WO2016181578A1 - Three-dimensional measurement device and three-dimensional measurement method - Google Patents

Three-dimensional measurement device and three-dimensional measurement method Download PDF

Info

Publication number
WO2016181578A1
WO2016181578A1 PCT/JP2015/082486 JP2015082486W WO2016181578A1 WO 2016181578 A1 WO2016181578 A1 WO 2016181578A1 JP 2015082486 W JP2015082486 W JP 2015082486W WO 2016181578 A1 WO2016181578 A1 WO 2016181578A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
light pattern
light
gain
relationship
Prior art date
Application number
PCT/JP2015/082486
Other languages
French (fr)
Japanese (ja)
Inventor
大山 剛
憲彦 坂井田
二村 伊久雄
Original Assignee
Ckd株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ckd株式会社 filed Critical Ckd株式会社
Priority to CN201580078559.9A priority Critical patent/CN107429992B/en
Publication of WO2016181578A1 publication Critical patent/WO2016181578A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object

Definitions

  • the present invention relates to a three-dimensional measurement apparatus and a three-dimensional measurement method that perform height measurement using a phase shift method.
  • cream solder is first printed on a predetermined electrode pattern disposed on the printed circuit board.
  • the electronic component is temporarily fixed on the printed circuit board based on the viscosity of the cream solder.
  • the printed circuit board is guided to a reflow furnace, and soldering is performed through a predetermined reflow process.
  • a combination of a light source that emits predetermined light and a grating that converts light from the light source into a light pattern having a sinusoidal (stripe) light intensity distribution is irradiated by the irradiation means. And it observes using the imaging means which has arrange
  • the imaging means a CCD camera or the like including a lens and an imaging element is used.
  • the light intensity (luminance) I of each pixel on the image data picked up by the image pickup means is given by the following equation (T1).
  • I f ⁇ sin ⁇ + e (T1)
  • f gain
  • e offset
  • sine wave phase angle at the pixel.
  • the phase of the light pattern is changed in, for example, four stages ( ⁇ + 0, ⁇ + 90 °, ⁇ + 180 °, ⁇ + 270 °), and intensity distributions I 0 , I 1 , I 2 corresponding thereto.
  • I 3 is taken in, f (gain) and e (offset) are canceled based on the following equation (T2), and the phase angle ⁇ is obtained.
  • the phase angle ⁇ of the pattern light applied to the coordinates (X, Y) is “0 °”, which is a predetermined height.
  • the phase angle ⁇ related to the coordinates (X, Y) varies depending on the height, such that the phase angle ⁇ becomes “10 °” when it has a height.
  • the present invention has been made in view of the above circumstances, and its purpose is to provide a three-dimensional measurement apparatus and a three-dimensional measurement apparatus that can shorten the measurement time when performing height measurement using the phase shift method. It is to provide a measurement method.
  • Means 1 A light source that emits predetermined light, and a grating that converts the light from the light source into a light pattern having a striped light intensity distribution, and an irradiation unit that can irradiate at least the object to be measured with the light pattern; Phase control means for controlling the transfer or switching of the grating and capable of changing the phase of the light pattern irradiated from the irradiation means in a plurality of ways; Imaging means capable of imaging reflected light from the object to be measured irradiated with the light pattern; Image processing means capable of performing three-dimensional measurement of the object to be measured based on image data picked up by the image pickup means; The image processing means includes The relationship between the gain and offset of the light pattern determined by predetermined imaging conditions; By using the gain or offset value of the light pattern related to the measured coordinates determined from the luminance value of the measured coordinates on the image data, A three-dimensional measuring apparatus characterized in that height measurement of the measured coordinates can be performed by a phase shift method based on two kinds
  • A K (proportional constant) ⁇ B
  • the height of the coordinate to be measured can be measured by the phase shift method based on the two types of image data captured under the light pattern whose phase is changed in the way.
  • this means can measure the height of an object to be measured based on two kinds of image data, and therefore, compared with the conventional technique that requires four or three imaging operations for one point.
  • the total number of times of imaging can be reduced, and the imaging time can be shortened. As a result, the measurement time can be dramatically shortened.
  • the light emitted from the light source is first attenuated when passing through the grating, then attenuated when reflected by the object to be measured, and finally A / D converted (analog-digital converted) by the imaging means. Is obtained as the luminance value of each pixel of the image data.
  • the luminance value of each pixel of the image data imaged by the imaging means is the brightness of the light source, the attenuation rate when the light emitted from the light source passes through the grid, and the light when the light is reflected by the object to be measured. This can be expressed by multiplying the reflectance and the conversion efficiency when A / D conversion (analog-digital conversion) is performed in the imaging means.
  • the brightness of the light source (uniform light):
  • L Transmittance of lattice: G ⁇ sin ⁇ + ⁇ ⁇ and ⁇ are arbitrary constants.
  • Reflectance at coordinates (x, y) on the measurement object R (x, y) Conversion efficiency of each pixel of the imaging means (imaging device): E The luminance value of the pixel on the image corresponding to the coordinate (x, y) on the object to be measured: V (x, y) Gain of light pattern at coordinates (x, y) on the measurement object: A (x, y) Offset of light pattern at coordinates (x, y) on the measurement object: B (x, y) In this case, it can be expressed by the following formula (F1).
  • F2 ⁇ / 2
  • the maximum value V (x, y) MAX , the minimum value V (x, y) MIN , and the average value V (x, y) AV of the luminance value are expressed by the following equations (F4), (F5), and (F6), respectively.
  • the relationship is as shown in the graph of FIG.
  • y) AV becomes an offset B (x, y), the difference between the offset B (x, y) and the maximum value V (x, y) MAX , and the offset B (x, y) and the minimum value V ( x, y)
  • the difference from MIN is the gain A (x, y).
  • the luminance value V (x, y) changes in proportion to the brightness L or the reflectance R (x, y) of the light source, for example, at the coordinate position where the reflectance R is halved, the gain A and the offset The value of B is also halved.
  • the offset B (x, y) increases and decreases and the offset B (x, y)
  • the gain A (x, y) also increases / decreases. If one of the gain A and the offset B is known from the equation (F8), the other can be obtained.
  • the proportionality constant K is determined by the transmittance G of the grating irrespective of the brightness L and the reflectance R of the light source. That is, the following means 2 and 3 can be used in other words.
  • the relationship between the gain A and the offset B is uniquely determined, for example, by creating a numerical table or table data representing the relationship between the gain A and the offset B, the offset B from the gain A or the offset
  • the gain A can be obtained from B.
  • Means 3 The three-dimensional measuring apparatus according to claim 1, wherein the gain and the offset are proportional to each other.
  • the gain A can be obtained from B. As a result, it can be set as the following means 4.
  • the image processing means includes The three-dimensional measuring apparatus according to means 1, wherein a phase angle ⁇ satisfying a relationship of the following formulas (1), (2), and (3) is obtained, and the height measurement is performed based on the phase angle ⁇ .
  • V 0 Asin ⁇ + B (1)
  • V 1 Asin ( ⁇ + ⁇ ) + B (2)
  • A KB (3)
  • phase angle ⁇ satisfying the relationship of the following formulas (1), (2), (3) in the above means 4 and perform the height measurement based on the phase angle ⁇
  • the phase angle ⁇ is obtained based on the following formula (9), and the height measurement is performed based on the phase angle ⁇ .
  • the algorithm for obtaining the phase angle ⁇ is not limited to the above equation (9), and any other configuration may be adopted as long as the relationship of the above equations (1), (2), and (3) is satisfied. May be.
  • the measurement accuracy can be further improved.
  • the image is taken twice under two light patterns whose phases are different by 180 °.
  • the following formula (11) can be derived from the above formulas (1) and (10).
  • the following formula (12) can be derived.
  • phase angle ⁇ sin ⁇ 1 [(V 0 ⁇ V 1 ) / K (V 0 + V 1 )] (15) That is, the phase angle ⁇ can be specified by the known luminance values V 0 and V 1 and the constant K.
  • the phase angle ⁇ can be obtained based on a relatively simple arithmetic expression, and the processing speed can be further increased when the height of the object to be measured is measured.
  • the offset B can be specified by the known luminance values V 0 and V 1 and the constant K.
  • phase angle ⁇ can be specified by the known luminance values V 0 and V 1 and the constant K by using the above equation (23).
  • the phase angle ⁇ can be obtained based on the arithmetic expression using “tan ⁇ 1 ”, so that the height can be measured in the range of 360 ° from ⁇ 180 ° to 180 °.
  • the measurement range can be further increased.
  • Means 7 The three-dimensional measuring apparatus according to any one of means 1 to 6, further comprising storage means for storing the relationship between the gain and offset of the light pattern calculated from a calibration or a separately performed measurement result in advance.
  • the reference plate is irradiated with light patterns whose phases are changed in three or four ways, and the gain A and the offset B in each pixel are specified based on the three or four kinds of image data captured under these patterns.
  • a constant K is determined from Equation (3).
  • Means 8 7. The method according to claim 1, wherein the relationship between the gain and offset of the light pattern is obtained based on two types of image data captured under the light pattern whose phase has been changed in the two ways. 3D measuring device.
  • the offset B is obtained for all the pixels of the image data using the above equation (12) and the like, the luminance value V of the pixel having the same value of the offset B is extracted, and the histogram is created. Then, the maximum value V MAX and the minimum value V MIN of the luminance value are determined from the histogram.
  • the average value of the maximum value V MAX and the minimum value V MIN of the luminance value is the offset B, and the half of the difference between the maximum value V MAX and the minimum value V MIN is the gain A.
  • the constant K can be determined from the above equation (3).
  • Means 9 A light source that emits predetermined light, and a grating that converts the light from the light source into a light pattern having a striped light intensity distribution, and an irradiation unit that can irradiate at least the object to be measured with the light pattern; Phase control means for controlling the transfer or switching of the grating and capable of changing the phase of the light pattern irradiated from the irradiation means in a plurality of ways; A three-dimensional measurement method performed by a three-dimensional measurement apparatus including an imaging unit capable of imaging reflected light from the measurement object irradiated with the light pattern, A relationship acquisition step of obtaining a relationship between gain and offset of the light pattern determined by a predetermined imaging condition based on a measurement result obtained by calibration or separately; An image acquisition step of acquiring two types of image data imaged under the light pattern that has undergone two phase changes; Using the relationship between the gain and offset of the light pattern obtained in the relationship acquisition step and the gain or offset value of the light pattern related to the measured coordinate determined from
  • FIG. 1 is a schematic configuration diagram schematically illustrating a substrate inspection apparatus 1 including a three-dimensional measurement apparatus according to the present embodiment.
  • the substrate inspection apparatus 1 includes a mounting table 3 for mounting a printed circuit board 2 as an object to be measured on which cream solder as a measurement target is printed, and a surface that is oblique to the surface of the printed circuit board 2.
  • An illumination device 4 as an irradiating unit that irradiates a predetermined light pattern from above, a camera 5 as an imaging unit for imaging a portion irradiated with the light pattern on the printed circuit board 2, and various types in the substrate inspection apparatus 1 And a control device 6 for performing control, image processing, and arithmetic processing.
  • the mounting table 3 is provided with motors 15 and 16, and the motors 15 and 16 are driven and controlled by the control device 6 (motor control means 23), whereby the printed circuit board mounted on the mounting table 3. 2 can be slid in any direction (X-axis direction and Y-axis direction).
  • the illumination device 4 includes a light source 4a that emits predetermined light, and a liquid crystal lattice 4b that converts light from the light source 4a into a light pattern having a sinusoidal (stripe) light intensity distribution.
  • a light source 4a that emits predetermined light
  • a liquid crystal lattice 4b that converts light from the light source 4a into a light pattern having a sinusoidal (stripe) light intensity distribution.
  • the light emitted from the light source 4a is guided to a pair of condensing lenses by an optical fiber, and is converted into parallel light there.
  • the parallel light is guided to the projection lens through the liquid crystal grating 4b. Then, a striped light pattern is irradiated onto the printed circuit board 2 from the projection lens.
  • the liquid crystal lattice 4b includes a liquid crystal layer formed between a pair of transparent substrates, a common electrode disposed on one transparent substrate, and a plurality of strips arranged in parallel on the other transparent substrate so as to face the common electrode.
  • the switching elements thin film transistors, etc.
  • the “bright portion with high light transmittance” is provided.
  • a“ dark part ” having a low light transmittance is formed.
  • the light irradiated on the printed circuit board 2 via the liquid crystal grating 4b becomes a light pattern having a sinusoidal light intensity distribution due to blur caused by diffraction action or the like.
  • the camera 5 includes a lens, an image sensor, and the like.
  • a CMOS sensor is used as the image sensor.
  • the imaging device is not limited to this, and a CCD sensor or the like may be employed, for example.
  • Image data captured by the camera 5 is converted into a digital signal inside the camera 5 and then input to the control device 6 (image data storage means 24) in the form of a digital signal. Then, the control device 6 performs image processing, inspection processing, and the like, which will be described later, based on the image data. In this sense, the control device 6 constitutes image processing means.
  • the control device 6 includes a camera control unit 21 that controls the imaging timing of the camera 5, an illumination control unit 22 that controls the illumination device 4, and a motor control unit 23 that controls the motors 15 and 16.
  • Image data storage means 24 for storing image data (luminance data) captured by the camera 5, calibration data storage means 25 for storing calibration data described later, and phase data calculated based on the image data
  • the phase data storage means 26 for storing information, the three-dimensional measurement means 29 for performing three-dimensional measurement based on the calibration data and the phase data, and the printing state of the cream solder 4 based on the measurement result of the three-dimensional measurement means 29 And a determination means 30 for inspecting.
  • the phase control means in this embodiment is constituted by the illumination control means 22 that controls the illumination device 4 (liquid crystal grating 4b).
  • the substrate inspection apparatus 1 includes an input unit composed of a keyboard and a touch panel, a display unit having a display screen such as a CRT or a liquid crystal, a storage unit for storing inspection results, and a solder printing machine. Output means for outputting inspection results and the like.
  • the voltages applied to the strip electrodes also vary. ", The light transmittance (luminance level) varies for each line corresponding to each strip electrode. As a result, the light pattern irradiated onto the object to be measured does not have a sinusoidal ideal light intensity distribution, and an error may occur in the three-dimensional measurement result.
  • a height reference plane 0 and a flat reference plane are prepared.
  • the reference surface has the same color as the cream solder to be measured. That is, the reflectances of the cream solder and the light pattern are equal.
  • the light pattern is irradiated onto the reference plane, and this is imaged by the camera 5 to obtain image data including the luminance value of each coordinate.
  • the phase of the light pattern is shifted by 90 °, and four types of image data captured under each light pattern are acquired.
  • control device 6 calculates the phase angle ⁇ of the light pattern at each coordinate from the above four types of image data, and stores this in the calibration data storage means 25 as calibration data.
  • the gain A and the offset B of the light pattern at each coordinate and the relationship between both are specified from the above four types of image data, and these are stored in the calibration data storage means 25 as calibration data. Therefore, the calibration data storage means 25 constitutes the storage means in the present embodiment, and this process constitutes the relationship acquisition process in the present embodiment.
  • proportional constant K of the gain A and the offset B is calculated based on the following formula (H10) derived from the above formulas (H5) and (H9).
  • the gain A, the offset B, and the proportionality constant K of the light pattern at each coordinate calculated as described above are stored in the calibration data storage unit 25 as calibration data.
  • the proportionality constant K may be stored as calibration data.
  • This inspection routine is executed by the control device 6.
  • the control device 6 (motor control means 23) first drives and controls the motors 15 and 16 to move the printed circuit board 2, and adjusts the field of view of the camera 5 to a predetermined inspection area (measurement range) on the printed circuit board 2.
  • the inspection area is one area in which the surface of the printed circuit board 2 is divided in advance with the size of the field of view of the camera 5 as one unit.
  • control device 6 switches and controls the liquid crystal lattice 4b of the illumination device 4, and sets the position of the lattice formed in the liquid crystal lattice 4b to a predetermined reference position.
  • the control device 6 causes the light control unit 22 to emit the light source 4a of the lighting device 4, starts the irradiation of a predetermined light pattern, and drives the camera 5 by the camera control unit 21. Control is performed to start imaging of the inspection area portion irradiated with the light pattern.
  • the image data captured by the camera 5 is transferred to and stored in the image data storage device 24.
  • the above-described series of processing is performed under a light pattern in which the phase of the light pattern is shifted by 180 °, for example.
  • two kinds of image data captured under two kinds of light patterns whose phases are shifted by 180 ° are obtained for a predetermined inspection area.
  • This process constitutes an image acquisition process in the present embodiment.
  • the control device 6 calculates the phase angle ⁇ of the light pattern at each coordinate from the two types of image data by the phase shift method, and stores this in the phase data storage means 26 as phase data. Specifically, based on the above equation (15), the luminance values V 0 and V 1 at the respective coordinates on the two types of image data, and the calibration data (based on the calibration) stored in the calibration data storage unit 25. The phase angle ⁇ of the light pattern at each coordinate is calculated in consideration of the proportional constant K) of each coordinate.
  • the control device 6 (three-dimensional measuring unit 29) has the calibration data (phase angle of each coordinate based on calibration) stored in the calibration data storage unit 25 and the phase data stored in the phase data storage unit 26. Compared with (phase angle of each coordinate based on actual measurement), a shift amount of coordinates having the same phase angle is calculated, and height data at each coordinate of the inspection area is acquired based on the principle of triangulation. Such a process constitutes a measurement process in the present embodiment.
  • the position on the data stored by the calibration is the value of “10 °”.
  • the position on the data stored by the calibration is the value of “10 °”.
  • the height data (z) of the measured coordinates (x, y) can be obtained based on the irradiation angle of the light pattern and the amount of deviation of the stripe of the light pattern.
  • control device 6 detects the printing range of the cream solder that is higher than the reference plane based on the obtained height data at each coordinate of the inspection area, and within this range.
  • the amount of printed cream solder is calculated by integrating the height of each part.
  • control device 6 determines the data such as the position, area, height, or amount of the cream solder thus obtained with reference data stored in advance, and the comparison result is within an allowable range. Whether the printing state of the cream solder in the inspection area is good or not is determined depending on whether it is in the inspection area.
  • control device 6 drives and controls the motors 15 and 16 to move the printed circuit board 2 to the next inspection area. Thereafter, the above series of processing is performed in all inspection areas. By being repeatedly performed, the inspection of the entire printed circuit board 2 is completed.
  • A K (proportional constant) ⁇ B
  • the height of the measured coordinate can be measured by the phase shift method based on the two types of image data captured under the light pattern whose phase is changed in two ways.
  • the total number of times of imaging is less than that of the conventional technique that requires four or three times of imaging for one point.
  • the imaging time can be shortened. As a result, the measurement time can be dramatically shortened.
  • the relationship between the gain A and the offset B (proportional constant K) of the light pattern at each coordinate is obtained in advance by calibration.
  • the relationship (proportional constant K) between the gain A and the offset B of the light pattern is obtained on the basis of the two types of image data imaged under the light pattern that has been phase-shifted in the two ways imaged at the time of actual measurement. .
  • the offset B is obtained for all the pixels of the image data using the above equation (12).
  • FIGS. 5 and 6 exemplify a case where the gain A is “1” and the offset B is “0”.
  • FIG. 5 is a distribution table in which the luminance value V is divided into data sections having a width of “0.1” and the number of luminance values included in the data section is represented.
  • FIG. 6 is a histogram in which the luminance values are plotted. .
  • the maximum value V MAX and the minimum value V MIN of the luminance value are determined.
  • two peaks generated in the histogram can be determined as the maximum value V MAX and the minimum value V MIN of the luminance values, respectively.
  • the number of luminance values V that fall within the data section with luminance values V of “ ⁇ 1.0 to ⁇ 0.9” and “0.9 to 1.0” is “51”, respectively.
  • two peaks are two peaks.
  • the gain A and the offset B are calculated based on the maximum value V MAX and the minimum value V MIN of the luminance values.
  • the average value of the maximum value V MAX and the minimum value V MIN of the luminance value is the offset B
  • the half of the difference between the maximum value V MAX and the minimum value V MIN is the gain A. That is, as shown in FIG. 6, the intermediate value between the two peaks is offset B, and half of the width of the two peaks is gain A.
  • the proportionality constant K can be determined based on the gain A and the offset B obtained in this way [see the above formula (3)]. According to this embodiment, the labor of calibration as in the first embodiment can be omitted, and the measurement time can be further shortened.
  • the three-dimensional measuring device is embodied as the substrate inspection device 1 that measures the height of the cream solder printed and formed on the printed circuit board 2. You may embody the structure which measures the height of other things, such as the solder bump made and the electronic component mounted on the board
  • the grating for converting the light from the light source 4a into a striped light pattern is constituted by the liquid crystal grating 4b, and the phase of the light pattern is shifted by switching this. It has a configuration.
  • the grating member may be transferred by a transfer unit such as a piezo actuator to shift the phase of the light pattern.
  • the height measurement is performed based on two types of image data captured under two types of light patterns whose phases are different by 180 ° in actual measurement.
  • the height may be measured based on two kinds of image data captured under two kinds of light patterns whose phases are different by 90 °.
  • the light values at the respective coordinates are obtained using the luminance values V 0 and V 1 at the respective coordinates on the two kinds of image data and the known proportionality constant K.
  • the phase angle ⁇ of the pattern can be calculated.
  • the calibration is performed based on the four types of image data captured under the four types of light patterns whose phases are different by 90 °.
  • calibration may be performed based on three types of image data captured under three types of light patterns having different phases.
  • a configuration may be adopted in which the luminance of the light source is changed and the calibration is performed a plurality of times. With this configuration, the dark current (offset) C of the camera 5 as shown in the following formula (28) can be obtained.
  • A KB + C (28) However, A: Gain, B: Offset, C: Dark current (offset) of the camera, K: Proportional constant.
  • the relationship between the gain A and the offset B is not obtained as an equation, but by creating a numerical table or table data that represents the relationship between the gain A and the offset B, the gain A can be gained from the offset B or the offset B. You may comprise so that A can be calculated
  • the proportional constant K or the like may be obtained based on two types of image data captured under two types of light patterns whose phases are different by 90 °. Further, the proportional constant K or the like may be obtained not in all pixels of the image data but in a part of the image data such as the periphery of the measured coordinates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Provided are a three-dimensional measurement device and three-dimensional measurement method capable of reducing measurement time for height measurement using a phase shift method. A substrate inspection device 1 is provided with an illumination device 4 for irradiating a prescribed optical pattern from a diagonally upward position onto the surface of a printed circuit board 2, a camera 5 for imaging a portion of the printed circuit board 2 irradiated with the optical pattern, and a control device 6 for carrying out various control, image processing, and calculation within the substrate inspection device 1. The control device 6 uses the relationship between the gain and offset of an optical pattern determined by prescribed imaging conditions and a gain or offset value of the optical pattern that is for coordinates to be measured on image data and is determined from brightness values at the coordinates to be measured to measure the height of the coordinates to be measured using a phase shift method on the basis of two sets of image data imaged under optical patterns with two shifted phases.

Description

三次元計測装置及び三次元計測方法Three-dimensional measuring apparatus and three-dimensional measuring method
 本発明は、位相シフト法を利用して高さ計測を行う三次元計測装置及び三次元計測方法に関するものである。 The present invention relates to a three-dimensional measurement apparatus and a three-dimensional measurement method that perform height measurement using a phase shift method.
 一般に、プリント基板上に電子部品を実装する場合、まずプリント基板上に配設された所定の電極パターン上にクリームハンダが印刷される。次に、該クリームハンダの粘性に基づいてプリント基板上に電子部品が仮止めされる。その後、前記プリント基板がリフロー炉へ導かれ、所定のリフロー工程を経ることでハンダ付けが行われる。昨今では、リフロー炉に導かれる前段階においてクリームハンダの印刷状態を検査する必要があり、かかる検査に際して三次元計測装置が用いられることがある。 Generally, when an electronic component is mounted on a printed circuit board, cream solder is first printed on a predetermined electrode pattern disposed on the printed circuit board. Next, the electronic component is temporarily fixed on the printed circuit board based on the viscosity of the cream solder. Thereafter, the printed circuit board is guided to a reflow furnace, and soldering is performed through a predetermined reflow process. In recent years, it is necessary to inspect the printed state of cream solder in the previous stage of being guided to a reflow furnace, and a three-dimensional measuring device is sometimes used for such inspection.
 近年、光を用いたいわゆる非接触式の三次元計測装置が種々提案されており、例えば位相シフト法を用いた三次元計測装置に関する技術が提案されている。 In recent years, various so-called non-contact type three-dimensional measuring apparatuses using light have been proposed. For example, a technique relating to a three-dimensional measuring apparatus using a phase shift method has been proposed.
 当該位相シフト法を利用した三次元計測装置においては、所定の光を発する光源と、当該光源からの光を正弦波状(縞状)の光強度分布を有する光パターンに変換する格子との組み合わせからなる照射手段により、光パターンを被計測物(この場合プリント基板)に照射する。そして、基板上の点を真上に配置した撮像手段を用いて観測する。撮像手段としては、レンズ及び撮像素子等からなるCCDカメラ等が用いられる。 In the three-dimensional measuring device using the phase shift method, a combination of a light source that emits predetermined light and a grating that converts light from the light source into a light pattern having a sinusoidal (stripe) light intensity distribution. The object to be measured (in this case, the printed circuit board) is irradiated by the irradiation means. And it observes using the imaging means which has arrange | positioned the point on a board | substrate directly above. As the imaging means, a CCD camera or the like including a lens and an imaging element is used.
 上記構成の下、撮像手段により撮像された画像データ上の各画素の光の強度(輝度)Iは下式(T1)で与えられる。 With the above configuration, the light intensity (luminance) I of each pixel on the image data picked up by the image pickup means is given by the following equation (T1).
 I=f・sinφ+e  ・・(T1)
 但し、f:ゲイン、e:オフセット、φ:その画素における正弦波の位相角。
I = f · sinφ + e (T1)
Where f: gain, e: offset, φ: sine wave phase angle at the pixel.
 ここで、上記格子を切替制御することにより、光パターンの位相を例えば4段階(φ+0、φ+90°、φ+180°、φ+270°)に変化させ、これらに対応する強度分布I0、I1、I2、I3をもつ画像データを取り込み、下記式(T2)に基づいてf(ゲイン)とe(オフセット)をキャンセルし、位相角φを求める。 Here, by switching and controlling the grating, the phase of the light pattern is changed in, for example, four stages (φ + 0, φ + 90 °, φ + 180 °, φ + 270 °), and intensity distributions I 0 , I 1 , I 2 corresponding thereto. , I 3 is taken in, f (gain) and e (offset) are canceled based on the following equation (T2), and the phase angle φ is obtained.
 φ=arctan{(I1-I3)/(I2-I0)} ・・(T2)
 そして、この位相角φを用いて、三角測量の原理に基づき、プリント基板(クリームハンダ)上の被計測座標(X,Y)における高さ(Z)が算出される(例えば、特許文献1参照)。
φ = arctan {(I 1 −I 3 ) / (I 2 −I 0 )} (T2)
Then, using this phase angle φ, the height (Z) at the measured coordinates (X, Y) on the printed circuit board (cream solder) is calculated based on the principle of triangulation (see, for example, Patent Document 1). ).
 例えば、被計測座標(X,Y)における高さ(Z)が「0」の場合、当該座標(X,Y)に照射されるパターン光の位相角φは「0°」となり、所定の高さを有する場合には位相角φが「10°」となるといったように、当該座標(X,Y)に係る位相角φは、その高さにより変化する。 For example, when the height (Z) at the measured coordinates (X, Y) is “0”, the phase angle φ of the pattern light applied to the coordinates (X, Y) is “0 °”, which is a predetermined height. The phase angle φ related to the coordinates (X, Y) varies depending on the height, such that the phase angle φ becomes “10 °” when it has a height.
 これに対し、近年では、光パターンの位相を3段階に変化させ、3通りの画像データから位相角φを取得する技術も提案されている(例えば、特許文献2参照)。 On the other hand, in recent years, a technique has been proposed in which the phase of the light pattern is changed in three stages and the phase angle φ is acquired from three types of image data (see, for example, Patent Document 2).
特開平5-280945号公報Japanese Patent Laid-Open No. 5-280945 特開2002-81924号公報JP 2002-81924 A
 しかしながら、従来の三次元計測装置においては、位相を4段階又は3段階に変化させ、これらに対応する強度分布をもつ4通り又は3通りの画像を撮像する必要がある。つまり、1つのポイントに関し撮像を4回又は3回行う必要があるため、撮像に時間を要し、計測時間が長くなるおそれがある。そのため、計測時間のさらなる短縮化が求められていた。 However, in the conventional three-dimensional measuring apparatus, it is necessary to change the phase into four or three stages and to capture four or three kinds of images having intensity distributions corresponding to these. That is, since it is necessary to perform imaging four times or three times with respect to one point, it takes time for imaging and there is a possibility that measurement time becomes long. Therefore, further reduction in measurement time has been demanded.
 尚、上記課題は、必ずしもプリント基板上に印刷されたクリームハンダ等の高さ計測に限らず、他の三次元計測装置の分野においても内在するものである。 Note that the above-mentioned problem is not necessarily limited to the height measurement of cream solder or the like printed on a printed circuit board, but is inherent in the field of other three-dimensional measurement devices.
 本発明は、上記事情に鑑みてなされたものであり、その目的は、位相シフト法を利用して高さ計測を行うにあたり、計測時間の短縮化を図ることのできる三次元計測装置及び三次元計測方法を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide a three-dimensional measurement apparatus and a three-dimensional measurement apparatus that can shorten the measurement time when performing height measurement using the phase shift method. It is to provide a measurement method.
 以下、上記課題を解決するのに適した各手段につき項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果を付記する。 Hereafter, each means suitable for solving the above-mentioned problems will be described in terms of items. In addition, the effect specific to the means to respond | corresponds as needed is added.
 手段1.所定の光を発する光源、及び、当該光源からの光を縞状の光強度分布を有する光パターンに変換する格子を有し、当該光パターンを少なくとも被計測物に対し照射可能な照射手段と、
 前記格子の移送又は切替を制御し、前記照射手段から照射する前記光パターンの位相を複数通りに変化可能な位相制御手段と、
 前記光パターンの照射された前記被計測物からの反射光を撮像可能な撮像手段と、
 前記撮像手段により撮像された画像データを基に前記被計測物の三次元計測を実行可能な画像処理手段とを備え、
 前記画像処理手段は、
 所定の撮像条件により定まる前記光パターンのゲイン及びオフセットの関係と、
 前記画像データ上の被計測座標の輝度値から定まる、該被計測座標に係る前記光パターンのゲイン又はオフセットの値とを利用することにより、
 2通りに位相変化させた前記光パターンの下で撮像した2通りの画像データを基に位相シフト法により前記被計測座標の高さ計測を実行可能としたことを特徴とする三次元計測装置。
Means 1. A light source that emits predetermined light, and a grating that converts the light from the light source into a light pattern having a striped light intensity distribution, and an irradiation unit that can irradiate at least the object to be measured with the light pattern;
Phase control means for controlling the transfer or switching of the grating and capable of changing the phase of the light pattern irradiated from the irradiation means in a plurality of ways;
Imaging means capable of imaging reflected light from the object to be measured irradiated with the light pattern;
Image processing means capable of performing three-dimensional measurement of the object to be measured based on image data picked up by the image pickup means;
The image processing means includes
The relationship between the gain and offset of the light pattern determined by predetermined imaging conditions;
By using the gain or offset value of the light pattern related to the measured coordinates determined from the luminance value of the measured coordinates on the image data,
A three-dimensional measuring apparatus characterized in that height measurement of the measured coordinates can be performed by a phase shift method based on two kinds of image data picked up under the light pattern whose phase is changed in two ways.
 上記手段1によれば、所定の撮像条件により定まる光パターンのゲインA及びオフセットBの関係〔例えばA=K(比例定数)×B〕と、画像データ上の被計測座標(x,y)の輝度値V(x,y)から定まる、該被計測座標(x,y)に係る光パターンのゲインA(x,y)又はオフセットB(x,y)の値とを利用することにより、2通りに位相変化させた光パターンの下で撮像した2通りの画像データを基に位相シフト法により被計測座標の高さ計測を行うことができる。 According to the means 1, the relationship between the gain A and the offset B of the light pattern determined by the predetermined imaging condition [for example, A = K (proportional constant) × B] and the measured coordinates (x, y) on the image data. By using the value of the gain A (x, y) or the offset B (x, y) of the light pattern related to the measured coordinate (x, y) determined from the luminance value V (x, y), 2 The height of the coordinate to be measured can be measured by the phase shift method based on the two types of image data captured under the light pattern whose phase is changed in the way.
 このように、本手段では、2通りの画像データに基づいて被計測物の高さ計測を行うことができることから、1つのポイントに関し4回又は3回の撮像を必要とする従来技術に比べて、総合的な撮像回数が少なくて済み、撮像時間を短縮することができる。結果として、計測時間を飛躍的に短縮することができる。 As described above, this means can measure the height of an object to be measured based on two kinds of image data, and therefore, compared with the conventional technique that requires four or three imaging operations for one point. The total number of times of imaging can be reduced, and the imaging time can be shortened. As a result, the measurement time can be dramatically shortened.
 尚、光源から照射された光は、まず格子を通過する際に減衰され、次に被計測物にて反射する際に減衰され、最後に撮像手段においてA/D変換(アナログ-デジタル変換)される際に減衰された上で、画像データの各画素の輝度値として取得される。 The light emitted from the light source is first attenuated when passing through the grating, then attenuated when reflected by the object to be measured, and finally A / D converted (analog-digital converted) by the imaging means. Is obtained as the luminance value of each pixel of the image data.
 従って、撮像手段により撮像された画像データの各画素の輝度値は、光源の明るさ、光源から照射された光が格子を通過する際の減衰率、光が被計測物にて反射する際の反射率、撮像手段においてA/D変換(アナログ-デジタル変換)される際の変換効率等を掛け合わせることにより表現することができる。 Therefore, the luminance value of each pixel of the image data imaged by the imaging means is the brightness of the light source, the attenuation rate when the light emitted from the light source passes through the grid, and the light when the light is reflected by the object to be measured. This can be expressed by multiplying the reflectance and the conversion efficiency when A / D conversion (analog-digital conversion) is performed in the imaging means.
 例えば、光源(均一光)の明るさ:L
     格子の透過率:G=αsinθ+β
             α,βは任意の定数。
For example, the brightness of the light source (uniform light): L
Transmittance of lattice: G = αsinθ + β
α and β are arbitrary constants.
     被計測物上の座標 (x,y)における反射率:R(x,y)
     撮像手段(撮像素子)の各画素の変換効率:E
     被計測物上の座標(x,y)に対応する画像上の画素の輝度値:V(x,y)
     被計測物上の座標(x,y)における光パターンのゲイン:A(x,y)
     被計測物上の座標(x,y)における光パターンのオフセット:B(x,y)
とした場合には、下記式(F1)で表すことができる。
Reflectance at coordinates (x, y) on the measurement object: R (x, y)
Conversion efficiency of each pixel of the imaging means (imaging device): E
The luminance value of the pixel on the image corresponding to the coordinate (x, y) on the object to be measured: V (x, y)
Gain of light pattern at coordinates (x, y) on the measurement object: A (x, y)
Offset of light pattern at coordinates (x, y) on the measurement object: B (x, y)
In this case, it can be expressed by the following formula (F1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、ゲインA(x,y)は、「sinθ=1」の光による輝度値V(x,y)MAXと、「sinθ=-1」の光による輝度値V(x,y)MINとの差から表すことができるので、
 例えば、格子がθ=0の時の透過率(=平均透過率):Gθ=0
     格子がθ=π/2の時の透過率(=最大透過率):Gθ=π/2
     格子がθ=-π/2の時の透過率(=最小透過率):Gθ=-π/2
とした場合には、下記式(F2)で表すことができる。
Here, the gain A (x, y) is a luminance value V (x, y) MAX by the light of “sin θ = 1”, and a luminance value V (x, y) MIN by the light of “sin θ = −1”. Can be expressed from the difference between
For example, transmittance when the grating is θ = 0 (= average transmittance): Gθ = 0
Transmittance when the grating is θ = π / 2 (= maximum transmittance): Gθ = π / 2
Transmittance when the grating is θ = −π / 2 (= minimum transmittance): Gθ = −π / 2
In this case, it can be expressed by the following formula (F2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、オフセットB(x,y)は、「sinθ=0」の光における輝度値V(x,y)であって、「sinθ=1」の光による輝度値V(x,y) MAXと、「sinθ=-1」の光による輝度値V(x,y) MINとの平均値であるので、下記式(F3)で表すことができる。 The offset B (x, y) is the luminance value V (x, y) in the light of “sin θ = 0”, and the luminance value V (x, y) MAX in the light of “sin θ = 1” Since it is an average value with the luminance value V (x, y) MIN due to the light of “sin θ = −1”, it can be expressed by the following formula (F3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 つまり、輝度値の最大値V(x,y)MAX、最小値V(x,y)MIN、平均値V(x,y)AVはそれぞれ下記式(F4)、(F5)、(F6)で表すことができ、図3のグラフに示すような関係となる。 That is, the maximum value V (x, y) MAX , the minimum value V (x, y) MIN , and the average value V (x, y) AV of the luminance value are expressed by the following equations (F4), (F5), and (F6), respectively. The relationship is as shown in the graph of FIG.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図3から見てとれるように、所定の座標(x,y)における輝度値の最大値V(x,y)MAXと輝度値の最少値V(x,y)MINの平均値V(x,y)AVがオフセットB(x,y)となり、該オフセットB(x,y)と最大値V(x,y)MAXとの差、及び、該オフセットB(x,y)と最少値V(x,y)MINとの差がそれぞれゲインA(x,y)となる。 As can be seen from FIG. 3, the average value V (x, y) of the maximum value V (x, y) MAX of the luminance value and the minimum value V (x, y) MIN of the luminance value at a predetermined coordinate (x, y). y) AV becomes an offset B (x, y), the difference between the offset B (x, y) and the maximum value V (x, y) MAX , and the offset B (x, y) and the minimum value V ( x, y) The difference from MIN is the gain A (x, y).
 また、輝度値V(x,y)は、光源の明るさL又は反射率R(x,y)に比例して変化するため、例えば反射率Rが半分となる座標位置では、ゲインAやオフセットBの値も半分となる。 Further, since the luminance value V (x, y) changes in proportion to the brightness L or the reflectance R (x, y) of the light source, for example, at the coordinate position where the reflectance R is halved, the gain A and the offset The value of B is also halved.
 次に上記式(F2)、(F3)を下記式(F2´)、(F3´)とした上で、両者を合わせて整理すると、下記式(F7)が導き出せる。 Next, after formulating the above formulas (F2) and (F3) into the following formulas (F2 ′) and (F3 ′) and arranging them together, the following formula (F7) can be derived.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 さらに、上記式(F7)をA(x,y)について解くと、下記式(F8)となり、図4に示すグラフのように表すことができる。 Furthermore, when the above equation (F7) is solved for A (x, y), the following equation (F8) is obtained, which can be represented as the graph shown in FIG.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 つまり、光源の明るさL又は反射率R(x,y)の一方を固定して他方を変化させた場合には、オフセットB(x,y)が増減すると共に、該オフセットB(x,y)に比例してゲインA(x,y)も増減することとなる。かかる式(F8)により、ゲインA又はオフセットBの一方が分かれば、他方を求めることができる。ここで、比例定数Kは、光源の明るさLや反射率Rとは無関係に、格子の透過率Gにより定まる。つまり、下記の手段2,3のように換言することができる。 That is, when one of the brightness L or the reflectance R (x, y) of the light source is fixed and the other is changed, the offset B (x, y) increases and decreases and the offset B (x, y) ), The gain A (x, y) also increases / decreases. If one of the gain A and the offset B is known from the equation (F8), the other can be obtained. Here, the proportionality constant K is determined by the transmittance G of the grating irrespective of the brightness L and the reflectance R of the light source. That is, the following means 2 and 3 can be used in other words.
 手段2.前記ゲイン及びオフセットの関係は、前記ゲインと前記オフセットとが相互に一義的に定まる関係であることを特徴とする手段1に記載の三次元計測装置。 Means 2. The three-dimensional measuring apparatus according to claim 1, wherein the relationship between the gain and the offset is a relationship in which the gain and the offset are uniquely determined.
 ゲインAとオフセットBとが相互に一義的に定まる関係であれば、例えばゲインAとオフセットBとの関係を表した数表やテーブルデータを作成することにより、ゲインAからオフセットB、或いは、オフセットBからゲインAを求めることが可能となる。 If the relationship between the gain A and the offset B is uniquely determined, for example, by creating a numerical table or table data representing the relationship between the gain A and the offset B, the offset B from the gain A or the offset The gain A can be obtained from B.
 手段3.前記ゲイン及びオフセットの関係は、前記ゲインと前記オフセットとが比例関係であることを特徴とする手段1に記載の三次元計測装置。 Means 3. The three-dimensional measuring apparatus according to claim 1, wherein the gain and the offset are proportional to each other.
 ゲインとオフセットとが比例関係であれば、例えばA=K×B+C〔但し、C:カメラの暗電流(オフセット)〕のような関係式で表すことができ、ゲインAからオフセットB、或いは、オフセットBからゲインAを求めることが可能となる。ひいては下記の手段4のような構成とすることができる。 If the gain and the offset are in a proportional relationship, for example, it can be expressed by a relational expression such as A = K × B + C [where C is the dark current (offset) of the camera]. The gain A can be obtained from B. As a result, it can be set as the following means 4.
 手段4.前記2通りに位相変化させた光パターンの相対位相関係をそれぞれ0、γとしたときの前記2通りの画像データの各画素の輝度値をそれぞれV0、V1とした場合に、
 前記画像処理手段は、
 下記式(1)、(2)、(3)の関係を満たす位相角θを求め、該位相角θに基づき前記高さ計測を行うことを特徴とする手段1に記載の三次元計測装置。
Means 4. When the luminance value of each pixel of the two types of image data when the relative phase relationship of the light pattern having the two phase changes is set to 0 and γ, respectively, is V 0 and V 1 ,
The image processing means includes
The three-dimensional measuring apparatus according to means 1, wherein a phase angle θ satisfying a relationship of the following formulas (1), (2), and (3) is obtained, and the height measurement is performed based on the phase angle θ.
 V0=Asinθ+B      ・・・(1)
 V1=Asin(θ+γ)+B  ・・・(2)
 A=KB          ・・・(3)
 但し、γ≠0、A:ゲイン、B:オフセット、K:比例定数。
V 0 = Asinθ + B (1)
V 1 = Asin (θ + γ) + B (2)
A = KB (3)
However, γ ≠ 0, A: gain, B: offset, K: proportional constant.
 上記手段4によれば、上記式(3)を上記式(1)に代入することにより、下記式(4)を導き出すことができる。 According to the above means 4, the following formula (4) can be derived by substituting the above formula (3) into the above formula (1).
 V0=KBsinθ+B   ・・・(4)
 これをオフセットBについて解くと、下記式(5)を導き出すことができる。
V 0 = KBsinθ + B (4)
When this is solved for the offset B, the following equation (5) can be derived.
 B=V0/(Ksinθ+1)  ・・・(5)
 また、上記式(3)を上記式(2)に代入することにより、下記式(6)を導き出すことができる。
B = V 0 / (Ksinθ + 1) (5)
Further, the following formula (6) can be derived by substituting the above formula (3) into the above formula (2).
 V1=KBsin(θ+γ)+B  ・・・(6)
 上記式(6)を上記式(5)に代入し、下記[数7]に示すように整理していくと、下記式(7)を導き出すことができる。
V 1 = KBsin (θ + γ) + B (6)
By substituting the above equation (6) into the above equation (5) and rearranging as shown in the following [Equation 7], the following equation (7) can be derived.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、「V0cosγ-V1=a」、「V0sinγ=b」、「(V0-V1)/K=c」と置くと、上記式(7)は下記式(8)のように表すことができる。 Here, when “V 0 cos γ−V 1 = a”, “V 0 sin γ = b”, and “(V 0 −V 1 ) / K = c” are set, the above equation (7) becomes the following equation (8): It can be expressed as
 asinθ+bcosθ+c=0  ・・・(8)
 ここで、下記[数8]に示すように、上記式(8)を位相角θについて解いていくと、下記[数9]に示す下記式(9)を導き出すことができる。
asinθ + bcosθ + c = 0 (8)
Here, as shown in the following [Equation 8], when the above equation (8) is solved for the phase angle θ, the following equation (9) shown in the following [Equation 9] can be derived.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 従って、上記手段4における『下記式(1)、(2)、(3)の関係を満たす位相角θを求め、該位相角θに基づき前記高さ計測を行うこと』とあるのは、『下記式(9)に基づき位相角θを求め、該位相角θに基づき前記高さ計測を行うこと』と換言することができる。勿論、位相角θを得るアルゴリズムは、上記式(9)に限定されるものではなく、上記式(1)、(2)、(3)の関係を満たすものであれば、他の構成を採用してもよい。 Therefore, “to obtain a phase angle θ satisfying the relationship of the following formulas (1), (2), (3) in the above means 4 and perform the height measurement based on the phase angle θ” means “ In other words, the phase angle θ is obtained based on the following formula (9), and the height measurement is performed based on the phase angle θ. Of course, the algorithm for obtaining the phase angle θ is not limited to the above equation (9), and any other configuration may be adopted as long as the relationship of the above equations (1), (2), and (3) is satisfied. May be.
 尚、上述したカメラの暗電流C等を考慮すれば、計測精度のさらなる向上を図ることができる。 In addition, if the dark current C of the camera mentioned above is taken into consideration, the measurement accuracy can be further improved.
 手段5.γ=180°としたことを特徴とする手段4に記載の三次元計測装置。 Means 5. The three-dimensional measuring apparatus according to means 4, wherein γ = 180 °.
 上記手段5によれば、位相が180°異なる2通りの光パターンの下で2回の撮像を行うこととなる。 According to the means 5, the image is taken twice under two light patterns whose phases are different by 180 °.
 上記式(2)においてγ=180°とすることで下記式(10)が導き出される。 The following equation (10) is derived by setting γ = 180 ° in the above equation (2).
 V1=Asin(θ+180°)+B
   =-Asinθ+B  ・・・(10)
 そして、上記式(1),(10)から下記式(11)を導き出すことができ、これをオフセットBについて解くと、下記式(12)を導き出すことができる。
V 1 = Asin (θ + 180 °) + B
= -Asinθ + B (10)
Then, the following formula (11) can be derived from the above formulas (1) and (10). When this is solved for the offset B, the following formula (12) can be derived.
 V0+V1=2B  ・・・(11)
 B=(V0+V1)/2 ・・・(12)
 さらに、上記式(12)を上記式(3)に代入することにより、下記式(13)を導き出すことができる。
V 0 + V 1 = 2B (11)
B = (V 0 + V 1 ) / 2 (12)
Furthermore, the following formula (13) can be derived by substituting the above formula (12) into the above formula (3).
 A=KB
  =K(V0+V1)/2 ・・・(13)
 また、上記式(1)を「sinθ」について整理すると、下記式(1´)のようになる。
A = KB
= K (V 0 + V 1 ) / 2 (13)
Further, when the above equation (1) is arranged for “sin θ”, the following equation (1 ′) is obtained.
 sinθ=(V0-B)/A ・・・(1´)
 そして、上記式(1´)に、上記式(12),(13)を代入することにより、下記式(14)を導き出すことができる。
sinθ = (V 0 −B) / A (1 ′)
Then, the following formula (14) can be derived by substituting the above formulas (12) and (13) into the above formula (1 ′).
 sinθ={V0-(V0+V1)/2}/{K(V0+V1)/2}
    =(V0-V1)/K(V0+V1) ・・・(14)
 ここで、上記式(14)を位相角θについて解くと、下記式(15)を導き出すことができる。
sin θ = {V 0 − (V 0 + V 1 ) / 2} / {K (V 0 + V 1 ) / 2}
= (V 0 -V 1 ) / K (V 0 + V 1 ) (14)
Here, when the above equation (14) is solved for the phase angle θ, the following equation (15) can be derived.
 θ=sin-1[(V0-V1)/K(V0+V1)] ・・・(15)
 つまり、位相角θは、既知の輝度値V0,V1及び定数Kにより特定することができる。
θ = sin −1 [(V 0 −V 1 ) / K (V 0 + V 1 )] (15)
That is, the phase angle θ can be specified by the known luminance values V 0 and V 1 and the constant K.
 このように、上記手段5によれば、比較的簡単な演算式に基づいて位相角θを求めることができ、被計測物の高さ計測を行うに際し、さらなる処理の高速化が可能となる。 As described above, according to the means 5, the phase angle θ can be obtained based on a relatively simple arithmetic expression, and the processing speed can be further increased when the height of the object to be measured is measured.
 手段6.γ=90°としたことを特徴とする手段4に記載の三次元計測装置。 Means 6. The three-dimensional measuring apparatus according to means 4, wherein γ = 90 °.
 上記手段6によれば、位相が90°異なる2通りの光パターンの下で2回の撮像を行うこととなる。 According to the above means 6, two images are taken under two light patterns whose phases are different by 90 °.
 上記式(2)においてγ=90°とすることで下記式(16)が導き出される。 The following equation (16) is derived by setting γ = 90 ° in the above equation (2).
 V1=Asin(θ+90°)+B
   =Acosθ+B ・・・(16)
 上記式(16)を「cosθ」について整理すると、下記式(17)のようになる。
V 1 = Asin (θ + 90 °) + B
= Acosθ + B (16)
When the above equation (16) is arranged for “cos θ”, the following equation (17) is obtained.
 cosθ=(V1-B)/A ・・・(17)
 また、上記式(1)を「sinθ」について整理すると、上述したように下記式(1´)のようになる。
cos θ = (V 1 −B) / A (17)
Further, when the above equation (1) is arranged with respect to “sin θ”, as described above, the following equation (1 ′) is obtained.
 sinθ=(V0-B)/A ・・・(1´)
 次に上記式(1´)、(17)を下記式(18)に代入すると下記式(19)のようになり、さらにこれを整理することで、下記式(20)が導き出される。
sinθ = (V 0 −B) / A (1 ′)
Next, when the above formulas (1 ′) and (17) are substituted into the following formula (18), the following formula (19) is obtained. Further, by arranging this, the following formula (20) is derived.
 sin2θ+cos2θ=1 ・・・(18)
 {(V0-B)/A}2+{(V1-B)/A}2=1 ・・・(19)
 (V0-B)2+(V1-B)2=A2 ・・・(20)
 そして、上記式(20)に対し上記式(3)を代入すると下記式(21)のようになり、さらにこれを整理することで、下記式(22)が導き出される。
sin 2 θ + cos 2 θ = 1 (18)
{(V 0 −B) / A} 2 + {(V 1 −B) / A} 2 = 1 (19)
(V 0 −B) 2 + (V 1 −B) 2 = A 2 (20)
Then, when the above equation (3) is substituted into the above equation (20), the following equation (21) is obtained, and by further arranging this, the following equation (22) is derived.
 (V0-B)2+(V1-B)2=K22  ・・・(21)
 (2-K2)B2-2(V0+V1)B+V0 21 2=0 ・・・(22)
 ここで、上記式(22)をオフセットBについて解くと、下記式(23)を導き出すことができる。
(V 0 -B) 2 + (V 1 -B) 2 = K 2 B 2 (21)
(2-K 2 ) B 2 -2 (V 0 + V 1 ) B + V 0 2 V 1 2 = 0 (22)
Here, when the above equation (22) is solved for the offset B, the following equation (23) can be derived.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 つまり、オフセットBは、既知の輝度値V0,V1及び定数Kにより特定することができる。 That is, the offset B can be specified by the known luminance values V 0 and V 1 and the constant K.
 また、下記式(24)に上記式(1´)、(17)を代入すると下記式(25)のようになり、さらにこれを整理することで、下記式(26)が導き出される。 Further, when the above formulas (1 ′) and (17) are substituted into the following formula (24), the following formula (25) is obtained, and by further arranging this, the following formula (26) is derived.
 tanθ=sinθ/cosθ ・・・(24)
   ={(V0-B)/A}/{(V1-B)/A} ・・・(25)
   =(V0-B)/(V1-B)   ・・・(26)
 そして、上記式(26)を位相角θについて解くと、下記式(27)を導き出すことができる。
tanθ = sinθ / cosθ (24)
= {(V 0 -B) / A} / {(V 1 -B) / A} (25)
= (V 0 -B) / (V 1 -B) (26)
Then, when the above equation (26) is solved for the phase angle θ, the following equation (27) can be derived.
 θ=tan-1{(V0-B)/(V1-B)} ・・(27)
 つまり、位相角θは、上記式(23)を用いることにより、既知の輝度値V0,V1及び定数Kにより特定することができる。
θ = tan −1 {(V 0 −B) / (V 1 −B)} (27)
That is, the phase angle θ can be specified by the known luminance values V 0 and V 1 and the constant K by using the above equation (23).
 このように、上記手段6によれば、「tan-1」を用いた演算式に基づいて位相角θを求めることができるため、-180°~180°の360°の範囲で高さ計測可能となり、計測レンジをより大きくすることができる。 As described above, according to the means 6, the phase angle θ can be obtained based on the arithmetic expression using “tan −1 ”, so that the height can be measured in the range of 360 ° from −180 ° to 180 °. Thus, the measurement range can be further increased.
 手段7.予めキャリブレーション又は別途行った計測結果により算出した前記光パターンのゲイン及びオフセットの関係を記憶する記憶手段を備えていることを特徴とする手段1乃至6のいずれかに記載の三次元計測装置。 Means 7. The three-dimensional measuring apparatus according to any one of means 1 to 6, further comprising storage means for storing the relationship between the gain and offset of the light pattern calculated from a calibration or a separately performed measurement result in advance.
 例えば基準板に対し3通り又は4通りに位相変化させた光パターンを照射し、これらの下で撮像した3通り又は4通りの画像データに基づき各画素におけるゲインA及びオフセットBを特定し、上記式(3)から定数Kを決定しておく。これにより、上記手段7によれば、各画素においてより精度の良い高さ計測を行うことができる。 For example, the reference plate is irradiated with light patterns whose phases are changed in three or four ways, and the gain A and the offset B in each pixel are specified based on the three or four kinds of image data captured under these patterns. A constant K is determined from Equation (3). Thereby, according to the said means 7, more accurate height measurement can be performed in each pixel.
 手段8.前記光パターンのゲイン及びオフセットの関係を、前記2通りに位相変化させた前記光パターンの下で撮像した2通りの画像データを基に求めることを特徴とする手段1乃至6のいずれかに記載の三次元計測装置。 Means 8. 7. The method according to claim 1, wherein the relationship between the gain and offset of the light pattern is obtained based on two types of image data captured under the light pattern whose phase has been changed in the two ways. 3D measuring device.
 例えば上記式(12)等を用いて画像データの全画素についてオフセットBを求め、その中でオフセットBの値が一致する画素の輝度値Vを抽出し、そのヒストグラムを作成する。そして、そのヒストグラムから輝度値の最大値VMAXと最小値VMINを決定する。 For example, the offset B is obtained for all the pixels of the image data using the above equation (12) and the like, the luminance value V of the pixel having the same value of the offset B is extracted, and the histogram is created. Then, the maximum value V MAX and the minimum value V MIN of the luminance value are determined from the histogram.
 上述したとおり、輝度値の最大値VMAXと最少値VMINの平均値がオフセットBとなり、最大値VMAXと最少値VMINの差の半分がゲインAとなる。これを基に、上記式(3)から定数Kを決定することができる。これにより、上記手段8によれば、上記手段7のようなキャリブレーションの手間を省略することができ、さらなる計測時間の短縮化を図ることができる。 As described above, the average value of the maximum value V MAX and the minimum value V MIN of the luminance value is the offset B, and the half of the difference between the maximum value V MAX and the minimum value V MIN is the gain A. Based on this, the constant K can be determined from the above equation (3). Thereby, according to the means 8, the labor of calibration as in the means 7 can be omitted, and the measurement time can be further shortened.
 手段9.所定の光を発する光源、及び、当該光源からの光を縞状の光強度分布を有する光パターンに変換する格子を有し、当該光パターンを少なくとも被計測物に対し照射可能な照射手段と、
 前記格子の移送又は切替を制御し、前記照射手段から照射する前記光パターンの位相を複数通りに変化可能な位相制御手段と、
 前記光パターンの照射された前記被計測物からの反射光を撮像可能な撮像手段とを備えた三次元計測装置によって行われる三次元計測方法であって、
 所定の撮像条件により定まる前記光パターンのゲイン及びオフセットの関係を予めキャリブレーション又は別途行った計測結果により求める関係取得工程と、
 2通りに位相変化させた前記光パターンの下で撮像した2通りの画像データを取得する画像取得工程と、
 前記関係取得工程において求めた前記光パターンのゲイン及びオフセットの関係と、前記画像データ上の被計測座標の輝度値から定まる該被計測座標に係る前記光パターンのゲイン又はオフセットの値とを利用して、前記2通りの画像データを基に位相シフト法により前記被計測座標の高さ計測を行う計測工程とを備えたことを特徴とする三次元計測方法。
Means 9. A light source that emits predetermined light, and a grating that converts the light from the light source into a light pattern having a striped light intensity distribution, and an irradiation unit that can irradiate at least the object to be measured with the light pattern;
Phase control means for controlling the transfer or switching of the grating and capable of changing the phase of the light pattern irradiated from the irradiation means in a plurality of ways;
A three-dimensional measurement method performed by a three-dimensional measurement apparatus including an imaging unit capable of imaging reflected light from the measurement object irradiated with the light pattern,
A relationship acquisition step of obtaining a relationship between gain and offset of the light pattern determined by a predetermined imaging condition based on a measurement result obtained by calibration or separately;
An image acquisition step of acquiring two types of image data imaged under the light pattern that has undergone two phase changes;
Using the relationship between the gain and offset of the light pattern obtained in the relationship acquisition step and the gain or offset value of the light pattern related to the measured coordinate determined from the luminance value of the measured coordinate on the image data. And a measuring step of measuring the height of the measured coordinates by a phase shift method based on the two types of image data.
 上記手段9によれば、上記手段1及び手段7と同様の作用効果が奏される。 According to the means 9, the same effects as the means 1 and means 7 can be obtained.
基板検査装置を模式的に示す概略構成図である。It is a schematic block diagram which shows a board | substrate inspection apparatus typically. 基板検査装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of a board | substrate inspection apparatus. 光源の明るさ又は反射率と輝度値との関係を示すグラフである。It is a graph which shows the relationship between the brightness or reflectance of a light source, and a luminance value. ゲインとオフセットの関係を示すグラフである。It is a graph which shows the relationship between a gain and an offset. 各データ区間に含まれる輝度値の数の分布を表した分布表である。It is a distribution table showing the distribution of the number of luminance values included in each data section. 各データ区間に含まれる輝度値の数の分布を表したヒストグラムである。It is the histogram showing distribution of the number of the luminance values contained in each data section.
 〔第1実施形態〕
 以下、一実施形態について図面を参照しつつ説明する。図1は、本実施形態における三次元計測装置を具備する基板検査装置1を模式的に示す概略構成図である。同図に示すように、基板検査装置1は、計測対象たるクリームハンダが印刷されてなる被計測物としてのプリント基板2を載置するための載置台3と、プリント基板2の表面に対し斜め上方から所定の光パターンを照射する照射手段としての照明装置4と、プリント基板2上の光パターンの照射された部分を撮像するための撮像手段としてのカメラ5と、基板検査装置1内における各種制御や画像処理、演算処理を実施するための制御装置6とを備えている。
[First Embodiment]
Hereinafter, an embodiment will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram schematically illustrating a substrate inspection apparatus 1 including a three-dimensional measurement apparatus according to the present embodiment. As shown in FIG. 1, the substrate inspection apparatus 1 includes a mounting table 3 for mounting a printed circuit board 2 as an object to be measured on which cream solder as a measurement target is printed, and a surface that is oblique to the surface of the printed circuit board 2. An illumination device 4 as an irradiating unit that irradiates a predetermined light pattern from above, a camera 5 as an imaging unit for imaging a portion irradiated with the light pattern on the printed circuit board 2, and various types in the substrate inspection apparatus 1 And a control device 6 for performing control, image processing, and arithmetic processing.
 載置台3には、モータ15,16が設けられており、該モータ15,16が制御装置6(モータ制御手段23)により駆動制御されることによって、載置台3上に載置されたプリント基板2が任意の方向(X軸方向及びY軸方向)へスライドさせられるようになっている。 The mounting table 3 is provided with motors 15 and 16, and the motors 15 and 16 are driven and controlled by the control device 6 (motor control means 23), whereby the printed circuit board mounted on the mounting table 3. 2 can be slid in any direction (X-axis direction and Y-axis direction).
 照明装置4は、所定の光を発する光源4aと、当該光源4aからの光を正弦波状(縞状)の光強度分布を有する光パターンに変換する液晶格子4bとを備えており、プリント基板2に対し、斜め上方から複数通りに位相変化する縞状の光パターンを照射可能となっている。 The illumination device 4 includes a light source 4a that emits predetermined light, and a liquid crystal lattice 4b that converts light from the light source 4a into a light pattern having a sinusoidal (stripe) light intensity distribution. On the other hand, it is possible to irradiate a striped light pattern whose phase changes in a plurality of ways from obliquely above.
 より詳しくは、照明装置4において、光源4aから発せられた光は光ファイバーにより一対の集光レンズに導かれ、そこで平行光にされる。その平行光が、液晶格子4bを介して投影レンズに導かれる。そして、投影レンズからプリント基板2に対し縞状の光パターンが照射される。 More specifically, in the illuminating device 4, the light emitted from the light source 4a is guided to a pair of condensing lenses by an optical fiber, and is converted into parallel light there. The parallel light is guided to the projection lens through the liquid crystal grating 4b. Then, a striped light pattern is irradiated onto the printed circuit board 2 from the projection lens.
 液晶格子4bは、一対の透明基板間に液晶層が形成されると共に、一方の透明基板上に配置された共通電極と、これと対向するように他方の透明基板上に複数並設された帯状電極とを備え、駆動回路により、各帯状電極にそれぞれ接続されたスイッチング素子(薄膜トランジスタ等)をオンオフ制御し、各帯状電極に印加される電圧を制御することにより、光透過率の高い「明部」と、光透過率の低い「暗部」とからなる縞状の格子パターンを形成する。そして、液晶格子4bを介してプリント基板2上に照射される光は、回折作用に起因したボケ等により、正弦波状の光強度分布を有する光パターンとなる。 The liquid crystal lattice 4b includes a liquid crystal layer formed between a pair of transparent substrates, a common electrode disposed on one transparent substrate, and a plurality of strips arranged in parallel on the other transparent substrate so as to face the common electrode. By switching on and off the switching elements (thin film transistors, etc.) connected to each strip electrode by a drive circuit, and controlling the voltage applied to each strip electrode, the “bright portion with high light transmittance” is provided. ”And a“ dark part ”having a low light transmittance is formed. And the light irradiated on the printed circuit board 2 via the liquid crystal grating 4b becomes a light pattern having a sinusoidal light intensity distribution due to blur caused by diffraction action or the like.
 カメラ5は、レンズや撮像素子等からなる。撮像素子としては、CMOSセンサを採用している。勿論、撮像素子はこれに限定されるものではなく、例えばCCDセンサ等を採用してもよい。カメラ5によって撮像された画像データは、当該カメラ5内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置6(画像データ記憶手段24)に入力される。そして、制御装置6は、当該画像データを基に、後述するような画像処理や検査処理等を実施する。かかる意味で、制御装置6は画像処理手段を構成する。 The camera 5 includes a lens, an image sensor, and the like. A CMOS sensor is used as the image sensor. Of course, the imaging device is not limited to this, and a CCD sensor or the like may be employed, for example. Image data captured by the camera 5 is converted into a digital signal inside the camera 5 and then input to the control device 6 (image data storage means 24) in the form of a digital signal. Then, the control device 6 performs image processing, inspection processing, and the like, which will be described later, based on the image data. In this sense, the control device 6 constitutes image processing means.
 次に、制御装置6の電気的構成について説明する。図2に示すように、制御装置6は、カメラ5の撮像タイミングを制御するカメラ制御手段21と、照明装置4を制御する照明制御手段22と、モータ15,16を制御するモータ制御手段23と、カメラ5により撮像された画像データ(輝度データ)を記憶する画像データ記憶手段24と、後述するキャリブレーションデータを記憶するキャリブレーションデータ記憶手段25と、前記画像データを基に算出された位相データを記憶する位相データ記憶手段26と、前記キャリブレーションデータ及び位相データを基に三次元計測を行う三次元計測手段29と、当該三次元計測手段29の計測結果を基にクリームハンダ4の印刷状態を検査する判定手段30とを備えている。照明装置4(液晶格子4b)を制御する照明制御手段22により本実施形態における位相制御手段が構成される。 Next, the electrical configuration of the control device 6 will be described. As shown in FIG. 2, the control device 6 includes a camera control unit 21 that controls the imaging timing of the camera 5, an illumination control unit 22 that controls the illumination device 4, and a motor control unit 23 that controls the motors 15 and 16. Image data storage means 24 for storing image data (luminance data) captured by the camera 5, calibration data storage means 25 for storing calibration data described later, and phase data calculated based on the image data The phase data storage means 26 for storing information, the three-dimensional measurement means 29 for performing three-dimensional measurement based on the calibration data and the phase data, and the printing state of the cream solder 4 based on the measurement result of the three-dimensional measurement means 29 And a determination means 30 for inspecting. The phase control means in this embodiment is constituted by the illumination control means 22 that controls the illumination device 4 (liquid crystal grating 4b).
 なお、図示は省略するが、基板検査装置1は、キーボードやタッチパネルで構成される入力手段、CRTや液晶などの表示画面を有する表示手段、検査結果等を格納するための記憶手段、ハンダ印刷機等に対し検査結果等を出力する出力手段等を備えている。 Although not shown in the drawings, the substrate inspection apparatus 1 includes an input unit composed of a keyboard and a touch panel, a display unit having a display screen such as a CRT or a liquid crystal, a storage unit for storing inspection results, and a solder printing machine. Output means for outputting inspection results and the like.
 次に、基板検査装置1よるプリント基板2の検査手順について詳しく説明する。はじめに、光パターンのばらつき(位相分布)を把握するためのキャリブレーションを行う。 Next, the inspection procedure of the printed circuit board 2 by the substrate inspection apparatus 1 will be described in detail. First, calibration is performed to grasp the variation (phase distribution) of the light pattern.
 液晶格子4bでは、各帯状電極に接続された各トランジスタの特性(オフセットやゲイン等)のばらつきにより、上記各帯状電極に印加される電圧にもばらつきが生じるため、同じ「明部」や「暗部」であっても、各帯状電極に対応する各ラインごとに光透過率(輝度レベル)がばらつくこととなる。その結果、被計測物上に照射される光パターンも正弦波状の理想的な光強度分布とならず、三次元計測結果に誤差が生じるおそれがある。 In the liquid crystal lattice 4b, due to variations in characteristics (offset, gain, etc.) of the transistors connected to the strip electrodes, the voltages applied to the strip electrodes also vary. ", The light transmittance (luminance level) varies for each line corresponding to each strip electrode. As a result, the light pattern irradiated onto the object to be measured does not have a sinusoidal ideal light intensity distribution, and an error may occur in the three-dimensional measurement result.
 そこで、予め光パターンのばらつき(位相分布)を把握しておく、いわゆるキャリブレーション等が行われる。 Therefore, so-called calibration or the like is performed to grasp the variation (phase distribution) of the light pattern in advance.
 キャリブレーションの手順としては、まずプリント基板2とは別に、高さ位置0、かつ、平面をなす基準面を用意する。基準面は、計測対象たるクリームハンダと同一色となっている。すなわち、クリームハンダと光パターンの反射率が等しくなっている。 As a calibration procedure, first, separately from the printed board 2, a height reference plane 0 and a flat reference plane are prepared. The reference surface has the same color as the cream solder to be measured. That is, the reflectances of the cream solder and the light pattern are equal.
 続いて上記基準面に対し光パターンを照射すると共に、これをカメラ5により撮像することで、各座標の輝度値を含んだ画像データを得る。本実施形態では、後述する実測時とは異なり、キャリブレーションを行う際には、光パターンの位相を90°ずつシフトさせ、各光パターンの下で撮像された4通りの画像データを取得する。 Subsequently, the light pattern is irradiated onto the reference plane, and this is imaged by the camera 5 to obtain image data including the luminance value of each coordinate. In the present embodiment, unlike the actual measurement described later, when performing calibration, the phase of the light pattern is shifted by 90 °, and four types of image data captured under each light pattern are acquired.
 そして、制御装置6は、上記4通りの画像データから各座標における光パターンの位相角θを算出し、これをキャリブレーションデータとしてキャリブレーションデータ記憶手段25に記憶する。 Then, the control device 6 calculates the phase angle θ of the light pattern at each coordinate from the above four types of image data, and stores this in the calibration data storage means 25 as calibration data.
 さらに本実施形態では、上記4通りの画像データから各座標における光パターンのゲインA及びオフセットB、並びに両者の関係を特定し、これをキャリブレーションデータとしてキャリブレーションデータ記憶手段25に記憶する。従って、キャリブレーションデータ記憶手段25が本実施形態における記憶手段を構成し、かかる工程が本実施形態における関係取得工程を構成する。 Furthermore, in this embodiment, the gain A and the offset B of the light pattern at each coordinate and the relationship between both are specified from the above four types of image data, and these are stored in the calibration data storage means 25 as calibration data. Therefore, the calibration data storage means 25 constitutes the storage means in the present embodiment, and this process constitutes the relationship acquisition process in the present embodiment.
 ここで、ゲインA及びオフセットBを算出する手順についてより詳しく説明する。4通りの画像データの各座標における輝度値(V0,V1,V2,V3)と、ゲインA及びオフセットBとの関係は、下記式(H1)、(H2)、(H3)、(H4)により表すことができる。 Here, the procedure for calculating the gain A and the offset B will be described in more detail. The relationship between the luminance values (V 0 , V 1 , V 2 , V 3 ) at each coordinate of the four types of image data, the gain A, and the offset B is expressed by the following equations (H1), (H2), (H3), It can be represented by (H4).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 そして、4通りの画像データの輝度値(V0,V1,V2,V3)を加算し、上記式(H1)、(H2)、(H3)、(H4)を下記[数12]に示すように整理すると、下記式(H5)を導き出すことができる。 Then, the luminance values (V 0 , V 1 , V 2 , V 3 ) of the four kinds of image data are added, and the above equations (H1), (H2), (H3), and (H4) are expressed by the following [Equation 12]. The following formula (H5) can be derived by arranging as shown in FIG.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 また、上記式(H1)、(H3)から、下記式(H6)を導き出すことができる。 Moreover, the following formula (H6) can be derived from the above formulas (H1) and (H3).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 また、上記式(H2)、(H4)から、下記式(H7)を導き出すことができる。 Further, the following formula (H7) can be derived from the above formulas (H2) and (H4).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 そして、下記[数15]に示すように、上記式(H6)、(H7)を下記式(H8)に代入し、整理していくと、下記式(H9)を導き出すことができる。 Then, as shown in [Equation 15] below, when the above formulas (H6) and (H7) are substituted into the following formula (H8) and rearranged, the following formula (H9) can be derived.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 さらに、上記式(H5)、(H9)から導き出された下記式(H10)を基にゲインA及びオフセットBの比例定数Kを算出する。 Further, the proportional constant K of the gain A and the offset B is calculated based on the following formula (H10) derived from the above formulas (H5) and (H9).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 そして、上記のように算出された各座標における光パターンのゲインA、オフセットB、及び、比例定数Kをキャリブレーションデータとしてキャリブレーションデータ記憶手段25に記憶する。勿論、比例定数Kのみをキャリブレーションデータとして記憶する構成としてもよい。 Then, the gain A, the offset B, and the proportionality constant K of the light pattern at each coordinate calculated as described above are stored in the calibration data storage unit 25 as calibration data. Of course, only the proportionality constant K may be stored as calibration data.
 次に、各検査エリアごとに行われる検査ルーチンについて詳しく説明する。この検査ルーチンは、制御装置6にて実行されるものである。 Next, the inspection routine performed for each inspection area will be described in detail. This inspection routine is executed by the control device 6.
 制御装置6(モータ制御手段23)は、まずモータ15,16を駆動制御してプリント基板2を移動させ、カメラ5の視野をプリント基板2上の所定の検査エリア(計測範囲)に合わせる。なお、検査エリアは、カメラ5の視野の大きさを1単位としてプリント基板2の表面を予め分割しておいた中の1つのエリアである。 The control device 6 (motor control means 23) first drives and controls the motors 15 and 16 to move the printed circuit board 2, and adjusts the field of view of the camera 5 to a predetermined inspection area (measurement range) on the printed circuit board 2. The inspection area is one area in which the surface of the printed circuit board 2 is divided in advance with the size of the field of view of the camera 5 as one unit.
 続いて、制御装置6は、照明装置4の液晶格子4bを切替制御し、当該液晶格子4bに形成される格子の位置を所定の基準位置に設定する。 Subsequently, the control device 6 switches and controls the liquid crystal lattice 4b of the illumination device 4, and sets the position of the lattice formed in the liquid crystal lattice 4b to a predetermined reference position.
 液晶格子4bの切替設定が完了すると、制御装置6は、照明制御手段22により照明装置4の光源4aを発光させ、所定の光パターンの照射を開始すると共に、カメラ制御手段21によりカメラ5を駆動制御して、当該光パターンが照射された検査エリア部分の撮像を開始する。尚、カメラ5により撮像された画像データは、画像データ記憶装置24へ転送され記憶される。 When the switching setting of the liquid crystal lattice 4b is completed, the control device 6 causes the light control unit 22 to emit the light source 4a of the lighting device 4, starts the irradiation of a predetermined light pattern, and drives the camera 5 by the camera control unit 21. Control is performed to start imaging of the inspection area portion irradiated with the light pattern. The image data captured by the camera 5 is transferred to and stored in the image data storage device 24.
 同様に、上記一連の処理を、光パターンの位相を例えば180°シフトさせた光パターンの下で行う。これにより、所定の検査エリアにつき、位相を180°シフトさせた2通りの光パターンの下で撮像された2通りの画像データが取得される。かかる工程が本実施形態における画像取得工程を構成する。 Similarly, the above-described series of processing is performed under a light pattern in which the phase of the light pattern is shifted by 180 °, for example. Thereby, two kinds of image data captured under two kinds of light patterns whose phases are shifted by 180 ° are obtained for a predetermined inspection area. This process constitutes an image acquisition process in the present embodiment.
 そして、制御装置6は、位相シフト法により、上記2通りの画像データから各座標における光パターンの位相角θを算出し、これを位相データとして位相データ記憶手段26に記憶する。具体的には、上記式(15)に基づき、上記2通りの画像データ上の各座標における輝度値V0,V1と、キャリブレーションデータ記憶手段25に記憶したキャリブレーションデータ(キャリブレーションに基づく各座標の比例定数K)とを参酌して、各座標における光パターンの位相角θを算出する。 Then, the control device 6 calculates the phase angle θ of the light pattern at each coordinate from the two types of image data by the phase shift method, and stores this in the phase data storage means 26 as phase data. Specifically, based on the above equation (15), the luminance values V 0 and V 1 at the respective coordinates on the two types of image data, and the calibration data (based on the calibration) stored in the calibration data storage unit 25. The phase angle θ of the light pattern at each coordinate is calculated in consideration of the proportional constant K) of each coordinate.
 続いて、制御装置6(三次元計測手段29)は、キャリブレーションデータ記憶手段25に記憶したキャリブレーションデータ(キャリブレーションに基づく各座標の位相角)と、位相データ記憶手段26に記憶した位相データ(実測に基づく各座標の位相角)とを比較して、同一の位相角を有する座標のズレ量を算出し、三角測量の原理に基づき、検査エリアの各座標における高さデータを取得する。かかる工程が本実施形態における計測工程を構成する。 Subsequently, the control device 6 (three-dimensional measuring unit 29) has the calibration data (phase angle of each coordinate based on calibration) stored in the calibration data storage unit 25 and the phase data stored in the phase data storage unit 26. Compared with (phase angle of each coordinate based on actual measurement), a shift amount of coordinates having the same phase angle is calculated, and height data at each coordinate of the inspection area is acquired based on the principle of triangulation. Such a process constitutes a measurement process in the present embodiment.
 例えば、被計測座標(x,y)における実測値(位相角)が「10°」であった場合、当該「10°」の値が、キャリブレーションにより記憶したデータ上のどの位置にあるかを検出する。ここで、被計測座標(x,y)よりも3画素隣りに「10°」が存在していれば、それは光パターンの縞が3画素ずれたことを意味する。そして、光パターンの照射角度と、光パターンの縞のズレ量を基に、三角測量の原理により、被計測座標(x,y)の高さデータ(z)を求めることができる。 For example, when the actually measured value (phase angle) at the measured coordinates (x, y) is “10 °”, the position on the data stored by the calibration is the value of “10 °”. To detect. Here, if “10 °” exists 3 pixels adjacent to the measured coordinates (x, y), it means that the stripe of the light pattern has shifted by 3 pixels. Based on the principle of triangulation, the height data (z) of the measured coordinates (x, y) can be obtained based on the irradiation angle of the light pattern and the amount of deviation of the stripe of the light pattern.
 さらに、制御装置6(三次元計測手段29)は、得られた検査エリアの各座標における高さデータに基づいて、基準面より高くなったクリームハンダの印刷範囲を検出し、この範囲内での各部位の高さを積分することにより、印刷されたクリームハンダの量を算出する。 Furthermore, the control device 6 (three-dimensional measuring means 29) detects the printing range of the cream solder that is higher than the reference plane based on the obtained height data at each coordinate of the inspection area, and within this range. The amount of printed cream solder is calculated by integrating the height of each part.
 そして、制御装置6(判定手段30)は、このようにして求めたクリームハンダの位置、面積、高さ又は量等のデータを、予め記憶した基準データと比較判定し、この比較結果が許容範囲内にあるか否かによって、その検査エリアにおけるクリームハンダの印刷状態の良否を判定する。 Then, the control device 6 (determination means 30) compares and determines the data such as the position, area, height, or amount of the cream solder thus obtained with reference data stored in advance, and the comparison result is within an allowable range. Whether the printing state of the cream solder in the inspection area is good or not is determined depending on whether it is in the inspection area.
 かかる処理が行われている間に、制御装置6は、モータ15,16を駆動制御してプリント基板2を次の検査エリアへと移動せしめ、以降、上記一連の処理が、全ての検査エリアで繰り返し行われることで、プリント基板2全体の検査が終了する。 While such processing is being performed, the control device 6 drives and controls the motors 15 and 16 to move the printed circuit board 2 to the next inspection area. Thereafter, the above series of processing is performed in all inspection areas. By being repeatedly performed, the inspection of the entire printed circuit board 2 is completed.
 以上詳述したように、本実施形態によれば、所定の撮像条件により定まる光パターンのゲインA及びオフセットBの関係〔例えばA=K(比例定数)×B〕と、画像データ上の被計測座標(x,y)の輝度値V(x,y)から定まる、該被計測座標(x,y)に係る光パターンのゲインA(x,y)又はオフセットB(x,y)の値とを利用することにより、2通りに位相変化させた光パターンの下で撮像した2通りの画像データを基に位相シフト法により被計測座標の高さ計測を行うことができる。 As described above in detail, according to the present embodiment, the relationship between the gain A and the offset B of the light pattern determined by predetermined imaging conditions [for example, A = K (proportional constant) × B] and the measurement target on the image data The value of the gain A (x, y) or offset B (x, y) of the light pattern related to the measured coordinates (x, y) determined from the luminance value V (x, y) of the coordinates (x, y) By using, the height of the measured coordinate can be measured by the phase shift method based on the two types of image data captured under the light pattern whose phase is changed in two ways.
 このように、2通りの画像データに基づいて高さ計測を行うことができることから、1つのポイントに関し4回又は3回の撮像を必要とする従来技術に比べて、総合的な撮像回数が少なくて済み、撮像時間を短縮することができる。結果として、計測時間を飛躍的に短縮することができる。 As described above, since the height can be measured based on the two types of image data, the total number of times of imaging is less than that of the conventional technique that requires four or three times of imaging for one point. The imaging time can be shortened. As a result, the measurement time can be dramatically shortened.
 〔第2実施形態〕
 以下、第2実施形態について図面を参照しつつ説明する。尚、第1実施形態と同一構成部分については、同一符号を付し、その詳細な説明を省略する。
[Second Embodiment]
Hereinafter, the second embodiment will be described with reference to the drawings. In addition, about the same component as 1st Embodiment, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 上記第1実施形態では、各座標における光パターンのゲインA及びオフセットBの関係(比例定数K)を、予めキャリブレーションにより求める構成となっているが、これに代えて、第2実施形態では、光パターンのゲインA及びオフセットBの関係(比例定数K)を、実測時に撮像した前記2通りに位相変化させた光パターンの下で撮像した2通りの画像データを基に求める構成となっている。 In the first embodiment, the relationship between the gain A and the offset B (proportional constant K) of the light pattern at each coordinate is obtained in advance by calibration. Instead, in the second embodiment, The relationship (proportional constant K) between the gain A and the offset B of the light pattern is obtained on the basis of the two types of image data imaged under the light pattern that has been phase-shifted in the two ways imaged at the time of actual measurement. .
 その手順としては、まず上記式(12)を用いて画像データの全画素についてオフセットBを求める。次に、その中でオフセットBの値が一致する画素の輝度値V(=Asinθ+B)を抽出し、そのヒストグラムを作成する。その一例を図5,6の表に示す。但し、図5,6はゲインAを「1」、オフセットBを「0」とした場合を例示している。図5は、輝度値Vを「0.1」幅のデータ区間に区切って、そのデータ区間に含まれる輝度値の数を表した分布表であり、図6は、それをプロットしたヒストグラムである。 As the procedure, first, the offset B is obtained for all the pixels of the image data using the above equation (12). Next, the luminance value V (= Asin θ + B) of the pixels having the same offset B value is extracted, and a histogram thereof is created. An example is shown in the tables of FIGS. 5 and 6 exemplify a case where the gain A is “1” and the offset B is “0”. FIG. 5 is a distribution table in which the luminance value V is divided into data sections having a width of “0.1” and the number of luminance values included in the data section is represented. FIG. 6 is a histogram in which the luminance values are plotted. .
 そして、このヒストグラムを基に輝度値の最大値VMAXと最小値VMINを決定する。「sinθ」の特性を利用することにより、上記ヒストグラムにおいて発生する2つのピークをそれぞれ輝度値の最大値VMAXと最小値VMINとして決定することができる。図5,6に示す例では、輝度値Vが「-1.0~-0.9」及び「0.9~1.0」のデータ区間に入る輝度値Vの個数がそれぞれ「51」となり、ここが2つのピークとなる。 Based on this histogram, the maximum value V MAX and the minimum value V MIN of the luminance value are determined. By using the characteristic of “sin θ”, two peaks generated in the histogram can be determined as the maximum value V MAX and the minimum value V MIN of the luminance values, respectively. In the example shown in FIGS. 5 and 6, the number of luminance values V that fall within the data section with luminance values V of “−1.0 to −0.9” and “0.9 to 1.0” is “51”, respectively. Here are two peaks.
 続いて、輝度値の最大値VMAXと最少値VMINを基にゲインA及びオフセットBを算出する。上述したとおり、輝度値の最大値VMAXと最少値VMINの平均値がオフセットBとなり、最大値VMAXと最少値VMINの差の半分がゲインAとなる。つまり、図6に示すように、2つのピークの中間値がオフセットBとなり、2つのピークの幅の半分がゲインAとなる。 Subsequently, the gain A and the offset B are calculated based on the maximum value V MAX and the minimum value V MIN of the luminance values. As described above, the average value of the maximum value V MAX and the minimum value V MIN of the luminance value is the offset B, and the half of the difference between the maximum value V MAX and the minimum value V MIN is the gain A. That is, as shown in FIG. 6, the intermediate value between the two peaks is offset B, and half of the width of the two peaks is gain A.
 このようにして得たゲインAとオフセットBの値を基に比例定数Kを決定することができる〔上記式(3)参照〕
 本実施形態によれば、上記第1実施形態のようなキャリブレーションの手間を省略することができ、さらなる計測時間の短縮化を図ることができる。
The proportionality constant K can be determined based on the gain A and the offset B obtained in this way [see the above formula (3)].
According to this embodiment, the labor of calibration as in the first embodiment can be omitted, and the measurement time can be further shortened.
 尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。 In addition, it is not limited to the description content of the said embodiment, For example, you may implement as follows. Of course, other application examples and modification examples not illustrated below are also possible.
 (a)上記実施形態では、三次元計測装置を、プリント基板2に印刷形成されたクリームハンダの高さを計測する基板検査装置1に具体化したが、これに限らず、例えば基板上に印刷されたハンダバンプや、基板上に実装された電子部品など、他のものの高さを計測する構成に具体化してもよい。 (A) In the above embodiment, the three-dimensional measuring device is embodied as the substrate inspection device 1 that measures the height of the cream solder printed and formed on the printed circuit board 2. You may embody the structure which measures the height of other things, such as the solder bump made and the electronic component mounted on the board | substrate.
 (b)上記実施形態では、光源4aからの光を縞状の光パターンに変換するための格子を、液晶格子4bにより構成すると共に、これを切替制御することにより、光パターンの位相をシフトさせる構成となっている。これに限らず、例えば格子部材をピエゾアクチュエータ等の移送手段により移送させ、光パターンの位相をシフトさせる構成としてもよい。 (B) In the above embodiment, the grating for converting the light from the light source 4a into a striped light pattern is constituted by the liquid crystal grating 4b, and the phase of the light pattern is shifted by switching this. It has a configuration. For example, the grating member may be transferred by a transfer unit such as a piezo actuator to shift the phase of the light pattern.
 (c)上記実施形態では、実測時において、位相が180°異なる2通りの光パターンの下で撮像された2通りの画像データを基に高さ計測を行う構成となっている。これに代えて、例えば位相が90°異なる2通りの光パターンの下で撮像された2通りの画像データを基に高さ計測を行う構成としてもよい。かかる場合、上記式(23),(27)を用いることにより、2通りの画像データ上の各座標における輝度値V0,V1と、既知の比例定数Kを利用して、各座標における光パターンの位相角θを算出することができる。 (C) In the above-described embodiment, the height measurement is performed based on two types of image data captured under two types of light patterns whose phases are different by 180 ° in actual measurement. Instead of this, for example, the height may be measured based on two kinds of image data captured under two kinds of light patterns whose phases are different by 90 °. In such a case, by using the above formulas (23) and (27), the light values at the respective coordinates are obtained using the luminance values V 0 and V 1 at the respective coordinates on the two kinds of image data and the known proportionality constant K. The phase angle θ of the pattern can be calculated.
 勿論、この他にも、上記式(1)、(2)、(3)の関係を満たすものであれば、他の構成を採用してもよい。位相角θを得る一般式としては、上記式(9)が一例に挙げられる〔[数9]参照〕。 Of course, in addition to this, other configurations may be adopted as long as the relations of the above formulas (1), (2), and (3) are satisfied. As a general formula for obtaining the phase angle θ, the above formula (9) is given as an example [see [Equation 9]].
 (d)上記第1実施形態では、位相が90°異なる4通りの光パターンの下で撮像された4通りの画像データを基にキャリブレーションを行う構成となっているが、これに限らず、例えば位相の異なる3通りの光パターンの下で撮像された3通りの画像データを基にキャリブレーションを行う構成としてもよい。 (D) In the first embodiment, the calibration is performed based on the four types of image data captured under the four types of light patterns whose phases are different by 90 °. For example, calibration may be performed based on three types of image data captured under three types of light patterns having different phases.
 また、キャリブレーションを行う際に、光源の輝度を変えて複数回行う構成としてもよい。かかる構成とすれば、下記式(28)に示すようなカメラ5の暗電流(オフセット)Cまで求めることができる。 Also, when performing calibration, a configuration may be adopted in which the luminance of the light source is changed and the calibration is performed a plurality of times. With this configuration, the dark current (offset) C of the camera 5 as shown in the following formula (28) can be obtained.
 A=KB+C          ・・・(28)
 但し、A:ゲイン、B:オフセット、C:カメラの暗電流(オフセット)、K:比例定数。
A = KB + C (28)
However, A: Gain, B: Offset, C: Dark current (offset) of the camera, K: Proportional constant.
 あるいは、ゲインAとオフセットBとの関係は、式として求めることなく、ゲインAとオフセットBとの関係を表した数表やテーブルデータを作成することにより、ゲインAからオフセットBあるいはオフセットBからゲインAを求めることが可能に構成しても良い。さらに、キャリブレーションに代えて別途行った計測結果等を利用してゲインAとオフセットBとの関係を求めても良い。 Alternatively, the relationship between the gain A and the offset B is not obtained as an equation, but by creating a numerical table or table data that represents the relationship between the gain A and the offset B, the gain A can be gained from the offset B or the offset B. You may comprise so that A can be calculated | required. Furthermore, the relationship between the gain A and the offset B may be obtained using a measurement result or the like separately performed instead of the calibration.
 (e)上記第2実施形態では、位相が180°異なる2通りの光パターンの下で撮像された2通りの画像データを基に、画像データの全画素について比例定数K等を求める構成となっている。 (E) In the second embodiment described above, the proportionality constant K and the like are obtained for all the pixels of the image data based on the two types of image data captured under two types of light patterns that are 180 degrees out of phase. ing.
 これに限らず、例えば位相が90°異なる2通りの光パターンの下で撮像された2通りの画像データを基に比例定数K等を求める構成としてもよい。また、画像データの全画素ではなく、被計測座標の周辺など画像データの一部の範囲において、比例定数K等を求める構成としてもよい。 However, the present invention is not limited to this. For example, the proportional constant K or the like may be obtained based on two types of image data captured under two types of light patterns whose phases are different by 90 °. Further, the proportional constant K or the like may be obtained not in all pixels of the image data but in a part of the image data such as the periphery of the measured coordinates.
 1…基板検査装置、2…プリント基板、4…照明装置、4a…光源、4b…液晶格子、5…カメラ、6…制御装置、24…画像データ記憶手段、25…キャリブレーションデータ記憶手段、26…位相データ記憶手段、V0,V1,V2,V3…輝度値、A…ゲイン、B…オフセット、K…比例定数。
 
DESCRIPTION OF SYMBOLS 1 ... Board | substrate inspection apparatus, 2 ... Printed circuit board, 4 ... Illuminating device, 4a ... Light source, 4b ... Liquid crystal lattice, 5 ... Camera, 6 ... Control apparatus, 24 ... Image data storage means, 25 ... Calibration data storage means, 26 ... phase data storage means, V 0 , V 1 , V 2 , V 3 ... luminance value, A ... gain, B ... offset, K ... proportional constant.

Claims (9)

  1.  所定の光を発する光源、及び、当該光源からの光を縞状の光強度分布を有する光パターンに変換する格子を有し、当該光パターンを少なくとも被計測物に対し照射可能な照射手段と、
     前記格子の移送又は切替を制御し、前記照射手段から照射する前記光パターンの位相を複数通りに変化可能な位相制御手段と、
     前記光パターンの照射された前記被計測物からの反射光を撮像可能な撮像手段と、
     前記撮像手段により撮像された画像データを基に前記被計測物の三次元計測を実行可能な画像処理手段とを備え、
     前記画像処理手段は、
     所定の撮像条件により定まる前記光パターンのゲイン及びオフセットの関係と、
     前記画像データ上の被計測座標の輝度値から定まる、該被計測座標に係る前記光パターンのゲイン又はオフセットの値とを利用することにより、
     2通りに位相変化させた前記光パターンの下で撮像した2通りの画像データを基に位相シフト法により前記被計測座標の高さ計測を実行可能としたことを特徴とする三次元計測装置。
    A light source that emits predetermined light, and a grating that converts the light from the light source into a light pattern having a striped light intensity distribution, and an irradiation unit that can irradiate at least the object to be measured with the light pattern;
    Phase control means for controlling the transfer or switching of the grating and capable of changing the phase of the light pattern irradiated from the irradiation means in a plurality of ways;
    Imaging means capable of imaging reflected light from the object to be measured irradiated with the light pattern;
    Image processing means capable of performing three-dimensional measurement of the object to be measured based on image data picked up by the image pickup means;
    The image processing means includes
    The relationship between the gain and offset of the light pattern determined by predetermined imaging conditions;
    By using the gain or offset value of the light pattern related to the measured coordinates determined from the luminance value of the measured coordinates on the image data,
    A three-dimensional measuring apparatus characterized in that height measurement of the measured coordinates can be performed by a phase shift method based on two kinds of image data picked up under the light pattern whose phase is changed in two ways.
  2.  前記ゲイン及びオフセットの関係は、前記ゲインと前記オフセットとが相互に一義的に定まる関係であることを特徴とする請求項1に記載の三次元計測装置。 2. The three-dimensional measuring apparatus according to claim 1, wherein the relationship between the gain and the offset is a relationship in which the gain and the offset are uniquely determined.
  3.  前記ゲイン及びオフセットの関係は、前記ゲインと前記オフセットとが比例関係であることを特徴とする請求項1に記載の三次元計測装置。 2. The three-dimensional measuring apparatus according to claim 1, wherein the gain and the offset are in a proportional relationship between the gain and the offset.
  4.  前記2通りに位相変化させた光パターンの相対位相関係をそれぞれ0、γとしたときの前記2通りの画像データの各画素の輝度値をそれぞれV0、V1とした場合に、
     前記画像処理手段は、
     下記式(1)、(2)、(3)の関係を満たす位相角θを求め、該位相角θに基づき前記高さ計測を行うことを特徴とする請求項1に記載の三次元計測装置。
     V0=Asinθ+B      ・・・(1)
     V1=Asin(θ+γ)+B  ・・・(2)
     A=KB          ・・・(3)
     但し、γ≠0、A:ゲイン、B:オフセット、K:比例定数。
    When the luminance value of each pixel of the two types of image data when the relative phase relationship of the light pattern having the two phase changes is set to 0 and γ, respectively, is V 0 and V 1 ,
    The image processing means includes
    The three-dimensional measuring apparatus according to claim 1, wherein a phase angle θ satisfying a relationship of the following formulas (1), (2), and (3) is obtained, and the height measurement is performed based on the phase angle θ. .
    V 0 = Asinθ + B (1)
    V 1 = Asin (θ + γ) + B (2)
    A = KB (3)
    However, γ ≠ 0, A: gain, B: offset, K: proportional constant.
  5.  γ=180°としたことを特徴とする請求項4に記載の三次元計測装置。 The three-dimensional measuring apparatus according to claim 4, wherein γ = 180 °.
  6.  γ=90°としたことを特徴とする請求項4に記載の三次元計測装置。 The three-dimensional measuring apparatus according to claim 4, wherein γ = 90 °.
  7.  予めキャリブレーション又は別途行った計測結果により算出した前記光パターンのゲイン及びオフセットの関係を記憶する記憶手段を備えていることを特徴とする請求項1乃至6のいずれかに記載の三次元計測装置。 7. The three-dimensional measuring apparatus according to claim 1, further comprising a storage unit that stores a relationship between the gain and offset of the light pattern calculated based on a calibration result or a measurement result separately performed in advance. .
  8.  前記光パターンのゲイン及びオフセットの関係を、前記2通りに位相変化させた前記光パターンの下で撮像した2通りの画像データを基に求めることを特徴とする請求項1乃至6のいずれかに記載の三次元計測装置。 7. The relationship between the gain and offset of the light pattern is obtained based on two types of image data captured under the light pattern whose phase has been changed in the two ways. The three-dimensional measuring apparatus described.
  9.  所定の光を発する光源、及び、当該光源からの光を縞状の光強度分布を有する光パターンに変換する格子を有し、当該光パターンを少なくとも被計測物に対し照射可能な照射手段と、
     前記格子の移送又は切替を制御し、前記照射手段から照射する前記光パターンの位相を複数通りに変化可能な位相制御手段と、
     前記光パターンの照射された前記被計測物からの反射光を撮像可能な撮像手段とを備えた三次元計測装置によって行われる三次元計測方法であって、
     所定の撮像条件により定まる前記光パターンのゲイン及びオフセットの関係を予めキャリブレーション又は別途行った計測結果により求める関係取得工程と、
     2通りに位相変化させた前記光パターンの下で撮像した2通りの画像データを取得する画像取得工程と、
     前記関係取得工程において求めた前記光パターンのゲイン及びオフセットの関係と、前記画像データ上の被計測座標の輝度値から定まる該被計測座標に係る前記光パターンのゲイン又はオフセットの値とを利用して、前記2通りの画像データを基に位相シフト法により前記被計測座標の高さ計測を行う計測工程とを備えたことを特徴とする三次元計測方法。
    A light source that emits predetermined light, and a grating that converts the light from the light source into a light pattern having a striped light intensity distribution, and an irradiation unit that can irradiate at least the object to be measured with the light pattern;
    Phase control means for controlling the transfer or switching of the grating and capable of changing the phase of the light pattern irradiated from the irradiation means in a plurality of ways;
    A three-dimensional measurement method performed by a three-dimensional measurement apparatus including an imaging unit capable of imaging reflected light from the measurement object irradiated with the light pattern,
    A relationship acquisition step of obtaining a relationship between gain and offset of the light pattern determined by a predetermined imaging condition based on a measurement result obtained by calibration or separately;
    An image acquisition step of acquiring two types of image data imaged under the light pattern that has undergone two phase changes;
    Using the relationship between the gain and offset of the light pattern obtained in the relationship acquisition step and the gain or offset value of the light pattern related to the measured coordinate determined from the luminance value of the measured coordinate on the image data. And a measuring step of measuring the height of the measured coordinates by a phase shift method based on the two types of image data.
PCT/JP2015/082486 2015-05-11 2015-11-19 Three-dimensional measurement device and three-dimensional measurement method WO2016181578A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580078559.9A CN107429992B (en) 2015-05-11 2015-11-19 Three-dimensional measuring apparatus and method for three-dimensional measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-096469 2015-05-11
JP2015096469A JP6126640B2 (en) 2015-05-11 2015-05-11 Three-dimensional measuring apparatus and three-dimensional measuring method

Publications (1)

Publication Number Publication Date
WO2016181578A1 true WO2016181578A1 (en) 2016-11-17

Family

ID=57247809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082486 WO2016181578A1 (en) 2015-05-11 2015-11-19 Three-dimensional measurement device and three-dimensional measurement method

Country Status (4)

Country Link
JP (1) JP6126640B2 (en)
CN (1) CN107429992B (en)
TW (1) TWI580927B (en)
WO (1) WO2016181578A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113966457A (en) * 2019-06-12 2022-01-21 Ckd株式会社 Three-dimensional measuring apparatus and three-dimensional measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012053015A (en) * 2010-09-03 2012-03-15 Saki Corp:Kk Visual inspection device and visual inspection method
JP2013124938A (en) * 2011-12-15 2013-06-24 Ckd Corp Three-dimensional measuring device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292135A (en) * 1999-04-07 2000-10-20 Minolta Co Ltd Three-dimensional information input camera
JP3878033B2 (en) * 2002-02-28 2007-02-07 シーケーディ株式会社 3D measuring device
JP4289893B2 (en) * 2003-01-21 2009-07-01 株式会社ニッケ機械製作所 Appearance measuring device
JP4885154B2 (en) * 2007-01-31 2012-02-29 国立大学法人東京工業大学 Method for measuring surface shape by multiple wavelengths and apparatus using the same
DE102010064593A1 (en) * 2009-05-21 2015-07-30 Koh Young Technology Inc. Form measuring device and method
WO2012133926A2 (en) * 2011-04-01 2012-10-04 Nikon Corporation Profile measuring apparatus, method for measuring profile, and method for manufacturing structure
JP5994787B2 (en) * 2011-10-11 2016-09-21 株式会社ニコン Shape measuring device, structure manufacturing system, shape measuring method, structure manufacturing method, shape measuring program
TWI481814B (en) * 2013-04-03 2015-04-21 Ckd Corp Three dimensional measuring device
CN103528543B (en) * 2013-11-05 2015-12-02 东南大学 System calibrating method in a kind of optical grating projection three-dimensional measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012053015A (en) * 2010-09-03 2012-03-15 Saki Corp:Kk Visual inspection device and visual inspection method
JP2013124938A (en) * 2011-12-15 2013-06-24 Ckd Corp Three-dimensional measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113966457A (en) * 2019-06-12 2022-01-21 Ckd株式会社 Three-dimensional measuring apparatus and three-dimensional measuring method
CN113966457B (en) * 2019-06-12 2024-06-11 Ckd株式会社 Three-dimensional measuring device and three-dimensional measuring method

Also Published As

Publication number Publication date
JP6126640B2 (en) 2017-05-10
JP2016211986A (en) 2016-12-15
TWI580927B (en) 2017-05-01
CN107429992B (en) 2019-09-03
TW201640076A (en) 2016-11-16
CN107429992A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
JP6109255B2 (en) 3D measuring device
JP6110897B2 (en) 3D measuring device
JP5430612B2 (en) 3D measuring device
JP5640025B2 (en) 3D measuring device
JP2010169433A (en) Three-dimensional measuring device
JP5643241B2 (en) 3D measuring device
JP5957575B1 (en) 3D measuring device
WO2017110115A1 (en) Three-dimensional measurement device
JP4011561B2 (en) 3D measuring device
JP6126640B2 (en) Three-dimensional measuring apparatus and three-dimensional measuring method
JP4947559B2 (en) 3D measuring device
WO2016203668A1 (en) Three-dimensional measurement device
CN107532889B (en) Three-dimensional measuring device
CN113966457B (en) Three-dimensional measuring device and three-dimensional measuring method
WO2017090268A1 (en) Three-dimensional measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891901

Country of ref document: EP

Kind code of ref document: A1