WO2016180787A1 - Improved piston design for downhole pulser - Google Patents

Improved piston design for downhole pulser Download PDF

Info

Publication number
WO2016180787A1
WO2016180787A1 PCT/EP2016/060349 EP2016060349W WO2016180787A1 WO 2016180787 A1 WO2016180787 A1 WO 2016180787A1 EP 2016060349 W EP2016060349 W EP 2016060349W WO 2016180787 A1 WO2016180787 A1 WO 2016180787A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear ring
piston
pulser
piston assembly
pulse generating
Prior art date
Application number
PCT/EP2016/060349
Other languages
French (fr)
Inventor
Khanh Anh Duong
Original Assignee
Ge Energy Oilfield Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ge Energy Oilfield Technology filed Critical Ge Energy Oilfield Technology
Publication of WO2016180787A1 publication Critical patent/WO2016180787A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • B06B1/045Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B6/00Drives for drilling with combined rotary and percussive action
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • G01V11/002Details, e.g. power supply systems for logging instruments, transmitting or recording data, specially adapted for well logging, also if the prospecting method is irrelevant
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/007Measuring stresses in a pipe string or casing
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole

Definitions

  • This invention relates generally to the field of telemetry systems, and more particularly, but not by way of limitation, to acoustic signal generators used in wellbore drilling operations.
  • drill bit is connected to a drill string and rotated by a surface-based drilling rig. Drilling mud is circulated through the drill string to cool the bit as it cuts through the subterranean rock formations and to carry cuttings out of the wellbore.
  • MWD equipment often includes one or more sensors that detect an environmental condition or position and relay that information back to the driller at the surface. This information can be relayed to the surface using acoustic signals that carry encoded data about the measured condition.
  • Prior art systems for emitting these acoustic signals make use of wave generators that create rapid changes in the pressure of the drilling mud.
  • the rapid changes in pressure create pulses that are carried through the drilling mud to receivers located at or near the surface.
  • Prior art pressure pulse generators include the use of rotary "mud sirens" and linearly- acting valves that interrupt the flow of mud through the pulse generator. The temporary flow disruption can be used to create a pattern of pressure pulses that can be interpreted and decoded at the surface.
  • prior art piston-based pulsers suffer from several deficiencies.
  • the prior art pistons have a tight tolerance within the pulser tool.
  • the tight tolerance accelerates wear and can lead to premature failure of the pulser.
  • the tight tolerance between the piston and the receiving bore can cause the piston to become pressure-locked within the bore. Once locked, the pulser will no longer function. Accordingly, there remains a need for an improved piston pulser design that overcomes these deficiencies in the prior art.
  • the present invention includes an acoustic pulse generating component for use in connection with a downhole drilling tool.
  • the acoustic pulse generating module includes a piston assembly and a drive assembly configured to move the piston assembly.
  • the piston assembly includes a piston having a low friction wear ring.
  • the present invention includes a drilling tool that has a sensor, an encoder operably connected to the sensor and a pulser operably connected to the encoder.
  • the pulser includes a piston assembly and a drive assembly configured to move the piston assembly.
  • the piston assembly includes a piston having a low friction wear ring.
  • the present invention includes a measurement while drilling (MWD) tool that includes at least one sensor configured to output a measurement signal representative of a measurement of a condition selected from the group consisting of torque, inclination, magnetic direction and position.
  • the MWD tool further includes an encoder configured to encode the measurement signal into a command signal and a pulser operably connected to the encoder and configured to transmit an acoustic signal through a fluid medium in response to the command signal.
  • the pulser includes a piston assembly and a drive assembly configured to move the piston assembly.
  • the piston assembly includes a piston having a wear ring.
  • FIG. 1 is a depiction of a drilling system constructed in accordance with an embodiment of the invention.
  • FIG. 2 is a cross-sectional view of an embodiment of the pulser module of the drilling system of FIG. 1.
  • FIG. 3 is a perspective view of the piston of the pulser module of FIG. 2. WRITTEN DESCRIPTION
  • FIG. 1 shows a drilling system 100 in a wellbore 102.
  • the drilling system 100 includes a drill string 104, a drill bit 106 and a MWD (measurement while drilling) tool 108.
  • MWD measurement while drilling
  • the drilling system 100 will include additional components, including drilling rigs, mud pumps and other surface-based facilities and downhole equipment.
  • the MWD tool 108 includes one or more sensors 110, an encoder module 112 and an acoustic pulse generating module, or pulser 114. It will be appreciated that the MWD tool 108 may include additional components, such as centralizers.
  • the sensors 110 are configured to measure a condition on the drilling system 100 or in the wellbore 102 and produce a representative signal for the measurement. Such measurements may include, for example, temperature, pressure, vibration, torque, inclination, magnetic direction and position.
  • the signals from the sensors 110 are encoded by the encoder module 112 into command signals delivered to the pulser 114.
  • the pulser 114 controllably adjusts the flow of fluid through the pulser 114.
  • the rapid variation in the size of the flow path through the pulser 114 increases and decreases the pressure of drilling mud flowing through the MWD tool 108.
  • the variation in pressure creates acoustic pulses that include the encoded signals from the sensors 110.
  • the pressure pulses are transmitted through the wellbore 102 to a receiver 116 and processed by surface facilities to present the driller or operator with information about the drilling system 100 and wellbore 102.
  • the sensors 110, encoder module 112 and pulser 114 of the MWD tool 108 are operated using electricity.
  • the electricity can be provided through an umbilical from the surface, from an onboard battery pack, through the operation of a generator or through some combination of batteries, generators and umbilicals.
  • FIG. 2 shown therein is a cross-sectional depiction of the pulser 114.
  • the pulser 114 includes a housing 118, an annulus 120, a central bore 122, a piston assembly 124 and an orifice 126.
  • the housing 118 isolates the internal components of the pulser 114 from the external wellbore 102. Drilling fluid moving through the pulser 114 passes through the annulus 120 and the orifice 126.
  • the piston assembly 124 includes a piston shaft 128, a piston 130 and a poppet valve 132.
  • the piston 130 and poppet valve 132 are connected to, and configured for movement with, the piston shaft 128.
  • the piston 130 is sized to fit in close proximity within the central bore 122.
  • the piston assembly 124 is driven by a drive assembly 134 that produces the selective, rapid and bidirectional movement of the piston shaft 128, piston 130 and poppet valve 132 within the central bore 122.
  • the drive assembly 134 includes one or more solenoids that are configured to selectively reciprocate the piston shaft 128 in response to the application of electrical control signals.
  • the piston shaft 128 When deployed, the piston shaft 128 extends and forces the poppet valve 132 into the orifice 126 to reduce flow through the pulser 114. When withdrawn, the piston shaft 128 retracts and removes the poppet valve 132 from the orifice 126 to increase flow through the pulser 114. The sequenced reduction and increase of flow through the pulser 114 creates pressure waves that carry encoded information from the sensors 110. It will be understood that the piston assembly 124 will reciprocate rapidly within the central bore 122 for extended periods of time during use. [020] Turning to FIG. 3, shown therein is a perspective view of the piston 130.
  • the piston 130 includes a proximal end 136, a distal end 138 and a central portion 140.
  • the central portion 140 includes a ring seat 142 within which a wear ring 144 is installed.
  • the wear ring 144 provides a low friction interface between the piston 130 and the central bore 122 to facilitate reciprocation of the piston assembly 124 and prolong the useful life of the pulser 114.
  • the wear ring 144 is manufactured from a temperature and chemical resistant thermoplastic that resists wear and provides a desirable bearing surface. Suitable materials include ultra-high molecular weight polyethylene, oil-impregnated nylon and ceramics. The incorporation of the durable wear ring 144 presents a significant advantage over the high-friction seals used in prior art piston assemblies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

A measurement while drilling (MWD) tool includes a sensor, an encoder operably connected to the sensor and a pulser operably connected to the encoder. The pulser includes a linearly acting bidirectional piston that operates a poppet valve. The poppet valve is designed to completely or partially interrupt the flow of fluid through the MWD tool. The selective operation of the piston-driven poppet valve creates pressure signals that are carried through the fluid. The piston assembly that drives the poppet valves includes wear rings that improve the performance and durability of the piston.

Description

IMPROVED PISTON DESIGN FOR DOWNHOLE PULSER
RELATED APPLICATIONS
[001] This application claims the benefit of United States Provisional Patent Application Number 62/159,131, filed May 8, 2015, entitled "Improved Piston Design for Downhole Pulse," the disclosure of which is incorporated herein.
FIELD OF THE INVENTION
[002] This invention relates generally to the field of telemetry systems, and more particularly, but not by way of limitation, to acoustic signal generators used in wellbore drilling operations.
BACKGROUND
[003] Wells are often drilled for the production of petroleum fluids from subterranean reservoirs. In many cases, a drill bit is connected to a drill string and rotated by a surface-based drilling rig. Drilling mud is circulated through the drill string to cool the bit as it cuts through the subterranean rock formations and to carry cuttings out of the wellbore.
[004] As drilling technologies have improved, "measurement while drilling" techniques have been enabled that allow the driller to accurately identify the location of the drill string and bit and the conditions in the wellbore. MWD equipment often includes one or more sensors that detect an environmental condition or position and relay that information back to the driller at the surface. This information can be relayed to the surface using acoustic signals that carry encoded data about the measured condition.
[005] Prior art systems for emitting these acoustic signals make use of wave generators that create rapid changes in the pressure of the drilling mud. The rapid changes in pressure create pulses that are carried through the drilling mud to receivers located at or near the surface. Prior art pressure pulse generators include the use of rotary "mud sirens" and linearly- acting valves that interrupt the flow of mud through the pulse generator. The temporary flow disruption can be used to create a pattern of pressure pulses that can be interpreted and decoded at the surface.
[006] Although generally effective, prior art piston-based pulsers suffer from several deficiencies. In particular, the prior art pistons have a tight tolerance within the pulser tool. The tight tolerance accelerates wear and can lead to premature failure of the pulser. In certain situations, the tight tolerance between the piston and the receiving bore can cause the piston to become pressure-locked within the bore. Once locked, the pulser will no longer function. Accordingly, there remains a need for an improved piston pulser design that overcomes these deficiencies in the prior art.
SUMMARY
[007] In various embodiments, the present invention includes an acoustic pulse generating component for use in connection with a downhole drilling tool. The acoustic pulse generating module includes a piston assembly and a drive assembly configured to move the piston assembly. The piston assembly includes a piston having a low friction wear ring.
[008] In another aspect, the present invention includes a drilling tool that has a sensor, an encoder operably connected to the sensor and a pulser operably connected to the encoder. The pulser includes a piston assembly and a drive assembly configured to move the piston assembly. The piston assembly includes a piston having a low friction wear ring.
[009] In yet another aspect the present invention includes a measurement while drilling (MWD) tool that includes at least one sensor configured to output a measurement signal representative of a measurement of a condition selected from the group consisting of torque, inclination, magnetic direction and position. The MWD tool further includes an encoder configured to encode the measurement signal into a command signal and a pulser operably connected to the encoder and configured to transmit an acoustic signal through a fluid medium in response to the command signal. The pulser includes a piston assembly and a drive assembly configured to move the piston assembly. The piston assembly includes a piston having a wear ring.
BRIEF DESCRIPTION OF THE DRAWINGS
[010] FIG. 1 is a depiction of a drilling system constructed in accordance with an embodiment of the invention.
[Oi l] FIG. 2 is a cross-sectional view of an embodiment of the pulser module of the drilling system of FIG. 1.
[012] FIG. 3 is a perspective view of the piston of the pulser module of FIG. 2. WRITTEN DESCRIPTION
[013] In accordance with an embodiment of the present invention, FIG. 1 shows a drilling system 100 in a wellbore 102. The drilling system 100 includes a drill string 104, a drill bit 106 and a MWD (measurement while drilling) tool 108. It will be appreciated that the drilling system 100 will include additional components, including drilling rigs, mud pumps and other surface-based facilities and downhole equipment.
[014] The MWD tool 108 includes one or more sensors 110, an encoder module 112 and an acoustic pulse generating module, or pulser 114. It will be appreciated that the MWD tool 108 may include additional components, such as centralizers. The sensors 110 are configured to measure a condition on the drilling system 100 or in the wellbore 102 and produce a representative signal for the measurement. Such measurements may include, for example, temperature, pressure, vibration, torque, inclination, magnetic direction and position. The signals from the sensors 110 are encoded by the encoder module 112 into command signals delivered to the pulser 114.
[015] Based on the command signals from the encoder module 112, the pulser 114 controllably adjusts the flow of fluid through the pulser 114. The rapid variation in the size of the flow path through the pulser 114 increases and decreases the pressure of drilling mud flowing through the MWD tool 108. The variation in pressure creates acoustic pulses that include the encoded signals from the sensors 110. The pressure pulses are transmitted through the wellbore 102 to a receiver 116 and processed by surface facilities to present the driller or operator with information about the drilling system 100 and wellbore 102.
[016] The sensors 110, encoder module 112 and pulser 114 of the MWD tool 108 are operated using electricity. The electricity can be provided through an umbilical from the surface, from an onboard battery pack, through the operation of a generator or through some combination of batteries, generators and umbilicals.
[017] Turning to FIG. 2, shown therein is a cross-sectional depiction of the pulser 114. The pulser 114 includes a housing 118, an annulus 120, a central bore 122, a piston assembly 124 and an orifice 126. The housing 118 isolates the internal components of the pulser 114 from the external wellbore 102. Drilling fluid moving through the pulser 114 passes through the annulus 120 and the orifice 126.
[018] The piston assembly 124 includes a piston shaft 128, a piston 130 and a poppet valve 132. The piston 130 and poppet valve 132 are connected to, and configured for movement with, the piston shaft 128. The piston 130 is sized to fit in close proximity within the central bore 122. The piston assembly 124 is driven by a drive assembly 134 that produces the selective, rapid and bidirectional movement of the piston shaft 128, piston 130 and poppet valve 132 within the central bore 122. In some embodiments, the drive assembly 134 includes one or more solenoids that are configured to selectively reciprocate the piston shaft 128 in response to the application of electrical control signals.
[019] When deployed, the piston shaft 128 extends and forces the poppet valve 132 into the orifice 126 to reduce flow through the pulser 114. When withdrawn, the piston shaft 128 retracts and removes the poppet valve 132 from the orifice 126 to increase flow through the pulser 114. The sequenced reduction and increase of flow through the pulser 114 creates pressure waves that carry encoded information from the sensors 110. It will be understood that the piston assembly 124 will reciprocate rapidly within the central bore 122 for extended periods of time during use. [020] Turning to FIG. 3, shown therein is a perspective view of the piston 130. The piston 130 includes a proximal end 136, a distal end 138 and a central portion 140. The central portion 140 includes a ring seat 142 within which a wear ring 144 is installed. The wear ring 144 provides a low friction interface between the piston 130 and the central bore 122 to facilitate reciprocation of the piston assembly 124 and prolong the useful life of the pulser 114. In some embodiments, the wear ring 144 is manufactured from a temperature and chemical resistant thermoplastic that resists wear and provides a desirable bearing surface. Suitable materials include ultra-high molecular weight polyethylene, oil-impregnated nylon and ceramics. The incorporation of the durable wear ring 144 presents a significant advantage over the high-friction seals used in prior art piston assemblies.
[021] It is to be understood that even though numerous characteristics and advantages of various embodiments of the present invention have been set forth in the foregoing description, together with details of the structure and functions of various embodiments of the invention, this disclosure is illustrative only, and changes may be made in detail, especially in matters of structure and arrangement of parts within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. It will be appreciated by those skilled in the art that the teachings of the present invention can be applied to other systems without departing from the scope and spirit of the present invention.

Claims

CLAIMS:
1. An acoustic pulse generating component for use in connection with a downhole drilling tool, the acoustic pulse generating module comprising: a piston assembly, wherein the piston assembly includes a piston having a wear ring; and a drive assembly configured to move the piston assembly.
2. The acoustic pulse generating component of claim 1, wherein the wear ring comprises a thermoplastic wear ring.
3. The acoustic pulse generating module of claim 2, wherein the wear ring comprises an ultra-high molecular weight polyethylene wear ring.
4. The acoustic pulse generating module of claim 1, wherein the wear ring comprises an oil-impregnated nylon wear ring.
5. The acoustic pulse generating module of claim 1, wherein the wear ring comprises a ceramic wear ring.
6. The acoustic pulse generating module of claim 1, wherein the piston comprises: a proximal end; a distal end; a central portion between the proximal end and the distal end; and a ring seat within the central portion, wherein the wear ring is seated in the ring seat.
7. The acoustic pulse generating module of claim 1, wherein the drive assembly comprises one or more solenoids configured to rapidly reciprocate the piston assembly within the pulse generating module.
8. A drilling tool comprising: a sensor; an encoder operably connected to the sensor; and a pulser operably connected to the encoder, wherein the pulser comprises: a piston assembly, wherein the piston assembly includes a piston having a wear ring; and a drive assembly configured to move the piston assembly.
9. The drilling tool of claim 8, wherein the wear ring comprises a thermoplastic wear ring.
10. The drilling tool of claim 8, wherein the wear ring comprises an ultra-high molecular weight polyethylene wear ring.
11. The drilling tool of claim 8, wherein the wear ring comprises an oil- impregnated nylon wear ring.
12. The drilling tool of claim 8, wherein the wear ring comprises a ceramic wear ring.
13. The drilling tool of claim 8, wherein the piston comprises: a proximal end; a distal end; a central portion between the proximal end and the distal end; and a ring seat within the central portion, wherein the wear ring is seated in the ring seat.
14. The drilling tool of claim 8, wherein the drive assembly comprises one or more solenoids configured to rapidly reciprocate the piston assembly within the pulse generating module.
15. The drilling tool of claim 8, wherein the piston assembly further comprises: a piston shaft; and a poppet valve.
16. The drilling tool of claim 16, wherein the piston has an outer diameter and wherein the pulser further comprises:
a central bore having an inner diameter, wherein the inner diameter of the central bore is nominally the same as the outer diameter of the piston; and
an orifice, wherein the orifice is sized to admit the poppet valve.
17. A measurement while drilling (MWD) tool comprising: at least one sensor configured to output a measurement signal representative of a measurement of a condition selected from the group consisting of torque, inclination, magnetic direction and position; an encoder configured to encode the measurement signal into a command signal; a pulser operably connected to the encoder and configured to transmit an acoustic signal through a fluid medium in response to the command signal, wherein the pulser comprises: a piston assembly, wherein the piston assembly includes a piston having a wear ring; and a drive assembly configured to move the piston assembly.
18. The MWD tool of claim 17, wherein the wear ring is manufactured from a material that exhibits a low coefficient of friction.
19. The MWD tool of claim 18, wherein the wear ring is manufactured from a material selected from the group consisting of plastics and ceramics.
20. The MWD tool of claim 19, wherein the wear ring is manufactured from a material selected from the group consisting of ultra-high molecular weight polyethylene and oil-impregnated nylon.
PCT/EP2016/060349 2015-05-08 2016-05-09 Improved piston design for downhole pulser WO2016180787A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562159131P 2015-05-08 2015-05-08
US62/159,131 2015-05-08
US15/148,659 US20160326869A1 (en) 2015-05-08 2016-05-06 Piston Design for Downhole Pulser
US15/148,659 2016-05-06

Publications (1)

Publication Number Publication Date
WO2016180787A1 true WO2016180787A1 (en) 2016-11-17

Family

ID=57223147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/060349 WO2016180787A1 (en) 2015-05-08 2016-05-09 Improved piston design for downhole pulser

Country Status (2)

Country Link
US (1) US20160326869A1 (en)
WO (1) WO2016180787A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195671A1 (en) * 2015-06-03 2016-12-08 Halliburton Energy Services, Inc. Pressure balanced liquid scintillator for downhole gamma detection
IT201900004215A1 (en) 2019-03-22 2020-09-22 Eni Spa ELECTRO-ACOUSTIC TRANSDUCER.
US11745324B2 (en) * 2021-02-08 2023-09-05 Jason Swinford Fluid-driven pulsing hammering tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628495A (en) * 1982-08-09 1986-12-09 Dresser Industries, Inc. Measuring while drilling apparatus mud pressure signal valve
US20060127184A1 (en) * 2004-09-13 2006-06-15 Madison Kent R Aquifer recharge valve and method
US20070204988A1 (en) * 2005-03-15 2007-09-06 Brian Norris Piston-type water pump
US20090301780A1 (en) * 2008-06-06 2009-12-10 The Gearhart Companies, Inc. Compartmentalized mwd tool with isolated pressure compensator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349767B2 (en) * 1998-05-13 2002-02-26 Halliburton Energy Services, Inc. Disconnect tool
US6186368B1 (en) * 1999-05-26 2001-02-13 Michael Gene Knickerbocker Manually actuated pump assembly
US7101158B2 (en) * 2003-12-30 2006-09-05 Wanner Engineering, Inc. Hydraulic balancing magnetically driven centrifugal pump
US7607901B2 (en) * 2004-05-25 2009-10-27 Harbison-Fischer, Inc. Wear rings for downhole pump
US9022144B2 (en) * 2009-04-23 2015-05-05 Schlumberger Technology Corporation Drill bit assembly having electrically isolated gap joint for measurement of reservoir properties
GB201012176D0 (en) * 2010-07-20 2010-09-01 Metrol Tech Ltd Well

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628495A (en) * 1982-08-09 1986-12-09 Dresser Industries, Inc. Measuring while drilling apparatus mud pressure signal valve
US20060127184A1 (en) * 2004-09-13 2006-06-15 Madison Kent R Aquifer recharge valve and method
US20070204988A1 (en) * 2005-03-15 2007-09-06 Brian Norris Piston-type water pump
US20090301780A1 (en) * 2008-06-06 2009-12-10 The Gearhart Companies, Inc. Compartmentalized mwd tool with isolated pressure compensator

Also Published As

Publication number Publication date
US20160326869A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
AU2016203569B2 (en) A method of drilling a wellbore
AU2013221693B2 (en) Actuation system and method for a downhole tool
CA2824522C (en) Telemetry operated circulation sub
US8464799B2 (en) Control system for a surface controlled subsurface safety valve
US9528349B2 (en) Downhole power generation using a mud operated pulser
US20120234558A1 (en) Remotely operated isolation valve
US9828853B2 (en) Apparatus and method for drilling fluid telemetry
US9988874B2 (en) Diamond switching devices, systems and methods
RU2751610C2 (en) Unit for preventing backflow for downhole operations
US20160326869A1 (en) Piston Design for Downhole Pulser
US8824241B2 (en) Method for a pressure release encoding system for communicating downhole information through a wellbore to a surface location
US20090166026A1 (en) Jar device for use in coil tubing drilling
US11396807B2 (en) Dual turbine power and wellbore communications apparatus
WO2016113632A1 (en) High signal strength mud siren for mwd telemetry
US10774615B2 (en) Multi-port ball valve for while drilling applications
US20180216418A1 (en) Adjustable Hydraulic Coupling For Drilling Tools And Related Methods
AU2012207114B2 (en) Telemetry operated circulation sub

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16721800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16721800

Country of ref document: EP

Kind code of ref document: A1