrence was observed.
  • ETNK2 The expression level of ETNK2 in gastric cancer tissues was significantly higher in cases with liver metastasis (Stage IV liver metastasis (+)), even among distant metastases. On the other hand, in other gastric cancer cases, there is no difference in the expression level from normal gastric tissue, and it is considered that the presence of gastric cancer liver metastasis has high specificity.
  • ROC curve analysis was performed on each mRNA expression level in the above 200 cases of gastric cancer patients.
  • the mRNA expression levels of SYT7, MFSD4, and ETNK2 in the primary gastric cancer lesion were all highly correlated with liver metastasis or liver metastasis within 2 years after surgery.
  • stage II / III gastric cancer Using the cut-off values obtained by ROC curve analysis of each gene, 93 patients with stage II / III gastric cancer, that is, patients who were curatively excised but at a stage with high risk of recurrence The progress was examined. As shown in FIG. 4, in cases of SYT7 expression enhancement, MFSD4 expression suppression, and ETNK2 expression enhancement in gastric cancer primary lesions, liver metastasis recurs significantly after curative resection, and independence of gastric cancer liver metastasis is also found in multivariate analysis. It was a risk factor.
  • the liver metastasis can be predicted using not only the gastrectomy tissue sample but also the blood sample, the diagnosis can be performed with the blood sample before and after the operation, which is very beneficial for the patient. Therefore, an analysis was performed to determine whether there was a change in the expression level of SYT7 using patient serum.
  • the amount of SYT7 in patient serum was measured using an ELISA kit (ELISA Kit for Synaptotagmin VII (SYT7), manufactured by Cloud-Clone).
  • the subjects were 16 healthy patients, 10 stage I gastric cancer patients, 9 stage II gastric cancer patients, 10 stage III gastric cancer patients, and 39 stage IV gastric cancer patients. The results are shown in FIG.
  • the serum SYT7 value can be a diagnosis of the degree of progression of gastric cancer and a biomarker for predicting metastasis recurrence.
  • liver metastases can be predicted by measuring the protein expression level using not only gastrectomy tissue but also a blood sample.
  • EMT Epithelial to Mesenchymal Transition
  • QIAGEN Quality of Service
  • SYT7 was significantly positively correlated with the expression of TGFB3, an epithelial-mesenchymal transition (EMT) -related molecule.
  • EMT epithelial-mesenchymal transition
  • the expression level of MFSD4 has a significant inverse correlation with the expression of BMP2, which is an EMT-related molecule that is deeply involved in cancer metastasis and progression, and conversely, it has a positive correlation with NUDT13 and OCLN, which are suppressed by EMT. Admitted.
  • ETNK2 expression level showed a significant positive correlation with AHNAK, ITGAV, FN1, MMP3, TGFB1, and EGFR.
  • AHNAK and ITGAV are known as EMT promoters
  • FN1 and MMP3 are known as extracellular matrix proteins
  • TGFB1 and EGFR are known as cell growth factors.
  • MKN1 which is a gastric cancer cell line with high expression of SYT8 and SYT13
  • selective expression inhibition (knockdown) experiments of each gene were conducted to evaluate the migration ability of gastric cancer cells.
  • siRNA 40 nM each of siRNA was introduced into MKN1 cells using Accel siRNA transfection methods (manufactured by Dharmacon), and after 72 hours of culturing in serum-free DMEM medium, the migration ability was evaluated.
  • SYT7 siRNA, MFSD4 siRNA, ETNK2 siRNA, and control siRNA (Accel Green Non-targeting) were all obtained from Dharmacon.
  • MKN1 cells to be 2 ⁇ 10 4, 12-well plates were seeded to form ibidi Culture insert method wound gap at a predetermined width (ibid Inc.), were cultured in serum-free medium. The insert was removed 24 hours after sowing, and the width was measured at intervals of 200 ⁇ m every 6 hours. The measurement was carried out using a microscope with a magnification of 40 times, and each well was measured at 10 locations to determine the average and standard deviation.
  • FIG. 7 shows changes over time in the microscopic image and the wound width.
  • an asterisk (*) indicates that there is a significant difference compared to a control not subjected to siRNA introduction treatment. It was clarified that knockdown of SYT7 and ETNK2 significantly decreased the migration ability of gastric cancer cell line MKN1, and significantly increased by knockdown of MFSD4.
  • the invasion ability of cells was evaluated by Matrigel invasion assay for cells cultured in a serum-free medium for 72 hours after introduction of siRNA.
  • the assay was performed using BioCoat Matrigel inversion Chambers (BD Siosciences) according to the protocol. Specifically, siRNA-introduced MKN1 cells were seeded at 2.5 ⁇ 10 4 per well, cultured for 24 hours in serum-free DMEM medium, and the cells on the bottom of the membrane were fixed. The number of cells was counted by observing under a microscope. Microscopic observation was performed at a magnification of 200 times, and the average and standard deviation of five randomly selected fields were obtained.
  • the microscopic image is shown on the left side of FIG. 8, and the number of cells having invasive ability is shown on the right side of FIG.
  • the expression of MFSD4 was inhibited, it was revealed that gastric cancer cells significantly suppressed invasive ability.
  • * mark in the right graph of FIG. 8 shows that there was a significant difference between each sample.
  • Non-Patent Documents 5 and 6 DNA methylation is the addition of a methyl group to the C position of the CpG sequence of DNA.
  • the CpG island present at the promoter site of the gene is methylated, resulting in gene inactivation resulting in a decrease in gene expression. It was analyzed whether the decrease in MFSD4 gene expression in the liver cancer metastasis recurrence group was due to DNA methylation.
  • FIG. 9A shows a CpG island in the promoter region of the MFSD4 gene.
  • the sequence upstream of MFSD4 (NC — 000001.11. Reference GRCh38.p2) was analyzed.
  • the MFSD4 promoter region is indicated by a thin line.
  • CpG sequences that can undergo methylation are shown as vertical lines on thin lines.
  • CpG islands are portions that are gathered at a frequency that is far from the numerical value calculated with the normal probability.
  • a region indicated by a thick line is a region where 55% or more of GC is included in the array corresponding to the definition of the CpG island.
  • DNA was extracted from the cells, and bisulfite treatment was performed using EpiTect Bisulfite Kits (manufactured by QIAGEN) according to the protocol.
  • the PCR primer used the following sequence and analyzed the sequence upstream of MFSD4. As shown in FIG. 9A, the PCR primer is set in the CpG island upstream from the transcription start site.
  • Platinum (registered trademark) Taq DNA Polymerase manufactured by Invitrogen
  • Veriti registered trademark
  • Thermal Cycler manufactured by Applied Biosystems
  • MFSD4 methylation detection primer Forward: CGGTTTTCGGTTGGTTTCG (SEQ ID NO: 7) Reverse: CGCCCTCTACGACGGAATAAAAC (SEQ ID NO: 8)
  • the primer was changed and the bisulfite sequencing method was used for the analysis.
  • An outline of the position of the primer is shown in FIG. It is set further upstream than the position of the primer shown in FIG.
  • the primer sequences used are as follows.
  • MFSD4 methylation detection primer Forward: AGTAGTTTTGTTTTTGTTGGGTAG (SEQ ID NO: 9) Reverse: CCAAAAATCCACTTCAATCTCTAAA (SEQ ID NO: 10)
  • Each cell was cultured for 96 hours in a medium supplemented with 10 ⁇ M 5-aza-dC (Sigma Aldrich), demethylated, and analyzed for the expression level of MFSD4.
  • the black bar is the result for a normal cell
  • the white bar is the result for a cell line that has been subjected to demethylation treatment with 5-aza-dC (FIG. 10 (B) graph).
  • the cell line whose expression level was suppressed to a higher degree than the control FHs74 cell line was frequently accompanied by DNA methylation, and their expression recovered by demethylation treatment. From these results, it is clear that suppression of MFSD4 expression is based on DNA methylation as a main regulator.
  • MFSD4 Since analysis with a gastric cancer cell line is considered to occur in gastric cancer tissue, MFSD4 in which a decrease in the expression level is observed can be analyzed by analyzing the methylation of the MFSD4 promoter region in the gastric cancer tissue. You may be inspected for risk.
  • MFSD4 expression level was analyzed using patient serum. DNA was extracted from patient sera, bisulfite-treated, and analyzed by quantitative methylation-specific PCR. In order to quantify methylation, the following primers were used.
  • Quantitative PCR primer Forward: GTATTGTTTATTCGGTCGTAGGC (SEQ ID NO: 11) Reverse: ATAACGCCAAACTAACGAACTCG (SEQ ID NO: 12) probe: AAACCCCGCCCCTTAAAACCGA (SEQ ID NO: 13)
  • Quantitative primers and probes were combined with DNA extracted from patient serum and mixed, and PCR reaction was performed to specifically detect MFSD4 methylation.
  • the PCR reaction was analyzed using ABI STEPOnePlus Real-Time PCR System (Applied Biosystems) at 95 ° C for 10 minutes, followed by amplification under 40 cycles of PCR conditions at 95 ° C for 5 seconds and 60 ° C for 60 seconds.
  • FIG. 11 shows the analysis results of 10 healthy patients, 6 stage I gastric cancer patients, 10 stage II / III gastric cancer patients, and 12 stage IV gastric cancer patients.
  • Serum methylation of MFSD4 was not detected in healthy patients and stage I gastric cancer patients.
  • stage II / III gastric cancer patients 2 out of 10 cases were detected (20%), and in stage IV gastric cancer patients, methylation was detected in serum samples in 5 out of 12 cases. Therefore.
  • MFSD4 DNA methylation in serum can also function as a diagnostic biomarker of gastric cancer progression.
  • DNA methylation of the promoter region may be analyzed.
  • using a gene or protein whose expression level decreases as a marker may cause a problem in terms of accuracy, but it can be detected with high sensitivity by detecting DNA methylation.
  • the expression level of SYT7, MFSD4, and ETNK2 in a sample obtained at the time of surgery can be used as a marker for predicting the risk of liver metastasis.
  • the patient can be treated under a finer treatment policy.
  • siRNA of SYT7 and ETNK2 can also function as a pharmaceutical composition.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Oncology (AREA)
  • Urology & Nephrology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided are a detection method for predicting the metastasis of gastric cancer to the liver, a detection kit, and a method for screening a medicine which selectively acts on liver metastasis. By targeting SYT7, MFSD4, and ETNK2, the expression of which specifically changes during metastasis of gastric cancer to the liver, postoperative liver metastasis can be predicted or a molecular targeted therapeutic agent can be screened.

Description

SYT7・MFSD4・ETNK2発現量による胃癌肝転移の検査方法、検査キット、分子標的治療薬スクリーニング方法、医薬組成物SYT7 / MFSD4 / ETNK2 expression level gastric cancer liver metastasis test method, test kit, molecular target therapeutic drug screening method, pharmaceutical composition
 本発明は、胃癌の予後診断マーカー及びこれを用いて検査する方法に関する。特に、胃癌の予後を左右する肝転移に進行するリスクの高い胃癌を検査する方法、検査キット、分子標的治療薬のスクリーニング方法、及び医薬組成物に関する。 The present invention relates to a prognostic marker for gastric cancer and a method for testing using the same. In particular, the present invention relates to a method for examining gastric cancer having a high risk of progressing to liver metastasis that affects the prognosis of gastric cancer, a test kit, a screening method for a molecular target therapeutic agent, and a pharmaceutical composition.
 胃癌は日本、中国、韓国などアジア、南米に多い癌である。日本での部位別癌死亡率を見ると、胃癌の死亡率は、年々減少しているものの男性では肺癌に次ぐ第2位、女性では大腸癌、肺癌に次ぎ、第3位の死亡率となっている(2012年統計による。)。癌検診の普及に伴って、早期発見が進み胃癌による死亡率は減少している。しかしながら、進行胃癌は依然として予後不良であり、胃癌罹患率の高い本邦において克服すべき重要な疾患である。 Gastric cancer is a common cancer in Asia, such as Japan, China, and South Korea, and South America. Looking at cancer mortality by region in Japan, the mortality rate of gastric cancer is decreasing year by year, but it is the second highest after lung cancer in men, and the third highest after colon cancer and lung cancer in women. (According to 2012 statistics.) With the spread of cancer screening, early detection has progressed and the mortality from gastric cancer has decreased. However, advanced gastric cancer still has a poor prognosis and is an important disease to be overcome in Japan, where gastric cancer prevalence is high.
 胃癌の予後を大きく左右するのは再発転移である。現状では遠隔転移を有する胃癌は一括して扱われ、その治療方針も区別されていない。しかしながら、胃癌の再発転移形式には、腹膜播種転移、血行性転移、リンパ節転移という全く異なる3つの経路が存在する。 Recurrent metastasis greatly affects the prognosis of gastric cancer. At present, gastric cancer with distant metastasis is treated in a lump and its treatment policy is not distinguished. However, there are three completely different pathways for recurrent metastasis of gastric cancer: peritoneal dissemination metastasis, hematogenous metastasis, and lymph node metastasis.
 原発巣から生じた遊離癌細胞が生着・増殖して転移巣を形成するには多段階の過程が必要であり、接着分子、タンパク分解酵素、増殖因子、血管新生因子、ケモカイン等多くの分子が関与していることが報告されている。胃癌においても再発転移の3つの経路は大きく異なることから、転移に関わる分子も異なり、転移した癌細胞の性質も大きく異なるものと考えられている。それにも関わらず、転移巣成立機序の異なる3つの経路を遠隔性転移として同等の治療が行われていることに転移癌の完全治癒の困難さの一因があると考えられている。 A multi-step process is required for free cancer cells arising from the primary lesion to engraft and proliferate to form a metastatic focus. Adhesion molecules, proteolytic enzymes, growth factors, angiogenic factors, chemokines, and many other molecules Has been reported to be involved. In gastric cancer, the three pathways of recurrent metastasis are greatly different, so the molecules involved in metastasis are also different, and the properties of metastasized cancer cells are also considered to be greatly different. Nevertheless, it is considered that the same treatment is performed by using three pathways with different metastasis formation mechanisms as distant metastases, which may contribute to the difficulty of complete cure of metastatic cancer.
 再発胃癌や再発の恐れのある進行胃癌に対しては化学療法が行われる。現在標準レジメンとして用いられているのは、DNA合成阻害を作用機序とするS-1の投与を基本とする治療法である。進行胃癌は、大規模コホート研究の結果、胃切除術後補助療法としてS-1内服を行うことにより治療の効果が認められ、術後のS-1内服が標準治療となっている。S-1は細胞増殖の盛んな癌一般に効果のある薬剤であり、転移する胃癌に特異的に作用するわけではない。実際にS-1単独療法が進行胃癌患者の生存期間を有意に延長した主因は、腹膜播種再発率の低下であり、肝転移をはじめとする血行性転移やリンパ節転移においては制御されているとは言い難い。 Chemotherapy for recurrent gastric cancer and advanced gastric cancer that may recur. Currently used as a standard regimen is a therapy based on the administration of S-1, whose mechanism of action is inhibition of DNA synthesis. As a result of a large-scale cohort study, treatment of advanced gastric cancer has been shown to be effective by taking S-1 as an adjunct therapy after gastrectomy, and postoperative S-1 is the standard treatment. S-1 is a drug that is generally effective for cancers with proliferating cells, and does not act specifically on metastatic gastric cancer. Actually, the main cause of S-1 monotherapy significantly extending the survival period of patients with advanced gastric cancer is a decrease in the rate of recurrence of peritoneal dissemination, which is controlled in hematogenous and lymph node metastasis including liver metastasis. It's hard to say.
 胃癌の再発転移形式として血流にのって他の臓器に転移する血行性転移は、腹膜播種転移の次に多い。胃癌の場合には血行性転移の中でも肝臓に転移する肝転移が多い。再発に対してS-1内服がさほど有効ではなく、自覚症状が出にくい肝転移再発を早期に発見し、治療を行うことが胃癌の術後のフォローアップでは重要になってきている。 As a form of recurrent metastasis of gastric cancer, hematogenous metastasis that metastasizes to other organs in the bloodstream is the second most common after peritoneal dissemination metastasis. In the case of gastric cancer, there are many liver metastases among the hematogenous metastases that metastasize to the liver. It is becoming important for follow-up of gastric cancer after surgery to detect and treat liver metastasis recurrence as soon as S-1 is not so effective against recurrence and subjective symptoms are difficult to occur.
 近年、マイクロアレイや次世代シーケンサーなどによる網羅的な遺伝子解析法により、特異性の高い腫瘍マーカーの同定が行われている。胃癌に関しても再発を予測、検出する方法が開示されている(特許文献1~3)。また、癌種を問わず肝転移のリスクの高いマーカーに関しては報告があるものの、胃癌に特異的な肝転移の予測を行うマーカーに関しては研究が進んではいない(特許文献4)。 In recent years, highly specific tumor markers have been identified by comprehensive gene analysis methods such as microarrays and next-generation sequencers. Methods for predicting and detecting recurrence of gastric cancer are also disclosed (Patent Documents 1 to 3). Moreover, although there is a report regarding a marker having a high risk of liver metastasis regardless of the cancer type, research has not been made on a marker for predicting liver metastasis specific to gastric cancer (Patent Document 4).
 また、癌治療においては、副作用の軽減が可能な分子標的治療薬の開発が盛んになっている。分子標的治療薬とは、癌細胞等、病気の細胞の性質を分子レベルでとらえ、表面に発現しているタンパク質や遺伝子等を標的として効率よく作用するように作られた薬剤をいう。胃癌に対する分子標的治療薬はまだ数が少なく、HER2陽性胃癌に対するトラスツズマブ(Trastuzumab)のみが国内承認を得ている状況である。さらに、米国では進行した胃癌にラムシルマブ(ramucirumab)が承認されている。 Also, in the treatment of cancer, development of molecular targeted therapeutic agents capable of reducing side effects has become active. A molecular target therapeutic agent refers to a drug that is made to act efficiently by capturing the properties of diseased cells such as cancer cells at the molecular level and targeting proteins or genes expressed on the surface. There are only a few molecular targeted therapeutic agents for gastric cancer, and only Trastuzumab for HER2-positive gastric cancer has received domestic approval. In addition, ramucilumab is approved for advanced gastric cancer in the United States.
 また、進行胃癌に関しては、上述のように再発転移形式が違うものの異なる分子標的治療薬が開発されているわけではなく、特に肝転移を代表とする血行性転移に有効な分子標的治療薬が開発されているわけではない。 In addition, for advanced gastric cancer, as described above, different molecular targeted therapeutic agents have not been developed, although different types of recurrent metastasis have been developed. In particular, molecular targeted therapeutic agents effective for hematogenous metastases, such as liver metastases, have been developed. It has not been done.
特開2013-102716号公報JP 2013-102716 A 特表2005-516215号公報JP 2005-516215 Gazette 国際公開2005/010180号International Publication No. 2005/010180 特開2006-119064号公報JP 2006-119064 A
 上述のように、再発、転移のリスクを評価するマーカーは開示されているものの胃癌の肝転移に特異的なマーカーについてはほとんど報告がない。また、精度がさほど高くないことからいまだ実用化されていない。そのため、精度高く再発リスクを評価することのできる肝転移に特異的なマーカーの同定が望まれている。肝転移に特異性の高いマーカーを見出すことができれば、より有効な個別化治療を提供することが可能となる。 As described above, although markers for evaluating the risk of recurrence and metastasis have been disclosed, few markers specific to liver metastasis of gastric cancer have been reported. Moreover, since the accuracy is not so high, it has not been put into practical use yet. Therefore, identification of a marker specific to liver metastasis that can accurately evaluate the risk of recurrence is desired. If a marker highly specific for liver metastasis can be found, more effective individualized treatment can be provided.
 また、胃癌の分子標的治療薬として、現在我が国で承認されているトラスツズマブは進行、再発胃癌の約20%程度を占めるHER2陽性胃癌にのみ有効であるにすぎない。また、米国で進行胃癌の治療に承認されているラムシルマブは、予後延長効果がさほど大きいものとはいえない。そのため進行、再発胃癌に対する新たな分子標的治療薬の開発が望まれている。 In addition, trastuzumab, which is currently approved in Japan as a molecular targeted therapy for gastric cancer, is only effective for HER2-positive gastric cancer, which accounts for about 20% of advanced and recurrent gastric cancer. In addition, lamusilmab, which is approved for the treatment of advanced gastric cancer in the United States, is not very effective in prognostic extension. Therefore, the development of new molecular targeted therapeutic agents for advanced and recurrent gastric cancer is desired.
 本発明は、胃癌の異なる再発転移形式に関わる遺伝子を明らかにし、予後予測を行い得る新規のマーカーを確立し、予後の悪い肝転移のリスクを検査する方法及び検査キットを提供することを課題とする。また、該マーカーを指標として分子標的医薬をスクリーニングする方法を開発することを課題とする。 It is an object of the present invention to clarify a gene involved in different types of recurrent metastasis of gastric cancer, establish a novel marker capable of predicting prognosis, and provide a method and a test kit for examining the risk of liver metastasis with a poor prognosis. To do. Another object of the present invention is to develop a method for screening a molecular target drug using the marker as an index.
 本発明は、以下に示す検査方法、キット、スクリーニング方法、及び医薬組成物に関する。
(1)胃癌の胃切除術後の肝転移を予測するための検査方法であって、対象から採取された患者血清、及び/又は胃切除術における胃癌組織におけるSYT7、MFSD4、ETNK2の少なくとも1つ以上の発現量を求め、試料中のSYT7、MFSD4、ETNK2の少なくとも1つ以上の発現量に所定値と有意差が認められる場合には、肝転移のリスクが高いと判定することを特徴とする検査方法。
(2)(1)に記載の検査方法であって、SYT7、MFSD4、ETNK2の発現量が、SYT7、MFSD4、ETNK2のmRNA及び/又はタンパク質発現量を測定することを特徴とする検査方法。
(3)(2)記載の検査方法であって、SYT7、MFSD4、ETNK2のmRNA発現量の測定方法が定量的PCR、又は次世代シーケンサーによるものであることを特徴とする検査方法。
(4)(1)記載の検査方法であって、MFSD4の発現量はMFSD4遺伝子プロモーター領域のDNAメチル化状態を解析することにより求めることを特徴とする検査方法。
(5)胃癌の胃切除術後の肝転移を診断又は予測するための検査キットであって、SYT7、MFSD4、若しくはETNK2の発現量を測定するための定量的PCR用のプライマー、抗SYT7抗体、抗MFSD4抗体、若しくは抗ETNK2抗体、又はMFSD4遺伝子プロモーター領域のメチル化検出試薬のいずれか1つ以上を含むことを特徴とする検査キット。
(6)胃癌の胃切除後の肝転移を治療するための分子標的治療薬をスクリーニングする方法であって、SYT7、ETNK2の発現量の抑制、MFSD4の発現量の増加、又はMFSD4遺伝子プロモーター領域のメチル化の少なくともいずれか1つを指標として物質をスクリーニングすることを特徴とする分子標的治療薬スクリーニング方法。
(7)SYT7、ETNK2の少なくともいずれか1つのsiRNAを含む胃切除術後の肝転移を抑制するための医薬組成物。
The present invention relates to the following test methods, kits, screening methods, and pharmaceutical compositions.
(1) A test method for predicting liver metastasis after gastrectomy for gastric cancer, wherein the patient serum collected from the subject and / or at least one of SYT7, MFSD4, and ETNK2 in gastric cancer tissue in gastrectomy The above expression level is obtained, and when at least one expression level of SYT7, MFSD4, ETNK2 in the sample is significantly different from a predetermined value, it is determined that the risk of liver metastasis is high Inspection method.
(2) The test method according to (1), wherein the expression levels of SYT7, MFSD4, and ETNK2 measure the mRNA and / or protein expression levels of SYT7, MFSD4, and ETNK2.
(3) The test method according to (2), wherein the mRNA expression level of SYT7, MFSD4, and ETNK2 is measured by quantitative PCR or a next-generation sequencer.
(4) The test method according to (1), wherein the expression level of MFSD4 is determined by analyzing the DNA methylation state of the MFSD4 gene promoter region.
(5) A test kit for diagnosing or predicting liver metastasis after gastrectomy for gastric cancer, a primer for quantitative PCR for measuring the expression level of SYT7, MFSD4, or ETNK2, an anti-SYT7 antibody, A test kit comprising one or more of an anti-MFSD4 antibody, an anti-ETNK2 antibody, or a methylation detection reagent for the MFSD4 gene promoter region.
(6) A method for screening a molecular target therapeutic agent for treating liver metastasis after gastrectomy for gastric cancer, comprising suppressing SYT7, ETNK2 expression level, increasing MFSD4 expression level, or MFSD4 gene promoter region A molecular targeted therapeutic drug screening method comprising screening a substance using at least one of methylation as an index.
(7) A pharmaceutical composition for suppressing liver metastasis after gastrectomy, comprising at least one siRNA of SYT7 and ETNK2.
 本発明によれば、肝転移が起きる危険性を胃切除術後すぐに予測することができるため、その後の治療に活かすことができる。具体的には肝転移の危険性の高い患者群には、胃切除術後肝転移を視野に入れたフォローアップ計画をたて、治療を行うことが可能となる。さらに、SYT7、MFSD4、ETNK2の発現量を指標として医薬をスクリーニングすることが可能となる。したがって、これら分子を標的とする胃癌肝転移再発を治療する医薬を開発することができる。 According to the present invention, since the risk of liver metastasis can be predicted immediately after gastrectomy, it can be used for subsequent treatment. Specifically, a group of patients with a high risk of liver metastasis can be treated with a follow-up plan with a view to liver metastasis after gastrectomy. Furthermore, it becomes possible to screen a medicine using the expression level of SYT7, MFSD4, and ETNK2 as an index. Therefore, it is possible to develop a medicament for treating recurrence of liver cancer metastasis targeting these molecules.
SYT7、MFSD4、ETNK2の発現量と肝転移との相関を示す図。図1AはSYT7、図1BはMFSD4、図1CはETNK2の発現量と肝転移との相関を示す。The figure which shows the correlation with the expression level of SYT7, MFSD4, and ETNK2 and liver metastasis. FIG. 1A shows SYT7, FIG. 1B shows MFSD4, and FIG. 1C shows the correlation between the expression level of ETNK2 and liver metastasis. 胃癌患者200症例の切除組織中のSYT7、MFSD4、ETNK2の発現量を平均値、及びプロット図で示す。The expression levels of SYT7, MFSD4, and ETNK2 in the resected tissue of 200 gastric cancer patients are shown as an average value and a plot diagram. ROC曲線による感度、特異度解析を示す図。The figure which shows the sensitivity and specificity analysis by a ROC curve. 各遺伝子の高発現群、低発現群における肝転移再発率を示す図。The figure which shows the liver metastasis recurrence rate in the high expression group of each gene, and a low expression group. 血清中の胃癌の進展度合いによるSYT7タンパク質量を示す図。The figure which shows the amount of SYT7 protein by the progress degree of the gastric cancer in serum. ヒト胃癌細胞株でのSYT7、MFSD4、ETNK2の発現と相関の見られる遺伝子を示す図。The figure which shows the gene by which a correlation is seen with the expression of SYT7, MFSD4, and ETNK2 in a human gastric cancer cell line. SYT7、MFSD4、ETNK2の発現抑制による細胞の遊走能の変化を解析した図。The figure which analyzed the change of the cell migration ability by the expression suppression of SYT7, MFSD4, and ETNK2. MFSD4の発現抑制による浸潤能の変化を解析した図。The figure which analyzed the change of the invasive ability by the expression suppression of MFSD4. MFSD4のメチル化異常を示す図。(A)MFSD4のプロモーター領域の配列解析によるCpGアイランドを示す図。(B)メチル化特異的PCRによる胃癌細胞株の解析結果を示す図。The figure which shows the methylation abnormality of MFSD4. (A) The figure which shows the CpG island by the sequence analysis of the promoter region of MFSD4. (B) The figure which shows the analysis result of the gastric cancer cell line by methylation specific PCR. MFSD4のメチル化異常、及び脱メチル化による発現量の変化を示す図。(A)プライマー位置を示す図。(B)各細胞での脱メチル化によるMFSD4発現量の変化、及びメチル化の状態を示す図。The figure which shows the methylation abnormality of MFSD4, and the change of the expression level by demethylation. (A) The figure which shows a primer position. (B) The figure which shows the change of MFSD4 expression level by the demethylation in each cell, and the state of methylation. 血清試料中のMFSD4のメチル化と胃癌の進展度合いとの相関を示す図。The figure which shows the correlation with methylation of MFSD4 in a serum sample, and the progress degree of gastric cancer.
 本発明者は、胃切除術後の症例を経過に応じて分類し、胃癌原発巣組織から得られたmRNAを対象に次世代シーケンサーを用いた網羅的発現分析を行った。その結果、肝転移する胃癌ではSYT7、ETNK2が特異的に高発現し、MFSD4の発現量が特異的に減少していることを明らかにした。これらの発現量が一定の値より高い、あるいは低い場合に肝転移を起こすリスクが高い症例であると診断可能である。 The present inventor classified the cases after gastrectomy according to the course, and conducted comprehensive expression analysis using a next-generation sequencer for mRNA obtained from gastric cancer primary tissue. As a result, it was revealed that SYT7 and ETNK2 were specifically highly expressed and the expression level of MFSD4 was specifically decreased in gastric cancer with liver metastasis. When the expression level is higher or lower than a certain value, it can be diagnosed that the case has a high risk of causing liver metastasis.
 SYT7はシナプトタグミン(Synaptotagmin、SYT)ファミリーに属する膜タンパク質である。シナプス小胞上に存在するカルシウム・リン脂質結合分子として同定され、カルシウムセンサーとして機能することが示唆されている。ヒトでは17種のアイソフォームの存在が報告され、主として脳組織に分布していることが報告されている。SYT7も主として脳での発現が認められ、神経伝達物質のエクソサイトーシスに関与していることが報告されている(非特許文献1、2)。 SYT7 is a membrane protein belonging to the synaptotagmin (SYT) family. It has been identified as a calcium / phospholipid-binding molecule present on synaptic vesicles, suggesting that it functions as a calcium sensor. In humans, the presence of 17 isoforms has been reported, and it is reported that it is mainly distributed in brain tissue. SYT7 is also mainly expressed in the brain and has been reported to be involved in neurotransmitter exocytosis (Non-Patent Documents 1 and 2).
 ETNK2(Ethanolamine kinase 2)は、生体膜の主要なリン脂質であるホスファチジルエタノールアミンの合成経路の一つであるCDP-エタノールアミン経路で最初の合成ステップに関与する酵素である。肝臓や生殖器に多く発現しており、ノックアウトマウスの実験から胎盤のホメオスタシスに関与していることが示唆されている(非特許文献3)。 ETNK2 (Ethanolamine kinase 2) is an enzyme involved in the first synthesis step in the CDP-ethanolamine pathway, which is one of the synthesis pathways of phosphatidylethanolamine, which is a major phospholipid of biological membranes. It is highly expressed in the liver and genital organs, and it has been suggested from knockout mouse experiments that it is involved in placental homeostasis (Non-patent Document 3).
 MFSD4(major facilitator superfamily domain containing 4)は、神経組織での発現が報告されているが、その機能に関しては不明である(非特許文献4)。 MFSD4 (major facilitator superfamily domaining 4) has been reported to be expressed in nerve tissue, but its function is unknown (Non-patent Document 4).
 これら3つのタンパク質は、いずれも胃での発現や癌、転移との関連は今まで報告されていない。また、早期に肝転移再発が認められた胃癌の症例において、SYT7、ETNK2の発現量が正常組織と比較して増加していることや、MFSD4の発現量が減少していることは、今までに報告がなく、本発明者によって初めて見出されたことである。 None of these three proteins has ever been reported to be associated with gastric expression, cancer, or metastasis. In addition, in gastric cancer cases in which recurrence of liver metastasis was observed at an early stage, the expression levels of SYT7 and ETNK2 increased compared to normal tissues, and the expression level of MFSD4 decreased. This is the first discovery by the present inventor.
 胃切除術後に切除胃癌組織の試料中のSYT7、MFSD4、ETNK2のいずれかの発現量が有意に所定値と比較して差があれば、目視では確認できなくとも肝転移を起こしている潜在的肝転移の可能性や、将来的に肝転移を起こすリスクが高いことが予測される。したがって、SYT7、MFSD4、ETNK2の少なくとも1つ以上の発現量を定量することによって、肝臓に転移するリスクを評価することができる。 If the expression level of any of SYT7, MFSD4, and ETNK2 in a sample of resected gastric cancer tissue after gastrectomy is significantly different from the predetermined value, it may cause liver metastasis even if it cannot be confirmed visually It is predicted that there is a high possibility of spontaneous liver metastasis and risk of liver metastasis in the future. Therefore, the risk of metastasis to the liver can be evaluated by quantifying the expression level of at least one of SYT7, MFSD4, and ETNK2.
 また、SYT7、MFSD4、ETNK2は、胃の原発組織から分泌、あるいは崩壊した腫瘍から血液中に放出され、血液中を循環すると考えられる。したがって、胃癌組織だけではなく、血清を試料として血清中のSYT7、MFSD4、ETNK2の発現をELISA法等によって検出することにより、肝転移に移行するリスクを評価することができる。また、後述するMFSD4のメチル化は、組織だけではなく血清試料から得たDNAを解析することによっても検出することができる。 SYT7, MFSD4, and ETNK2 are considered to be released from the gastric primary tissue or released from the disintegrated tumor into the blood and circulate in the blood. Therefore, by detecting the expression of SYT7, MFSD4, and ETNK2 in the serum using not only gastric cancer tissue but also serum as a sample, the risk of transition to liver metastasis can be evaluated. Moreover, methylation of MFSD4 described later can be detected not only by analyzing tissues but also by analyzing DNA obtained from serum samples.
 SYT7、MFSD4、ETNK2は、mRNAやタンパク質を定量することによって、その発現量を定量することができる。mRNAやタンパク質は定量的に測定することができれば、どのような方法を用いてもよい。例えば、mRNAは定量的PCR、次世代シーケンサー、ノーザンブロッティング、遺伝子発現解析用DNAチップなどを用いて測定すればよい。特に、定量的PCR法は短時間で測定できることから好ましい。定量的PCR法は、SYBR Green法、TaqManプローブ法、RT-PCR法等、公知の方法を用いることができる。 SYT7, MFSD4, and ETNK2 can quantify their expression levels by quantifying mRNA and protein. Any method may be used as long as mRNA and protein can be quantitatively measured. For example, mRNA may be measured using quantitative PCR, next-generation sequencer, Northern blotting, DNA chip for gene expression analysis, or the like. In particular, the quantitative PCR method is preferable because it can be measured in a short time. As the quantitative PCR method, a known method such as SYBR Green method, TaqMan probe method, RT-PCR method or the like can be used.
 タンパク質は抗SYT7抗体、抗MFSD4抗体、抗ETNK2抗体を用いて測定すればよい。抗体はウサギ、ヤギ、マウス等の動物に抗原を免疫し定法により作成すればよい。また、タンパク質は、プロテインチップ、ELISA法、RIA法、ウェスタンブロッティング等公知の方法によって定量することができる。mRNA、タンパク質を測定することにより、感度良くSYT7、MFSD4、ETNK2発現量を定量し、肝転移のリスクを評価することができる。 The protein may be measured using an anti-SYT7 antibody, an anti-MFSD4 antibody, or an anti-ETNK2 antibody. Antibodies may be prepared by immunizing animals such as rabbits, goats, mice and the like with conventional methods. The protein can be quantified by a known method such as a protein chip, ELISA method, RIA method, or Western blotting. By measuring mRNA and protein, the expression level of SYT7, MFSD4, and ETNK2 can be quantified with high sensitivity, and the risk of liver metastasis can be evaluated.
 さらに、MFSD4遺伝子のプロモーター領域はCpGアイランドが存在し、DNAのメチル化によって発現が不活化されていることが明らかになった。したがって、MFSD4遺伝子の発現低下はプロモーター領域のメチル化の度合いを解析してもよい。DNAメチル化は、定量的メチル化特異的PCR、パイロシーケンス法、HELPアッセイ、Chip-on-chipアッセイ等、公知のアッセイ方法を用いることができる。 Furthermore, it was clarified that the promoter region of the MFSD4 gene has a CpG island and its expression is inactivated by DNA methylation. Therefore, the decrease in the expression of the MFSD4 gene may be analyzed for the degree of methylation of the promoter region. For DNA methylation, known assay methods such as quantitative methylation-specific PCR, pyrosequencing, HELP assay, and chip-on-chip assay can be used.
 SYT7、MFSD4、ETNK2の発現量と肝転移再発との間に相関がみられたことから、これら遺伝子発現を定量可能なPCRプライマーや、タンパク質を検出可能な抗体、あるいはMFSD4遺伝子のプロモーター領域のメチル化の検出に必要な試薬を含むキットとすることにより、胃癌切除術後に肝転移再発の予後予測を行う検査キットとすることができる。これにより進行胃癌の術後をきめ細かくフォローすることができる。 Since there was a correlation between the expression level of SYT7, MFSD4, and ETNK2 and recurrence of liver metastases, PCR primers capable of quantifying the expression of these genes, antibodies capable of detecting the protein, or methyl in the promoter region of the MFSD4 gene By using a kit containing reagents necessary for detection of gasification, a test kit for predicting the prognosis of liver metastasis recurrence after gastric cancer resection can be obtained. As a result, it is possible to follow up closely after the operation of advanced gastric cancer.
 SYT7、MFSD4、ETNK2遺伝子の発現量を検査するキットとしては、各遺伝子の発現量を定量可能なPCRプライマーセットの他に、定量に最適な酵素、試薬等を含んだ構成とすることができる。プライマーはSYT7、MFSD4、ETNK2を定量的に測定することができれば、どのような配列を用いてもよい。また、発現量を正規化するために、GAPDHを増幅するプライマーのようなコントロールプライマーを含めてもよい。 The kit for examining the expression level of the SYT7, MFSD4, and ETNK2 genes can be configured to include enzymes, reagents, and the like that are optimal for quantification in addition to a PCR primer set that can quantify the expression level of each gene. As the primer, any sequence may be used as long as it can quantitatively measure SYT7, MFSD4, and ETNK2. In order to normalize the expression level, a control primer such as a primer for amplifying GAPDH may be included.
 また、SYT7、MFSD4、ETNK2タンパク質の発現量を検査するキットとしては、タンパク質を検出するための抗体、アプタマー等、SYT7、MFSD4、ETNK2タンパク質と結合する分子の他に、検出に必要な試薬を含む構成とすればよい。 In addition, kits for examining the expression levels of SYT7, MFSD4, and ETNK2 proteins include antibodies and aptamers for detecting proteins, and reagents necessary for detection in addition to molecules that bind to SYT7, MFSD4, and ETNK2 proteins. What is necessary is just composition.
 さらに、MFSD4遺伝子のプロモーター領域のメチル化を検出するためには、公知のメチル化検出方法に必要な試薬を含む構成とすればよい。 Furthermore, in order to detect methylation of the promoter region of the MFSD4 gene, it may be configured to include a reagent necessary for a known methylation detection method.
 胃癌肝転移群の患者において、SYT7、ETNK2が高発現していることから、これらの発現を抑制する化合物をスクリーニングすることによって、分子標的治療薬を選択することができる。また、MFSD4の発現は減少していることから、MFSD4の発現を増加する化合物をスクリーニングすることによって、分子標的治療薬を選択することができる。分子標的治療薬の候補は、低分子化合物、天然物等からなるライブラリーから選択すればよい。 In patients with gastric cancer liver metastasis, since SYT7 and ETNK2 are highly expressed, molecular target therapeutics can be selected by screening for compounds that suppress their expression. In addition, since the expression of MFSD4 is decreased, a molecular target therapeutic agent can be selected by screening a compound that increases the expression of MFSD4. A candidate for a molecular target therapeutic agent may be selected from a library composed of a low molecular compound, a natural product, or the like.
 例えば、胃癌肝転移より樹立された癌細胞株や胃癌細胞株のうちSYT7、ETNK2が高発現している細胞株の培養液にライブラリー化合物を添加して細胞培養を行い、SYT7、ETNK2発現を抑制するものを選択すればよい。あるいは、MFSD4の発現量の低い細胞株の培養液にライブラリー化合物を添加して細胞培養を行い、MFSD4の発現が増加するものを選択すればよい。SYT7、MFSD4、ETNK2の発現量は、上述のようにmRNAやタンパク質を測定することによって定量することができるので、感度よく発現を抑制する物質を選択することができる。 For example, a library compound is added to a culture solution of a cancer cell line or gastric cancer cell line established from gastric cancer liver metastasis and a cell line that highly expresses SYT7 and ETNK2, and cell culture is performed to express SYT7 and ETNK2 What is to be suppressed may be selected. Alternatively, a library compound may be added to a culture solution of a cell line with a low expression level of MFSD4, cell culture may be performed, and one that increases MFSD4 expression may be selected. Since the expression levels of SYT7, MFSD4, and ETNK2 can be quantified by measuring mRNA and protein as described above, a substance that suppresses expression with high sensitivity can be selected.
 また、本発明者は、SYT7、MFSD4、ETNK2をsiRNAにより枯渇させると、細胞の遊走能に変化が生じることを見出した。発現亢進と肝転移に相関があるSYT7、ETNK2に関してはsiRNAで抑制することにより、肝転移の抑制を図ることができる。したがって、SYT7、ETNK2のsiRNAを治療薬として使用できる可能性がある。 Further, the present inventor has found that when SYT7, MFSD4, and ETNK2 are depleted by siRNA, a change occurs in the cell migration ability. With respect to SYT7 and ETNK2, which have a correlation between increased expression and liver metastasis, it is possible to suppress liver metastasis by suppressing it with siRNA. Therefore, there is a possibility that siRNA of SYT7 and ETNK2 can be used as a therapeutic agent.
 以下、データを踏まえて説明するが、本発明において、「SYT7発現」、「MFSD4発現」、「ETNK2発現」とは、特に断りのない限り遺伝子及び/又はタンパク質の発現を指す。 In the present invention, “SYT7 expression”, “MFSD4 expression”, and “ETNK2 expression” refer to gene and / or protein expression unless otherwise specified.
≪肝再発群に特異的に発現する遺伝子の解析(1)≫
 これまでに名古屋大学医学部において胃切除術を行った進行胃癌症例を5年以上の長期無再発群、腹膜播種再発群、肝転移再発群、リンパ節再発群の4群に分け解析を行った。再発胃癌の25%程度を占め、進行胃癌における胃切除術後のS-1内服が著効を奏さない肝転移再発に着目し、肝転移再発例の胃癌組織において正常組織(胃非癌部)と発現量の異なる遺伝子の検出を行うことにした。具体的には、ステージIII胃癌で治癒切除術が施行され、術後補助療法としてS-1内服を行った症例を経過に応じて群分けした。5年以上の長期無再発群、腹膜播種再発群、肝転移再発群、リンパ節再発群の4群に分けた。4例の肝転移再発群の患者の胃癌原発巣組織、胃非癌部、肝転移巣から得られたRNAを対象にトランスクリプトーム解析による発現プロファイリングを行った。
≪Analysis of genes specifically expressed in the liver recurrence group (1) ≫
Previously, advanced gastric cancer cases that had undergone gastrectomy at Nagoya University School of Medicine were divided into 4 groups: long-term recurrence group over 5 years, peritoneal dissemination recurrence group, liver metastasis recurrence group, and lymph node recurrence group. Focusing on the recurrence of liver metastasis, which accounts for about 25% of recurrent gastric cancer, and oral S-1 after gastrectomy is not effective in advanced gastric cancer. We decided to detect genes with different expression levels. Specifically, patients who underwent curative resection for stage III gastric cancer and who took S-1 as adjuvant therapy were divided into groups according to their course. The group was divided into four groups, a long-term recurrence group of 5 years or more, a peritoneal dissemination recurrence group, a liver metastasis recurrence group, and a lymph node recurrence group. Expression profiling by transcriptome analysis was performed on RNA obtained from gastric cancer primary tissue, gastric non-cancerous part, and liver metastatic lesions of 4 patients with liver metastasis recurrence group.
 手術サンプルは、RNeasy kit(QIAGEN社製)を用いて、RNAを抽出した。抽出したtotal RNAは、TruSeq RNA Sample Prep Kit(illumina社製)を用いて、標準プロトコルに従いシーケンス用ライブラリーの調整を行った。 As the surgical sample, RNA was extracted using RNeasy kit (manufactured by QIAGEN). The extracted total RNA was subjected to sequence library adjustment according to a standard protocol using TruSeq RNA Sample Prep Kit (manufactured by Illumina).
 次に、次世代シーケンサーHiseq(illumina社製)を用いて、Paired-Endシーケンシングを行い、トランスクリプトーム解析を行った。読み取り塩基長は100塩基/リード、参考取得リード数は1億リードペア(2億リード)/レーン、参考取得データ量は20Gb/レーンでデータの取得を行った。 Next, using a next-generation sequencer Hiseq (manufactured by illumina), paired-end sequencing was performed, and transcriptome analysis was performed. Data was acquired with a read base length of 100 bases / read, a reference acquisition number of reads of 100 million read pairs (200 million reads) / lane, and a reference acquisition data amount of 20 Gb / lane.
 解析はHiSeq softwareを用いて、指定参照配列へのマッピング処理を行い、FPKM(Fragments per kilobase of exon per million mapped sequence reads)値に基づく遺伝子ごとの発現量を算出し、検体間比較テーブルを作成することにより行った。 For analysis, use HiSeq software to perform mapping processing to the specified reference sequence, calculate the expression level for each gene based on the FPKM (Fragments per kilobase of exon per million mapped sequence reads) value, and create an inter-sample comparison table Was done.
 肝転移再発群の4例の胃非癌部、胃原発巣、肝転移巣における57751分子の発現量をトランスクリプトーム解析により網羅的に解析した。胃非癌部と胃原発巣で遺伝子発現量に有意な差が認められ、胃原発巣と肝転移巣の間では発現に有意な差が認められない遺伝子を抽出した。 The expression level of 57551 molecules in the non-cancerous part of the stomach, the primary gastric lesion, and the liver metastatic lesion in 4 cases in the liver metastasis recurrence group was comprehensively analyzed by transcriptome analysis. We extracted genes that showed a significant difference in gene expression between the non-cancerous part of the stomach and the primary gastric lesion, and no significant difference in expression between the primary stomach and liver metastases.
 表1は、肝転移再発が認められた群で、胃非癌部、胃原発巣、肝転移巣のシグナルを求め、肝転移巣と胃原発巣、胃非癌部と胃原発巣間のシグナル強度比(log2比)を算出してまとめたものである。胃非癌部と胃原発巣で遺伝子発現量に有意な差が認められ、胃原発巣と肝転移巣の間では発現に有意な差が認められない遺伝子としてSYT7、MFSD4が抽出された。 Table 1 shows the signals of non-cancerous stomach, primary gastric lesion, and liver metastatic lesion in the group in which recurrence of liver metastasis was observed. The intensity ratio (log 2 ratio) is calculated and summarized. SYT7 and MFSD4 were extracted as genes in which a significant difference was observed in the gene expression level between the non-cancerous part of the stomach and the primary gastric lesion, and no significant difference was observed in the expression between the primary gastric lesion and the liver metastatic lesion.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、SYT7(NCBI RefSeq IDアクセッション番号:NM_001252065.1)の発現が肝転移再発群において有意に増加していることが認められた。SYT7は、胃原発巣では胃非癌部に対して21倍以上の発現亢進が認められた。また、MFSD4(NCBI RefSeq IDアクセッション番号:NM_181644.4)の発現が肝転移再発群で有意に減少していることが認められた。MFSD4は、胃原発巣では胃非癌部に対して約20分の1に発現量が低下していることが認められた。 As shown in Table 1, it was observed that the expression of SYT7 (NCBI RefSeq ID accession number: NM_00125202065.1) was significantly increased in the liver metastasis recurrence group. SYT7 was found to be 21-fold or more upregulated in the primary gastric lesion compared to the non-cancerous part of the stomach. It was also observed that the expression of MFSD4 (NCBI RefSeq ID accession number: NM — 181644.4) was significantly reduced in the liver metastasis recurrence group. It was confirmed that the expression level of MFSD4 decreased to about 1/20 of the non-cancerous part of the stomach at the primary gastric lesion.
 さらに、SYT7、MFSD4ともに、肝転移巣と胃原発巣との間では発現量に有意な差は認められなかった。胃原発巣と肝転移巣において発現に差が認められないということは、これら遺伝子の発現異常が胃原発巣から転移する以前に起こっている変化であることが示唆される。したがって、SYT7、MFSD4の遺伝子発現は、内視鏡での生検あるいは癌の切除術を行った段階で肝転移を起こすリスクの高い症例を選別するマーカーとして用いることができる。 Furthermore, in both SYT7 and MFSD4, no significant difference was observed in the expression level between the liver metastatic lesion and the primary gastric lesion. The fact that there is no difference in the expression between the primary gastric lesion and the liver metastatic lesion suggests that the abnormal expression of these genes is a change that occurred before metastasis from the primary gastric lesion. Therefore, the gene expression of SYT7 and MFSD4 can be used as a marker for selecting a high-risk case of liver metastasis at the stage of endoscopic biopsy or cancer resection.
≪肝再発群に特異的に発現する遺伝子の解析(2)≫
 上述の5年以上の長期無再発群、腹膜播種再発群、肝転移再発群、リンパ節再発群の4群に分けた患者の胃癌原発巣組織から得られたRNAを対象にトランスクリプトーム解析による発現プロファイリングを行った。各群4例のRNAについて57751分子の発現量を網羅的に解析した。4群間比較を行い、肝転移再発群において、他の3群と比較して発現量に有意な差が認められる分子の検出を行った。その結果、31遺伝子が有意に肝転移再発群において発現増加していることが明らかとなった。その中から、癌組織での発現がこれまでに報告されておらず、遺伝子の機能が報告されている解析可能な遺伝子を選択した。
≪Analysis of genes specifically expressed in the liver recurrence group (2) ≫
Based on the transcriptome analysis of RNA obtained from the gastric cancer primary tissue of the patients divided into the 4 groups of long-term recurrence group, peritoneal dissemination recurrence group, liver metastasis recurrence group, and lymph node recurrence group over 5 years mentioned above Expression profiling was performed. The expression level of 57551 molecules was comprehensively analyzed for 4 cases of RNA in each group. Comparison was made between the 4 groups, and in the liver metastasis recurrence group, a molecule having a significant difference in the expression level compared to the other 3 groups was detected. As a result, it was revealed that 31 genes were significantly increased in the liver metastasis recurrence group. Among them, an analyzable gene whose expression in cancer tissue had not been reported so far and whose gene function was reported was selected.
 表2に示すように、肝転移再発群ではETNK2(NCBI RefSeq IDアクセッション番号:NM_001297760.1)遺伝子の発現量が、長期無再発群に対して有意に増強していることが認められる。肝転移再発した症例では無再発群と比較して、ETNK2は約5.3倍の発現増強が認められた。これに対し、他の転移形式である腹膜播種再発群、リンパ節再発群ではETNK2の有意な発現の増強は認められなかった。したがって、ETNK2遺伝子発現量及びタンパク質発現量は胃癌肝転移のバイオマーカーとして機能する。 As shown in Table 2, it can be seen that the expression level of the ETNK2 (NCBI RefSeq ID accession number: NM_001297760.1) gene is significantly enhanced in the liver metastasis recurrence group as compared to the long-term recurrence-free group. In cases where liver metastasis recurred, ETNK2 was found to be approximately 5.3 times as potent in expression as the relapse-free group. On the other hand, no significant enhancement of ETNK2 expression was observed in other metastatic forms of peritoneal dissemination and lymph node recurrence. Therefore, the ETNK2 gene expression level and protein expression level function as biomarkers for gastric cancer liver metastasis.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
≪臨床検体でのSYT7、MFSD4、ETNK2の発現量≫
 臨床検体を用い定量的PCR法によって、SYT7、MFSD4、ETNK2のmRNA発現の解析を行った。解析した検体は、胃切除時にすでに肝転移が認められた9症例、胃切除時には肝転移が認められなかったが、術後2年以内の早期に肝転移再発した12症例、いずれにも該当しない57症例の計78検体である。
≪Expression level of SYT7, MFSD4, ETNK2 in clinical specimens≫
SYT7, MFSD4, and ETNK2 mRNA expression was analyzed by quantitative PCR using clinical specimens. Analyzed specimens included 9 cases that had already had liver metastasis at the time of gastrectomy and 12 cases that had no liver metastasis at the time of gastrectomy but had recurrence of liver metastases early within 2 years after surgery. A total of 78 specimens of 57 cases.
 PCRプライマーは下記の配列を用い、ABI STEPOnePlus Real-Time PCR System(Applied Biosystems社製)を用いて、95℃10分加熱後、95℃5秒、60℃60秒で40サイクルのPCR条件で増幅を行い解析した。 PCR primers used the following sequences, ABI STEPOnePlus Real-Time PCR System (manufactured by Applied Biosystems) was heated at 95 ° C for 10 minutes, and then amplified at 40 ° C for 40 cycles at 95 ° C for 5 seconds and 60 ° C for 60 seconds. And analyzed.
プライマー配列
SYT7 :Forward GCGCAGTGAGAAGAAGGCTA(配列番号1)
      Reverse TCTGAGACGGAGGAACGTG(配列番号2)
MFSD4:Forward CAACATGCAGCTGGTAAGGA(配列番号3)
      Reverse ACCCTGGAGACATGGAACAG(配列番号4)
ETNK2:Forward TGAAGAACGAGATCAACCCC(配列番号5)
      Reverse GACAAAACACCACAGGGGAC(配列番号6)
Primer sequence SYT7: Forward GCGCAGTGAGAAGAAGGCTA (SEQ ID NO: 1)
Reverse TCTGAGACGGAGGAACGTG (SEQ ID NO: 2)
MFSD4: Forward CAACATGCAGCTGGTAAGGA (SEQ ID NO: 3)
Reverse ACCCTGGAGACATGGAACAG (SEQ ID NO: 4)
ETNK2: Forward TGAAGAACGAGATCAACCCC (SEQ ID NO: 5)
Reverse GACAAAACACCACAGGGGAC (SEQ ID NO: 6)
 図1AはSYT7のmRNAの発現量を、図1BはMFSD4のmRNA発現量を、図1CはETNK2のmRNA発現量を夫々GAPDHのmRNAの発現量で正規化した値を、胃切除時にすでに肝転移が認められた症例、胃切除時には肝転移が認められなかったが、術後2年以内の早期に肝転移再発した症例、肝転移以外の症例の各群で箱ひげ図(最小値、第1四分点、中央値、第3四分点、最大値)で表したものである。 1A shows the expression level of SYT7 mRNA, FIG. 1B shows the expression level of MFSD4 mRNA, and FIG. 1C shows the normalized value of ETNK2 mRNA expression level of GAPDH mRNA. Box-whisker plots (minimum value, 1st case) were observed in each group of cases in which liver metastasis was not observed at the time of gastrectomy. (Quarter point, median, third quarter point, maximum value).
 肝転移再発が認められた症例、すなわち胃切除時にすでに肝転移が認められた症例、胃切除時には肝転移が認められなかったが、術後2年以内の早期に肝転移再発した症例では、有意にSYT7及びETNK2の発現レベルの増加が、MFSD4では有意に発現レベルの低下が認められた。 Significant in patients with recurrent liver metastasis, ie, patients who had already had liver metastasis at the time of gastrectomy, or those who had liver metastasis at the early stage within 2 years after surgery In addition, an increase in the expression level of SYT7 and ETNK2 was observed, and a significant decrease in the expression level was observed in MFSD4.
 患者によるばらつきはあるものの、肝転移が認められた群のSYT7及びETNK2の発現量は、肝転移以外の群に対して有意に高値であった。また、MFSD4の発現は肝転移以外の群では、肝転移再発が認められた群に比べ有意に高値であった。 Although there were variations among patients, the expression levels of SYT7 and ETNK2 in the group in which liver metastasis was observed were significantly higher than those in the group other than liver metastasis. In addition, the expression of MFSD4 was significantly higher in the group other than liver metastasis compared to the group in which recurrence of liver metastasis was observed.
 至適カットオフ値の設定はさらに多検体での検証が望まれるが、SYT7、MFSD4、ETNK2発現量を測定することにより肝転移再発する胃癌のリスク予測を可能とする。例えば、SYT7、ETNK2発現を肝転移のマーカーとする場合には、図1A、lCに示すように、肝転移が認められなかった患者群のうち、同時性肝転移、術後2年以内肝転移、いずれの肝転移群の中央値を超える患者は25%以下であることから、肝転移群の症例の各中央値を基準として肝転移再発する胃癌のリスクを予測することができる。SYT7、MFSD4、ETNK2の測定方法や測定する試料によってもカットオフ値は異なることが予測されることがら、適宜カットオフ値を求めて、肝転移再発リスクの高い患者群を選択しフォローすることが望ましい。 Although the optimal cut-off value should be verified with multiple specimens, it is possible to predict the risk of gastric cancer with recurrent liver metastases by measuring the expression levels of SYT7, MFSD4, and ETNK2. For example, when SYT7 and ETNK2 expression is used as a marker of liver metastasis, as shown in FIGS. 1A and 1C, among the patient groups in which liver metastasis was not observed, simultaneous liver metastasis, liver metastasis within 2 years after surgery Since the number of patients exceeding the median value of any liver metastasis group is 25% or less, the risk of gastric cancer that recurs in the liver metastasis can be predicted based on the median value of cases in the liver metastasis group. The cut-off value can be predicted to vary depending on the measurement method of SYT7, MFSD4, and ETNK2, and the sample to be measured. Therefore, the cut-off value can be appropriately determined, and a patient group with a high risk of liver metastasis can be selected and followed. desirable.
 症例数を増やし、上記と同様に定量的PCR法により解析を行った。200症例の胃癌患者の切除組織中の各遺伝子の発現量を解析した。ステージII/IIIでは、後の肝転移再発の有無で、肝再発(-)、肝再発(+)に分け、ステージIVでは遠隔転移を有する中でも、肝転移の有無で分けて解析を行っている。図2の左側に平均値を、右側にプロット図を示している。 The number of cases was increased and analysis was performed by the quantitative PCR method as described above. The expression level of each gene in the resected tissue of 200 cases of gastric cancer patients was analyzed. Stage II / III is divided into liver recurrence (-) and liver recurrence (+) according to the presence or absence of later liver metastasis, and stage IV is analyzed according to the presence or absence of liver metastasis, even if it has distant metastasis . The average value is shown on the left side of FIG. 2, and the plot is shown on the right side.
 SYT7の胃癌組織中発現量は、治癒切除術後に肝転移再発した症例(Stage II/III、肝再発(+))、遠隔転移を有する中でも、肝転移を有した症例(Stage IV肝転移(+))で有意に高値であった。逆に、将来もしくは現在の肝転移を有しない症例においては、正常胃組織と発現量に差を認めず、胃癌肝転移の存在及び予測に高い特異性を有していると考えられる。MFSD4の胃癌組織中発現量は、肝転移あるいは将来の肝転移再発を認めた症例でより高度に抑制されていた。ETNK2の胃癌組織中発現量は、遠隔転移を有する中でも、肝転移を有した症例(Stage IV肝転移(+))で有意に高値であった。逆に、それ以外の胃癌症例においては、正常胃組織と発現量に差を認めず、胃癌肝転移の存在に高い特異性を有していると考えられる。 The expression level of SYT7 in gastric cancer tissues was confirmed in patients with liver metastases after staged curative resection (Stage II / III, liver recurrence (+)), among those with distant metastases (Stage IV liver metastasis ( +)) Was significantly higher. Conversely, in cases where there is no future or present liver metastasis, there is no difference in the expression level from normal gastric tissue, and it is considered that the presence and prediction of gastric cancer liver metastasis have high specificity. The expression level of MFSD4 in gastric cancer tissues was more highly suppressed in cases where liver metastasis or future liver metastasis recurrence was observed. The expression level of ETNK2 in gastric cancer tissues was significantly higher in cases with liver metastasis (Stage IV liver metastasis (+)), even among distant metastases. On the other hand, in other gastric cancer cases, there is no difference in the expression level from normal gastric tissue, and it is considered that the presence of gastric cancer liver metastasis has high specificity.
 上記200症例の胃癌患者での各mRNA発現量についてROC曲線解析を行った。図3に示すように、胃癌原発巣でのSYT7、MFSD4、ETNK2のmRNA発現度は、いずれも肝転移あるいは術後2年以内の肝転移に対して高い相関性を示した。 ROC curve analysis was performed on each mRNA expression level in the above 200 cases of gastric cancer patients. As shown in FIG. 3, the mRNA expression levels of SYT7, MFSD4, and ETNK2 in the primary gastric cancer lesion were all highly correlated with liver metastasis or liver metastasis within 2 years after surgery.
 各遺伝子のROC曲線解析で得られたカットオフ値を用いて、93例のステージII/III胃癌患者、すなわち治癒切除されたものの再発の危険性の高い病期のステージの患者群でその後の再発経過を調べた。図4に示すように、胃癌原発巣のSYT7発現亢進例、MFSD4発現抑制例、ETNK2発現亢進例では夫々有意に治癒切除術後の肝転移再発が多く、多変量解析においても胃癌肝転移の独立危険因子であった。 Using the cut-off values obtained by ROC curve analysis of each gene, 93 patients with stage II / III gastric cancer, that is, patients who were curatively excised but at a stage with high risk of recurrence The progress was examined. As shown in FIG. 4, in cases of SYT7 expression enhancement, MFSD4 expression suppression, and ETNK2 expression enhancement in gastric cancer primary lesions, liver metastasis recurs significantly after curative resection, and independence of gastric cancer liver metastasis is also found in multivariate analysis. It was a risk factor.
 胃切除組織試料だけではなく、血液試料を用いて肝転移を予測することができれば、術前、術後にも血液試料によって診断を行うことができることから、患者にとってメリットが大きい。そこで、患者血清を用いてSYT7の発現量に変化が見られるか解析を行った。 If the liver metastasis can be predicted using not only the gastrectomy tissue sample but also the blood sample, the diagnosis can be performed with the blood sample before and after the operation, which is very beneficial for the patient. Therefore, an analysis was performed to determine whether there was a change in the expression level of SYT7 using patient serum.
 患者血清中のSYT7量をELISAキット(ELISA Kit for Synaptotagmin VII (SYT7)、Cloud-Clone社製)を用いて測定した。健常患者16例、ステージI胃癌患者10例、ステージII胃癌患者9例、ステージIII胃癌患者10例、ステージIV胃癌患者39例を対象とした。結果を図5に示す。 The amount of SYT7 in patient serum was measured using an ELISA kit (ELISA Kit for Synaptotagmin VII (SYT7), manufactured by Cloud-Clone). The subjects were 16 healthy patients, 10 stage I gastric cancer patients, 9 stage II gastric cancer patients, 10 stage III gastric cancer patients, and 39 stage IV gastric cancer patients. The results are shown in FIG.
 図5に示すように、胃癌の病期にしたがって段階的な血清SYT7の上昇を認めた。よって、血清SYT7値は、胃癌の進展度合いの診断および転移再発予測バイオマーカーとなりうる。 As shown in FIG. 5, a gradual increase in serum SYT7 was observed according to the stage of gastric cancer. Therefore, the serum SYT7 value can be a diagnosis of the degree of progression of gastric cancer and a biomarker for predicting metastasis recurrence.
 他のマーカーについても、胃切除組織だけではなく、血液試料を用い、タンパク質発現量を測定することによって、肝転移再発を予測することができるものと考えられる。 For other markers, it is considered that recurrence of liver metastases can be predicted by measuring the protein expression level using not only gastrectomy tissue but also a blood sample.
≪主要癌関連遺伝子の発現との相関≫
 SYT7、MFSD4、ETNK2が肝転移再発と相関があることが認められたので、次にこれら遺伝子と主要癌関連遺伝子発現量を網羅的に調べ、どのような遺伝子の発現量と相関があるか解析を行った。解析には10種のヒト胃癌細胞株、AGS(ATCCより入手)、MKN1(理研細胞バンクより入手)、MKN74(理研細胞バンクより入手)、N87(ATCCより入手)、KATO-III(ATCCより入手)、MKN45(理研細胞バンクより入手)、NUGC2(名古屋大学で樹立)、NUGC3(名古屋大学で樹立)、NUGC4(名古屋大学で樹立)、SC-6-JCK(東北大学より入手)及び非腫瘍性腺上皮細胞株FHs74(ATCCより入手)を用いた。
≪Correlation with expression of major cancer-related genes≫
Since SYT7, MFSD4, and ETNK2 were found to correlate with liver metastasis recurrence, we next examined the expression levels of these genes and major cancer-related genes, and analyzed which gene expression levels were correlated. Went. For analysis, 10 human gastric cancer cell lines, AGS (obtained from ATCC), MKN1 (obtained from RIKEN Cell Bank), MKN74 (obtained from RIKEN Cell Bank), N87 (obtained from ATCC), KATO-III (obtained from ATCC) ), MKN45 (obtained from RIKEN Cell Bank), NUGC2 (established at Nagoya University), NUGC3 (established at Nagoya University), NUGC4 (established at Nagoya University), SC-6-JCK (obtained from Tohoku University) and non-neoplastic gland The epithelial cell line FHs74 (obtained from ATCC) was used.
 解析はHuman Epithelial to Mesenchymal Transition(EMT) RT2 Profile PCR Arrayキット(QIAGEN社製)を用い、84種類の主要な癌関連遺伝子との発現の相関を解析した。結果を図6に示す。 For the analysis, Human Epithelial to Mesenchymal Transition (EMT) RT2 Profile PCR Array Kit (manufactured by QIAGEN) was used to analyze the correlation of expression with 84 major cancer-related genes. The results are shown in FIG.
 SYT7の発現量は、上皮間葉移行(EMT)関連分子であるTGFB3の発現と有意な正の相関関係を認めた。逆に、EMTで抑制されているCAV2、RGS2とは逆相関関係を認めた。 The expression level of SYT7 was significantly positively correlated with the expression of TGFB3, an epithelial-mesenchymal transition (EMT) -related molecule. On the contrary, an inverse correlation with CAV2 and RGS2 suppressed by EMT was observed.
 MFSD4の発現量は、癌の転移・進展に深く関与するEMT関連分子であるBMP2の発現と有意な逆相関関係を、逆に、EMTで抑制されているNUDT13、OCLNとは正の相関関係を認めた。 The expression level of MFSD4 has a significant inverse correlation with the expression of BMP2, which is an EMT-related molecule that is deeply involved in cancer metastasis and progression, and conversely, it has a positive correlation with NUDT13 and OCLN, which are suppressed by EMT. Admitted.
 ETNK2発現量は、AHNAK、ITGAV、FN1、MMP3、TGFB1、EGFRと有意な正の相関関係を示した。AHNAK、ITGAVはEMT促進因子、FN1、MMP3は細胞外基質タンパク質、TGFB1、EGFRは細胞増殖因子として知られている。これらの結果は、SYT7、MFSD4、ETNK2の発現が他の主要な癌関連遺伝子と協調的関係にあることを示している。 ETNK2 expression level showed a significant positive correlation with AHNAK, ITGAV, FN1, MMP3, TGFB1, and EGFR. AHNAK and ITGAV are known as EMT promoters, FN1 and MMP3 are known as extracellular matrix proteins, and TGFB1 and EGFR are known as cell growth factors. These results indicate that the expression of SYT7, MFSD4, ETNK2 is coordinated with other major cancer-related genes.
≪siRNAを用いたノックダウン解析≫
 肝転移再発と相関の見られるSYT7、MFSD4、ETNK2の発現を調節することによって、肝転移再発を抑制できるか解析を行った。siRNAを用いて、胃癌細胞株の遊走能、浸潤能に変化が生じるか解析を行った。
≪Knockdown analysis using siRNA≫
It was analyzed whether recurrence of liver metastasis could be suppressed by regulating the expression of SYT7, MFSD4, and ETNK2 that was correlated with recurrence of liver metastasis. Using siRNA, it was analyzed whether changes occurred in the migration ability and invasion ability of gastric cancer cell lines.
 SYT8、SYT13の高発現胃癌細胞株であるMKN1を用いて、各遺伝子の選択的発現阻害(ノックダウン)実験を行い、胃癌細胞の遊走能を評価した。 Using MKN1, which is a gastric cancer cell line with high expression of SYT8 and SYT13, selective expression inhibition (knockdown) experiments of each gene were conducted to evaluate the migration ability of gastric cancer cells.
 Accell siRNA transfection methods(Dharmacon社製)を用いてMKN1細胞に各40nMのsiRNAを導入し、72時間無血清DMEM培地で培養後、遊走能の評価を行った。SYT7 siRNA、MFSD4 siRNA、ETNK2 siRNA、コントロールsiRNA(Accell Green Non-targeting)はいずれもDharmacon社より得た。 40 nM each of siRNA was introduced into MKN1 cells using Accel siRNA transfection methods (manufactured by Dharmacon), and after 72 hours of culturing in serum-free DMEM medium, the migration ability was evaluated. SYT7 siRNA, MFSD4 siRNA, ETNK2 siRNA, and control siRNA (Accel Green Non-targeting) were all obtained from Dharmacon.
 siRNA導入後72h時間無血清培地で培養し、創傷治癒アッセイ(Wound-healing assay)により細胞の遊走能の評価を行った。MKN1細胞は2×10になるように、12ウェルプレートにibidi Culture insert method(ibid社製)を予め定めた幅でwound gapを形成して播種し、無血清培地で培養した。播種24時間後にインサートを除去し、6時間ごとに200μm間隔でwound幅を測定した。測定は、40倍の倍率の顕微鏡を用い、各ウェル10か所を測定して平均及び標準偏差を求めた。 After introduction of siRNA, the cells were cultured in a serum-free medium for 72 hours, and the cell migration ability was evaluated by a wound-healing assay. MKN1 cells to be 2 × 10 4, 12-well plates were seeded to form ibidi Culture insert method wound gap at a predetermined width (ibid Inc.), were cultured in serum-free medium. The insert was removed 24 hours after sowing, and the width was measured at intervals of 200 μm every 6 hours. The measurement was carried out using a microscope with a magnification of 40 times, and each well was measured at 10 locations to determine the average and standard deviation.
 顕微鏡画像及びwound幅の経時的変化を図7に示す。図7中*印で示したのは、siRNA導入処理を行っていないコントロールに比べ有意差があることを示す。SYT7、ETNK2のノックダウンにより、胃癌細胞株MKN1の遊走能が有意に減少し、MFSD4のノックダウンにより有意に亢進することが明らかとなった。 FIG. 7 shows changes over time in the microscopic image and the wound width. In FIG. 7, an asterisk (*) indicates that there is a significant difference compared to a control not subjected to siRNA introduction treatment. It was clarified that knockdown of SYT7 and ETNK2 significantly decreased the migration ability of gastric cancer cell line MKN1, and significantly increased by knockdown of MFSD4.
 次に、MFSD4発現阻害による細胞の浸潤能について解析を行った。細胞の浸潤能は、siRNA導入後72h時間無血清培地で培養した細胞をマトリゲル浸潤アッセイ(Matrigel invasion assay)により評価した。BioCoat Matrigel invasion Chambers(BD Siosciences社製)を用い、プロトコルにしたがってアッセイを行った。具体的には、siRNAを導入したMKN1細胞を1ウェルあたり各々2.5×10になるように播種し、無血清DMEM培地で24時間培養後、膜底面の細胞を固定し、ディフクイック(シスメックス社製)で染色して顕微鏡下で観察し細胞数を数えた。顕微鏡観察は200倍の倍率で行い、ランダムに選択した5つの視野の平均と標準偏差を求めた。 Next, the invasive ability of the cells by inhibiting MFSD4 expression was analyzed. The invasion ability of cells was evaluated by Matrigel invasion assay for cells cultured in a serum-free medium for 72 hours after introduction of siRNA. The assay was performed using BioCoat Matrigel inversion Chambers (BD Siosciences) according to the protocol. Specifically, siRNA-introduced MKN1 cells were seeded at 2.5 × 10 4 per well, cultured for 24 hours in serum-free DMEM medium, and the cells on the bottom of the membrane were fixed. The number of cells was counted by observing under a microscope. Microscopic observation was performed at a magnification of 200 times, and the average and standard deviation of five randomly selected fields were obtained.
 顕微鏡画像を図8左に、浸潤能を有する細胞数を図8右に示す。MFSD4の発現を阻害すると、胃癌細胞は有意に浸潤能の抑制を示すことが明らかとなった。なお、図8右グラフ中の*印は各サンプル間で有意差があったことを示す。 The microscopic image is shown on the left side of FIG. 8, and the number of cells having invasive ability is shown on the right side of FIG. When the expression of MFSD4 was inhibited, it was revealed that gastric cancer cells significantly suppressed invasive ability. In addition, * mark in the right graph of FIG. 8 shows that there was a significant difference between each sample.
 これらの結果によってSYT7、MFSD4、及びETNK2は胃癌細胞の遊走能、浸潤能に関与しており、SYT7及び/又はETNK2を阻害することで肝転移再発を抑制できる可能性が示唆された。したがって、SYT7及び/又はETNK2のsiRMAは医薬組成物の有効成分として機能し得る。また、MFSD4に関しては、その発現を回復させることができれば、肝転移再発を抑制することができると考えられる。 These results suggest that SYT7, MFSD4, and ETNK2 are involved in the migration ability and invasive ability of gastric cancer cells, and that the inhibition of SYT7 and / or ETNK2 may suppress the recurrence of liver metastases. Therefore, siRMA of SYT7 and / or ETNK2 can function as an active ingredient of a pharmaceutical composition. Moreover, regarding MFSD4, it is considered that the recurrence of liver metastasis can be suppressed if its expression can be recovered.
≪DNAメチル化異常の検出≫
 癌細胞での遺伝子の発現低下は多くの場合DNAのメチル化異常に起因することが報告されている(非特許文献5、6)。DNAのCpG配列のCの位置にメチル基が付加されるのがDNAのメチル化である。遺伝子のプロモーター部位に存在するCpGアイランドがメチル化されることによって、遺伝子の不活化が生じることにより遺伝子発現の低下が生じている。MFSD4遺伝子発現の胃癌肝転移再発群での低下がDNAメチル化によるかを解析した。
≪Detection of DNA methylation abnormality≫
It has been reported that the decrease in gene expression in cancer cells is often caused by abnormal DNA methylation (Non-Patent Documents 5 and 6). DNA methylation is the addition of a methyl group to the C position of the CpG sequence of DNA. The CpG island present at the promoter site of the gene is methylated, resulting in gene inactivation resulting in a decrease in gene expression. It was analyzed whether the decrease in MFSD4 gene expression in the liver cancer metastasis recurrence group was due to DNA methylation.
 図9AにMFSD4遺伝子のプロモーター領域のCpGアイランドを示す。MFSD4の上流の配列(NC_000001.11 Reference GRCh38.p2)の解析を行った。図中、細いラインで示しているのは、MFSD4のプロモーター領域である。メチル化を受け得るCpG配列を細いライン上に縦線で示している。通常の確率で計算した数値よりも大きく乖離した頻度で集まっている部分がCpGアイランドある。図中、太いラインで示した領域はCpGアイランドの定義に該当する配列中にGCが55%以上含まれる領域である。 FIG. 9A shows a CpG island in the promoter region of the MFSD4 gene. The sequence upstream of MFSD4 (NC — 000001.11. Reference GRCh38.p2) was analyzed. In the figure, the MFSD4 promoter region is indicated by a thin line. CpG sequences that can undergo methylation are shown as vertical lines on thin lines. CpG islands are portions that are gathered at a frequency that is far from the numerical value calculated with the normal probability. In the figure, a region indicated by a thick line is a region where 55% or more of GC is included in the array corresponding to the definition of the CpG island.
 MFSD4のプロモーター領域を解析した結果、CpGアイランドが1311ヌクレオチドにわたって存在することが明らかとなった。次にメチル化特異的PCR法によって、12種の胃癌細胞株、AGS、GCIY(理研細胞バンクより入手)、KATO-III、MKN1、MKN28(JCRB細胞バンクより入手)、MKN45、MKN74、N87、NUGC2、NUGC3、NUGC4、SC-6-JCK及び非腫瘍性腺上皮細胞株FHs74のメチル化状態をメチル化特異的PCR法で解析した。 As a result of analyzing the promoter region of MFSD4, it was revealed that CpG islands exist over 1311 nucleotides. Next, 12 gastric cancer cell lines, AGS, GCIY (obtained from Riken Cell Bank), KATO-III, MKN1, MKN28 (obtained from JCRB cell bank), MKN45, MKN74, N87, NUGC2 by methylation-specific PCR method , NUGC3, NUGC4, SC-6-JCK and the non-neoplastic glandular epithelial cell line FHs74 were analyzed by methylation-specific PCR.
 細胞からDNAを抽出し、EpiTect Bisulfite Kits(QIAGEN社製)をプロトコル通りに用いてバイサルファイト処理を行った。PCRプライマーは下記の配列を用い、MFSD4の上流の配列の解析を行った。図9(A)に示すようにPCRプライマーは転写開始部位より上流のCpGアイランド中に設定している。ポリメラーゼはPlatinum(登録商標)Taq DNA Polymerase(Invitrogen社製)を用い、Veriti(登録商標) Thermal Cycler(Applied Biosystems社製)によって、95℃10分加熱後、95℃5秒、60℃60秒で40サイクルのPCR条件で増幅を行い解析した。 DNA was extracted from the cells, and bisulfite treatment was performed using EpiTect Bisulfite Kits (manufactured by QIAGEN) according to the protocol. The PCR primer used the following sequence and analyzed the sequence upstream of MFSD4. As shown in FIG. 9A, the PCR primer is set in the CpG island upstream from the transcription start site. As the polymerase, Platinum (registered trademark) Taq DNA Polymerase (manufactured by Invitrogen) was used, and after heating at 95 ° C. for 10 minutes by Veriti (registered trademark) Thermal Cycler (manufactured by Applied Biosystems), 95 ° C. for 5 seconds, 60 ° C. for 60 seconds. Amplification was performed under PCR conditions of 40 cycles and analyzed.
MFSD4、メチル化検出プライマー
Forward:CGGTTTTCGGTTGGTTTTCG(配列番号7)
Reverse:CGCCTCTACGACGAATAAAC(配列番号8)
MFSD4, methylation detection primer Forward: CGGTTTTCGGTTGGTTTCG (SEQ ID NO: 7)
Reverse: CGCCCTCTACGACGGAATAAAAC (SEQ ID NO: 8)
 12種の胃癌細胞株および非腫瘍性腺上皮細胞株FHs74のうち、AGS、MKN28、NUGC3、SC-6-JCKでMFSD4遺伝子のプロモーター領域のメチル化が認められた(図9(B))。非腫瘍性腺上皮細胞株FHs74のMFSD4 mRNA発現量を1.0とすると、AGS、MKN28、NUGC3、SC-6-JCKのMFSD4の発現量は、夫々0.65、0.25、0.09、0.06であった。これらMFSD4遺伝子のプロモーター領域のメチル化が認められた胃癌細胞株では、MFSD4発現レベルが非腫瘍性腺上皮細胞株FHs74と比較して高度に抑制されており、プロモーター領域のメチル化と遺伝子発現の抑制との相関が認められた。 Among 12 types of gastric cancer cell lines and non-tumor glandular epithelial cell lines FHs74, methylation of the promoter region of MFSD4 gene was observed in AGS, MKN28, NUGC3, and SC-6-JCK (FIG. 9 (B)). Assuming that the expression level of MFSD4 mRNA in the non-tumor glandular epithelial cell line FHs74 is 1.0, the expression levels of MFSD4 in AGS, MKN28, NUGC3, and SC-6-JCK are 0.65, 0.25, and 0.09, respectively. 0.06. In these gastric cancer cell lines in which methylation of the promoter region of MFSD4 gene was observed, the expression level of MFSD4 was highly suppressed as compared with non-neoplastic glandular epithelial cell line FHs74, and methylation of promoter region and suppression of gene expression were suppressed. And a correlation was observed.
 プロモーター領域のメチル化をさらに詳細に解析するためにプライマーを変えてバイサルファイトシーケンス法により解析を行った。プライマーの位置の概略を図10(A)に示す。図9(A)で示すプライマーの位置よりも、より上流に設定している。用いたプライマー配列は下記のとおりである。 In order to analyze the methylation of the promoter region in more detail, the primer was changed and the bisulfite sequencing method was used for the analysis. An outline of the position of the primer is shown in FIG. It is set further upstream than the position of the primer shown in FIG. The primer sequences used are as follows.
MFSD4、メチル化検出プライマー
Forward:AGTAGTTTTGTTTTTTGTTGGGTAG(配列番号9)
Reverse:CCAAAAATCACCTTCAATCTCTAAA(配列番号10)
MFSD4, methylation detection primer Forward: AGTAGTTTTGTTTTTGTTGGGTAG (SEQ ID NO: 9)
Reverse: CCAAAAATCCACTTCAATCTCTAAA (SEQ ID NO: 10)
 図10(B)に示す11種の細胞、胃癌細胞株であるAGS、MKN1、MKN74、N87、KATO-III、MKN45、NUGC2、NUGC3、NUGC4、SC-6-JCK及び非腫瘍性腺上皮細胞株FHs74で解析を行ったところ、AGS、N87、MKN45、NUGC3,SC-6-JCKの5つの細胞株でDNAメチル化を認めた(図10(B)Box、Box上段;M=メチル化あり、U=メチル化なしを示す。)。いずれの細胞においても、MFSD4領域のコピー数異常は認められなかった(Box下段)。一方で、胃癌細胞の50%でDNAメチル化が認められた。 Eleven types of cells shown in FIG. 10 (B), gastric cancer cell lines AGS, MKN1, MKN74, N87, KATO-III, MKN45, NUGC2, NUGC3, NUGC4, SC-6-JCK and non-tumor glandular epithelial cell lines FHs74 As a result, DNA methylation was observed in 5 cell lines of AGS, N87, MKN45, NUGC3, SC-6-JCK (FIG. 10 (B) Box, Box upper stage; M = methylated, U = Indicates no methylation). In any of the cells, no abnormal copy number of the MFSD4 region was observed (Box lower row). On the other hand, DNA methylation was observed in 50% of gastric cancer cells.
 各細胞は10μMの5-aza-dC(シグマアルドリッチ社)を添加した培地で96時間細胞を培養し、脱メチル化処理を行って、MFSD4の発現量を解析した。黒いBarは通常の細胞、白いBarは5-aza-dCによる脱メチル化処理を施した細胞株での結果である(図10(B)グラフ)。コントロールであるFHs74細胞株より高度に発現量が抑制されていた細胞株では高頻度にDNAメチル化を伴っており、それらの発現は脱メチル化処理で回復した。これらの結果から、MFSD4の発現抑制はDNAメチル化を主たる調節因子としていることが明らかである。 Each cell was cultured for 96 hours in a medium supplemented with 10 μM 5-aza-dC (Sigma Aldrich), demethylated, and analyzed for the expression level of MFSD4. The black bar is the result for a normal cell, and the white bar is the result for a cell line that has been subjected to demethylation treatment with 5-aza-dC (FIG. 10 (B) graph). The cell line whose expression level was suppressed to a higher degree than the control FHs74 cell line was frequently accompanied by DNA methylation, and their expression recovered by demethylation treatment. From these results, it is clear that suppression of MFSD4 expression is based on DNA methylation as a main regulator.
 胃癌細胞株での解析は、胃癌組織内でも生じていると考えられることから、発現量の低下が認められるMFSD4については、胃癌組織中のMFSD4プロモーター領域のメチル化を解析することによって、肝転移のリスクを検査してもよい。 Since analysis with a gastric cancer cell line is considered to occur in gastric cancer tissue, MFSD4 in which a decrease in the expression level is observed can be analyzed by analyzing the methylation of the MFSD4 promoter region in the gastric cancer tissue. You may be inspected for risk.
≪臨床検体でのMFSD4メチル化の検出≫
 メチル化の有無を患者血液試料を用いて解析できれば、肝転移再発を予測する際に非常にメリットになる。そこで、患者血清を用いてMFSD4発現量の解析を行った。患者血清からDNAを抽出し、バイサルファイト処理を行い、定量的メチル化特異的PCR法により解析した。メチル化を定量するためには、以下のプライマーを用いた。
≪Detection of MFSD4 methylation in clinical specimen≫
If the presence or absence of methylation can be analyzed using a patient blood sample, it will be very advantageous in predicting recurrence of liver metastases. Therefore, MFSD4 expression level was analyzed using patient serum. DNA was extracted from patient sera, bisulfite-treated, and analyzed by quantitative methylation-specific PCR. In order to quantify methylation, the following primers were used.
定量的PCR法プライマー
Forward:GTATTGTTTATTCGTCGTAGAGGC(配列番号11)
Reverse:ATAACGCAAACTAACGAACTCG(配列番号12)
probe:AAACCCCGCCCTTAAACCCGA(配列番号13)
Quantitative PCR primer: Forward: GTATTGTTTATTCGGTCGTAGGC (SEQ ID NO: 11)
Reverse: ATAACGCCAAACTAACGAACTCG (SEQ ID NO: 12)
probe: AAACCCCGCCCCTTAAAACCGA (SEQ ID NO: 13)
 患者血清から抽出したDNAに定量的プライマーとプローブを合わせて混合しPCR反応を行うことにより特異的にMFSD4のメチル化を検出した。PCR反応はABI STEPOnePlus Real-Time PCR System(Applied Biosystems社製)を用いて、95℃10分加熱後、95℃5秒、60℃60秒で40サイクルのPCR条件で増幅を行い解析した。 Quantitative primers and probes were combined with DNA extracted from patient serum and mixed, and PCR reaction was performed to specifically detect MFSD4 methylation. The PCR reaction was analyzed using ABI STEPOnePlus Real-Time PCR System (Applied Biosystems) at 95 ° C for 10 minutes, followed by amplification under 40 cycles of PCR conditions at 95 ° C for 5 seconds and 60 ° C for 60 seconds.
 図11は、健常患者10例、ステージI胃癌患者6例、ステージII/III胃癌患者で10例、ステージIV胃癌患者で12例の解析結果を示す。健常患者、ステージI胃癌患者では、MFSD4の血清中メチル化は検出されなかった。一方、ステージII/III胃癌患者では10例中2例で検出(20%)、ステージIV胃癌患者では12例中5例で血清試料中でメチル化が検出された。したがって。血清中のMFSD4 DNAメチル化は、胃癌の進展度合いの診断バイオマーカーとしても機能し得る。 FIG. 11 shows the analysis results of 10 healthy patients, 6 stage I gastric cancer patients, 10 stage II / III gastric cancer patients, and 12 stage IV gastric cancer patients. Serum methylation of MFSD4 was not detected in healthy patients and stage I gastric cancer patients. On the other hand, in stage II / III gastric cancer patients, 2 out of 10 cases were detected (20%), and in stage IV gastric cancer patients, methylation was detected in serum samples in 5 out of 12 cases. Therefore. MFSD4 DNA methylation in serum can also function as a diagnostic biomarker of gastric cancer progression.
 上述のように、胃癌組織中、あるいは血液試料中のSYT7、MFSD4、ETNK2のmRNA発現を解析することにより精密に予後予測を行うことが可能である。また、抗SYT7抗体、抗ETNK2抗体、抗MFSD4を用いてELISA等によって検出することも可能である。 As described above, it is possible to accurately predict prognosis by analyzing mRNA expression of SYT7, MFSD4, and ETNK2 in gastric cancer tissues or blood samples. Moreover, it is also possible to detect by ELISA etc. using anti-SYT7 antibody, anti-ETNK2 antibody, and anti-MFSD4.
 また、肝転移再発群において遺伝子発現が減少しているMFSD4の場合は、プロモーター領域のDNAメチル化を解析してもよい。一般的に発現量の減少する遺伝子、タンパク質をマーカーとすることは精度の点で問題が生じる場合もあるが、DNAのメチル化を検出することにより、感度よく検出が可能である。 Moreover, in the case of MFSD4 in which gene expression is decreased in the liver metastasis recurrence group, DNA methylation of the promoter region may be analyzed. Generally, using a gene or protein whose expression level decreases as a marker may cause a problem in terms of accuracy, but it can be detected with high sensitivity by detecting DNA methylation.
 本発明によれば、手術時に得られる試料中のSYT7、MFSD4、ETNK2の発現量を、肝転移のリスクを予測するマーカーとして用い検査することができる。その結果、より細かい治療方針のもとに患者の治療を行うことが可能となる。さらに、SYT7、MFSD4、ETNK2の発現量を指標として用いてスクリーニングを行うことにより、胃癌肝転移に選択的に作用する医薬の開発を行うことが可能となる。特に、SYT7、ETNK2のsiRNAは医薬組成物としても機能し得る。 According to the present invention, the expression level of SYT7, MFSD4, and ETNK2 in a sample obtained at the time of surgery can be used as a marker for predicting the risk of liver metastasis. As a result, the patient can be treated under a finer treatment policy. Furthermore, by conducting screening using the expression levels of SYT7, MFSD4, and ETNK2 as an index, it is possible to develop a drug that selectively acts on liver metastasis of gastric cancer. In particular, siRNA of SYT7 and ETNK2 can also function as a pharmaceutical composition.

Claims (7)

  1.  胃癌の胃切除術後の肝転移を予測するための検査方法であって、
     対象から採取された患者血清、及び/又は胃切除術における胃癌組織におけるSYT7、MFSD4、ETNK2の少なくとも1つ以上の発現量を求め、
     試料中のSYT7、MFSD4、ETNK2の少なくとも1つ以上の発現量に所定値と有意差が認められる場合には、肝転移のリスクが高いと判定することを特徴とする検査方法。
    A test method for predicting liver metastasis after gastrectomy for gastric cancer,
    Determining the expression level of at least one of SYT7, MFSD4, and ETNK2 in patient serum collected from the subject and / or gastric cancer tissue in gastrectomy;
    A test method characterized by determining that the risk of liver metastasis is high when at least one expression level of SYT7, MFSD4, and ETNK2 in a sample is significantly different from a predetermined value.
  2.  請求項1に記載の検査方法であって、
     SYT7、MFSD4、ETNK2の発現量が、SYT7、MFSD4、ETNK2のmRNA及び/又はタンパク質発現量を測定することを特徴とする検査方法。
    The inspection method according to claim 1,
    A test method, wherein the expression level of SYT7, MFSD4, and ETNK2 measures the mRNA and / or protein expression level of SYT7, MFSD4, and ETNK2.
  3.  請求項2記載の検査方法であって、
     SYT7、MFSD4、ETNK2のmRNA発現量の測定方法が定量的PCR、又は次世代シーケンサーによるものであることを特徴とする検査方法。
    The inspection method according to claim 2,
    A test method characterized in that the method for measuring the mRNA expression level of SYT7, MFSD4, and ETNK2 is based on quantitative PCR or a next-generation sequencer.
  4.  請求項1記載の検査方法であって、
     MFSD4の発現量はMFSD4遺伝子プロモーター領域のDNAメチル化状態を解析することにより求めることを特徴とする検査方法。
    The inspection method according to claim 1,
    A test method characterized in that the expression level of MFSD4 is determined by analyzing the DNA methylation state of the MFSD4 gene promoter region.
  5.  胃癌の胃切除術後の肝転移を診断又は予測するための検査キットであって、
     SYT7、MFSD4、若しくはETNK2の発現量を測定するための定量的PCR用のプライマー、抗SYT7抗体、抗MFSD4抗体、若しくは抗ETNK2抗体、又はMFSD4遺伝子プロモーター領域のメチル化検出試薬のいずれか1つ以上を含むことを特徴とする検査キット。
    A test kit for diagnosing or predicting liver metastasis after gastrectomy for gastric cancer,
    One or more of a primer for quantitative PCR for measuring the expression level of SYT7, MFSD4, or ETNK2, an anti-SYT7 antibody, an anti-MFSD4 antibody, an anti-ETNK2 antibody, or a methylation detection reagent for the MFSD4 gene promoter region A test kit comprising:
  6.  胃癌の胃切除後の肝転移を治療するための分子標的治療薬をスクリーニングする方法であって、
     SYT7、ETNK2の発現量の抑制、MFSD4の発現量の増加、又はMFSD4遺伝子プロモーター領域のメチル化の少なくともいずれか1つを指標として物質をスクリーニングすることを特徴とする分子標的治療薬スクリーニング方法。
    A method of screening a molecular targeted therapeutic for treating liver metastasis after gastrectomy for gastric cancer comprising:
    A molecular targeted therapeutic drug screening method comprising screening a substance using at least one of suppression of SYT7, ETNK2 expression level, increase of MFSD4 expression level, or methylation of MFSD4 gene promoter region as an index.
  7.  SYT7、ETNK2の少なくともいずれか1つのsiRNAを含む胃切除術後の肝転移を抑制するための医薬組成物。 A pharmaceutical composition for suppressing liver metastasis after gastrectomy, comprising at least one siRNA of SYT7 and ETNK2.
PCT/JP2016/063956 2015-05-13 2016-05-11 Method for using syt7, mfsd4, and etnk2 expression levels to detect metastasis of gastric cancer to liver, detection kit, method for screening molecular targeted therapeutic agent, and pharmaceutical composition WO2016181979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017517959A JPWO2016181979A1 (en) 2015-05-13 2016-05-11 SYT7 / MFSD4 / ETNK2 expression level gastric cancer liver metastasis test method, test kit, molecular target therapeutic drug screening method, pharmaceutical composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-097939 2015-05-13
JP2015097939 2015-05-13

Publications (1)

Publication Number Publication Date
WO2016181979A1 true WO2016181979A1 (en) 2016-11-17

Family

ID=57248115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063956 WO2016181979A1 (en) 2015-05-13 2016-05-11 Method for using syt7, mfsd4, and etnk2 expression levels to detect metastasis of gastric cancer to liver, detection kit, method for screening molecular targeted therapeutic agent, and pharmaceutical composition

Country Status (2)

Country Link
JP (1) JPWO2016181979A1 (en)
WO (1) WO2016181979A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111172274A (en) * 2020-01-22 2020-05-19 清华大学 Application of Synaptotagmin-7 in diagnosis and treatment of bidirectional affective disorder
JP2021019564A (en) * 2019-07-30 2021-02-18 国立大学法人大阪大学 Cell lineage generation method, program, and cell lineage generation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001126A1 (en) * 2003-06-12 2005-01-06 Korea Research Institute Of Bioscience And Biotechnology Detection kit for gastric cancer and metastatic gastric cancer
WO2014163444A1 (en) * 2013-04-05 2014-10-09 연세대학교 산학협력단 System for predicting prognosis of locally advanced gastric cancer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001126A1 (en) * 2003-06-12 2005-01-06 Korea Research Institute Of Bioscience And Biotechnology Detection kit for gastric cancer and metastatic gastric cancer
WO2014163444A1 (en) * 2013-04-05 2014-10-09 연세대학교 산학협력단 System for predicting prognosis of locally advanced gastric cancer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANDA M. ET AL.: "Metastatic pathway-specific transcriptome analysis identifies MFSD4 as a putative tumor suppressor and biomarker for hepatic metastasis in patients with gastric cancer.", ONCOTARGET, vol. 7, no. 12, February 2016 (2016-02-01), pages 13667 - 13679, XP055328464 *
MITSURO KANDA ET AL.: "Transcriptome Kaiseki ni yori Dotei shita Igan Fukumaku Hashu Sekinin Bunshi no Hatsugen ? Kino Kaiseki", ACTA HEPATOLOGICA JAPONICA, vol. 56, no. suppl.2, September 2015 (2015-09-01) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021019564A (en) * 2019-07-30 2021-02-18 国立大学法人大阪大学 Cell lineage generation method, program, and cell lineage generation device
JP7355325B2 (en) 2019-07-30 2023-10-03 国立大学法人大阪大学 Cell lineage generation method, program, and cell lineage generation device
CN111172274A (en) * 2020-01-22 2020-05-19 清华大学 Application of Synaptotagmin-7 in diagnosis and treatment of bidirectional affective disorder
CN111172274B (en) * 2020-01-22 2021-10-15 清华大学 Application of Synaptotagmin-7 in diagnosis and treatment of bidirectional affective disorder
EP4067504A4 (en) * 2020-01-22 2023-01-18 Tsinghua University Use of synaptotagmin-7 in the diagnosis and treatment of bipolar disorder
JP2023506637A (en) * 2020-01-22 2023-02-17 清華大学 Use of Synaptotagmin-7 in Diagnosis and Treatment of Bipolar Disorder

Also Published As

Publication number Publication date
JPWO2016181979A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
Xu et al. FTO expression is associated with the occurrence of gastric cancer and prognosis
KR101437718B1 (en) Markers for predicting gastric cancer prognostication and Method for predicting gastric cancer prognostication using the same
Wang et al. S100A6 overexpression is associated with poor prognosis and is epigenetically up-regulated in gastric cancer
Tao et al. Dickkopf-1 (DKK1) promotes invasion and metastasis of hepatocellular carcinoma
Lorenzo-Martín et al. VAV2 signaling promotes regenerative proliferation in both cutaneous and head and neck squamous cell carcinoma
Zhan et al. Expression of caveolin-1 is correlated with disease stage and survival in lung adenocarcinomas
US10604809B2 (en) Methods and kits for the diagnosis and treatment of pancreatic cancer
US20180230545A1 (en) Method for the prediction of progression of bladder cancer
Zhou et al. Enhanced SLP-2 promotes invasion and metastasis by regulating Wnt/β-catenin signal pathway in colorectal cancer and predicts poor prognosis
Song et al. Combined detection of HER2, Ki67, and GSTP1 genes on the diagnosis and prognosis of breast cancer
JP2023533873A (en) Prognostic biomarkers for cancer
Zeng et al. CD82/KAI1 inhibits invasion and metastasis of esophageal squamous cell carcinoma via TGF-β1.
Chüeh et al. CSK-homologous kinase (CHK/MATK) is a potential colorectal cancer tumour suppressor gene epigenetically silenced by promoter methylation
JP6803572B2 (en) Test method for peritoneal dissemination of gastric cancer based on SYT13, SYT8, ANOS1 expression level, test kit, molecular targeted therapeutic drug screening method, and therapeutic drug
WO2016181979A1 (en) Method for using syt7, mfsd4, and etnk2 expression levels to detect metastasis of gastric cancer to liver, detection kit, method for screening molecular targeted therapeutic agent, and pharmaceutical composition
US20190316205A1 (en) Mmp1 gene transcript for use as a marker for diagnosis of ovarian cancer prognosis, and test method
Zheng et al. PIK3CA promotes proliferation and motility but is unassociated with lymph node metastasis or prognosis in esophageal squamous cell carcinoma
WO2013191242A1 (en) Test method and treatment means for small cell lung cancer having poor prognosis
CN111417855A (en) Methods for treating and diagnosing prostate cancer
WO2013045539A1 (en) Marker in diagnosing prostate cancer (pc)
JP2011520456A (en) Combined method for predicting response to anti-cancer therapy
US20160018400A1 (en) Diagnostic and prognostic biomarkers for prostate cancer and other disorders
Tallegas et al. Markers for bone sarcomas
Suzuki TO BE OR NOT TO BE: Biomarkers In Patients With Barrett’s Esophagus And Esophageal Adenocarcinoma
Dias Genetic characterization of upper urinary tract urothelial carcinoma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517959

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792704

Country of ref document: EP

Kind code of ref document: A1