WO2016181068A1 - Optical system for the acquisition of information about a surface - Google Patents

Optical system for the acquisition of information about a surface Download PDF

Info

Publication number
WO2016181068A1
WO2016181068A1 PCT/FR2016/051100 FR2016051100W WO2016181068A1 WO 2016181068 A1 WO2016181068 A1 WO 2016181068A1 FR 2016051100 W FR2016051100 W FR 2016051100W WO 2016181068 A1 WO2016181068 A1 WO 2016181068A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
acquisition system
matrix
cells
Prior art date
Application number
PCT/FR2016/051100
Other languages
French (fr)
Inventor
Sylvaine Picard
Yann LE GUILLOUX
Original Assignee
Safran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran filed Critical Safran
Publication of WO2016181068A1 publication Critical patent/WO2016181068A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/232Image signal generators using stereoscopic image cameras using a single 2D image sensor using fly-eye lenses, e.g. arrangements of circular lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects

Definitions

  • the present invention relates to the optical acquisition of information on a surface, and in particular the optical three-dimensional (3D) metrological acquisition of a surface.
  • Optical 3D metrological acquisition consists in obtaining the coordinates of the points constituting the surface of a part, by sending a luminous radiation on the surface of the part and by measuring the radiation reflected by the surface of the part.
  • the present invention can of course be used to acquire all kinds of information on a surface, such as, for example, the demonstration of a particular surface condition (corrugations, scratches) on a non-planar surface.
  • the present invention relates in particular to the acquisition of information on a non-Lambertian surface, that is to say that can present specular reflections.
  • a non-Lambertian surface is characterized by a specular component, the specular component being the preferred reflection direction or directions, and a Lambertian component, the Lambertian component being the Lambert-law component, that is, having a equal luminance in all directions.
  • Optical acquisition systems are known, in particular of 3D optical metrological acquisition, such as that illustrated in FIG. 1, comprising a light source 2 which illuminates the surface to be acquired 4 and an imaging sensor 3 which acquires the light reflected by the surface 4.
  • the optical acquisition system determines, from the image acquired by the imaging sensor 3, information on the surface by known techniques such as triangulation scanner, phase shift scanner, light scanner. structured, or modulated light scanner.
  • Optical acquisition systems of the prior art do not make it possible to satisfactorily acquire the non-Lambertian surfaces because it is very probable that there are points such as the specular reflection of the surface or in the angle of camera field, which leads to a saturation of the imaging sensor in the preferred reflection directions.
  • Another disadvantage of this system is that it can not adapt in real time. Another solution is to illuminate the room by one point and to observe this point with two cameras. In this case at least one of the cameras is not dazzled. The disadvantage of this solution is that it is punctual and does not allow rapid acquisition of an entire surface, moreover it requires the use of two cameras.
  • An object of the invention is to provide an optical system for acquiring information on a surface that makes it possible to totally eliminate specular reflections towards the camera and adaptable in real time.
  • Adaptable means that the projected light can be changed at any time, locally or globally.
  • optical system for acquiring information on a surface comprising:
  • a lighting device configured to illuminate the surface to be acquired
  • the lighting device is a configured plenoptic lighting device for illuminating each point of the surface according to at least two different angles of incidence, and further comprising:
  • a matrix mask positioned between the lighting device and the surface to be acquired and comprising a matrix of cells that can be controlled independently of each other to transmit a chosen quantity of light
  • control device configured to limit the amount of light transmitted by a cell when the light transmitted through said cell generates, after reflection on the surface to be acquired, a specular reflection in the field of view of one of the devices; imaging.
  • the invention makes it possible to control the luminous intensity at any point of the illuminated surface and for each incidence.
  • the invention makes it possible in particular to produce a plurality of textured lights on the surface to be acquired without creating specularities in the images acquired.
  • the invention further allows, when one is aware of a prior model of the observed surface, to detect shape defects even for complex 3D shapes.
  • the invention notably makes it possible to perform a stereo algorithm reconstruction for non-Lambertian (and complex) surfaces.
  • the plenoptic lighting device comprises a light source and a microlens array comprising a plurality of microlenses all having the same image focal plane;
  • the matrix mask is positioned between the microlens array and the image focal plane of the microlenses;
  • microlenses are divergent
  • microlenses are convergent
  • the plenoptic lighting device comprises a light source and a panel of opaque material in which is formed a matrix of holes, the source illuminating the panel at a plurality of angles of incidence;
  • the plenoptic lighting device comprises a plurality of light sources arranged in the same plane;
  • the matrix mask is an LCD screen, the cells being LCD cells;
  • the matrix mask is a matrix of orientable mirrors, the cells being orientable mirrors;
  • each cell can be controlled to be in an on state, in which it transmits all the light, or in a blocking state, in which it transmits no light,
  • each cell can be controlled to be in an intermediate state, in which it lets a certain quantity of light pass;
  • the controller is configured to control the alternation of the passing and blocking states of the cell so as to control the amount of light transmitted through the cell during a period of time. integration time;
  • an optical separation device is positioned in such a way that the light coming from the source is transmitted to the surface to be analyzed through the optical separation device, the light coming from the reflection on the surface being reflected by the separation device optical to the imaging device;
  • the imaging device is a plenoptic sensor.
  • the invention also proposes a method for acquiring information on a surface implemented by an acquisition optical system according to one of the preceding claims, consisting of:
  • the invention also proposes the use of an optical acquisition system as characterized above, for the metrological control of a turbomachine blade.
  • FIG. 1 illustrates an optical acquisition system of the prior art
  • FIG. 2 illustrates an optical acquisition system equipped with an optical diffuser as proposed in the prior art
  • FIG. 3a illustrates an optical acquisition system according to a first embodiment of the invention
  • FIG. 3b illustrates an optical acquisition system according to an alternative embodiment of the invention
  • FIG. 4a illustrates an optical acquisition system according to a second embodiment of the invention
  • FIG. 4b illustrates an optical acquisition system according to an alternative embodiment of the invention
  • FIG. 5 illustrates an optical acquisition system comprising two imaging devices according to an embodiment of the invention
  • FIG. 6 illustrates an optical acquisition system in which the matrix mask is a DLP matrix
  • FIG. 7 illustrates an optical acquisition system according to an alternative embodiment of the invention. DETAILED DESCRIPTION OF THE INVENTION
  • an optical acquisition system 1 of a surface 4 comprises a lighting device 20, and one or more imaging devices 30, a matrix mask 7, and a control system of the matrix mask 9.
  • the lighting device 20 is a plenoptic lighting device configured to illuminate each point of the surface 4 according to at least two different angles of incidence, and a matrix mask 7 adapted to shut off or deflect some beams selectively from the surface.
  • the plenoptic lighting device 20 comprises, in some embodiments, a light source 21, and a matrix 6 of microlenses.
  • the light source 21 is collimated with a collimator 25 placed between the light source 21 and the matrix 6 of microlenses.
  • the light source 21 may also be a flat electroluminescent film or a plurality of light emitting diodes (LEDs) optionally associated with an optical diffuser.
  • LEDs light emitting diodes
  • the matrix 6 of microlenses consists of a set of microlenses 61 located in the same plane.
  • the microlenses 61 may in particular be arranged in rows and columns or staggered.
  • the microlenses 61 all have the same focal length and their focal planes F 'are merged.
  • Each microlens 61 transmits an incident beam on the surface 4 with one or more angle (s) of incidence.
  • the angle of incidence angle (s) on said point of the beam transmitted by a lens 61 is different from the angle interval (s) of incidence on said point of the beam transmitted by the other microlenses 61.
  • each point is illuminated by several beams with different angles of incidence. If a point of the surface is in the image focal plane of the lighting device, it is illuminated by several beams coming from the same lens 61 having different angles of incidence (except, of course, by the beams occulted by the mask 7). Otherwise, it is illuminated by several beams having different angles of incidence from different lenses 61.
  • the matrix 6 of microlenses 61 transforms the light source 21 into a plurality of secondary light sources positioned at the focal point of each microlens 61.
  • each microlens 61 transforms the light emitted by the light source 21 into a secondary light source which illuminates the surface to be analyzed 4 according to a particular set of angles. In this way, each point of the surface 4 is illuminated according to several different angles of incidence.
  • each secondary light source illuminates the entire surface 4.
  • the microlenses In a first embodiment illustrated in FIG. 3a, the microlenses
  • the lighting device 20 further comprises a main lens 8.
  • the focal image plane F 'of the microlenses 61 is between the matrix 6 of microlenses 61 and the main lens 8.
  • the main lens 8 is a converging lens.
  • the matrix mask 7 is positioned between the microlens matrix 6 and the main lens 8, and more precisely between the microlens matrix 6 and the image focal plane F 'of the microlenses 61.
  • the matrix mask 7 may be placed between the light source 21 and the microlenses 61.
  • This first embodiment corresponds to the optical assembly of a plenoptic camera, the path of the light however being reversed compared to that of a plenoptic camera.
  • a conventional photographic camera records at each point the accumulated energy of all the rays converging on the sensitive surface
  • a plenoptic camera records separately the energies of the rays according to their direction of propagation.
  • the matrix 6 of microlenses 61 focuses the light of the source 21 into a plurality of image focal points f, all arranged in the same focal plane plane F '.
  • the spacing between the microlenses 61 is typically of the order of 0.3mm.
  • the number of microlenses 61 is typically of the order of 60 in one direction.
  • the height of the network 6 of microlenses is then of the order of 20mm.
  • the focal length of the microlenses is typically 0.6mm.
  • the focal length of the main lens is typically 40mm.
  • the distance between the microlens matrix 6 and the main lens 8 is 40 mm.
  • the distance between the main lens 8 and the surface is of the order of 50mm.
  • microlenses 61 To optimize the spatial resolution of the illuminated points on the surface 4, it is necessary to choose microlenses 61 with the smallest possible diameter or to reduce the magnification of the main lens. To maximize the angular resolution of the rays illuminating a point on the surface 4, the microlenses of a relatively large diameter must be spaced apart. In this first embodiment, the spacing of the microlenses is a determining factor for the characteristics of the system.
  • the microlenses 61 are divergent.
  • the focal plane image F 'of the microlenses 61 is between the matrix 6 of microlenses and the light source 21.
  • the matrix mask 7 is positioned between the microlens matrix 6 and the light source 21, and more precisely between the microlens matrix 6 and the image focal plane F 'of the microlenses 61.
  • the distance between the microlens matrix 6 and the surface 4 is typically of the order of a few tens of centimeters.
  • the matrix 6 of microlenses is replaced by a panel 11 in which circular holes 11 are formed.
  • the diameter of these circular holes 11 is small compared to the size of the elements of the mask 7 but much greater than the wavelength.
  • the light source 21 sends light to each hole 1 1 1 at a plurality of angles of incidence. Each troul 1 1 then behaves as a secondary source.
  • point sources 21 and matrix masks 7 are point sources 21 and matrix masks 7 of a plurality of video projectors. In this case the working volume of the plenoptic lighting may exceed the m 3 and the working distance may exceed the m.
  • the matrix mask 7 comprises a matrix of cells 71 that can be controlled independently of each other to transmit a chosen amount of light.
  • Each cell 71 may be either in an on state, in which it transmits the light passing through it, or in a blocking state, in which it obstructs the light, as in the case of an LCD screen, or deflects it out of the surface 4, as in the case of a DLP matrix.
  • a modulation of the amount of light emitted through each cell 71 is controllable either by varying the degree of opacity of the cells 71 or by temporal modulation. Indeed, each cell 71 can change state several thousand times per second.
  • the imaging device 30 integrates the pulses during the exposure time and thus perceives the average light level. The gray level detected by the imaging device 30 is therefore directly proportional to the time during which the cell 71 is in the passing position over time.
  • each microlens 61 corresponds to a cell 71.
  • the beam from each microlens 61 is transmitted through a set of neighboring cells 71. .
  • each microlens 61 may correspond to a square of cells 71, typically composed of 4, 9, or 16 cells 71,
  • the matrix mask 7 may in particular be a liquid crystal screen 7 subsequently called an LCD screen, consisting of a grid of liquid crystal cells (LCD), each cell 71 being either transparent (on-state) or opaque (state blocking), depending on the state of the liquid crystal of this pixel.
  • An LCD cell 71 consists, in known manner, of a thin layer of liquid crystal, enclosed between two transparent plates equipped with polarizers, and subjected to a variable electric field. The state of each liquid crystal cell 71 is controlled, in a known manner, by applying between transparent electrodes distributed in matrix opposite the two transparent plates a bias voltage evolving between two levels: a low level at which the cell LCD 71 is transparent (on state) and a high level at which the LCD cell 71 is opaque (blocking state).
  • the matrix mask 7 may also be a DLP (for "Digital Light Processor") matrix consisting of a matrix of moving mirrors, each cell 71 of the mask being a moving mirror.
  • the state of each cell 71 is controlled, in known manner, by orienting the moving mirror so that it reflects light to the surface 4, the cell is then in the on state, or so that that it reflects this light towards a surface that absorbs the rays, the cell is then in the blocking state. This produces the projection of a lit point, or a point off.
  • the matrix mask 7 and the light source 21 are positioned relative to the surface 4 so that the cells 71 in the blocking state do not reflect the light on the screen. surface 4, while the cells 71 in the on state reflect the light on the surface 4, as shown in FIG. 6.
  • the matrix mask 7 makes it possible to control at each point of the surface 4, the intensity of each ray illuminating this point.
  • the control system 9 controls the blocking state of the cell or cells 71 through which the radiation generating specular reflection passes.
  • the optical acquisition system 1 comprises one or more imaging devices 30.
  • Each imaging device 30 comprises a photographic sensor 31 and a focusing optic 32.
  • the imaging system 30 comprises Optical acquisition may include other optical elements, such as mirrors, so as to create folds of the optical paths.
  • the photographic photographic sensor 31 is a photosensitive electronic component adapted to convert the electromagnetic radiation (UV, visible or IR) into an analog electrical signal. This signal is then amplified and digitized by an analog-to-digital converter to obtain a digital image.
  • the focusing optics 32 is conventionally an optical lens or a combination of optical lenses.
  • the imaging device 30 is for example a camera.
  • the angle of view of the imaging device 30 is the angle that the imaging device 30 will be able to capture.
  • the imaging system 30 has N imaging devices 30, to always be able to eliminate all specular reflections while illuminating the entire surface 4 in the images of all the imaging devices 30, it is necessary that each point the surface 4 is illuminated according to at least N + 1 different angles of incidence.
  • the imaging device 30 is arranged with respect to the surface 4 and the lighting device 20, so as to capture a significant part of the light reflected on the surface to be analyzed 4.
  • the imaging device 30 can be arranged to capture the light directly after reflection on the surface to be analyzed 4, as illustrated in FIG. 1.
  • the optical axis of the imaging device 30 is oriented towards the surface to be analyzed 4.
  • the acquisition system 1 may also comprise an optical separation device 10, such as a semi-reflecting plate, positioned between the source 21 and the surface 4.
  • the light coming from the source 21 is transmitted to the surface to be analyzed 4 through the optical separation device 10.
  • the light resulting from the reflection on the surface 4 is reflected by the optical separation device 10 to the imaging device 30.
  • the optical of Focus 32 of the imaging device 30 is a set of microlenses, the imaging device 30 being a plenoptic imaging sensor.
  • the optical separation device 10 is positioned between the main lens 8 and the microlens matrix 6.
  • the light from the microlens array 6 is transmitted to the main lens 8 and the surface to be analyzed 4 through the optical separation device 10.
  • the light resulting from the reflection on the surface 4 is transmitted by the main lens 8 and then reflected by the optical separation device 10 to the imaging device 30.
  • the optical separation device is positioned between the microlens matrix 6 and the surface 4.
  • the light from the source 21 is transmitted to the surface to be analyzed 4 through the optical separation device 10.
  • the optical separation device is positioned between the sources 21 and the surface 4.
  • the light from the sources 21 is transmitted to the surface to be analyzed 4 through the semi-reflective plate.
  • the reflecting face is oriented with respect to the surface 4 so that, after reflection, the light reflected on the surface 4 is transmitted to the imaging device 30, (passing through the main lens 8 in the case of the first embodiment).
  • the reflecting face is oriented with respect to the surface 4 so that the light coming from the source 21 is reflected on the reflecting face towards the surface to be analyzed 4, and so that the light reflected on the surface 4 is transmitted to the imaging device 30 through the semi-reflecting plate 10.
  • the controller 9 can be operated using various methods.
  • the different optical paths followed by the light depend on the configuration of the lighting device and the device (s) of acquisition but also on the surface 4 which is unknown.
  • to determine the cells 71 of the mask which must be in the blocking state it is possible to proceed by trial / error.
  • specular reflection is detected by the imaging device 30, i.e., when the camera detects radiation above a predefined threshold
  • the controller 9 records in a database that the cell 71 question must be put in the blocking state. Specular reflection can also be detected by an observer and not detected automatically by the camera. In this case, it will be understood that "detect" means "observe”.
  • a priori model of the surface 4 it is possible to calibrate the control device 9 taking into account the knowledge a priori of the shape of the surface 4. For this purpose, it is estimated (or known) the position of the surface with respect to the lighting device 20 as well as with respect to the imaging system, then the incident rays which are not to lead to specularities and those which must lead to specularities by modeling the propagation of the rays are determined; , and we deduce the cells 71 through which these rays pass. By switching on and off the beam-transmitting cells 71 to specularities and those not leading to specularities, it is possible to check whether the specularities appear according to the prediction made by modeling.
  • the acquisition system 1 comprises an optical separation device 10 placed between the source 21 and the surface 4 so that the light after reflection on the surface 4 is transmitted towards the device 30, the direction of the rays to be extinguished can be deduced directly from the image of the imaging device 30 because there is a fixed geometrical correspondence between the optical paths of the imaging channels and those of the lighting channels (see FIG. Fig. 6).
  • the correspondence between the optical path of the light coming from the lighting device and that of the light reaching the imaging device 30 does not depend on the surface 4, and the control device 9 can be calibrated a priori so as to associate each pixel of the image on the imaging device 30 with a cell 71 of the mask 7
  • the calibration of the control device 9 consists of associating with each pixel of the image on the imaging device 30, the cell or cells 71 of the mask 7 which transmit the light incident on said pixel. Calibration of the control device 9 makes it easy to determine which cell (s) 71 of the mask 7 must be closed (s) to suppress annoying specular reflection.
  • This variant embodiment makes it possible on the one hand to reduce the size of the device and, on the other hand, to simplify the control device 9.
  • the optical acquisition device 30 is a structured light 3D scanner projecting a bright pattern on the surface.
  • the pattern can be one or two dimensional.
  • the imaging device is a camera that records any deformation of the pattern.
  • a calculator calculates, in known manner, the distances of the points making up this pattern.
  • the optical acquisition device 30 is a stereo imaging device having a plurality of cameras.
  • the projected pattern (s) may be, for example, random patterns generated so as not to create specularities.
  • the analysis of the images taken by each of the cameras of the optical acquisition device 30 makes it possible to associate with each pixel of a camera the pixel of the other corresponding camera.
  • the mask 7 is controlled to remove all lambertian components of the light reflected by the surface. Thus, no camera is affected by specular reflection, and the cameras record only the lambertian component of the light reflected by the surface.
  • the light energy received by the different cameras is the same and the images of the pixels can therefore be matched in a conventional manner (by correlation of the neighborhood of the pixels or by observation of a unique signature at each pixel).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention relates to an optical system (1) for the acquisition of information about a surface (4), comprising: a plenoptic lighting device (20) designed to illuminate the surface to be acquired (4); an imaging device (30) designed to acquire an image of the surface to be acquired (4); a matrix mask (7) comprising a matrix (71) of cells that can be controlled independently of each other in order to transmit a selected quantity of light; and a control device (9) designed to limit the quantity of light transmitted by a cell (71) when the light transmitted through said cell (71) generates, following reflection on the surface to be acquired (4), a specular reflection in the field angle of the imaging device (30).

Description

Système optique d'acquisition d'informations sur une surface  Optical system for acquiring information on a surface
DOMAINE DE L'INVENTION La présente invention concerne l'acquisition optique d'informations sur une surface, et notamment l'acquisition métrologique tridimensionnelle (3D) optique d'une surface. L'acquisition métrologique 3D optique consiste à obtenir les coordonnées des points constituant la surface d'une pièce, en envoyant un rayonnement lumineux sur la surface de la pièce et en mesurant le rayonnement réfléchi par la surface de la pièce. La présente invention peut bien entendu être utilisée pour acquérir toutes sortes d'informations sur une surface, comme par exemple, la mise en évidence d'un état de surface (ondulations, rayures) particulier sur une surface non plane. FIELD OF THE INVENTION The present invention relates to the optical acquisition of information on a surface, and in particular the optical three-dimensional (3D) metrological acquisition of a surface. Optical 3D metrological acquisition consists in obtaining the coordinates of the points constituting the surface of a part, by sending a luminous radiation on the surface of the part and by measuring the radiation reflected by the surface of the part. The present invention can of course be used to acquire all kinds of information on a surface, such as, for example, the demonstration of a particular surface condition (corrugations, scratches) on a non-planar surface.
La présente invention concerne en particulier l'acquisition d'informations sur une surface non-lambertienne, c'est à dire pouvant présenter des réflexions spéculaires. Une surface non-lambertienne se caractérise par une composante spéculaire, la composante spéculaire étant la ou les directions de réflexion privilégiées, et une composante lambertienne, la composante lambertienne étant la composante respectant la loi de Lambert, c'est-à-dire ayant une luminance énergétique égale dans toutes les directions.  The present invention relates in particular to the acquisition of information on a non-Lambertian surface, that is to say that can present specular reflections. A non-Lambertian surface is characterized by a specular component, the specular component being the preferred reflection direction or directions, and a Lambertian component, the Lambertian component being the Lambert-law component, that is, having a equal luminance in all directions.
ETAT DE LA TECHNIQUE STATE OF THE ART
On connaît des systèmes d'acquisition optique, notamment d'acquisition optique métrologique 3D comme celui illustré sur la figure 1 , comportant une source lumineuse 2 qui éclaire la surface à acquérir 4 et un capteur d'imagerie 3 qui acquiert la lumière réfléchie par la surface 4. Optical acquisition systems are known, in particular of 3D optical metrological acquisition, such as that illustrated in FIG. 1, comprising a light source 2 which illuminates the surface to be acquired 4 and an imaging sensor 3 which acquires the light reflected by the surface 4.
Le système d'acquisition optique détermine, à partir de l'image acquise par le capteur d'imagerie 3, des informations sur la surface par des techniques connues comme celle du scanner par triangulation, du scanner par décalage de phase, du scanner à lumière structurée, ou du scanner à lumière modulée. Les systèmes d'acquisition optique de l'art antérieur ne permettent pas d'acquérir de manière satisfaisante les surfaces non-lambertiennes car il est très probable qu'il existe des points tels que la réflexion spéculaire de la surface soit dans l'angle de champ de la caméra, ce qui entraine une saturation du capteur d'imagerie dans les directions de réflexion privilégiées. The optical acquisition system determines, from the image acquired by the imaging sensor 3, information on the surface by known techniques such as triangulation scanner, phase shift scanner, light scanner. structured, or modulated light scanner. Optical acquisition systems of the prior art do not make it possible to satisfactorily acquire the non-Lambertian surfaces because it is very probable that there are points such as the specular reflection of the surface or in the angle of camera field, which leads to a saturation of the imaging sensor in the preferred reflection directions.
Comme illustré sur la figure 1 , il existe des réflexions spéculaires aux points P, Q et S, et la direction de la réflexion spéculaire au point P est comprise dans l'angle de champ de la caméra, ce qui a pour conséquence une saturation du capteur d'imagerie au niveau de l'image du point P.  As shown in FIG. 1, there are specular reflections at the points P, Q and S, and the direction of the specular reflection at the point P is included in the field of view of the camera, which results in a saturation of the Imaging sensor at the point P image.
Dans le cas d'une pièce de forme complexe telle qu'une aube de turbomachine, cette configuration problématique est très probable. Or, ces saturations empêchent une acquisition satisfaisante dans les zones concernées, car la saturation entraine la perte de l'information.  In the case of a piece of complex shape such as a turbomachine blade, this problematic configuration is very likely. However, these saturations prevent a satisfactory acquisition in the areas concerned, because the saturation causes the loss of information.
Pour pallier ce problème, plusieurs solutions ont été proposées.  To overcome this problem, several solutions have been proposed.
II a été proposé d'avoir recours à une matification de la surface à l'aide d'une poudre. Cette solution est très efficace mais coûteuse car elle entraine des opérations supplémentaires. De plus elle entraine une perte de précision de la mesure car la poudre rajoute une épaisseur mal connue.  It has been proposed to use a surface matification with the aid of a powder. This solution is very effective but expensive because it entails additional operations. In addition it causes a loss of accuracy of the measurement because the powder adds a poorly known thickness.
Une autre solution, proposée par Nayar et Gupta dans « Diffuse structured light dans IEEE International Conférence on Computational Photography », 2012 et illustrée par la figure 2, consiste à ajouter un diffuseur optique 5 pour limiter l'effet des spécularités. Ainsi, chaque point de la surface est éclairé selon plusieurs directions ce qui permet de ne pas éclairer la surface selon un seul angle mais une pluralité d'angles. Ceci permet de limiter l'intensité des spécularités car l'énergie envoyée vers la surface dans chaque direction est limitée. Cependant, l'effet de la réflexion spéculaire est seulement amoindri dans ce cas, puisque la pièce est toujours éclairée selon la direction causant une réflexion spéculaire dans la direction de la caméra. Un autre inconvénient de ce système est que le diffuseur 5 interdit la modification du motif projeté. Il ne peut être qu'un motif à bande dont l'orientation est compatible avec la direction de diffusion. Un autre inconvénient de ce système est qu'il ne peut pas s'adapter en temps réel. Il existe une autre solution qui consiste à éclairer la pièce par un point et à observer ce point avec deux caméras. Dans ce cas au moins une des caméras n'est pas éblouie. L'inconvénient de cette solution est qu'elle est ponctuelle et ne permet pas d'acquisition rapide de toute une surface, de plus elle nécessite l'utilisation de deux caméras. Another solution, proposed by Nayar and Gupta in "Diffuse structured light in IEEE International Conference on Computational Photography", 2012 and illustrated in Figure 2, is to add an optical diffuser 5 to limit the effect of specularities. Thus, each point of the surface is illuminated in several directions which allows not to illuminate the surface at a single angle but a plurality of angles. This makes it possible to limit the intensity of the specularities because the energy sent towards the surface in each direction is limited. However, the effect of specular reflection is only diminished in this case, since the piece is always illuminated along the direction causing specular reflection in the direction of the camera. Another disadvantage of this system is that the diffuser 5 prohibits the modification of the projected pattern. It can only be a band pattern whose orientation is compatible with the direction of diffusion. Another disadvantage of this system is that it can not adapt in real time. Another solution is to illuminate the room by one point and to observe this point with two cameras. In this case at least one of the cameras is not dazzled. The disadvantage of this solution is that it is punctual and does not allow rapid acquisition of an entire surface, moreover it requires the use of two cameras.
EXPOSE DE L'INVENTION SUMMARY OF THE INVENTION
Un but de l'invention est de proposer un système optique d'acquisition d'informations sur une surface qui permettre de supprimer totalement les réflexions spéculaires vers la caméra et adaptable en temps réel. Par adaptable, on entend que la lumière projetée peut être modifiée à tout instant, et ce localement ou globalement. An object of the invention is to provide an optical system for acquiring information on a surface that makes it possible to totally eliminate specular reflections towards the camera and adaptable in real time. Adaptable means that the projected light can be changed at any time, locally or globally.
Ce but est atteint dans le cadre de la présente invention grâce à un système optique d'acquisition d'informations sur une surface comportant :  This object is achieved in the context of the present invention by virtue of an optical system for acquiring information on a surface comprising:
- un dispositif d'éclairage configuré pour éclairer la surface à acquérir, a lighting device configured to illuminate the surface to be acquired,
- un ou plusieurs dispositifs d'imagerie, ayant chacun un angle de champ, configuré pour acquérir une image de la surface à acquérir, le système d'acquisition étant caractérisé en ce que le dispositif d'éclairage est un dispositif d'éclairage plénoptique configuré pour éclairer chaque point de la surface selon au moins deux angles d'incidence différents, et en ce qu'il comporte en outre : one or more imaging devices, each having a field angle, configured to acquire an image of the surface to be acquired, the acquisition system being characterized in that the lighting device is a configured plenoptic lighting device for illuminating each point of the surface according to at least two different angles of incidence, and further comprising:
- un masque matriciel positionné entre le dispositif d'éclairage et la surface à acquérir et comportant une matrice de cellules pouvant être commandées indépendamment les unes des autres pour transmettre une quantité de lumière choisie, et  a matrix mask positioned between the lighting device and the surface to be acquired and comprising a matrix of cells that can be controlled independently of each other to transmit a chosen quantity of light, and
- un dispositif de commande configuré pour limiter la quantité de lumière transmise par une cellule lorsque la lumière transmise à travers ladite cellule génère, après réflexion sur la surface à acquérir, une réflexion spéculaire dans l'angle de champ d'un des dispositifs d'imagerie. L'invention permet de contrôler l'intensité lumineuse en tout point de la surface éclairée et pour chaque incidence. a control device configured to limit the amount of light transmitted by a cell when the light transmitted through said cell generates, after reflection on the surface to be acquired, a specular reflection in the field of view of one of the devices; imaging. The invention makes it possible to control the luminous intensity at any point of the illuminated surface and for each incidence.
Une fois la distribution des intensités définie, il reste possible de projeter différents motifs sur la surface tout en respectant cette distribution d'incidences.  Once the intensity distribution is defined, it is still possible to project different patterns on the surface while respecting this distribution of incidences.
L'invention permet notamment de réaliser une pluralité d'éclairages texturés sur la surface à acquérir sans créer de spécularités dans les images acquises.  The invention makes it possible in particular to produce a plurality of textured lights on the surface to be acquired without creating specularities in the images acquired.
L'invention permet en outre, lorsque l'on a connaissance d'un modèle a priori de la surface observée, de détecter des défauts de formes même pour des formes 3D complexes.  The invention further allows, when one is aware of a prior model of the observed surface, to detect shape defects even for complex 3D shapes.
L'invention permet notamment d'effectuer une reconstruction par algorithme stéréo pour des surfaces non lambertiennes (et de forme complexes).  The invention notably makes it possible to perform a stereo algorithm reconstruction for non-Lambertian (and complex) surfaces.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises individuellement ou en l'une quelconque de leurs combinaisons techniquement possibles : The invention is advantageously completed by the following characteristics, taken individually or in any of their technically possible combinations:
- le dispositif d'éclairage plénoptique comporte une source lumineuse et un réseau de microlentilles comprenant une pluralité de microlentilles ayant toutes le même plan focal image ;  the plenoptic lighting device comprises a light source and a microlens array comprising a plurality of microlenses all having the same image focal plane;
- le masque matriciel est positionné entre le réseau de microlentilles et le plan focal image des microlentilles ;  the matrix mask is positioned between the microlens array and the image focal plane of the microlenses;
- les microlentilles sont divergentes ;  the microlenses are divergent;
- les microlentilles sont convergentes ;  the microlenses are convergent;
- le dispositif d'éclairage plénoptique comporte une source lumineuse et un panneau en matériau opaque dans lequel est ménagée une matrice de trous, la source éclairant le panneau selon une pluralité d'angles d'incidence ;  the plenoptic lighting device comprises a light source and a panel of opaque material in which is formed a matrix of holes, the source illuminating the panel at a plurality of angles of incidence;
- le dispositif d'éclairage plénoptique comporte une pluralité de sources lumineuses disposées dans un même plan ;  the plenoptic lighting device comprises a plurality of light sources arranged in the same plane;
- le masque matriciel est un écran LCD, les cellules étant des cellules LCD ; - le masque matriciel est une matrice de miroirs orientables, les cellules étant des miroirs orientables ; the matrix mask is an LCD screen, the cells being LCD cells; the matrix mask is a matrix of orientable mirrors, the cells being orientable mirrors;
- chaque cellule peut être commandée pour être soit dans un état passant, dans lequel elle transmet toute la lumière, soit dans un état bloquant, dans lequel elle ne transmet aucune lumière, each cell can be controlled to be in an on state, in which it transmits all the light, or in a blocking state, in which it transmits no light,
- chaque cellule peut être commandée pour être dans un état intermédiaire, dans lequel elle laisse passer une certaine quantité de lumière ; each cell can be controlled to be in an intermediate state, in which it lets a certain quantity of light pass;
- chaque cellule pouvant être commandée pour être alternativement dans un état passant ou bloquant, le dispositif de commande est configuré pour contrôler l'alternance des états passant et bloquant de la cellule de manière à contrôler la quantité de lumière transmise à travers la cellule pendant un temps d'intégration ;  each cell being controllable to be alternately in an on or off state, the controller is configured to control the alternation of the passing and blocking states of the cell so as to control the amount of light transmitted through the cell during a period of time. integration time;
- un dispositif de séparation optique est positionné de manière à ce que la lumière issue de la source soit transmise vers la surface à analyser à travers le dispositif de séparation optique, la lumière issue de la réflexion sur la surface étant réfléchie par le dispositif de séparation optique vers le dispositif d'imagerie ;  an optical separation device is positioned in such a way that the light coming from the source is transmitted to the surface to be analyzed through the optical separation device, the light coming from the reflection on the surface being reflected by the separation device optical to the imaging device;
- le dispositif d'imagerie est un capteur plénoptique.  the imaging device is a plenoptic sensor.
L'invention propose également un procédé d'acquisition d'informations sur une surface mis en œuvre par un système optique d'acquisition selon l'une des revendications précédentes, consistant à : The invention also proposes a method for acquiring information on a surface implemented by an acquisition optical system according to one of the preceding claims, consisting of:
- éclairer la surface à acquérir avec un dispositif d'éclairage plénoptique de manière à éclairer chaque point de la surface selon au moins deux angles d'incidence différents,  illuminate the surface to be acquired with a plenoptic lighting device so as to illuminate each point of the surface in at least two different angles of incidence,
- acquérir une image de la surface à acquérir,  - acquire an image of the surface to be acquired,
- observer une éventuelle réflexion spéculaire dans la direction de l'angle de champ du dispositif d'imagerie,  - observe any specular reflection in the direction of the field of view of the imaging device,
- limiter la quantité de lumière transmise par les cellules du masque matriciel à travers lesquelles est transmise ou réfléchie la lumière générant, après réflexion sur la surface à acquérir, la réflexion spéculaire observée. - limit the amount of light transmitted by the matrix mask cells through which light is transmitted or reflected generating, after reflection on the surface to be acquired, the specular reflection observed.
L'invention propose également l'utilisation d'un système optique d'acquisition telle que caractérisé ci-dessus, pour le contrôle métrologique d'une aube de turbomachine. The invention also proposes the use of an optical acquisition system as characterized above, for the metrological control of a turbomachine blade.
DESCRIPTION DES FIGURES D'autres objectifs, caractéristiques et avantages sortiront de la description détaillée qui suit en référence aux dessins donnés à titre illustratif et non limitatif parmi lesquels : DESCRIPTION OF THE FIGURES Other objectives, features and advantages will become apparent from the detailed description which follows with reference to the drawings given by way of non-limiting illustration, among which:
- la figure 1 , discutée plus haut, illustre un système d'acquisition optique de l'art antérieur,  FIG. 1, discussed above, illustrates an optical acquisition system of the prior art,
- la figure 2, discutée plus haut, illustre un système d'acquisition optique équipé d'un diffuseur optique comme proposé dans l'art antérieur,  FIG. 2, discussed above, illustrates an optical acquisition system equipped with an optical diffuser as proposed in the prior art,
- la figure 3a illustre un système d'acquisition optique selon un premier mode de réalisation de l'invention,  FIG. 3a illustrates an optical acquisition system according to a first embodiment of the invention,
- la figure 3b illustre un système d'acquisition optique selon une variante de réalisation de l'invention,  FIG. 3b illustrates an optical acquisition system according to an alternative embodiment of the invention,
- la figure 4a illustre un système d'acquisition optique selon un deuxième mode de réalisation de l'invention,  FIG. 4a illustrates an optical acquisition system according to a second embodiment of the invention,
- la figure 4b illustre un système d'acquisition optique selon une variante de réalisation de l'invention,  FIG. 4b illustrates an optical acquisition system according to an alternative embodiment of the invention,
- la figure 5 illustre un système d'acquisition optique comportant deux dispositifs d'imagerie conformément à un mode de réalisation de l'invention,  FIG. 5 illustrates an optical acquisition system comprising two imaging devices according to an embodiment of the invention,
- la figure 6 illustre un système d'acquisition optique dans lequel le masque matriciel est une matrice DLP,  FIG. 6 illustrates an optical acquisition system in which the matrix mask is a DLP matrix,
- la figure 7 illustre un système d'acquisition optique selon une variante de réalisation de l'invention. DESCRIPTION DETAILLEE DE L'INVENTION FIG. 7 illustrates an optical acquisition system according to an alternative embodiment of the invention. DETAILED DESCRIPTION OF THE INVENTION
Comme illustré sur les figures 3a à 7, un système d'acquisition optique 1 d'une surface 4 comporte un dispositif d'éclairage 20, et un ou plusieurs dispositifs d'imagerie 30, un masque matriciel 7, et un système de contrôle du masque matriciel 9. As illustrated in FIGS. 3a to 7, an optical acquisition system 1 of a surface 4 comprises a lighting device 20, and one or more imaging devices 30, a matrix mask 7, and a control system of the matrix mask 9.
Le dispositif d'éclairage 20 est un dispositif d'éclairage plénoptique configuré pour éclairer chaque point de la surface 4 selon au moins deux angles d'incidence différents, et un masque matriciel 7 adapté pour obturer ou dévier hors de la surface sélectivement certains faisceaux. The lighting device 20 is a plenoptic lighting device configured to illuminate each point of the surface 4 according to at least two different angles of incidence, and a matrix mask 7 adapted to shut off or deflect some beams selectively from the surface.
A cet effet, le dispositif d'éclairage plénoptique 20 comporte, dans certains modes de réalisation, une source lumineuse 21 , et une matrice 6 de microlentilles.  For this purpose, the plenoptic lighting device 20 comprises, in some embodiments, a light source 21, and a matrix 6 of microlenses.
Dans certains modes de réalisation, la source lumineuse 21 est collimatée avec un collimateur 25 placé entre la source lumineuse 21 et la matrice 6 de microlentilles.  In some embodiments, the light source 21 is collimated with a collimator 25 placed between the light source 21 and the matrix 6 of microlenses.
La source lumineuse 21 peut également être un film électroluminescent plan ou une pluralité de diodes électroluminescentes (LEDs) associées éventuellement à un diffuseur optique.  The light source 21 may also be a flat electroluminescent film or a plurality of light emitting diodes (LEDs) optionally associated with an optical diffuser.
Comme illustré sur les figures 3a et 4a, la matrice 6 de microlentilles est constituée d'un ensemble de microlentilles 61 situées dans un même plan. Les microlentilles 61 peuvent notamment être arrangées en lignes et en colonne ou bien en quinconce. As illustrated in Figures 3a and 4a, the matrix 6 of microlenses consists of a set of microlenses 61 located in the same plane. The microlenses 61 may in particular be arranged in rows and columns or staggered.
Les microlentilles 61 ont toutes la même distance focale et leurs plans focaux image F' sont confondus.  The microlenses 61 all have the same focal length and their focal planes F 'are merged.
Chaque microlentille 61 transmet un faisceau incident sur la surface 4 avec un ou plusieurs angle(s) d'incidence. Pour un point donné de la surface 4, l'intervalle d'angle(s) d'incidence sur ledit point du faisceau transmis par une lentille 61 est différent de l'intervalle d'angle(s) d'incidence sur ledit point du faisceau transmis par les autres microlentilles 61. Ainsi, chaque point est éclairé par plusieurs faisceaux avec des angles d'incidence différents. Si un point de la surface est dans le plan focal image du dispositif d'éclairage, il est éclairé par plusieurs faisceaux issus d'une même lentille 61 ayant des angles d'incidence différents (sauf, bien sûr, par les faisceaux occultés par le masque 7). Sinon, il est éclairé par plusieurs faisceaux ayant des angles d'incidence différents issus de lentilles 61 différentes. Each microlens 61 transmits an incident beam on the surface 4 with one or more angle (s) of incidence. For a given point of the surface 4, the angle of incidence angle (s) on said point of the beam transmitted by a lens 61 is different from the angle interval (s) of incidence on said point of the beam transmitted by the other microlenses 61. Thus, each point is illuminated by several beams with different angles of incidence. If a point of the surface is in the image focal plane of the lighting device, it is illuminated by several beams coming from the same lens 61 having different angles of incidence (except, of course, by the beams occulted by the mask 7). Otherwise, it is illuminated by several beams having different angles of incidence from different lenses 61.
Autrement dit, la matrice 6 de microlentilles 61 transforme la source lumineuse 21 en une pluralité de sources lumineuses secondaires positionnées au foyer image de chaque microlentille 61 . Ainsi, chaque microlentille 61 transforme la lumière émise par la source lumineuse 21 en une source lumineuse secondaire qui éclaire la surface à analyser 4 selon un ensemble d'angles particulier. De cette manière, chaque point de la surface 4 est éclairé selon plusieurs angles d'incidence différents. De manière préférentielle, chaque source lumineuse secondaire éclaire l'ensemble de la surface 4. In other words, the matrix 6 of microlenses 61 transforms the light source 21 into a plurality of secondary light sources positioned at the focal point of each microlens 61. Thus, each microlens 61 transforms the light emitted by the light source 21 into a secondary light source which illuminates the surface to be analyzed 4 according to a particular set of angles. In this way, each point of the surface 4 is illuminated according to several different angles of incidence. Preferably, each secondary light source illuminates the entire surface 4.
Dans un premier mode de réalisation illustré sur la figure 3a, les microlentilles In a first embodiment illustrated in FIG. 3a, the microlenses
61 sont convergentes et le dispositif d'éclairage 20 comporte en outre une lentille principale 8. Le plan focal image F' des microlentilles 61 se trouve entre la matrice 6 de microlentilles 61 et la lentille principale 8. 61 are convergent and the lighting device 20 further comprises a main lens 8. The focal image plane F 'of the microlenses 61 is between the matrix 6 of microlenses 61 and the main lens 8.
La lentille principale 8 est une lentille convergente.  The main lens 8 is a converging lens.
Le masque matriciel 7 est positionné entre la matrice 6 de microlentilles et la lentille principale 8, et plus précisément entre la matrice 6 de microlentilles et le plan focal image F' des microlentilles 61 .  The matrix mask 7 is positioned between the microlens matrix 6 and the main lens 8, and more precisely between the microlens matrix 6 and the image focal plane F 'of the microlenses 61.
Alternativement, le masque matriciel 7 peut être placé entre la source lumineuse 21 et les microlentilles 61 .  Alternatively, the matrix mask 7 may be placed between the light source 21 and the microlenses 61.
Ce premier mode de réalisation correspond au montage optique d'une caméra plénoptique, le parcours de la lumière étant cependant inversé par rapport à celui d'une caméra plénoptique. Alors qu'une caméra photographique classique enregistre en chaque point l'énergie accumulée de tous les rayons convergeant sur la surface sensible, une caméra plénoptique enregistre séparément les énergies des rayons selon leur direction de propagation. Dans ce premier mode de réalisation, la matrice 6 de microlentilles 61 focalise la lumière de la source 21 en une pluralité de points focaux image f , tous disposés dans un même plan image focal F'. This first embodiment corresponds to the optical assembly of a plenoptic camera, the path of the light however being reversed compared to that of a plenoptic camera. Whereas a conventional photographic camera records at each point the accumulated energy of all the rays converging on the sensitive surface, a plenoptic camera records separately the energies of the rays according to their direction of propagation. In this first embodiment, the matrix 6 of microlenses 61 focuses the light of the source 21 into a plurality of image focal points f, all arranged in the same focal plane plane F '.
L'espacement entre les microlentilles 61 est typiquement de l'ordre de 0,3mm. Le nombre de microlentilles 61 est typiquement de l'ordre de 60 dans une direction. La hauteur du réseau 6 de microlentilles est alors de l'ordre de 20mm. La distance focale des microlentilles est typiquement de 0,6mm. La distance focale de la lentille principale est typiquement de 40mm. La distance entre la matrice 6 de microlentilles et la lentille principale 8 est de 40mm. La distance entre la lentille principale 8 et la surface est de l'ordre de 50mm.  The spacing between the microlenses 61 is typically of the order of 0.3mm. The number of microlenses 61 is typically of the order of 60 in one direction. The height of the network 6 of microlenses is then of the order of 20mm. The focal length of the microlenses is typically 0.6mm. The focal length of the main lens is typically 40mm. The distance between the microlens matrix 6 and the main lens 8 is 40 mm. The distance between the main lens 8 and the surface is of the order of 50mm.
Pour optimiser la résolution spatiale des points éclairés sur la surface 4, il faut choisir des microlentilles 61 avec le plus petit diamètre possible ou réduire le grandissement de la lentille principale. Pour maximiser la résolution angulaire des rayons éclairant un point de la surface 4, il faut espacer les microlentilles d'un diamètre relativement élevé. Dans ce premier mode de réalisation, l'espacement des microlentilles est un facteur déterminant pour les caractéristiques du système.  To optimize the spatial resolution of the illuminated points on the surface 4, it is necessary to choose microlenses 61 with the smallest possible diameter or to reduce the magnification of the main lens. To maximize the angular resolution of the rays illuminating a point on the surface 4, the microlenses of a relatively large diameter must be spaced apart. In this first embodiment, the spacing of the microlenses is a determining factor for the characteristics of the system.
Dans un deuxième mode de réalisation, illustré sur la figure 4a, les microlentilles 61 sont divergentes. Le plan focal image F' des microlentilles 61 se trouve entre la matrice 6 de microlentilles et la source lumineuse 21.  In a second embodiment, illustrated in FIG. 4a, the microlenses 61 are divergent. The focal plane image F 'of the microlenses 61 is between the matrix 6 of microlenses and the light source 21.
Le masque matriciel 7 est positionné entre la matrice 6 de microlentilles et la source lumineuse 21 , et plus précisément entre la matrice 6 de microlentilles et le plan focal image F' des microlentilles 61. La distance entre la matrice 6 de microlentilles et la surface 4 est typiquement de l'ordre de quelques dizaines de centimètres.  The matrix mask 7 is positioned between the microlens matrix 6 and the light source 21, and more precisely between the microlens matrix 6 and the image focal plane F 'of the microlenses 61. The distance between the microlens matrix 6 and the surface 4 is typically of the order of a few tens of centimeters.
Dans une variante de réalisation, illustré par les figures 3b et 4b, la matrice 6 de microlentilles est remplacée par un panneau 1 1 dans lequel sont ménagés des trous circulaires 1 1 1. Le diamètre de ces trous circulaires 1 1 est petit par rapport à la taille des éléments du masque 7 mais très supérieur à la longueur d'onde. La source de lumière 21 envoie de la lumière sur chaque trou 1 1 1 selon une pluralité d'angles d'incidence. Chaque troul 1 1 se comporte alors comme une source secondaire. Dans un quatrième mode de réalisation, non représenté car proche dans son principe du troisième mode, les sources ponctuelles 21 et les masques matriciels 7 sont les sources ponctuelles 21 et les masques matriciels 7 d'une pluralité de vidéo projecteurs. Dans ce cas le volume de travail de l'éclairage plénoptique peut dépasser le m3 et la distance de travail peut dépasser le m. In an alternative embodiment, illustrated in FIGS. 3b and 4b, the matrix 6 of microlenses is replaced by a panel 11 in which circular holes 11 are formed. The diameter of these circular holes 11 is small compared to the size of the elements of the mask 7 but much greater than the wavelength. The light source 21 sends light to each hole 1 1 1 at a plurality of angles of incidence. Each troul 1 1 then behaves as a secondary source. In a fourth embodiment, not shown because close in principle of the third mode, point sources 21 and matrix masks 7 are point sources 21 and matrix masks 7 of a plurality of video projectors. In this case the working volume of the plenoptic lighting may exceed the m 3 and the working distance may exceed the m.
Le masque matriciel 7 comporte une matrice de cellules 71 pouvant être commandées indépendamment les unes des autres pour transmettre une quantité de lumière choisie.  The matrix mask 7 comprises a matrix of cells 71 that can be controlled independently of each other to transmit a chosen amount of light.
Chaque cellule 71 peut être soit dans un état passant, dans lequel elle transmet la lumière qui la traverse, soit dans un état bloquant, dans lequel elle obstrue la lumière, comme dans le cas d'un écran LCD, ou la dévie hors de la surface 4, comme dans le cas d'une matrice DLP. Une modulation de la quantité de lumière émise à travers chaque cellule 71 est contrôlable soit en jouant sur le degré d'opacité des cellules 71 soit par modulation temporelle. En effet, chaque cellule 71 peut changer d'état plusieurs milliers de fois par seconde. Le dispositif d'imagerie 30 intègre les impulsions pendant la durée d'exposition et perçoit donc le niveau de lumière moyen. Le niveau de gris détecté par le dispositif d'imagerie 30 est donc directement proportionnel au temps pendant lequel la cellule 71 est en position passante au cours du temps.  Each cell 71 may be either in an on state, in which it transmits the light passing through it, or in a blocking state, in which it obstructs the light, as in the case of an LCD screen, or deflects it out of the surface 4, as in the case of a DLP matrix. A modulation of the amount of light emitted through each cell 71 is controllable either by varying the degree of opacity of the cells 71 or by temporal modulation. Indeed, each cell 71 can change state several thousand times per second. The imaging device 30 integrates the pulses during the exposure time and thus perceives the average light level. The gray level detected by the imaging device 30 is therefore directly proportional to the time during which the cell 71 is in the passing position over time.
Dans une variante de réalisation, à chaque microlentille 61 correspond une cellule 71.  In an alternative embodiment, each microlens 61 corresponds to a cell 71.
Dans une autre variante de réalisation, le faisceau issu de chaque microlentille 61 est transmis à travers un ensemble de cellules 71 voisines. .  In another embodiment, the beam from each microlens 61 is transmitted through a set of neighboring cells 71. .
En particulier, à chaque microlentille 61 peut correspondre un carré de cellules 71 , composé typiquement de 4, 9, ou 16 cellules 71 ,  In particular, each microlens 61 may correspond to a square of cells 71, typically composed of 4, 9, or 16 cells 71,
Le masque matriciel 7 peut notamment être un écran à cristaux liquides 7 par la suite appelé écran LCD, constitué d'un quadrillage de cellules de cristal liquide (LCD), chaque cellule 71 étant, soit transparente (état passant), soit opaque (état bloquant), selon l'état du cristal liquide de ce pixel. Une cellule LCD 71 est constituée, de façon connue, d'une mince couche de cristal liquide, enfermée entre deux plaques transparentes équipées de polariseurs, et soumise à un champ électrique variable. L'état de chaque cellule à cristal liquide 71 est contrôlé, de manière connue, en appliquant entre des électrodes transparentes réparties en matrice en vis à vis sur les deux plaques transparentes une tension de polarisation évoluant entre deux niveaux: un niveau faible auquel la cellule LCD 71 est transparente (état passant) et un niveau élevé auquel la cellule LCD 71 est opaque (état bloquant). The matrix mask 7 may in particular be a liquid crystal screen 7 subsequently called an LCD screen, consisting of a grid of liquid crystal cells (LCD), each cell 71 being either transparent (on-state) or opaque (state blocking), depending on the state of the liquid crystal of this pixel. An LCD cell 71 consists, in known manner, of a thin layer of liquid crystal, enclosed between two transparent plates equipped with polarizers, and subjected to a variable electric field. The state of each liquid crystal cell 71 is controlled, in a known manner, by applying between transparent electrodes distributed in matrix opposite the two transparent plates a bias voltage evolving between two levels: a low level at which the cell LCD 71 is transparent (on state) and a high level at which the LCD cell 71 is opaque (blocking state).
Le masque matriciel 7 peut également être une matrice DLP (pour « Digital Light Processor ») constituée d'une matrice de miroirs mobiles, chaque cellule 71 du masque étant un miroir mobile. L'état de chaque cellule 71 est contrôlé, de manière connue, en orientant le miroir mobile soit de manière à ce qu'il réfléchisse la lumière vers la surface 4, la cellule est alors à l'état passant, soit de manière à ce qu'il réfléchisse cette lumière vers une surface qui absorbe les rayons, la cellule est alors à l'état bloquant. On obtient ainsi la projection d'un point allumé, ou d'un point éteint. Dans le cas où le masque matriciel 7 est une matrice DLP, le masque matriciel 7 et la source lumineuse 21 sont positionnés par rapport à la surface 4 de manière à ce que les cellules 71 à l'état bloquant ne réfléchissent pas la lumière sur la surface 4, alors que les cellules 71 à l'état passant réfléchissent la lumière sur la surface 4, comme illustré sur la figure 6.  The matrix mask 7 may also be a DLP (for "Digital Light Processor") matrix consisting of a matrix of moving mirrors, each cell 71 of the mask being a moving mirror. The state of each cell 71 is controlled, in known manner, by orienting the moving mirror so that it reflects light to the surface 4, the cell is then in the on state, or so that that it reflects this light towards a surface that absorbs the rays, the cell is then in the blocking state. This produces the projection of a lit point, or a point off. In the case where the matrix mask 7 is a DLP matrix, the matrix mask 7 and the light source 21 are positioned relative to the surface 4 so that the cells 71 in the blocking state do not reflect the light on the screen. surface 4, while the cells 71 in the on state reflect the light on the surface 4, as shown in FIG. 6.
En modulant l'état des cellules 71 , le masque matriciel 7 permet de contrôler en chaque point de la surface 4, l'intensité de chaque rayon illuminant ce point.  By modulating the state of the cells 71, the matrix mask 7 makes it possible to control at each point of the surface 4, the intensity of each ray illuminating this point.
Comme expliqué plus haut, seuls certains angles d'incidence de l'éclairage créent, après réflexion, des spécularités entraînant la saturation de l'information photométrique dans l'image.  As explained above, only certain angles of incidence of the illumination create, after reflection, specularities causing the saturation of the photometric information in the image.
Si un ou plusieurs des rayons incidents sur la surface 4 génèrent une réflexion spéculaire comprise dans l'angle de champ du dispositif d'imagerie 30, le système de contrôle 9 commande l'état bloquant de la ou des cellules 71 à travers lesquels le rayonnement générant la réflexion spéculaire passe. Comme illustré sur les figures 3a à 7, le système d'acquisition optique 1 comporte un ou plusieurs dispositifs d'imagerie 30. Chaque dispositif d'imagerie 30 comporte un capteur photographique 31 et une optique de focalisation 32. En outre, le système d'acquisition optique peut comporter d'autres éléments optiques, comme des miroirs, de manière à créer des repliements des chemins optiques. Le capteur photographique 31 photographique est un composant électronique photosensible adapté pour convertir le rayonnement électromagnétique (UV, visible ou IR) en un signal électrique analogique. Ce signal est ensuite amplifié, puis numérisé par un convertisseur analogique-numérique pour obtenir une image numérique. L'optique de focalisation 32 est classiquement une lentille optique ou une combinaison de lentilles optiques. Le dispositif d'imagerie 30 est par exemple une caméra. L'angle de champ du dispositif d'imagerie 30 est l'angle que va pouvoir capter le dispositif d'imagerie 30. If one or more of the rays incident on the surface 4 generate a specular reflection included in the field angle of the imaging device 30, the control system 9 controls the blocking state of the cell or cells 71 through which the radiation generating specular reflection passes. As illustrated in FIGS. 3a to 7, the optical acquisition system 1 comprises one or more imaging devices 30. Each imaging device 30 comprises a photographic sensor 31 and a focusing optic 32. In addition, the imaging system 30 comprises Optical acquisition may include other optical elements, such as mirrors, so as to create folds of the optical paths. The photographic photographic sensor 31 is a photosensitive electronic component adapted to convert the electromagnetic radiation (UV, visible or IR) into an analog electrical signal. This signal is then amplified and digitized by an analog-to-digital converter to obtain a digital image. The focusing optics 32 is conventionally an optical lens or a combination of optical lenses. The imaging device 30 is for example a camera. The angle of view of the imaging device 30 is the angle that the imaging device 30 will be able to capture.
Dans le cas où le système d'imagerie 30 comporte N dispositifs d'imagerie 30, pour toujours pouvoir éliminer toutes les réflexions spéculaires tout en éclairant toute la surface 4 dans les images de tous les dispositifs d'imagerie 30, il faut que chaque point de la surface 4 soit éclairé selon au moins N+1 angles d'incidence différents.  In the case where the imaging system 30 has N imaging devices 30, to always be able to eliminate all specular reflections while illuminating the entire surface 4 in the images of all the imaging devices 30, it is necessary that each point the surface 4 is illuminated according to at least N + 1 different angles of incidence.
Le dispositif d'imagerie 30 est agencé par rapport à la surface 4 et le dispositif d'éclairage 20, de manière à capter une partie significative de la lumière réfléchie sur la surface à analyser 4. The imaging device 30 is arranged with respect to the surface 4 and the lighting device 20, so as to capture a significant part of the light reflected on the surface to be analyzed 4.
Comme illustré sur les figures 3a à 6b, le dispositif d'imagerie 30 peut être agencé de manière à capter la lumière directement après réflexion sur la surface à analyser 4, comme illustré sur la figure 1. A cet effet, l'axe optique du dispositif d'imagerie 30 est orienté vers la surface à analyser 4.  As illustrated in FIGS. 3a to 6b, the imaging device 30 can be arranged to capture the light directly after reflection on the surface to be analyzed 4, as illustrated in FIG. 1. For this purpose, the optical axis of the imaging device 30 is oriented towards the surface to be analyzed 4.
Comme illustré sur la figure 7, le système d'acquisition 1 peut également comporter un dispositif de séparation optique 10, tel qu'une lame semi-réfléchissante, positionné entre la source 21 et la surface 4. La lumière issue de la source 21 est transmise vers la surface à analyser 4 à travers le dispositif de séparation optique 10. La lumière issue de la réflexion sur la surface 4 est réfléchie par le dispositif de séparation optique 10 vers le dispositif d'imagerie 30. Dans ce cas, l'optique de focalisation 32 du dispositif d'imagerie 30 est un ensemble de microlentilles, le dispositif d'imagerie 30 étant un capteur d'imagerie plénoptique. As illustrated in FIG. 7, the acquisition system 1 may also comprise an optical separation device 10, such as a semi-reflecting plate, positioned between the source 21 and the surface 4. The light coming from the source 21 is transmitted to the surface to be analyzed 4 through the optical separation device 10. The light resulting from the reflection on the surface 4 is reflected by the optical separation device 10 to the imaging device 30. In this case, the optical of Focus 32 of the imaging device 30 is a set of microlenses, the imaging device 30 being a plenoptic imaging sensor.
Dans le premier mode de réalisation conforme à la figure 7, le dispositif de séparation optique 10 est positionné entre la lentille principale 8 et la matrice 6 de microlentilles. La lumière issue du réseau 6 de microlentilles est transmise vers la lentille principale 8 et la surface à analyser 4 à travers le dispositif de séparation optique 10. La lumière issue de la réflexion sur la surface 4 est transmise par la lentille principale 8 puis réfléchie par le dispositif de séparation optique 10 vers le dispositif d'imagerie 30.  In the first embodiment according to FIG. 7, the optical separation device 10 is positioned between the main lens 8 and the microlens matrix 6. The light from the microlens array 6 is transmitted to the main lens 8 and the surface to be analyzed 4 through the optical separation device 10. The light resulting from the reflection on the surface 4 is transmitted by the main lens 8 and then reflected by the optical separation device 10 to the imaging device 30.
Dans une application au second mode de réalisation, le dispositif de séparation optique est positionné entre la matrice 6 de microlentilles et la surface 4. In an application to the second embodiment, the optical separation device is positioned between the microlens matrix 6 and the surface 4.
La lumière issue de la source 21 est transmise vers la surface à analyser 4 à travers le dispositif de séparation optique 10. The light from the source 21 is transmitted to the surface to be analyzed 4 through the optical separation device 10.
Dans une application au troisième mode de réalisation, le dispositif de séparation optique est positionné entre les sources 21 et la surface 4. La lumière issue des sources 21 est transmise vers la surface à analyser 4 à travers la lame semi-réfléchissante.  In an application in the third embodiment, the optical separation device is positioned between the sources 21 and the surface 4. The light from the sources 21 is transmitted to the surface to be analyzed 4 through the semi-reflective plate.
La face réfléchissante est orientée par rapport à la surface 4 de manière à ce que, après réflexion, la lumière réfléchie sur la surface 4 soit transmise vers le dispositif d'imagerie 30, (en passant par la lentille principale 8 dans le cas du premier mode de réalisation).  The reflecting face is oriented with respect to the surface 4 so that, after reflection, the light reflected on the surface 4 is transmitted to the imaging device 30, (passing through the main lens 8 in the case of the first embodiment).
Alternativement, la face réfléchissante est orientée par rapport à la surface 4 de manière à ce que la lumière issue de la source 21 soit réfléchie sur la face réfléchissante vers la surface à analyser 4, et de manière à ce que la lumière réfléchie sur la surface 4 soit transmise vers le dispositif d'imagerie 30 à travers la lame semi-réfléchissante 10.  Alternatively, the reflecting face is oriented with respect to the surface 4 so that the light coming from the source 21 is reflected on the reflecting face towards the surface to be analyzed 4, and so that the light reflected on the surface 4 is transmitted to the imaging device 30 through the semi-reflecting plate 10.
Le dispositif de commande 9 peut être opéré en utilisant diverses méthodes. The controller 9 can be operated using various methods.
Dans le cas général les différents chemins optiques suivis par la lumière dépendent de la configuration du dispositif d'éclairage et de la ou les dispositif(s) d'acquisition mais aussi de la surface 4 qui est inconnue. Dans ce cas, pour déterminer les cellules 71 du masque qui doivent être à l'état bloquant, on peut procéder par essais/erreurs. A cet effet, on commande successivement l'état passant de chacune des cellules 71 du masque, un par un. Lorsqu'une réflexion spéculaire est détectée par le dispositif d'imagerie 30, c'est-à- dire lorsque la caméra détecte un rayonnement supérieur à un seuil prédéfini, le dispositif de commande 9 note dans une base de données que la cellule 71 en question doit être mise à l'état bloquant. La réflexion spéculaire peut également être détectée par un observateur et non pas détectée automatiquement par la caméra. Dans ce cas, on comprendra que «détecter » signifie « observer ». In the general case, the different optical paths followed by the light depend on the configuration of the lighting device and the device (s) of acquisition but also on the surface 4 which is unknown. In this case, to determine the cells 71 of the mask which must be in the blocking state, it is possible to proceed by trial / error. For this purpose, successively controls the passing state of each of the cells 71 of the mask, one by one. When specular reflection is detected by the imaging device 30, i.e., when the camera detects radiation above a predefined threshold, the controller 9 records in a database that the cell 71 question must be put in the blocking state. Specular reflection can also be detected by an observer and not detected automatically by the camera. In this case, it will be understood that "detect" means "observe".
Dans le cas où on connaît un modèle a priori de la surface 4, on peut calibrer le dispositif de commande 9 en tenant compte de la connaissance a priori de la forme de la surface 4. A cet effet, on estime (ou on connaît) la position de la surface par rapport au dispositif d'éclairage 20 ainsi que par rapport au système d'imagerie, puis, on détermine les rayons incidents ne devant pas conduire à des spécularités et ceux devant conduire à des spécularités en modélisant la propagation des rayons, et on en déduit les cellules 71 à travers lesquelles passent ces rayons. En allumant et en éteignant les cellules 71 transmettant les faisceaux devant conduire à des spécularités et celles ne devant pas conduire à des spécularités, on peut vérifier si les spécularités apparaissent conformément à la prédiction faite par modélisation. Si ce n'est pas le cas, alors il faut en conclure que la surface 4 n'est pas conforme au modèle prédit. Dans ce cas on a détecté un défaut de forme de la surface. La nouveauté apportée par l'éclairage plénoptique est que cette opération peut être réalisée sur des surfaces de forme 3D complexe.  In the case where a priori model of the surface 4 is known, it is possible to calibrate the control device 9 taking into account the knowledge a priori of the shape of the surface 4. For this purpose, it is estimated (or known) the position of the surface with respect to the lighting device 20 as well as with respect to the imaging system, then the incident rays which are not to lead to specularities and those which must lead to specularities by modeling the propagation of the rays are determined; , and we deduce the cells 71 through which these rays pass. By switching on and off the beam-transmitting cells 71 to specularities and those not leading to specularities, it is possible to check whether the specularities appear according to the prediction made by modeling. If this is not the case, then we must conclude that the surface 4 does not conform to the predicted model. In this case, a defect in the shape of the surface has been detected. The novelty brought by plenoptic lighting is that this operation can be performed on surfaces of complex 3D shape.
Dans le cas illustré par la figure 7, où le système d'acquisition 1 comporte un dispositif de séparation optique 10 disposé entre la source 21 et la surface 4 de manière à ce que la lumière après réflexion sur la surface 4 soit transmise vers le dispositif d'imagerie 30, la direction des rayons à éteindre peut se déduire directement de l'image du dispositif d'imagerie 30 car il existe une correspondance géométrique fixe entre les chemins optiques des voies d'imagerie et ceux des voies d'éclairage (voir Fig. 6). Dans cette variante de réalisation, la correspondance entre le chemin optique de la lumière issue du dispositif d'éclairage et celui de la lumière atteignant le dispositif d'imagerie 30 ne dépend pas de la surface 4, et le dispositif de commande 9 peut être calibré a priori de manière à associer chaque pixel de l'image sur le dispositif d'imagerie 30 avec une cellule 71 du masque 7. Dans ce cas, la calibration du dispositif de commande 9 consiste à associer à chaque pixel de l'image sur le dispositif d'imagerie 30, la ou les cellules 71 du masque 7 qui transmettent la lumière incidente sur ledit pixel. La calibration du dispositif de commande 9 permet de déterminer facilement quelle(s) cellule(s) 71 du masque 7 doi(ven)t être fermée(s) pour supprimer une réflexion spéculaire gênante. Cette variante de réalisation, permet d'une part de réduire l'encombrement du dispositif et d'autre part de simplifier le dispositif de commande 9. In the case illustrated in FIG. 7, where the acquisition system 1 comprises an optical separation device 10 placed between the source 21 and the surface 4 so that the light after reflection on the surface 4 is transmitted towards the device 30, the direction of the rays to be extinguished can be deduced directly from the image of the imaging device 30 because there is a fixed geometrical correspondence between the optical paths of the imaging channels and those of the lighting channels (see FIG. Fig. 6). In this variant embodiment, the correspondence between the optical path of the light coming from the lighting device and that of the light reaching the imaging device 30 does not depend on the surface 4, and the control device 9 can be calibrated a priori so as to associate each pixel of the image on the imaging device 30 with a cell 71 of the mask 7 In this case, the calibration of the control device 9 consists of associating with each pixel of the image on the imaging device 30, the cell or cells 71 of the mask 7 which transmit the light incident on said pixel. Calibration of the control device 9 makes it easy to determine which cell (s) 71 of the mask 7 must be closed (s) to suppress annoying specular reflection. This variant embodiment makes it possible on the one hand to reduce the size of the device and, on the other hand, to simplify the control device 9.
Il est à noter qu'il est possible de projeter un motif sur la surface 4 en fermant sélectivement certaines cellules 71 du masque, tout en tenant compte des cellules 71 qui doivent être fermées pour supprimer les réflexions spéculaires. Cela peut être utile notamment lorsque le dispositif d'acquisition optique 30 est un scanner 3D à lumière structurée projettent un motif lumineux sur la surface. Le motif peut être à une ou deux dimensions. Le dispositif d'imagerie est une caméra qui enregistre une éventuelle déformation du motif. Un calculateur calcule, de manière connue, les distances des points composant ce motif.  It should be noted that it is possible to project a pattern on the surface 4 by selectively closing certain cells 71 of the mask, while taking into account the cells 71 which must be closed to suppress the specular reflections. This may be useful especially when the optical acquisition device 30 is a structured light 3D scanner projecting a bright pattern on the surface. The pattern can be one or two dimensional. The imaging device is a camera that records any deformation of the pattern. A calculator calculates, in known manner, the distances of the points making up this pattern.
Cela peut également être utile lorsque le dispositif d'acquisition optique 30 est un dispositif d'imagerie stéréo comportant plusieurs caméras. Le ou les motifs projetés peuvent être, par exemple, des motifs aléatoires générés de façon à ne pas créer de spécularités. L'analyse des images prises par chacune des caméras du dispositif d'acquisition optique 30 permet d'associer à chaque pixel d'une caméra le pixel de l'autre caméra correspondant. Le masque 7 est commandé de manière à supprimer toutes les composantes lambertiennes de la lumière renvoyé par la surface. Ainsi, aucune caméra n'est affectée par une réflexion spéculaire, et les caméras n'enregistrent que la composante lambertienne de la lumière renvoyé par la surface. Ainsi l'énergie lumineuse reçue par les différentes caméras est la même et les images des pixels peuvent donc être appariés de façon classique (par corrélation du voisinage des pixels ou par observation d'une signature unique à chaque pixel). Il est à noter qu'il est possible de moduler la lumière envoyée sur la surface 4 en modulant l'état des cellules 71 du masque, tout en tenant compte des cellules 71 qui doivent être fermées pour supprimer les réflexions spéculaires. Cela peut être utile notamment lorsque le dispositif d'acquisition optique est un scanner 3D à lumière modulée éclairant le sujet à l'aide d'une lumière changeante. This may also be useful when the optical acquisition device 30 is a stereo imaging device having a plurality of cameras. The projected pattern (s) may be, for example, random patterns generated so as not to create specularities. The analysis of the images taken by each of the cameras of the optical acquisition device 30 makes it possible to associate with each pixel of a camera the pixel of the other corresponding camera. The mask 7 is controlled to remove all lambertian components of the light reflected by the surface. Thus, no camera is affected by specular reflection, and the cameras record only the lambertian component of the light reflected by the surface. Thus, the light energy received by the different cameras is the same and the images of the pixels can therefore be matched in a conventional manner (by correlation of the neighborhood of the pixels or by observation of a unique signature at each pixel). It should be noted that it is possible to modulate the light sent on the surface 4 by modulating the state of the cells 71 of the mask, while taking into account the cells 71 which must be closed in order to suppress the specular reflections. This can be useful especially when the optical acquisition device is a 3D modulated light scanner illuminating the subject with a changing light.

Claims

REVENDICATIONS
1 . Système optique (1 ) d'acquisition d'informations sur une surface (4) comportant : 1. An optical information acquisition system (1) on a surface (4) comprising:
- un dispositif d'éclairage (20) configuré pour éclairer la surface à acquérir (4),  a lighting device (20) configured to illuminate the surface to be acquired (4),
- un ou plusieurs dispositif(s) d'imagerie (30), ayant chacun un angle de champ, configuré(s) pour acquérir une image de la surface à acquérir (4),  one or more imaging devices (30), each having a field angle, configured to acquire an image of the surface to be acquired (4),
le système d'acquisition (1 ) étant caractérisé en ce que le dispositif d'éclairage (20) est un dispositif d'éclairage plénoptique configuré pour éclairer chaque point de la surface (4) selon au moins deux angles d'incidence différents, le dispositif d'éclairage plénoptique (20) comportant une source lumineuse (21 ) et un réseau (6) de microlentilles comprenant une pluralité de microlentilles (61 ) ayant toutes le même plan focal image (F')  the acquisition system (1) being characterized in that the lighting device (20) is a plenoptic lighting device configured to illuminate each point of the surface (4) at at least two different angles of incidence, the plenoptic illuminator (20) having a light source (21) and a microlens array (6) comprising a plurality of microlenses (61) all having the same image focal plane (F ')
et en ce qu'il comporte en outre :  and further comprising:
- un masque matriciel (7) positionné entre le dispositif d'éclairage (20) et la surface à acquérir (4) et comportant une matrice de cellules (71 ) pouvant être commandées indépendamment les unes des autres pour transmettre une quantité de lumière choisie, et  a matrix mask (7) positioned between the lighting device (20) and the surface to be acquired (4) and comprising a matrix of cells (71) which can be controlled independently of each other to transmit a chosen quantity of light, and
- un dispositif de commande (9) configuré pour limiter la quantité de lumière transmise par une ou plusieurs cellules (71 ) lorsque la lumière transmise à travers lesdites cellules (71 ) génère, après réflexion sur la surface à acquérir (4), une réflexion spéculaire dans l'angle de champ d'un des dispositifs d'imagerie (30).  a control device (9) configured to limit the amount of light transmitted by one or more cells (71) when the light transmitted through said cells (71) generates, after reflection on the surface to be acquired (4), a reflection specular in the field of view of one of the imaging devices (30).
2. Système optique (1 ) selon la revendication précédente, le masque matriciel (7) étant positionné entre le réseau (6) de microlentilles et le plan focal image (F') des microlentilles (61 ). 2. Optical system (1) according to the preceding claim, the matrix mask (7) being positioned between the array (6) of microlenses and the image focal plane (F ') microlenses (61).
Système optique (1 ) selon l'une des revendications précédentes, les microlentilles (61 ) étant divergentes. Optical system (1) according to one of the preceding claims, the microlenses (61) being divergent.
Système optique (1 ) selon l'une des revendications précédentes, les microlentilles (61 ) étant convergentes. Optical system (1) according to one of the preceding claims, the microlenses (61) being convergent.
Système optique (1 ) selon l'une des revendications précédentes, le dispositif d'éclairage plénoptique (20) comportant une pluralité de sources lumineuses élémentaires (210) formant la source (21 ) disposées dans un même plan en regard du réseau de microlentille (6). Optical system (1) according to one of the preceding claims, the plenoptic lighting device (20) comprising a plurality of elementary light sources (210) forming the source (21) arranged in the same plane facing the microlens array ( 6).
Système optique d'acquisition (1 ) selon l'une des revendications précédentes, le masque matriciel (7) étant un écran LCD (7), les cellules (71 ) étant des cellules LCD. Optical acquisition system (1) according to one of the preceding claims, the matrix mask (7) being an LCD screen (7), the cells (71) being LCD cells.
Système optique d'acquisition (1 ) selon l'une des revendications précédentes, le masque matriciel (7) étant une matrice de miroirs orientables, les cellules (71 ) étant des miroirs orientables. Optical acquisition system (1) according to one of the preceding claims, the matrix mask (7) being a matrix of steerable mirrors, the cells (71) being orientable mirrors.
Système optique d'acquisition (1 ) selon l'une des revendications précédentes, chaque cellule (71 ) pouvant être commandée pour être soit dans un état passant, dans lequel elle transmet toute la lumière, soit dans un état bloquant, dans lequel elle ne transmet aucune lumière. Optical acquisition system (1) according to one of the preceding claims, wherein each cell (71) can be controlled to be in an on state, in which it transmits all the light, or in a blocking state, in which it does not transmits no light.
Système optique d'acquisition (1 ) selon l'une des revendications précédentes, chaque cellule (71 ) pouvant être commandée pour être alternativement dans un état passant ou bloquant, le dispositif de commande (9) étant configuré pour contrôler l'alternance des états passant et bloquant de la cellule (71 ) de manière à contrôler la quantité de lumière transmise à travers la cellule (71 ) pendant un temps d'intégration. Optical acquisition system (1) according to one of the preceding claims, wherein each cell (71) can be controlled to be alternately in an on or off state, the control device (9) being configured to control the alternation of states passing and blocking the cell (71) to control the amount of light transmitted through the cell (71) during an integration time.
10. Système optique d'acquisition (1 ) selon l'une des revendications précédentes, comportant un dispositif de séparation optique (10) positionné de manière à ce que la lumière issue de la source (21 ) soit transmise vers la surface à analyser (4) à travers le dispositif de séparation optique (10), la lumière issue de la réflexion sur la surface (4) étant réfléchie par le dispositif de séparation optique (10) vers le dispositif d'imagerie (30). 10. Optical acquisition system (1) according to one of the preceding claims, comprising an optical separation device (10) positioned so that the light from the source (21) is transmitted to the surface to be analyzed ( 4) through the optical separation device (10), the light from the reflection on the surface (4) being reflected by the optical separation device (10) to the imaging device (30).
1 1 . Système optique d'acquisition (1 ) selon l'une des revendications précédentes, le dispositif d'imagerie (30) étant un capteur plénoptique. 1 1. Optical acquisition system (1) according to one of the preceding claims, the imaging device (30) being a plenoptic sensor.
12. Procédé d'acquisition d'informations sur une surface (4) mis en œuvre par un système optique d'acquisition (1 ) selon l'une des revendications précédentes, consistant à : 12. A method of acquiring information on a surface (4) implemented by an optical acquisition system (1) according to one of the preceding claims, consisting of:
- éclairer la surface à acquérir (4) avec un dispositif d'éclairage plénoptique de manière à éclairer chaque point de la surface (4) selon au moins deux angles d'incidence différents,  illuminating the surface to be acquired (4) with a plenoptic lighting device so as to illuminate each point of the surface (4) according to at least two different angles of incidence,
- acquérir au moins une image de la surface à acquérir (4),  acquiring at least one image of the surface to be acquired (4),
- détecter une réflexion spéculaire dans l'angle de champ du dispositif d'imagerie (30),  detecting specular reflection in the field of view of the imaging device (30),
- limiter la quantité de lumière transmise par les cellules (71 ) du masque matriciel (7) à travers lesquelles est transmise la lumière générant, après réflexion sur la surface à acquérir (4), la réflexion spéculaire détectée.  - Limit the amount of light transmitted by the cells (71) of the matrix mask (7) through which is transmitted the light generating, after reflection on the surface to be acquired (4), the specular reflection detected.
13. Utilisation d'un système optique d'acquisition (1 ) selon l'une des revendications 1 à 1 1 , pour le contrôle métrologique tridimensionnel d'une aube de turbomachine. 13. Use of an optical acquisition system (1) according to one of claims 1 to 1 1, for three-dimensional metrological control of a turbine engine blade.
PCT/FR2016/051100 2015-05-12 2016-05-11 Optical system for the acquisition of information about a surface WO2016181068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1554269 2015-05-12
FR1554269A FR3036246B1 (en) 2015-05-12 2015-05-12 OPTICAL SYSTEM FOR ACQUIRING INFORMATION ON A SURFACE

Publications (1)

Publication Number Publication Date
WO2016181068A1 true WO2016181068A1 (en) 2016-11-17

Family

ID=54065997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/051100 WO2016181068A1 (en) 2015-05-12 2016-05-11 Optical system for the acquisition of information about a surface

Country Status (2)

Country Link
FR (1) FR3036246B1 (en)
WO (1) WO2016181068A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167669A1 (en) * 2001-05-11 2002-11-14 Byk Gardner Gmbh Device and process for the determination of the properties of reflective bodies
US20140354801A1 (en) * 2013-05-31 2014-12-04 Ecole Polytechnique Federale De Lausanne (Epfl) Method, system and computer program for determining a reflectance distribution function of an object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167669A1 (en) * 2001-05-11 2002-11-14 Byk Gardner Gmbh Device and process for the determination of the properties of reflective bodies
US20140354801A1 (en) * 2013-05-31 2014-12-04 Ecole Polytechnique Federale De Lausanne (Epfl) Method, system and computer program for determining a reflectance distribution function of an object

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIMBER O ET AL: "Closed-Loop Feedback Illumination for Optical Inverse Tone-Mapping in Light Microscopy", IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, IEEE SERVICE CENTER, LOS ALAMITOS, CA, US, vol. 17, no. 6, 1 June 2011 (2011-06-01), pages 857 - 870, XP011373263, ISSN: 1077-2626, DOI: 10.1109/TVCG.2010.104 *
HANHOON PARK ET AL: "Specularity-Free Projection on Nonplanar Surface", 1 January 2005, ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2005 : 6TH PACIFIC-RIM CONFERENCE ON MULTIMEDIA, JEJU ISLAND, KOREA, NOVEMBER 13-16, 2005; PROCEEDINGS; [LECTURE NOTES IN COMPUTER SCIENCE ; 3767], SPRINGER, BERLIN, DE, PAGE(S) 606 - 616, ISBN: 978-3-540-30027-4, XP019023998 *
LEVOY ET AL.: "Recording and controlling the 4D light field in a microscope using microlens arrays", 24 July 2009 (2009-07-24), XP055250021, Retrieved from the Internet <URL:https://graphics.stanford.edu/papers/lfillumination/levoy-lfillumination-jmicr09.pdf> [retrieved on 20160215] *
NAYAR; GUPTA, DIFFUSE STRUCTURED LIGHT DANS IEEE INTERNATIONAL CONFÉRENCE ON COMPUTATIONAL PHOTOGRAPHY, 2012

Also Published As

Publication number Publication date
FR3036246B1 (en) 2018-01-26
FR3036246A1 (en) 2016-11-18

Similar Documents

Publication Publication Date Title
EP3034992B1 (en) Structured light projector and three-dimensional scanner comprising such a projector
US11212512B2 (en) System and method of imaging using multiple illumination pulses
FR2907949A1 (en) DEVICE FOR OPTOELECTRONIC MONITORING BY DYNAMIZATION TEST, AND CONTROL METHOD ASSOCIATED WITH THE DEVICE.
US11792383B2 (en) Method and system for reducing returns from retro-reflections in active illumination system
US11902494B2 (en) System and method for glint reduction
CA2712968A1 (en) Device and method for the space-colorimetric measurement of a three-dimensional object
FR2939942A1 (en) PERIMETER SAFETY SYSTEM FOR ACTIVE ANALYSIS OF THE IMAGE OF A VIDEO CAMERA
EP3718078A1 (en) System and method of reducing ambient background light in a pulse-illuminated image
FR2923006A1 (en) OPTICAL DEVICE FOR OBSERVING MILLIMETRIC OR SUBMILLIMETRIC STRUCTURAL DETAILS OF A SPECULAR BEHAVIOR OBJECT
WO2015082363A1 (en) Device and method for positioning a photolithography mask by means of a contactless optical method
WO2013114022A1 (en) Optical system intended to measure brdf, bsdf and bdtf
FR3081564A1 (en) Projection device and projection method
EP2507655B1 (en) Optical reflector having semi-reflective blades for a position detection device for a helmet, and helmet comprising such a device
FR3055430A1 (en) LIGHTING AND / OR SIGNALING DEVICE, IN PARTICULAR FOR A MOTOR VEHICLE
EP2554941B1 (en) Optical system for measuring the orientation of a helmet with corner cubes and telecentric transmission optic
JP5821092B2 (en) Illuminance distribution measuring apparatus and illuminance distribution measuring method
WO2016181068A1 (en) Optical system for the acquisition of information about a surface
FR2965045A1 (en) DEVICE FOR MEASURING THE SHAPE OF A MIRROR OR A SPECULAR SURFACE
FR2969319A1 (en) Self-calibrated interactive video-projection device e.g. interactive whiteboard device, for use in e.g. teaching field, has separation unit oriented such that lighting and detection paths are superimposed between separation unit and screen
FR2777653A1 (en) Measuring luminance characteristics of objects having direction dependent luminance, e.g. for projection screens, cathode ray tubes and liquid crystal displays
FR2978826A1 (en) OPTICAL SYSTEM FOR CUBIC CORNER ORIENTATION MEASUREMENT AND MASK
FR3107766A1 (en) Optical device for quickly measuring the angular emission of a finished surface light source
FR3059156B1 (en) OPTICAL DETECTION MODULE
FR3049043B1 (en) LIGHTING DEVICE FOR OBJECT ANALYSIS HAVING AT LEAST ONE REFLECTIVE AND / OR TRANSPARENT POLY SURFACE AND SYSTEM THEREFOR
FR2978241A1 (en) DIGITAL DISPLACEMENT MEASURING DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16729014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16729014

Country of ref document: EP

Kind code of ref document: A1