WO2016181587A1 - Wireless communication device and frequency allocation method - Google Patents

Wireless communication device and frequency allocation method Download PDF

Info

Publication number
WO2016181587A1
WO2016181587A1 PCT/JP2016/001001 JP2016001001W WO2016181587A1 WO 2016181587 A1 WO2016181587 A1 WO 2016181587A1 JP 2016001001 W JP2016001001 W JP 2016001001W WO 2016181587 A1 WO2016181587 A1 WO 2016181587A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
radio
communication
radio frequency
wireless
Prior art date
Application number
PCT/JP2016/001001
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 修
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016181587A1 publication Critical patent/WO2016181587A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • This disclosure relates to a wireless communication device and a frequency allocation method.
  • a terminal When a terminal performs wireless communication, it is necessary to determine a wireless base station to which the terminal is wirelessly connected and a wireless frequency (wireless channel) used by the terminal for wireless communication.
  • a radio base station selection device that searches for and selects a radio base station and a radio channel using active scan or passive scan is known (for example, see Patent Document 1).
  • This radio base station selection device creates a connection candidate AP list in which the identification information of the radio base station and the reception level are associated with each radio channel.
  • the radio base station selection device selects one radio base station and a corresponding radio channel having identification information with a reception level exceeding a predetermined threshold and high priority from the connection candidate AP list.
  • the radio base station selection device performs connection processing to the selected radio base station using the selected radio channel.
  • Patent Literature 1 When the technique described in Patent Literature 1 is applied to communication in a plurality of radio base stations connected via a backhaul line, allocation of radio resources for communicating data between the plurality of radio base stations Efficiency and utilization efficiency were insufficient.
  • the present disclosure has been made in view of the above circumstances, and provides a radio communication device and a frequency allocation method capable of improving allocation efficiency and utilization efficiency of radio resources for communicating data via a backhaul line.
  • the wireless communication device of the present disclosure communicates with other wireless communication devices via a wireless backhaul line in which a plurality of wireless communication methods are used together.
  • the wireless communication device includes a processor that assigns a radio frequency related to data communication with another wireless communication device based on information on a use history of a radio frequency related to data communication with the other wireless communication device, and an assigned radio frequency. And an antenna that performs data communication with other wireless communication devices.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a wireless communication system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration example of the macro cell base station and the small cell base station in the first embodiment.
  • FIG. 3 is a schematic diagram showing an example of a history database holding information on the use history of radio frequencies used for downlink communication.
  • FIG. 4 is a schematic diagram illustrating an example of a history database that holds information on the usage history of transmission power used for downlink communication.
  • FIG. 5 is a schematic diagram showing an example of a history database holding information on the use history of radio frequencies used for uplink communication.
  • FIG. 6 is a schematic diagram illustrating an example of a history database that holds information on the usage history of transmission power used for uplink communication.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a wireless communication system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration example of the macro cell base station and the small cell base station in the first
  • FIG. 7 is a flowchart showing a first operation example when the base station assigns a radio frequency to be used for communication via the wireless backhaul line.
  • FIG. 8 is a flowchart showing a second operation example when the base station assigns a radio frequency to be used for communication via the wireless backhaul line.
  • FIG. 9 is a flowchart illustrating a first operation example when the base station determines transmission power used for communication via the wireless backhaul line.
  • FIG. 10 is a flowchart illustrating a second operation example when the base station determines transmission power used for communication via the wireless backhaul line.
  • FIG. 11 is a schematic diagram for explaining a first control example of transmission power by the wireless communication system.
  • FIG. 12 is a schematic diagram for explaining a second control example of transmission power by the wireless communication system.
  • FIG. 13 is a schematic diagram for explaining a third control example of transmission power by the wireless communication system.
  • FIG. 14 is a schematic diagram for explaining a fourth control example of transmission power by the wireless communication
  • a wireless communication system includes a macro cell base station and a small cell base station. And the installation surface density of a small cell base station becomes high, and it is anticipated that efficient laying of a backhaul line becomes important.
  • the backhaul line includes, for example, a line between the small cell base station and the macro cell base station, or between the small cell base station and the backbone network. From the viewpoint of the stability of the communication quality of the backhaul line, an optical line is effective as the backhaul line. On the other hand, a wireless line is effective as a backhaul line from the viewpoint of economics and speed of laying the backhaul line.
  • wireless base stations having various wireless standards and cell radii are mixed. Therefore, when the wireless backhaul line (wireless backhaul line) connecting multiple radio base stations is a heterogeneous network, it is assigned to communication between multiple radio base stations connected via the backhaul line It is difficult to suppress communication interference between radio resources (frequency and time) to be used and radio resources used in peripheral terminals and radio base stations. In this case, it is expected that communication interference occurs in various places on the wireless backhaul line as a heterogeneous network, and radio resource allocation processing frequently occurs in order to avoid this communication interference. That is, the allocation efficiency of radio resources was insufficient.
  • FIG. 1 is a block diagram illustrating a configuration example of a wireless communication system 10 according to the first embodiment.
  • the wireless communication system 10 includes a plurality of base stations 200.
  • the plurality of base stations 200 are connected via the wireless backhaul line 20.
  • the plurality of base stations 200 communicate with each other via the wireless backhaul line 20.
  • the wireless communication system 10 is a heterogeneous network in which the base station 200 has various wireless standards.
  • Base station 200 can also communicate with terminal 100.
  • different radio communication systems for example, radio access technology (RAT: Radio Access Technology)
  • RAT Radio Access Technology
  • base stations 200 having different cell radii are mixed.
  • the heterogeneous network for example, a plurality of types of radio standards are mixed.
  • the base stations 200 having different cell radii are superposed on each other, and the RAT includes, for example, information on radio communication standards, radio frequencies, and directivity formation during communication.
  • This heterogeneous network may not be a C / U separation type network or a C / U separation type network. That is, in the wireless communication system 10, communication related to control data and communication related to user data may be performed by the same base station 200 or may be performed by different base stations 200. For example, when a plurality of terminals 100 existing under different base stations 200 communicate with each other, user data is transmitted via the wireless backhaul line 20.
  • the base station 200 includes a macro cell base station 200A and a small cell base station 200B.
  • the terminal 100 communicates control data and user data with both the macro cell base station 200A and the small cell base station 200B.
  • the control data includes data related to C (Control) -Plane.
  • the user data includes data related to U (User) -Plane.
  • the user data includes, for example, image data (for example, moving images and still images) and audio data, and may include data with a large amount of data.
  • C-plane is a communication protocol for communicating control data for call connection and wireless resource allocation in wireless communication.
  • U-plane is a communication protocol for actual communication (for example, video communication, audio communication, and data communication) using assigned radio resources.
  • the cell radius of the macro cell base station 200A is, for example, 1 km to several km and is relatively large.
  • the RAT that can be adopted by the macrocell base station 200A may be, for example, one type (for example, LTE) or a plurality of types.
  • the cell radius corresponds to the maximum transmission distance of the base station 200.
  • the cell radius of the small cell base station 200B is 10 to 100 m, for example, and is relatively small.
  • the small cell base station 200B There are various RATs that can be adopted by the small cell base station 200B, and there are a plurality of types.
  • the cell radius may be 100 m or more in a mountainous area, a desert area, or a forest area, or may be larger than the cell radius of the macrocell base station 200A. That is, here, the distinction between the macro cell base station 200A and the small cell base station 200B is not conscious of the size of the cell radius.
  • MMS indicates the macro cell base station 200A
  • SBS ( ⁇ ) indicates the small cell base station 200B
  • T indicates the terminal 100.
  • a line surrounding the macro cell base station 200A shows an image of a communicable range by the macro cell base station 200A.
  • a line surrounding the small cell base station 200B shows an image of a communicable range by the small cell base station 200B.
  • the communicable range of the base station 200 is determined according to the position of the base station 200 and the cell radius, for example.
  • the base station 200 sets a RAT used for communication from a RAT (for example, a radio communication standard or a radio frequency) that can be adopted by the base station 200, and performs radio communication according to the set RAT.
  • a RAT for example, a radio communication standard or a radio frequency
  • the base station 200 can employ one or more RATs.
  • Wireless communication standards include, for example, LTE (Long Term Evolution), wireless LAN (Local Area Network), DECT (Digital Enhanced Cordless Telecommunication), 3G (3rd generation mobile communication system), 4G (4th generation mobile communication system), 5G (5th generation mobile communication system).
  • RAT1 is, for example, LTE having a radio frequency band of 700 MHz to 3 GHz.
  • RAT2 is, for example, LTE-Advanced with a radio frequency band of 15 GHz.
  • RAT3 is, for example, wireless LAN communication with a radio frequency band of 5 GHz.
  • RAT4 is, for example, a radio communication system with a radio frequency band of 15 GHz, and is a fifth generation mobile communication system.
  • RAT5 is, for example, a radio communication system (for example, millimeter wave communication) (for example, WiGig) having a radio frequency band of 60 GHz.
  • FIG. 2 is a block diagram illustrating a configuration example of the macro cell base station 200A and the small cell base station 200B.
  • the macro cell base station 200A and the small cell base station 200B are connected via the wireless backhaul line 20.
  • the wireless backhaul line 20 includes an uplink 21 and a downlink 22.
  • Uplink 21 is a radio line from small cell base station 200 ⁇ / b> B to macro cell base station 200 ⁇ / b> A in wireless backhaul line 20.
  • the downlink 22 is a wireless line that goes from the macro cell base station 200A to the small cell base station 200B in the wireless backhaul line 20.
  • Wireless lines widely include various public lines, mobile phone lines, wide area wireless lines, and the like.
  • the macro cell base station 200A has one or more small cell base stations 200B existing around the macro cell base station 200A as communication partners.
  • the small cell base station 200B uses one macro cell base station 200A as a communication partner. Since the macro cell base station 200A and the small cell base station 200B are fixedly installed, communication partners of the macro cell base station 200A and the small cell base station 200B are determined in advance.
  • the macrocell base station 200A includes a processor 250A, a memory 260A, a first interface 201, a first transmission antenna 204, and a first reception antenna 205.
  • the processor 250A performs various processes and controls in cooperation with the memory 260A. Specifically, the processor 250A implements the functions of the following units by executing a program held in the memory 260A. Each unit includes a first packet generation unit 202, a first radio transmission unit 203, a first radio reception unit 206, a first packet decoding unit 207, and a first radio resource management unit 208.
  • the memory 260A stores, for example, various data, information, and programs.
  • the memory 260A stores history databases T11 and T12.
  • the memory 260A may be built in the processor 250A.
  • the memory 260A may include a secondary storage device together with the primary storage device.
  • the temporary storage device includes, for example, a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the secondary storage device includes, for example, an HDD (Hard Disk Memory) and an SSD (Solid State Drive).
  • the memory 260A holds position information (for example, longitude and latitude) of each small cell base station 200B.
  • FIG. 3 is a schematic diagram showing an example of the history database T11.
  • the history database T11 holds, for each small cell base station 200B wirelessly connected in the past, information on the usage history of the radio frequency used for communication on the downlink 22 with the macro cell base station 200A.
  • the history database T11 may be provided separately for each RAT that can be adopted by the macrocell base station 200A.
  • the history database T11 holds, for example, information on the small cell base station 200B and information on the use history of radio frequencies in a past fixed period.
  • the information regarding the small cell base station 200B includes identification information (for example, SBS # 1) of the small cell base station 200B.
  • the radio frequency use history information includes information on the radio frequency (for example, f1) used for communication with the small cell base station 200B on the downlink 22, and the amount of communication (communication) using the radio frequency. Data amount) (for example, 784 (MB)).
  • FIG. 4 is a schematic diagram showing an example of the history database T12.
  • the history database T12 holds, for each small cell base station 200B wirelessly connected in the past, information on the transmission power usage history used for communication with the small cell base station 200B.
  • the history database T12 holds, for example, transmission power usage history information in a past fixed period.
  • the history database T12 may be provided separately for each RAT that can be adopted by the macrocell base station 200A.
  • the history database T12 holds, for example, information on the small cell base station 200B and information on usage history of transmission power in a past fixed period.
  • the information regarding the small cell base station 200B includes identification information (for example, SBS # 1) of the small cell base station 200B.
  • the transmission power usage history information includes information on transmission power (for example, ⁇ 6 dBm to ⁇ 3 dBm) at a radio frequency (for example, f1) used for communication with the small cell base station 200B on the downlink 22 and Information on the frequency (for example, the number of communication) (for example, “2”) of communication with the small cell base station 200B with the transmission power is included.
  • the transmission power held as the use history may be an average value of transmission power during communication (for example, an average value of time every 3 seconds).
  • the transmission power held as the usage history may be, for example, a simple total value of power supplied to each antenna described later included in the first transmission antenna 204.
  • the history database T12 has a value in which the influence of the change is smoothed. Can hold.
  • the average value of the transmission power is roughly determined according to, for example, the radio frequency, transmission distance, ambient environment, antenna height, weather, and radio transmission method.
  • the ambient environment includes information such as whether or not there are buildings or mountains around the base station 200.
  • Weather is considered for rain attenuation. High attenuation occurs when the diameter of raindrops overlaps the wavelength of radio waves and the radio waves are diffused. The higher the radio frequency, the more pronounced rain attenuation. In particular, when using radio waves of 10 GHz or more, it is greatly affected by rain attenuation.
  • the first interface 201 is a communication interface for connecting the macro cell base station 200A and the host device.
  • the higher-level device includes SGW (Serving Gateway)), and when the RAT is W-CDMA (Wideband Code Division Multiple Access), it includes SGSN (Serving General packet radio Service).
  • SGW Serving Gateway
  • W-CDMA Wideband Code Division Multiple Access
  • SGSN Serving General packet radio Service
  • the first packet generator 202 generates a packet (first transmission packet) to be transmitted to the small cell base station 200B.
  • the first transmission packet includes data on the downlink 22.
  • Data on the downlink 22 (control data and user data) is obtained from, for example, the memory 260, an external device (not shown) such as a storage device or a display device, and various software processing units (not shown).
  • the first packet generation unit 202 sends information on the usage history of the radio resources for the downlink 22 related to the communication of the first transmission packet to the first radio resource management unit 208.
  • the information on the usage history of the radio resource includes, for example, information on the radio frequency used for communication with the small cell base station 200B and information on the communication amount communicated using the radio frequency.
  • the radio resources segregated in the wireless backhaul line 20 are, for example, a radio frequency used for communication, a part of the radio frequency (a part of the frequency axis, a part of the time axis, or a combination thereof).
  • the part of the frequency axis indicates, for example, a subcarrier frequency or a bundle of a plurality of subcarrier frequencies.
  • the part of the time axis indicates, for example, a time slot or a bundle of a plurality of time slots.
  • the first wireless transmission unit 203 refers to the history database T12, and based on the past use history of transmission power used for communication with the small cell base station 200B, transmission power used for communication with the small cell base station 200B Is derived, and the initial value of the transmission power is set.
  • the first wireless transmission unit 203 determines the transmission power having a large usage history (high usage history) as the initial value of the transmission power used for downlink communication.
  • the transmission power with a high usage history may be, for example, the transmission power with the highest frequency accumulated in the history database T12, or may be the transmission power with the frequency not less than the predetermined frequency.
  • the first wireless transmission unit 203 updates the transmission power usage history information held in the history database T12 based on the transmission power used for communication of the first transmission packet.
  • This transmission power usage history information includes, for example, information on transmission power used for downlink communication with the small cell base station 200B and information on the frequency of communication using this transmission power.
  • the first wireless transmission unit 203 adds, for example, “1” to the transmission power of the history database T12 that matches the transmission power (current transmission power) related to the transmission of the first transmission packet, Information held in the database T12 is updated.
  • the first wireless transmission unit 203 transmits the first transmission packet to the small cell base station 200B via the downlink 22 and the first transmission antenna 204. At this time, the first radio transmission unit 203 uses the radio resource allocated by the first radio resource management unit 208 and transmits with the transmission power set by the first radio transmission unit 203.
  • the first radio transmission unit 203 includes information on radio resources (radio resource allocation information) allocated to communication on the downlink 22 in a control signal and transmits the information to the small cell base station 200B.
  • the radio resource allocation information for the downlink 22 is used at the time of reception in the small cell base station 200B.
  • the first radio reception unit 206 receives a packet (second received packet) from the small cell base station 200B using the radio resource for the uplink 21 allocated by the first radio resource management unit 208.
  • the first packet decoding unit 207 decodes the second received packet to obtain second decoded data.
  • the second decoded data includes the uplink 21 data.
  • the data (control data and user data) of the uplink 21 is passed to, for example, the memory 260A, an external device (not shown) such as a storage device or a display device, and various software processing units (not shown).
  • the data of the downlink 22 includes radio resource allocation information for the downlink 22.
  • the first packet decoding unit 207 sends radio resource allocation information for the downlink 22 to the first radio resource management unit 208.
  • the first packet decoding unit 207 sends information on the usage history of radio resources related to communication of the second received packet to the first radio resource management unit 208.
  • the first radio resource management unit 208 refers to the history database T11 and downloads data used for communication with the small cell base station 200B based on the radio frequency usage history used for communication with the past small cell base station 200B. Radio frequency allocation candidates for the line 22 are derived.
  • the first radio resource management unit 208 determines radio frequencies with a high usage history (high usage history) as radio frequency allocation candidates to be allocated for communication on the downlink 22.
  • the radio frequency with a large usage history may be, for example, the radio frequency with the largest amount of communication accumulated in the history database T11, or may be the radio frequency with the communication data amount equal to or greater than a predetermined amount. Note that a plurality of radio frequency candidates from a candidate with a high priority to a candidate with a low priority may be included.
  • the first radio resource management unit 208 searches the allocation status of RBs (Resource Blocks) in radio frequency allocation candidates, and determines the presence or absence of unallocated RBs in this radio frequency. When there is an unassigned RB, first radio resource management unit 208 determines that this radio frequency can be assigned. The first radio resource management unit 208 allocates radio resources (radio frequencies and unallocated RBs) that can be allocated as radio resources used for downlink communication with the small cell base station 200B.
  • radio resources radio frequencies and unallocated RBs
  • the first radio resource management unit 208 acquires radio resource allocation information for the uplink 21 from the first packet decoding unit 207, and stores the radio resource allocation information for the uplink 21 in, for example, the memory 260A for management. .
  • the first radio resource management unit 208 allocates radio resources for the uplink 21 based on the allocation information of radio resources for the uplink 21.
  • the first radio resource management unit 208 may specify AMC (Adaptive Modulation and Coding) together with RB allocation.
  • AMC Adaptive Modulation and Coding
  • the first radio resource management unit 208 may change the radio frequency and select a new radio frequency from other allocation candidate radio frequencies when the allocation candidate radio frequency cannot be allocated.
  • the first radio resource management unit 208 acquires information on the radio resource usage history from the first packet generation unit 202. For example, the first radio resource management unit 208 adds the communication amount included in the usage history information to the radio frequency of the history database T11 that matches the radio frequency included in the acquired usage history information, The information held in the database T11 is updated.
  • the first radio resource management unit 208 uses the assigned radio resource information for the downlink 22, that is, the radio frequency and RB information used for the downlink 22 communication with the small cell base station 200 B, to the first radio transmission unit. To 203.
  • the first radio resource management unit 208 uses the assigned radio resource information for the uplink 21, that is, the radio frequency and RB information used for the uplink 21 communication with the small cell base station 200B, to the first radio reception unit. Send to 206.
  • the small cell base station 200B includes a processor 250B, a memory 260B, a second interface 221, a second transmission antenna 224, and a second reception antenna 225.
  • the processor 250B performs various processes and controls in cooperation with the memory 260B. Specifically, the processor 250B implements the functions of the following units by executing a program held in the memory 260B. Each unit includes a second packet generation unit 222, a second radio transmission unit 223, a second radio reception unit 226, a second packet decoding unit 227, and a second radio resource management unit 228.
  • the memory 260B stores, for example, various data, information, and programs.
  • the memory 260B stores history databases T21 and T22.
  • the memory 260B may be built in the processor 250B.
  • the memory 260B may include a secondary storage device together with the primary storage device.
  • the memory 260B holds, for example, position information (for example, longitude and latitude) of the macro cell base station 200A.
  • FIG. 5 is a schematic diagram showing an example of the history database T21.
  • the history database T21 holds information on the use history of the radio frequency used for communication on the uplink 21 with the macrocell base station 200A.
  • the history database T21 may be provided separately for each RAT that can be adopted by the small cell base station 200B.
  • the history database T21 holds, for example, information on the usage history of radio frequencies for a certain period in the past.
  • the radio frequency use history information includes information on the radio frequency (for example, f1) used for communication with the macrocell base station 200A and the communication amount (communication data) communicated using the radio frequency in the uplink 21. Information) (for example, 375 (MB)).
  • FIG. 6 is a schematic diagram showing an example of the history database T22.
  • the history database T22 holds information on the transmission power usage history used for communication with the macrocell base station 200A.
  • the history database T22 holds, for example, transmission power usage history information for a certain period in the past.
  • the history database T22 may be provided separately for each RAT that can be adopted by the small cell base station 200B.
  • the transmission power use history information includes information on transmission power (for example, ⁇ 6 dBm to ⁇ 3 dBm) at the radio frequency (f1) used for communication with the connected macro cell base station 200A, and the macro cell with this transmission power. It includes information on the frequency of communication with the base station 200A (for example, the number of communication) (for example, “103”).
  • the transmission power held as the use history may be an average value of transmission power during communication (for example, an average value of time every 3 seconds). Further, the transmission power held as the usage history may be, for example, a simple total value of power input to each antenna described later included in the second transmission antenna 224.
  • the history database T22 uses a value in which the influence of the change is smoothed. Can hold.
  • the identification information of the macro cell base station 200A is not held in the history databases T21 and T22. It's okay.
  • the second interface 221 is a communication interface for connecting the small cell base station 200B and the subordinate terminal 100.
  • the second interface 221 is an interface for communicating via a RAN (Radio Access Network).
  • RAN Radio Access Network
  • the second packet generator 222 generates a packet (second transmission packet) transmitted to the macrocell base station 200A.
  • the second transmission packet includes data on the uplink 21.
  • the data (control data and user data) of the uplink 21 is obtained from, for example, the memory 260B, an external device (not shown) such as a storage device, and various software processing units (not shown).
  • the second packet generation unit 222 sends information on the usage history of the radio resources for the uplink 21 related to the communication of the second transmission packet to the second radio resource management unit 228.
  • the information on the usage history of the radio resource includes, for example, information on the radio frequency used for communication with the macro cell base station 200A and information on the communication amount communicated using the radio frequency.
  • the second wireless transmission unit 223 refers to the history database T22, and based on the past transmission power usage history used for communication with the macro cell base station 200A, the initial transmission power used for communication with the macro cell base station 200A A value is derived and an initial value of the transmission power is set.
  • the second wireless transmission unit 223 determines the transmission power with a large usage history (high usage history) as the initial value of the transmission power used for the uplink 21 communication.
  • the transmission power having a high usage history may be, for example, the transmission power having the highest frequency accumulated in the history database T22, or may be the transmission power having the frequency equal to or higher than the predetermined frequency even if it is not the highest.
  • the second wireless transmission unit 223 updates the transmission power usage history information held in the history database T22 based on the transmission power used for communication of the second transmission packet.
  • This transmission power usage history information includes, for example, information on transmission power used for uplink 21 communication with the macrocell base station 200A and information on frequency of communication using this transmission power.
  • the second wireless transmission unit 223 adds, for example, “1” to the frequency to the transmission power of the history database T22 that matches the transmission power (current transmission power) related to the transmission of the second transmission packet, Information held in the database T22 is updated.
  • the second wireless transmission unit 223 transmits the second transmission packet to the macro cell base station 200A via the uplink 21 and the second transmission antenna 224. At this time, the second radio transmission unit 223 uses the radio resource allocated by the second radio resource management unit 228 to transmit with the transmission power set by the second radio transmission unit 223.
  • the second radio transmission unit 223 includes, in a control signal, information on radio resources allocated to communication on the uplink 21 (radio resource allocation information) and transmits the information to the macro cell base station 200A.
  • the radio resource allocation information for the uplink 21 is used at the time of reception in the macro cell base station 200A.
  • the second radio reception unit 226 receives a packet (first reception packet) from the macrocell base station 200A using the radio resources for the downlink 22 allocated by the second radio resource management unit 228.
  • the second packet decoding unit 227 decodes the first received packet to obtain first decoded data.
  • the first decoded data includes downlink data 22. Data on the downlink 22 (control data and user data) is transferred to, for example, the memory 260B, an external device (not shown) such as a storage device or a display device, and processing units (not shown) of various software.
  • the data of the uplink 21 includes radio resource allocation information for the uplink 21.
  • Second packet decoding section 227 transmits radio resource allocation information for uplink 21 to second radio resource management section 228.
  • the second packet decoding unit 227 sends information on the usage history of the radio resource related to the communication of the first received packet to the second radio resource management unit 228.
  • the second radio resource management unit 228 refers to the history database T21, and based on the radio frequency usage history used for communication with the past macro cell base station 200A, the uplink 21 used for communication with the macro cell base station 200A. A radio frequency allocation candidate for the system is derived.
  • the second radio resource management unit 228 determines a radio frequency having a high usage history (high usage history) as a radio frequency allocation candidate to be allocated to communication on the uplink 21.
  • the radio frequency with a large usage history may be, for example, the radio frequency with the largest amount of communication stored in the history database T21, or the radio frequency with the communication data amount equal to or greater than a predetermined amount. Note that a plurality of radio frequency candidates from a candidate with a high priority to a candidate with a low priority may be included.
  • the second radio resource management unit 228 searches for the allocation status of RBs in radio frequency allocation candidates and determines whether there is an unallocated RB in this radio frequency. The second radio resource management unit 228 determines that this radio frequency can be allocated when there is an unallocated RB. The second radio resource management unit 228 allocates radio resources (radio frequencies and unallocated RBs) that can be allocated as radio resources used for uplink communication with the macro cell base station 200A.
  • the second radio resource management unit 228 acquires the radio resource allocation information for the downlink 22 from the second packet decoding unit 227, and stores the radio resource allocation information for the downlink 22 in, for example, the memory 260B for management. .
  • the first radio resource management unit 208 allocates radio resources for the downlink 22 based on the radio resource allocation information for the downlink 22.
  • the second radio resource management unit 228 may specify AMC together with RB allocation.
  • the second radio resource management unit 228 may change the radio frequency and select a new radio frequency from other allocation candidate radio frequencies when the allocation candidate radio frequencies cannot be allocated.
  • the second radio resource management unit 228 acquires information on the use history of the radio resource from the second packet generation unit 222. For example, the second radio resource management unit 228 adds the communication amount included in the usage history information to the radio frequency of the history database T21 that matches the radio frequency included in the acquired usage history information, Information held in the database T21 is updated.
  • the second radio resource management unit 228 uses the second radio transmission unit 223 to transmit information on the allocated radio resource for the uplink 21, that is, information on the radio frequency and RB used for communication on the uplink 21 with the macro cell base station 200A. Send to.
  • the second radio resource management unit 228 uses the second radio reception unit 226 to transmit the information on the allocated radio resources for the downlink 22, that is, the radio frequency and RB information used for the downlink 22 communication with the macrocell base station 200A. Send to.
  • FIG. 7 is a flowchart showing a first operation example when the base station 200 assigns a radio frequency used in the wireless backhaul line 20.
  • FIG. 7 shows an operation example when the macro cell base station 200A allocates a radio frequency to be used in the downlink 22.
  • the first radio resource management unit 208 determines whether various settings need to be made on the wireless backhaul line 20 (S11).
  • the various settings include, for example, setting of radio resources used in communication of the wireless backhaul line 20 (downlink 22), and an initial value of transmission power when communicating via the wireless backhaul line 20 by the first transmission antenna 204. Including settings. For example, when the terminal 100 exists under the macro cell base station 200A or the small cell base station 200B, the first radio resource management unit 208 determines that the various settings are necessary.
  • the first radio resource management unit 208 refers to the history database T11 (S12), and has a high usage frequency (such as a history of usage history) such as the largest traffic in the small cell base station 200B.
  • a radio frequency is selected as a radio frequency allocation candidate (S13).
  • the first radio resource management unit 208 determines whether or not RBs in radio frequency allocation candidates can be allocated, for example, by the method described above (S14).
  • the first radio resource management unit 208 determines whether or not the priority order of the radio frequency set as the allocation candidate is the lowest (S15). ).
  • the priority order of the allocation candidate radio frequency is the highest, for example, and the priority order of the allocation candidate radio frequency is lowered each time the number of processes of S15 increases.
  • the first radio resource management unit 208 determines that the radio frequency having a one-step priority lower than this radio frequency, that is, the radio frequency of the next priority order. Is selected as an allocation candidate (S16). Then, the macro cell base station 200A proceeds to the process of S14.
  • the first radio resource management unit 208 indicates the history information indicating that the wireless backhaul line 20 cannot be set when the priority order of the radio frequency set as the allocation candidate is the lowest in S15.
  • the unusable history information includes, for example, information of the small cell base station 200B that cannot be allocated, the radio frequency that cannot be allocated, and the time (for example, date and time) that cannot be allocated.
  • macrocell base station 200A complete finishes the process of FIG.
  • the first radio resource management unit 208 allocates radio frequency RBs that can be allocated. Then, the first radio resource management unit 208 sets transmission power (S18). This transmission power corresponds to the power supplied to the first transmission antenna 204.
  • the transmission power setting may be performed using the history database T21 as in S32 to S35 shown in FIG. 9, for example, or may be performed by a known method.
  • the first radio transmission unit 203 communicates data with the small cell base station 200B with the set transmission power using the RB of the allocated radio frequency (S19).
  • the allocated radio frequency information is included in the radio resource allocation information for the downlink 22, and is notified to the small cell base station 200B.
  • the first packet generation unit 202 sends information on the traffic amount of the transmitted first transmission packet to the first radio resource management unit 208.
  • the first radio resource management unit 208 updates the communication history (communication amount) at the radio frequency used in the communicated small cell base station 200B in the history database T11 (S20). And macrocell base station 200A complete
  • the macro cell base station 200A can assign a radio frequency with a low possibility of communication interference using information on past use history of radio frequency related to data communication.
  • allocation of RBs of other radio frequencies increases the possibility that the macro cell base station 200A can find a radio frequency for communicating data. That is, the macro cell base station 200A can improve the allocation efficiency and the utilization efficiency of radio resources. Therefore, the macro cell base station 200A can autonomously distribute radio frequencies used for communication with the small cell base station 200B via the wireless backhaul line 20.
  • FIG. 8 is a flowchart showing a second operation example when the base station 200 assigns a radio frequency to be used in the wireless backhaul line 20.
  • FIG. 8 illustrates an operation example when the small cell base station 200B allocates a radio frequency to be used in the uplink 21.
  • the same processes as those in FIG. 7 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the second radio resource management unit 228 determines whether various settings on the wireless backhaul line 20 are necessary (S21).
  • the various settings include, for example, the setting of radio resources used in the communication of the wireless backhaul line 20 (uplink 21), and the initial value of the transmission power when the second transmission antenna 224 communicates via the wireless backhaul line 20. Including settings. For example, when the terminal 100 exists under the macro cell base station 200A or the small cell base station 200B, the second radio resource management unit 228 determines that the various settings are necessary.
  • the second radio resource management unit 228 refers to the history database T21 (S22), and selects a radio frequency with a high use frequency (a lot of use history) such as the largest amount of communication. It is selected as a radio frequency allocation candidate (S23).
  • the second radio resource management unit 228 determines whether or not RBs in radio frequency allocation candidates can be allocated, for example, by the method described above (S24).
  • the second radio resource management unit 228 determines whether or not the priority order of the radio frequency determined as the allocation candidate is the lowest (S25). ).
  • the priority of the radio frequency of the allocation candidate is the highest, and the priority of the radio frequency of the allocation candidate is lowered every time the number of processes of S25 increases.
  • the second radio resource management unit 228 determines that the radio frequency having a one-step priority lower than this radio frequency, that is, the radio frequency of the next priority order. Is selected as an allocation candidate (S26). Then, the small cell base station 200B proceeds to the process of S24.
  • the second radio resource management unit 228 indicates the impossible history information indicating that the setting of the wireless backhaul line 20 is impossible when the priority of the radio frequency set as the allocation candidate is the lowest in S25.
  • the impossibility history information includes, for example, information on radio frequencies that could not be assigned and times (eg, date and time) when assignment was not possible.
  • the small cell base station 200B complete finishes the process of FIG.
  • the second radio resource management unit 228 allocates the RB of the radio frequency that can be allocated. Then, the second radio resource management unit 228 sets transmission power (S28). This transmission power corresponds to the power supplied to the second transmission antenna 224.
  • the setting of the transmission power may be performed using the history database T22 as in S42 to S45 shown in FIG. 10, for example, or may be performed by a known method.
  • the second radio transmission unit 223 communicates data with the macrocell base station 200A with the set transmission power using the RB of the allocated radio frequency (S29).
  • the allocated radio frequency and RB information are included in the radio resource allocation information for the uplink 21 and notified to the macro cell base station 200A.
  • the second packet generation unit 222 sends information on the amount of communication of the transmitted second transmission packet to the second radio resource management unit 228.
  • the second radio resource management unit 228 updates the communication history (communication amount) at the used radio frequency in the history database T21 (S30).
  • the small cell base station 200B complete finishes the process of FIG.
  • the small cell base station 200B can assign a radio frequency with a low possibility of communication interference using information on past radio frequency usage history related to data communication.
  • allocation of RBs of other radio frequencies increases the possibility that the small cell base station 200B can find a radio frequency for communicating data. That is, the small cell base station 200B can improve radio resource allocation efficiency and utilization efficiency. Therefore, the small cell base station 200B can autonomously distribute radio frequencies used for communication with the macro cell base station 200A via the wireless backhaul line 20.
  • FIG. 9 is a flowchart illustrating a first operation example when the base station 200 sets transmission power used in communication via the wireless backhaul line 20.
  • FIG. 9 shows an operation example when the macrocell base station 200A sets transmission power. 9, the same processes as those in FIGS. 7 and 8 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the first radio resource management unit 208 determines whether various settings need to be made on the wireless backhaul line 20 (S11).
  • the first radio resource management unit 208 allocates radio resources including radio frequencies for the downlink 22 (S31). This radio resource allocation may be performed using the history database T11 as in S12 to S17 shown in FIG. 7, or may be performed by a known method.
  • the first wireless transmission unit 203 refers to the history database T12 (S32), and uses the first transmission antenna 204 to transmit a transmission power having a high usage frequency (a lot of usage history) such as the highest frequency.
  • the initial value of power is set (S33). This frequency is the frequency of transmission power used in the radio frequency used in communication with the small cell base station 200B.
  • the first wireless transmission unit 203 may set transmission power that is 3 dB larger or 3 dB smaller than the most frequent transmission power as the initial value of the transmission power in the history database T12. .
  • the first wireless transmission unit 203 transmits data of the downlink 22 to the small cell base station 200B based on the set initial value of transmission power via the first transmission antenna 204 (S34).
  • the first wireless transmission unit 203 supplies the initial value of the transmission power to the first transmission antenna 204 before data communication. Further, the first wireless transmission unit 203 supplies the transmission power determined by the transmission power control during the data communication to the first transmission antenna 204 during the data communication.
  • the first wireless transmission unit 203 uses the transmission power from the first transmission antenna 204.
  • a specified value for example, 1 dB
  • the transmission power by the first transmission antenna 204 is increased by a specified value (for example, 1 dB).
  • the received power information is notified from the receiving side (here, the small cell base station 200B) to the transmitting side (here, the macro cell base station 200A) via, for example, the reverse line (here, the uplink 21).
  • the first radio transmission unit 203 accesses the history database T12, and based on the information on the transmission power used, the first radio transmission unit 203 uses the radio frequency used for communication with the small cell base station 200B. The frequency of the transmission power is updated (S35). And macrocell base station 200A complete
  • the macro cell base station 200A uses the transmission power usage history information at the past radio frequency used for data communication, thereby reducing the transmission quality and the possibility of communication interference. Can be set. That is, the macrocell base station 200A can prevent the transmitted data from reaching the small cell base station 200B and reducing the quality of data communication by setting the initial value of the transmission power to be too small. Further, the macrocell base station 200A can suppress the occurrence of communication interference in the base stations 200 and the like around the small cell base station 200B by setting the initial value of the transmission power to be excessive. Accordingly, the macro cell base station 200A can autonomously distribute transmission power used for communication with the small cell base station 200B via the wireless backhaul line 20.
  • FIG. 10 is a flowchart showing a second operation example when the base station 200 sets transmission power used for communication via the wireless backhaul line 20.
  • FIG. 10 shows an operation example when the small cell base station 200B determines transmission power.
  • the same processes as those in FIGS. 7 to 9 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the second radio resource management unit 228 determines whether various settings on the wireless backhaul line 20 are necessary (S21).
  • the second radio resource management unit 228 allocates radio resources including radio frequencies for the uplink 21 (S41). This radio resource allocation may be performed using the history database T21 as in S22 to S27 shown in FIG. 8, or may be performed by a known method.
  • the second wireless transmission unit 223 refers to the history database T22 (S42), and uses the second transmission antenna 224 to transmit the transmission power having a high usage frequency (a lot of usage history) such as the highest frequency.
  • the initial value of power is set (S43). This frequency is the frequency of transmission power used in the radio frequency used in communication with the macrocell base station 200A.
  • the second wireless transmission unit 223 transmits the data of the uplink 21 to the macrocell base station 200A via the second transmission antenna 224 based on the set initial value of transmission power (S44).
  • the second wireless transmission unit 223 supplies the initial value of the transmission power to the second transmission antenna 224 before data communication. Further, the second wireless transmission unit 223 supplies the transmission power determined by the transmission power control during the data communication to the second transmission antenna 224 during the data communication.
  • the first wireless transmission unit 203 uses the transmission power from the second transmission antenna 224.
  • a specified value for example, 1 dB
  • the transmission power by the second transmission antenna 224 is increased by a specified value (for example, 1 dB).
  • the received power information is notified from the reception side (here, the macro cell base station 200A) to the transmission side (here, the small cell base station 200B) via, for example, a reverse line (here, the downlink 22).
  • the second radio transmission unit 223 accesses the history database T22, and based on the information on the transmission power used, the second radio transmission unit 223 uses the radio frequency used for communication with the macrocell base station 200A.
  • the frequency of transmission power is updated (S45).
  • the small cell base station 200B complete finishes the process of FIG.
  • the small cell base station 200B uses the transmission power usage history information at the past radio frequency used for data communication, thereby transmitting with low communication quality and low possibility of communication interference. You can set the power. That is, the small cell base station 200 ⁇ / b> B can prevent the transmitted data from reaching the macro cell base station 200 ⁇ / b> A and the quality of data communication from being deteriorated by setting the initial value of the transmission power to be too small. Further, the small cell base station 200B can suppress the occurrence of communication interference in the base stations 200 and the like around the macro cell base station 200A by setting the initial value of the transmission power to be excessive. Therefore, the small cell base station 200 ⁇ / b> B can autonomously distribute transmission power used for communication with the macro cell base station 200 ⁇ / b> A via the wireless backhaul line 20.
  • the first transmission antenna 204, the first reception antenna 205, the second transmission antenna 224, and the second reception antenna 225 have a MIMO (Multiple-Input and Multiple-Output) antenna. . That is, each of the first transmission antenna 204, the first reception antenna 205, the second transmission antenna 224, and the second reception antenna 225 has a plurality of antennas. The plurality of antennas may be provided physically or may be provided logically. 11 to 14 exemplify that each of the macro cell base station 200A and the small cell base station 200B has eight transmission MIMO antennas and eight reception MIMO antennas.
  • MIMO Multiple-Input and Multiple-Output
  • FIG. 11 is a schematic diagram for explaining a first control example of transmission power by the wireless communication system 10.
  • each antenna # A11 to # A18 of the first transmission antenna 204 of the macrocell base station 200A transmits different data.
  • each antenna # B21 to # B28 of the second receiving antenna 225 of N small cell base stations 200B receives data from the macrocell base station 200A.
  • the reception power when each small cell base station 200B receives is substantially uniform, for example.
  • one small cell base station is connected to one wireless backhaul line 20 and one radio frequency is used. Therefore, as many wireless backhaul lines 20 as the number of small cell base stations 200B connected to the macro cell base station 200A are provided.
  • the first wireless transmission unit 203 performs serial-to-parallel conversion (S / P: Serial-to-Parallel conversion) on the first transmission data sequence (data on the downlink 22) included in the first transmission packet.
  • the first wireless transmission unit 203 performs baseband processing on the transmission data # A51 to # A58 subjected to serial / parallel conversion.
  • the first radio transmission unit 203 refers to the history database T12 and sets an initial value of transmission power based on the radio frequency assigned by the first radio resource management unit 208.
  • the first wireless transmission unit 203 sets, for example, transmission power whose frequency is equal to or higher than a predetermined frequency (for example, the maximum) in the assigned wireless frequency as an initial value of the transmission power.
  • the first radio transmission unit 203 may set an initial value of transmission power based on a RAT that can be adopted by the small cell base station 200B.
  • the first wireless transmission unit 203 determines the number of antennas used for MIMO communication and the presence / absence of directivity formation. Here, it is assumed that there is no directivity formation. First radio transmission section 203 determines the ratio of the power supplied to each antenna # A11 to # A18 based on the determined RAT (transmission power setting). Here, since the directivity is not formed, the value of the power supplied to each antenna # A11 to # A18 is the same.
  • the first wireless transmission unit 203 controls the supply power so that the total value of the power supplied to the antennas # A11 to # A18 becomes the initial value of the set transmission power. Therefore, here, the value obtained by dividing the transmission power by the number of MIMO antennas (eight) is the power supplied to each antenna. In this way, the initial transmission power for data communication is set.
  • the first radio transmission unit 203 transmits the transmission data # A51 to the small cell base station 200B via the MIMO antennas # A11 to # A18 with the set transmission power using the radio resources allocated. Start transmission of # A58.
  • the first wireless transmission unit 203 supplies the transmission power determined by the transmission power control during data communication to each antenna # A11 to # A18 of the first transmission antenna 204.
  • the transmission power by the first transmission antenna 204 may be adjusted from the initial value, but the transmission power adjustment amount can be reduced by setting the initial value using past history information of the transmission power. .
  • the second radio reception unit 226 receives signals from the macrocell base station 200A via the antennas # B21 to # B28 of the second reception antenna 225. Second radio reception section 226 separates the received signals according to a known signal separation algorithm to obtain received data # B61 to # B68.
  • the received signal includes data on the downlink 22.
  • the second wireless reception unit 226 performs parallel-to-serial conversion (P / S: Parallel-to-Serial-conversion) on the received data # B61 to # B68. Reproduced data is obtained by parallel-serial conversion. When the data is normally restored by the second radio reception unit 226, the reproduction data corresponds to the first transmission data sequence.
  • the first wireless transmission unit 203 also sums (adds) the power supplied to the antennas # A11 to # A18, for example, and stores the average value of the total value for every predetermined time (for example, 3 seconds) in the history database T12. reflect. For example, in the history database T12, the first radio transmission unit 203 sets the frequency to “1” for the transmission power in which the RAT and the radio frequency related to the current data communication match and the calculated average value per predetermined time matches. Add and update. Accordingly, as the communication time becomes longer with the same transmission power, a larger value is added to the frequency of the corresponding transmission power.
  • the transmission speed is increased.
  • transmission data is transmitted with equal power around the macro cell base station 200A. Therefore, the macro cell base station 200A can increase the transmission speed of the wireless backhaul line 20 by using MIMO.
  • FIG. 12 is a schematic diagram for explaining a second example of transmission power control by the wireless communication system 10.
  • each antenna # A11 to # A18 of the first transmission antenna 204 of the macrocell base station 200A transmits the same data.
  • the antennas # B21 to # 28 of the second receiving antennas 225 of the N small cell base stations 200B receive data from the macro cell base station 200A.
  • the received power when each small cell base station 200B receives is different depending on the directivity, for example.
  • N small cell base stations are connected to one wireless backhaul line 20 and one radio frequency is used.
  • the first radio transmission unit 203 refers to the history database T12, and based on the RAT for communicating with the small cell base station 200B and the radio frequency assigned by the first radio resource management unit 208, the transmission power Set the initial value.
  • This RAT is determined for each small cell base station 200B from among RATs that can be adopted by the small cell base station 200B.
  • the first radio transmission unit 203 uses, as an initial value of transmission power, transmission power whose frequency is a predetermined frequency or more (for example, the maximum) in the assigned radio frequency. Set.
  • the first wireless transmission unit 203 determines the number of antennas used for MIMO communication and the presence / absence of directivity formation. Here, it is assumed that the formation of directivity is determined. First radio transmission section 203 determines the ratio (transmission weight (weight)) of power supplied to each antenna # A11 to # A18 based on the determined RAT (transmission weight generation). The determined ratio of supplied power is indicated by WI , J.
  • WI transmission weight
  • J indicates the identifier of the MIMO antenna in the first transmission antenna 204.
  • first wireless transmission section 203 determines that the total value of the power supplied to each antenna # A11 to # A18 is the initial value of the set transmission power.
  • the supplied power is controlled so that Thereby, the transmission power of the initial data communication is determined.
  • First radio transmission section 203 transmits transmission data included in a first transmission data sequence (data on downlink 22) addressed to each small cell base station 200B (SBS # 1 to SBS # N) to each antenna # A11 to Send to # A18.
  • the first transmission data sequence includes a data sequence transmitted to each small cell base station 200B (SBS # 1 to SBS # N).
  • the first wireless transmission unit 203 performs baseband processing on each transmission data, multiplies the supplied power ratios W I and J , and transmits each small cell to the same antennas # A11 to # A18.
  • the transmission data addressed to the base station 200B is added.
  • the first radio transmission section 203 transmits transmission data to each small cell base station 200B using the allocated radio resources with the determined transmission power via the MIMO antennas # A11 to # A18. To start.
  • the first wireless transmission unit 203 supplies the transmission power determined by the transmission power control during data communication to each antenna # A11 to # A18 of the first transmission antenna 204.
  • the second radio reception unit 226 of each small cell base station 200B receives a signal from the macro cell base station 200A via each antenna # B21 to # B28 of the second reception antenna 225.
  • the second wireless reception unit 226 separates the received signal according to a known signal separation algorithm to obtain reproduction data.
  • the reproduction data corresponds to the first transmission data sequence.
  • the macrocell base station 200A can transmit with directivity formed by beamforming.
  • the number of MIMO antennas in the first transmission antenna 204 is preferably considerably larger than the number of spatial multiplexing. Thereby, the directivity separation performance in the wireless communication system 10 can be improved.
  • This spatial multiplexing number corresponds to the number of small cell base stations 200B connected to the macro cell base station 200A.
  • FIG. 13 is a schematic diagram for explaining a third control example of transmission power by the wireless communication system 10.
  • each antenna # B11 to # B18 of the second transmission antenna 224 of the small cell base station 200B transmits different data.
  • each antenna # A21 to # A28 of the first receiving antenna 205 of the macrocell base station 200A receives data from the small cell base station 200B.
  • the second wireless transmission unit 223 performs serial-parallel conversion on the second transmission data sequence (uplink 21 data) included in the second transmission packet.
  • Second radio transmission section 223 performs baseband processing on transmission data # B51 to # B58 subjected to serial / parallel conversion.
  • the second wireless transmission unit 223 refers to the history database T21 and sets an initial value of transmission power based on the radio frequency assigned by the second radio resource management unit 228. For example, the second wireless transmission unit 223 sets transmission power having a frequency equal to or higher than a predetermined frequency (for example, the maximum) in the assigned wireless frequency as an initial value of the transmission power.
  • a predetermined frequency for example, the maximum
  • the second radio transmission unit 223 may set an initial value of transmission power based on a RAT that can be adopted by the macrocell base station 200A.
  • the second wireless transmission unit 223 determines the number of antennas used for MIMO communication and the presence / absence of directivity formation. Here, it is assumed that there is no directivity formation. Second radio transmission section 223 determines the ratio of power supplied to antennas # B11 to # B18 based on the determined RAT (transmission power setting). Here, since no directivity is formed, the value of the power supplied to each antenna # B11 to # B18 is the same.
  • the second wireless transmission unit 223 controls the supply power so that the total value of the power supplied to the antennas # B11 to # B18 becomes the initial value of the set transmission power. Therefore, here, the value obtained by dividing the transmission power by the number of MIMO antennas (eight) is the power supplied to each antenna. In this way, the initial transmission power for data communication is set.
  • the second radio transmission section 223 transmits the transmission data # B51 to #B via the MIMO antennas # B11 to # B18 with the determined transmission power using the radio resources allocated to the macro cell base station 200A.
  • the transmission of B58 is started.
  • the second wireless transmission unit 223 supplies the transmission power determined by the transmission power control during data communication to the antennas # B11 to # B18 of the second transmission antenna 224.
  • the transmission power by the second transmission antenna 224 may be adjusted from the initial value, but the transmission power adjustment amount can be reduced by setting the initial value using past history information of the transmission power. .
  • the first radio reception unit 206 receives a signal from the small cell base station 200B via each antenna # A21 to # A28 of the first reception antenna 205.
  • First radio reception section 206 separates the received signals according to a known signal separation algorithm to obtain received data # A61 to # A68.
  • the received signal includes data on the uplink 21.
  • the first wireless reception unit 206 performs parallel-serial conversion on the received data # A61 to # A68. Reproduced data is obtained by parallel-serial conversion. When the data is normally restored by the first wireless reception unit 206, the reproduction data corresponds to the second transmission data series.
  • the second wireless transmission unit 223, for example, sums (adds) the power supplied to the antennas # B11 to # B18, and stores an average value of the total value every predetermined time (for example, 3 seconds) in the history database T22. reflect.
  • the second wireless transmission unit 223 sets the frequency to “1” for the transmission power in which the RAT and the wireless frequency related to the current data communication match and the calculated average value per predetermined time matches. Add and update. Accordingly, as the communication time becomes longer with the same transmission power, a larger value is added to the frequency of the corresponding transmission power.
  • the transmission speed is increased.
  • transmission data is transmitted around the small cell base station 200B with equal power. Therefore, the small cell base station 200B can increase the transmission speed of the wireless backhaul line 20 by using MIMO.
  • FIG. 14 is a schematic diagram for explaining a fourth control example of transmission power by the wireless communication system 10.
  • each antenna # B11 to # B18 of the second transmission antenna 224 of the small cell base station 200B transmits the same data.
  • each antenna # A21 to # A28 of the first receiving antenna 205 of the macrocell base station 200A receives data from the small cell base station 200B.
  • the second radio transmission unit 223 refers to the history database T22, and based on the RAT for communicating with the macrocell base station 200A and the radio frequency allocated by the second radio resource management unit 228, the initial transmission power Set the value.
  • This RAT is determined from RATs that can be adopted by the macrocell base station 200A.
  • the second radio transmission unit 223 sets, as an initial value of the transmission power, a transmission power whose frequency is equal to or higher than a predetermined frequency (for example, the maximum) in the assigned radio frequency. To do.
  • the second wireless transmission unit 223 determines the number of antennas used for MIMO communication and the presence / absence of directivity formation. Here, it is assumed that the formation of directivity is determined. Also, the second radio transmission unit 223 determines the ratio (transmission weight) of the power supplied to each antenna # B11 to # B18 based on the determined RAT (transmission weight generation).
  • the second wireless transmission unit 223 determines the total value of the power supplied to each antenna # B11 to # B18 as the initial value of the set transmission power.
  • the supplied power is controlled so that Thereby, the transmission power of the initial data communication is determined.
  • the second wireless transmission unit 223 transmits the transmission data included in the second transmission data series (uplink 21 data) to each of the antennas # B11 to # B18. At this time, the second wireless transmission unit 223 performs baseband processing on each transmission data and multiplies the ratio of the supplied power.
  • Second radio transmission section 223 starts transmission of transmission data to macro cell base station 200A via MIMO antennas # B11 to # B18 with the determined transmission power using the allocated radio resources. To do.
  • the second wireless transmission unit 223 supplies the transmission power determined by the transmission power control during data communication to the antennas # B11 to # B18 of the second transmission antenna 224.
  • the first radio reception unit 206 of the macro cell base station 200A receives signals from the small cell base station 200B via the antennas # A21 to # A28 of the first reception antenna 205.
  • the first wireless reception unit 206 separates the received signal according to a known signal separation algorithm to obtain reproduction data.
  • the reproduction data corresponds to the second transmission data series.
  • the small cell base station 200B can transmit with directivity formed by beam forming. As the number of MIMO antennas in the second transmission antenna 224 increases, this directivity pattern becomes sharper, and the small cell base station 200B can transmit with an increased transmission distance. Therefore, the small cell base station 200B can improve the SNR of the wireless backhaul line 20 by utilizing MIMO.
  • the base station 200 holds the history database T11 or T21 that holds information on the use history of radio frequencies related to communication with other base stations 200.
  • the base station 200 refers to the history database T11 or T21, determines the priority of radio frequency allocation, and performs radio resources (radio frequency, radio frequency) related to data communication. Part of the frequency).
  • the radio communication system 10 does not need to add an optical line every time the base station 200 (for example, the small cell base station 200B) is added, can reduce the cost required for installing the base station, and can quickly install the base station. Can be improved.
  • the base station 200 can improve the utilization efficiency of radio resources.
  • radio frequencies are not fixedly assigned in advance, it is possible to reduce the shortage of usable radio frequencies.
  • the base station 200 can omit a huge amount of line quality information detection processing for determining a communication environment using a radio frequency.
  • This line quality information includes, for example, SINR (Signal to Interference Noise Ratio).
  • a radio frequency with a large past communication history represents that the base station 200 adopting the radio frequency is a radio frequency with relatively little communication interference with surrounding base stations. Therefore, it is preferable that such a radio frequency is allocated to communication with another base station 200 via the wireless backhaul line 20.
  • the base station 200 can improve the communication accuracy in communication with other base stations 200 via the wireless backhaul line 20, and can reduce the need for reassignment of radio resources. Therefore, the base station 200 can improve radio resource allocation efficiency.
  • the base station 200 suppresses the occurrence of interference between communications using the same radio frequency by considering past communication histories without using beamforming technology or M-MIMO (Massive MIMO) technology. it can.
  • M-MIMO Massive MIMO
  • the base station 200 can perform communication by considering past communication history. Increase in interference can be reduced.
  • the base station 200 is aware of which radio frequency is assigned to the other base station 200 by deriving radio frequency assignment candidates according to the past use history using each radio frequency. There is no need. Therefore, the base station 200 does not need to be aware of which communication carrier owns the other base station 200. Therefore, even when a plurality of base stations of the same communication carrier communicate via the wireless backhaul line 20, the base station 200 communicates via a wireless backhaul line 20 with a plurality of base stations of different communication carriers. Even in this case, a radio frequency with less interference can be easily and accurately assigned to the base station 200 of the communication partner.
  • TDD Time Division Duplex
  • synchronization between a plurality of base stations 200 and radio resource allocation patterns on the uplink 21 and the downlink 22 are not unified.
  • time division is performed on the uplink 21 and the downlink 22 at the same carrier frequency.
  • communication interference occurs regularly between the base stations 200 installed at fixed positions as compared with communication between the base station 200 and a mobile terminal (for example, the terminal 100), and thus it is more difficult to avoid communication interference. .
  • wireless communications system 10 generation
  • the base station 200 reduces the occurrence of communication interference (inter-cell interference) between the plurality of base stations 200, and uses radio resources for data retransmission. Frequent allocation processing can be suppressed.
  • the base station 200 holds a history database T12 or T22 that holds information on the use history of transmission power for each radio frequency related to communication with another base station 200.
  • the base station 200 refers to the history database T12 or T22 and sets a provisional value (initial value) of transmission power related to data communication.
  • the wireless communication system 10 can suppress the occurrence of communication interference between adjacent base stations 200.
  • the base station 200 does not need to allocate more transmission power than necessary for communication via the wireless backhaul line 20 and can suppress excessive transmission power being used and communication interference.
  • the base station 200 can suppress the communication quality from being deteriorated by allocating an excessive transmission power to the communication via the wireless backhaul line 20 in consideration of the communication interference.
  • Transmission power with a large past communication history indicates that communication interference with surrounding base stations is relatively small and a communication success rate is high. Therefore, it is preferable that such transmission power is allocated to communication with another base station 200 via the wireless backhaul line 20.
  • transmission power that has been frequently used in the past is more likely to be used because it is used more frequently.
  • the transmission power frequently used in the past is less likely to be excessive or insufficient in the communication between the base stations 200 in the future, and the possibility of successful communication is high. Therefore, even if the backhaul line is a heterogeneous network and a wireless line, the base station 200 can reduce the occurrence of communication interference between a plurality of base stations 200 and improve communication accuracy.
  • the base station 200 does not need to be aware of how much transmission power is set in other base stations 200 by setting the transmission power according to the past use history using each transmission power. . Therefore, the base station 200 does not need to be aware of which communication carrier owns the other base station 200. Therefore, even when a plurality of base stations of the same communication carrier communicate via the wireless backhaul line 20, the base station 200 communicates via a wireless backhaul line 20 with a plurality of base stations of different communication carriers. Even in this case, it is possible to easily and highly accurately perform data communication with less interference to the communication partner base station 200.
  • the radio communication system 10 generates communication interference by setting transmission power according to past results. Can be suppressed.
  • the base station 200 can accurately determine which radio frequency is allocated and how much the transmission power should be. Further, the base station 200 can improve the allocation efficiency and utilization efficiency of radio resources for communicating data via the wireless backhaul line 20. Further, the base station 200 can suppress an increase in communication interference on the wireless backhaul line 20 even if the number of installed base stations 200 increases.
  • the first embodiment has been described as an example of the technique in the present disclosure.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, and the like are performed.
  • the base station 200 may acquire information on the amount of communication related to history and information on resetting the history via an interface (not shown).
  • the interface includes, for example, a UI (User Interface) that receives information related to a usage history from a user, or a communication interface that receives information related to a usage history set in an external device.
  • the first radio resource management unit 208 and the second radio resource management unit 228, for example, increase or decrease the communication amount of a specific radio frequency related to the usage history based on the acquired information, or The frequency of the specific transmission power may be increased or decreased.
  • the base station 200 and other devices may calculate which radio frequency or transmission power is suitable for communication via the wireless backhaul line 20 by regular offline simulation or the like. .
  • the base station 200 may acquire this calculation result and reflect it in the history databases T11, T12, T21, and T22.
  • the base station 200 can slightly correct the automatic use history accumulation and promote the use of a more appropriate radio frequency and transmission power.
  • the base station 200 can redistribute radio resources and transmission power.
  • the small cell base station 200B may hold the history databases T11 and T12.
  • the macro cell base station 200A may hold the history databases T21 and T22.
  • the macro cell base station 200 ⁇ / b> A and the small cell base station 200 ⁇ / b> B may transmit and receive information on the use history of the radio frequency or transmission power using a control signal or the like.
  • the macro cell base station 200A allocates the radio frequency of the downlink 22 and the small cell base station 200B allocates the radio frequency of the uplink 21.
  • the macro cell base station 200A and the small cell base station 200B may cooperate to determine an assigned radio frequency.
  • the base station 200 assumes that the number of MIMO antennas is eight, but may be seven or less or nine or more.
  • the first wireless transmission unit 203 in the first control example of transmission power, exemplifies transmitting different data without forming directivity. However, different data forming directivity is used. May be sent. In this case, the first wireless transmission unit 203 supplies power at different ratios to the MIMO antennas # A11 to # A18, as in the second control example of transmission power.
  • the second wireless transmission unit 223 illustrated that different data is transmitted without forming directivity. However, different data is formed with directivity. May be sent.
  • the second wireless transmission unit 223 supplies power to the MIMO antennas # B11 to # B18 at different ratios, as in the fourth control example of transmission power.
  • the history databases T11 and T21 hold information on the use history of radio frequencies with other base stations in a fixed period in the past, but the use of radio frequencies regardless of the period. History information may be accumulated.
  • the history databases T12 and T22 hold the transmission power usage history information with other base stations in the past fixed period, but the transmission power usage history information is stored regardless of the period. May be.
  • the use value of the communication amount for each radio frequency is exemplified as the use history information of the radio frequency.
  • Other use history information includes, for example, the total communication time (total connection time) and the number of communication (number of connections) related to communication between the base stations 200 using the radio frequency. For example, the longer the total communication time is, the higher the number of communication is, the higher the priority for selecting the radio frequency.
  • the use value of the transmission power frequency is used as the transmission power usage history information.
  • the other usage history information includes, for example, a total communication time (total connection time) and a communication count (connection count) related to communication between the base stations 200 using the set transmission power. For example, the longer the total communication time is, and the greater the number of communication is, the higher the priority in which the transmission power is selected as the initial value.
  • the history databases T11 and T21 may be provided separately from various viewpoints.
  • the history databases T11 and T21 may be provided separately for each time zone in which radio resources are allocated.
  • the history databases T11 and T21 may be separately provided by other known methods.
  • the base station 200 can determine radio frequency allocation candidates according to the radio frequency usage history in consideration of various trends.
  • the history databases T12 and T22 may be provided separately from various viewpoints.
  • the history databases T21 and T22 may be provided separately for each time zone for setting the transmission power.
  • the history databases T21 and T22 may be separately provided by other known methods. Thereby, the base station 200 can determine the initial value of the transmission power according to the transmission power usage history considering various trends.
  • the base station 200 manages the usage history of the communication amount for each radio frequency as a radio resource, and is used for communication with the other base station 200 via the wireless backhaul line 20.
  • An example of determining a radio frequency candidate was illustrated. Note that the base station 200 is used for communication with other base stations 200 by managing the usage history of the communication amount for each time slot (separation on the time axis) on a certain radio frequency instead of the radio frequency. You may make it determine the candidate of a time slot which is a radio
  • the base station 200 can select f1-TS1, f1-TS2,. -The usage history of the past traffic volume may be managed and updated for every 16 radio resources of TS16. Thereby, the base station 200 can segregate radio resources (here, time slots) between adjacent base stations.
  • the base station 200 can perform f1-TS1, f1-TS2,.
  • the usage history of the past traffic volume may be managed and updated for every 20 radio resources of f1-TS10, f2-TS1, f2-TS2,..., f2-TS10.
  • the base station 200 can segregate radio resources (in this case, a combination of radio frequency and time slot) between adjacent base stations.
  • the macro cell base station 200A and the small cell base station 200B connected via the wireless backhaul line 20 are exemplified.
  • the first embodiment can be applied to all communication apparatuses that communicate via the wireless backhaul line 20 in a heterogeneous network.
  • the present disclosure can also be applied to a case where the line between the monitoring camera and the monitoring center is made wireless, and which radio resource is used and what the initial value of the transmission power is determined.
  • the processor 250 may be physically configured in any manner. However, if a programmable processor is used, the processing contents can be changed by changing the program, so that the degree of freedom in designing the processor 250 can be increased. Further, the processor 250 may be composed of one semiconductor chip or may be physically composed of a plurality of semiconductor chips. When configured by a plurality of semiconductor chips, each control of the first embodiment may be realized by separate semiconductor chips. In this case, it can be considered that one processor 250 is constituted by the plurality of semiconductor chips. The processor 250 may be configured by a member (capacitor or the like) having a function different from that of the semiconductor chip. Further, one semiconductor chip may be configured so as to realize the functions of the processor 250 and other functions.
  • each configuration may be realized by hardware or software.
  • the base station 200 of the above embodiment communicates with other base stations 200 via the wireless backhaul line 20 in which a plurality of wireless communication schemes are mixedly used.
  • the base station 200 includes a processor 250 and an antenna.
  • the processor 250 allocates a radio frequency related to data communication with another base station 200 based on information on a radio frequency usage history related to data communication with another base station 200.
  • the antenna performs data communication with another base station 200 using the assigned radio frequency.
  • the base station 200 is an example of a wireless communication device.
  • the antenna is, for example, the first transmission antenna 204, the second transmission antenna 224, the first reception antenna 205, or the second reception antenna 225.
  • the base station 200 can reduce the occurrence of communication interference with the surrounding base stations 200.
  • the base station 200 can suppress communication interference even if a large number of base stations 200 (for example, small cell base stations 200B) are added.
  • the cost for adding the base station 200 can be reduced, the economy can be improved, and the speed of installation of the base station can be improved.
  • the base station 200 can reduce the number of repetitions of the radio resource allocation operation, the time required for the radio resource allocation of the base station 200 can be shortened. That is, the base station 200 can improve radio resource allocation efficiency. Further, the base station 200 can improve the utilization efficiency of radio resources without dividing the frequency among the plurality of base stations 200 in advance.
  • the base station 200 can be configured by only the base stations of the same communication carrier, or can be configured by sharing the same radio resources among a plurality of base stations of different communication carriers. In either configuration, the base station 200 can allocate radio resources for communication via the wireless backhaul line 20 without a plurality of base stations 200 sharing information with each other.
  • the base station 200 may include a memory 260 that stores information on radio frequency usage history related to data communication with other base stations 200.
  • the processor 250 may update the use history information stored in the memory 260 based on the radio frequency used for data communication by the antenna and the use history of the radio frequency.
  • the base station 200 can improve the allocation efficiency and utilization efficiency of a radio
  • the processor 250 may assign a radio frequency related to data communication with another base station 200 by giving priority to a radio frequency with a large usage history.
  • the base station 200 can allocate radio resources that are highly likely to succeed in data communication, the data communication accuracy can be improved.
  • the information on the use history of the radio frequency may include the amount of data communication using the radio frequency, the data communication time using the radio frequency, or the number of times of data communication using the radio frequency.
  • the processor 250 may derive a radio frequency allocation candidate related to data communication with another base station 200 based on a use history of radio frequency related to data communication with another base station 200. . If the allocation candidate radio frequency cannot be allocated, the processor 250 may allocate another radio frequency. The antenna may perform data communication with another base station 200 using another radio frequency.
  • the base station 200 can re-specify another radio frequency even when there is no available allocation candidate radio frequency, and the probability of successful data communication with the base station 200 can be improved.
  • the base station 200 may include an interface for acquiring change information for changing the radio frequency usage history.
  • the processor 250 may change the usage history of the radio frequency based on the change information.
  • the radio frequency usage history (usage record) is large, but even when the radio frequency is not optimal as a whole (suboptimal case), the base station 200 intentionally refreshes the usage history so that it is suboptimal. The convergence to the state can be avoided.
  • the frequency allocation method of the above embodiment is a frequency allocation method in the base station 200 that communicates with another base station 200 via the wireless backhaul line 20 in which a plurality of radio communication schemes are mixedly used. It is.
  • This frequency allocation method allocates a radio frequency related to data communication with another base station 200 based on information on a use history of a radio frequency related to data communication with another base station 200, and assigns the assigned radio frequency. Data communication with other base stations 200.
  • the base station 200 can reduce the occurrence of communication interference with the surrounding base stations 200.
  • the base station 200 can suppress communication interference even if a large number of base stations 200 (for example, small cell base stations 200B) are added.
  • the cost for adding the base station 200 can be reduced, the economy can be improved, and the speed of installation of the base station can be improved.
  • the base station 200 can reduce the number of repetitions of the radio resource allocation operation, the time required for the radio resource allocation of the base station 200 can be shortened. That is, the base station 200 can improve radio resource allocation efficiency. Further, the base station 200 can improve the utilization efficiency of radio resources without dividing the frequency among the plurality of base stations 200 in advance.
  • the base station 200 of the above embodiment determines the initial value of the transmission power related to the data communication with the other base station 200 based on the use history information of the transmission power related to the data communication with the other base station 200.
  • a processor 250 for setting, and an antenna for data communication with another base station 200 based on the set initial value of transmission power.
  • the base station 200 can reduce the occurrence of communication interference with the surrounding base stations 200.
  • the base station 200 can suppress communication interference even if a large number of base stations 200 (for example, small cell base stations 200B) are added.
  • the base station 200 can reduce the probability of assigning excessive transmission power as an initial value for the own station by referring to the past successful communication examples by the own station, and can suppress the occurrence of communication interference.
  • the base station 200 can reduce the probability of assigning an excessively small transmission power as an initial value by referring to past communication success examples by the own station, and can suppress deterioration in communication quality.
  • the base station 200 may include a memory 260 that stores information on the transmission power usage history related to data communication with other base stations 200.
  • the processor 250 may update the transmission power usage history information stored in the memory 260 based on the transmission power used for data communication by the antenna.
  • the base station 200 can suppress an increase in communication interference even if the number of installed base stations increases.
  • the processor 250 may prioritize transmission power with a large usage history and set transmission power related to data communication with another base station 200.
  • the base station 200 can set the transmission power that is highly likely to succeed in data communication, so that the data communication accuracy can be improved.
  • the antenna may include a plurality of antennas.
  • the processor 250 controls the power supplied to each of the plurality of antennas based on the wireless communication scheme adopted by the other base station 200 and the set initial value of the transmission power for the plurality of antennas. May be.
  • the plurality of antennas are, for example, MIMO antennas # A11 to # A18, # B11 to # B18.
  • the base station 200 can form the directivity related to data communication determined by the wireless communication method. Even when base station 200 forms directivity, base station 200 can maintain transmission power appropriately and suppress communication interference via wireless backhaul line 20.
  • the transmission power usage history information may include transmission power information at a radio frequency assigned to data communication and information on the frequency of data communication using this transmission power.
  • the transmission power information may include information on average power per predetermined time of transmission power used for data communication.
  • the base station 200 may include an interface for acquiring change information for changing the transmission power usage history.
  • the processor 250 may change the transmission power usage history based on the change information.
  • the base station 200 intentionally refreshes the use history even when the transmission power is not totally optimal (suboptimal case), and is in a suboptimal state.
  • the transmission power setting method of the above embodiment is a transmission power in the base station 200 that communicates with another base station 200 via the wireless backhaul line 20 in which a plurality of wireless communication methods are mixedly used. It is a setting method. In this method, an initial value of transmission power related to data communication with another base station 200 is set based on information on a transmission power usage history related to data communication with another base station 200, and the set transmission power is set. Data communication is performed with another base station 200 based on the initial value of power.
  • the base station 200 can reduce the occurrence of communication interference with the surrounding base stations 200.
  • the base station 200 can suppress communication interference even if a large number of base stations 200 (for example, small cell base stations 200B) are added.
  • the base station 200 can reduce the probability of assigning excessive transmission power as an initial value for the own station by referring to the past successful communication examples by the own station, and can suppress the occurrence of communication interference.
  • the base station 200 can reduce the probability of assigning an excessively small transmission power as an initial value by referring to past communication success examples by the own station, and can suppress deterioration in communication quality.
  • the present disclosure is useful for a radio communication apparatus, a frequency allocation method, and the like that can improve allocation efficiency and usage efficiency of radio resources for communicating data via a backhaul line.
  • radio communication system 21 uplink 22 downlink 100 terminal 200 base station 200A macro cell base station 200B small cell base station 201 first interface 202 first packet generator 203 first radio transmitter 204 first transmitter antenna 205 first receiver antenna 206 first radio reception unit 207 first packet decoding unit 208 first radio resource management unit 221 second interface 222 second packet generation unit 223 second radio transmission unit 224 second transmission antenna 225 second reception antenna 226 second radio reception Unit 227 second packet decoding unit 228 second radio resource management unit 250, 250A, 250B processor 260, 260A, 260B memory 300 host device T11, T12, T21, T22 history database

Abstract

Provided is a wireless communication device which is capable of improving the utilization efficiency and allocation efficiency of wireless resources for communicating data over a backhaul line. The wireless communication device communicates with other wireless communication devices over a wireless backhaul line on which a plurality of wireless communication modes are mixed and used. The wireless communication device allocates, on the basis of information related to the usage history of wireless frequencies for data communication with the other wireless communication devices, a wireless frequency for data communication with another wireless communication device.

Description

無線通信装置及び周波数割当方法Wireless communication apparatus and frequency allocation method
 本開示は、無線通信装置及び周波数割当方法に関する。 This disclosure relates to a wireless communication device and a frequency allocation method.
 端末が無線通信する際、端末が無線接続する無線基地局と、端末が無線通信に用いる無線周波数(無線チャネル)を決定する必要がある。従来、アクティブスキャン又はパッシブスキャンを用いて、無線基地局及び無線チャネルを探索して選択する無線基地局選択装置が知られている(例えば、特許文献1参照)。 When a terminal performs wireless communication, it is necessary to determine a wireless base station to which the terminal is wirelessly connected and a wireless frequency (wireless channel) used by the terminal for wireless communication. Conventionally, a radio base station selection device that searches for and selects a radio base station and a radio channel using active scan or passive scan is known (for example, see Patent Document 1).
 この無線基地局選択装置は、無線チャネル毎に無線基地局の識別情報と受信レベルとを対応付けた接続候補APリストを作成する。無線基地局選択装置は、接続候補APリストの中から受信レベルが所定の閾値を超え、優先度が高い識別情報を持つ1つの無線基地局及び対応する無線チャネルを選択する。無線基地局選択装置は、選択された無線チャネルで、選択された無線基地局に接続処理する。 This radio base station selection device creates a connection candidate AP list in which the identification information of the radio base station and the reception level are associated with each radio channel. The radio base station selection device selects one radio base station and a corresponding radio channel having identification information with a reception level exceeding a predetermined threshold and high priority from the connection candidate AP list. The radio base station selection device performs connection processing to the selected radio base station using the selected radio channel.
 また、近年、端末と無線基地局とがネットワークに接続された無線通信システムにおいて、ヘテロジニアスネットワークの検討がなされている(例えば、非特許文献1~3参照)。 In recent years, heterogeneous networks have been studied in wireless communication systems in which terminals and wireless base stations are connected to a network (see, for example, Non-Patent Documents 1 to 3).
特開2010-193088号公報JP 2010-193088 A
 特許文献1に記載された技術を、バックホール回線を介して接続された複数の無線基地局での通信に適用した場合、複数の無線基地局間でのデータを通信するための無線資源の割当効率や利用効率が不十分であった。 When the technique described in Patent Literature 1 is applied to communication in a plurality of radio base stations connected via a backhaul line, allocation of radio resources for communicating data between the plurality of radio base stations Efficiency and utilization efficiency were insufficient.
 本開示は、上記事情に鑑みてなされたものであり、バックホール回線を介してデータを通信するための無線資源の割当効率や利用効率を向上できる無線通信装置及び周波数割当方法を提供する。 The present disclosure has been made in view of the above circumstances, and provides a radio communication device and a frequency allocation method capable of improving allocation efficiency and utilization efficiency of radio resources for communicating data via a backhaul line.
 本開示の無線通信装置は、複数の無線通信方式が混在して利用される無線バックホール回線を介して、他の無線通信装置との間で通信する。無線通信装置は、他の無線通信装置とのデータ通信に係る無線周波数の使用履歴の情報に基づいて、他の無線通信装置とのデータ通信に係る無線周波数を割り当てるプロセッサと、割り当てられた無線周波数を用いて、他の無線通信装置との間でデータ通信するアンテナと、を備える。 The wireless communication device of the present disclosure communicates with other wireless communication devices via a wireless backhaul line in which a plurality of wireless communication methods are used together. The wireless communication device includes a processor that assigns a radio frequency related to data communication with another wireless communication device based on information on a use history of a radio frequency related to data communication with the other wireless communication device, and an assigned radio frequency. And an antenna that performs data communication with other wireless communication devices.
 本開示によれば、バックホール回線を介してデータを通信するための無線資源の割当効率や利用効率を向上できる。 According to the present disclosure, it is possible to improve allocation efficiency and usage efficiency of radio resources for communicating data via a backhaul line.
図1は、第1の実施形態における無線通信システムの構成例を示す模式図である。FIG. 1 is a schematic diagram illustrating a configuration example of a wireless communication system according to the first embodiment. 図2は、第1の実施形態におけるマクロセル基地局及びスモールセル基地局の構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of the macro cell base station and the small cell base station in the first embodiment. 図3は、下り回線の通信に用いた無線周波数の使用履歴の情報を保持する履歴データベースの一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of a history database holding information on the use history of radio frequencies used for downlink communication. 図4は、下り回線の通信に用いた送信電力の使用履歴の情報を保持する履歴データベースの一例を示す模式図である。FIG. 4 is a schematic diagram illustrating an example of a history database that holds information on the usage history of transmission power used for downlink communication. 図5は、上り回線の通信に用いた無線周波数の使用履歴の情報を保持する履歴データベースの一例を示す模式図である。FIG. 5 is a schematic diagram showing an example of a history database holding information on the use history of radio frequencies used for uplink communication. 図6は、上り回線の通信に用いた送信電力の使用履歴の情報を保持する履歴データベースの一例を示す模式図である。FIG. 6 is a schematic diagram illustrating an example of a history database that holds information on the usage history of transmission power used for uplink communication. 図7は、基地局がワイヤレスバックホール回線を介した通信で使用する無線周波数を割り当てる際の第1動作例を示すフローチャートである。FIG. 7 is a flowchart showing a first operation example when the base station assigns a radio frequency to be used for communication via the wireless backhaul line. 図8は、基地局がワイヤレスバックホール回線を介した通信で使用する無線周波数を割り当てる際の第2動作例を示すフローチャートである。FIG. 8 is a flowchart showing a second operation example when the base station assigns a radio frequency to be used for communication via the wireless backhaul line. 図9は、基地局がワイヤレスバックホール回線を介した通信で使用する送信電力を決定する際の第1動作例を示すフローチャートである。FIG. 9 is a flowchart illustrating a first operation example when the base station determines transmission power used for communication via the wireless backhaul line. 図10は、基地局がワイヤレスバックホール回線を介した通信で使用する送信電力を決定する際の第2動作例を示すフローチャートである。FIG. 10 is a flowchart illustrating a second operation example when the base station determines transmission power used for communication via the wireless backhaul line. 図11は、無線通信システムによる送信電力の第1制御例を説明するための模式図である。FIG. 11 is a schematic diagram for explaining a first control example of transmission power by the wireless communication system. 図12は、無線通信システムによる送信電力の第2制御例を説明するための模式図である。FIG. 12 is a schematic diagram for explaining a second control example of transmission power by the wireless communication system. 図13は、無線通信システムによる送信電力の第3制御例を説明するための模式図である。FIG. 13 is a schematic diagram for explaining a third control example of transmission power by the wireless communication system. 図14は、無線通信システムによる送信電力の第4制御例を説明するための模式図である。FIG. 14 is a schematic diagram for explaining a fourth control example of transmission power by the wireless communication system.
 以下、適宜図面を参照しながら、実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。尚、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるものであり、これらにより請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art. The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the claimed subject matter.
 (本開示の一形態を得るに至った経緯)
 5G(第5世代移動通信)では、無線通信システムが、マクロセル基地局とスモールセル基地局とを含んで構成される。そして、スモールセル基地局の設置面密度が高くなり、バックホール回線の効率的な敷設が重要となることが予想される。バックホール回線は、例えば、スモールセル基地局とマクロセル基地局との間、又は、スモールセル基地局と基幹ネットワークとの間の回線を含む。バックホール回線の通信品質の安定性の観点では、バックホール回線として光回線が有効である。一方、バックホール回線の敷設の経済性や迅速性の観点では、バックホール回線として無線回線が有効である。
(Background to obtaining one form of the present disclosure)
In 5G (fifth generation mobile communication), a wireless communication system includes a macro cell base station and a small cell base station. And the installation surface density of a small cell base station becomes high, and it is anticipated that efficient laying of a backhaul line becomes important. The backhaul line includes, for example, a line between the small cell base station and the macro cell base station, or between the small cell base station and the backbone network. From the viewpoint of the stability of the communication quality of the backhaul line, an optical line is effective as the backhaul line. On the other hand, a wireless line is effective as a backhaul line from the viewpoint of economics and speed of laying the backhaul line.
 ヘテロジニアスネットワークでは、様々な無線規格やセル半径を有する無線基地局が混在する。そのため、複数の無線基地局を接続する無線化されたバックホール回線(ワイヤレスバックホール回線)がヘテロジニアスネットワークである場合、バックホール回線を介して接続された複数の無線基地局間の通信に割り当てられる無線資源(周波数や時間)と、その周辺の端末や無線基地局で使用される無線資源と、の通信干渉を抑えることが困難である。この場合、ヘテロジニアスネットワークとしてのワイヤレスバックホール回線の各所において通信干渉が発生し、この通信干渉を回避するために無線資源の割当処理が頻発することが予想される。つまり、無線資源の割当効率が不十分であった。 In heterogeneous networks, wireless base stations having various wireless standards and cell radii are mixed. Therefore, when the wireless backhaul line (wireless backhaul line) connecting multiple radio base stations is a heterogeneous network, it is assigned to communication between multiple radio base stations connected via the backhaul line It is difficult to suppress communication interference between radio resources (frequency and time) to be used and radio resources used in peripheral terminals and radio base stations. In this case, it is expected that communication interference occurs in various places on the wireless backhaul line as a heterogeneous network, and radio resource allocation processing frequently occurs in order to avoid this communication interference. That is, the allocation efficiency of radio resources was insufficient.
 また、無線資源の割当処理を簡素化するために、各無線基地局に対して事前に無線資源を分割して割り当てることも考えられるが、この場合には無線資源の利用効率が低下する。 Also, in order to simplify the allocation process of radio resources, it is conceivable to divide and allocate radio resources to each radio base station in advance, but in this case, the utilization efficiency of radio resources decreases.
 以下、バックホール回線を介してデータを通信するための無線資源の割当効率や利用効率を向上できる無線通信装置及び周波数割当方法について説明する。 Hereinafter, a radio communication apparatus and a frequency allocation method capable of improving allocation efficiency and utilization efficiency of radio resources for communicating data via a backhaul line will be described.
 (第1の実施形態)
 [構成等]
 図1は、第1の実施形態における無線通信システム10の構成例を示すブロック図である。無線通信システム10は、複数の基地局200を備える。複数の基地局200は、ワイヤレスバックホール回線20を介して接続される。複数の基地局200は、相互にワイヤレスバックホール回線20を介して通信する。
(First embodiment)
[Configuration]
FIG. 1 is a block diagram illustrating a configuration example of a wireless communication system 10 according to the first embodiment. The wireless communication system 10 includes a plurality of base stations 200. The plurality of base stations 200 are connected via the wireless backhaul line 20. The plurality of base stations 200 communicate with each other via the wireless backhaul line 20.
 無線通信システム10は、基地局200が様々な無線規格を有するヘテロジニアスネットワークである。基地局200は、端末100との間でも通信可能である。ヘテロジニアスネットワークでは、異なる無線通信方式(例えば無線アクセス技術(RAT:Radio Access Technology)や異なるセル半径の基地局200が混在する。ヘテロジニアスネットワークでは、例えば、複数種類の無線規格が混在することを含め、セル半径の異なる基地局200が面的に重畳している。RATは、例えば、無線通信規格、無線周波数、通信時の指向性形成の情報を含む。 The wireless communication system 10 is a heterogeneous network in which the base station 200 has various wireless standards. Base station 200 can also communicate with terminal 100. In the heterogeneous network, different radio communication systems (for example, radio access technology (RAT: Radio Access Technology)) and base stations 200 having different cell radii are mixed. In the heterogeneous network, for example, a plurality of types of radio standards are mixed. In addition, the base stations 200 having different cell radii are superposed on each other, and the RAT includes, for example, information on radio communication standards, radio frequencies, and directivity formation during communication.
 このヘテロジニアスネットワークは、C/U分離型のネットワークでなくてもよいし、C/U分離型のネットワークであってもよい。つまり、無線通信システム10では、制御データに係る通信とユーザデータに係る通信とが同じ基地局200により実施されてもよいし、異なる基地局200により実施されてもよい。ユーザデータは、例えば、異なる基地局200の配下に存在する複数の端末100が通信する場合、ワイヤレスバックホール回線20を介して伝送される。 This heterogeneous network may not be a C / U separation type network or a C / U separation type network. That is, in the wireless communication system 10, communication related to control data and communication related to user data may be performed by the same base station 200 or may be performed by different base stations 200. For example, when a plurality of terminals 100 existing under different base stations 200 communicate with each other, user data is transmitted via the wireless backhaul line 20.
 基地局200は、マクロセル基地局200Aと、スモールセル基地局200Bと、を含む。端末100は、マクロセル基地局200A及びスモールセル基地局200Bのいずれとの間においても、制御データを通信し、ユーザデータを通信する。制御データは、C(Control)-Planeに係るデータを含む。ユーザデータは、U(User)-Planeに係るデータを含む。ユーザデータは、例えば、画像データ(例えば動画、静止画)、音声データ、を含み、データ量の多いデータを含み得る。 The base station 200 includes a macro cell base station 200A and a small cell base station 200B. The terminal 100 communicates control data and user data with both the macro cell base station 200A and the small cell base station 200B. The control data includes data related to C (Control) -Plane. The user data includes data related to U (User) -Plane. The user data includes, for example, image data (for example, moving images and still images) and audio data, and may include data with a large amount of data.
 C-planeは、無線通信における呼接続や無線資源割り当ての制御データを通信するための通信プロトコルである。U-planeは、割り当てられた無線資源を使用して実際に通信(例えば、映像通信、音声通信、データ通信)するための通信プロトコルである。 C-plane is a communication protocol for communicating control data for call connection and wireless resource allocation in wireless communication. U-plane is a communication protocol for actual communication (for example, video communication, audio communication, and data communication) using assigned radio resources.
 マクロセル基地局200Aのセル半径は、例えば1km~数kmであり、比較的大きい。マクロセル基地局200Aが採用可能なRATは、例えば1種類(例えばLTE)でも複数種類でもよい。セル半径は、基地局200の最大伝送距離に相当する。 The cell radius of the macro cell base station 200A is, for example, 1 km to several km and is relatively large. The RAT that can be adopted by the macrocell base station 200A may be, for example, one type (for example, LTE) or a plurality of types. The cell radius corresponds to the maximum transmission distance of the base station 200.
 スモールセル基地局200Bのセル半径は、例えば10m~100mであり、比較的小さい。スモールセル基地局200Bが採用可能なRATは、多様であり、複数種類存在する。尚、例えば、山間部、砂漠地帯、森林地帯においてセル半径が100m以上であってもよいし、マクロセル基地局200Aのセル半径よりも大きいことも考えられる。つまり、ここでは、マクロセル基地局200A,スモールセル基地局200Bの区別は、セル半径の大きさを意識していない。 The cell radius of the small cell base station 200B is 10 to 100 m, for example, and is relatively small. There are various RATs that can be adopted by the small cell base station 200B, and there are a plurality of types. For example, the cell radius may be 100 m or more in a mountainous area, a desert area, or a forest area, or may be larger than the cell radius of the macrocell base station 200A. That is, here, the distinction between the macro cell base station 200A and the small cell base station 200B is not conscious of the size of the cell radius.
 図1では、「MBS」がマクロセル基地局200Aを示し、「SBS」(△)がスモールセル基地局200Bを示し、「T」が端末100を示す。マクロセル基地局200Aを囲む線が、そのマクロセル基地局200Aによる通信可能範囲のイメージを示している。スモールセル基地局200Bを囲む線が、そのスモールセル基地局200Bによる通信可能範囲のイメージを示している。基地局200の通信可能範囲は、例えば基地局200の位置とセル半径に応じて定まる。 In FIG. 1, “MBS” indicates the macro cell base station 200A, “SBS” (Δ) indicates the small cell base station 200B, and “T” indicates the terminal 100. A line surrounding the macro cell base station 200A shows an image of a communicable range by the macro cell base station 200A. A line surrounding the small cell base station 200B shows an image of a communicable range by the small cell base station 200B. The communicable range of the base station 200 is determined according to the position of the base station 200 and the cell radius, for example.
 基地局200は、この基地局200が採用可能なRAT(例えば、無線通信規格、無線周波数)から通信に用いるRATを設定し、設定されたRATに従って、無線通信する。基地局200は、1つ以上のRATを採用可能である。 The base station 200 sets a RAT used for communication from a RAT (for example, a radio communication standard or a radio frequency) that can be adopted by the base station 200, and performs radio communication according to the set RAT. The base station 200 can employ one or more RATs.
 無線通信規格は、例えば、LTE(Long Term Evolution)、無線LAN(Local Area Network)、DECT(Digital Enhanced Cordless Telecommunication)、3G(第3世代移動通信システム)、4G(第4世代移動通信システム)、5G(第5世代移動通信システム)、を含む。 Wireless communication standards include, for example, LTE (Long Term Evolution), wireless LAN (Local Area Network), DECT (Digital Enhanced Cordless Telecommunication), 3G (3rd generation mobile communication system), 4G (4th generation mobile communication system), 5G (5th generation mobile communication system).
 RATの具体的な情報として、例えば以下のRAT1~RAT5を含む。RAT1は、例えば、無線周波数帯が700MHz~3GHzのLTEである。RAT2は、例えば、無線周波数帯が15GHzのLTE-Advancedである。RAT3は、例えば、無線周波数帯が5GHzの無線LAN通信である。RAT4は、例えば、無線周波数帯が15GHz帯の無線通信方式であり、第5世代移動通信方式である。RAT5は、例えば、無線周波数帯が60GHz帯の無線通信方式(例えばミリ波通信)(例えばWiGig)である。 Specific information on RAT includes, for example, the following RAT1 to RAT5. RAT1 is, for example, LTE having a radio frequency band of 700 MHz to 3 GHz. RAT2 is, for example, LTE-Advanced with a radio frequency band of 15 GHz. RAT3 is, for example, wireless LAN communication with a radio frequency band of 5 GHz. RAT4 is, for example, a radio communication system with a radio frequency band of 15 GHz, and is a fifth generation mobile communication system. RAT5 is, for example, a radio communication system (for example, millimeter wave communication) (for example, WiGig) having a radio frequency band of 60 GHz.
 図2は、マクロセル基地局200A及びスモールセル基地局200Bの構成例を示すブロック図である。 FIG. 2 is a block diagram illustrating a configuration example of the macro cell base station 200A and the small cell base station 200B.
 マクロセル基地局200A及びスモールセル基地局200Bは、ワイヤレスバックホール回線20を介して接続される。ワイヤレスバックホール回線20は、上り回線21及び下り回線22を含む。上り回線21は、ワイヤレスバックホール回線20において、スモールセル基地局200Bからマクロセル基地局200Aに向かう無線回線である。下り回線22は、ワイヤレスバックホール回線20において、マクロセル基地局200Aからスモールセル基地局200Bに向かう無線回線である。無線回線は、様々な公衆回線、携帯電話回線、広域無線回線等を広く含む。 The macro cell base station 200A and the small cell base station 200B are connected via the wireless backhaul line 20. The wireless backhaul line 20 includes an uplink 21 and a downlink 22. Uplink 21 is a radio line from small cell base station 200 </ b> B to macro cell base station 200 </ b> A in wireless backhaul line 20. The downlink 22 is a wireless line that goes from the macro cell base station 200A to the small cell base station 200B in the wireless backhaul line 20. Wireless lines widely include various public lines, mobile phone lines, wide area wireless lines, and the like.
 マクロセル基地局200Aは、マクロセル基地局200Aの周囲に存在する1台又は複数台のスモールセル基地局200Bを通信相手とする。スモールセル基地局200Bは、1台のマクロセル基地局200Aを通信相手とする。マクロセル基地局200A及びスモールセル基地局200Bは固定的に設置されるため、マクロセル基地局200A及びスモールセル基地局200Bの通信相手は予め定められる。 The macro cell base station 200A has one or more small cell base stations 200B existing around the macro cell base station 200A as communication partners. The small cell base station 200B uses one macro cell base station 200A as a communication partner. Since the macro cell base station 200A and the small cell base station 200B are fixedly installed, communication partners of the macro cell base station 200A and the small cell base station 200B are determined in advance.
 マクロセル基地局200Aは、プロセッサ250A、メモリ260A、第1インタフェース201、第1送信アンテナ204、及び第1受信アンテナ205を備える。 The macrocell base station 200A includes a processor 250A, a memory 260A, a first interface 201, a first transmission antenna 204, and a first reception antenna 205.
 プロセッサ250Aは、メモリ260Aと協働して、各種処理や制御を行う。具体的には、プロセッサ250Aは、メモリ260Aに保持されたプログラムを実行することで、以下の各部の機能を実現する。この各部は、第1パケット生成部202、第1無線送信部203、第1無線受信部206、第1パケット復号部207、及び第1無線資源管理部208を含む。 The processor 250A performs various processes and controls in cooperation with the memory 260A. Specifically, the processor 250A implements the functions of the following units by executing a program held in the memory 260A. Each unit includes a first packet generation unit 202, a first radio transmission unit 203, a first radio reception unit 206, a first packet decoding unit 207, and a first radio resource management unit 208.
 メモリ260Aは、例えば、各種データ、情報、プログラムを記憶する。また、メモリ260Aは、履歴データベースT11,T12を記憶する。メモリ260Aは、プロセッサ250Aに内蔵されてもよい。メモリ260Aは、一次記憶装置とともに、二次記憶装置を含んでもよい。一時記憶装置は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)を含む。二次記憶装置は、例えば、HDD(Hard Disk Memory)、SSD(Solid State Drive)を含む。メモリ260Aは、例えば、各スモールセル基地局200Bの位置情報(例えば経度、緯度)を保持する。 The memory 260A stores, for example, various data, information, and programs. The memory 260A stores history databases T11 and T12. The memory 260A may be built in the processor 250A. The memory 260A may include a secondary storage device together with the primary storage device. The temporary storage device includes, for example, a RAM (Random Access Memory) and a ROM (Read Only Memory). The secondary storage device includes, for example, an HDD (Hard Disk Memory) and an SSD (Solid State Drive). For example, the memory 260A holds position information (for example, longitude and latitude) of each small cell base station 200B.
 図3は、履歴データベースT11の一例を示す模式図である。履歴データベースT11は、過去に無線接続されたスモールセル基地局200B毎に、マクロセル基地局200Aとの下り回線22の通信に用いた無線周波数の使用履歴の情報を保持する。また、履歴データベースT11は、マクロセル基地局200Aが採用可能なRAT毎に分けて設けられてもよい。 FIG. 3 is a schematic diagram showing an example of the history database T11. The history database T11 holds, for each small cell base station 200B wirelessly connected in the past, information on the usage history of the radio frequency used for communication on the downlink 22 with the macro cell base station 200A. The history database T11 may be provided separately for each RAT that can be adopted by the macrocell base station 200A.
 履歴データベースT11は、例えば、スモールセル基地局200Bに関する情報と、過去の一定期間における無線周波数の使用履歴の情報と、を保持する。このスモールセル基地局200Bに関する情報は、スモールセル基地局200Bの識別情報(例えばSBS#1)を含む。この無線周波数の使用履歴の情報は、下り回線22において、スモールセル基地局200Bとの通信に用いられた無線周波数(例えばf1)の情報、及びこの無線周波数を用いて通信された通信量(通信データ量)(例えば784(MB))の情報を含む。 The history database T11 holds, for example, information on the small cell base station 200B and information on the use history of radio frequencies in a past fixed period. The information regarding the small cell base station 200B includes identification information (for example, SBS # 1) of the small cell base station 200B. The radio frequency use history information includes information on the radio frequency (for example, f1) used for communication with the small cell base station 200B on the downlink 22, and the amount of communication (communication) using the radio frequency. Data amount) (for example, 784 (MB)).
 図4は、履歴データベースT12の一例を示す模式図である。履歴データベースT12は、過去に無線接続されたスモールセル基地局200B毎に、スモールセル基地局200Bとの通信に用いた送信電力の使用履歴の情報を保持する。履歴データベースT12は、例えば、過去の一定期間における送信電力の使用履歴の情報を保持する。また、履歴データベースT12は、マクロセル基地局200Aが採用可能なRAT毎に分けて設けられてもよい。 FIG. 4 is a schematic diagram showing an example of the history database T12. The history database T12 holds, for each small cell base station 200B wirelessly connected in the past, information on the transmission power usage history used for communication with the small cell base station 200B. The history database T12 holds, for example, transmission power usage history information in a past fixed period. The history database T12 may be provided separately for each RAT that can be adopted by the macrocell base station 200A.
 履歴データベースT12は、例えば、スモールセル基地局200Bに関する情報と、過去の一定期間における送信電力の使用履歴の情報と、を保持する。このスモールセル基地局200Bに関する情報は、スモールセル基地局200Bの識別情報(例えばSBS#1)を含む。この送信電力の使用履歴の情報は、下り回線22において、スモールセル基地局200Bとの通信に用いられた無線周波数(例えばf1)での送信電力(例えば-6dBm~-3dBm)の情報、及びこの送信電力でスモールセル基地局200Bと通信した頻度(例えば通信回数)(例えば「2」)の情報を含む。 The history database T12 holds, for example, information on the small cell base station 200B and information on usage history of transmission power in a past fixed period. The information regarding the small cell base station 200B includes identification information (for example, SBS # 1) of the small cell base station 200B. The transmission power usage history information includes information on transmission power (for example, −6 dBm to −3 dBm) at a radio frequency (for example, f1) used for communication with the small cell base station 200B on the downlink 22 and Information on the frequency (for example, the number of communication) (for example, “2”) of communication with the small cell base station 200B with the transmission power is included.
 ここで、使用履歴として保持される送信電力は、通信中の送信電力の平均値(例えば3秒間毎の時間平均の値)でもよい。また、使用履歴として保持される送信電力は、例えば、第1送信アンテナ204に含まれる後述の各アンテナへの供給電力の単純合計値でもよい。 Here, the transmission power held as the use history may be an average value of transmission power during communication (for example, an average value of time every 3 seconds). In addition, the transmission power held as the usage history may be, for example, a simple total value of power supplied to each antenna described later included in the first transmission antenna 204.
 送信電力の平均値を送信電力の使用履歴の情報とすることで、ワイヤレスバックホール回線20の回線状況が時々刻々と変化した場合でも、履歴データベースT12は、変化の影響が平滑化された値を保持できる。 Even if the line status of the wireless backhaul line 20 changes from moment to moment by using the average value of the transmission power as the information of the usage history of the transmission power, the history database T12 has a value in which the influence of the change is smoothed. Can hold.
 尚、送信電力の平均値は、例えば、無線周波数、伝送距離、周囲環境、アンテナ高、天候、無線伝送方式に応じて、おおよそ決定される。尚、周囲環境とは、基地局200の周囲にビルや山が存在するか否か等の情報を含む。天候は、降雨減衰のために考慮される。高減衰は、雨粒の直径が電波の波長と重なり、電波が拡散されることで発生する。電波の周波数が高い程、降雨減衰は顕著となる。特に10GHz以上の電波を用いる場合に、降雨減衰により大きな影響を受ける。 Note that the average value of the transmission power is roughly determined according to, for example, the radio frequency, transmission distance, ambient environment, antenna height, weather, and radio transmission method. The ambient environment includes information such as whether or not there are buildings or mountains around the base station 200. Weather is considered for rain attenuation. High attenuation occurs when the diameter of raindrops overlaps the wavelength of radio waves and the radio waves are diffused. The higher the radio frequency, the more pronounced rain attenuation. In particular, when using radio waves of 10 GHz or more, it is greatly affected by rain attenuation.
 第1インタフェース201は、マクロセル基地局200Aと上位装置とを接続するための通信インタフェースである。この上位装置は、例えば、RATがLTEの場合にはSGW(Serving Gateway))、RATがW-CDMA(Wideband Code Division Multiple Access)の場合にはSGSN(Serving General packet radio service Support Node)を含む。 The first interface 201 is a communication interface for connecting the macro cell base station 200A and the host device. For example, when the RAT is LTE, the higher-level device includes SGW (Serving Gateway)), and when the RAT is W-CDMA (Wideband Code Division Multiple Access), it includes SGSN (Serving General packet radio Service).
 第1パケット生成部202は、スモールセル基地局200Bへ送信されるパケット(第1の送信パケット)を生成する。第1の送信パケットは、下り回線22のデータを含む。下り回線22のデータ(制御データやユーザデータ)は、例えば、メモリ260、記憶装置や表示装置等の外部装置(不図示)、各種ソフトウェアの処理部(不図示)から得られる。 The first packet generator 202 generates a packet (first transmission packet) to be transmitted to the small cell base station 200B. The first transmission packet includes data on the downlink 22. Data on the downlink 22 (control data and user data) is obtained from, for example, the memory 260, an external device (not shown) such as a storage device or a display device, and various software processing units (not shown).
 第1パケット生成部202は、第1の送信パケットの通信に係る下り回線22用の無線資源の使用履歴の情報を、第1無線資源管理部208へ送る。この無線資源の使用履歴の情報は、例えば、スモールセル基地局200Bとの通信に使用された無線周波数の情報、この無線周波数を用いて通信された通信量の情報を含む。 The first packet generation unit 202 sends information on the usage history of the radio resources for the downlink 22 related to the communication of the first transmission packet to the first radio resource management unit 208. The information on the usage history of the radio resource includes, for example, information on the radio frequency used for communication with the small cell base station 200B and information on the communication amount communicated using the radio frequency.
 本実施形態では、ワイヤレスバックホール回線20において棲み分ける無線資源は、例えば、通信に使用される無線周波数、無線周波数の一部(周波数軸の一部、時間軸の一部、又はその組み合わせ)を含む。周波数軸の一部とは、例えばサブキャリア周波数や複数のサブキャリア周波数の束を指す。時間軸の一部とは、例えばタイムスロットや複数のタイムスロットの束を指す。 In the present embodiment, the radio resources segregated in the wireless backhaul line 20 are, for example, a radio frequency used for communication, a part of the radio frequency (a part of the frequency axis, a part of the time axis, or a combination thereof). Including. The part of the frequency axis indicates, for example, a subcarrier frequency or a bundle of a plurality of subcarrier frequencies. The part of the time axis indicates, for example, a time slot or a bundle of a plurality of time slots.
 第1無線送信部203は、履歴データベースT12を参照し、過去のスモールセル基地局200Bとの通信に用いられた送信電力の使用履歴に基づいて、スモールセル基地局200Bとの通信に用いる送信電力の初期値を導出し、送信電力の初期値を設定する。 The first wireless transmission unit 203 refers to the history database T12, and based on the past use history of transmission power used for communication with the small cell base station 200B, transmission power used for communication with the small cell base station 200B Is derived, and the initial value of the transmission power is set.
 例えば、第1無線送信部203は、使用履歴の多い(使用実績の高い)送信電力を、下り回線22の通信に用いられる送信電力の初期値として決定する。使用履歴の多い送信電力は、例えば、履歴データベースT12において蓄積された頻度が最多である送信電力でもよいし、最多でなくても、頻度が所定頻度以上である送信電力でもよい。 For example, the first wireless transmission unit 203 determines the transmission power having a large usage history (high usage history) as the initial value of the transmission power used for downlink communication. The transmission power with a high usage history may be, for example, the transmission power with the highest frequency accumulated in the history database T12, or may be the transmission power with the frequency not less than the predetermined frequency.
 第1無線送信部203は、第1の送信パケットの通信に使用された送信電力に基づいて、履歴データベースT12に保持された送信電力の使用履歴の情報を更新する。この送信電力の使用履歴の情報は、例えば、スモールセル基地局200Bとの下り回線22の通信に使用された送信電力の情報、この送信電力を用いて通信された頻度の情報を含む。 The first wireless transmission unit 203 updates the transmission power usage history information held in the history database T12 based on the transmission power used for communication of the first transmission packet. This transmission power usage history information includes, for example, information on transmission power used for downlink communication with the small cell base station 200B and information on the frequency of communication using this transmission power.
 例えば、第1無線送信部203は、第1の送信パケットの送信に係る送信電力(今回の送信電力)と一致する履歴データベースT12の送信電力に対して、例えば頻度を「1」加算し、履歴データベースT12に保持された情報を更新する。 For example, the first wireless transmission unit 203 adds, for example, “1” to the transmission power of the history database T12 that matches the transmission power (current transmission power) related to the transmission of the first transmission packet, Information held in the database T12 is updated.
 第1無線送信部203は、下り回線22及び第1送信アンテナ204を介して、スモールセル基地局200Bへ、第1の送信パケットを送信する。この際、第1無線送信部203は、第1無線資源管理部208により割り当てられた無線資源を用いて、第1無線送信部203により設定された送信電力で、送信する。 The first wireless transmission unit 203 transmits the first transmission packet to the small cell base station 200B via the downlink 22 and the first transmission antenna 204. At this time, the first radio transmission unit 203 uses the radio resource allocated by the first radio resource management unit 208 and transmits with the transmission power set by the first radio transmission unit 203.
 第1無線送信部203は、下り回線22での通信に割り当てられた無線資源の情報(無線資源の割当情報)を、制御信号に含めて、スモールセル基地局200Bへ送信する。この下り回線22用の無線資源の割当情報は、スモールセル基地局200Bでは受信時に用いられる。 The first radio transmission unit 203 includes information on radio resources (radio resource allocation information) allocated to communication on the downlink 22 in a control signal and transmits the information to the small cell base station 200B. The radio resource allocation information for the downlink 22 is used at the time of reception in the small cell base station 200B.
 第1無線受信部206は、第1無線資源管理部208により割り当てられた上り回線21用の無線資源を用いて、スモールセル基地局200Bからのパケット(第2の受信パケット)を受信する。 The first radio reception unit 206 receives a packet (second received packet) from the small cell base station 200B using the radio resource for the uplink 21 allocated by the first radio resource management unit 208.
 第1パケット復号部207は、第2の受信パケットを復号して、第2の復号データを得る。第2の復号データは、上り回線21のデータを含む。上り回線21のデータ(制御データやユーザデータ)は、例えば、メモリ260A、記憶装置や表示装置等の外部装置(不図示)、各種ソフトウェアの処理部(不図示)に渡される。 The first packet decoding unit 207 decodes the second received packet to obtain second decoded data. The second decoded data includes the uplink 21 data. The data (control data and user data) of the uplink 21 is passed to, for example, the memory 260A, an external device (not shown) such as a storage device or a display device, and various software processing units (not shown).
 また、下り回線22のデータは、下り回線22用の無線資源の割当情報を含む。第1パケット復号部207は、下り回線22用の無線資源の割当情報を第1無線資源管理部208へ送る。 Further, the data of the downlink 22 includes radio resource allocation information for the downlink 22. The first packet decoding unit 207 sends radio resource allocation information for the downlink 22 to the first radio resource management unit 208.
 第1パケット復号部207は、第2の受信パケットの通信に係る無線資源の使用履歴の情報を、第1無線資源管理部208へ送る。 The first packet decoding unit 207 sends information on the usage history of radio resources related to communication of the second received packet to the first radio resource management unit 208.
 第1無線資源管理部208は、履歴データベースT11を参照し、過去のスモールセル基地局200Bとの通信に用いられた無線周波数の使用履歴に基づいて、スモールセル基地局200Bとの通信に用いる下り回線22用の無線周波数の割当候補を導出する。 The first radio resource management unit 208 refers to the history database T11 and downloads data used for communication with the small cell base station 200B based on the radio frequency usage history used for communication with the past small cell base station 200B. Radio frequency allocation candidates for the line 22 are derived.
 例えば、第1無線資源管理部208は、使用履歴の多い(使用実績の高い)無線周波数を、下り回線22での通信に割り当てられる無線周波数の割当候補として決定する。使用履歴の多い無線周波数は、例えば、履歴データベースT11において蓄積された通信量が最多である無線周波数でもよいし、最多でなくても、通信データ量が所定量以上である無線周波数でもよい。尚、無線周波数の候補として、優先順位の高い候補から低い候補まで複数含んでもよい。 For example, the first radio resource management unit 208 determines radio frequencies with a high usage history (high usage history) as radio frequency allocation candidates to be allocated for communication on the downlink 22. The radio frequency with a large usage history may be, for example, the radio frequency with the largest amount of communication accumulated in the history database T11, or may be the radio frequency with the communication data amount equal to or greater than a predetermined amount. Note that a plurality of radio frequency candidates from a candidate with a high priority to a candidate with a low priority may be included.
 第1無線資源管理部208は、無線周波数の割当候補におけるRB(Resource Block)の割当状況を検索し、この無線周波数における未割当のRBの有無を判定する。第1無線資源管理部208は、未割当のRBが存在する場合、この無線周波数を割当可能と判定する。第1無線資源管理部208は、スモールセル基地局200Bとの下り回線22の通信に用いる無線資源として、割当可能とされた無線資源(無線周波数及び未割当のRB)を割り当てる。 The first radio resource management unit 208 searches the allocation status of RBs (Resource Blocks) in radio frequency allocation candidates, and determines the presence or absence of unallocated RBs in this radio frequency. When there is an unassigned RB, first radio resource management unit 208 determines that this radio frequency can be assigned. The first radio resource management unit 208 allocates radio resources (radio frequencies and unallocated RBs) that can be allocated as radio resources used for downlink communication with the small cell base station 200B.
 第1無線資源管理部208は、第1パケット復号部207から上り回線21用の無線資源の割当情報を取得し、上り回線21用の無線資源の割当情報を例えばメモリ260Aに格納して管理する。第1無線資源管理部208は、上り回線21用の無線資源の割当情報を基に、上り回線21用の無線資源を割り当てる。 The first radio resource management unit 208 acquires radio resource allocation information for the uplink 21 from the first packet decoding unit 207, and stores the radio resource allocation information for the uplink 21 in, for example, the memory 260A for management. . The first radio resource management unit 208 allocates radio resources for the uplink 21 based on the allocation information of radio resources for the uplink 21.
 また、第1無線資源管理部208は、RBの割り当てとともに、AMC(Adaptive Modulation and Coding)を指定してもよい。 Also, the first radio resource management unit 208 may specify AMC (Adaptive Modulation and Coding) together with RB allocation.
 尚、第1無線資源管理部208は、割当候補の無線周波数を割当不可能な場合、無線周波数を変更し、他の割当候補の無線周波数から新たに無線周波数を選定してもよい。 The first radio resource management unit 208 may change the radio frequency and select a new radio frequency from other allocation candidate radio frequencies when the allocation candidate radio frequency cannot be allocated.
 また、第1無線資源管理部208は、第1パケット生成部202からの無線資源の使用履歴の情報を取得する。第1無線資源管理部208は、例えば、取得された使用履歴の情報に含まれる無線周波数と一致する履歴データベースT11の無線周波数に対して、使用履歴の情報に含まれる通信量を加算し、履歴データベースT11に保持された情報を更新する。 In addition, the first radio resource management unit 208 acquires information on the radio resource usage history from the first packet generation unit 202. For example, the first radio resource management unit 208 adds the communication amount included in the usage history information to the radio frequency of the history database T11 that matches the radio frequency included in the acquired usage history information, The information held in the database T11 is updated.
 第1無線資源管理部208は、割り当てられた下り回線22用の無線資源の情報、つまりスモールセル基地局200Bとの下り回線22の通信に用いる無線周波数及びRBの情報を、第1無線送信部203へ送る。 The first radio resource management unit 208 uses the assigned radio resource information for the downlink 22, that is, the radio frequency and RB information used for the downlink 22 communication with the small cell base station 200 B, to the first radio transmission unit. To 203.
 第1無線資源管理部208は、割り当てられた上り回線21用の無線資源の情報、つまりスモールセル基地局200Bとの上り回線21の通信に用いる無線周波数及びRBの情報を、第1無線受信部206へ送る。 The first radio resource management unit 208 uses the assigned radio resource information for the uplink 21, that is, the radio frequency and RB information used for the uplink 21 communication with the small cell base station 200B, to the first radio reception unit. Send to 206.
 スモールセル基地局200Bは、プロセッサ250B、メモリ260B、第2インタフェース221、第2送信アンテナ224、及び第2受信アンテナ225を備える。 The small cell base station 200B includes a processor 250B, a memory 260B, a second interface 221, a second transmission antenna 224, and a second reception antenna 225.
 プロセッサ250Bは、メモリ260Bと協働して、各種処理や制御を行う。具体的には、プロセッサ250Bは、メモリ260Bに保持されたプログラムを実行することで、以下の各部の機能を実現する。この各部は、第2パケット生成部222、第2無線送信部223、第2無線受信部226、第2パケット復号部227、及び第2無線資源管理部228を含む。 The processor 250B performs various processes and controls in cooperation with the memory 260B. Specifically, the processor 250B implements the functions of the following units by executing a program held in the memory 260B. Each unit includes a second packet generation unit 222, a second radio transmission unit 223, a second radio reception unit 226, a second packet decoding unit 227, and a second radio resource management unit 228.
 メモリ260Bは、例えば、各種データ、情報、プログラムを記憶する。また、メモリ260Bは、履歴データベースT21,T22を記憶する。メモリ260Bは、プロセッサ250Bに内蔵されてもよい。メモリ260Bは、一次記憶装置とともに、二次記憶装置を含んでもよい。メモリ260Bは、例えば、マクロセル基地局200Aの位置情報(例えば経度、緯度)を保持する。 The memory 260B stores, for example, various data, information, and programs. The memory 260B stores history databases T21 and T22. The memory 260B may be built in the processor 250B. The memory 260B may include a secondary storage device together with the primary storage device. The memory 260B holds, for example, position information (for example, longitude and latitude) of the macro cell base station 200A.
 図5は、履歴データベースT21の一例を示す模式図である。履歴データベースT21は、マクロセル基地局200Aとの上り回線21の通信に用いた無線周波数の使用履歴の情報を保持する。また、履歴データベースT21は、スモールセル基地局200Bが採用可能なRAT毎に分けて設けられてもよい。 FIG. 5 is a schematic diagram showing an example of the history database T21. The history database T21 holds information on the use history of the radio frequency used for communication on the uplink 21 with the macrocell base station 200A. The history database T21 may be provided separately for each RAT that can be adopted by the small cell base station 200B.
 履歴データベースT21は、例えば、過去の一定期間における無線周波数の使用履歴の情報を保持する。この無線周波数の使用履歴の情報は、上り回線21において、マクロセル基地局200Aとの通信に用いられた無線周波数(例えばf1)の情報、及びこの無線周波数を用いて通信された通信量(通信データ量)(例えば375(MB))の情報を含む。 The history database T21 holds, for example, information on the usage history of radio frequencies for a certain period in the past. The radio frequency use history information includes information on the radio frequency (for example, f1) used for communication with the macrocell base station 200A and the communication amount (communication data) communicated using the radio frequency in the uplink 21. Information) (for example, 375 (MB)).
 図6は、履歴データベースT22の一例を示す模式図である。履歴データベースT22は、マクロセル基地局200Aとの通信に用いた送信電力の使用履歴の情報を保持する。履歴データベースT22は、例えば、過去の一定期間における送信電力の使用履歴の情報を保持する。また、履歴データベースT22は、スモールセル基地局200Bが採用可能なRAT毎に分けて設けられてもよい。 FIG. 6 is a schematic diagram showing an example of the history database T22. The history database T22 holds information on the transmission power usage history used for communication with the macrocell base station 200A. The history database T22 holds, for example, transmission power usage history information for a certain period in the past. The history database T22 may be provided separately for each RAT that can be adopted by the small cell base station 200B.
 この送信電力の使用履歴の情報は、接続されたマクロセル基地局200Aとの通信に用いられた無線周波数(f1)での送信電力(例えば-6dBm~-3dBm)の情報、及びこの送信電力でマクロセル基地局200Aと通信した頻度(例えば通信回数)(例えば「103」)の情報を含む。 The transmission power use history information includes information on transmission power (for example, −6 dBm to −3 dBm) at the radio frequency (f1) used for communication with the connected macro cell base station 200A, and the macro cell with this transmission power. It includes information on the frequency of communication with the base station 200A (for example, the number of communication) (for example, “103”).
 ここで、使用履歴として保持される送信電力は、通信中の送信電力の平均値(例えば3秒間毎の時間平均の値)でもよい。また、使用履歴として保持される送信電力は、例えば、第2送信アンテナ224に含まれる後述の各アンテナに入力される電力の単純合計値でもよい。 Here, the transmission power held as the use history may be an average value of transmission power during communication (for example, an average value of time every 3 seconds). Further, the transmission power held as the usage history may be, for example, a simple total value of power input to each antenna described later included in the second transmission antenna 224.
 送信電力の平均値を送信電力の使用履歴の情報とすることで、ワイヤレスバックホール回線20の回線状況が時々刻々と変化した場合でも、履歴データベースT22は、変化の影響が平滑化された値を保持できる。 Even if the line status of the wireless backhaul line 20 changes from moment to moment by using the average value of the transmission power as information on the history of use of the transmission power, the history database T22 uses a value in which the influence of the change is smoothed. Can hold.
 尚、スモールセル基地局200Bが接続されるマクロセル基地局200Aは、スモールセル基地局200Bに対して1つ定められているので、履歴データベースT21,T22にマクロセル基地局200Aの識別情報が保持されなくてよい。 Since one macro cell base station 200A to which the small cell base station 200B is connected is determined for the small cell base station 200B, the identification information of the macro cell base station 200A is not held in the history databases T21 and T22. It's okay.
 第2インタフェース221は、スモールセル基地局200Bと配下の端末100とを接続するための通信インタフェースである。第2インタフェース221は、RAN(Radio Access Network)を介して通信するためのインタフェースである。 The second interface 221 is a communication interface for connecting the small cell base station 200B and the subordinate terminal 100. The second interface 221 is an interface for communicating via a RAN (Radio Access Network).
 第2パケット生成部222は、マクロセル基地局200Aへ送信されるパケット(第2の送信パケット)を生成する。第2の送信パケットは、上り回線21のデータを含む。上り回線21のデータ(制御データやユーザデータ)は、例えば、メモリ260B、記憶装置等の外部装置(不図示)、各種ソフトウェアの処理部(不図示)から得られる。 The second packet generator 222 generates a packet (second transmission packet) transmitted to the macrocell base station 200A. The second transmission packet includes data on the uplink 21. The data (control data and user data) of the uplink 21 is obtained from, for example, the memory 260B, an external device (not shown) such as a storage device, and various software processing units (not shown).
 第2パケット生成部222は、第2の送信パケットの通信に係る上り回線21用の無線資源の使用履歴の情報を、第2無線資源管理部228へ送る。この無線資源の使用履歴の情報は、例えば、マクロセル基地局200Aとの通信に使用された無線周波数の情報、この無線周波数を用いて通信された通信量の情報を含む。 The second packet generation unit 222 sends information on the usage history of the radio resources for the uplink 21 related to the communication of the second transmission packet to the second radio resource management unit 228. The information on the usage history of the radio resource includes, for example, information on the radio frequency used for communication with the macro cell base station 200A and information on the communication amount communicated using the radio frequency.
 第2無線送信部223は、履歴データベースT22を参照し、過去のマクロセル基地局200Aとの通信に用いられた送信電力の使用履歴に基づいて、マクロセル基地局200Aとの通信に用いる送信電力の初期値を導出し、送信電力の初期値を設定する。 The second wireless transmission unit 223 refers to the history database T22, and based on the past transmission power usage history used for communication with the macro cell base station 200A, the initial transmission power used for communication with the macro cell base station 200A A value is derived and an initial value of the transmission power is set.
 例えば、第2無線送信部223は、使用履歴の多い(使用実績の高い)送信電力を、上り回線21の通信に用いられる送信電力の初期値として決定する。使用履歴の多い送信電力は、例えば、履歴データベースT22において蓄積された頻度が最多である送信電力でもよいし、最多でなくても、頻度が所定頻度以上である送信電力でもよい。 For example, the second wireless transmission unit 223 determines the transmission power with a large usage history (high usage history) as the initial value of the transmission power used for the uplink 21 communication. The transmission power having a high usage history may be, for example, the transmission power having the highest frequency accumulated in the history database T22, or may be the transmission power having the frequency equal to or higher than the predetermined frequency even if it is not the highest.
 第2無線送信部223は、第2の送信パケットの通信に使用された送信電力に基づいて、履歴データベースT22に保持された送信電力の使用履歴の情報を更新する。この送信電力の使用履歴の情報は、例えば、マクロセル基地局200Aとの上り回線21の通信に使用された送信電力の情報、この送信電力を用いて通信された頻度の情報を含む。 The second wireless transmission unit 223 updates the transmission power usage history information held in the history database T22 based on the transmission power used for communication of the second transmission packet. This transmission power usage history information includes, for example, information on transmission power used for uplink 21 communication with the macrocell base station 200A and information on frequency of communication using this transmission power.
 例えば、第2無線送信部223は、第2の送信パケットの送信に係る送信電力(今回の送信電力)と一致する履歴データベースT22の送信電力に対して、例えば頻度を「1」加算し、履歴データベースT22に保持された情報を更新する。 For example, the second wireless transmission unit 223 adds, for example, “1” to the frequency to the transmission power of the history database T22 that matches the transmission power (current transmission power) related to the transmission of the second transmission packet, Information held in the database T22 is updated.
 第2無線送信部223は、上り回線21及び第2送信アンテナ224を介して、マクロセル基地局200Aへ、第2の送信パケットを送信する。この際、第2無線送信部223は、第2無線資源管理部228により割り当てられた無線資源を用いて、第2無線送信部223により設定された送信電力で、送信する。 The second wireless transmission unit 223 transmits the second transmission packet to the macro cell base station 200A via the uplink 21 and the second transmission antenna 224. At this time, the second radio transmission unit 223 uses the radio resource allocated by the second radio resource management unit 228 to transmit with the transmission power set by the second radio transmission unit 223.
 第2無線送信部223は、上り回線21での通信に割り当てられた無線資源の情報(無線資源の割当情報)を、制御信号に含めて、マクロセル基地局200Aへ送信する。この上り回線21用の無線資源の割当情報は、マクロセル基地局200Aでは受信時に用いられる。 The second radio transmission unit 223 includes, in a control signal, information on radio resources allocated to communication on the uplink 21 (radio resource allocation information) and transmits the information to the macro cell base station 200A. The radio resource allocation information for the uplink 21 is used at the time of reception in the macro cell base station 200A.
 第2無線受信部226は、第2無線資源管理部228により割り当てられた下り回線22用の無線資源を用いて、マクロセル基地局200Aからのパケット(第1の受信パケット)を受信する。 The second radio reception unit 226 receives a packet (first reception packet) from the macrocell base station 200A using the radio resources for the downlink 22 allocated by the second radio resource management unit 228.
 第2パケット復号部227は、第1の受信パケットを復号して、第1の復号データを得る。第1の復号データは、下り回線22のデータを含む。下り回線22のデータ(制御データやユーザデータ)は、例えば、メモリ260B、記憶装置や表示装置等の外部装置(不図示)、各種ソフトウェアの処理部(不図示)に渡される。 The second packet decoding unit 227 decodes the first received packet to obtain first decoded data. The first decoded data includes downlink data 22. Data on the downlink 22 (control data and user data) is transferred to, for example, the memory 260B, an external device (not shown) such as a storage device or a display device, and processing units (not shown) of various software.
 また、上り回線21のデータは、上り回線21用の無線資源の割当情報を含む。第2パケット復号部227は、上り回線21用の無線資源の割当情報を第2無線資源管理部228へ送信する。 Further, the data of the uplink 21 includes radio resource allocation information for the uplink 21. Second packet decoding section 227 transmits radio resource allocation information for uplink 21 to second radio resource management section 228.
 第2パケット復号部227は、第1の受信パケットの通信に係る無線資源の使用履歴の情報を、第2無線資源管理部228へ送る。 The second packet decoding unit 227 sends information on the usage history of the radio resource related to the communication of the first received packet to the second radio resource management unit 228.
 第2無線資源管理部228は、履歴データベースT21を参照し、過去のマクロセル基地局200Aとの通信に用いられた無線周波数の使用履歴に基づいて、マクロセル基地局200Aとの通信に用いる上り回線21用の無線周波数の割当候補を導出する。 The second radio resource management unit 228 refers to the history database T21, and based on the radio frequency usage history used for communication with the past macro cell base station 200A, the uplink 21 used for communication with the macro cell base station 200A. A radio frequency allocation candidate for the system is derived.
 例えば、第2無線資源管理部228は、使用履歴の多い(使用実績の高い)無線周波数を、上り回線21での通信に割り当てられる無線周波数の割当候補として決定する。使用履歴の多い無線周波数は、例えば、履歴データベースT21において蓄積された通信量が最多である無線周波数でもよいし、最多でなくても、通信データ量が所定量以上である無線周波数でもよい。尚、無線周波数の候補として、優先順位の高い候補から低い候補まで複数含んでもよい。 For example, the second radio resource management unit 228 determines a radio frequency having a high usage history (high usage history) as a radio frequency allocation candidate to be allocated to communication on the uplink 21. The radio frequency with a large usage history may be, for example, the radio frequency with the largest amount of communication stored in the history database T21, or the radio frequency with the communication data amount equal to or greater than a predetermined amount. Note that a plurality of radio frequency candidates from a candidate with a high priority to a candidate with a low priority may be included.
 第2無線資源管理部228は、無線周波数の割当候補におけるRBの割当状況を検索し、この無線周波数における未割当のRBの有無を判定する。第2無線資源管理部228は、未割当のRBが存在する場合、この無線周波数を割当可能と判定する。第2無線資源管理部228は、マクロセル基地局200Aとの上り回線21の通信に用いる無線資源として、割当可能とされた無線資源(無線周波数及び未割当のRB)を割り当てる。 The second radio resource management unit 228 searches for the allocation status of RBs in radio frequency allocation candidates and determines whether there is an unallocated RB in this radio frequency. The second radio resource management unit 228 determines that this radio frequency can be allocated when there is an unallocated RB. The second radio resource management unit 228 allocates radio resources (radio frequencies and unallocated RBs) that can be allocated as radio resources used for uplink communication with the macro cell base station 200A.
 第2無線資源管理部228は、第2パケット復号部227から下り回線22用の無線資源の割当情報を取得し、下り回線22用の無線資源の割当情報を例えばメモリ260Bに格納して管理する。第1無線資源管理部208は、下り回線22用の無線資源の割当情報を基に、下り回線22用の無線資源を割り当てる。 The second radio resource management unit 228 acquires the radio resource allocation information for the downlink 22 from the second packet decoding unit 227, and stores the radio resource allocation information for the downlink 22 in, for example, the memory 260B for management. . The first radio resource management unit 208 allocates radio resources for the downlink 22 based on the radio resource allocation information for the downlink 22.
 また、第2無線資源管理部228は、RBの割り当てとともに、AMCを指定してもよい。 Also, the second radio resource management unit 228 may specify AMC together with RB allocation.
 尚、第2無線資源管理部228は、割当候補の無線周波数を割当不可能な場合、無線周波数を変更し、他の割当候補の無線周波数から新たに無線周波数を選定してもよい。 The second radio resource management unit 228 may change the radio frequency and select a new radio frequency from other allocation candidate radio frequencies when the allocation candidate radio frequencies cannot be allocated.
 また、第2無線資源管理部228は、第2パケット生成部222からの無線資源の使用履歴の情報を取得する。第2無線資源管理部228は、例えば、取得された使用履歴の情報に含まれる無線周波数と一致する履歴データベースT21の無線周波数に対して、使用履歴の情報に含まれる通信量を加算し、履歴データベースT21に保持された情報を更新する。 Also, the second radio resource management unit 228 acquires information on the use history of the radio resource from the second packet generation unit 222. For example, the second radio resource management unit 228 adds the communication amount included in the usage history information to the radio frequency of the history database T21 that matches the radio frequency included in the acquired usage history information, Information held in the database T21 is updated.
 第2無線資源管理部228は、割り当てられた上り回線21用の無線資源の情報、つまりマクロセル基地局200Aとの上り回線21の通信に用いる無線周波数及びRBの情報を、第2無線送信部223へ送る。 The second radio resource management unit 228 uses the second radio transmission unit 223 to transmit information on the allocated radio resource for the uplink 21, that is, information on the radio frequency and RB used for communication on the uplink 21 with the macro cell base station 200A. Send to.
 第2無線資源管理部228は、割り当てられた下り回線22用の無線資源の情報、つまりマクロセル基地局200Aとの下り回線22の通信に用いる無線周波数及びRBの情報を、第2無線受信部226へ送る。 The second radio resource management unit 228 uses the second radio reception unit 226 to transmit the information on the allocated radio resources for the downlink 22, that is, the radio frequency and RB information used for the downlink 22 communication with the macrocell base station 200A. Send to.
 [動作等]
 次に、無線通信システム10の動作例について説明する。
[Operation etc.]
Next, an operation example of the wireless communication system 10 will be described.
 図7は、基地局200がワイヤレスバックホール回線20において使用する無線周波数を割り当てる際の第1動作例を示すフローチャートである。図7では、マクロセル基地局200Aが下り回線22において使用する無線周波数を割り当てる際の動作例を示す。 FIG. 7 is a flowchart showing a first operation example when the base station 200 assigns a radio frequency used in the wireless backhaul line 20. FIG. 7 shows an operation example when the macro cell base station 200A allocates a radio frequency to be used in the downlink 22.
 まず、第1無線資源管理部208は、ワイヤレスバックホール回線20での各種設定の必要があるか否かを判定する(S11)。この各種設定は、例えば、ワイヤレスバックホール回線20(下り回線22)の通信で使用する無線資源の設定、第1送信アンテナ204によりワイヤレスバックホール回線20を介して通信する際の送信電力の初期値の設定、を含む。第1無線資源管理部208は、例えば、マクロセル基地局200A又はスモールセル基地局200Bの配下に端末100が存在する場合に、上記各種設定が必要と判定する。 First, the first radio resource management unit 208 determines whether various settings need to be made on the wireless backhaul line 20 (S11). The various settings include, for example, setting of radio resources used in communication of the wireless backhaul line 20 (downlink 22), and an initial value of transmission power when communicating via the wireless backhaul line 20 by the first transmission antenna 204. Including settings. For example, when the terminal 100 exists under the macro cell base station 200A or the small cell base station 200B, the first radio resource management unit 208 determines that the various settings are necessary.
 上記各種設定が必要である場合、第1無線資源管理部208は、履歴データベースT11を参照し(S12)、スモールセル基地局200Bにおいて通信量が最多である等の使用頻度の高い(使用履歴の多い)無線周波数を、無線周波数の割当候補として選択する(S13)。 When the various settings described above are necessary, the first radio resource management unit 208 refers to the history database T11 (S12), and has a high usage frequency (such as a history of usage history) such as the largest traffic in the small cell base station 200B. A radio frequency is selected as a radio frequency allocation candidate (S13).
 第1無線資源管理部208は、例えば上述した方法で、無線周波数の割当候補におけるRBを割当可能か否かを判定する(S14)。 The first radio resource management unit 208 determines whether or not RBs in radio frequency allocation candidates can be allocated, for example, by the method described above (S14).
 S14において、選択された無線周波数のRBが割当不可能である場合、第1無線資源管理部208は、割当候補とされた無線周波数の優先順位が最下位であるか否かを判定する(S15)。 In S14, when the RB of the selected radio frequency cannot be allocated, the first radio resource management unit 208 determines whether or not the priority order of the radio frequency set as the allocation candidate is the lowest (S15). ).
 尚、例えば、S15の処理が1回目である場合、例えば割当候補の無線周波数の優先順位は最上位であり、S15の処理回数が増える度に、割当候補の無線周波数の優先順位が低くされる。 For example, when the process of S15 is the first time, the priority order of the allocation candidate radio frequency is the highest, for example, and the priority order of the allocation candidate radio frequency is lowered each time the number of processes of S15 increases.
 S15において、割当候補とされた無線周波数の優先順位が最下位でない場合、第1無線資源管理部208は、この無線周波数よりも1段階優先順位が低い無線周波数、つまり次の優先順位の無線周波数を、割当候補として選択する(S16)。そして、マクロセル基地局200Aは、S14の処理に進む。 In S15, when the priority order of the radio frequency set as the allocation candidate is not the lowest, the first radio resource management unit 208 determines that the radio frequency having a one-step priority lower than this radio frequency, that is, the radio frequency of the next priority order. Is selected as an allocation candidate (S16). Then, the macro cell base station 200A proceeds to the process of S14.
 第1無線資源管理部208は、S15において、割当候補とされた無線周波数の優先順位が最下位である場合、ワイヤレスバックホール回線20の設定が不可である旨の不可履歴情報を、履歴データベースT11に登録する(S17)。不可履歴情報は、例えば、割当不可であったスモールセル基地局200B、割当不可であった無線周波数、割当不可であった時刻(例えば日時)、の情報を含む。そして、マクロセル基地局200Aは、図7の処理を終了する。 In S15, the first radio resource management unit 208 indicates the history information indicating that the wireless backhaul line 20 cannot be set when the priority order of the radio frequency set as the allocation candidate is the lowest in S15. (S17). The unusable history information includes, for example, information of the small cell base station 200B that cannot be allocated, the radio frequency that cannot be allocated, and the time (for example, date and time) that cannot be allocated. And macrocell base station 200A complete | finishes the process of FIG.
 S14において、無線周波数のRBを割当可能である場合、第1無線資源管理部208は、当該割当可能な無線周波数のRBを割り当てる。そして、第1無線資源管理部208は、送信電力を設定する(S18)。この送信電力は、第1送信アンテナ204に供給される電力に相当する。送信電力の設定は、例えば、図9に示すS32~S35のように、履歴データベースT21を用いて行われてもよいし、公知の方法により行われてもよい。 In S14, when it is possible to allocate radio frequency RBs, the first radio resource management unit 208 allocates radio frequency RBs that can be allocated. Then, the first radio resource management unit 208 sets transmission power (S18). This transmission power corresponds to the power supplied to the first transmission antenna 204. The transmission power setting may be performed using the history database T21 as in S32 to S35 shown in FIG. 9, for example, or may be performed by a known method.
 第1無線送信部203は、割り当てられた無線周波数のRBを用いて、設定された送信電力で、スモールセル基地局200Bとの間でデータを通信する(S19)。尚、割り当てられた無線周波数の情報は、下り回線22用の無線資源の割当情報に含めて、スモールセル基地局200Bへ通知される。 The first radio transmission unit 203 communicates data with the small cell base station 200B with the set transmission power using the RB of the allocated radio frequency (S19). The allocated radio frequency information is included in the radio resource allocation information for the downlink 22, and is notified to the small cell base station 200B.
 データが通信されると、第1パケット生成部202は、送信された第1の送信パケットの通信量の情報を第1無線資源管理部208へ送る。第1無線資源管理部208は、履歴データベースT11において、通信されたスモールセル基地局200Bで使用された無線周波数での通信履歴(通信量)を更新する(S20)。そして、マクロセル基地局200Aは、図7の処理を終了する。 When the data is communicated, the first packet generation unit 202 sends information on the traffic amount of the transmitted first transmission packet to the first radio resource management unit 208. The first radio resource management unit 208 updates the communication history (communication amount) at the radio frequency used in the communicated small cell base station 200B in the history database T11 (S20). And macrocell base station 200A complete | finishes the process of FIG.
 このように、マクロセル基地局200Aは、データの通信に係る過去の無線周波数の使用履歴の情報を利用して、通信干渉の可能性が低い無線周波数を割り当てできる。また、割当候補の無線周波数のRBを割当不可である場合、他の無線周波数のRBを割り当てることで、マクロセル基地局200Aがデータを通信するための無線周波数を発見できる可能性が高くなる。つまり、マクロセル基地局200Aは、無線資源の割当効率や利用効率を向上できる。よって、マクロセル基地局200Aは、ワイヤレスバックホール回線20を介してスモールセル基地局200Bとの通信に使用される無線周波数を自律分散的に棲み分けできる。 In this way, the macro cell base station 200A can assign a radio frequency with a low possibility of communication interference using information on past use history of radio frequency related to data communication. In addition, when it is impossible to allocate RBs of candidate radio frequencies, allocation of RBs of other radio frequencies increases the possibility that the macro cell base station 200A can find a radio frequency for communicating data. That is, the macro cell base station 200A can improve the allocation efficiency and the utilization efficiency of radio resources. Therefore, the macro cell base station 200A can autonomously distribute radio frequencies used for communication with the small cell base station 200B via the wireless backhaul line 20.
 図8は、基地局200がワイヤレスバックホール回線20において使用する無線周波数を割り当てる際の第2動作例を示すフローチャートである。図8では、スモールセル基地局200Bが上り回線21において使用する無線周波数を割り当てる際の動作例を示す。尚、図8において、図7と同様の処理については、同一の符号を付し、その説明を省略又は簡略化する。 FIG. 8 is a flowchart showing a second operation example when the base station 200 assigns a radio frequency to be used in the wireless backhaul line 20. FIG. 8 illustrates an operation example when the small cell base station 200B allocates a radio frequency to be used in the uplink 21. In FIG. 8, the same processes as those in FIG. 7 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 まず、第2無線資源管理部228は、ワイヤレスバックホール回線20での各種設定の必要があるか否かを判定する(S21)。この各種設定は、例えば、ワイヤレスバックホール回線20(上り回線21)の通信で使用する無線資源の設定、第2送信アンテナ224によりワイヤレスバックホール回線20を介して通信する際の送信電力の初期値の設定、を含む。第2無線資源管理部228は、例えば、マクロセル基地局200A又はスモールセル基地局200Bの配下に端末100が存在する場合に、上記各種設定が必要と判定する。 First, the second radio resource management unit 228 determines whether various settings on the wireless backhaul line 20 are necessary (S21). The various settings include, for example, the setting of radio resources used in the communication of the wireless backhaul line 20 (uplink 21), and the initial value of the transmission power when the second transmission antenna 224 communicates via the wireless backhaul line 20. Including settings. For example, when the terminal 100 exists under the macro cell base station 200A or the small cell base station 200B, the second radio resource management unit 228 determines that the various settings are necessary.
 上記各種設定が必要である場合、第2無線資源管理部228は、履歴データベースT21を参照し(S22)、通信量が最多である等の使用頻度の高い(使用履歴の多い)無線周波数を、無線周波数の割当候補として選択する(S23)。 When the above various settings are necessary, the second radio resource management unit 228 refers to the history database T21 (S22), and selects a radio frequency with a high use frequency (a lot of use history) such as the largest amount of communication. It is selected as a radio frequency allocation candidate (S23).
 第2無線資源管理部228は、例えば上述した方法で、無線周波数の割当候補におけるRBを割当可能か否かを判定する(S24)。 The second radio resource management unit 228 determines whether or not RBs in radio frequency allocation candidates can be allocated, for example, by the method described above (S24).
 S24において、選択された無線周波数のRBが割当不可能である場合、第2無線資源管理部228は、割当候補とされた無線周波数の優先順位が最下位であるか否かを判定する(S25)。 In S24, when the RB of the selected radio frequency cannot be allocated, the second radio resource management unit 228 determines whether or not the priority order of the radio frequency determined as the allocation candidate is the lowest (S25). ).
 尚、例えば、S25の処理が1回目である場合、例えば割当候補の無線周波数の優先順位は最上位であり、S25の処理回数が増える度に、割当候補の無線周波数の優先順位が低くされる。 For example, when the process of S25 is the first time, for example, the priority of the radio frequency of the allocation candidate is the highest, and the priority of the radio frequency of the allocation candidate is lowered every time the number of processes of S25 increases.
 S25において、割当候補とされた無線周波数の優先順位が最下位でない場合、第2無線資源管理部228は、この無線周波数よりも1段階優先順位が低い無線周波数、つまり次の優先順位の無線周波数を、割当候補として選択する(S26)。そして、スモールセル基地局200Bは、S24の処理に進む。 In S25, when the priority order of the radio frequency set as the allocation candidate is not the lowest, the second radio resource management unit 228 determines that the radio frequency having a one-step priority lower than this radio frequency, that is, the radio frequency of the next priority order. Is selected as an allocation candidate (S26). Then, the small cell base station 200B proceeds to the process of S24.
 第2無線資源管理部228は、S25において、割当候補とされた無線周波数の優先順位が最下位である場合、ワイヤレスバックホール回線20の設定が不可である旨の不可履歴情報を、履歴データベースT21に登録する(S27)。不可履歴情報は、例えば、割当不可であった無線周波数、割当不可であった時刻(例えば日時)、の情報を含む。そして、スモールセル基地局200Bは、図8の処理を終了する。 In S25, the second radio resource management unit 228 indicates the impossible history information indicating that the setting of the wireless backhaul line 20 is impossible when the priority of the radio frequency set as the allocation candidate is the lowest in S25. (S27). The impossibility history information includes, for example, information on radio frequencies that could not be assigned and times (eg, date and time) when assignment was not possible. And the small cell base station 200B complete | finishes the process of FIG.
 S24において、無線周波数のRBを割当可能である場合、第2無線資源管理部228は、当該割当可能な無線周波数のRBを割り当てる。そして、第2無線資源管理部228は、送信電力を設定する(S28)。この送信電力は、第2送信アンテナ224に供給される電力に相当する。送信電力の設定は、例えば、図10に示すS42~S45のように、履歴データベースT22を用いて行われてもよいし、公知の方法により行われてもよい。 In S24, when the RB of the radio frequency can be allocated, the second radio resource management unit 228 allocates the RB of the radio frequency that can be allocated. Then, the second radio resource management unit 228 sets transmission power (S28). This transmission power corresponds to the power supplied to the second transmission antenna 224. The setting of the transmission power may be performed using the history database T22 as in S42 to S45 shown in FIG. 10, for example, or may be performed by a known method.
 第2無線送信部223は、割り当てられた無線周波数のRBを用いて、設定された送信電力で、マクロセル基地局200Aとの間でデータを通信する(S29)。尚、割り当てられた無線周波数及びRBの情報は、上り回線21用の無線資源の割当情報に含めて、マクロセル基地局200Aへ通知される。 The second radio transmission unit 223 communicates data with the macrocell base station 200A with the set transmission power using the RB of the allocated radio frequency (S29). The allocated radio frequency and RB information are included in the radio resource allocation information for the uplink 21 and notified to the macro cell base station 200A.
 データが通信されると、第2パケット生成部222は、送信された第2の送信パケットの通信量の情報を第2無線資源管理部228へ送る。第2無線資源管理部228は、履歴データベースT21において、使用された無線周波数での通信履歴(通信量)を更新する(S30)。そして、スモールセル基地局200Bは、図8の処理を終了する。 When the data is communicated, the second packet generation unit 222 sends information on the amount of communication of the transmitted second transmission packet to the second radio resource management unit 228. The second radio resource management unit 228 updates the communication history (communication amount) at the used radio frequency in the history database T21 (S30). And the small cell base station 200B complete | finishes the process of FIG.
 このように、スモールセル基地局200Bは、データの通信に係る過去の無線周波数の使用履歴の情報を利用して、通信干渉の可能性が低い無線周波数を割り当てできる。また、割当候補の無線周波数のRBを割当不可である場合、他の無線周波数のRBを割り当てることで、スモールセル基地局200Bがデータを通信するための無線周波数を発見できる可能性が高くなる。つまり、スモールセル基地局200Bは、無線資源の割当効率や利用効率を向上できる。よって、スモールセル基地局200Bは、ワイヤレスバックホール回線20を介してマクロセル基地局200Aとの通信に使用される無線周波数を自律分散的に棲み分けできる。 In this way, the small cell base station 200B can assign a radio frequency with a low possibility of communication interference using information on past radio frequency usage history related to data communication. In addition, when it is impossible to allocate RBs of candidate radio frequencies, allocation of RBs of other radio frequencies increases the possibility that the small cell base station 200B can find a radio frequency for communicating data. That is, the small cell base station 200B can improve radio resource allocation efficiency and utilization efficiency. Therefore, the small cell base station 200B can autonomously distribute radio frequencies used for communication with the macro cell base station 200A via the wireless backhaul line 20.
 図9は、基地局200がワイヤレスバックホール回線20を介した通信で使用する送信電力を設定する際の第1動作例を示すフローチャートである。図9では、マクロセル基地局200Aが送信電力を設定する際の動作例を示す。尚、図9において、図7,図8と同様の処理については、同一の符号を付し、その説明を省略又は簡略化する。 FIG. 9 is a flowchart illustrating a first operation example when the base station 200 sets transmission power used in communication via the wireless backhaul line 20. FIG. 9 shows an operation example when the macrocell base station 200A sets transmission power. 9, the same processes as those in FIGS. 7 and 8 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 まず、第1無線資源管理部208は、ワイヤレスバックホール回線20での各種設定の必要があるか否かを判定する(S11)。 First, the first radio resource management unit 208 determines whether various settings need to be made on the wireless backhaul line 20 (S11).
 各種設定が必要である場合、第1無線資源管理部208は、下り回線22用の無線周波数を含む無線資源を割り当てる(S31)。この無線資源の割り当てでは、図7に示したS12~S17のように、履歴データベースT11を用いて行われてもよいし、公知の方法により行われてもよい。 If various settings are required, the first radio resource management unit 208 allocates radio resources including radio frequencies for the downlink 22 (S31). This radio resource allocation may be performed using the history database T11 as in S12 to S17 shown in FIG. 7, or may be performed by a known method.
 第1無線送信部203は、履歴データベースT12を参照し(S32)、頻度が最多である等の使用頻度の高い(使用履歴の多い)送信電力を、第1送信アンテナ204を用いた通信の送信電力の初期値として設定する(S33)。この頻度は、スモールセル基地局200Bとの通信で使用された無線周波数において使用された送信電力の頻度である。 The first wireless transmission unit 203 refers to the history database T12 (S32), and uses the first transmission antenna 204 to transmit a transmission power having a high usage frequency (a lot of usage history) such as the highest frequency. The initial value of power is set (S33). This frequency is the frequency of transmission power used in the radio frequency used in communication with the small cell base station 200B.
 尚、第1無線送信部203は、履歴データベースT12において、割り当てられた無線周波数において最頻の送信電力よりも3dB大きい送信電力又は3dB小さい送信電力を、送信電力の初期値として設定してもよい。 Note that the first wireless transmission unit 203 may set transmission power that is 3 dB larger or 3 dB smaller than the most frequent transmission power as the initial value of the transmission power in the history database T12. .
 第1無線送信部203は、第1送信アンテナ204を介して、設定された送信電力の初期値に基づいて、スモールセル基地局200Bへ下り回線22のデータを送信する(S34)。 The first wireless transmission unit 203 transmits data of the downlink 22 to the small cell base station 200B based on the set initial value of transmission power via the first transmission antenna 204 (S34).
 S34では、第1無線送信部203は、データ通信前には、上記の送信電力の初期値を第1送信アンテナ204へ供給する。また、第1無線送信部203は、データ通信中には、データ通信中の送信電力制御により決定された送信電力を第1送信アンテナ204へ供給する。 In S34, the first wireless transmission unit 203 supplies the initial value of the transmission power to the first transmission antenna 204 before data communication. Further, the first wireless transmission unit 203 supplies the transmission power determined by the transmission power control during the data communication to the first transmission antenna 204 during the data communication.
 データ通信中の送信電力制御では、第1無線送信部203は、例えば、受信点(ここでは第2受信アンテナ225)における受信電力が所定値以上であれば、第1送信アンテナ204による送信電力を規定値(例えば1dB)低減させる。一方、受信点(ここでは第2受信アンテナ225)における受信電力が所定値以下であれば、第1送信アンテナ204による送信電力を規定値(例えば1dB)増加させる。受信電力の情報は、例えば、逆回線(ここでは上り回線21)を介して、受信側(ここではスモールセル基地局200B)から送信側(ここではマクロセル基地局200A)へ通知される。 In transmission power control during data communication, for example, if the reception power at the reception point (here, the second reception antenna 225) is equal to or greater than a predetermined value, the first wireless transmission unit 203 uses the transmission power from the first transmission antenna 204. A specified value (for example, 1 dB) is reduced. On the other hand, if the reception power at the reception point (second reception antenna 225 in this case) is equal to or less than a predetermined value, the transmission power by the first transmission antenna 204 is increased by a specified value (for example, 1 dB). The received power information is notified from the receiving side (here, the small cell base station 200B) to the transmitting side (here, the macro cell base station 200A) via, for example, the reverse line (here, the uplink 21).
 S34においてデータが通信されると、第1無線送信部203は、履歴データベースT12にアクセスし、使用された送信電力の情報に基づいて、スモールセル基地局200Bとの通信に使用された無線周波数での送信電力の頻度を更新する(S35)。そして、マクロセル基地局200Aは、図9の処理を終了する。 When the data is communicated in S34, the first radio transmission unit 203 accesses the history database T12, and based on the information on the transmission power used, the first radio transmission unit 203 uses the radio frequency used for communication with the small cell base station 200B. The frequency of the transmission power is updated (S35). And macrocell base station 200A complete | finishes the process of FIG.
 このように、マクロセル基地局200Aは、データの通信に使用された過去の無線周波数での送信電力の使用履歴の情報を利用することで、通信品質の劣化かつ通信干渉の可能性が低い送信電力を設定できる。つまり、マクロセル基地局200Aは、送信電力の初期値が過小に設定されることで、送信されたデータがスモールセル基地局200Bへ到達せず、データ通信の品質が低下することを抑制できる。また、マクロセル基地局200Aは、送信電力の初期値が過大に設定されることで、スモールセル基地局200Bの周辺の基地局200等で通信干渉が発生することを抑制できる。よって、マクロセル基地局200Aは、ワイヤレスバックホール回線20を介してスモールセル基地局200Bとの通信に使用される送信電力を自律分散的に棲み分けできる。 As described above, the macro cell base station 200A uses the transmission power usage history information at the past radio frequency used for data communication, thereby reducing the transmission quality and the possibility of communication interference. Can be set. That is, the macrocell base station 200A can prevent the transmitted data from reaching the small cell base station 200B and reducing the quality of data communication by setting the initial value of the transmission power to be too small. Further, the macrocell base station 200A can suppress the occurrence of communication interference in the base stations 200 and the like around the small cell base station 200B by setting the initial value of the transmission power to be excessive. Accordingly, the macro cell base station 200A can autonomously distribute transmission power used for communication with the small cell base station 200B via the wireless backhaul line 20.
 図10は、基地局200がワイヤレスバックホール回線20を介した通信で使用する送信電力を設定する際の第2動作例を示すフローチャートである。図10では、スモールセル基地局200Bが送信電力を決定する際の動作例を示す。尚、図10において、図7~図9と同様の処理については、同一の符号を付し、その説明を省略又は簡略化する。 FIG. 10 is a flowchart showing a second operation example when the base station 200 sets transmission power used for communication via the wireless backhaul line 20. FIG. 10 shows an operation example when the small cell base station 200B determines transmission power. In FIG. 10, the same processes as those in FIGS. 7 to 9 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 まず、第2無線資源管理部228は、ワイヤレスバックホール回線20での各種設定の必要があるか否かを判定する(S21)。 First, the second radio resource management unit 228 determines whether various settings on the wireless backhaul line 20 are necessary (S21).
 各種設定が必要である場合、第2無線資源管理部228は、上り回線21用の無線周波数を含む無線資源を割り当てる(S41)。この無線資源の割り当てでは、図8に示したS22~S27のように、履歴データベースT21を用いて行われてもよいし、公知の方法により行われてもよい。 If various settings are required, the second radio resource management unit 228 allocates radio resources including radio frequencies for the uplink 21 (S41). This radio resource allocation may be performed using the history database T21 as in S22 to S27 shown in FIG. 8, or may be performed by a known method.
 第2無線送信部223は、履歴データベースT22を参照し(S42)、頻度が最多である等の使用頻度の高い(使用履歴の多い)送信電力を、第2送信アンテナ224を用いた通信の送信電力の初期値として設定する(S43)。この頻度は、マクロセル基地局200Aとの通信で使用された無線周波数において使用された送信電力の頻度である。 The second wireless transmission unit 223 refers to the history database T22 (S42), and uses the second transmission antenna 224 to transmit the transmission power having a high usage frequency (a lot of usage history) such as the highest frequency. The initial value of power is set (S43). This frequency is the frequency of transmission power used in the radio frequency used in communication with the macrocell base station 200A.
 第2無線送信部223は、第2送信アンテナ224を介して、設定された送信電力の初期値に基づいて、マクロセル基地局200Aへ上り回線21のデータを送信する(S44)。 The second wireless transmission unit 223 transmits the data of the uplink 21 to the macrocell base station 200A via the second transmission antenna 224 based on the set initial value of transmission power (S44).
 S44では、第2無線送信部223は、データ通信前には、上記の送信電力の初期値を第2送信アンテナ224へ供給する。また、第2無線送信部223は、データ通信中には、データ通信中の送信電力制御により決定された送信電力を第2送信アンテナ224へ供給する。 In S44, the second wireless transmission unit 223 supplies the initial value of the transmission power to the second transmission antenna 224 before data communication. Further, the second wireless transmission unit 223 supplies the transmission power determined by the transmission power control during the data communication to the second transmission antenna 224 during the data communication.
 データ通信中の送信電力制御では、第1無線送信部203は、例えば、受信点(ここでは第1受信アンテナ205)における受信電力が所定値以上であれば、第2送信アンテナ224による送信電力を規定値(例えば1dB)低減させる。一方、受信点(ここでは第1受信アンテナ205)における受信電力が所定値以下であれば、第2送信アンテナ224による送信電力を規定値(例えば1dB)増加させる。受信電力の情報は、例えば、逆回線(ここでは下り回線22)を介して、受信側(ここではマクロセル基地局200A)から送信側(ここではスモールセル基地局200B)へ通知される。 In transmission power control during data communication, for example, if the reception power at the reception point (here, the first reception antenna 205) is equal to or greater than a predetermined value, the first wireless transmission unit 203 uses the transmission power from the second transmission antenna 224. A specified value (for example, 1 dB) is reduced. On the other hand, if the reception power at the reception point (here, the first reception antenna 205) is equal to or less than a predetermined value, the transmission power by the second transmission antenna 224 is increased by a specified value (for example, 1 dB). The received power information is notified from the reception side (here, the macro cell base station 200A) to the transmission side (here, the small cell base station 200B) via, for example, a reverse line (here, the downlink 22).
 S44においてデータが通信されると、第2無線送信部223は、履歴データベースT22にアクセスし、使用された送信電力の情報に基づいて、マクロセル基地局200Aとの通信に使用された無線周波数での送信電力の頻度を更新する(S45)。そして、スモールセル基地局200Bは、図10の処理を終了する。 When the data is communicated in S44, the second radio transmission unit 223 accesses the history database T22, and based on the information on the transmission power used, the second radio transmission unit 223 uses the radio frequency used for communication with the macrocell base station 200A. The frequency of transmission power is updated (S45). And the small cell base station 200B complete | finishes the process of FIG.
 このように、スモールセル基地局200Bは、データの通信に使用された過去の無線周波数での送信電力の使用履歴の情報を利用することで、通信品質の劣化かつ通信干渉の可能性が低い送信電力を設定できる。つまり、スモールセル基地局200Bは、送信電力の初期値が過小に設定されることで、送信されたデータがマクロセル基地局200Aへ到達せず、データ通信の品質が低下することを抑制できる。また、スモールセル基地局200Bは、送信電力の初期値が過大に設定されることで、マクロセル基地局200Aの周辺の基地局200等で通信干渉が発生することを抑制できる。よって、スモールセル基地局200Bは、ワイヤレスバックホール回線20を介してマクロセル基地局200Aとの通信に使用される送信電力を自律分散的に棲み分けできる。 As described above, the small cell base station 200B uses the transmission power usage history information at the past radio frequency used for data communication, thereby transmitting with low communication quality and low possibility of communication interference. You can set the power. That is, the small cell base station 200 </ b> B can prevent the transmitted data from reaching the macro cell base station 200 </ b> A and the quality of data communication from being deteriorated by setting the initial value of the transmission power to be too small. Further, the small cell base station 200B can suppress the occurrence of communication interference in the base stations 200 and the like around the macro cell base station 200A by setting the initial value of the transmission power to be excessive. Therefore, the small cell base station 200 </ b> B can autonomously distribute transmission power used for communication with the macro cell base station 200 </ b> A via the wireless backhaul line 20.
 [送信電力の制御]
 次に、データ通信に係る送信電力の制御について説明する。
[Transmission power control]
Next, transmission power control related to data communication will be described.
 図11~図14に示すように、第1送信アンテナ204、第1受信アンテナ205、第2送信アンテナ224、及び第2受信アンテナ225は、MIMO(Multiple-Input and Multiple-Output)のアンテナを有する。つまり、第1送信アンテナ204、第1受信アンテナ205、第2送信アンテナ224、及び第2受信アンテナ225の各々は、複数のアンテナを有する。複数のアンテナは、物理的に設けられてもよいし、論理的に設けられてもよい。図11~図14では、マクロセル基地局200A及びスモールセル基地局200Bにおいて、送信用のMIMOのアンテナ及び受信用のMIMOのアンテナは、各々8本であることを例示する。 As shown in FIGS. 11 to 14, the first transmission antenna 204, the first reception antenna 205, the second transmission antenna 224, and the second reception antenna 225 have a MIMO (Multiple-Input and Multiple-Output) antenna. . That is, each of the first transmission antenna 204, the first reception antenna 205, the second transmission antenna 224, and the second reception antenna 225 has a plurality of antennas. The plurality of antennas may be provided physically or may be provided logically. 11 to 14 exemplify that each of the macro cell base station 200A and the small cell base station 200B has eight transmission MIMO antennas and eight reception MIMO antennas.
 図11は、無線通信システム10による送信電力の第1制御例を説明するための模式図である。図11では、マクロセル基地局200Aの第1送信アンテナ204の各アンテナ#A11~#A18が、異なるデータを送信することを想定する。この場合、例えばN個のスモールセル基地局200Bの第2受信アンテナ225の各アンテナ#B21~#B28が、マクロセル基地局200Aからのデータを受信する。各スモールセル基地局200Bが受信する際の受信電力は、例えば略均一である。 FIG. 11 is a schematic diagram for explaining a first control example of transmission power by the wireless communication system 10. In FIG. 11, it is assumed that each antenna # A11 to # A18 of the first transmission antenna 204 of the macrocell base station 200A transmits different data. In this case, for example, each antenna # B21 to # B28 of the second receiving antenna 225 of N small cell base stations 200B receives data from the macrocell base station 200A. The reception power when each small cell base station 200B receives is substantially uniform, for example.
 尚、図11では、1つのワイヤレスバックホール回線20に1つのスモールセル基地局が接続され、1つの無線周波数が使用される。従って、マクロセル基地局200Aと接続されるスモールセル基地局200Bの台数分、ワイヤレスバックホール回線20が設けられる。 In FIG. 11, one small cell base station is connected to one wireless backhaul line 20 and one radio frequency is used. Therefore, as many wireless backhaul lines 20 as the number of small cell base stations 200B connected to the macro cell base station 200A are provided.
 第1無線送信部203は、第1の送信パケットに含まれる第1の送信データ系列(下り回線22のデータ)に対して、直並列変換(S/P:Serial-to-Parallel conversion)する。第1無線送信部203は、直並列変換された送信データ#A51~#A58に対して、ベースバンド処理する。 The first wireless transmission unit 203 performs serial-to-parallel conversion (S / P: Serial-to-Parallel conversion) on the first transmission data sequence (data on the downlink 22) included in the first transmission packet. The first wireless transmission unit 203 performs baseband processing on the transmission data # A51 to # A58 subjected to serial / parallel conversion.
 また、第1無線送信部203は、履歴データベースT12を参照し、第1無線資源管理部208により割り当てられた無線周波数を基に、送信電力の初期値を設定する。第1無線送信部203は、例えば、割り当てられた無線周波数において頻度が所定頻度以上(例えば最多)である送信電力を、送信電力の初期値として設定する。 Also, the first radio transmission unit 203 refers to the history database T12 and sets an initial value of transmission power based on the radio frequency assigned by the first radio resource management unit 208. The first wireless transmission unit 203 sets, for example, transmission power whose frequency is equal to or higher than a predetermined frequency (for example, the maximum) in the assigned wireless frequency as an initial value of the transmission power.
 尚、第1無線送信部203は、スモールセル基地局200Bが採用可能なRATに基づいて、送信電力の初期値を設定してもよい。 The first radio transmission unit 203 may set an initial value of transmission power based on a RAT that can be adopted by the small cell base station 200B.
 第1無線送信部203は、RATが決定されると、MIMO通信に用いられるアンテナ本数や指向性形成の有無を判定する。ここでは、指向性の形成無しと判定されたとする。第1無線送信部203は、決定されたRATに基づいて、各アンテナ#A11~#A18への供給電力の比率を決定する(送信電力設定)。ここでは、指向性の形成無しなので、各アンテナ#A11~#A18へ供給される電力の値は同一である。 When the RAT is determined, the first wireless transmission unit 203 determines the number of antennas used for MIMO communication and the presence / absence of directivity formation. Here, it is assumed that there is no directivity formation. First radio transmission section 203 determines the ratio of the power supplied to each antenna # A11 to # A18 based on the determined RAT (transmission power setting). Here, since the directivity is not formed, the value of the power supplied to each antenna # A11 to # A18 is the same.
 第1無線送信部203は、各アンテナ#A11~#A18への各供給電力の合計値が、設定された送信電力の初期値となるように、供給電力を制御する。従って、ここでは、送信電力をMIMOのアンテナの数(8本)で除算した値が、各アンテナへの供給電力となる。このようにして、初期のデータ通信の送信電力が設定される。 The first wireless transmission unit 203 controls the supply power so that the total value of the power supplied to the antennas # A11 to # A18 becomes the initial value of the set transmission power. Therefore, here, the value obtained by dividing the transmission power by the number of MIMO antennas (eight) is the power supplied to each antenna. In this way, the initial transmission power for data communication is set.
 第1無線送信部203は、スモールセル基地局200Bに対して、割り当てられた無線資源を用いて、設定された送信電力で、MIMOのアンテナ#A11~#A18を介して、送信データ#A51~#A58の送信を開始する。 The first radio transmission unit 203 transmits the transmission data # A51 to the small cell base station 200B via the MIMO antennas # A11 to # A18 with the set transmission power using the radio resources allocated. Start transmission of # A58.
 また、第1無線送信部203は、前述したように、データ通信中の送信電力制御により決定された送信電力を、第1送信アンテナ204の各アンテナ#A11~#A18へ供給する。 Also, as described above, the first wireless transmission unit 203 supplies the transmission power determined by the transmission power control during data communication to each antenna # A11 to # A18 of the first transmission antenna 204.
 従って、第1送信アンテナ204による送信電力は、初期値から調整されることもあるが、送信電力の過去の履歴情報を用いて初期値を設定することで、この送信電力の調整量を小さくできる。 Therefore, the transmission power by the first transmission antenna 204 may be adjusted from the initial value, but the transmission power adjustment amount can be reduced by setting the initial value using past history information of the transmission power. .
 第2無線受信部226は、第2受信アンテナ225の各アンテナ#B21~#B28を介して、マクロセル基地局200Aからの信号を受信する。第2無線受信部226は、公知の信号分離アルゴリズムに従って、受信信号を分離し、受信データ#B61~#B68を得る。受信信号は、下り回線22のデータを含む。 The second radio reception unit 226 receives signals from the macrocell base station 200A via the antennas # B21 to # B28 of the second reception antenna 225. Second radio reception section 226 separates the received signals according to a known signal separation algorithm to obtain received data # B61 to # B68. The received signal includes data on the downlink 22.
 第2無線受信部226は、受信データ#B61~#B68に対して並直列変換(P/S:Parallel-to-Serial- conversion)する。並直列変換により、再生データが得られる。第2無線受信部226により正常にデータが復元された場合、再生データは、第1の送信データ系列に相当する。 The second wireless reception unit 226 performs parallel-to-serial conversion (P / S: Parallel-to-Serial-conversion) on the received data # B61 to # B68. Reproduced data is obtained by parallel-serial conversion. When the data is normally restored by the second radio reception unit 226, the reproduction data corresponds to the first transmission data sequence.
 また、第1無線送信部203は、例えば、各アンテナ#A11~#A18への供給電力を合計(加算)し、合計値の所定時間(例えば3秒間)毎の平均値を、履歴データベースT12に反映する。例えば、第1無線送信部203は、履歴データベースT12において、今回のデータ通信に係るRAT及び無線周波数が一致し、算出された所定時間あたりの平均値が一致する送信電力について、頻度を「1」加算して更新する。従って、同じ送信電力で通信時間が長くなる程、該当する送信電力の頻度に大きな値が加算される。 The first wireless transmission unit 203 also sums (adds) the power supplied to the antennas # A11 to # A18, for example, and stores the average value of the total value for every predetermined time (for example, 3 seconds) in the history database T12. reflect. For example, in the history database T12, the first radio transmission unit 203 sets the frequency to “1” for the transmission power in which the RAT and the radio frequency related to the current data communication match and the calculated average value per predetermined time matches. Add and update. Accordingly, as the communication time becomes longer with the same transmission power, a larger value is added to the frequency of the corresponding transmission power.
 送信電力の第1制御例によれば、異なるデータが並行して通信されるので、伝送速度が高くなる。尚、第1制御例では指向性のパターンが形成されないので、送信データは、マクロセル基地局200Aの周囲に均等な電力で送信される。従って、マクロセル基地局200Aは、MIMOを活用して、ワイヤレスバックホール回線20の伝送速度を高速化できる。 According to the first control example of transmission power, since different data are communicated in parallel, the transmission speed is increased. In the first control example, since a directivity pattern is not formed, transmission data is transmitted with equal power around the macro cell base station 200A. Therefore, the macro cell base station 200A can increase the transmission speed of the wireless backhaul line 20 by using MIMO.
 図12は、無線通信システム10による送信電力の第2制御例を説明するための模式図である。図12では、マクロセル基地局200Aの第1送信アンテナ204の各アンテナ#A11~#A18が、同じデータを送信することを想定する。この場合、N個のスモールセル基地局200Bの第2受信アンテナ225の各アンテナ#B21~#28が、マクロセル基地局200Aからのデータを受信する。各スモールセル基地局200Bが受信する際の受信電力は、例えば指向性に応じて各々異なる。 FIG. 12 is a schematic diagram for explaining a second example of transmission power control by the wireless communication system 10. In FIG. 12, it is assumed that each antenna # A11 to # A18 of the first transmission antenna 204 of the macrocell base station 200A transmits the same data. In this case, the antennas # B21 to # 28 of the second receiving antennas 225 of the N small cell base stations 200B receive data from the macro cell base station 200A. The received power when each small cell base station 200B receives is different depending on the directivity, for example.
 尚、図12では、1つのワイヤレスバックホール回線20にN個のスモールセル基地局が接続され、1つの無線周波数が使用される。 In FIG. 12, N small cell base stations are connected to one wireless backhaul line 20 and one radio frequency is used.
 尚、図12において、図11に説明した事項と同様の事項については、説明を省略又は簡略化する。 In FIG. 12, the description of the same items as those described in FIG. 11 is omitted or simplified.
 第1無線送信部203は、履歴データベースT12を参照し、スモールセル基地局200Bと通信するためのRATと、第1無線資源管理部208により割り当てられた無線周波数と、に基づいて、送信電力の初期値を設定する。このRATは、スモールセル基地局200B毎に、スモールセル基地局200Bが採用可能なRATの中から決定される。第1無線送信部203は、例えば、スモールセル基地局200Bと通信するためのRATにおいて、割り当てられた無線周波数において頻度が所定頻度以上(例えば最多)である送信電力を、送信電力の初期値として設定する。 The first radio transmission unit 203 refers to the history database T12, and based on the RAT for communicating with the small cell base station 200B and the radio frequency assigned by the first radio resource management unit 208, the transmission power Set the initial value. This RAT is determined for each small cell base station 200B from among RATs that can be adopted by the small cell base station 200B. For example, in the RAT for communicating with the small cell base station 200B, the first radio transmission unit 203 uses, as an initial value of transmission power, transmission power whose frequency is a predetermined frequency or more (for example, the maximum) in the assigned radio frequency. Set.
 第1無線送信部203は、RATが決定されると、MIMO通信に用いられるアンテナ本数や指向性形成の有無を判定する。ここでは、指向性の形成有りと判定されたとする。第1無線送信部203は、決定されたRATに基づいて、各アンテナ#A11~#A18への供給電力の比率(送信重み(ウェイト))を決定する(送信重み生成)。決定された供給電力の比率は、WI,Jにより示される。ここで、「I」は、通信対象のスモールセル基地局200Bの識別子を示し、「J」は、第1送信アンテナ204におけるMIMOのアンテナの識別子を示す。 When the RAT is determined, the first wireless transmission unit 203 determines the number of antennas used for MIMO communication and the presence / absence of directivity formation. Here, it is assumed that the formation of directivity is determined. First radio transmission section 203 determines the ratio (transmission weight (weight)) of power supplied to each antenna # A11 to # A18 based on the determined RAT (transmission weight generation). The determined ratio of supplied power is indicated by WI , J. Here, “I” indicates the identifier of the communication target small cell base station 200 B, and “J” indicates the identifier of the MIMO antenna in the first transmission antenna 204.
 第1無線送信部203は、各アンテナ#A11~#A18への供給電力の比率に基づいて、各アンテナ#A11~#A18への供給電力の合計値が、設定された送信電力の初期値となるように、供給電力を制御する。これにより、初期のデータ通信の送信電力が決定される。 Based on the ratio of the power supplied to each antenna # A11 to # A18, first wireless transmission section 203 determines that the total value of the power supplied to each antenna # A11 to # A18 is the initial value of the set transmission power. The supplied power is controlled so that Thereby, the transmission power of the initial data communication is determined.
 第1無線送信部203は、各スモールセル基地局200B(SBS#1~SBS#N)宛ての第1の送信データ系列(下り回線22のデータ)に含まれる送信データを、各アンテナ#A11~#A18へ送る。ここでの第1の送信データ系列は、各スモールセル基地局200B(SBS#1~SBS#N)へ送信されるデータ系列を含む。この際、第1無線送信部203は、各送信データに対して、ベースバンド処理し、供給電力の比率WI,Jを乗算して、同一のアンテナ#A11~#A18へ送られる各スモールセル基地局200B宛ての送信データを加算する。 First radio transmission section 203 transmits transmission data included in a first transmission data sequence (data on downlink 22) addressed to each small cell base station 200B (SBS # 1 to SBS # N) to each antenna # A11 to Send to # A18. Here, the first transmission data sequence includes a data sequence transmitted to each small cell base station 200B (SBS # 1 to SBS # N). At this time, the first wireless transmission unit 203 performs baseband processing on each transmission data, multiplies the supplied power ratios W I and J , and transmits each small cell to the same antennas # A11 to # A18. The transmission data addressed to the base station 200B is added.
 第1無線送信部203は、各スモールセル基地局200Bに対して、割り当てられた無線資源を用いて、決定された送信電力で、MIMOのアンテナ#A11~#A18を介して、送信データの送信を開始する。 The first radio transmission section 203 transmits transmission data to each small cell base station 200B using the allocated radio resources with the determined transmission power via the MIMO antennas # A11 to # A18. To start.
 また、第1無線送信部203は、前述したように、データ通信中の送信電力制御により決定された送信電力を、第1送信アンテナ204の各アンテナ#A11~#A18へ供給する。 Also, as described above, the first wireless transmission unit 203 supplies the transmission power determined by the transmission power control during data communication to each antenna # A11 to # A18 of the first transmission antenna 204.
 各スモールセル基地局200Bの第2無線受信部226は、第2受信アンテナ225の各アンテナ#B21~#B28を介して、マクロセル基地局200Aからの信号を受信する。第2無線受信部226は、公知の信号分離アルゴリズムに従って、受信信号を分離し、再生データを得る。第2無線受信部226により正常にデータが復元された場合、再生データは、第1の送信データ系列に相当する。 The second radio reception unit 226 of each small cell base station 200B receives a signal from the macro cell base station 200A via each antenna # B21 to # B28 of the second reception antenna 225. The second wireless reception unit 226 separates the received signal according to a known signal separation algorithm to obtain reproduction data. When the data is normally restored by the second radio reception unit 226, the reproduction data corresponds to the first transmission data sequence.
 送信電力の第2制御例によれば、同一のデータが並行して通信されるので、マクロセル基地局200Aは、ビームフォーミングにより指向性を形成して送信できる。第1送信アンテナ204におけるMIMOのアンテナの数が多い程、この指向性パターンは鋭くなり、マクロセル基地局200Aは、伝送距離を増大して送信できる。従って、マクロセル基地局200Aは、MIMOを活用して、ワイヤレスバックホール回線20のSNR(Signal to Noise Ratio)を向上できる。 According to the second control example of transmission power, since the same data is communicated in parallel, the macrocell base station 200A can transmit with directivity formed by beamforming. The greater the number of MIMO antennas in the first transmission antenna 204, the sharper the directivity pattern, and the macrocell base station 200A can increase the transmission distance for transmission. Therefore, the macro cell base station 200A can improve the SNR (Signal to Noise Ratio) of the wireless backhaul line 20 by utilizing MIMO.
 尚、第1送信アンテナ204におけるMIMOのアンテナの数は、空間多重数に対してかなり大きいことが好ましい。これにより、無線通信システム10における指向性の分離性能を向上できる。尚、この空間多重数は、マクロセル基地局200Aに接続されたスモールセル基地局200Bの数に相当する。 Note that the number of MIMO antennas in the first transmission antenna 204 is preferably considerably larger than the number of spatial multiplexing. Thereby, the directivity separation performance in the wireless communication system 10 can be improved. This spatial multiplexing number corresponds to the number of small cell base stations 200B connected to the macro cell base station 200A.
 図13は、無線通信システム10による送信電力の第3制御例を説明するための模式図である。図13では、スモールセル基地局200Bの第2送信アンテナ224の各アンテナ#B11~#B18が、異なるデータを送信することを想定する。この場合、マクロセル基地局200Aの第1受信アンテナ205の各アンテナ#A21~#A28が、スモールセル基地局200Bからのデータを受信する。 FIG. 13 is a schematic diagram for explaining a third control example of transmission power by the wireless communication system 10. In FIG. 13, it is assumed that each antenna # B11 to # B18 of the second transmission antenna 224 of the small cell base station 200B transmits different data. In this case, each antenna # A21 to # A28 of the first receiving antenna 205 of the macrocell base station 200A receives data from the small cell base station 200B.
 第2無線送信部223は、第2の送信パケットに含まれる第2の送信データ系列(上り回線21のデータ)に対して、直並列変換する。第2無線送信部223は、直並列変換された送信データ#B51~#B58に対して、ベースバンド処理する。 The second wireless transmission unit 223 performs serial-parallel conversion on the second transmission data sequence (uplink 21 data) included in the second transmission packet. Second radio transmission section 223 performs baseband processing on transmission data # B51 to # B58 subjected to serial / parallel conversion.
 また、第2無線送信部223は、履歴データベースT21を参照し、第2無線資源管理部228により割り当てられた無線周波数を基に、送信電力の初期値を設定する。第2無線送信部223は、例えば、割り当てられた無線周波数において頻度が所定頻度以上(例えば最多)である送信電力を、送信電力の初期値として設定する。 Also, the second wireless transmission unit 223 refers to the history database T21 and sets an initial value of transmission power based on the radio frequency assigned by the second radio resource management unit 228. For example, the second wireless transmission unit 223 sets transmission power having a frequency equal to or higher than a predetermined frequency (for example, the maximum) in the assigned wireless frequency as an initial value of the transmission power.
 尚、第2無線送信部223は、マクロセル基地局200Aが採用可能なRATに基づいて、送信電力の初期値を設定してもよい。 Note that the second radio transmission unit 223 may set an initial value of transmission power based on a RAT that can be adopted by the macrocell base station 200A.
 第2無線送信部223は、RATが決定されると、MIMO通信に用いられるアンテナ本数や指向性形成の有無を判定する。ここでは、指向性の形成無しと判定されたとする。第2無線送信部223は、決定されたRATに基づいて、各アンテナ#B11~#B18への供給電力の比率を決定する(送信電力設定)。ここでは、指向性の形成無しなので、各アンテナ#B11~#B18へ供給される電力の値は同一である。 When the RAT is determined, the second wireless transmission unit 223 determines the number of antennas used for MIMO communication and the presence / absence of directivity formation. Here, it is assumed that there is no directivity formation. Second radio transmission section 223 determines the ratio of power supplied to antennas # B11 to # B18 based on the determined RAT (transmission power setting). Here, since no directivity is formed, the value of the power supplied to each antenna # B11 to # B18 is the same.
 第2無線送信部223は、各アンテナ#B11~#B18への各供給電力の合計値が、設定された送信電力の初期値となるように、供給電力を制御する。従って、ここでは、送信電力をMIMOのアンテナの数(8本)で除算した値が、各アンテナへの供給電力となる。このようにして、初期のデータ通信の送信電力が設定される。 The second wireless transmission unit 223 controls the supply power so that the total value of the power supplied to the antennas # B11 to # B18 becomes the initial value of the set transmission power. Therefore, here, the value obtained by dividing the transmission power by the number of MIMO antennas (eight) is the power supplied to each antenna. In this way, the initial transmission power for data communication is set.
 第2無線送信部223は、マクロセル基地局200Aに対して、割り当てられた無線資源を用いて、決定された送信電力で、MIMOのアンテナ#B11~#B18を介して、送信データ#B51~#B58の送信を開始する。 The second radio transmission section 223 transmits the transmission data # B51 to #B via the MIMO antennas # B11 to # B18 with the determined transmission power using the radio resources allocated to the macro cell base station 200A. The transmission of B58 is started.
 また、第2無線送信部223は、前述したように、データ通信中の送信電力制御により決定された送信電力を、第2送信アンテナ224の各アンテナ#B11~#B18へ供給する。 Also, as described above, the second wireless transmission unit 223 supplies the transmission power determined by the transmission power control during data communication to the antennas # B11 to # B18 of the second transmission antenna 224.
 従って、第2送信アンテナ224による送信電力は、初期値から調整されることもあるが、送信電力の過去の履歴情報を用いて初期値を設定することで、この送信電力の調整量を小さくできる。 Accordingly, the transmission power by the second transmission antenna 224 may be adjusted from the initial value, but the transmission power adjustment amount can be reduced by setting the initial value using past history information of the transmission power. .
 第1無線受信部206は、第1受信アンテナ205の各アンテナ#A21~#A28を介して、スモールセル基地局200Bからの信号を受信する。第1無線受信部206は、公知の信号分離アルゴリズムに従って、受信信号を分離し、受信データ#A61~#A68を得る。受信信号は、上り回線21のデータを含む。 The first radio reception unit 206 receives a signal from the small cell base station 200B via each antenna # A21 to # A28 of the first reception antenna 205. First radio reception section 206 separates the received signals according to a known signal separation algorithm to obtain received data # A61 to # A68. The received signal includes data on the uplink 21.
 第1無線受信部206は、受信データ#A61~#A68に対して並直列変換する。並直列変換により、再生データが得られる。第1無線受信部206により正常にデータが復元された場合、再生データは、第2の送信データ系列に相当する。 The first wireless reception unit 206 performs parallel-serial conversion on the received data # A61 to # A68. Reproduced data is obtained by parallel-serial conversion. When the data is normally restored by the first wireless reception unit 206, the reproduction data corresponds to the second transmission data series.
 また、第2無線送信部223は、例えば、各アンテナ#B11~#B18への供給電力を合計(加算)し、合計値の所定時間(例えば3秒間)毎の平均値を、履歴データベースT22に反映する。例えば、第2無線送信部223は、履歴データベースT22において、今回のデータ通信に係るRAT及び無線周波数が一致し、算出された所定時間あたりの平均値が一致する送信電力について、頻度を「1」加算して更新する。従って、同じ送信電力で通信時間が長くなる程、該当する送信電力の頻度に大きな値が加算される。 In addition, the second wireless transmission unit 223, for example, sums (adds) the power supplied to the antennas # B11 to # B18, and stores an average value of the total value every predetermined time (for example, 3 seconds) in the history database T22. reflect. For example, in the history database T22, the second wireless transmission unit 223 sets the frequency to “1” for the transmission power in which the RAT and the wireless frequency related to the current data communication match and the calculated average value per predetermined time matches. Add and update. Accordingly, as the communication time becomes longer with the same transmission power, a larger value is added to the frequency of the corresponding transmission power.
 送信電力の第3制御例によれば、異なるデータが並行して通信されるので、伝送速度が高くなる。尚、第3制御例では指向性のパターンが形成されないので、送信データはスモールセル基地局200Bの周囲に均等な電力で送信される。従って、スモールセル基地局200Bは、MIMOを活用して、ワイヤレスバックホール回線20の伝送速度を高速化できる。 According to the third control example of transmission power, since different data are communicated in parallel, the transmission speed is increased. In the third control example, since a directivity pattern is not formed, transmission data is transmitted around the small cell base station 200B with equal power. Therefore, the small cell base station 200B can increase the transmission speed of the wireless backhaul line 20 by using MIMO.
 図14は、無線通信システム10による送信電力の第4制御例を説明するための模式図である。図14では、スモールセル基地局200Bの第2送信アンテナ224の各アンテナ#B11~#B18が、同じデータを送信することを想定する。この場合、マクロセル基地局200Aの第1受信アンテナ205の各アンテナ#A21~#A28が、スモールセル基地局200Bからのデータを受信する。 FIG. 14 is a schematic diagram for explaining a fourth control example of transmission power by the wireless communication system 10. In FIG. 14, it is assumed that each antenna # B11 to # B18 of the second transmission antenna 224 of the small cell base station 200B transmits the same data. In this case, each antenna # A21 to # A28 of the first receiving antenna 205 of the macrocell base station 200A receives data from the small cell base station 200B.
 尚、図14において、図12に説明した事項と同様の事項については、説明を省略又は簡略化する。 In FIG. 14, the description of the same items as those described in FIG. 12 is omitted or simplified.
 第2無線送信部223は、履歴データベースT22を参照し、マクロセル基地局200Aと通信するためのRATと、第2無線資源管理部228により割り当てられた無線周波数と、に基づいて、送信電力の初期値を設定する。このRATは、マクロセル基地局200Aが採用可能なRATの中から決定される。第2無線送信部223は、例えば、マクロセル基地局200Aと通信するためのRATにおいて、割り当てられた無線周波数において頻度が所定頻度以上(例えば最多)である送信電力を、送信電力の初期値として設定する。 The second radio transmission unit 223 refers to the history database T22, and based on the RAT for communicating with the macrocell base station 200A and the radio frequency allocated by the second radio resource management unit 228, the initial transmission power Set the value. This RAT is determined from RATs that can be adopted by the macrocell base station 200A. For example, in the RAT for communicating with the macrocell base station 200A, the second radio transmission unit 223 sets, as an initial value of the transmission power, a transmission power whose frequency is equal to or higher than a predetermined frequency (for example, the maximum) in the assigned radio frequency. To do.
 第2無線送信部223は、RATが決定されると、MIMO通信に用いられるアンテナ本数や指向性形成の有無を判定する。ここでは、指向性の形成有りと判定されたとする。また、第2無線送信部223は、決定されたRATに基づいて、各アンテナ#B11~#B18への供給電力の比率(送信重み)を決定する(送信重み生成)。 When the RAT is determined, the second wireless transmission unit 223 determines the number of antennas used for MIMO communication and the presence / absence of directivity formation. Here, it is assumed that the formation of directivity is determined. Also, the second radio transmission unit 223 determines the ratio (transmission weight) of the power supplied to each antenna # B11 to # B18 based on the determined RAT (transmission weight generation).
 第2無線送信部223は、各アンテナ#B11~#B18への供給電力の比率に基づいて、各アンテナ#B11~#B18への供給電力の合計値が、設定された送信電力の初期値となるように、供給電力を制御する。これにより、初期のデータ通信の送信電力が決定される。 Based on the ratio of the power supplied to each antenna # B11 to # B18, the second wireless transmission unit 223 determines the total value of the power supplied to each antenna # B11 to # B18 as the initial value of the set transmission power. The supplied power is controlled so that Thereby, the transmission power of the initial data communication is determined.
 第2無線送信部223は、第2の送信データ系列(上り回線21のデータ)に含まれる送信データを、各アンテナ#B11~#B18へ送る。この際、第2無線送信部223は、各送信データに対して、ベースバンド処理し、供給電力の比率を乗算する。 The second wireless transmission unit 223 transmits the transmission data included in the second transmission data series (uplink 21 data) to each of the antennas # B11 to # B18. At this time, the second wireless transmission unit 223 performs baseband processing on each transmission data and multiplies the ratio of the supplied power.
 第2無線送信部223は、マクロセル基地局200Aに対して、割り当てられた無線資源を用いて、決定された送信電力で、MIMOのアンテナ#B11~#B18を介して、送信データの送信を開始する。 Second radio transmission section 223 starts transmission of transmission data to macro cell base station 200A via MIMO antennas # B11 to # B18 with the determined transmission power using the allocated radio resources. To do.
 また、第2無線送信部223は、前述したように、データ通信中の送信電力制御により決定された送信電力を、第2送信アンテナ224の各アンテナ#B11~#B18へ供給する。 Also, as described above, the second wireless transmission unit 223 supplies the transmission power determined by the transmission power control during data communication to the antennas # B11 to # B18 of the second transmission antenna 224.
 マクロセル基地局200Aの第1無線受信部206は、第1受信アンテナ205の各アンテナ#A21~#A28を介して、スモールセル基地局200Bからの信号を受信する。第1無線受信部206は、公知の信号分離アルゴリズムに従って、受信信号を分離し、再生データを得る。第1無線受信部206により正常にデータが復元された場合、再生データは、第2の送信データ系列に相当する。 The first radio reception unit 206 of the macro cell base station 200A receives signals from the small cell base station 200B via the antennas # A21 to # A28 of the first reception antenna 205. The first wireless reception unit 206 separates the received signal according to a known signal separation algorithm to obtain reproduction data. When the data is normally restored by the first wireless reception unit 206, the reproduction data corresponds to the second transmission data series.
 送信電力の第4制御例によれば、同一のデータが並行して通信されるので、スモールセル基地局200Bは、ビームフォーミングにより指向性を形成して送信できる。第2送信アンテナ224におけるMIMOのアンテナの数が多い程、この指向性パターンは鋭くなり、スモールセル基地局200Bは、伝送距離を増大して送信できる。従って、スモールセル基地局200Bは、MIMOを活用して、ワイヤレスバックホール回線20のSNRを向上できる。 According to the fourth control example of transmission power, since the same data is communicated in parallel, the small cell base station 200B can transmit with directivity formed by beam forming. As the number of MIMO antennas in the second transmission antenna 224 increases, this directivity pattern becomes sharper, and the small cell base station 200B can transmit with an increased transmission distance. Therefore, the small cell base station 200B can improve the SNR of the wireless backhaul line 20 by utilizing MIMO.
 [効果等]
 上記のように、基地局200は、他の基地局200との通信に係る無線周波数の使用履歴の情報を保持する履歴データベースT11又はT21を保持する。基地局200は、ワイヤレスバックホール回線20の設定が必要な際に、履歴データベースT11又はT21を参照して、無線周波数の割り当ての優先順位を決定し、データ通信に係る無線資源(無線周波数、無線周波数の一部)を割り当てる。
[Effects]
As described above, the base station 200 holds the history database T11 or T21 that holds information on the use history of radio frequencies related to communication with other base stations 200. When the base station 200 needs to set the wireless backhaul line 20, the base station 200 refers to the history database T11 or T21, determines the priority of radio frequency allocation, and performs radio resources (radio frequency, radio frequency) related to data communication. Part of the frequency).
 これにより、バックホール回線が光回線等の有線でなく無線化された場合でも、通信に利用すべき無線資源を動的に決定できる。従って、無線通信システム10は、基地局200(例えばスモールセル基地局200B)が増設される度に光回線を増設しなくてよく、基地局設置に要するコストを削減でき、基地局設置の迅速性を向上できる。 Thus, even when the backhaul line is wireless instead of a wired line such as an optical line, wireless resources to be used for communication can be determined dynamically. Therefore, the radio communication system 10 does not need to add an optical line every time the base station 200 (for example, the small cell base station 200B) is added, can reduce the cost required for installing the base station, and can quickly install the base station. Can be improved.
 また、無線通信システム10における各ワイヤレスバックホール回線20に対して、予め無線周波数を割り当てる必要がなく、特定の無線周波数が過大又は過小に使用されることを抑制できる。そのため、基地局200は、無線資源の利用効率を向上できる。また、予め無線周波数が固定的に割り当てられないことで、使用可能な無線周波数が不足することを低減できる。 In addition, it is not necessary to assign a radio frequency to each wireless backhaul line 20 in the radio communication system 10 in advance, and it is possible to suppress a specific radio frequency from being used too much or too little. Therefore, the base station 200 can improve the utilization efficiency of radio resources. In addition, since radio frequencies are not fixedly assigned in advance, it is possible to reduce the shortage of usable radio frequencies.
 また、基地局200は、無線周波数を用いた通信環境を判定するための膨大な回線品質情報の検出処理を省略できる。この回線品質情報は、例えば、SINR(Signal to Interference Noise Ratio)を含む。 In addition, the base station 200 can omit a huge amount of line quality information detection processing for determining a communication environment using a radio frequency. This line quality information includes, for example, SINR (Signal to Interference Noise Ratio).
 過去の通信履歴が多い(例えば通信量が多い)無線周波数は、無線周波数を採用した基地局200にとって、周辺の基地局との通信干渉が比較的少ない無線周波数であることを表している。従って、このような無線周波数が、ワイヤレスバックホール回線20を介した他の基地局200との通信に割り当てられることが好適である。 A radio frequency with a large past communication history (for example, with a large amount of communication) represents that the base station 200 adopting the radio frequency is a radio frequency with relatively little communication interference with surrounding base stations. Therefore, it is preferable that such a radio frequency is allocated to communication with another base station 200 via the wireless backhaul line 20.
 また、過去に頻繁に使用された無線周波数では、蓄積されるデータ量が多くなるため、この無線周波数が候補として選択される可能性が高くなる。過去に頻繁に使用されている無線周波数は、将来的にも基地局200間での通信が成功する可能性が高い。従って、基地局200は、ワイヤレスバックホール回線20を介した他の基地局200との通信での通信精度を向上でき、無線資源の再割当の必要性を低減できる。そのため、基地局200は、無線資源の割当効率を向上できる。 In addition, in the radio frequency that has been frequently used in the past, the amount of data to be accumulated increases, so that there is a high possibility that this radio frequency is selected as a candidate. A radio frequency that has been frequently used in the past is likely to be successfully communicated between the base stations 200 in the future. Therefore, the base station 200 can improve the communication accuracy in communication with other base stations 200 via the wireless backhaul line 20, and can reduce the need for reassignment of radio resources. Therefore, the base station 200 can improve radio resource allocation efficiency.
 また、基地局200は、ビームフォーミング技術やM-MIMO(Massive MIMO)技術を用いなくても、過去の通信履歴を考慮することで、同一無線周波数を用いた通信間での干渉の発生を抑制できる。また、基地局200は、無線通信システム10における基地局200の設置数が増大し、ビームフォーミング技術やM-MIMO技術では通信干渉が増大する場合でも、過去の通信履歴を考慮することで、通信干渉の増大を低減できる。 In addition, the base station 200 suppresses the occurrence of interference between communications using the same radio frequency by considering past communication histories without using beamforming technology or M-MIMO (Massive MIMO) technology. it can. In addition, even when the number of installed base stations 200 in the radio communication system 10 increases and communication interference increases in the beam forming technique or the M-MIMO technique, the base station 200 can perform communication by considering past communication history. Increase in interference can be reduced.
 また、基地局200は、各無線周波数を用いた過去の使用履歴に応じて無線周波数の割当候補を導出することで、他の基地局200に対してどの無線周波数が割り当てられているかを意識する必要がない。そのため、基地局200は、他の基地局200をどの通信事業者が所有しているかを意識する必要がない。従って、基地局200は、同一の通信事業者の複数の基地局がワイヤレスバックホール回線20を介して通信する場合でも、異なる通信事業者の複数の基地局がワイヤレスバックホール回線20を介して通信する場合でも、通信相手の基地局200に対して、容易かつ高精度に干渉の少ない無線周波数を割り当てできる。 In addition, the base station 200 is aware of which radio frequency is assigned to the other base station 200 by deriving radio frequency assignment candidates according to the past use history using each radio frequency. There is no need. Therefore, the base station 200 does not need to be aware of which communication carrier owns the other base station 200. Therefore, even when a plurality of base stations of the same communication carrier communicate via the wireless backhaul line 20, the base station 200 communicates via a wireless backhaul line 20 with a plurality of base stations of different communication carriers. Even in this case, a radio frequency with less interference can be easily and accurately assigned to the base station 200 of the communication partner.
 また、ワイヤレスバックホール回線20にTDD(Time Division Duplex)が採用された場合に、複数の基地局200間の同期や上り回線21及び下り回線22での無線資源の割り付けパターンが統一されていないと、通信干渉を生じやすい。TDDでは、上り回線21と下り回線22とにおいて、同一キャリア周波数で時間分割される。特に、固定位置に設置された基地局200間では、基地局200と移動端末(例えば端末100)との通信と比較すると、通信干渉が定常的に生じるので、通信干渉の回避がより困難となる。これに対し、無線通信システム10によれば、過去の実績に応じて無線周波数を割り当てることで、通信干渉の発生を抑制できる。 In addition, when TDD (Time Division Duplex) is adopted for the wireless backhaul line 20, synchronization between a plurality of base stations 200 and radio resource allocation patterns on the uplink 21 and the downlink 22 are not unified. Prone to communication interference. In TDD, time division is performed on the uplink 21 and the downlink 22 at the same carrier frequency. In particular, communication interference occurs regularly between the base stations 200 installed at fixed positions as compared with communication between the base station 200 and a mobile terminal (for example, the terminal 100), and thus it is more difficult to avoid communication interference. . On the other hand, according to the radio | wireless communications system 10, generation | occurrence | production of communication interference can be suppressed by assigning a radio frequency according to the past performance.
 よって、基地局200は、バックホール回線がヘテロジニアスネットワークかつ無線回線であっても、複数の基地局200間での通信干渉(セル間干渉)の発生を低減し、データ再送のために無線資源の割当処理が頻発することを抑制できる。 Therefore, even if the backhaul line is a heterogeneous network and a radio line, the base station 200 reduces the occurrence of communication interference (inter-cell interference) between the plurality of base stations 200, and uses radio resources for data retransmission. Frequent allocation processing can be suppressed.
 また、基地局200は、他の基地局200との通信に係る無線周波数毎の送信電力の使用履歴の情報を保持する履歴データベースT12又はT22を保持する。基地局200は、ワイヤレスバックホール回線20の設定が必要な際に、履歴データベースT12又はT22を参照して、データ通信に係る送信電力の暫定値(初期値)を設定する。 Also, the base station 200 holds a history database T12 or T22 that holds information on the use history of transmission power for each radio frequency related to communication with another base station 200. When the wireless backhaul line 20 needs to be set, the base station 200 refers to the history database T12 or T22 and sets a provisional value (initial value) of transmission power related to data communication.
 これにより、バックホール回線が光回線等の有線でなく無線化された場合でも、通信に利用すべき送信電力を動的に決定できる。従って、無線通信システム10は、基地局200(例えばスモールセル基地局200B)が増設されても、隣接する基地局200間で通信干渉が発生することを抑制できる。 This enables the transmission power to be used for communication to be determined dynamically even when the backhaul line is wireless rather than wired such as an optical line. Therefore, even if the base station 200 (for example, the small cell base station 200B) is added, the wireless communication system 10 can suppress the occurrence of communication interference between adjacent base stations 200.
 また、基地局200は、ワイヤレスバックホール回線20を介した通信に対して、必要以上に大きな送信電力を割り当てる必要がなく、過大な送信電力が使用され、通信干渉が発生することを抑制できる。また、基地局200は、ワイヤレスバックホール回線20を介した通信に対して、通信干渉を過度に考慮して過小な送信電力を割り当て、通信品質が劣化することを抑制できる。 In addition, the base station 200 does not need to allocate more transmission power than necessary for communication via the wireless backhaul line 20 and can suppress excessive transmission power being used and communication interference. In addition, the base station 200 can suppress the communication quality from being deteriorated by allocating an excessive transmission power to the communication via the wireless backhaul line 20 in consideration of the communication interference.
 過去の通信履歴が多い(例えば頻度が高い)送信電力は、周辺の基地局との通信干渉が比較的少なく、かつ、通信成功率が高いことを表している。従って、このような送信電力が、ワイヤレスバックホール回線20を介した他の基地局200との通信に割り当てられることが好適である。 Transmission power with a large past communication history (for example, high frequency) indicates that communication interference with surrounding base stations is relatively small and a communication success rate is high. Therefore, it is preferable that such transmission power is allocated to communication with another base station 200 via the wireless backhaul line 20.
 また、過去に頻繁に使用された送信電力は、使用頻度が多くなるため、使用される可能性が高くなる。過去に頻繁に使用されている送信電力は、将来的にも基地局200間での通信において送信電力の過不足が少なく、通信が成功する可能性が高い。よって、基地局200は、バックホール回線がヘテロジニアスネットワークかつ無線回線であっても、複数の基地局200間での通信干渉)の発生を低減し、通信精度を向上できる。 Also, transmission power that has been frequently used in the past is more likely to be used because it is used more frequently. The transmission power frequently used in the past is less likely to be excessive or insufficient in the communication between the base stations 200 in the future, and the possibility of successful communication is high. Therefore, even if the backhaul line is a heterogeneous network and a wireless line, the base station 200 can reduce the occurrence of communication interference between a plurality of base stations 200 and improve communication accuracy.
 また、基地局200は、各送信電力を用いた過去の使用履歴に応じて送信電力を設定することで、他の基地局200でどの程度の送信電力が設定されているかを意識する必要がない。そのため、基地局200は、他の基地局200をどの通信事業者が所有しているかを意識する必要がない。従って、基地局200は、同一の通信事業者の複数の基地局がワイヤレスバックホール回線20を介して通信する場合でも、異なる通信事業者の複数の基地局がワイヤレスバックホール回線20を介して通信する場合でも、通信相手の基地局200に対して、容易かつ高精度に干渉の少ないデータ通信を実施できる。 Further, the base station 200 does not need to be aware of how much transmission power is set in other base stations 200 by setting the transmission power according to the past use history using each transmission power. . Therefore, the base station 200 does not need to be aware of which communication carrier owns the other base station 200. Therefore, even when a plurality of base stations of the same communication carrier communicate via the wireless backhaul line 20, the base station 200 communicates via a wireless backhaul line 20 with a plurality of base stations of different communication carriers. Even in this case, it is possible to easily and highly accurately perform data communication with less interference to the communication partner base station 200.
 また、無線周波数の割り当ての場合と同様に、ワイヤレスバックホール回線20にTDDが採用された場合でも、無線通信システム10は、過去の実績に応じて送信電力を設定することで、通信干渉の発生を抑制できる。 Further, as in the case of radio frequency allocation, even when TDD is adopted for the wireless backhaul line 20, the radio communication system 10 generates communication interference by setting transmission power according to past results. Can be suppressed.
 このように、基地局200が、どの無線周波数を割り当て、送信電力の大きさをどの程度にすべきかを的確に判定できる。また、基地局200は、ワイヤレスバックホール回線20を介してデータを通信するための無線資源の割当効率や利用効率を向上できる。また、基地局200は、基地局200の設置数が増大しても、ワイヤレスバックホール回線20での通信干渉の増大を抑制できる。 In this way, the base station 200 can accurately determine which radio frequency is allocated and how much the transmission power should be. Further, the base station 200 can improve the allocation efficiency and utilization efficiency of radio resources for communicating data via the wireless backhaul line 20. Further, the base station 200 can suppress an increase in communication interference on the wireless backhaul line 20 even if the number of installed base stations 200 increases.
 (他の実施形態)
 以上のように、本開示における技術の例示として、第1の実施形態を説明した。しかし、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施形態にも適用できる。
(Other embodiments)
As described above, the first embodiment has been described as an example of the technique in the present disclosure. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, and the like are performed.
 第1の実施形態では、基地局200は、インタフェース(不図示)を介して、履歴に係る通信量の情報や履歴のリセットの情報を取得してもよい。インタフェースは、例えば、例えば、ユーザから使用履歴に係る情報を受け付けるUI(UserInterface)、又は外部装置で設定された使用履歴に係る情報を受信する通信インタフェース、を含む。この場合、第1無線資源管理部208,第2無線資源管理部228が、例えば、取得された情報に基づいて、使用履歴に係る特定の無線周波数の通信量を増減し、又は、使用履歴に係る特定の送信電力の頻度を増減してもよい。 In the first embodiment, the base station 200 may acquire information on the amount of communication related to history and information on resetting the history via an interface (not shown). The interface includes, for example, a UI (User Interface) that receives information related to a usage history from a user, or a communication interface that receives information related to a usage history set in an external device. In this case, the first radio resource management unit 208 and the second radio resource management unit 228, for example, increase or decrease the communication amount of a specific radio frequency related to the usage history based on the acquired information, or The frequency of the specific transmission power may be increased or decreased.
 例えば、基地局200や他の装置が、ワイヤレスバックホール回線20を介した通信において、どの無線周波数や送信電力とすることが適しているかを、定期的にオフラインでシミュレーション等により算出してもよい。基地局200は、この算出結果を取得し、履歴データベースT11,T12,T21,T22に反映させてもよい。 For example, the base station 200 and other devices may calculate which radio frequency or transmission power is suitable for communication via the wireless backhaul line 20 by regular offline simulation or the like. . The base station 200 may acquire this calculation result and reflect it in the history databases T11, T12, T21, and T22.
 これにより、履歴データベースT11,T12,T21,T22において、最適な無線周波数や送信電力ではなく、準最適な無線周波数や送信電力の使用履歴が多くなった場合でも、より適した無線周波数や送信電力の履歴を多くでき、準最適な状態を脱出できる。つまり、履歴データベースT11,T12,T21,T22に蓄積された使用履歴をリフレッシュできる。これにより、基地局200は、自動的な使用履歴の蓄積を若干修正し、より適した無線周波数や送信電力が使用されるよう促進できる。そして、基地局200は、無線資源や送信電力を再配分できる。 As a result, in the history databases T11, T12, T21, and T22, even when the use history of the sub-optimal radio frequency and transmission power is increased instead of the optimum radio frequency and transmission power, more suitable radio frequency and transmission power are used. It is possible to increase the history of and to escape the sub-optimal state. That is, the usage history accumulated in the history databases T11, T12, T21, and T22 can be refreshed. As a result, the base station 200 can slightly correct the automatic use history accumulation and promote the use of a more appropriate radio frequency and transmission power. The base station 200 can redistribute radio resources and transmission power.
 第1の実施形態では、履歴データベースT11,T12をスモールセル基地局200Bが保持してもよい。履歴データベースT21,T22をマクロセル基地局200Aが保持してもよい。この場合、マクロセル基地局200A及びスモールセル基地局200Bは、制御信号等を用いて、無線周波数又は送信電力の使用履歴の情報を送受してもよい。 In the first embodiment, the small cell base station 200B may hold the history databases T11 and T12. The macro cell base station 200A may hold the history databases T21 and T22. In this case, the macro cell base station 200 </ b> A and the small cell base station 200 </ b> B may transmit and receive information on the use history of the radio frequency or transmission power using a control signal or the like.
 第1の実施形態では、マクロセル基地局200Aが下り回線22の無線周波数の割り当て、スモールセル基地局200Bが上り回線21の無線周波数を割り当てることを例示した。尚、マクロセル基地局200A及びスモールセル基地局200Bが協働して、割り当てられる無線周波数を決定してもよい。 In the first embodiment, it is exemplified that the macro cell base station 200A allocates the radio frequency of the downlink 22 and the small cell base station 200B allocates the radio frequency of the uplink 21. Note that the macro cell base station 200A and the small cell base station 200B may cooperate to determine an assigned radio frequency.
 第1の実施形態では、基地局200は、MIMOのアンテナ数が8本であることを想定したが、7本以下でも9本以上でもよい。 In the first embodiment, the base station 200 assumes that the number of MIMO antennas is eight, but may be seven or less or nine or more.
 第1の実施形態では、送信電力の第1制御例において、第1無線送信部203が、指向性を形成せずに異なるデータを送信することを例示したが、指向性を形成して異なるデータを送信してもよい。この場合、第1無線送信部203は、送信電力の第2制御例と同様に、MIMOの各アンテナ#A11~#A18に対して異なる比率で電力を供給する。 In the first embodiment, in the first control example of transmission power, the first wireless transmission unit 203 exemplifies transmitting different data without forming directivity. However, different data forming directivity is used. May be sent. In this case, the first wireless transmission unit 203 supplies power at different ratios to the MIMO antennas # A11 to # A18, as in the second control example of transmission power.
 第1の実施形態では、送信電力の第3制御例において、第2無線送信部223が、指向性を形成せずに異なるデータを送信することを例示したが、指向性を形成して異なるデータを送信してもよい。この場合、第2無線送信部223は、送信電力の第4制御例と同様に、MIMOの各アンテナ#B11~#B18に対して異なる比率で電力を供給する。 In the first embodiment, in the third control example of transmission power, the second wireless transmission unit 223 illustrated that different data is transmitted without forming directivity. However, different data is formed with directivity. May be sent. In this case, the second wireless transmission unit 223 supplies power to the MIMO antennas # B11 to # B18 at different ratios, as in the fourth control example of transmission power.
 第1の実施形態では、履歴データベースT11,T21が、過去の一定期間における他の基地局との無線周波数の使用履歴の情報を保持することを記載したが、期間に関係なく、無線周波数の使用履歴の情報を蓄積してもよい。また、履歴データベースT12,T22が、過去の一定期間における他の基地局との送信電力の使用履歴の情報を保持することを記載したが、期間に関係なく、送信電力の使用履歴の情報を蓄積してもよい。 In the first embodiment, it has been described that the history databases T11 and T21 hold information on the use history of radio frequencies with other base stations in a fixed period in the past, but the use of radio frequencies regardless of the period. History information may be accumulated. In addition, it has been described that the history databases T12 and T22 hold the transmission power usage history information with other base stations in the past fixed period, but the transmission power usage history information is stored regardless of the period. May be.
 第1の実施形態では、無線周波数の使用履歴の情報として、無線周波数毎の通信量の蓄積値を用いることを例示したが、他の使用履歴の情報を用いてもよい。他の使用履歴の情報は、例えば、無線周波数を用いた基地局200間の通信に係る延べ通信時間(延べ接続時間)、通信回数(接続回数)、を含む。例えば、上記延べ通信時間が長い程、上記通信回数が多い程、その無線周波数が選択される優先順位が高くなる。 In the first embodiment, the use value of the communication amount for each radio frequency is exemplified as the use history information of the radio frequency. However, other use history information may be used. Other usage history information includes, for example, the total communication time (total connection time) and the number of communication (number of connections) related to communication between the base stations 200 using the radio frequency. For example, the longer the total communication time is, the higher the number of communication is, the higher the priority for selecting the radio frequency.
 第1の実施形態では、送信電力の使用履歴の情報として、各送信電力の頻度の蓄積値を用いることを例示したが、他の使用履歴の情報を用いてもよい。他の使用履歴の情報は、例えば、設定された送信電力を使用した基地局200間の通信に係る延べ通信時間(延べ接続時間)、通信回数(接続回数)、を含む。例えば、上記延べ通信時間が長い程、上記通信回数が多い程、その送信電力が初期値として選択される優先順位が高くなる。 In the first embodiment, the use value of the transmission power frequency is used as the transmission power usage history information. However, other usage history information may be used. The other usage history information includes, for example, a total communication time (total connection time) and a communication count (connection count) related to communication between the base stations 200 using the set transmission power. For example, the longer the total communication time is, and the greater the number of communication is, the higher the priority in which the transmission power is selected as the initial value.
 第1の実施形態では、履歴データベースT11,T21は、様々な観点から区別して設けられてもよい。例えば、無線資源を割り当てる時間帯毎に、履歴データベースT11,T21が区別して設けられてもよい。また、その他の公知の方法により、履歴データベースT11,T21が区別して設けられてもよい。これにより、基地局200は、各種傾向を考慮した無線周波数の使用履歴に応じて、無線周波数の割当候補を決定できる。 In the first embodiment, the history databases T11 and T21 may be provided separately from various viewpoints. For example, the history databases T11 and T21 may be provided separately for each time zone in which radio resources are allocated. In addition, the history databases T11 and T21 may be separately provided by other known methods. As a result, the base station 200 can determine radio frequency allocation candidates according to the radio frequency usage history in consideration of various trends.
 第1の実施形態では、履歴データベースT12,T22は、様々な観点から区別して設けられてもよい。例えば、送信電力を設定する時間帯毎に、履歴データベースT21,T22が区別して設けられてもよい。また、その他の公知の方法により、履歴データベースT21,T22が区別して設けられてもよい。これにより、基地局200は、各種傾向を考慮した送信電力の使用履歴に応じて、送信電力の初期値を決定できる。 In the first embodiment, the history databases T12 and T22 may be provided separately from various viewpoints. For example, the history databases T21 and T22 may be provided separately for each time zone for setting the transmission power. In addition, the history databases T21 and T22 may be separately provided by other known methods. Thereby, the base station 200 can determine the initial value of the transmission power according to the transmission power usage history considering various trends.
 第1の実施形態では、基地局200が、無線資源として、無線周波数毎の通信量の使用履歴を管理することより、他の基地局200とのワイヤレスバックホール回線20を介した通信に使用する無線周波数の候補を判定することを例示した。尚、基地局200は、無線周波数ではなく、ある無線周波数上のタイムスロット(時間軸上の区切り)毎の通信量の使用履歴を管理することより、他の基地局200との通信に使用する無線資源である、タイムスロットの候補を判定するようにしてもよい。また、基地局200は、無線周波数とその無線周波数上のタイムスロット(時間軸上の区切り)の組み合わせ毎の通信量の使用履歴を管理することより、他の基地局200との通信に使用する無線資源である、無線周波数とタイムスロットの組み合わせ候補を判定してもよい。 In the first embodiment, the base station 200 manages the usage history of the communication amount for each radio frequency as a radio resource, and is used for communication with the other base station 200 via the wireless backhaul line 20. An example of determining a radio frequency candidate was illustrated. Note that the base station 200 is used for communication with other base stations 200 by managing the usage history of the communication amount for each time slot (separation on the time axis) on a certain radio frequency instead of the radio frequency. You may make it determine the candidate of a time slot which is a radio | wireless resource. The base station 200 is used for communication with other base stations 200 by managing the usage history of the communication amount for each combination of a radio frequency and a time slot (separation on the time axis) on the radio frequency. A combination candidate of a radio frequency and a time slot, which is a radio resource, may be determined.
 例えば、無線周波数が1個(f1)存在し、この無線周波数が16個のタイムスロット(TS)に分割されている場合、基地局200は、f1-TS1、f1-TS2、・・・、f1-TS16の16個の無線資源毎に過去の通信量の使用履歴を管理更新してもよい。これにより、基地局200は、隣接基地局間で無線資源(ここではタイムスロット)を棲み分けできる。 For example, if there is one radio frequency (f1), and this radio frequency is divided into 16 time slots (TS), the base station 200 can select f1-TS1, f1-TS2,. -The usage history of the past traffic volume may be managed and updated for every 16 radio resources of TS16. Thereby, the base station 200 can segregate radio resources (here, time slots) between adjacent base stations.
 また、例えば、無線周波数が2個(f1,f2)存在し、各無線周波数が10個のタイムスロットに分割されている場合、基地局200は、f1-TS1、f1-TS2、・・・、f1-TS10、f2-TS1、f2-TS2、・・・、f2-TS10の20個の無線資源毎に過去の通信量の使用履歴を管理更新してもよい。これにより、基地局200は、隣接基地局間で無線資源(ここでは無線周波数とタイムスロットの組み合わせ)を棲み分けできる。 Further, for example, when there are two radio frequencies (f1, f2) and each radio frequency is divided into 10 time slots, the base station 200 can perform f1-TS1, f1-TS2,. The usage history of the past traffic volume may be managed and updated for every 20 radio resources of f1-TS10, f2-TS1, f2-TS2,..., f2-TS10. Thereby, the base station 200 can segregate radio resources (in this case, a combination of radio frequency and time slot) between adjacent base stations.
 第1の実施形態では、ワイヤレスバックホール回線20を介して接続されたマクロセル基地局200A及びスモールセル基地局200Bを例示した。尚、第1の実施形態は、ヘテロジニアスネットワークにおけるワイヤレスバックホール回線20を介して通信する通信装置全般に適用できる。例えば、監視カメラと監視センタとの間での回線をワイヤレス化し、どの無線資源を使用するか、送信電力の初期値をどうするかを決定する場合においても、本開示を適用できる。 In the first embodiment, the macro cell base station 200A and the small cell base station 200B connected via the wireless backhaul line 20 are exemplified. The first embodiment can be applied to all communication apparatuses that communicate via the wireless backhaul line 20 in a heterogeneous network. For example, the present disclosure can also be applied to a case where the line between the monitoring camera and the monitoring center is made wireless, and which radio resource is used and what the initial value of the transmission power is determined.
 第1の実施形態では、プロセッサ250(250A,250B)は、物理的にどのように構成されてもよい。ただし、プログラム可能なプロセッサを用いれば、プログラムの変更により処理内容を変更できるので、プロセッサ250の設計の自由度を高めることができる。また、プロセッサ250は、1つの半導体チップで構成してもよいし、物理的に複数の半導体チップで構成してもよい。複数の半導体チップで構成する場合、第1の実施形態の各制御をそれぞれ別の半導体チップで実現してもよい。この場合、それらの複数の半導体チップで1つのプロセッサ250を構成すると考えることができる。また、プロセッサ250は、半導体チップと別の機能を有する部材(コンデンサ等)で構成してもよい。また、プロセッサ250が有する機能とそれ以外の機能とを実現するように、1つの半導体チップを構成してもよい。 In the first embodiment, the processor 250 (250A, 250B) may be physically configured in any manner. However, if a programmable processor is used, the processing contents can be changed by changing the program, so that the degree of freedom in designing the processor 250 can be increased. Further, the processor 250 may be composed of one semiconductor chip or may be physically composed of a plurality of semiconductor chips. When configured by a plurality of semiconductor chips, each control of the first embodiment may be realized by separate semiconductor chips. In this case, it can be considered that one processor 250 is constituted by the plurality of semiconductor chips. The processor 250 may be configured by a member (capacitor or the like) having a function different from that of the semiconductor chip. Further, one semiconductor chip may be configured so as to realize the functions of the processor 250 and other functions.
 第1の実施形態では、図2、図11~図14において基地局200の構成を示したが、各構成は、ハードウェアにより実現されてもよいし、ソフトウェアにより実現されてもよい。 In the first embodiment, the configuration of the base station 200 is shown in FIGS. 2 and 11 to 14, but each configuration may be realized by hardware or software.
 (本開示の実施形態の概要)
 以上のように、上記実施形態の基地局200は、複数の無線通信方式が混在して利用されるワイヤレスバックホール回線20を介して、他の基地局200との間で通信する。基地局200は、プロセッサ250及びアンテナを備える。プロセッサ250は、他の基地局200とのデータ通信に係る無線周波数の使用履歴の情報に基づいて、他の基地局200とのデータ通信に係る無線周波数を割り当てる。アンテナは、割り当てられた無線周波数を用いて、他の基地局200との間でデータ通信する。
(Outline of Embodiment of the Present Disclosure)
As described above, the base station 200 of the above embodiment communicates with other base stations 200 via the wireless backhaul line 20 in which a plurality of wireless communication schemes are mixedly used. The base station 200 includes a processor 250 and an antenna. The processor 250 allocates a radio frequency related to data communication with another base station 200 based on information on a radio frequency usage history related to data communication with another base station 200. The antenna performs data communication with another base station 200 using the assigned radio frequency.
 基地局200は、無線通信装置の一例である。アンテナは、例えば、第1送信アンテナ204、第2送信アンテナ224、第1受信アンテナ205、又は第2受信アンテナ225である。 The base station 200 is an example of a wireless communication device. The antenna is, for example, the first transmission antenna 204, the second transmission antenna 224, the first reception antenna 205, or the second reception antenna 225.
 これにより、基地局200は、周辺の基地局200との間での通信干渉の発生を低減できる。例えば、基地局200は、基地局200(例えばスモールセル基地局200B)が多数増設されても、通信干渉を抑制できる。また、バックホール回線を無線化することで、基地局200を増設する際のコストも低減でき、経済性を向上でき、基地局設置の迅速性も向上できる。また、基地局200は、無線資源割り当て動作の繰り返し回数を低減できるので、基地局200の無線資源割り当てに要する時間を短縮化できる。つまり、基地局200は、無線資源の割当効率を向上できる。また、基地局200は、予め複数の基地局200間で周波数を分割することなく、無線資源の利用効率を向上できる。 Thereby, the base station 200 can reduce the occurrence of communication interference with the surrounding base stations 200. For example, the base station 200 can suppress communication interference even if a large number of base stations 200 (for example, small cell base stations 200B) are added. Further, by making the backhaul line wireless, the cost for adding the base station 200 can be reduced, the economy can be improved, and the speed of installation of the base station can be improved. Further, since the base station 200 can reduce the number of repetitions of the radio resource allocation operation, the time required for the radio resource allocation of the base station 200 can be shortened. That is, the base station 200 can improve radio resource allocation efficiency. Further, the base station 200 can improve the utilization efficiency of radio resources without dividing the frequency among the plurality of base stations 200 in advance.
 尚、基地局200は、同一の通信事業者の基地局のみで構成される場合と、同じ無線資源を異なる複数の通信事業者の基地局が共有して構成される場合と、があり得る。どちらの構成でも、複数の基地局200が相互に情報共有することなく、基地局200は、ワイヤレスバックホール回線20を介した通信のための無線資源を割り当てできる。 Note that the base station 200 can be configured by only the base stations of the same communication carrier, or can be configured by sharing the same radio resources among a plurality of base stations of different communication carriers. In either configuration, the base station 200 can allocate radio resources for communication via the wireless backhaul line 20 without a plurality of base stations 200 sharing information with each other.
 また、基地局200は、他の基地局200とのデータ通信に係る無線周波数の使用履歴の情報を蓄積するメモリ260を備えてもよい。プロセッサ250は、アンテナによるデータ通信に使用された無線周波数と、この無線周波数の使用履歴と、に基づいて、メモリ260に蓄積された使用履歴の情報を更新してもよい。 In addition, the base station 200 may include a memory 260 that stores information on radio frequency usage history related to data communication with other base stations 200. The processor 250 may update the use history information stored in the memory 260 based on the radio frequency used for data communication by the antenna and the use history of the radio frequency.
 これにより、基地局200がワイヤレスバックホール回線20を介してデータ通信する度に、最新の無線資源の使用履歴を反映できる。これにより、基地局200は、無線資源の割当効率や利用効率を向上できる。 Thus, every time the base station 200 performs data communication via the wireless backhaul line 20, the latest radio resource usage history can be reflected. Thereby, the base station 200 can improve the allocation efficiency and utilization efficiency of a radio | wireless resource.
 また、プロセッサ250は、使用履歴が多い無線周波数を優先して、他の基地局200とのデータ通信に係る無線周波数を割り当ててもよい。 Further, the processor 250 may assign a radio frequency related to data communication with another base station 200 by giving priority to a radio frequency with a large usage history.
 これにより、基地局200は、データ通信に成功する可能性の高い無線資源を割当可能であるので、データの通信精度を向上できる。 Thereby, since the base station 200 can allocate radio resources that are highly likely to succeed in data communication, the data communication accuracy can be improved.
 尚、無線周波数の使用履歴の情報は、無線周波数を用いたデータ通信量、無線周波数を用いたデータ通信時間、又は無線周波数を用いたデータ通信回数を含んでもよい。 Note that the information on the use history of the radio frequency may include the amount of data communication using the radio frequency, the data communication time using the radio frequency, or the number of times of data communication using the radio frequency.
 また、プロセッサ250は、他の基地局200とのデータ通信に係る無線周波数の使用履歴に基づいて、他の基地局200との間のデータ通信に係る無線周波数の割当候補を導出してもよい。プロセッサ250は、割当候補の無線周波数を割当不可能な場合、他の無線周波数を割り当ててもよい。アンテナは、他の無線周波数を用いて、他の基地局200との間でデータ通信してもよい。 Further, the processor 250 may derive a radio frequency allocation candidate related to data communication with another base station 200 based on a use history of radio frequency related to data communication with another base station 200. . If the allocation candidate radio frequency cannot be allocated, the processor 250 may allocate another radio frequency. The antenna may perform data communication with another base station 200 using another radio frequency.
 これにより、基地局200は、割当候補の無線周波数に空きがない場合でも、他の無線周波数を再指定でき、基地局200とのデータ通信が成功する確率を向上できる。 Thereby, the base station 200 can re-specify another radio frequency even when there is no available allocation candidate radio frequency, and the probability of successful data communication with the base station 200 can be improved.
 また、基地局200は、無線周波数の使用履歴を変更するための変更情報を取得するインタフェースを備えてもよい。プロセッサ250は、変更情報に基づいて、無線周波数の使用履歴を変更してもよい。 Further, the base station 200 may include an interface for acquiring change information for changing the radio frequency usage history. The processor 250 may change the usage history of the radio frequency based on the change information.
 これにより、無線周波数の使用履歴(使用実績)が多いが、その無線周波数が全体最適ではない場合(準最適な場合)でも、基地局200は、使用履歴を意図的にリフレッシュし、準最適な状態への収束を脱することができる。 As a result, the radio frequency usage history (usage record) is large, but even when the radio frequency is not optimal as a whole (suboptimal case), the base station 200 intentionally refreshes the usage history so that it is suboptimal. The convergence to the state can be avoided.
 また、上記実施形態の周波数割当方法は、複数の無線通信方式が混在して利用されるワイヤレスバックホール回線20を介して、他の基地局200との間で通信する基地局200における周波数割当方法である。この周波数割当方法は、他の基地局200とのデータ通信に係る無線周波数の使用履歴の情報に基づいて、他の基地局200とのデータ通信に係る無線周波数を割り当て、割り当てられた無線周波数を用いて、他の基地局200との間でデータ通信する。 In addition, the frequency allocation method of the above embodiment is a frequency allocation method in the base station 200 that communicates with another base station 200 via the wireless backhaul line 20 in which a plurality of radio communication schemes are mixedly used. It is. This frequency allocation method allocates a radio frequency related to data communication with another base station 200 based on information on a use history of a radio frequency related to data communication with another base station 200, and assigns the assigned radio frequency. Data communication with other base stations 200.
 これにより、基地局200は、周辺の基地局200との間での通信干渉の発生を低減できる。例えば、基地局200は、基地局200(例えばスモールセル基地局200B)が多数増設されても、通信干渉を抑制できる。また、バックホール回線を無線化することで、基地局200を増設する際のコストも低減でき、経済性を向上でき、基地局設置の迅速性も向上できる。また、基地局200は、無線資源割り当て動作の繰り返し回数を低減できるので、基地局200の無線資源割り当てに要する時間を短縮化できる。つまり、基地局200は、無線資源の割当効率を向上できる。また、基地局200は、予め複数の基地局200間で周波数を分割することなく、無線資源の利用効率を向上できる。 Thereby, the base station 200 can reduce the occurrence of communication interference with the surrounding base stations 200. For example, the base station 200 can suppress communication interference even if a large number of base stations 200 (for example, small cell base stations 200B) are added. Further, by making the backhaul line wireless, the cost for adding the base station 200 can be reduced, the economy can be improved, and the speed of installation of the base station can be improved. Further, since the base station 200 can reduce the number of repetitions of the radio resource allocation operation, the time required for the radio resource allocation of the base station 200 can be shortened. That is, the base station 200 can improve radio resource allocation efficiency. Further, the base station 200 can improve the utilization efficiency of radio resources without dividing the frequency among the plurality of base stations 200 in advance.
 また、上記実施形態の基地局200は、他の基地局200とのデータ通信に係る送信電力の使用履歴の情報に基づいて、他の基地局200とのデータ通信に係る送信電力の初期値を設定するプロセッサ250と、設定された送信電力の初期値に基づいて、他の基地局200との間でデータ通信するアンテナと、を備える。 In addition, the base station 200 of the above embodiment determines the initial value of the transmission power related to the data communication with the other base station 200 based on the use history information of the transmission power related to the data communication with the other base station 200. A processor 250 for setting, and an antenna for data communication with another base station 200 based on the set initial value of transmission power.
 これにより、基地局200は、周辺の基地局200との間での通信干渉の発生を低減できる。例えば、基地局200は、基地局200(例えばスモールセル基地局200B)が多数増設されても、通信干渉を抑制できる。また、バックホール回線を無線化することで、基地局200を増設する際のコストも低減でき、経済性を向上でき、基地局設置の迅速性も向上できる。また、基地局200は、自局による過去の通信成功例を参照することで、自局にとって過大な送信電力を初期値として割り当てる確率が低減し、通信干渉が発生することを抑制できる。また、基地局200は、自局による過去の通信成功例を参照することで、過小な送信電力を初期値として割り当てる確率が低減し、通信品質が劣化することを抑制できる。 Thereby, the base station 200 can reduce the occurrence of communication interference with the surrounding base stations 200. For example, the base station 200 can suppress communication interference even if a large number of base stations 200 (for example, small cell base stations 200B) are added. Further, by making the backhaul line wireless, the cost for adding the base station 200 can be reduced, the economy can be improved, and the speed of installation of the base station can be improved. Further, the base station 200 can reduce the probability of assigning excessive transmission power as an initial value for the own station by referring to the past successful communication examples by the own station, and can suppress the occurrence of communication interference. In addition, the base station 200 can reduce the probability of assigning an excessively small transmission power as an initial value by referring to past communication success examples by the own station, and can suppress deterioration in communication quality.
 また、基地局200は、他の基地局200とのデータ通信に係る送信電力の使用履歴の情報を蓄積するメモリ260を備えてもよい。プロセッサ250は、アンテナによるデータ通信に使用された送信電力に基づいて、メモリ260に蓄積された送信電力の使用履歴の情報を更新してもよい。 In addition, the base station 200 may include a memory 260 that stores information on the transmission power usage history related to data communication with other base stations 200. The processor 250 may update the transmission power usage history information stored in the memory 260 based on the transmission power used for data communication by the antenna.
 これにより、基地局200がワイヤレスバックホール回線20を介してデータ通信する度に、最新の送信電力の使用履歴を反映できる。これにより、基地局200は、基地局の設置数が増大しても、通信干渉の増大を抑制できる。 Thus, every time the base station 200 performs data communication via the wireless backhaul line 20, the latest transmission power usage history can be reflected. Thereby, the base station 200 can suppress an increase in communication interference even if the number of installed base stations increases.
 また、プロセッサ250は、使用履歴が多い送信電力を優先して、他の基地局200とのデータ通信に係る送信電力を設定してもよい。 In addition, the processor 250 may prioritize transmission power with a large usage history and set transmission power related to data communication with another base station 200.
 これにより、基地局200は、データ通信に成功する可能性の高い送信電力を設定可能であるので、データの通信精度を向上できる。 Thereby, the base station 200 can set the transmission power that is highly likely to succeed in data communication, so that the data communication accuracy can be improved.
 また、アンテナは、複数のアンテナを含んでもよい。プロセッサ250は、複数のアンテナに対して、他の基地局200が採用する無線通信方式と、設定された送信電力の初期値と、に基づいて、複数のアンテナの各々への供給電力を制御してもよい。複数のアンテナは、例えば、MIMOのアンテナ#A11~#A18,#B11~#B18である。 Further, the antenna may include a plurality of antennas. The processor 250 controls the power supplied to each of the plurality of antennas based on the wireless communication scheme adopted by the other base station 200 and the set initial value of the transmission power for the plurality of antennas. May be. The plurality of antennas are, for example, MIMO antennas # A11 to # A18, # B11 to # B18.
 これにより、基地局200は、無線通信方式により定められたデータ通信に係る指向性を形成できる。基地局200は、指向性を形成する場合でも、送信電力を適切に維持でき、ワイヤレスバックホール回線20を介した通信干渉を抑制できる。 Thereby, the base station 200 can form the directivity related to data communication determined by the wireless communication method. Even when base station 200 forms directivity, base station 200 can maintain transmission power appropriately and suppress communication interference via wireless backhaul line 20.
 また、送信電力の使用履歴の情報は、データ通信に割り当てられた無線周波数での送信電力の情報と、この送信電力を用いたデータ通信の頻度の情報と、を含んでもよい。 Also, the transmission power usage history information may include transmission power information at a radio frequency assigned to data communication and information on the frequency of data communication using this transmission power.
 また、送信電力の情報は、データ通信に使用された送信電力の所定時間あたりの平均電力の情報を含んでもよい。 Further, the transmission power information may include information on average power per predetermined time of transmission power used for data communication.
 これにより、データ送信時に短時間に発生したノイズ等の影響を受けにくくなり、送信電力の初期値の設定精度を向上できる。 This makes it less susceptible to noise, etc. that occurred in a short time during data transmission, and improves the initial setting accuracy of transmission power.
 また、基地局200は、送信電力の使用履歴を変更するための変更情報を取得するインタフェースを備えてもよい。プロセッサ250は、変更情報に基づいて、送信電力の使用履歴を変更してもよい。 Moreover, the base station 200 may include an interface for acquiring change information for changing the transmission power usage history. The processor 250 may change the transmission power usage history based on the change information.
 これにより、送信電力の使用履歴(実績)が多いが、その送信電力が全体最適ではない場合(準最適な場合)でも、基地局200は、使用履歴を意図的にリフレッシュし、準最適な状態への収束を脱することができる。 Thereby, although the use history (actual result) of the transmission power is large, the base station 200 intentionally refreshes the use history even when the transmission power is not totally optimal (suboptimal case), and is in a suboptimal state. The convergence to can be lifted.
 また、上記実施形態の送信電力設定方法は、複数の無線通信方式が混在して利用されるワイヤレスバックホール回線20を介して、他の基地局200との間で通信する基地局200における送信電力設定方法である。この方法では、他の基地局200とのデータ通信に係る送信電力の使用履歴の情報に基づいて、他の基地局200とのデータ通信に係る送信電力の初期値を設定し、設定された送信電力の初期値に基づいて、他の基地局200との間でデータ通信する。 In addition, the transmission power setting method of the above embodiment is a transmission power in the base station 200 that communicates with another base station 200 via the wireless backhaul line 20 in which a plurality of wireless communication methods are mixedly used. It is a setting method. In this method, an initial value of transmission power related to data communication with another base station 200 is set based on information on a transmission power usage history related to data communication with another base station 200, and the set transmission power is set. Data communication is performed with another base station 200 based on the initial value of power.
 これにより、基地局200は、周辺の基地局200との間での通信干渉の発生を低減できる。例えば、基地局200は、基地局200(例えばスモールセル基地局200B)が多数増設されても、通信干渉を抑制できる。また、バックホール回線を無線化することで、基地局200を増設する際のコストも低減でき、経済性を向上でき、基地局設置の迅速性も向上できる。また、基地局200は、自局による過去の通信成功例を参照することで、自局にとって過大な送信電力を初期値として割り当てる確率が低減し、通信干渉が発生することを抑制できる。また、基地局200は、自局による過去の通信成功例を参照することで、過小な送信電力を初期値として割り当てる確率が低減し、通信品質が劣化することを抑制できる。 Thereby, the base station 200 can reduce the occurrence of communication interference with the surrounding base stations 200. For example, the base station 200 can suppress communication interference even if a large number of base stations 200 (for example, small cell base stations 200B) are added. Further, by making the backhaul line wireless, the cost for adding the base station 200 can be reduced, the economy can be improved, and the speed of installation of the base station can be improved. Further, the base station 200 can reduce the probability of assigning excessive transmission power as an initial value for the own station by referring to the past successful communication examples by the own station, and can suppress the occurrence of communication interference. In addition, the base station 200 can reduce the probability of assigning an excessively small transmission power as an initial value by referring to past communication success examples by the own station, and can suppress deterioration in communication quality.
 本開示は、バックホール回線を介してデータを通信するための無線資源の割当効率や利用効率を向上できる無線通信装置及び周波数割当方法等に有用である。 The present disclosure is useful for a radio communication apparatus, a frequency allocation method, and the like that can improve allocation efficiency and usage efficiency of radio resources for communicating data via a backhaul line.
10 無線通信システム
21 上り回線
22 下り回線
100 端末
200 基地局
200A マクロセル基地局
200B スモールセル基地局
201 第1インタフェース
202 第1パケット生成部
203 第1無線送信部
204 第1送信アンテナ
205 第1受信アンテナ
206 第1無線受信部
207 第1パケット復号部
208 第1無線資源管理部
221 第2インタフェース
222 第2パケット生成部
223 第2無線送信部
224 第2送信アンテナ
225 第2受信アンテナ
226 第2無線受信部
227 第2パケット復号部
228 第2無線資源管理部
250,250A,250B プロセッサ
260,260A,260B メモリ
300 上位装置
T11,T12,T21,T22 履歴データベース
10 radio communication system 21 uplink 22 downlink 100 terminal 200 base station 200A macro cell base station 200B small cell base station 201 first interface 202 first packet generator 203 first radio transmitter 204 first transmitter antenna 205 first receiver antenna 206 first radio reception unit 207 first packet decoding unit 208 first radio resource management unit 221 second interface 222 second packet generation unit 223 second radio transmission unit 224 second transmission antenna 225 second reception antenna 226 second radio reception Unit 227 second packet decoding unit 228 second radio resource management unit 250, 250A, 250B processor 260, 260A, 260B memory 300 host device T11, T12, T21, T22 history database

Claims (7)

  1.  複数の無線通信方式が混在して利用される無線バックホール回線を介して、他の無線通信装置との間で通信する無線通信装置であって、
     前記他の無線通信装置とのデータ通信に係る無線周波数の使用履歴の情報に基づいて、前記他の無線通信装置とのデータ通信に係る無線周波数を割り当てるプロセッサと、
     割り当てられた前記無線周波数を用いて、前記他の無線通信装置との間でデータ通信するアンテナと、
     を備える無線通信装置。
    A wireless communication device that communicates with other wireless communication devices via a wireless backhaul line that is used in combination with a plurality of wireless communication methods,
    A processor for allocating a radio frequency for data communication with the other radio communication device based on information on a radio frequency use history for data communication with the other radio communication device;
    An antenna that performs data communication with the other wireless communication device using the assigned radio frequency;
    A wireless communication device comprising:
  2.  請求項1に記載の無線通信装置であって、更に、
     前記他の無線通信装置とのデータ通信に係る無線周波数の使用履歴の情報を蓄積するメモリを備え、
     前記プロセッサは、前記アンテナによる前記データ通信に使用された無線周波数と、当該無線周波数の使用履歴と、に基づいて、前記メモリに蓄積された前記無線周波数の使用履歴の情報を更新する、無線通信装置。
    The wireless communication device according to claim 1, further comprising:
    A memory for storing information on the use history of radio frequency related to data communication with the other radio communication device;
    The processor updates the radio frequency usage history information stored in the memory based on a radio frequency used for the data communication by the antenna and a usage history of the radio frequency. apparatus.
  3.  請求項1または2に記載の無線通信装置であって、
     前記プロセッサは、前記使用履歴が多い無線周波数を優先して、前記他の無線通信装置とのデータ通信に係る無線周波数を割り当てる、無線通信装置。
    The wireless communication device according to claim 1 or 2,
    The wireless communication device, wherein the processor assigns a wireless frequency related to data communication with the other wireless communication device in preference to a wireless frequency with a large usage history.
  4.  請求項1~3のいずれか1項に記載の無線通信装置であって、
     前記無線周波数の使用履歴の情報は、前記無線周波数を用いたデータ通信量、前記無線周波数を用いたデータ通信時間、又は前記無線周波数を用いたデータ通信回数を含む、無線通信装置。
    The wireless communication device according to any one of claims 1 to 3,
    The radio frequency use history information includes a data communication amount using the radio frequency, a data communication time using the radio frequency, or a data communication count using the radio frequency.
  5.  請求項1~4のいずれか1項に記載の無線通信装置であって、
     前記プロセッサは、
     前記他の無線通信装置とのデータ通信に係る無線周波数の使用履歴に基づいて、前記他の無線通信装置との間のデータ通信に係る無線周波数の割当候補を導出し、
     前記割当候補の無線周波数を割当不可能な場合、他の無線周波数を割り当て、
     前記アンテナは、前記他の無線周波数を用いて、前記他の無線通信装置との間でデータ通信する、無線通信装置。
    The wireless communication device according to any one of claims 1 to 4,
    The processor is
    Based on the use history of the radio frequency related to data communication with the other radio communication device, the radio frequency allocation candidate related to data communication with the other radio communication device is derived,
    If the allocation candidate radio frequency cannot be allocated, allocate another radio frequency,
    The antenna is a wireless communication device that performs data communication with the other wireless communication device using the other wireless frequency.
  6.  請求項1~5のいずれか1項に記載の無線通信装置であって、更に、
     前記無線周波数の使用履歴を変更するための変更情報を取得するインタフェースを備え、
     前記プロセッサは、前記変更情報に基づいて、前記無線周波数の使用履歴を変更する、無線通信装置。
    The wireless communication device according to any one of claims 1 to 5, further comprising:
    An interface for acquiring change information for changing the use history of the radio frequency;
    The processor is a wireless communication device that changes a use history of the radio frequency based on the change information.
  7.  複数の無線通信方式が混在して利用される無線バックホール回線を介して、他の無線通信装置との間で通信する無線通信装置における周波数割当方法であって、
     前記他の無線通信装置とのデータ通信に係る無線周波数の使用履歴の情報に基づいて、前記他の無線通信装置とのデータ通信に係る無線周波数を割り当て、
     割り当てられた前記無線周波数を用いて、前記他の無線通信装置との間でデータ通信する、周波数割当方法。
    A frequency allocation method in a wireless communication device that communicates with another wireless communication device via a wireless backhaul line that is used in combination with a plurality of wireless communication methods,
    Based on the information of the use history of the radio frequency related to data communication with the other radio communication device, the radio frequency related to data communication with the other radio communication device is allocated,
    A frequency allocation method for performing data communication with the other radio communication device using the allocated radio frequency.
PCT/JP2016/001001 2015-05-08 2016-02-25 Wireless communication device and frequency allocation method WO2016181587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015096074A JP2016213687A (en) 2015-05-08 2015-05-08 Wireless communication apparatus and frequency allotment method
JP2015-096074 2015-05-08

Publications (1)

Publication Number Publication Date
WO2016181587A1 true WO2016181587A1 (en) 2016-11-17

Family

ID=57249133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001001 WO2016181587A1 (en) 2015-05-08 2016-02-25 Wireless communication device and frequency allocation method

Country Status (2)

Country Link
JP (1) JP2016213687A (en)
WO (1) WO2016181587A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017079414A (en) * 2015-10-21 2017-04-27 京セラ株式会社 Base station and radio communication method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081435A (en) * 2008-09-26 2010-04-08 Kyocera Corp Relay station and wireless communication relay method
JP2013232815A (en) * 2012-04-27 2013-11-14 Panasonic Corp Radio base station device, radio resource management method, and radio resource management program
JP2014090300A (en) * 2012-10-30 2014-05-15 Nec Corp Wireless transmitter, frequency band allocation method
WO2014107357A2 (en) * 2013-01-02 2014-07-10 Qualcomm Incorporated Backhaul traffic reliability in unlicensed bands using spectrum sensing and channel reservation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081435A (en) * 2008-09-26 2010-04-08 Kyocera Corp Relay station and wireless communication relay method
JP2013232815A (en) * 2012-04-27 2013-11-14 Panasonic Corp Radio base station device, radio resource management method, and radio resource management program
JP2014090300A (en) * 2012-10-30 2014-05-15 Nec Corp Wireless transmitter, frequency band allocation method
WO2014107357A2 (en) * 2013-01-02 2014-07-10 Qualcomm Incorporated Backhaul traffic reliability in unlicensed bands using spectrum sensing and channel reservation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017079414A (en) * 2015-10-21 2017-04-27 京セラ株式会社 Base station and radio communication method

Also Published As

Publication number Publication date
JP2016213687A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
KR101296021B1 (en) Apparatus and method for dynamic communication resource allocation for device-to-device communications in a wireless communication system
US6650655B2 (en) Allocation of data transmission resources between different networks
JP6575850B2 (en) Wireless communication terminal and base station allocation method
US5491837A (en) Method and system for channel allocation using power control and mobile-assisted handover measurements
RU2407153C2 (en) Dynamic frequency repeated use based on measurements in cellular communication networks
JP6575851B2 (en) Wireless communication terminal and frequency allocation method
GB2480689A (en) Femtocell base stations interact with each other via a control channel
US8660562B2 (en) Radio communication system, communication control method, and base station and mobile terminal
CN107409397A (en) Interference coordination System and method in wireless communication system
WO2007007662A1 (en) Control station, base station, slot allocating method, and wireless communication system
JP4099145B2 (en) Channel assignment in a wireless communication system with a spatial channel, including grouping of existing subscribers in anticipation of new subscribers
JP2018521571A (en) Carrier aggregation method and base station based on subframe offset
US20120315892A1 (en) Distributed interference management
US20180249482A1 (en) Method and communication node of scheduling radio resources
JP6455757B2 (en) Radio base station apparatus, radio communication system, and base station allocation method
US10986552B2 (en) Connection establishment in a 5G radio access network
US9538387B2 (en) Radio resource assignment coordination in superdense networks
CN109565868B (en) Data transmission method, device and storage medium based on authorization-free uplink scheduling
WO2016181587A1 (en) Wireless communication device and frequency allocation method
JP6678309B2 (en) Wireless communication device and transmission power setting method
JP2016116086A (en) Radio base station apparatus, radio communication system, frequency allocation method and radio resource allocation method
EP2541979A1 (en) Allocating identifiers
KR101672632B1 (en) Resource allocation method for d2d communication based on dynamic clustering
JP2013207565A (en) Radio communication system, base station and radio communication method
JP2007208337A (en) Wireless base station apparatus and wireless terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792322

Country of ref document: EP

Kind code of ref document: A1