WO2016181943A1 - Fuel-reforming system - Google Patents

Fuel-reforming system Download PDF

Info

Publication number
WO2016181943A1
WO2016181943A1 PCT/JP2016/063787 JP2016063787W WO2016181943A1 WO 2016181943 A1 WO2016181943 A1 WO 2016181943A1 JP 2016063787 W JP2016063787 W JP 2016063787W WO 2016181943 A1 WO2016181943 A1 WO 2016181943A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
reformer
reforming
gasoline
reformed
Prior art date
Application number
PCT/JP2016/063787
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 公太郎
工藤 知英
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2017517938A priority Critical patent/JP6378833B2/en
Publication of WO2016181943A1 publication Critical patent/WO2016181943A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel reforming system. More specifically, the present invention relates to a fuel reforming system that can improve the octane number of fuel by reforming fuel mainly composed of hydrocarbons.
  • alcohol-containing fuels in which alcohol such as ethanol is mixed in advance with gasoline are widely used as fuels with high octane number in some areas.
  • development of technology for separating alcohol-containing fuel supplied from the outside into a fuel with a high gasoline concentration and a fuel with a high alcohol concentration on a vehicle is underway.
  • fuel properties such as octane number and calorific value between gasoline and alcohol.
  • gasoline and alcohol are separated on the vehicle rather than using the alcohol-containing fuel supplied from the outside as it is. This is because it is preferable to properly use alcohol and alcohol.
  • separation according to engine requirements is not easy.
  • a synthesis method has been proposed in which hydrocarbons are converted into alcohols using a carbon radical generating catalyst such as N-hydroxyphthalimide (NHPI) (see, for example, Non-Patent Document 1). If this synthesis method can be used on a vehicle, it is considered that hydrocarbons contained in gasoline can be converted into alcohol having a high octane number and high octane fuel can be supplied to the engine according to engine requirements.
  • NHPI N-hydroxyphthalimide
  • the present invention has been made in view of the above, and an object thereof is to provide a fuel reforming system that can convert gasoline mainly composed of hydrocarbons into high octane fuel on a vehicle.
  • a fuel reforming system of the present invention (for example, a fuel reforming system 1 described later) is a high octane fuel obtained by reforming a fuel mainly composed of hydrocarbons (for example, gasoline described later) using air.
  • a reformer for example, a reformer 15 to be described later
  • a reforming catalyst for example, a reforming catalyst 152 to be described later
  • a mixer for example, a mixer 14 to be described later
  • a condenser (for example, a condenser 16 to be described later) that separates into a phase and a gas phase.
  • the reforming catalyst includes a main catalyst that extracts a hydrogen atom from a hydrocarbon in the fuel to generate an alkyl radical; an alkyl hydroperoxide generated from the alkyl radical is reduced to generate an alcohol; and the alcohol is converted to the alkyl radical. And a co-catalyst that reacts with the catalyst to produce a ketone.
  • a fuel mainly composed of hydrocarbon and air are mixed and supplied to the reformer, and the fuel is reformed using air.
  • a main catalyst for extracting hydrogen atoms from hydrocarbons in the fuel to produce alkyl radicals, and alkyl hydroperoxides produced from the alkyl radicals are reduced to produce alcohols, and the alcohols are reacted with the alkyl radicals to form ketones.
  • a reforming catalyst including a cocatalyst for generating the catalyst is provided in the reformer.
  • the fuel mainly composed of hydrocarbons such as gasoline can be reformed and converted into a high octane fuel containing ketone, the octane number of the fuel can be improved.
  • the system configuration is simple and can be mounted on a vehicle, and high octane fuel containing ketone can be supplied to the engine on the vehicle according to the demand of the engine. Therefore, according to the invention of (1), even in an engine with an increased compression ratio, high thermal efficiency can be obtained while knocking is suppressed.
  • the main catalyst is preferably an N-hydroxyimide group-containing compound.
  • an N-hydroxyimide group-containing compound is used as the main catalyst.
  • the promoter is preferably a transition metal compound.
  • a transition metal compound is used as a promoter.
  • generated from the alkyl radical produced by extraction of the hydrogen atom by a main catalyst can be more reliably reduced and converted into alcohol, and a ketone can be produced
  • the promoter is preferably a compound selected from the group consisting of a cobalt compound, a manganese compound and a copper compound.
  • a compound selected from the group consisting of a cobalt compound, a manganese compound and a copper compound is used as a promoter.
  • a fuel reforming system includes a fuel tank (for example, a fuel tank 12 described later) for storing fuel before reforming, and an unreformed fuel stored in the fuel tank for an internal combustion engine (
  • a fuel supply means for example, a fuel supply unit 17 described later
  • a gas phase separated by the condenser is supplied to the intake port.
  • Phase supply means for example, a gas phase supply unit 20 described later
  • a reformed fuel tank for example, a reformed fuel tank 18 described later
  • reformed fuel supply means for example, a reformed fuel supply unit 19 described later
  • the fuel before reforming stored in the fuel tank is supplied into the cylinder or the intake port of the internal combustion engine, while the gas phase separated by the condenser is supplied into the intake port. Then, the reformed fuel in the condensed phase stored in the reformed fuel tank is supplied into the cylinder or the intake port.
  • high octane fuel containing ketone can be supplied on the vehicle according to the demand of the engine, so that high thermal efficiency can be obtained while suppressing knocking.
  • FIG. 1 is a diagram showing a configuration of a fuel reforming system 1 according to an embodiment of the present invention.
  • the fuel reforming system 1 of the present embodiment is mounted on a vehicle (not shown), and reforms hydrocarbons contained in the fuel into a high-octane fuel containing ketone according to the requirements of the engine (not shown) on the vehicle. To supply.
  • gasoline is used as the fuel and air is used as the oxidant.
  • the fuel reforming system 1 of the present embodiment reforms gasoline using an oxidation reaction by oxygen in the air, for example, under conditions that are milder at a lower temperature than reforming using a decomposition reaction or the like. Therefore, the system configuration can be simplified and the system is suitable for on-demand operation on a vehicle.
  • the fuel reforming system 1 includes an air introduction unit 11, a fuel tank 12, a fuel introduction unit 13, a mixer 14, a reformer 15, and a condenser 16.
  • the air introduction unit 11 is provided upstream of the mixer 14 described later, and introduces air as an oxidant into the mixer 14.
  • the air introduction unit 11 includes an air filter 111, an air pump 112, an air flow meter 113, and an air valve 114 in order from the upstream side of the air introduction pipe 110.
  • the air introduction unit 11 takes in air from the outside air via the air filter 111 by driving the air pump 112.
  • the air introduction unit 11 opens the air valve 114 to introduce the taken-in air into the mixer 14.
  • the amount of air introduced into the mixer 14 is adjusted based on the air flow rate detected by the air flow meter 113 by an electronic control unit (hereinafter referred to as “ECU”) (not shown). It is controlled by doing.
  • ECU electronice control unit
  • the fuel tank 12 stores gasoline mainly containing hydrocarbons as fuel. That is, the fuel tank 12 is a fuel tank provided in a normal vehicle, and stores gasoline before reforming.
  • the fuel supply unit 17 includes a fuel pump 171, a fuel supply pipe 172, and an injector (not shown).
  • the fuel supply unit 17 drives the fuel pump 171 to supply gasoline stored in the fuel tank 12 into a cylinder or an intake port of an engine (not shown) via the fuel supply pipe 172 and the injector.
  • the gasoline supply amount is controlled by adjusting the injection amount of the injector by the ECU.
  • the fuel introduction unit 13 is provided upstream of a mixer 14 described later, and introduces fuel gasoline into the mixer 14.
  • the fuel introduction unit 13 includes a reforming pump 131, a fuel flow meter 132, and a fuel valve 133 in order from the upstream side of the fuel introduction pipe 130.
  • the fuel introduction unit 13 drives the reforming pump 131 and opens the fuel valve 133 to introduce the gasoline stored in the fuel tank 12 into the mixer 14.
  • the amount of gasoline introduced into the mixer 14 is controlled by adjusting the opening of the fuel valve 133 by the ECU based on the fuel flow rate detected by the fuel flow meter 132.
  • the mixer 14 is provided upstream of the reformer 15 to be described later, and mixes fuel gasoline and air and supplies the mixture into the reformer 15.
  • the mixer 14 has a configuration capable of uniformly mixing the air introduced by the air introduction unit 11 and the liquid gasoline introduced by the fuel introduction unit 13.
  • the mixer 14 may be configured to generate small air bubbles by forming a connection portion between the air introduction pipe 110 and the mixer 14 in a small hole.
  • the mixer 14 may be comprised so that a vortex may be generated with the strong flow of air.
  • the mixer 14 includes a heater (not shown), and generates a mixture of gasoline and air by mixing gasoline and air while raising the temperature to a predetermined temperature.
  • the reformer 15 reforms the hydrocarbon, which is the main component of gasoline in the gas mixture supplied from the mixer 14, using the air in the gas mixture to produce a high octane fuel containing ketone.
  • the reformer 15 may be either a flow reactor or a complete mixing reactor.
  • the flow reactor is a mixture of gasoline and air introduced from the mixer 14 while being swept away like a piston without being mixed with the mixture supplied before and after the mixture in the reactor. It means a reactor that is reformed and flows out. Therefore, in the flow reactor, the composition of the fluid flowing out from the reactor and the composition of the fluid inside the reactor are different, and the variation in the residence time of the air-fuel mixture in the reactor is small.
  • the complete mixing reactor means a reactor in which a mixture of gasoline and air introduced from the mixer 14 is uniformly mixed with a reactant in the reformer and reformed. Therefore, in the complete mixing reactor, the composition of the fluid flowing out from the reactor and the composition of the fluid inside the reactor are the same, and the residence time inside the reactor of the mixer has a large variation.
  • the reformer 15 is provided with a temperature sensor (not shown) and a cooling unit 153 for cooling the interior of the reformer 15.
  • the cooling unit 153 is controlled by the ECU based on the temperature detected by the temperature sensor, and cools the reformer 15 by supplying engine coolant (not shown) to the reformer 15.
  • the engine cooling water temperature is preferably 70 ° C to 100 ° C. If the temperature of the engine cooling water is less than 70 ° C., the reforming reaction rate is small, and if it exceeds 100 ° C., it becomes difficult to use the engine cooling water.
  • the cooling unit 153 cools the reformer 15 with engine cooling water when the reforming reaction proceeds and the temperature in the reformer 15 is high, but at the initial stage of the reforming reaction, the reformer 15 When the temperature in 15 is low, the reformer 15 is warmed with engine cooling water.
  • the reformer 15 reforms hydrocarbons mainly contained in gasoline using air as an oxidant to generate alcohol and react the alcohol with an alkyl radical to generate ketone.
  • a reforming catalyst 152 is provided.
  • the reformer 15 includes a cylindrical casing 151 and a solid reforming catalyst 152 filled in the casing 151.
  • the solid reforming catalyst 152 includes a small spherical porous carrier, and a main catalyst and a promoter supported on the surface of the porous carrier.
  • the main catalyst and the cocatalyst are supported on the surface of a small spherical porous support in a uniformly mixed state.
  • the reforming catalyst 152 of the present embodiment has a small spherical porous carrier, which increases the surface area of the main catalyst and the promoter supported on the surface of the reforming catalyst 152. The contact area increases.
  • the small spherical porous carrier for example, silica beads, alumina beads, silica alumina beads and the like are used. Of these, silica beads are preferably used.
  • the particle size of the porous carrier is preferably 3 ⁇ m to 500 ⁇ m.
  • the main catalyst has the ability to extract hydrogen atoms from hydrocarbons in gasoline to generate alkyl radicals.
  • an N-hydroxyimide group-containing compound having an N-hydroxyimide group is used as the main catalyst.
  • N-hydroxyphthalimide hereinafter referred to as “NHPI”
  • NHPI derivative is preferably used.
  • the cocatalyst has an ability to reduce an alkyl hydroperoxide generated from an alkyl radical to generate an alcohol and to react the alcohol with an alkyl radical to generate a ketone.
  • a transition metal compound is used as the promoter.
  • a compound selected from the group consisting of a cobalt compound, a manganese compound, and a copper compound is preferably used.
  • Cobalt acetate (II) or the like is used as the cobalt compound
  • manganese (II) acetate or the like is used as the manganese compound
  • copper (I) chloride or the like is used as the copper compound.
  • a conventionally known impregnation method or the like is employed as a method for supporting the main catalyst and the cocatalyst on the porous carrier. For example, after preparing a slurry containing a main catalyst and a promoter in a predetermined mixing ratio, a small spherical porous carrier is immersed in the prepared slurry. Next, the porous carrier is pulled up from the slurry to remove excess slurry adhering to the surface of the porous carrier, and then dried under predetermined conditions. Thereby, the reforming catalyst 152 in which the main catalyst and the promoter are uniformly supported on the surface of the porous carrier is obtained.
  • the reforming reaction of the present embodiment is initiated by a hydrogen abstraction reaction in which hydrogen atoms are extracted from hydrocarbons in gasoline to generate alkyl radicals.
  • This hydrogen abstraction reaction proceeds by the action of the main catalyst, radicals, oxygen molecules and the like.
  • RH represents a hydrocarbon
  • R. represents an alkyl radical.
  • reaction formula (2) the alkyl radical generated by the hydrogen abstraction reaction is combined with oxygen molecules to generate an alkyl peroxy radical.
  • Reaction formula (2) [In Reaction Formula (2), O 2 represents an oxygen molecule, and ROO ⁇ represents an alkyl peroxy radical. ]
  • reaction formula (3) the alkyl peroxy radical generated by the reaction formula (2) pulls out hydrogen atoms from hydrocarbons contained in gasoline to generate an alkyl hydroperoxide.
  • reaction formula (3) ROO ⁇ + RH ⁇ ROOH + R ⁇ ⁇ ⁇ ⁇ Reaction formula (3)
  • ROOH represents alkyl hydroperoxide.
  • hydrocarbons mainly contained in gasoline are oxidized and reformed and converted to alcohol. More specifically, since hydrocarbons contained in gasoline are hydrocarbons having 4 to 10 carbon atoms, these hydrocarbons are converted into alcohols having 4 to 10 carbon atoms. Of the alcohol ROH generated as described above, the majority is secondary alcohol R—CHOH—R ′.
  • gasoline can be reformed into a high octane fuel containing ketone, and the octane number of the fuel can be improved.
  • the condenser 16 is provided downstream of the reformer 15 and separates the generated gas generated by the reformer 15 into a condensed phase mainly composed of reformed fuel and a gas phase.
  • the condenser 16 has a heat exchanger (not shown) inside, and by cooling the product gas flowing out from the outlet of the reformer 15, it is converted into a condensed phase mainly composed of reformed fuel and a gas phase.
  • the condensed phase contains by-product water and the like in addition to the reformed fuel of high octane fuel containing ketone, and the gas phase contains nitrogen, oxygen, and other by-product gas components. It is.
  • the reformed fuel tank 18 stores the reformed fuel in the condensed phase separated by the condenser 16.
  • the reformed fuel tank 18 functions as a buffer tank that temporarily stores the reformed fuel of high octane fuel containing ketone generated by reforming gasoline by the reformer 15.
  • the reformed fuel supply unit 19 supplies the reformed fuel of high octane fuel containing the ketone stored in the reformed fuel tank 18 into the engine cylinder or the intake port.
  • the reformed fuel supply unit 19 includes a reformed fuel pump 191, a reformed fuel supply pipe 192, and an injector (not shown).
  • the reformed fuel supply unit 19 drives the reformed fuel pump 191 to reform the high-octane fuel containing ketone stored in the reformed fuel tank 18 through the reformed fuel supply pipe 192 and the injector.
  • Fuel is supplied into an intake port of an engine (not shown).
  • the alcohol supply amount is controlled by adjusting the injection amount of the injector by the ECU.
  • the vapor phase supply unit 20 supplies the vapor phase separated by the condenser 16 into the intake port of the engine.
  • the gas phase supply unit 20 includes a gas phase supply pipe 201 connected to the intake port of the engine.
  • the gas phase separated by the condenser 16 is supplied into the intake port of the engine via the gas phase supply pipe 201.
  • the fuel reforming system 1 of the present embodiment having the above configuration is controlled by the ECU and operates as follows. First, when it is determined that gasoline reform is required according to the operating state of the engine, it is determined whether or not the temperature of the engine cooling water is equal to or higher than a predetermined temperature. Immediately after the engine is started, when the temperature of the engine cooling water is lower than the predetermined temperature, the reformed fuel of the high octane fuel containing the ketone stored in the reformed fuel tank 18 at the previous reforming is supplied to the engine by the reformed fuel pump 191. Supply in the intake port.
  • the fuel valve 133 and the air valve 114 are opened.
  • the reforming pump 131 pumps gasoline from the fuel tank 12 and introduces it into the mixer 14.
  • air that has passed through the air filter 111 is introduced into the mixer 14 by the air pump 112.
  • the gasoline flow rate and the air flow rate meter 113 monitored by the fuel flow rate meter 132 are set so as to obtain a desired proper gasoline flow rate / air flow rate ratio and to obtain a desired proper reforming reaction time.
  • Feedback control of the opening degree of the fuel valve 133 and the air valve 114 is performed on the basis of the air flow rate monitored in (1). Thereby, the gasoline flow rate and the air flow rate are controlled.
  • the gasoline and air introduced into the mixer 14 are uniformly mixed while being heated to a predetermined temperature to obtain an air-fuel mixture, and then supplied into the reformer 15.
  • the hydrocarbons, which are the main components of gasoline in the air-fuel mixture supplied into the reformer 15, contain ketones as the above reaction formulas (1) to (8) proceed by the action of the reforming catalyst 152. Converted to high octane fuel.
  • supply of engine cooling water is controlled based on the temperature monitored by the temperature sensor. Thereby, the temperature in the reformer 15 is maintained at a desired appropriate temperature.
  • the product gas generated in the reformer 15 is cooled by a heat exchanger in the condenser 16 to be separated into a condensed phase and a gas phase.
  • the separated condensed phase mainly contains high-octane reformed fuel containing ketone, and the reformed fuel is introduced into the reformed fuel tank 18 and stored.
  • the reformed fuel in the reformed fuel tank 18 is supplied into the intake port of the engine by the reformed fuel pump 191.
  • the separated gas phase is introduced into the intake port of the engine and is used for combustion in the cylinder of the engine.
  • the air pump 112 is stopped and the air valve is closed to supply the air into the mixer 14. Stop.
  • the reforming pump 131 is stopped, the fuel valve 133 is closed, and the supply of gasoline into the mixer 14 is stopped. This avoids a situation in which the reforming reaction proceeds due to oxygen remaining in the reformer 15 while the system is stopped.
  • the octane number RON of the high octane fuel containing the ketone obtained by the fuel reforming system 1 of the present embodiment is estimated by, for example, igniting the fuel with a commercially available spray ignition test apparatus and measuring the ignition delay time at this time. Is possible. That is, since the high-octane fuel has a higher boiling point as the octane number increases, the octane number can be estimated based on the ignition delay time.
  • FIG. 2 is a diagram showing a configuration of a spray ignition test apparatus (“FIA-100” manufactured by Fuel Tech).
  • the spray ignition test device 90 is a constant volume combustor 92 having a fuel injection device 91.
  • the spray ignition test device 90 includes a nozzle 93 connected to the fuel injection device 91, a combustion chamber 94, a heater 95 attached to the outer wall of the combustion chamber, a cooling water pipe 96, an intake pipe 97, an exhaust pipe 98, Pressure sensor 99.
  • this spray ignition test apparatus 90 first, the combustion chamber 94 is heated by the heater 95, and the inside of the combustion chamber 94 is set to a predetermined temperature. Next, in this state, air is sucked from the intake pipe 97 and the fuel injection device 91 is driven at a predetermined pressure to inject fuel from the nozzle 93 into the combustion chamber. The pressure in the combustion chamber at this time is detected by the pressure sensor 99, and the ignition delay time is calculated based on the time from injection to a predetermined pressure increase.
  • test conditions of the spray ignition test apparatus 90 are as follows, for example.
  • measurement is performed at least 10 times for each fuel, and the ignition delay time is defined as, for example, the time from injection to a pressure increase of 0.2 MPa.
  • Temperature 500 ° C Pressure: 4MPa Injection pressure: 100 MPa Injection time: 10ms
  • FIG. 3 is a diagram showing the relationship between the octane number RON and the ignition delay time.
  • FIG. 3 shows a calibration curve obtained by carrying out the measurement by the spray ignition test apparatus 90 in accordance with the test conditions described above for a fuel having a known octane number.
  • the horizontal axis represents the octane number RON
  • the vertical axis represents the ignition delay time.
  • the octane number when the octane number RON increases, the ignition delay time increases, and it is found that there is a correlation between both.
  • the octane number can be estimated.
  • a gasoline surrogate (63% by volume of isooctane with RON of 100, 17% by volume of heptane with RON of 0, and 20% by volume of toluene) is used as the reference fuel for the octane number RON.
  • RON is 100 when heptane is completely substituted with the ketone 2-heptanone (isooctane, 2-heptanone and toluene).
  • the RON of 2-heptanone can be obtained, and a fuel with a known octane number can be obtained.
  • the calibration curve shown in FIG. 3 can be obtained by measuring the ignition delay time of the fuel having the known octane number.
  • a mixer 14 that mixes gasoline mainly composed of hydrocarbon and air and supplies the mixture to the reformer 15; and gasoline using the air
  • a reformer 15 for reforming to produce a high octane fuel and a condenser 16 for separating the product gas produced by the reformer 15 into a condensed phase and a gas phase are provided.
  • the reformer 15 is provided with a reforming catalyst 152 configured to include a cocatalyst for generating the catalyst.
  • a reforming catalyst 152 configured to include a cocatalyst for generating the catalyst.
  • an N-hydroxyimide group-containing compound was used as the main catalyst. Therefore, since a hydrogen atom can be more reliably extracted from the hydrocarbon in gasoline, the hydrocarbon can be more reliably converted into alcohol, and a ketone can be generated from the alcohol. Therefore, the effect of the invention of the above (1) is more reliably exhibited.
  • a transition metal compound was used as a promoter.
  • generated from the alkyl radical produced by extraction of the hydrogen atom by a main catalyst can be more reliably reduced and converted into alcohol, and a ketone can be produced
  • a compound selected from the group consisting of a cobalt compound, a manganese compound, and a copper compound was used as a promoter.
  • generated from the alkyl radical produced by extraction of the hydrogen atom by a main catalyst can be reduced
  • the unreformed gasoline stored in the fuel tank 12 is supplied into the engine cylinder or the intake port, while the gas phase separated by the condenser 16 is supplied into the intake port.
  • the reformed fuel alcohol stored in the reformed fuel tank 18 was supplied into the cylinder or the intake port.
  • gasoline is used as a fuel, it is not limited to this.
  • alcohol-containing gasoline containing alcohol such as ethanol
  • the same effects as those of the above-described embodiment can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

Provided is a fuel-reforming system capable of converting gasoline having hydrocarbons as the principal component thereof into a high-octane fuel while in a vehicle. The fuel-reforming system 1 is equipped with: a reformer 15 equipped with a reforming catalyst 152 for producing a high-octane fuel by reforming gasoline having hydrocarbons as the principal component thereof by using air; a mixer 14 for mixing the gasoline and air with one another and supplying the same to the reformer 15; and a condenser 16 for separating the produced gas that is produced by the reformer 15 into a gas phase and a condensed phase that has the reformed fuel as the principal component thereof. The fuel-reforming system 1 is characterized in that the reforming catalyst 152 is configured so as to include: a main catalyst for producing alkyl radicals by removing hydrogen atoms from the hydrocarbons in the gasoline; and a promoter for producing alcohol by reducing the alkyl hydroperoxide that is produced from the alkyl radicals, and producing ketone by reacting the alcohol with the alkyl radicals.

Description

燃料改質システムFuel reforming system
 本発明は、燃料改質システムに関する。詳しくは、炭化水素を主体とする燃料を改質することで燃料のオクタン価を向上できる燃料改質システムに関する。 The present invention relates to a fuel reforming system. More specifically, the present invention relates to a fuel reforming system that can improve the octane number of fuel by reforming fuel mainly composed of hydrocarbons.
 予め混合した燃料と空気の混合気を点火プラグによる火花点火で燃焼させるガソリンエンジンでは、点火プラグから離隔した未燃焼の混合気(エンドガス)が自着火することで、ノッキングが生じることが知られている。ノッキングは、エンジンの圧縮比を高めると生じ易くなるため、近年の高圧縮比エンジンでは、ノッキングの抑制が強く求められている。 In a gasoline engine that burns a premixed fuel / air mixture by spark ignition with an ignition plug, it is known that knocking occurs when the unburned mixture (end gas) separated from the ignition plug self-ignites. Yes. Since knocking is likely to occur when the compression ratio of the engine is increased, suppression of knocking is strongly demanded in recent high compression ratio engines.
 ノッキングを抑制する方法としては、点火時期を遅角する方法が挙げられる。しかしながら、点火時期を遅角すると、エンジンの熱効率が低下する。そのため、高圧縮比エンジンにおいても、ノッキングを抑制しつつ高い熱効率が得られる技術の開発が望まれる。 As a method of suppressing knocking, there is a method of retarding the ignition timing. However, if the ignition timing is retarded, the thermal efficiency of the engine decreases. Therefore, it is desired to develop a technology capable of obtaining high thermal efficiency while suppressing knocking even in a high compression ratio engine.
 ところで、ノッキングは燃料のオクタン価を高めることで抑制できるため、オクタン価の高い燃料として、ガソリン中にエタノール等のアルコールを予め混合したアルコール含有燃料が一部の地域で広く用いられている。また、このようなアルコール含有燃料の普及に伴い、外部から給油されたアルコール含有燃料を、車両上で高ガソリン濃度の燃料と高アルコール濃度の燃料とに分離する技術の開発が進められている。ガソリンとアルコールとでは、例えばオクタン価や発熱量等の燃料物性において種々の相違点があるため、外部から給油されたアルコール含有燃料をそのまま利用するよりも、車両上で分離し、用途に応じてガソリンとアルコールとを使い分けた方が好ましいからである。ただし、エンジンの要求に応じた分離は容易ではない。 Incidentally, since knocking can be suppressed by increasing the octane number of the fuel, alcohol-containing fuels in which alcohol such as ethanol is mixed in advance with gasoline are widely used as fuels with high octane number in some areas. In addition, with the widespread use of such alcohol-containing fuels, development of technology for separating alcohol-containing fuel supplied from the outside into a fuel with a high gasoline concentration and a fuel with a high alcohol concentration on a vehicle is underway. There are various differences in fuel properties such as octane number and calorific value between gasoline and alcohol. For example, gasoline and alcohol are separated on the vehicle rather than using the alcohol-containing fuel supplied from the outside as it is. This is because it is preferable to properly use alcohol and alcohol. However, separation according to engine requirements is not easy.
 一方、N-ヒドロキシフタルイミド(NHPI)等の炭素ラジカル生成触媒を用いて、炭化水素をアルコールに変換させる合成方法が提案されている(例えば、非特許文献1参照)。この合成方法を車両上で利用できれば、エンジンの要求に応じて、ガソリン中に含まれる炭化水素をオクタン価の高いアルコールに変換でき、高オクタン価燃料をエンジンに供給できると考えられる。 On the other hand, a synthesis method has been proposed in which hydrocarbons are converted into alcohols using a carbon radical generating catalyst such as N-hydroxyphthalimide (NHPI) (see, for example, Non-Patent Document 1). If this synthesis method can be used on a vehicle, it is considered that hydrocarbons contained in gasoline can be converted into alcohol having a high octane number and high octane fuel can be supplied to the engine according to engine requirements.
 しかしながら、上述の炭素ラジカル生成触媒を用いて、ガソリンを高オクタン価燃料に変換する検討については、これまでのところなされていないのが現状である。従って、車両上でガソリンを高オクタン価燃料に変換する技術を確立できれば、エンジンの要求に応じて高オクタン価燃料を供給することができ、ノッキングを抑制しつつ高い熱効率を得ることが可能となるため、極めて有益である。 However, there has been no investigation so far on the conversion of gasoline to high octane fuel using the above-mentioned carbon radical production catalyst. Therefore, if technology for converting gasoline to high octane fuel on the vehicle can be established, high octane fuel can be supplied according to engine requirements, and high thermal efficiency can be obtained while suppressing knocking. Very beneficial.
 本発明は上記に鑑みてなされたものであり、その目的は、炭化水素を主体としたガソリンを車両上で高オクタン価燃料に変換できる燃料改質システムを提供することにある。 The present invention has been made in view of the above, and an object thereof is to provide a fuel reforming system that can convert gasoline mainly composed of hydrocarbons into high octane fuel on a vehicle.
 (1)本発明の燃料改質システム(例えば、後述の燃料改質システム1)は、炭化水素を主体とする燃料(例えば、後述のガソリン)を、空気を用いて改質して高オクタン価燃料を生成させる改質触媒(例えば、後述の改質触媒152)を備える改質器(例えば、後述の改質器15)と、前記改質器の上流に設けられ、前記燃料と空気を混合して前記改質器に供給する混合器(例えば、後述の混合器14)と、前記改質器の下流に設けられ、前記改質器で生成した生成ガスを、改質燃料を主体とする凝縮相と、気相とに分離する凝縮器(例えば、後述の凝縮器16)と、を備える。前記改質触媒は、前記燃料中の炭化水素から水素原子を引き抜いてアルキルラジカルを生成させる主触媒と、アルキルラジカルから生成するアルキルヒドロペルオキシドを還元してアルコールを生成させるとともに該アルコールを前記アルキルラジカルと反応させてケトンを生成させる助触媒と、を含んで構成される。 (1) A fuel reforming system of the present invention (for example, a fuel reforming system 1 described later) is a high octane fuel obtained by reforming a fuel mainly composed of hydrocarbons (for example, gasoline described later) using air. A reformer (for example, a reformer 15 to be described later) including a reforming catalyst (for example, a reforming catalyst 152 to be described later) and an upstream of the reformer to mix the fuel and air. A mixer (for example, a mixer 14 to be described later) that supplies the reformer, and a product gas that is provided downstream of the reformer and that is generated by the reformer, mainly composed of reformed fuel. A condenser (for example, a condenser 16 to be described later) that separates into a phase and a gas phase. The reforming catalyst includes a main catalyst that extracts a hydrogen atom from a hydrocarbon in the fuel to generate an alkyl radical; an alkyl hydroperoxide generated from the alkyl radical is reduced to generate an alcohol; and the alcohol is converted to the alkyl radical. And a co-catalyst that reacts with the catalyst to produce a ketone.
 (1)の発明に係る燃料改質システムでは、上流側から順に、炭化水素を主体とする燃料と空気を混合して改質器に供給する混合器と、空気を用いて燃料を改質して高オクタン価燃料を生成させる改質器と、改質器で生成した生成ガスを凝縮相と気相とに分離する凝縮器と、を設ける。また、燃料中の炭化水素から水素原子を引き抜いてアルキルラジカルを生成させる主触媒と、アルキルラジカルから生成するアルキルヒドロペルオキシドを還元してアルコールを生成させるとともに該アルコールを前記アルキルラジカルと反応させてケトンを生成させる助触媒と、を含んで構成される改質触媒を改質器に設ける。
 (1)の発明によれば、ガソリン等の炭化水素を主体とする燃料を改質してケトンを含む高オクタン価燃料に変換できるため、燃料のオクタン価を向上できる。また、酸化剤として空気を用いることから、システムの構成が簡易であるため車両に搭載が可能であり、車両上でエンジンの要求に応じて、ケトンを含む高オクタン価燃料をエンジンに供給できる。従って、(1)の発明によれば、圧縮比を高めたエンジンであっても、ノッキングを抑制しつつ高い熱効率が得られる。
In the fuel reforming system according to the invention of (1), in order from the upstream side, a fuel mainly composed of hydrocarbon and air are mixed and supplied to the reformer, and the fuel is reformed using air. A reformer that produces high octane fuel and a condenser that separates the product gas produced by the reformer into a condensed phase and a gas phase. In addition, a main catalyst for extracting hydrogen atoms from hydrocarbons in the fuel to produce alkyl radicals, and alkyl hydroperoxides produced from the alkyl radicals are reduced to produce alcohols, and the alcohols are reacted with the alkyl radicals to form ketones. A reforming catalyst including a cocatalyst for generating the catalyst is provided in the reformer.
According to the invention of (1), since the fuel mainly composed of hydrocarbons such as gasoline can be reformed and converted into a high octane fuel containing ketone, the octane number of the fuel can be improved. In addition, since air is used as the oxidant, the system configuration is simple and can be mounted on a vehicle, and high octane fuel containing ketone can be supplied to the engine on the vehicle according to the demand of the engine. Therefore, according to the invention of (1), even in an engine with an increased compression ratio, high thermal efficiency can be obtained while knocking is suppressed.
 (2)前記主触媒は、N-ヒドロキシイミド基含有化合物であることが好ましい。 (2) The main catalyst is preferably an N-hydroxyimide group-containing compound.
 (2)の発明では、主触媒として、N-ヒドロキシイミド基含有化合物を用いる。これにより、燃料中の炭化水素から水素原子をより確実に引き抜くことができるため、炭化水素をより確実にアルコールに変換でき、該アルコールからケトンを生成させることができる。従って、(2)の発明によれば、上記(1)の発明の効果がより確実に発揮される。 In the invention of (2), an N-hydroxyimide group-containing compound is used as the main catalyst. Thereby, since a hydrogen atom can be more reliably extracted from the hydrocarbon in the fuel, the hydrocarbon can be more reliably converted into an alcohol, and a ketone can be generated from the alcohol. Therefore, according to the invention of (2), the effect of the invention of (1) is more reliably exhibited.
 (3)前記助触媒は、遷移金属化合物であることが好ましい。 (3) The promoter is preferably a transition metal compound.
 (3)の発明では、助触媒として、遷移金属化合物を用いる。これにより、主触媒による水素原子の引き抜きにより生じたアルキルラジカルから生成するアルキルヒドロペルオキシドを、より確実に還元してアルコールに変換でき、該アルコールからケトンを生成させることができる。従って、(3)の発明によれば、上記(1)~(2)の発明の効果がより確実に発揮される。 In the invention of (3), a transition metal compound is used as a promoter. Thereby, the alkyl hydroperoxide produced | generated from the alkyl radical produced by extraction of the hydrogen atom by a main catalyst can be more reliably reduced and converted into alcohol, and a ketone can be produced | generated from this alcohol. Therefore, according to the invention of (3), the effects of the inventions of (1) to (2) are more reliably exhibited.
 (4)前記助触媒は、コバルト化合物、マンガン化合物及び銅化合物からなる群より選ばれる化合物であることが好ましい。 (4) The promoter is preferably a compound selected from the group consisting of a cobalt compound, a manganese compound and a copper compound.
 (4)の発明では、助触媒として、コバルト化合物、マンガン化合物及び銅化合物からなる群より選ばれる化合物を用いる。これにより、主触媒による水素原子の引き抜きにより生じたアルキルラジカルから生成するアルキルヒドロペルオキシドを、さらに確実に還元してアルコールに変換でき、該アルコールからケトンを生成させることができる。従って、(3)の発明によれば、上記(1)~(2)の発明の効果がさらに確実に発揮される。 In the invention of (4), a compound selected from the group consisting of a cobalt compound, a manganese compound and a copper compound is used as a promoter. Thereby, the alkyl hydroperoxide produced | generated from the alkyl radical produced by extraction of the hydrogen atom by a main catalyst can be reduced | restored more reliably and converted into alcohol, and a ketone can be produced | generated from this alcohol. Therefore, according to the invention of (3), the effects of the inventions of (1) to (2) are more reliably exhibited.
 (5)本発明の燃料改質システムは、改質前の燃料を貯留する燃料タンク(例えば、後述の燃料タンク12)と、前記燃料タンクに貯留された改質前の燃料を、内燃機関(例えば、後述のエンジン)の気筒内又は吸気ポート内に供給する燃料供給手段(例えば、後述の燃料供給部17)と、前記凝縮器で分離された気相を、前記吸気ポート内に供給する気相供給手段(例えば、後述の気相供給部20)と、前記凝縮器で分離された凝縮相中の改質燃料を貯留する改質燃料タンク(例えば、後述の改質燃料タンク18)と、前記改質燃料タンクに貯留された改質燃料を、前記気筒内又は前記吸気ポート内に供給する改質燃料供給手段(例えば、後述の改質燃料供給部19)と、をさらに備えることが好ましい。 (5) A fuel reforming system according to the present invention includes a fuel tank (for example, a fuel tank 12 described later) for storing fuel before reforming, and an unreformed fuel stored in the fuel tank for an internal combustion engine ( For example, a fuel supply means (for example, a fuel supply unit 17 described later) that supplies gas into a cylinder or an intake port of an engine described later and a gas phase separated by the condenser is supplied to the intake port. Phase supply means (for example, a gas phase supply unit 20 described later), a reformed fuel tank (for example, a reformed fuel tank 18 described later) for storing the reformed fuel in the condensed phase separated by the condenser, It is preferable to further comprise reformed fuel supply means (for example, a reformed fuel supply unit 19 described later) for supplying the reformed fuel stored in the reformed fuel tank into the cylinder or the intake port. .
 (5)の発明では、燃料タンクに貯留された改質前の燃料を内燃機関の気筒内又は吸気ポート内に供給する一方で、凝縮器で分離された気相を吸気ポート内に供給するとともに、改質燃料タンクに貯留された凝縮相中の改質燃料を気筒内又は吸気ポート内に供給する。これにより、車両上でエンジンの要求に応じて、ケトンを含む高オクタン価燃料を供給することができるため、ノッキングを抑制しつつ高い熱効率が得られる。 In the invention of (5), the fuel before reforming stored in the fuel tank is supplied into the cylinder or the intake port of the internal combustion engine, while the gas phase separated by the condenser is supplied into the intake port. Then, the reformed fuel in the condensed phase stored in the reformed fuel tank is supplied into the cylinder or the intake port. As a result, high octane fuel containing ketone can be supplied on the vehicle according to the demand of the engine, so that high thermal efficiency can be obtained while suppressing knocking.
 本発明によれば、炭化水素を主体としたガソリンを車両上で高オクタン価燃料に変換できる燃料改質システムを提供できる。 According to the present invention, it is possible to provide a fuel reforming system capable of converting gasoline mainly composed of hydrocarbon into high octane fuel on a vehicle.
本発明の一実施形態に係る燃料改質システムの構成を示す図である。It is a figure showing composition of a fuel reforming system concerning one embodiment of the present invention. 噴霧着火試験装置の構成を示す図である。It is a figure which shows the structure of a spray ignition test apparatus. オクタン価RONと着火遅れ時間との関係を示す図である。It is a figure which shows the relationship between octane number RON and ignition delay time.
 本発明の一実施形態について、図面を参照しながら詳細に説明する。
 図1は、本発明の一実施形態に係る燃料改質システム1の構成を示す図である。本実施形態の燃料改質システム1は、図示しない車両に搭載され、車両上で図示しないエンジンの要求に応じて、燃料中に含まれる炭化水素をケトンを含む高オクタン価燃料に改質してエンジンに供給する。本実施形態の燃料改質システム1では、燃料としてガソリンを用い、酸化剤として空気を用いる。即ち、本実施形態の燃料改質システム1は、空気中の酸素による酸化反応を利用してガソリンを改質することから、例えば分解反応等を利用した改質と比べて低温で温和な条件下で改質が可能であるため、システム構成を簡易化でき、車両上でのオンデマンド運転に適したシステムである。
An embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a fuel reforming system 1 according to an embodiment of the present invention. The fuel reforming system 1 of the present embodiment is mounted on a vehicle (not shown), and reforms hydrocarbons contained in the fuel into a high-octane fuel containing ketone according to the requirements of the engine (not shown) on the vehicle. To supply. In the fuel reforming system 1 of the present embodiment, gasoline is used as the fuel and air is used as the oxidant. That is, since the fuel reforming system 1 of the present embodiment reforms gasoline using an oxidation reaction by oxygen in the air, for example, under conditions that are milder at a lower temperature than reforming using a decomposition reaction or the like. Therefore, the system configuration can be simplified and the system is suitable for on-demand operation on a vehicle.
 図1に示すように、本実施形態に係る燃料改質システム1は、空気導入部11と、燃料タンク12と、燃料導入部13と、混合器14と、改質器15と、凝縮器16と、燃料供給部17と、改質燃料タンク18と、改質燃料供給部19と、気相供給部20と、を含んで構成される。 As shown in FIG. 1, the fuel reforming system 1 according to this embodiment includes an air introduction unit 11, a fuel tank 12, a fuel introduction unit 13, a mixer 14, a reformer 15, and a condenser 16. A fuel supply unit 17, a reformed fuel tank 18, a reformed fuel supply unit 19, and a gas phase supply unit 20.
 空気導入部11は、後述する混合器14の上流に設けられ、混合器14内に酸化剤としての空気を導入する。空気導入部11は、空気導入管110の上流側から順に、空気フィルタ111と、空気ポンプ112と、空気流量計113と、空気バルブ114と、を備える。空気導入部11は、空気ポンプ112を駆動することで、空気フィルタ111を介して外気から空気を取り込む。また、空気導入部11は、空気バルブ114を開弁することで、取り込んだ空気を混合器14内に導入する。混合器14内への空気の導入量は、空気流量計113で検出された空気流量に基づいて、図示しない電子制御ユニット(以下、「ECU」という。)により、空気バルブ114の開度を調整することで制御される。 The air introduction unit 11 is provided upstream of the mixer 14 described later, and introduces air as an oxidant into the mixer 14. The air introduction unit 11 includes an air filter 111, an air pump 112, an air flow meter 113, and an air valve 114 in order from the upstream side of the air introduction pipe 110. The air introduction unit 11 takes in air from the outside air via the air filter 111 by driving the air pump 112. The air introduction unit 11 opens the air valve 114 to introduce the taken-in air into the mixer 14. The amount of air introduced into the mixer 14 is adjusted based on the air flow rate detected by the air flow meter 113 by an electronic control unit (hereinafter referred to as “ECU”) (not shown). It is controlled by doing.
 燃料タンク12は、燃料として、炭化水素を主体的に含むガソリンを貯留する。即ち、燃料タンク12は、通常の車両に設けられる燃料タンクであり、改質前のガソリンを貯留する。 The fuel tank 12 stores gasoline mainly containing hydrocarbons as fuel. That is, the fuel tank 12 is a fuel tank provided in a normal vehicle, and stores gasoline before reforming.
 燃料供給部17は、燃料ポンプ171と、燃料供給管172と、図示しないインジェクタと、を備える。燃料供給部17は、燃料ポンプ171を駆動することで、燃料供給管172及びインジェクタを介して、燃料タンク12内に貯留されたガソリンを図示しないエンジンの気筒内又は吸気ポート内に供給する。ガソリン供給量は、ECUによりインジェクタの噴射量を調整することで制御される。 The fuel supply unit 17 includes a fuel pump 171, a fuel supply pipe 172, and an injector (not shown). The fuel supply unit 17 drives the fuel pump 171 to supply gasoline stored in the fuel tank 12 into a cylinder or an intake port of an engine (not shown) via the fuel supply pipe 172 and the injector. The gasoline supply amount is controlled by adjusting the injection amount of the injector by the ECU.
 燃料導入部13は、後述する混合器14の上流に設けられ、混合器14内に燃料のガソリンを導入する。燃料導入部13は、燃料導入管130の上流側から順に、改質ポンプ131と、燃料流量計132と、燃料バルブ133と、を備える。燃料導入部13は、改質ポンプ131を駆動するとともに燃料バルブ133を開弁することで、燃料タンク12内に貯留されたガソリンを混合器14内に導入する。混合器14内へのガソリンの導入量は、燃料流量計132で検出された燃料流量に基づいて、ECUにより燃料バルブ133の開度を調整することで制御される。 The fuel introduction unit 13 is provided upstream of a mixer 14 described later, and introduces fuel gasoline into the mixer 14. The fuel introduction unit 13 includes a reforming pump 131, a fuel flow meter 132, and a fuel valve 133 in order from the upstream side of the fuel introduction pipe 130. The fuel introduction unit 13 drives the reforming pump 131 and opens the fuel valve 133 to introduce the gasoline stored in the fuel tank 12 into the mixer 14. The amount of gasoline introduced into the mixer 14 is controlled by adjusting the opening of the fuel valve 133 by the ECU based on the fuel flow rate detected by the fuel flow meter 132.
 混合器14は、後述する改質器15の上流に設けられ、燃料のガソリンと空気を混合して改質器15内に供給する。混合器14は、空気導入部11により導入される空気と、燃料導入部13により導入される液状のガソリンとを均一に混合可能な構成となっている。具体的には、例えば混合器14は、空気導入管110と混合器14の接続部を小孔に形成することで、小さな空気泡を生成するように構成されていてよい。また、混合器14は、空気の強い流れで渦を発生させるように構成されていてもよい。なお、混合器14は、図示しないヒータを備えており、ガソリン及び空気を所定の温度まで昇温しながら混合することで、ガソリンと空気の混合気を生成する。 The mixer 14 is provided upstream of the reformer 15 to be described later, and mixes fuel gasoline and air and supplies the mixture into the reformer 15. The mixer 14 has a configuration capable of uniformly mixing the air introduced by the air introduction unit 11 and the liquid gasoline introduced by the fuel introduction unit 13. Specifically, for example, the mixer 14 may be configured to generate small air bubbles by forming a connection portion between the air introduction pipe 110 and the mixer 14 in a small hole. Moreover, the mixer 14 may be comprised so that a vortex may be generated with the strong flow of air. The mixer 14 includes a heater (not shown), and generates a mixture of gasoline and air by mixing gasoline and air while raising the temperature to a predetermined temperature.
 改質器15は、混合器14から供給される混合気中のガソリンの主成分である炭化水素を、混合気中の空気を用いて改質してケトンを含む高オクタン価燃料を生成させる。具体的には、改質器15としては、流通反応器及び完全混合反応器のいずれであってもよい。 The reformer 15 reforms the hydrocarbon, which is the main component of gasoline in the gas mixture supplied from the mixer 14, using the air in the gas mixture to produce a high octane fuel containing ketone. Specifically, the reformer 15 may be either a flow reactor or a complete mixing reactor.
 ここで、流通反応器とは、混合器14から導入されたガソリンと空気の混合気が、その前後に供給された混合気と反応器内部で混合されることなく、ピストンのように押し流されながら改質されて流出する反応器を意味する。そのため、流通反応器では、反応器から流出する流体の組成と反応器内部の流体の組成は相違し、混合気の反応器内部における滞在時間のばらつきが小さい特性を有する。
 これに対して、完全混合反応器とは、混合器14から導入されたガソリンと空気の混合気が、改質器内で反応物と均一に混合されて改質される反応器を意味する。そのため、完全混合反応器では、反応器から流出する流体の組成と反応器内部の流体の組成は同一であり、混合器の反応器内部における滞在時間のばらつきが大きい特性を有する。
Here, the flow reactor is a mixture of gasoline and air introduced from the mixer 14 while being swept away like a piston without being mixed with the mixture supplied before and after the mixture in the reactor. It means a reactor that is reformed and flows out. Therefore, in the flow reactor, the composition of the fluid flowing out from the reactor and the composition of the fluid inside the reactor are different, and the variation in the residence time of the air-fuel mixture in the reactor is small.
On the other hand, the complete mixing reactor means a reactor in which a mixture of gasoline and air introduced from the mixer 14 is uniformly mixed with a reactant in the reformer and reformed. Therefore, in the complete mixing reactor, the composition of the fluid flowing out from the reactor and the composition of the fluid inside the reactor are the same, and the residence time inside the reactor of the mixer has a large variation.
 図1に示すように、改質器15には、図示しない温度センサと、改質器15内を冷却するための冷却部153と、が設けられる。冷却部153は、温度センサの検出温度に基づいてECUにより制御され、図示しないエンジンの冷却水を改質器15に供給することで改質器15を冷却する。エンジン冷却水の温度は、70℃~100℃が好ましい。エンジン冷却水の温度が70℃未満では改質反応速度が小さく、100℃を超えるとエンジン冷却水の使用が難しくなる。なお、冷却部153は、改質反応が進行して改質器15内の温度が高温の場合には、エンジン冷却水で改質器15を冷却するが、改質反応の初期で改質器15内の温度が低温の場合には、逆にエンジン冷却水で改質器15を暖める作用をもたらす。 As shown in FIG. 1, the reformer 15 is provided with a temperature sensor (not shown) and a cooling unit 153 for cooling the interior of the reformer 15. The cooling unit 153 is controlled by the ECU based on the temperature detected by the temperature sensor, and cools the reformer 15 by supplying engine coolant (not shown) to the reformer 15. The engine cooling water temperature is preferably 70 ° C to 100 ° C. If the temperature of the engine cooling water is less than 70 ° C., the reforming reaction rate is small, and if it exceeds 100 ° C., it becomes difficult to use the engine cooling water. The cooling unit 153 cools the reformer 15 with engine cooling water when the reforming reaction proceeds and the temperature in the reformer 15 is high, but at the initial stage of the reforming reaction, the reformer 15 When the temperature in 15 is low, the reformer 15 is warmed with engine cooling water.
 また、改質器15は、ガソリン中に主体的に含まれる炭化水素を、酸化剤としての空気を用いて改質し、アルコールを生成させるとともに該アルコールをアルキルラジカルと反応させてケトンを生成させる改質触媒152を備える。具体的には、改質器15は、円筒状のケーシング151と、ケーシング151内に充填された固体状の改質触媒152と、を備える。 Further, the reformer 15 reforms hydrocarbons mainly contained in gasoline using air as an oxidant to generate alcohol and react the alcohol with an alkyl radical to generate ketone. A reforming catalyst 152 is provided. Specifically, the reformer 15 includes a cylindrical casing 151 and a solid reforming catalyst 152 filled in the casing 151.
 固体状の改質触媒152は、小球状の多孔質担体と、当該多孔質担体の表面に担持された主触媒及び助触媒と、を含んで構成される。主触媒及び助触媒は、均一に混合された状態で、小球状の多孔質担体の表面に担持される。このように本実施形態の改質触媒152は、多孔質担体が小球状であることにより、その表面に担持される主触媒及び助触媒の表面積が増大し、燃料のガソリンや酸化剤の空気との接触面積が増大する。 The solid reforming catalyst 152 includes a small spherical porous carrier, and a main catalyst and a promoter supported on the surface of the porous carrier. The main catalyst and the cocatalyst are supported on the surface of a small spherical porous support in a uniformly mixed state. As described above, the reforming catalyst 152 of the present embodiment has a small spherical porous carrier, which increases the surface area of the main catalyst and the promoter supported on the surface of the reforming catalyst 152. The contact area increases.
 小球状の多孔質担体としては、例えば、シリカビーズ、アルミナビーズ、シリカアルミナビーズ等が用いられる。中でも、シリカビースが好ましく用いられる。多孔質担体の粒径は、好ましくは3μm~500μmである。 As the small spherical porous carrier, for example, silica beads, alumina beads, silica alumina beads and the like are used. Of these, silica beads are preferably used. The particle size of the porous carrier is preferably 3 μm to 500 μm.
 主触媒は、ガソリン中の炭化水素から水素原子を引き抜いてアルキルラジカルを生成させる能力を有する。具体的には、主触媒としては、N-ヒドロキシイミド基を有するN-ヒドロキシイミド基含有化合物が用いられる。中でも、N-ヒドロキシフタルイミド(以下、「NHPI」という。)又はNHPI誘導体が好ましく用いられる。 The main catalyst has the ability to extract hydrogen atoms from hydrocarbons in gasoline to generate alkyl radicals. Specifically, an N-hydroxyimide group-containing compound having an N-hydroxyimide group is used as the main catalyst. Among these, N-hydroxyphthalimide (hereinafter referred to as “NHPI”) or an NHPI derivative is preferably used.
 助触媒は、アルキルラジカルから生成するアルキルヒドロペルオキシドを還元してアルコールを生成させるとともに該アルコールをアルキルラジカルと反応させてケトンを生成させる能力を有する。具体的には、助触媒としては、遷移金属化合物が用いられる。中でも、コバルト化合物、マンガン化合物及び銅化合物からなる群より選ばれる化合物が好ましく用いられる。コバルト化合物としては酢酸コバルト(II)等が用いられ、マンガン化合物としては酢酸マンガン(II)等が用いられ、銅化合物としては塩化銅(I)等が用いられる。 The cocatalyst has an ability to reduce an alkyl hydroperoxide generated from an alkyl radical to generate an alcohol and to react the alcohol with an alkyl radical to generate a ketone. Specifically, a transition metal compound is used as the promoter. Among these, a compound selected from the group consisting of a cobalt compound, a manganese compound, and a copper compound is preferably used. Cobalt acetate (II) or the like is used as the cobalt compound, manganese (II) acetate or the like is used as the manganese compound, and copper (I) chloride or the like is used as the copper compound.
 上記主触媒及び助触媒の多孔質担体への担持方法については、従来公知の含浸法等が採用される。例えば、主触媒及び助触媒を所定の混合比で含有するスラリーを調製した後、調製したスラリー中に小球状の多孔質担体を浸漬させる。次いで、スラリー中から多孔質担体を引き上げ、多孔質担体の表面に付着した余分なスラリーを除去した後、所定の条件で乾燥する。これにより、多孔質担体の表面に主触媒及び助触媒が均一に担持された改質触媒152が得られる。 As a method for supporting the main catalyst and the cocatalyst on the porous carrier, a conventionally known impregnation method or the like is employed. For example, after preparing a slurry containing a main catalyst and a promoter in a predetermined mixing ratio, a small spherical porous carrier is immersed in the prepared slurry. Next, the porous carrier is pulled up from the slurry to remove excess slurry adhering to the surface of the porous carrier, and then dried under predetermined conditions. Thereby, the reforming catalyst 152 in which the main catalyst and the promoter are uniformly supported on the surface of the porous carrier is obtained.
 ここで、改質器15内で進行する改質反応について、以下に詳しく説明する。
 先ず、本実施形態の改質反応は、下記の反応式(1)に示すように、ガソリン中の炭化水素から水素原子が引き抜かれてアルキルラジカルが生成する水素引き抜き反応により開始される。この水素引き抜き反応は、主触媒、ラジカル及び酸素分子等の作用により進行する。
[化1]
 
RH → R・   ・・・反応式(1)
 
[反応式(1)中、RHは炭化水素を表し、R・はアルキルラジカルを表す。]
Here, the reforming reaction that proceeds in the reformer 15 will be described in detail below.
First, as shown in the following reaction formula (1), the reforming reaction of the present embodiment is initiated by a hydrogen abstraction reaction in which hydrogen atoms are extracted from hydrocarbons in gasoline to generate alkyl radicals. This hydrogen abstraction reaction proceeds by the action of the main catalyst, radicals, oxygen molecules and the like.
[Chemical 1]

RH → R ... Reaction formula (1)

[In Reaction Formula (1), RH represents a hydrocarbon, and R. represents an alkyl radical. ]
 次いで、水素引き抜き反応により生成したアルキルラジカルは、下記の反応式(2)に示すように、酸素分子と結合してアルキルペルオキシラジカルを生成する。
[化2]
 
R・ + O → ROO・   ・・・反応式(2)
 
[反応式(2)中、Oは酸素分子を表し、ROO・はアルキルペルオキシラジカルを表す。]
Next, as shown in the following reaction formula (2), the alkyl radical generated by the hydrogen abstraction reaction is combined with oxygen molecules to generate an alkyl peroxy radical.
[Chemical 2]

R · + O 2 → ROO · ... Reaction formula (2)

[In Reaction Formula (2), O 2 represents an oxygen molecule, and ROO · represents an alkyl peroxy radical. ]
 次いで、反応式(2)により生成したアルキルペルオキシラジカルは、下記の反応式(3)に示すように、ガソリン中に含まれる炭化水素から水素原子を引き抜いて、アルキルヒドロペルオキシドを生成する。
[化3]
 
ROO・ + RH → ROOH + R・   ・・・反応式(3)
 
[反応式(3)中、ROOHはアルキルヒドロペルオキシドを表す。]
Next, as shown in the following reaction formula (3), the alkyl peroxy radical generated by the reaction formula (2) pulls out hydrogen atoms from hydrocarbons contained in gasoline to generate an alkyl hydroperoxide.
[Chemical formula 3]

ROO ・ + RH → ROOH + R ・ ・ ・ ・ Reaction formula (3)

[In reaction formula (3), ROOH represents alkyl hydroperoxide. ]
 次いで、反応式(3)により生成したアルキルヒドロペルオキシドは、下記の反応式(4)に示すように、助触媒の作用によりアルコールに還元される。
[化4]
 
ROOH → ROH   ・・・反応式(4)
 
[反応式(4)中、ROHはアルコールを表す。]
Next, as shown in the following reaction formula (4), the alkyl hydroperoxide produced by the reaction formula (3) is reduced to an alcohol by the action of a promoter.
[Chemical formula 4]

ROOH → ROH ... Reaction formula (4)

[In the reaction formula (4), ROH represents an alcohol. ]
 また、反応式(3)により生成したアルキルヒドロペルオキシドは、下記の反応式(5)に示すように、助触媒又は熱の作用によりアルコキシラジカルとヒドロキシラジカルとに分解する。
[化5]
 
ROOH → RO・ + ・OH   ・・・反応式(5)
 
[反応式(5)中、RO・はアルコキシラジカルを表し、・OHはヒドロキシラジカルを表す。]
Moreover, the alkyl hydroperoxide produced | generated by Reaction formula (3) decomposes | disassembles into an alkoxy radical and a hydroxy radical by the effect | action of a promoter or a heat | fever, as shown in following Reaction formula (5).
[Chemical formula 5]

ROOH → RO ・ + ・ OH ・ ・ ・ Reaction formula (5)

[In the reaction formula (5), RO · represents an alkoxy radical, and · OH represents a hydroxy radical. ]
 次いで、反応式(5)により生成したアルコキシラジカルは、ガソリン中に含まれる炭化水素から水素原子を引き抜いて、アルコールを生成する。
[化6]
 
RO・ + RH → ROH + R・   ・・・反応式(6)
 
Subsequently, the alkoxy radical produced | generated by Reaction formula (5) draws out a hydrogen atom from the hydrocarbon contained in gasoline, and produces | generates alcohol.
[Chemical 6]

RO ・ + RH → ROH + R ・ ・ ・ ・ Reaction formula (6)
 以上のようにして、ガソリン中に主体的に含まれる炭化水素が酸化改質され、アルコールに変換される。より詳しくは、ガソリン中に含まれる炭化水素は炭素数が4~10の炭化水素であるため、これら炭化水素が、炭素数4~10のアルコールに変換される。なお、上述のようにして生成したアルコールROHのうち、その大部分は第2級アルコールR-CHOH-R’である。 As described above, hydrocarbons mainly contained in gasoline are oxidized and reformed and converted to alcohol. More specifically, since hydrocarbons contained in gasoline are hydrocarbons having 4 to 10 carbon atoms, these hydrocarbons are converted into alcohols having 4 to 10 carbon atoms. Of the alcohol ROH generated as described above, the majority is secondary alcohol R—CHOH—R ′.
 次いで、上述のようにして生成した第2級アルコールR-CHOH-R’は、下記の反応式(7)に示すように、例えばアルキルペルオキシラジカルROO・のようなアルキルラジカルと反応して、ヒドロキシアルキルラジカルR-C・OH-R’を生成する。
[化7]
 
R-CHOH-R’+ROO・ → R-C・OH-R’+ROOH
                         ・・・反応式(7)
 
[反応式(7)中、R-CHOH-R’は第2級アルコールを表し、R-C・OH-R’はヒドロキシアルキルラジカルを表す。]
Next, the secondary alcohol R—CHOH—R ′ produced as described above reacts with an alkyl radical such as an alkyl peroxy radical ROO. An alkyl radical R—C.OH—R ′ is generated.
[Chemical 7]

R-CHOH-R '+ ROO. → RC-OH-R' + ROOH
... Reaction formula (7)

[In Reaction Formula (7), R—CHOH—R ′ represents a secondary alcohol, and R—C.OH—R ′ represents a hydroxyalkyl radical. ]
 次いで、ヒドロキシアルキルラジカルR-C・OH-R’は、さらに下記の反応式(8)に示すように、例えばアルキルペルオキシラジカルROO・のようなアルキルラジカルと反応して、ケトンR-C=O-R’を生成する。
[化8]
 
R-C・OH-R’+ROO・ → R-C=O-R’+ROOH
                         ・・・反応式(8)
 
[反応式(8)中、R-C=O-R’はケトンを表す。]
Subsequently, the hydroxyalkyl radical RC—OH—R ′ is further reacted with an alkyl radical such as an alkylperoxy radical ROO. -R 'is generated.
[Chemical 8]

RC-OH-R '+ ROO- → RC = O-R' + ROOH
... Reaction formula (8)

[In Reaction Formula (8), R—C═O—R ′ represents a ketone. ]
 以上のようにして、本実施形態の燃料改質システム1では、ガソリンをケトンを含む高オクタン価燃料に改質することができ、燃料のオクタン価を向上できるようになっている。 As described above, in the fuel reforming system 1 of the present embodiment, gasoline can be reformed into a high octane fuel containing ketone, and the octane number of the fuel can be improved.
 次に、凝縮器16は、改質器15の下流に設けられ、改質器15で生成した生成ガスを、改質燃料を主体とする凝縮相と、気相とに分離する。凝縮器16は、その内部に図示しない熱交換器を有しており、改質器15の出口から流出する生成ガスを冷却することで、改質燃料を主体とする凝縮相と気相とに分離する。なお、凝縮相には、ケトンを含む高オクタン価燃料の改質燃料の他に副生成物の水等が含まれ、気相には、窒素、酸素、その他の副生成物のガス成分等が含まれる。 Next, the condenser 16 is provided downstream of the reformer 15 and separates the generated gas generated by the reformer 15 into a condensed phase mainly composed of reformed fuel and a gas phase. The condenser 16 has a heat exchanger (not shown) inside, and by cooling the product gas flowing out from the outlet of the reformer 15, it is converted into a condensed phase mainly composed of reformed fuel and a gas phase. To separate. The condensed phase contains by-product water and the like in addition to the reformed fuel of high octane fuel containing ketone, and the gas phase contains nitrogen, oxygen, and other by-product gas components. It is.
 改質燃料タンク18は、凝縮器16で分離された凝縮相中の改質燃料を貯留する。改質燃料タンク18は、改質器15によりガソリンを改質することで生成したケトンを含む高オクタン価燃料の改質燃料を、一時的に貯留するバッファタンクとして機能する。 The reformed fuel tank 18 stores the reformed fuel in the condensed phase separated by the condenser 16. The reformed fuel tank 18 functions as a buffer tank that temporarily stores the reformed fuel of high octane fuel containing ketone generated by reforming gasoline by the reformer 15.
 改質燃料供給部19は、改質燃料タンク18に貯留されたケトンを含む高オクタン価燃料の改質燃料を、エンジンの気筒内又は吸気ポート内に供給する。改質燃料供給部19は、改質燃料ポンプ191と、改質燃料供給管192と、図示しないインジェクタと、を備える。改質燃料供給部19は、改質燃料ポンプ191を駆動することで、改質燃料供給管192及びインジェクタを介して、改質燃料タンク18内に貯留されたケトンを含む高オクタン価燃料の改質燃料を、図示しないエンジンの吸気ポート内に供給する。アルコール供給量は、ECUによりインジェクタの噴射量を調整することで制御される。 The reformed fuel supply unit 19 supplies the reformed fuel of high octane fuel containing the ketone stored in the reformed fuel tank 18 into the engine cylinder or the intake port. The reformed fuel supply unit 19 includes a reformed fuel pump 191, a reformed fuel supply pipe 192, and an injector (not shown). The reformed fuel supply unit 19 drives the reformed fuel pump 191 to reform the high-octane fuel containing ketone stored in the reformed fuel tank 18 through the reformed fuel supply pipe 192 and the injector. Fuel is supplied into an intake port of an engine (not shown). The alcohol supply amount is controlled by adjusting the injection amount of the injector by the ECU.
 気相供給部20は、凝縮器16で分離された気相を、エンジンの吸気ポート内に供給する。気相供給部20は、エンジンの吸気ポートに接続された気相供給管201を備える。凝縮器16で分離された気相は、気相供給管201を介して、エンジンの吸気ポート内に供給される。 The vapor phase supply unit 20 supplies the vapor phase separated by the condenser 16 into the intake port of the engine. The gas phase supply unit 20 includes a gas phase supply pipe 201 connected to the intake port of the engine. The gas phase separated by the condenser 16 is supplied into the intake port of the engine via the gas phase supply pipe 201.
 以上の構成を備える本実施形態の燃料改質システム1は、ECUにより制御されて以下のように動作する。
 先ず、エンジンの運転状態に応じて、ガソリンの改質が必要であると判断された場合には、エンジン冷却水の温度が所定温度以上であるか否かを判別する。エンジン始動直後でエンジン冷却水の温度が所定温度未満であるときには、前回改質時に改質燃料タンク18内に貯留されたケトンを含む高オクタン価燃料の改質燃料を、改質燃料ポンプ191によりエンジンの吸気ポート内に供給する。
The fuel reforming system 1 of the present embodiment having the above configuration is controlled by the ECU and operates as follows.
First, when it is determined that gasoline reform is required according to the operating state of the engine, it is determined whether or not the temperature of the engine cooling water is equal to or higher than a predetermined temperature. Immediately after the engine is started, when the temperature of the engine cooling water is lower than the predetermined temperature, the reformed fuel of the high octane fuel containing the ketone stored in the reformed fuel tank 18 at the previous reforming is supplied to the engine by the reformed fuel pump 191. Supply in the intake port.
 これに対して、エンジン冷却水の温度が所定温度以上であるときには、燃料バルブ133及び空気バルブ114を開弁する。次いで、改質ポンプ131により、燃料タンク12からガソリンを圧送して混合器14内に導入する。同時に、空気ポンプ112により、空気フィルタ111を通過した空気を混合器14内に導入する。 On the other hand, when the temperature of the engine cooling water is equal to or higher than the predetermined temperature, the fuel valve 133 and the air valve 114 are opened. Next, the reforming pump 131 pumps gasoline from the fuel tank 12 and introduces it into the mixer 14. At the same time, air that has passed through the air filter 111 is introduced into the mixer 14 by the air pump 112.
 このとき、所望の適正なガソリン流量/空気流量の割合となるように、また、所望の適正な改質反応時間が得られるように、燃料流量計132でモニターされたガソリン流量及び空気流量計113でモニターされた空気流量に基づいて、燃料バルブ133及び空気バルブ114の開度をフィードバック制御する。これにより、ガソリン流量及び空気流量が制御される。 At this time, the gasoline flow rate and the air flow rate meter 113 monitored by the fuel flow rate meter 132 are set so as to obtain a desired proper gasoline flow rate / air flow rate ratio and to obtain a desired proper reforming reaction time. Feedback control of the opening degree of the fuel valve 133 and the air valve 114 is performed on the basis of the air flow rate monitored in (1). Thereby, the gasoline flow rate and the air flow rate are controlled.
 次いで、混合器14内に導入されたガソリンと空気を、所定温度に暖めながら均一に混合して混合気とした後、改質器15内に供給する。改質器15内に供給された混合気中のガソリンの主成分である炭化水素は、改質触媒152の作用により上述の反応式(1)~(8)が進行することで、ケトンを含む高オクタン価燃料に変換される。このとき、温度センサでモニターされた温度に基づいて、エンジン冷却水の供給を制御する。これにより、改質器15内の温度が所望の適正温度に維持される。 Next, the gasoline and air introduced into the mixer 14 are uniformly mixed while being heated to a predetermined temperature to obtain an air-fuel mixture, and then supplied into the reformer 15. The hydrocarbons, which are the main components of gasoline in the air-fuel mixture supplied into the reformer 15, contain ketones as the above reaction formulas (1) to (8) proceed by the action of the reforming catalyst 152. Converted to high octane fuel. At this time, supply of engine cooling water is controlled based on the temperature monitored by the temperature sensor. Thereby, the temperature in the reformer 15 is maintained at a desired appropriate temperature.
 次いで、改質器15で生成した生成ガスを、凝縮器16内の熱交換器により冷却することで、凝縮相と気相とに分離する。分離された凝縮相にはケトンを含む高オクタン価燃料の改質燃料が主として含まれており、改質燃料は、改質燃料タンク18内に導入されて貯留される。改質燃料タンク18内の改質燃料は、改質燃料ポンプ191によりエンジンの吸気ポート内に供給する。一方、分離された気相は、エンジンの吸気ポートに導入することで、エンジンの気筒内での燃焼に供される。 Next, the product gas generated in the reformer 15 is cooled by a heat exchanger in the condenser 16 to be separated into a condensed phase and a gas phase. The separated condensed phase mainly contains high-octane reformed fuel containing ketone, and the reformed fuel is introduced into the reformed fuel tank 18 and stored. The reformed fuel in the reformed fuel tank 18 is supplied into the intake port of the engine by the reformed fuel pump 191. On the other hand, the separated gas phase is introduced into the intake port of the engine and is used for combustion in the cylinder of the engine.
 エンジンの運転状態に応じて、ガソリンの改質が不要であると判断された場合には、先ず、空気ポンプ112を停止して空気バルブを閉弁し、混合器14内への空気の供給を停止する。次いで、改質器15内がガソリンで満たされて空気が全て流出した後に、改質ポンプ131を停止して燃料バルブ133を閉弁し、混合器14内へのガソリンの供給を停止する。これにより、システム停止中に、改質器15内に残存した酸素により改質反応が進行してしまう事態が回避される。 When it is determined that the reforming of gasoline is unnecessary according to the operating state of the engine, first, the air pump 112 is stopped and the air valve is closed to supply the air into the mixer 14. Stop. Next, after the inside of the reformer 15 is filled with gasoline and all the air flows out, the reforming pump 131 is stopped, the fuel valve 133 is closed, and the supply of gasoline into the mixer 14 is stopped. This avoids a situation in which the reforming reaction proceeds due to oxygen remaining in the reformer 15 while the system is stopped.
 ところで、本実施形態の燃料改質システム1により得られるケトンを含む高オクタン価燃料のオクタン価RONは、例えば市販の噴霧着火試験装置により燃料を着火させ、このときの着火遅れ時間を測定することにより推定可能である。即ち、高オクタン価燃料は、オクタン価が高くなるにつれてその沸点も高くなるため、着火遅れ時間に基づいてオクタン価を推定できる。 By the way, the octane number RON of the high octane fuel containing the ketone obtained by the fuel reforming system 1 of the present embodiment is estimated by, for example, igniting the fuel with a commercially available spray ignition test apparatus and measuring the ignition delay time at this time. Is possible. That is, since the high-octane fuel has a higher boiling point as the octane number increases, the octane number can be estimated based on the ignition delay time.
 図2は、噴霧着火試験装置(Fuel Tech社製「FIA-100」)の構成を示す図である。
 図2に示すように、噴霧着火試験装置90は、燃料噴射装置91を有する定容燃焼器92である。噴霧着火試験装置90は、燃料噴射装置91に接続されたノズル93と、燃焼室94と、燃焼室外壁に取り付けられたヒータ95と、冷却水管96と、吸気管97と、排気管98と、圧力センサ99と、を備える。
FIG. 2 is a diagram showing a configuration of a spray ignition test apparatus (“FIA-100” manufactured by Fuel Tech).
As shown in FIG. 2, the spray ignition test device 90 is a constant volume combustor 92 having a fuel injection device 91. The spray ignition test device 90 includes a nozzle 93 connected to the fuel injection device 91, a combustion chamber 94, a heater 95 attached to the outer wall of the combustion chamber, a cooling water pipe 96, an intake pipe 97, an exhaust pipe 98, Pressure sensor 99.
 この噴霧着火試験装置90では、先ずヒータ95で燃焼室94を加熱し、燃焼室94内を所定の温度に設定する。次いで、この状態で、吸気管97から空気を吸引するとともに、所定の圧力で燃料噴射装置91を駆動してノズル93から燃料を燃焼室内に噴射する。このときの燃焼室内の圧力を圧力センサ99により検出し、噴射から所定の圧力上昇までの時間に基づいて、着火遅れ時間を算出する。 In this spray ignition test apparatus 90, first, the combustion chamber 94 is heated by the heater 95, and the inside of the combustion chamber 94 is set to a predetermined temperature. Next, in this state, air is sucked from the intake pipe 97 and the fuel injection device 91 is driven at a predetermined pressure to inject fuel from the nozzle 93 into the combustion chamber. The pressure in the combustion chamber at this time is detected by the pressure sensor 99, and the ignition delay time is calculated based on the time from injection to a predetermined pressure increase.
 なお、噴霧着火試験装置90の試験条件としては、例えば以下の通りである。また、以下の試験条件に従って、測定は一つの燃料につき最低10回実施し、着火遅れ時間は例えば噴射~0.2MPa圧力上昇までの時間と定義する。
[試験条件]
温度:500℃
圧力:4MPa
噴射圧力:100MPa
噴射時間:10ms
Note that the test conditions of the spray ignition test apparatus 90 are as follows, for example. In addition, according to the following test conditions, measurement is performed at least 10 times for each fuel, and the ignition delay time is defined as, for example, the time from injection to a pressure increase of 0.2 MPa.
[Test conditions]
Temperature: 500 ° C
Pressure: 4MPa
Injection pressure: 100 MPa
Injection time: 10ms
 ここで、図3は、オクタン価RONと着火遅れ時間との関係を示す図である。この図3は、オクタン価既知の燃料について、噴霧着火試験装置90による測定を上述の試験条件に従って実施することにより得られる検量線を示している。図3において、横軸はオクタン価RONを表し、縦軸は着火遅れ時間を表している。図3に示すように、オクタン価RONが高くなると、着火遅れ時間が増大し、両者に相関があることが分かり、この図3を参照することでオクタン価の推定が可能となっている。 Here, FIG. 3 is a diagram showing the relationship between the octane number RON and the ignition delay time. FIG. 3 shows a calibration curve obtained by carrying out the measurement by the spray ignition test apparatus 90 in accordance with the test conditions described above for a fuel having a known octane number. In FIG. 3, the horizontal axis represents the octane number RON, and the vertical axis represents the ignition delay time. As shown in FIG. 3, when the octane number RON increases, the ignition delay time increases, and it is found that there is a correlation between both. By referring to FIG. 3, the octane number can be estimated.
 なお、オクタン価RONの基準となる燃料としては、例えばガソリンサロゲート(RONが100のイソオクタン63容量%、RONが0のヘプタン17容量%、トルエン20容量%)が用いられ、このガソリンサロゲートのRONは90であることが分かっている。また、ヘプタンがケトンの2-ヘプタノンに全て置換された場合(イソオクタン、2-ヘプタノン及びトルエン)、RONは100であることが分かっている。この結果から逆算すると、2-ヘプタノン自体のRONは、100/17×10=58となる。このようにして、ヘプタンが全て2-ヘプタノンに改質したものとして置き換えることで、2-ヘプタノンのRONを求めることができ、オクタン価既知の燃料が得られる。そして、かかるオクタン価既知の燃料の着火遅れ時間を測定することで、図3に示す検量線を得ることができる。 For example, a gasoline surrogate (63% by volume of isooctane with RON of 100, 17% by volume of heptane with RON of 0, and 20% by volume of toluene) is used as the reference fuel for the octane number RON. I know that. It is also known that RON is 100 when heptane is completely substituted with the ketone 2-heptanone (isooctane, 2-heptanone and toluene). When calculated backward from this result, the RON of 2-heptanone itself is 100/17 × 10 = 58. In this way, by replacing all heptanes with those modified to 2-heptanone, the RON of 2-heptanone can be obtained, and a fuel with a known octane number can be obtained. The calibration curve shown in FIG. 3 can be obtained by measuring the ignition delay time of the fuel having the known octane number.
 本実施形態によれば、以下の効果が奏される。
 (1)本実施形態の燃料改質システム1では、上流側から順に、炭化水素を主体とするガソリンと空気を混合して改質器15に供給する混合器14と、空気を用いてガソリンを改質して高オクタン価燃料を生成させる改質器15と、改質器15で生成した生成ガスを凝縮相と気相とに分離する凝縮器16と、を設けた。また、ガソリン中の炭化水素から水素原子を引き抜いてアルキルラジカルを生成させる主触媒と、アルキルラジカルから生成するアルキルヒドロペルオキシドを還元してアルコールを生成させるとともに該アルコールを前記アルキルラジカルと反応させてケトンを生成させる助触媒と、を含んで構成される改質触媒152を改質器15に設けた。
 本実施形態によれば、ガソリン中の炭化水素を改質してケトンを含む高オクタン価燃料に変換できるため、燃料のオクタン価を向上できる。また、酸化剤として空気を用いることから、システムの構成が簡易であるため車両に搭載が可能であり、車両上でエンジンの要求に応じて、ケトンを含む高オクタン価燃料をエンジンに供給できる。従って、本実施形態によれば、圧縮比を高めたエンジンであっても、ノッキングを抑制しつつ高い熱効率が得られる。
According to this embodiment, the following effects are produced.
(1) In the fuel reforming system 1 of the present embodiment, in order from the upstream side, a mixer 14 that mixes gasoline mainly composed of hydrocarbon and air and supplies the mixture to the reformer 15; and gasoline using the air A reformer 15 for reforming to produce a high octane fuel and a condenser 16 for separating the product gas produced by the reformer 15 into a condensed phase and a gas phase are provided. In addition, a main catalyst for extracting an hydrogen atom from a hydrocarbon in gasoline to generate an alkyl radical, an alkyl hydroperoxide generated from the alkyl radical is reduced to generate an alcohol, and the alcohol is reacted with the alkyl radical to form a ketone. The reformer 15 is provided with a reforming catalyst 152 configured to include a cocatalyst for generating the catalyst.
According to this embodiment, since the hydrocarbon in gasoline can be reformed and converted to a high-octane fuel containing a ketone, the octane number of the fuel can be improved. In addition, since air is used as the oxidant, the system configuration is simple and can be mounted on a vehicle, and high octane fuel containing ketone can be supplied to the engine on the vehicle according to the demand of the engine. Therefore, according to this embodiment, even in an engine with an increased compression ratio, high thermal efficiency can be obtained while knocking is suppressed.
 (2)また本実施形態では、主触媒として、N-ヒドロキシイミド基含有化合物を用いた。これにより、ガソリン中の炭化水素から水素原子をより確実に引き抜くことができるため、炭化水素をより確実にアルコールに変換でき、該アルコールからケトンを生成させることができる。従って、上述の(1)の発明の効果がより確実に発揮される。 (2) In this embodiment, an N-hydroxyimide group-containing compound was used as the main catalyst. Thereby, since a hydrogen atom can be more reliably extracted from the hydrocarbon in gasoline, the hydrocarbon can be more reliably converted into alcohol, and a ketone can be generated from the alcohol. Therefore, the effect of the invention of the above (1) is more reliably exhibited.
 (3)また本実施形態では、助触媒として、遷移金属化合物を用いた。これにより、主触媒による水素原子の引き抜きにより生じたアルキルラジカルから生成するアルキルヒドロペルオキシドを、より確実に還元してアルコールに変換でき、該アルコールからケトンを生成させることができる。従って、上述の(1)~(2)の発明の効果がより確実に発揮される。 (3) In this embodiment, a transition metal compound was used as a promoter. Thereby, the alkyl hydroperoxide produced | generated from the alkyl radical produced by extraction of the hydrogen atom by a main catalyst can be more reliably reduced and converted into alcohol, and a ketone can be produced | generated from this alcohol. Therefore, the effects of the above-described inventions (1) to (2) are more reliably exhibited.
 (4)また本実施形態では、助触媒として、コバルト化合物、マンガン化合物及び銅化合物からなる群より選ばれる化合物を用いた。これにより、主触媒による水素原子の引き抜きにより生じたアルキルラジカルから生成するアルキルヒドロペルオキシドを、さらに確実に還元してアルコールに変換でき、該アルコールからケトンを生成させることができる。従って、上述の(1)~(2)の発明の効果がさらに確実に発揮される。 (4) In this embodiment, a compound selected from the group consisting of a cobalt compound, a manganese compound, and a copper compound was used as a promoter. Thereby, the alkyl hydroperoxide produced | generated from the alkyl radical produced by extraction of the hydrogen atom by a main catalyst can be reduced | restored more reliably and converted into alcohol, and a ketone can be produced | generated from this alcohol. Therefore, the effects of the above inventions (1) to (2) are more reliably exhibited.
 (5)また本実施形態では、燃料タンク12に貯留された改質前のガソリンをエンジンの気筒内又は吸気ポート内に供給する一方で、凝縮器16で分離された気相を吸気ポート内に供給するとともに、改質燃料タンク18に貯留された改質燃料のアルコールを気筒内又は吸気ポート内に供給した。これにより、車両上でエンジンの要求に応じて、ケトンを含む高オクタン価燃料を供給することができるため、ノッキングを抑制しつつ高い熱効率が得られる。 (5) In this embodiment, the unreformed gasoline stored in the fuel tank 12 is supplied into the engine cylinder or the intake port, while the gas phase separated by the condenser 16 is supplied into the intake port. In addition to the supply, the reformed fuel alcohol stored in the reformed fuel tank 18 was supplied into the cylinder or the intake port. As a result, high octane fuel containing ketone can be supplied on the vehicle according to the demand of the engine, so that high thermal efficiency can be obtained while suppressing knocking.
 なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 上記実施形態では、燃料としてガソリンを用いがこれに限定されない。例えば、エタノール等のアルコールを含有するアルコール含有ガソリンを用いた場合であっても、上記実施形態と同様の効果が奏される。
It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
In the said embodiment, although gasoline is used as a fuel, it is not limited to this. For example, even when alcohol-containing gasoline containing alcohol such as ethanol is used, the same effects as those of the above-described embodiment can be obtained.
 1…燃料改質システム
 12…燃料タンク
 14…混合器
 15…改質器
 16…凝縮器
 17…燃料供給部(燃料供給手段)
 18…改質燃料タンク
 19…改質燃料供給部(改質燃料供給手段)
 20…気相供給部(気相供給手段)
 152…改質触媒
DESCRIPTION OF SYMBOLS 1 ... Fuel reforming system 12 ... Fuel tank 14 ... Mixer 15 ... Reformer 16 ... Condenser 17 ... Fuel supply part (fuel supply means)
18 ... reformed fuel tank 19 ... reformed fuel supply section (reformed fuel supply means)
20 ... Gas phase supply section (gas phase supply means)
152 ... Reforming catalyst

Claims (5)

  1.  炭化水素を主体とする燃料を、空気を用いて改質して高オクタン価燃料を生成させる改質触媒を備える改質器と、
     前記改質器の上流に設けられ、前記燃料と空気を混合して前記改質器に供給する混合器と、
     前記改質器の下流に設けられ、前記改質器で生成した生成ガスを、改質燃料を主体とする凝縮相と、気相とに分離する凝縮器と、を備える燃料改質システムであって、
     前記改質触媒は、前記燃料中の炭化水素から水素原子を引き抜いてアルキルラジカルを生成させる主触媒と、アルキルラジカルから生成するアルキルヒドロペルオキシドを還元してアルコールを生成させるとともに該アルコールを前記アルキルラジカルと反応させてケトンを生成させる助触媒と、を含んで構成されることを特徴とする燃料改質システム。
    A reformer comprising a reforming catalyst that reforms a hydrocarbon-based fuel using air to produce a high-octane fuel;
    A mixer provided upstream of the reformer, for mixing the fuel and air and supplying the mixture to the reformer;
    A fuel reforming system that is provided downstream of the reformer and includes a condenser that separates a product gas generated by the reformer into a condensed phase mainly composed of reformed fuel and a gas phase. And
    The reforming catalyst includes a main catalyst that extracts a hydrogen atom from a hydrocarbon in the fuel to generate an alkyl radical; an alkyl hydroperoxide generated from the alkyl radical is reduced to generate an alcohol; and the alcohol is converted to the alkyl radical. A fuel reforming system comprising: a co-catalyst that reacts with the catalyst to produce ketone.
  2.  前記主触媒は、N-ヒドロキシイミド基含有化合物であることを特徴とする請求項1に記載の燃料改質システム。 2. The fuel reforming system according to claim 1, wherein the main catalyst is an N-hydroxyimide group-containing compound.
  3.  前記助触媒は、遷移金属化合物であることを特徴とする請求項1又は2に記載の燃料改質システム。 The fuel reforming system according to claim 1 or 2, wherein the promoter is a transition metal compound.
  4.  前記助触媒は、コバルト化合物、マンガン化合物及び銅化合物からなる群より選ばれる化合物であることを特徴とする請求項1から3いずれかに記載の燃料改質システム。 The fuel reforming system according to any one of claims 1 to 3, wherein the promoter is a compound selected from the group consisting of a cobalt compound, a manganese compound, and a copper compound.
  5.  改質前の燃料を貯留する燃料タンクと、
     前記燃料タンクに貯留された改質前の燃料を、内燃機関の気筒内又は吸気ポート内に供給する燃料供給手段と、
     前記凝縮器で分離された気相を、前記吸気ポート内に供給する気相供給手段と、
     前記凝縮器で分離された凝縮相中の改質燃料を貯留する改質燃料タンクと、
     前記改質燃料タンクに貯留された改質燃料を、前記気筒内又は前記吸気ポート内に供給する改質燃料供給手段と、をさらに備えることを特徴とする請求項1から4いずれかに記載の燃料改質システム。
    A fuel tank for storing fuel before reforming;
    Fuel supply means for supplying the unreformed fuel stored in the fuel tank into a cylinder or an intake port of an internal combustion engine;
    A gas phase supply means for supplying the gas phase separated by the condenser into the intake port;
    A reformed fuel tank for storing the reformed fuel in the condensed phase separated by the condenser;
    The reformed fuel supply means for supplying the reformed fuel stored in the reformed fuel tank into the cylinder or the intake port is further provided. Fuel reforming system.
PCT/JP2016/063787 2015-05-12 2016-05-09 Fuel-reforming system WO2016181943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017517938A JP6378833B2 (en) 2015-05-12 2016-05-09 Fuel reforming system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015097544 2015-05-12
JP2015-097544 2015-05-12

Publications (1)

Publication Number Publication Date
WO2016181943A1 true WO2016181943A1 (en) 2016-11-17

Family

ID=57248106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063787 WO2016181943A1 (en) 2015-05-12 2016-05-09 Fuel-reforming system

Country Status (2)

Country Link
JP (1) JP6378833B2 (en)
WO (1) WO2016181943A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291499A (en) * 1999-04-06 2000-10-17 Nissan Motor Co Ltd Internal combustion engine with fuel reforming device
JP2003517030A (en) * 1999-12-17 2003-05-20 ロディア・ポリアミド・インターミーディエッツ Method for producing alcohol / ketone mixtures
JP2003184667A (en) * 2001-12-19 2003-07-03 Honda Motor Co Ltd Vehicle mounting internal combustion engine and having fuel reforming/supplying function
JP2007032403A (en) * 2005-07-26 2007-02-08 Nissan Motor Co Ltd Fuel reforming catalyst for internal combustion engine, fuel reforming device for internal combustion engine and method for reforming fuel for internal combustion engine
JP2007247515A (en) * 2006-03-15 2007-09-27 Honda Motor Co Ltd Internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100552A (en) * 2002-09-09 2004-04-02 Honda Motor Co Ltd Power unit
JP2010101194A (en) * 2008-10-21 2010-05-06 Japan Energy Corp Gasoline engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291499A (en) * 1999-04-06 2000-10-17 Nissan Motor Co Ltd Internal combustion engine with fuel reforming device
JP2003517030A (en) * 1999-12-17 2003-05-20 ロディア・ポリアミド・インターミーディエッツ Method for producing alcohol / ketone mixtures
JP2003184667A (en) * 2001-12-19 2003-07-03 Honda Motor Co Ltd Vehicle mounting internal combustion engine and having fuel reforming/supplying function
JP2007032403A (en) * 2005-07-26 2007-02-08 Nissan Motor Co Ltd Fuel reforming catalyst for internal combustion engine, fuel reforming device for internal combustion engine and method for reforming fuel for internal combustion engine
JP2007247515A (en) * 2006-03-15 2007-09-27 Honda Motor Co Ltd Internal combustion engine

Also Published As

Publication number Publication date
JP6378833B2 (en) 2018-08-22
JPWO2016181943A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP5925393B2 (en) Fuel reforming system
EP2048339B1 (en) Internal combustion engine
US11608787B2 (en) Internal combustion engine having carbon dioxide capture and fuel additive synthesis system
CN109250685A (en) The vehicle-mounted methanol reforming system and control method of hydrogen-rich gas are produced using tail gas
JP6095719B2 (en) Fuel reformer
JP6378833B2 (en) Fuel reforming system
Vostrikov et al. Features of low-temperature oxidation of isobutane in water vapor and carbon dioxide with increased density of reagents
JP2016211492A (en) Fuel reformer and mixer used in fuel reformer
JP2018003800A (en) Fuel reforming device
US20160333283A1 (en) Fuel reforming system
CN209383385U (en) The vehicle-mounted methanol reforming system of hydrogen-rich gas is produced using tail gas
US20140338638A1 (en) Propulsion device and method for operating same using a partially oxidized diesel fuel
WO2016181814A1 (en) Fuel-reforming device
JP2018003797A (en) Fuel reforming system
JP2008286097A (en) Ethanol reforming system
CN109455668A (en) A kind of online reforming system of airborne methanol and control method using baffling separating mechanism
JP2018003803A (en) Fuel reforming system
JP2007255226A (en) Fuel supply device
CN109264669A (en) The airborne methanol recapitalization system and control method of hydrogen-rich gas are produced using tail gas
JP2018003801A (en) Fuel reformation system
CN209383384U (en) The airborne methanol recapitalization system of hydrogen-rich gas is produced using tail gas
JP7154326B2 (en) fuel reformer
WO2024107407A1 (en) System and method for producing hydrogen gas from diesel fuel using a reformer
JP6693823B2 (en) Fuel reforming system
CN117109025A (en) Nitrogen-free combustion system and combustion control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792668

Country of ref document: EP

Kind code of ref document: A1