WO2016180291A1 - 内窥式oct微探头、oct成像系统及使用方法 - Google Patents

内窥式oct微探头、oct成像系统及使用方法 Download PDF

Info

Publication number
WO2016180291A1
WO2016180291A1 PCT/CN2016/081353 CN2016081353W WO2016180291A1 WO 2016180291 A1 WO2016180291 A1 WO 2016180291A1 CN 2016081353 W CN2016081353 W CN 2016081353W WO 2016180291 A1 WO2016180291 A1 WO 2016180291A1
Authority
WO
WIPO (PCT)
Prior art keywords
oct
balloon
microprobe
module
optical
Prior art date
Application number
PCT/CN2016/081353
Other languages
English (en)
French (fr)
Inventor
奚杰峰
高端贵
李常青
冷德嵘
Original Assignee
南京微创医学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京微创医学科技有限公司 filed Critical 南京微创医学科技有限公司
Priority to ES16792141T priority Critical patent/ES2888273T3/es
Priority to JP2018509964A priority patent/JP6670928B2/ja
Priority to EP16792141.0A priority patent/EP3295988B1/en
Publication of WO2016180291A1 publication Critical patent/WO2016180291A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/267Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters

Definitions

  • the invention relates to the technical field of medical instruments, in particular to an OCT scanning imaging detection applied to a human lumen, and provides an OCT micro-probe, an OCT imaging system and a using method for OCT endoscopic scanning imaging.
  • OCT Optical Coherence Tomography
  • OCT Compared with other CT, ultrasound, MRI and other imaging methods, OCT has a very high resolution, compared with the traditional laser confocal microscope, OCT imaging depth has obvious advantages.
  • Most of the core technologies of traditional optical probes use fiber bundles for light transmission and imaging, or CCD technology for imaging.
  • Such endoscopic probes can only detect lesions on the surface of tissues, but the symptoms of early cancer occur below the epidermis 1-3 The depth of the millimeter, so the traditional optical endoscopic probe is not enough.
  • endoscopic probes for medical imaging through the principle of ultrasound. Although the tissue information below the surface of the biological tissue can be obtained, the resolution is only on the order of millimeters, which may cause missed diagnosis for early cancer.
  • Endoscopic OCT technology is an OCT branch technology that was born and flourished with the development of OCT technology in the past decade. Its core goal is to miniaturize OCT optical imaging equipment without providing resolution, and provide internal organs. High resolution OCT image of the lumen.
  • This technology greatly expands the application field of OCT technology, making OCT inspection objects from body surface organs or biopsy samples to human internal organs, such as blood vessels, digestive tract and respiratory tract.
  • various digestive tract lumens have been involved. Large digestive tract lumens (such as esophagus, rectum), small digestive tract lumens (such as biliary tract).
  • OCT endoscopic techniques have been initially applied in the examination of atherosclerosis and the examination of vascular stent placement.
  • OCT microprobe A key component in the endoscopic OCT system is the OCT microprobe. It can be combined with existing clinical endoscopic or minimally invasive techniques, extended into the internal organs of the human body, collected and collected from living organisms. The backscattered light of the tissue; at the same time, it also needs to meet the characteristics of small physical size and high mechanical strength.
  • the self-focusing lens has the characteristics of mature processing technology, low production cost, simple structure and easy assembly, and can also be made into a small size, which is the first choice for the production of OCT micro-probes, but it also exists.
  • Some defects, such as a small numerical aperture, result in a reduced numerical resolution of the OCT microprobe, especially when using a long working distance self-focusing lens, which causes a sharp drop in lateral resolution.
  • OCT micro-probes are generally positioned and protected with a cylindrical plastic transparent sleeve when used.
  • a cylindrical plastic transparent sleeve When the laser passes through a cylindrical plastic transparent sleeve, it is equivalent to a cylindrical negative lens with astigmatism. Occurs, which causes the circular spot of the laser to become an elliptical spot, causing the scanned image to be distorted and affecting the diagnosis.
  • the OCT microprobe may also include a mirror, a support stainless steel tube, and a slotted stainless steel tube, the end faces of which are glued with optical glue.
  • the single-mode fiber in the spring tube has a fiber-optic standard connector at one end, and the connector can be connected to the fiber rotating end of the OCT system, the spring tube is covered with a PTFE film, and the spring tube effectively protects the single-mode fiber.
  • the resistance of the probe is reduced, and the overall scanning of the OCT micro-probe is smoother and smoother.
  • the optical fiber standard connector has a supporting stainless steel tube, and the stainless steel tube plays a supporting role when the OCT micro-probe scans, so that the whole probe Rotate the scan more smoothly.
  • the other end of the single-mode optical fiber is an inclined end surface, and is glued to one end surface of the glass rod which is also an inclined end surface.
  • the inclination of the glue surface effectively reduces the interference of the reflected light on the signal light, and can change the glass rod and the single-mode optical fiber.
  • Gluing distance to change Change the working distance of the OCT microprobe to achieve the required working distance required.
  • the other end of the glass rod is glued to the self-focusing lens at an angle of 0° and then encapsulated in a slotted stainless steel tube. By changing the length of the autofocus lens, the working distance of the OCT probe is changed to achieve the specified working distance.
  • the best lateral resolution is obtained, and the numerical aperture of the OCT probe can be increased by increasing the length of the glass rod, thereby improving the lateral resolution, that is, the use of the glass rod not only increases the working distance of the micro probe, but also increases the micro
  • the numerical aperture of the probe, and the increase of the numerical aperture also leads to an increase in lateral resolution.
  • this design also greatly shortens the length of the self-focusing lens, ensuring the cornering of the micro-probe, so that the entire micro-probe can pass.
  • the endoscopic forceps and the catheter directly enter the human esophagus.
  • the mirror can change the forward light into a lateral direction, and the mirror is a cylindrical mirror, which can change the astigmatism effect of the protective sleeve outside the OCT probe on the concentrated beam.
  • the surface of the self-focusing lens in contact with the air is coated with an anti-reflection film, which can reduce the reflection of light between the optical surfaces and increase the light transmission performance, thereby reducing the influence of the reflected light of the optical surface on the signal light.
  • the sensitivity of the OCT microprobe is improved.
  • the surface of the autofocus lens that is in contact with air can be processed into a 4°-8° slope. This design can further reduce the interference signal formed by light passing through this surface.
  • the reflecting surface of the mirror is encapsulated in a stainless steel tube toward the stainless steel tube slot.
  • the mirror here may be based on the inner and outer diameter of the cylindrical inner tube.
  • the cylindrical mirror is designed according to the refractive index of the inner tube material.
  • Another object of the present invention is to provide an OCT endoscopic scanning imaging system, including a frequency sweeping laser module, an interference module, a detector module, a data acquisition module, a data processing module, an image display module, an actuator, a balloon catheter, and a charging device. a deflation device, the OCT micro probe, wherein
  • a fiber circulator is placed in both the reference arm and the sample arm to collect optical signals reflected or scattered back from the two arms; the second fiber coupler can use a symmetric 2 ⁇ 2 fiber coupler (ie, the split ratio is 50/50)
  • a fiber polarization controller is symmetrically placed in the reference arm and the sample arm for adjusting the polarization state of the two arms to obtain an optimal optical interference signal.
  • the Michelson interferometer structure consists of a symmetrical 2 ⁇ 2 fiber coupler, a fiber circulator, and two optical polarization controllers. The swept laser first passes through the fiber circulator and enters the fiber coupler, from the reference arm and sample.
  • the optical signal reflected or scattered back by the arm generates an interference signal through the same fiber coupler.
  • the fiber polarization controller is symmetrically placed in the reference arm and the sample arm to adjust the polarization state of the two arms for optimal optics. Interference signal.
  • the Mach-Zehnder Interferometer has the advantages of structural symmetry, simple dispersion management, and high detection sensitivity.
  • the advantage of the Michelson interferometer is that it is simple in structure and does not introduce a positive mode dispersion (PMD).
  • the optical path difference between the two arms determines the free spectral region where the optical clock occurs ( FSR), which also determines the maximum imaging depth of the OCT image;
  • the detector module can use a high-speed balanced photodetector, which is mainly used to convert the interference optical signal output from the interference module into an electrical signal;
  • the data acquisition module is a high-speed mode
  • the data acquisition card is mainly used for converting an analog electrical signal into a digital electrical signal, and providing the digital signal to a data processing module for digital signal processing;
  • the data processing module is a chip with digital signal processing capability (such as CPU, GPGPU, DSP, FPGA, etc.) are mainly used to process the original signal and convert it into a final image signal;
  • the image display module is mainly used for displaying an image signal and is responsible for post-processing and measurement work of the image;
  • the actuator is rotated by the optical fiber
  • the connector, the motor and the electric translation stage are composed, and the rotary motor in the actuator drives the OCT micro
  • the software reconstructs the acquired rotation scan data and the translation stage movement data to generate a 3D image;
  • the OCT micro probe is mainly used to enter the internal organs of the human body.
  • the balloon catheter is used to expand the internal organ conduit of the human body, eliminate wrinkles and stabilize the OCT microprobe at the center of the balloon;
  • the deflation device is mainly used to expand the balloon catheter.
  • the balloon catheter comprises: a handle, one interface of the handle is a host interface, the other interface is a ventilation interface; a double lumen tube, the dual lumen tube can allow an OCT optical probe to pass; a balloon, the The front end of the balloon is sealed and has a scale on the balloon; the inner tube is fixed in length according to the length of the balloon, and its length is shorter than the balloon, the balloon and the soft head When welding, push the balloon down a certain distance, make it flush with the inner tube and fix it, and then weld it. Because the inner tube is too thick, it will affect the scanned image. The sharpness, too thin, affects the rotation and concentricity of the probe.
  • the inner tube is specially designed for the OCT probe.
  • the inner tube has an inner diameter of 1.4 mm and the inner tube outer diameter is 1.65 mm.
  • the inner tube and the balloon are The concentricity deviates from no more than 500 microns at nominal use atmospheric pressure, preferably, the nominal use atmospheric pressure is 3-5 atmospheres, and the concentricity of the inner tube with the balloon deviates from no more than 500 microns at 3 atmospheres a membrane sleeve located at the junction of the balloon and the double lumen tube, controlling the floating of the inner tube inside the lumen, thereby ensuring no deviation from the center of the balloon, solving the eccentric problem; the soft head, the soft head a solid structure, wherein one end of the double lumen tube is connected to the handle, the other end is connected to one end of the inner tube and the balloon, and the other end of the balloon and the inner tube is soft Head connection.
  • the balloon catheter of the present invention can pass through a 0.055 in OCT optical microprobe.
  • the balloon has an ink printing scale, the line width is ⁇ 0.1mm, and the direction of the probe scanning can be discriminated, which does not affect the scanning judgment of the normal image and can also distinguish the scanning position on the display screen.
  • the balloon front end seal Blocking can prevent the body fluid from affecting the optical scanning, prevent the corrosion of the body fluid to the precision equipment, and at the same time, the sealing material is a soft structure, which will not scratch the tissue and the cavity of the measured object during the operation, and enhance the equipment. safety.
  • the soft head has a solid structure and can prevent body fluid from entering.
  • the nominal atmospheric pressure is 3-5 atmospheres.
  • the nominal atmospheric pressure is 3 atmospheres, and the concentricity of the inner tube and the balloon deviates by no more than 500 microns at 3 atmospheres.
  • the balloon is rated at 3 atmospheres and does not cause damage to the normal esophagus at lower pressures.
  • the heat setting process and welding process of the balloon ensure the concentricity of the inner tube and the balloon at a rated pressure of 3 atmospheres. Deviation does not exceed 500 microns for optical imaging.
  • the soft head has a solid structure and can prevent body fluid from entering.
  • the double lumen tube is connected to the handle by a UV adhesive, and the other components are connected by a welding process.
  • the length of the inner tube is fixed according to the length of the balloon, and the length thereof is shorter than the balloon.
  • the balloon is welded to the soft head, the balloon is pushed down by a certain distance to make it
  • the inner tube is flush and fixed and welded, so that the balloon has an elongation margin when filling, thereby matching the inner tube to stretch and maintain concentricity.
  • the method of welding and fixing the balloon can prevent the inner tube from being directly inserted into the balloon without being fixed. Due to the movement of the patient and the organ cavity and the excessive insertion of the catheter into the balloon, the relative movement of the catheter and the balloon is caused.
  • the problem of optical probe eccentricity Preferably, the balloon has a folding curl temperature of 40° to 45° and a setting time of 4 to 5 hours.
  • the process can maintain the concentricity while maintaining the memory of the balloon. characteristic.
  • the handle material may be polycarbonate
  • the double lumen tube and the soft head material may be block polyether amide
  • the balloon and inner tube material may be nylon. And its modified polymer.
  • the method of using the balloon catheter for OCT endoscopic scanning imaging includes: inserting a balloon catheter with an OCT microprobe into the caliper and pushing the balloon to the desired scanning position; then placing the handle with an interface and OCT The device is connected, and the other interface is connected to the inflating device for inflation. After the inflation is completed, the image is scanned, the inhalation is performed after the scanning is finished, and finally the balloon catheter is withdrawn after the end of inhalation.
  • the charge and discharge device is applied to the OCT endoscopic scanning imaging system, that is, includes a frequency sweeping laser module, an interference module, a detector module, a data acquisition module, a data processing module, an image display module, an actuator, and a balloon catheter.
  • the OCT micro probe and the charging and discharging device are automatic charging and discharging devices, and the automatic charging and discharging device comprises: a control and display module, a gas pump, a gas filling solenoid valve, a gas discharging solenoid valve, and a pressure Sensor, explosion-proof pressure sensor, mechanical pressure switch.
  • the automatic charging and deflation device is applied to an OCT endoscopic scanning imaging system to realize automatic charging and discharging and precise air pressure control, wherein the air pump is connected to the throttle valve through a gas filling solenoid valve and a bleed solenoid valve, the throttle valve Connected to the foregoing balloon, the pressure sensor is plural, wherein at least one pressure sensor is connected to the balloon, and at least one pressure sensor is disposed between the throttle valve and the inflation solenoid valve and the deflation solenoid valve, the explosion-proof pressure sensor and the ball
  • the capsule is connected, the mechanical pressure switch is connected to the balloon, and the control and display module can set the balloon air pressure and inflation time, collect pressure, control the air pump to start and stop, and control the working state of the solenoid valve;
  • the use of the automatic charge and discharge device includes:
  • the balloon pressure and inflation time are set in the control and display module, and the air pump is inflated until the set air pressure value;
  • the balloon pressure and deflation time are set in the control and display module, and the air pump inhales until the set pressure value;
  • the system is over-pressure protected by an explosion-proof pressure sensor, the air pump is turned off when the balloon exceeds the set air pressure, and the pressure is released by the mechanical pressure switch when the balloon exceeds the set air pressure.
  • the automatic charging and discharging device realizes automatic inflation and inhalation, and has the function of setting different air pressure parameters, and can charge and deflate the balloon of different specifications, and the device reaches the set air pressure during inflation of the balloon. After the value, the inflation is stopped and the overvoltage protection function is provided.
  • the achievable effect is: firstly, the doctor's manual filling and deflation operation of the balloon is eliminated, the time for the doctor to charge and deflate is shortened, the safety is improved, and the risk of overfilling and exploding the balloon is avoided; secondly, Accurate air pressure control ensures that the shape consistency of the balloon after inflation is ensured.
  • the OCT endoscopic scanning imaging system comprises an optical clock module composed of the interference module, the detector module and an optical clock conversion circuit module, wherein the interference module can adopt an all-fiber Mach-Zehnder interferometer
  • the (MZI) structure is mainly composed of two fiber couplers, wherein the second coupler is a symmetric 2 ⁇ 2 fiber coupler, which is first divided into two paths of light at the first fiber coupler, and the two paths are respectively passed through two The first optical fiber and the second optical fiber having a fixed optical path difference are interfered at the second optical fiber coupler.
  • the detector module can employ a high-speed balanced photodetector, which is mainly used to convert an interference optical signal output from the interference module into an electrical signal.
  • the optical interference signal generated from the MZI is converted into an electrical signal by a balanced photodetector, and then passed through an optical clock conversion circuit module, that is, sequentially passed through a wide-band 90-degree phase shifter, a zero-crossing comparator, an exclusive OR gate, an OR gate, and an optical clock.
  • the signal output module converts to an optical clock signal that is uniform over the frequency domain and variable in frequency domain.
  • the wide-band 90-degree phase shifter is mainly used to shift the phase of the MZI electrical signal by 90 degrees, which can increase the available spectral interval width of the original signal, enrich the spectrum distribution resources of the sampling clock signal, and optimize the acquired sampling clock signal.
  • the zero-crossing comparator is mainly used for zero-crossing comparison between the original MZI electrical signal and the phase-shifted MZI electrical signal to be converted into a digital signal, and the zero point of the MZI signal is evenly distributed in the frequency domain, so the number generated after the zero-cross comparison is generated. The rising or falling edge of the signal is also evenly distributed in the frequency domain.
  • the XOR gate is mainly used to combine two digital clock signals to obtain two clock signals in one free spectral region (FSR). Increasing the FSR increases the maximum imaging depth of the OCT and reduces the jitter generated by the optical signal.
  • the optical clock signal needs to fill in some false clock signals in the blank through an OR gate to ensure that the high speed analog capture card can work normally.
  • the OR gate implements the function of combining the real optical clock signal with the fake clock signal.
  • the optical clock signal output module is mainly used to deliver the combined real optical clock signal and the fake clock signal to the data acquisition module.
  • the invention obtains FD-OCT raw data through an external collection device
  • the FD-OCT raw data obtained in the data acquisition step is placed in the computer system or embedded system memory, and the data is stored in the system memory in frame units, when certain conditions are met (such as data accumulation) For one or more frames), the data can be transferred to the device memory of the general-purpose image processor via a data bus (such as PCI Express); because the bus transfer speed is relatively slow, the general-purpose image processor will be on the same while the data is being transferred.
  • the OCT raw data transferred to the device memory at one time is processed in parallel.
  • the method has high-efficiency parallel signal processing capability, can realize real-time digital signal processing, greatly improves transmission efficiency, and saves bus resources;
  • the processed data is placed in the memory of the image display library, and the image display library can be directly called, no need to transmit through the bus, which greatly improves the transmission efficiency, saves the bus resources, and is efficient.
  • Parallel signal processing capability for real-time digital signal processing, high portability, seamless integration with popular image display libraries, and improved flexibility of software display (eg, image processing via a general-purpose image processor) Post-processing) enables lower hardware and software development costs.
  • Another object of the present invention is to provide an imaging method for an OCT endoscopic imaging system, the steps comprising:
  • FIG. 1 is a diagram showing the physical components of the OCT microprobe of the present invention.
  • Figure 6 is the imaging effect of the inner tube and balloon eccentricity of about 500 microns
  • Figure 9 shows the concentricity scan results of a product on the market.
  • FIG. 10 is a schematic structural view of the charging and discharging device of the present invention.
  • FIG. 11 is a flow chart showing the operation of the charging and discharging device of the present invention.
  • Figure 12 is a schematic view of an optical clock module of the present invention.
  • Figure 15 is a schematic diagram showing the steps of processing FD-OCT signals of the present invention.
  • 16 is a schematic diagram showing the parallel generation of data transmission and signal processing of the general image processor of the present invention.
  • Figure 17 is a schematic view showing the overall implementation of the present invention.
  • Figure 18 is a graph showing the relationship between the working distance, the bonding distance and the lateral resolution curve of the OCT microprobe of the present invention.
  • Figure 19 is a view showing the esophagus of a healthy animal of the present invention.
  • Figure 21 is a 3D image of a healthy animal's esophagus of the present invention.
  • SE squamous epithelial layer
  • LP lamina propria
  • MM muscle mucosa
  • SM submucosa
  • MP intrinsic base layer
  • a spring tube 2 is provided with a single mode fiber 1 which provides sufficient torque to enable a probe of a certain length When rotating, keeping the far and near ends synchronous, the spring tube 2 effectively protects the fragile fiber while reducing the resistance when the probe rotates;
  • the end of the glass rod 3 is glued to the zero-degree angle of the self-focusing lens 4, and the other end is connected to the single-mode fiber 1 Tilt-gluing, the working distance of the OCT probe can be changed by changing the bonding distance between the two end faces of the glass rod 3 and the single-mode fiber 1 to achieve the desired working distance, thereby improving the numerical aperture and lateral resolution of the OCT probe;
  • 5 is a cylindrical mirror and is enclosed in a slotted stainless steel tube 6, and the reflecting surface of the mirror 5 faces the slotted opening of the slotted stainless steel tube 6, thereby reducing the influence of the astigmatism of the light source through the cylindrical inner tube on the imaging.
  • the OCT microprobe comprises a single mode fiber 1, a spring tube 2, a glass rod 3, a self-focusing lens 4, a mirror 5, a slotted stainless steel tube 6, and a supporting stainless steel tube 7,
  • the end faces of these optical elements are glued with optical glue.
  • the mirror 5 is placed in the slotted stainless steel tube 6, and then placed on the tooling point A/B glue, and then the UV glue is spotted under the microscope to assemble the glass rod 3 and the self-focusing lens 4;
  • the optical fiber 1 is inserted into the spring tube 2, and the assembled glass rod 3 and the self-focusing lens 4, the single-mode optical fiber 1 and the spring tube 2 are assembled using a point UV glue, and finally the assembled spring tube assembly is loaded into the slot.
  • the edge gap is filled with A/B glue.
  • the single-mode fiber 1 is externally sheathed with a stainless steel spring tube 2 (coated with a PTFE membrane), which effectively protects the fragile fiber while reducing the resistance of the probe when rotating, making the micro-probe scan smoother and smoother.
  • the main function of the supporting stainless steel tube 7 is to support the OCT probe during scanning, so that the entire probe is rotated more smoothly, and the notch of the slotted stainless steel tube 6 allows the beam to be irradiated onto the sample to be tested through the slot.
  • the antireflection film can reduce the reflection of light between the optical surfaces and increase the light transmission performance, thereby reducing the influence of the reflected light of the optical surface on the signal light. Therefore, in this embodiment, the length of the self-focusing lens can be changed.
  • the working distance of the OCT probe to achieve the best horizontal under the specified working distance To the resolution, the surface of the self-focusing lens 4 in contact with the air is coated with an anti-reflection film, and the surface of the self-focusing lens in contact with the air can be processed into a 4°-8° bevel, which further reduces the formation of light through the surface.
  • the interference signal the difference between Fig. 2a and Fig.
  • the self-focusing lens 4 has a design of the angle of inclination of the plane
  • Fig. 2b has a design of the angle of inclination of the exit surface of 4°-8°, which makes the surface reflect back.
  • the useless optical signal is minimized, improving the imaging quality of the OCT probe.
  • one end of the glass rod 3 is glued to the zero-degree angle of the self-focusing lens 4, which improves the sensitivity and resolution of the micro-probe.
  • the other end of the glass rod 3 has a certain inclination angle with the bonding surface of the single-mode optical fiber 1.
  • the inclination angle of the bonding surface can be 8°, and the inclination of the bonding surface effectively reduces the reflected light to the signal light.
  • the design of the glass rod 3 increases the numerical aperture of the OCT probe, thereby increasing the lateral resolution, and can change the working distance of the OCT probe by changing the bonding distance of the two end faces to achieve the desired working distance. Since the mirror 5 is mounted at an angle of 45°, the incident light and the reflected light are perpendicular to each other to cause light interference.
  • the front end of the micro probe is mounted with a 40° angle mirror 5, and the mirror 5 is encapsulated in the slotted stainless steel tube 6 and the reflective surface Facing the slotted opening of the slotted stainless steel tube 6, and in order to reduce the influence of the astigmatism of the light source through the cylindrical inner tube on the imaging, the mirror here in this embodiment is based on the inner and outer diameters of the inner cylindrical tube and the inner tube material. Designing a cylindrical mirror with refractive index, the mirror can change the forward light into a lateral direction, and the mirror is a cylindrical mirror, which can change the astigmatism caused by the protective sleeve outside the OCT probe to the concentrated beam. influences.
  • an OCT endoscopic scanning imaging system includes a frequency sweeping laser module, an interference module, a detector module, a data acquisition module, a data processing module, an image display module, an actuator, a balloon catheter, and a gas discharge and gas discharge.
  • the frequency sweeping laser module comprises a high speed swept laser, a fiber isolator and a fiber coupler, and the optical signal output from the swept laser is isolated from the subsequent optical path to prevent the optical signal returned by the subsequent optical path from interfering with the normal operation of the laser; the interference module
  • a fiber-optic Mach-Zehnder interferometer (MZI) or a fiber-optic Michelson interferometer structure can be used.
  • the Mach-Zehnder interferometer structure is mainly composed of two fiber couplers, two fiber circulators and two fiber polarization controllers.
  • the first fiber coupler generally uses an asymmetric fiber coupler to drive most of the laser.
  • a microprobe that is output to the sample arm; a fiber optic circulator is placed in both the reference arm and the sample arm to collect optical signals reflected or scattered back from the two arms; the second fiber coupler can be coupled using a symmetric 2 ⁇ 2 fiber (ie, the split ratio is 50/50) to generate an optical interference signal and reduce the DC common mode signal, and the fiber polarization controller is symmetrically placed Placed in the reference arm and the sample arm to adjust the polarization state of the two arms to obtain the best optical interference signal.
  • the Michelson interferometer structure consists of a symmetrical 2 ⁇ 2 fiber coupler, a fiber circulator, and two optical polarization controllers. The swept laser first passes through the fiber circulator and enters the fiber coupler, from the reference arm and sample.
  • the optical signal reflected or scattered back by the arm generates an interference signal through the same fiber coupler.
  • the fiber polarization controller is symmetrically placed in the reference arm and the sample arm to adjust the polarization state of the two arms for optimal optics. Interference signal.
  • the Mach-Zehnder Interferometer has the advantages of structural symmetry, simple dispersion management, and high detection sensitivity.
  • the advantage of the Michelson interferometer is that it is simple in structure and does not introduce a positive mode dispersion (PMD).
  • the commonality of both is that the optical path difference between the two arms determines the free spectral region where the optical clock occurs ( FSR), which also determines the maximum imaging depth of the OCT image; the detector module can use a high-speed balanced photodetector, which is mainly used to convert the interference optical signal output from the interference module into an electrical signal; the data acquisition module is a high-speed mode
  • the data acquisition card is mainly used for converting an analog electrical signal into a digital electrical signal, and providing the digital signal to a data processing module for digital signal processing;
  • the data processing module is a chip with digital signal processing capability (such as CPU, GPGPU, DSP, FPGA, etc.) are mainly used to process the original signal and convert it into a final image signal;
  • the image display module is mainly used for displaying an image signal and is responsible for post-processing and measurement work of the image; the actuator is rotated by the optical fiber
  • the connector, the motor and the electric translation stage are mainly used to drive the mechanical spiral scan of the OCT micro
  • the OCT microprobe is mainly used to enter internal organs of the human body to transmit the swept laser and collect optical signals backscattered from the biological tissue; the balloon catheter is used to expand the internal organs of the human body to eliminate wrinkles.
  • the OCT microprobe is stabilized at the center of the balloon; the charge and deflation device is primarily used to expand the balloon catheter.
  • the interface 13; the double lumen tube 11 can allow the OCT optical probe to pass; the balloon 10, the front end of the balloon 10 is blocked and the balloon has a scale, and the front end sealing is a solid welded structure, and the blocking is sleeved in the inner tube.
  • the device when the device moves inside the cavity, the cavity rubs against the inner tube and the balloon, and does not contact the plugging soft head.
  • the material of the handle 12 is polycarbonate
  • the material of the double lumen tube 11 and the soft head 8 is block polyether amide
  • the material of the balloon 10 and the inner tube 9 is nylon and its modified polymer.
  • the balloon 10 has an ink printing scale with a line width of ⁇ 0.1 mm, which can distinguish the direction of the probe scanning, and does not affect the scanning judgment of the normal image, but also can distinguish the scanning position on the display screen.
  • the double lumen tube 11 is printed with a scale so that the doctor can judge the position of the scan.
  • Conventional balloon catheters require guidewire support and guidance.
  • the diameter of the guidewire is generally 0.018 in, 0.035 in, 0.014 in, 0.038 in.
  • the double lumen tube 11 for the OCT balloon catheter can pass the 0.055 inOCT optical probe. .
  • the probe beam from the probe needs to pass through the inner tube wall to reach the object to be measured.
  • the OCT probe needs to be rotated inside the inner tube to detect the object under test.
  • the detection light will cause attenuation when passing through the inner tube wall, resulting in loss of detection light energy, resulting in unclear imaging;
  • the inner tube wall is too thin, due to the OCT probe High-speed rotation inside the inner tube, too thin tube wall will cause the probe to be stuck, the inner tube is deformed, and the imaging is uneven. Therefore, the inner diameter and the outer diameter of the inner tube are limited in this application, thereby determining the thickness of the inner tube.
  • the inner tube 9 has an inner diameter of 1.4 mm and an outer diameter of 1.65 mm, and is specifically designed for the OCT probe.
  • This inner tube thickness is most suitable for OCT probe imaging, which can ensure that the light energy attenuation is small under this thickness, and the inner tube strength is ensured, and the imaging unevenness and unclearness caused by the deformation of the probe and the inner tube are not caused. The problem.
  • the length of the inner tube is fixed according to the length of the balloon, and the length thereof is shorter than the balloon.
  • the balloon is welded to the soft head, the balloon is pushed down by a certain distance to make it
  • the inner tube is flush and fixed and welded, so that the balloon has an elongation margin when filling, thereby matching the inner tube to stretch and maintain concentricity.
  • the balloon In optical imaging, the balloon needs to be opened to open the cavity of the object to be measured, so that the image is completely formed. If the air pressure is low, the surface of the balloon will form wrinkles, which will inevitably affect the imaging effect, but if the air pressure is too high, it may be Damage and damage to the object to be tested, therefore, in order to ensure that the device does not cause damage and damage to the object under test, while ensuring that the balloon can be fully filled without wrinkles, the applicant prefers an index of 3 atmospheres. In addition, this indicator can also limit the length of the balloon and the length of the inner tube. The process of the balloon of the present application ensures that the concentricity of the inner tube from the balloon does not exceed 500 microns at 3 atmospheres for optical imaging.
  • FIG. 6 shows a standard circle with an eccentricity of about 500 microns.
  • Figures 7 and 8 show images scanned when the inner tube and the balloon are less than 500 microns eccentric and the eccentricity is more than 500 microns. From the above two figures, the eccentricity of less than 500 microns can meet the full imaging requirements. In contrast, the general product on the market does not control this indicator, and can not meet the requirement that the concentricity of the inner tube and the balloon deviate from 500 micrometers at 3 atmospheres. We select a product on the market as a comparison, and its imaging The effect is shown in Fig. 9, in which the upper right corner area is incompletely imaged and cannot meet the actual scanning requirements.
  • An OCT endoscopic scanning imaging system is similar to Embodiment 2 or 3, except that the charging and discharging device is an automatic charging and discharging device, as shown in FIG. 10, the automatic charging and discharging device includes: a power source The part, the control and display part and the air pump and the control system part thereof, the air pump and the control system part thereof comprise: an air pump, a pneumatic solenoid valve, a deflation solenoid valve, a throttle valve, a pressure sensor, an explosion-proof pressure sensor, and a mechanical pressure switch.
  • a power source The part, the control and display part and the air pump and the control system part thereof, the air pump and the control system part thereof comprise: an air pump, a pneumatic solenoid valve, a deflation solenoid valve, a throttle valve, a pressure sensor, an explosion-proof pressure sensor, and a mechanical pressure switch.
  • the pressure sensor of the present application is plural, wherein at least one pressure sensor is connected to the balloon, and at least one pressure sensor is disposed between the throttle valve and the inflation solenoid valve and the deflation solenoid valve, and the pressure sensor functions to charge and discharge
  • the pipeline air pressure and balloon pressure are monitored in real time during the gas process.
  • the pressure sensor is composed of two pressure sensors 103 and 105, and cooperates with the plurality of solenoid valve assemblies in the present application to form a pressure detecting system for the charging and discharging process.
  • the specific structure is: between the air pump 101 and the pressure sensor 103.
  • the gas filled solenoid valve 102 and the deflation solenoid valve 107 are separated by a throttle valve 104, and the pressure sensor 105 is connected to the balloon.
  • Two pressure sensors 103 and 105 are arranged, and after being separated by the throttle valve 104, the pressure sensor 105 is directly connected to the balloon, and the acquired data is more accurate, and for the pressure sensor 103, the pipeline can be monitored.
  • the air pressure is proofed with 105 air pressure, and in the process of charging and discharging gas, after the inflation solenoid valve 102 and the bleed air valve 107 are opened, before the throttle valve 104 is opened, the air pressure of the air pump can be monitored for early warning.
  • the role of the pressure such as pressure problems can be automatically controlled to close the solenoid valve in time, to prevent excessive pressure on the balloon and even the patient's body cavity caused unnecessary damage, greatly enhancing the safety of the system.
  • the pressure sensors 103 and 104 are connected to the air pump through the electromagnetic valve, and the electromagnetic pump isolates the air pump and the external air pressure to interfere with the pressure monitoring.
  • the pressure monitoring system of the present application further includes an explosion-proof pressure sensor connected to the balloon.
  • the function of the explosion-proof pressure sensor is to monitor the air pressure in real time during the charging and discharging process, and the monitoring data is independent of the pressure sensor when the monitoring data is Exceeding the preset upper limit of the air pressure will activate the pressure relief mechanism. If the monitoring data remains unchanged for a long time, it will prevent the air pump from continuing to pressurize.
  • the pressure monitoring system of the present application is divided into a pressure sensor and an explosion-proof pressure sensor, which realizes multiple monitoring of the air pressure by setting a plurality of sensors, and enhances the stability of the system; in addition, different sensors are disposed at different positions. The proofreading can also be performed between the sensors.
  • the electromagnetic valve is also isolated between the sensors to avoid the interference of the charging and discharging device and the pressure relief device on the pressure measurement, and the accuracy of the pressure measurement is improved.
  • the plurality of pressure sensors cooperate with the solenoid valve stroke pressure.
  • the use process of the automatic charging and discharging device includes:
  • Inflation process Firstly, the user sets the parameters of the balloon 10 air pressure, inflation time and the like, and issues an inflation command.
  • the control system reads the data of the pressure sensors 103 and 105. If it is less than the air pressure set by the user, the air pump 101 is activated to open the inflation.
  • the solenoid valve 102 and the throttle valve 104 read the feedback values of the pressure sensors 103 and 105 in real time during the inflation process until the set air pressure value is charged, the air pump 101 is turned off, and the throttle valve 104 and the gas filling solenoid valve 102 are closed;
  • Deflating process Firstly, the user sets parameters such as the balloon 10 air pressure and deflation time, and the control system reads the data of the pressure sensor 105. If it is greater than the air pressure set by the user, the air pump 101 is activated, and the deflation solenoid valve 107 is opened. The throttle valve 104 reads the feedback value of the pressure sensor 105 in real time during the deflation until the set air pressure value is reached, the gas 101 pump is turned off, and the throttle valve 104 and the deflation solenoid valve 107 are closed.
  • the control system reads the data of the pressure sensor 105. If it is greater than the air pressure set by the user, the air pump 101 is activated, and the deflation solenoid valve 107 is opened.
  • the throttle valve 104 reads the feedback value of the pressure sensor 105 in real time during the deflation until the set air pressure value is reached, the gas 101 pump is turned off, and the throttle valve 104 and the deflation solenoid valve 107 are closed.
  • the system monitors the feedback value of the explosion-proof pressure sensor 106 in real time. If the user's air pressure upper limit setting value is exceeded, the software program protection is immediately performed, the air pump 101 is turned off, and the alarm is given; the mechanical pressure switch 108 is hardware protected. If the set value is exceeded, the switch is opened and the pressure is released for protection.
  • the pressure relief protection mechanism is realized by the automatic control function to guide the entire charging and discharging device system. It monitors the trigger through the explosion-proof pressure sensor and is implemented in three ways: First, software protection, that is, when the explosion-proof pressure sensor detects the pressure overrun The air pump charging function will be turned off, and the pneumatic solenoid valve will be closed at the same time. If necessary, the throttle valve and the deflation solenoid valve will be opened by the air pump to actively pump the air pressure. During this process, the pressure sensor will cooperate with the pressure monitoring, when the pressure is normal. After that, the solenoid valve and air pump will be closed and the software will be closed.
  • the application combined with the explosion-proof pressure sensor provides software protection, hardware protection and pressure relief valve protection triple protection path for the system over-voltage risk, and achieves the effect of strengthening the safety and stability of the system and improving the accuracy of the pressure relief system.
  • the automatic charging and discharging device of the present application has the following advantages:
  • the user can set the required pressure value and inflation time on the control and display module at any time, and upload relevant parameters to the data system in real time.
  • the system will monitor and operate the system according to the new parameters in real time. All kinds of emergencies in the situation are timely and strained to enhance system security.
  • the precise air pressure control makes the shape consistency of the balloon inflated, which makes the image data obtained by scanning the object multiple times more relevant and easier to compare.
  • the air pump does not change or change the air pressure for a long time, it is very likely that the balloon is ruptured or leaking. If the pump continues to inflate or pumping gas, it may cause damage to the patient's body cavity. Therefore, if the pressure system monitors the length of the pump When the air is inflated or deflated, the air pressure has not changed or changed little, and the protection mechanism is automatically activated to close the air pump and strengthen the system safety.
  • This application can realize the rapid opening and closing of the electromagnetic valve by means of automatic control, reduce the interference of the charging and discharging gas to the monitoring system, and increase the accuracy of the monitoring system.
  • Inflating and pumping in this application are two different channels, which can be quickly switched between charging and discharging. Especially in the process of pressure relief protection, rapid pumping can prevent excessive inflation. Damage to the balloon and the patient's body cavity enhances system safety.
  • This application adopts an automatic charge and discharge air pump, which has a large inflation pressure range.
  • the pressure range is generally controlled at 1 to 5 atmospheres.
  • the pressure pressure range that can be provided by manual pressure supply is much smaller than the pressure range of the present application.
  • an optical clock module used in an OCT endoscopic scanning imaging system includes an interference module, a detector module, and an optical clock conversion circuit module, the optical clock conversion circuit module including a wide frequency 90 degree phase shifting , zero-crossing comparators, and circuits consisting of XOR gates, OR gates, and optical clock signal output modules.
  • the interference module adopts an all-fiber Mach-Zehnder interferometer (MZI) structure, which is mainly composed of two fiber couplers, wherein the second coupler is a symmetric 2 ⁇ 2 fiber coupler, first coupled in the first fiber.
  • MZI Mach-Zehnder interferometer
  • the detector module is composed of a high-speed balanced photodetector and is mainly used for converting an interference optical signal output from the interference module into an electrical signal.
  • the MZI electrical signal converted by the detector module is partially transmitted to the broadband 90-degree phase shifter, and the other portion is transmitted to the zero-crossing comparator, and the phase shift of the electrical signal transmitted to the broadband 90-degree phase shifter is 90 degrees.
  • the comparator is mainly used for zero-crossing comparison of signals in which phase shift occurs and phase shift has not occurred to be converted into a digital signal.
  • the XOR gate is mainly used to combine two digital clock signals to obtain two clock signals in one free spectral region (FSR), which increases the maximum imaging depth of the OCT without increasing the FSR, and reduces the optical The jitter produced by the signal. Since the swept laser always has some idle time between two adjacent scans, the optical clock signal needs to fill in some false clock signals in the blank through an OR gate to ensure that the high speed analog capture card can work normally, or The gate implements the function of combining a real optical clock signal with a false clock signal.
  • the optical clock signal output module is mainly used for transmitting the combined real optical clock signal and the fake clock signal to the data acquisition module.
  • 91 is an MZI electrical signal that undergoes a 90-degree phase shift after a wide-band 90-degree phase shifter
  • 92 is an MZI electrical signal in which no phase shift occurs
  • 93 is a zero-cross comparison of the MZI signal 91 in which phase shift occurs.
  • the subsequent digital signal, 94 is a digital signal after the zero-comparison of the MZI signal 92 without phase shift, because the zero point of the MZI signal is evenly distributed in the frequency domain, so the rising edge or falling of the digital signal generated after the zero-crossing comparison The edges are also uniformly distributed in the frequency domain, 96 is a signal in which the uniformly distributed digital signals 93 and 94 are combined by XOR gates, 95 is a false clock signal, and 95 and 96 are combined to form an optics after the OR gate merge. Clock signal.
  • an OCT endoscopic scanning imaging system is similar to Embodiment 2-4 except that the frequency sweeping laser module, the optical clock module, the data acquisition module, the data processing module, the image display module, and the execution are performed.
  • the optical interference signal generated from the MZI is converted into an electrical signal by a balanced photodetector, and then passed through a A circuit consisting of a wide-band 90-degree phase shifter, a zero-crossing comparator, and an exclusive OR gate is converted into an optical clock signal that is uniform in the frequency domain and frequency-variant in the time domain, or a gate-to-real optical clock signal and a false clock signal.
  • the frequency sweeping laser module comprises a high speed swept laser, an optical isolator and a fiber coupler, and the optical signal output from the swept laser is isolated from the subsequent optical path, preventing the optical signal returned by the subsequent optical path from interfering with the normal operation of the laser, and A small portion of the swept laser output is output to the optical clock module, and most of the laser continues to output;
  • the optical clock module includes an interference module, a detector module, and an optical clock conversion circuit module, which are mainly used to obtain uniformity and time in the frequency domain.
  • the data processing module is a chip with digital signal processing capability (such as CPU, GPGPU, DSP, FPGA, etc.), and is mainly used for processing and converting the original signal into a final image signal; the image display module is mainly used for displaying an image signal.
  • the actuator is light
  • the rotary connector, the motor and the electric translation stage are mainly used for driving the mechanical spiral scan of the OCT micro probe to obtain an OCT image
  • the OCT micro probe is mainly used for entering the internal organs of the human body to transmit the swept laser and collecting from the biological tissue.
  • Backscattered optical signal the balloon catheter is used to expand the internal organ conduit of the human body, eliminate wrinkles and stabilize the OCT microprobe at the center of the balloon;
  • the charge and discharge device is primarily used to expand the balloon catheter.
  • An OCT endoscopic scanning imaging system is similar to Embodiment 2-5 except that a scheme for processing an OCT signal by using a general-purpose image processor is shown in FIG. 15, including sequentially connected (1) data acquisition; (2) Data transmission; (3) data processing and (4) several steps of passing to the image display library, wherein the data transmission is relatively slow due to the bus transmission speed, and the general image processor will transmit to the device at the same time as the data is transmitted.
  • the OCT raw data in memory is processed in parallel, and its parallel transmission and processing are shown in Figure 16.
  • the data processing process is divided into three steps: one-dimensional digital resampling, one-dimensional fast Fourier transform (FFT), and calculation of amplitude. Normalization, in which a one-dimensional digital re-sampling step achieves fast one-dimensional cubic interpolation by two linear texture lookups to improve the accuracy of resampling.
  • FFT fast Fourier transform
  • the FD-OCT raw data obtained in the data acquisition step is placed in the computer system or the embedded system memory, and the data is stored in the system memory in units of frames, when one is satisfied.
  • the data can be transferred to the device memory of the General Image Processor (GPGPU) via a data bus (such as PCI Express); because the bus transmission speed is relatively slow, in the transmission
  • the general purpose image processor performs parallel processing of the OCT raw data that was last transferred to the device memory.
  • Data processing as shown in Fig. 15, the digital signal processing performed in the general image processor is divided into three steps: one-dimensional digital resampling, one-dimensional fast Fourier transform (FFT), and calculation of amplitude and normalization.
  • Digital resampling can be realized by the texture search function built in the image processor (GPU).
  • the texture search function built in the image processor can automatically realize two-dimensional linear interpolation for interpolation, and the image processor's texture search module has special interpolation.
  • Hardware optimization faster interpolation than general general image processor, especially for non-equidistant interpolation in OCT signal processing; by precisely setting the search point in one dimension, it can be realized by the texture search function built in the image processor.
  • One-dimensional line interpolation One-dimensional line interpolation.
  • fast one-dimensional cubic interpolation is realized by two linear texture search, so as to improve the accuracy of resampling.
  • the texture search module specially optimizes non-equidistant interpolation, this method is more than direct cubic interpolation.
  • the general-purpose image processor is implemented with less computation and higher computational efficiency; the FFT can be implemented by a common commercial image processor-based numerical calculation library (such as nVidia's cuFFT library or OpenCL FFT library); the amplitude is calculated and normalized. You can write your own image processor program. For example, you can use the CUDA library provided by nVidia to write the corresponding kernel function to achieve fast traversal of 2D data to achieve amplitude and normalization calculation.
  • a microprobe for OCT imaging scanning of a human esophagus inserts the microprobe from the proximal guidewire lumen of the balloon into the balloon inner tube 9, and connects the balloon handle ventilation interface 13 to An automatic inflation pump (not shown) inflates the balloon 10 to a rated air pressure to expand the esophagus.
  • the balloon 10 and the inner tube 9 are made of an optically transparent material and have excellent transparency. Light performance.
  • the balloon 10 functions to expand the esophagus to reduce esophageal wrinkles and to secure the OCT microprobe within its working distance.
  • the balloon 10 expands to a radius of between about 8 and 10 mm, which is the radius after the esophagus is fully deployed.
  • a relatively large working distance (approximately 8-10 mm) is a must for the OCT microprobe.
  • the OCT micro-probe needs to select a long self-focusing lens, which is not easy to bend, and causes inconvenience when used in a body cavity, and the lens may be broken when excessively bent, which has a safety hazard. Therefore, by setting the glass rod to change the working distance of the self-focusing lens, making it a multi-section structure, the micro-probe can ensure better cornering, so that the entire micro-probe can enter a narrow channel when the working distance is large.
  • is the incident light wavelength is a fixed value
  • ⁇ X is proportional to the numerical aperture (N.A), that is, the larger the numerical aperture, the higher the lateral resolution (the smaller the value).
  • the use of the glass rod 3 not only increases the working distance of the microprobe, but also increases the numerical aperture of the microprobe, and the increase of the numerical aperture also leads to an increase in lateral resolution, and this design is also extremely large.
  • the length of the self-focusing lens is shortened to ensure the bending of the micro-probe, so that the entire micro-probe can still directly enter the human esophagus through the endoscopic forceps together with the balloon catheter.
  • This effective design allows the lateral resolution of the probe to be approximately 10-30 microns and the working distance to be 8-10 mm.
  • the relationship between the working distance and the lateral resolution of the microprobe is shown in Figure 18.
  • the diameter of the entire microprobe is less than 1.5 mm.
  • a self-focusing lens with a diameter of 1.0 mm is used.
  • the diameter of the whole microprobe is less than 1.3 mm.
  • the diameter of the entire microprobe is less than 1.0 mm; if the diameter is 0.5 mm Self-focusing lens, the entire microprobe has a diameter of less than 0.7 mm.
  • the application enables the OCT microprobe to be applied to a narrow space with a large working distance, a large numerical aperture and a high resolution.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Otolaryngology (AREA)
  • Pulmonology (AREA)
  • Plasma & Fusion (AREA)
  • Physiology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endoscopes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种应用于内窥式高分辨率光学相干断层扫描成像的OCT微探头、成像系统及使用方法,涉及医疗器械技术领域。所述OCT微探头通过透镜组件改变OCT微探头的工作距离,增大自聚焦透镜(4)的通光孔径,进而提高OCT微探头的数值孔径和横向分辨率。它可以解决现有OCT系统中OCT微探头横向分辨率低,且扫描出来的图像易发生变形的问题,因此,带有所述OCT微探头的OCT内窥扫描成像可以应用于血管、消化道以及呼吸道等或人体组织狭窄空间。

Description

内窥式OCT微探头、OCT成像系统及使用方法 技术领域
本发明涉及医疗器械技术领域,特别涉及应用于人体管腔OCT扫描成像检测,提供了一种OCT内窥扫描成像的OCT微探头、OCT成像系统及使用方法。
背景技术
光学相干层析扫描成像(Optical Coherence Tomography,简称OCT),已广泛应用在眼科诊断领域,这项技术是建立在光学、电子学以及计算机技术科学的基础上,是集光电及高速数据采集和图像处理等多项前沿学科为一体的新型成像技术,OCT凭借其具有高分辨率、高速成像等优点而备受人们的关注,并在生物医学与临床诊断领域开始得到重视和应用。
与现有的CT、超声、MRI等其他成像方式相比,OCT具有极高的分辨率,与传统的激光共聚焦显微镜相比,OCT的成像深度具有明显的优势。传统光学探头的核心技术大多采用光纤束进行光传导并进行成像,或者采用CCD技术进行成像,此类内窥式探头仅能探测组织表面的病变,然而早期癌症的症状发生在表皮以下1-3毫米的深度,因此传统光学内窥探头就显得力不从心。目前也有通过超声原理进行医学成像的内窥探头,虽然可获得生物组织表层以下较深的组织信息,但分辨率仅为毫米量级,对早期的癌症易造成漏诊。
内窥式OCT技术是近十年伴随OCT技术发展而诞生并蓬勃发展的一项OCT分支技术,其核心目标是在不降低分辨率的前提下将OCT光学成像设备微型化,提供人体内部脏器管腔的高分辨率OCT图像。这项技术极大的扩展了OCT技术的应用领域,使得OCT检查对象由体表器官或活检样品发展到人体内脏,如血管、消化道以及呼吸道等,目前已经涉及到各种消化道管腔,大消化道管腔(如食道,直肠),小消化道管腔(如胆道)等。在临床方面,OCT内窥镜技术已经在检查动脉粥样硬化以及检查血管支架安放情况等方面有了初步的应用。
而内窥式OCT系统中的一个关键部件则是OCT微探头。它可以将与现有临床上使用内窥镜或微创技术结合,伸入人体内部脏器,采集并收集来自生物 组织的背向散射光;同时也要满足物理尺寸小、机械强度高等特点。
作为OCT微探头的关键零件的自聚焦透镜,具有加工工艺成熟,生产成本低廉,结构简单装配容易等特点,同时也可以做到很小的尺寸,成为生产OCT微探头的首选,但其也存在一些缺陷,如:在很小尺寸下,其数值孔径有限,导致OCT微探头的横向分辨率降低,尤其使用长工作距离的自聚焦透镜时会导致横向分辨率急剧下降。
同时,OCT微探头在使用时,一般都会用圆柱形的塑料透明套管进行定位及保护,当激光经过圆柱形的塑料透明套管时,相当于经过了一个圆柱面负透镜,有散光现象的发生,这就会造成激光圆形光斑变成椭圆形光斑,导致扫描出来的图像发生了变形,影响诊断结果。
综上所述,需要设计一种应用于血管、消化道以及呼吸道等或人体组织狭窄空间的OCT检测系统,且具有较高的横向分辨率,能防止扫描出来的图像发生变形的高分辨率OCT微探头。
发明内容
本发明的目的是提供一种OCT内窥扫描成像系统的OCT微探头,所述OCT微探头包括弹簧管,此弹簧管能提供足够的扭力,使一定长度的探头在旋转时保持远近两端同步,并且此弹簧管中穿插有传递光信号的单模光纤;透镜组件,使通过光纤传播的光聚集在预定的工作距离处,所述透镜组件包括玻璃棒和自聚焦透镜,通过改变玻璃棒与单模光纤的胶合距离可以改变OCT微探头的工作距离,同时能够提高OCT探头的横向分辨率;通过自聚焦透镜与玻璃棒的胶合,增大自聚焦透镜的通光孔径,进而提高OCT探头的数值孔径和横向分辨率,并优化探头的物理尺寸。所述OCT微探头还可包括反射镜、支撑不锈钢管和开槽不锈钢管,这些光学元件端面用光学胶水胶合。
其中,所述套在弹簧管中的单模光纤一端带有光纤标准接头,此接头可与OCT系统的光纤旋转端相连接,所述弹簧管覆有PTFE膜,弹簧管在有效保护单模光纤同时,降低了探头旋转时的阻力,使所述OCT微探头整体扫描更平稳顺畅,所述光纤标准接头带有支撑不锈钢管,此不锈钢管在OCT微探头进行扫描时起支撑作用,使整个探头旋转扫描时更加平稳。所述单模光纤的另一端为倾斜端面,与同样也为倾斜端面的玻璃棒一端端面胶合,胶合面的倾斜有效降低了反射光对信号光的干扰,可以通过改变玻璃棒与单模光纤的胶合距离来改 变OCT微探头的工作距离以达到所要求的预期工作距离。所述玻璃棒的另一端与所述自聚焦透镜以0°角端面胶合后封装于开槽不锈钢管内,通过改变自聚焦透镜的长度,从而改变OCT探头的工作距离,实现在指定工作距离的条件下获得最佳横向分辨率,而通过增加所述玻璃棒长度能够增大OCT探头的数值孔径,从而提高横向分辨率,即玻璃棒的使用不仅增加了微探头的工作距离,并且增大了微探头的数值孔径,而数值孔径的增加也导致横向分辨率的提高,同时这一设计也极大的减短了自聚焦透镜的长度,保证了微探头的过弯性,使得整个微探头可以通过内镜钳道与导管一起直接进入人体食道。所述反射镜可以将前向的光线变为侧向,且所述反射镜为柱面反射镜,可以改变OCT探头外的保护套管对聚集光束造成的散光影响。
优选地,所述自聚焦透镜与空气接触的面镀有增透膜,可降低光线在光学面之间的反射及增加透光性能,从而降低了由于光学面的反射光对信号光的影响,提高了OCT微探头的灵敏度,所述自聚焦透镜与空气接触的面可加工成4°-8°斜面,此设计可进一步降低光线通过此面所形成的干扰信号。
优选地,所述玻璃棒与所述单模光纤的胶合面的角度为4度-12度。
优选地,所述反射镜的反射面朝向不锈钢管开槽口封装于不锈钢管内,为了降低光源通过圆柱形内管的散光对成像的影响,此处的反射镜可以根据圆柱形内管的内外径以及内管材料的折射率而设计柱面反射镜,当添加该反射镜后,在光线入射反射镜的时候不仅会对光线的光路进行反射而改变,同时由于反射镜特殊设计的镜面会对光线进行汇聚,从而抵消内管的散光影响,校正光斑的形状,达到提高成像质量的目的。
本发明的另一目的是提供一种OCT内窥扫描成像系统,包括扫频激光模块、干涉模块、探测器模块、数据采集模块、数据处理模块、图像显示模块、执行机构、球囊导管、充放气设备、所述OCT微探头,其中,
所述扫频激光模块包括高速扫频激光器、光纤隔离器与光纤耦合器,将从扫频激光器输出的光学信号与后续光路隔离,防止后续光路返回的光学信号干扰激光器正常工作;所述干涉模块可采用光纤式马赫—曾德尔干涉仪(MZI)或光纤式迈克尔逊(Michelson)干涉仪结构。其中马赫—曾德尔干涉仪结构主要由两个光纤耦合器、两个光纤环形器以及两个光纤偏振控制器组成,其中第一个光纤耦合器一般采用非对称式光纤耦合器,将大部分激光输出至样品臂的微 探头;在参考臂与样品臂中均放置一个光纤环形器以收集从两个臂反射或散射回的光学信号;第二个光纤耦合器可采用对称式2×2光纤耦合器(即分光比为50/50)以产生光学干涉信号并降低直流共模信号,光纤偏振控制器被对称的放置在参考臂与样品臂中,用于调整两个臂的偏振状态以获得最佳的光学干涉信号。迈克尔逊干涉仪结构则由一个对称式2×2光纤耦合器、一个光纤环形器以及两个光学偏振控制器组成,扫频激光首先经过光纤环形器后在进入光纤耦合器,从参考臂与样品臂反射或散射回的光学信号在经过同一个光纤耦合器产生干涉信号,光纤偏振控制器被对称的放置在参考臂与样品臂中,用于调整两个臂的偏振状态以获得最佳的光学干涉信号。马赫—曾德尔干涉仪(MZI)的优点在于结构对称、色散管理简单、探测灵敏度高。迈克尔逊(Michelson)干涉仪的优点在于结构简单、且不会引入偏正模色散(PMD),两者的共同之处在于两个臂中间的光程差决定了发生光学时钟的自由光谱区(FSR),也最终决定了OCT图像的最大成像深度;探测器模块可采用高速平衡光电探测器,主要用于将从干涉模块输出的干涉光学信号转换成电学信号;所述数据采集模块是高速模数采集卡,主要用于将模拟电学信号转换成数字电学信号,并将数字信号提供给数据处理模块进行数字信号处理;所述数据处理模块是具有数字信号处理能力的芯片(如CPU,GPGPU、DSP、FPGA等),主要用于对原始信号进行处理并转化为最终的图像信号;所述图像显示模块主要用于显示图像信号并负责图像的后处理以及测量工作;所述执行机构由光纤旋转连接器、电机以及电动平移台组成,执行机构中的旋转电机驱动OCT微探头进行旋转扫描,同时电动平移台驱动执行机构往某一方向移动,这时软件将获取到的旋转扫描数据及平移台移动数据进行重建,即产生3D图像;所述OCT微探头主要用于进入人体内部脏器以传输扫频激光并采集从生物组织中背向散射的光学信号;所述球囊导管用于扩张人体内部脏器管道,消除皱褶并将OCT微探头稳定于球囊中心;所述充放气设备主要用于扩张球囊导管。
优选地,所述球囊导管包括:手柄,所述手柄的一个接口为主机接口,另一接口为通气接口;双腔管,所述双腔管可以允许OCT光学探头通过;球囊,所述球囊的前端封堵且球囊上有刻度;内管,所述内管长度根据所述球囊的长度定长,且其长度短于所述球囊,所述球囊与所述软头焊接时,将所述球囊下推一定距离,使其与内管平齐并固定后焊接,由于内管太厚会影响扫描图像的 清晰度,太薄则会影响探头的旋转以及同心度,所述内管专门为OCT探头设计,内管内径为1.4mm,内管外径为1.65mm,所述内管与所述球囊的同心度在额定使用大气压下偏离不超过500微米,优选地,所述额定使用大气压为3-5个大气压,所述内管与所述球囊的同心度在3个大气压下偏离不超过500微米;膜套,所述膜套位于球囊与双腔管接合处,控制内管在管腔里面的浮动,从而保证与球囊的中心不发生偏离,解决偏心问题;软头,所述软头为实心结构,其中,所述双腔管一端与所述手柄连接,另一端与所述内管及所述球囊的一端连接,所述球囊与所述内管的另一端与所述软头连接。
传统的球囊导管需要导丝支撑及导引,导丝直径一般为0.018in、0.035in、0.014in、0.038in,本发明的球囊导管可以通过0.055in的OCT光学微探头。所述球囊上有油墨印刷刻度,线条宽度≤0.1mm,能够辨别探头扫描的方向,既不会影响正常图像的扫描判断同时也能在显示屏上分辨出扫描位置,所述球囊前端封堵,能够防止体液进入对光学扫描造成影响,防止体液对精密设备的腐蚀,同时封堵材料为软性结构,不会在操作过程中划伤被测对象的组织和腔道,增强了设备的安全性。所述软头为实心结构,能够防止体液进入。
优选地,额定使用大气压为3-5个大气压。优选地,所述额定使用大气压为3个大气压,所述内管与所述球囊的同心度在3个大气压下偏离不超过500微米。球囊的使用额定压力为3个大气压,在较低压力下不会对正常食管造成破坏,同时球囊的热定型工艺和焊接工艺可保证在额定3个大气压下内管与球囊的同心度偏离不超过500微米,便于光学成像。所述软头为实心结构,能够防止体液进入。所述双腔管通过UV粘胶与所述手柄相连接,其他各部件均采用焊接工艺连接。所述内管长度根据所述球囊的长度定长,且其长度短于所述球囊,所述球囊与所述软头焊接时,将所述球囊下推一定距离,使其与内管平齐并固定后焊接,使得球囊在充盈时有一个伸长余量,从而匹配内管的拉伸并保持同心。球囊的焊接固定方式在一定程度上能够避免在内管不经固定直接插入球囊的结构中,由于病人及器官腔体移动及导管过分插入球囊时,导致导管与球囊相对运动引发的光学探头偏心的问题。优选地,所述球囊的折叠卷曲温度在40°~45°,定型时间为4~5h,相比于常规的球囊折叠工艺,此工艺在保证同心度的同时又能保持球囊的记忆特性。另外,本发明中手柄材料可采用聚碳酸酯,双腔管和软头材料可采用嵌段聚醚酰胺,球囊和内管材料可采用尼龙 及其改性聚合物。
应用于OCT内窥扫描成像的球囊导管的使用方法步骤包括:将带有OCT微探头的球囊导管插入钳道,并将球囊推送至所需扫描的位置;再将手柄一个接口与OCT设备相连,另一个接口与充气设备相连,进行充气,充气结束后进行图像扫描,扫描结束后吸气,最后在吸气结束后将球囊导管撤回。
优选地,充放气设备应用于所述OCT内窥扫描成像系统,即包括扫频激光模块、干涉模块、探测器模块、数据采集模块、数据处理模块、图像显示模块、执行机构、球囊导管、OCT微探头、以及充放气设备、所述充放气设备为自动充放气设备,所述自动充放气设备包括:控制和显示模块、气泵、充气电磁阀、放气电磁阀、压力传感器、防爆压力传感器、机械压力开关。所述自动充放气设备应用于OCT内窥扫描成像系统可实现自动充放气及精确的气压控制,其中,气泵通过充气电磁阀以及放气电磁阀与该节流阀相连,该节流阀与前述球囊相连,该压力传感器为多个,其中至少一压力传感器与球囊相连,至少一压力传感器设置在节流阀与充气电磁阀、放气电磁阀之间,该防爆压力传感器与球囊相连,该机械压力开关与该球囊相连,控制和显示模块能够设定球囊气压和充气时间、采集压力、控制气泵启停、控制电磁阀工作状态;
该自动充放气设备的使用过程包括:
充气过程,在控制和显示模块设定球囊气压和充气时间,气泵充气直到设定的气压值;
放气过程,在控制和显示模块设定球囊气压和放气时间,气泵吸气直到设定的气压值;
在所述充放气过程中,系统通过防爆压力传感器进行过压保护,当球囊超过设定气压时关闭气泵以及当球囊超过设定气压时通过机械压力开关泄压。
所述自动充放气设备实现了自动充气和吸气,且具有设定不同气压参数的功能,可对不同规格的球囊进行充放气,设备在给球囊充气过程中达到设定的气压值后停止充气,且具有过压保护功能。其可实现的效果在于:首先,免去了医生对球囊手动充放气的操作,缩短了医生充放气的时间,并提高了安全性,避免了球囊过充爆炸的风险;其次,精确的气压控制使球囊充气后的形状一致性得到保证,由于光学成像对于球囊撑起的被扫描物体的形状敏感,这就对同一个被扫描对象进行多次扫描的重复性较好,医生可对于扫描后的图像数据进 行比对;再次,在紧急情况处理时,可实现自动放气的同时医生做其他的操作。
优选地,所述OCT内窥扫描成像系统包括由所述干涉模块、所述探测器模块和光学时钟转化电路模块组成的光学时钟模块,其中,干涉模块可采用全光纤式马赫-曾德尔干涉仪(MZI)结构,主要由两个光纤耦合器构成,其中第二个耦合器为对称式2×2光纤耦合器,首先在第一光纤耦合器处分成两路光,该两路光分别经过两段固定光程差的第一光纤和第二光纤,在第二光纤耦合器处发生干涉。探测器模块可采用高速平衡光电探测器,主要用于将从干涉模块输出的干涉光学信号转换成电学信号。从MZI产生的光学干涉信号由一个平衡光电探测器转换为电学信号后,经过光学时钟转化电路模块,即依次经过宽频90度移相器、过零比较器、异或门、或门以及光学时钟信号输出模块而转换为在频域上均匀、在时域上变频率的光学时钟信号。其中,宽频90度移相器主要用于将MZI电学信号的相位移动90度,可增加原始信号的可用的频谱区间宽度,丰富采样时钟信号的频谱分布资源,对获取的采样时钟信号进行优化。过零比较器主要用于对原始MZI电学信号和移相后的MZI电学信号进行过零比较以转换为数字信号,而MZI信号的零点在频域上均匀分布,因此过零比较后产生的数字信号的上升沿或下降沿也在频域上均匀分布,异或门主要用于将两个数字时钟信号进行合并,以获得在一个自由光谱区(FSR)中产生两个时钟信号,这样在不增加FSR前提下增加了OCT最大成像深度,减少了由光学信号产生的抖动(jitter)。而且由于扫频激光器在两个相邻扫描之间总是存在一些空闲时间,光学时钟信号还需要通过一个或门在空白处填入一些假的时钟信号以保证高速模数采集卡可以正常工作,或门实现了将真实光学时钟信号与假的时钟信号合并的功能,光学时钟信号输出模块主要用于将合并后的真实光学时钟信号与假的时钟信号输送到数据采集模块。通过在OCT内窥扫描成像系统中使用所述的光学时钟模块,可降低对数据采集与处理系统的要求,并减少冗余信息的采集,减轻存储系统的负担,从而提高整个OCT系统的集成度,进而降低系统成本,且还可以提高图像信号的信噪比,减少探测灵敏度衰减,从而提高图像的清晰度。
优选地,利用通用图像处理器(GPGPU)在OCT内窥扫描成像系统中处理OCT信号的方法,该方法包括(1)数据采集;(2)数据传输;(3)数据处理;和(4)传递至图像显示库四个步骤。
其中,(1)数据采集,本发明通过外部采集设备获取FD-OCT原始数据;
(2)数据传输,在数据采集步骤获得的FD-OCT原始数据被放置在计算机系统或嵌入式系统内存中,这些数据在系统内存中以帧为单位存放,当满足一定条件后(如数据积累够一帧或多帧),这些数据可以通过数据总线(如PCI Express)传输至通用图像处理器的设备内存中;由于总线传输速度相对较慢,在传输数据的同时,通用图像处理器将上一次传输至设备内存中的OCT原始数据进行并行处理。该种方法具有高效的并行信号处理能力,可实现实时数字信号处理,极大的提高了传输效率,节省了总线资源;
(3)数据处理,在通用图像处理器中进行的数字信号处理分为三步:一维数字重采样、一维快速傅立叶变换(FFT)以及计算幅值并归一化。其中一维数字重采样步骤中通过两次线性纹理查找实现快速一次一维三次插值以提高重采样的精度;
(4)传递至图像显示库,处理好的数据放置于图像显示库的内存中,图像显示库可以直接调用,无需再通过总线传输,极大的提高了传输效率,节省了总线资源,具有高效的并行信号处理能力,实现实时数字信号处理,可移植性高,由于与流行的图像显示库可以无缝结合,也提高了软件显示的灵活性(例如:还可以通过通用图像处理器对图像进行后处理),可实现较低的硬件与软件开发成本。
本发明另一目的还包括提供一种OCT内窥成像系统的成像方法,步骤包括:
第一步,将OCT微探头导入到球囊导管内管中,所述OCT微探头包括单模光纤和透镜组件,所述透镜组件包括玻璃棒和自聚焦透镜;第二步,通过透镜组件给单模光纤提供光源并使光斑在预定的工作距离处聚集;第三步,收集返回的光信号;第四步,根据返回的光信号进行处理得到OCT数据。由于自聚焦透镜本身加工工艺的缺陷,通光孔径只能达到其直径的80%左右,因此聚焦后的光斑直径也比较小,光斑聚集调节过程如下:第一步,光斑位置调节:通过改变所述玻璃棒与所述单模光纤的胶合距离可以改变OCT探头的工作距离;第二步,光斑大小调节:通过所述自聚焦透镜与所述玻璃棒的胶合,可以增大所述自聚焦透镜的通光孔径,进而提高OCT探头的数值孔径和横向分辨率。
附图说明
图1是本发明的OCT微探头实物部件图;
图2a和2b是本发明的OCT微探头关键部位放大剖面图;
图3是本发明的具有OCT微探头的OCT内窥扫描成像系统示意图;
图4是本发明的球囊导管结构示意图;
图5是加入膜套的球囊
图6是内管与球囊偏心程度在500微米左右的成像效果
图7是内管与球囊偏心程度小于500微米左右的成像效果
图8是内管与球囊偏心程度超过500微米左右的成像效果
图9是市面上某产品同心度扫描结果
图10是本发明的充放气设备结构示意图;
图11是本发明的充放气设备工作流程图;
图12是本发明的光学时钟模块示意图;
图13是本发明的光学时钟信号发生过程示意图;
图14是本发明的具有光学时钟模块的OCT内窥扫描成像系统示意图;
图15是本发明的FD-OCT信号处理步骤示意图;
图16是本发明的通用图像处理器数据传输与信号处理并行发生示意图;
图17是本发明的整体实施结构示意图;
图18是本发明的OCT微探头工作距离、胶合距离与横向分辨率曲线关系图;
图19是本发明的健康动物食管扫描图;
图20是本发明的健康动物食管扫描图局部放大图;
图21是本发明的健康动物食管3D图像。
附图标号说明
1、单模光纤,2、弹簧管,3、玻璃棒,4、自聚焦透镜,5、反射镜,6、开槽不锈钢管,7、支撑不锈钢管,8、软头,9、内管,10、球囊,11、双腔管,12、手柄,13、通气接口,14、主机接口,15、膜套,
81、鳞状上皮层(SE),82、固有层(LP),83、肌粘膜(MM),84、粘膜下层(SM),85、固有基层(MP),
91、经宽频90度移相器后发生90度相位移动的MZI电学信号,92、未发生相位移动的MZI电学信号,93、信号91进行过零比较后的数字信号,94、信号92进行过零比较后的数字信号,95、假的时钟信号,96、数字信号93和94 经异或门合并之后的信号,
101、气泵,102、充气电磁阀,103、压力传感器,104、节流阀,105、压力传感器,106、防爆压力传感器,107、放气电磁阀,108、机械压力开关。
具体实施方式
以下结合附图对本发明技术方案进行详细说明。
实施例1
一种OCT内窥扫描成像系统的OCT微探头,如图1和图2a和2b所示:弹簧管2中套有单模光纤1,此弹簧管2能提供足够的扭力,使一定长度的探头在旋转时保持远近两端同步,弹簧管2在有效保护脆弱的光纤的同时,降低了探头旋转时的阻力;玻璃棒3一端与自聚焦透镜4零度角面胶合,另一端与单模光纤1倾斜胶合,可以通过改变玻璃棒3和单模光纤1两个端面的胶合距离来改变OCT探头的工作距离以达到预期所要求的工作距离,进而提高OCT探头的数值孔径和横向分辨率;反射镜5为柱面反射镜并封装于开槽不锈钢管6内,反射镜5的反射面朝向开槽不锈钢管6的开槽口,以此可以降低光源通过圆柱形内管的散光对成像的影响。
如图1和图2a和2b所示,所述OCT微探头包括单模光纤1,弹簧管2,玻璃棒3,自聚焦透镜4,反射镜5、开槽不锈钢管6以及支撑不锈钢管7,这些光学元件端面用光学胶水胶合。具体而言,将反射镜5装入开槽不锈钢管6中,然后放在工装上点A/B胶,再在显微镜下点UV胶,将玻璃棒3和自聚焦透镜4组装;将单模光纤1穿入弹簧管2中,再将组装好的玻璃棒3和自聚焦透镜4、单模光纤1和弹簧管2使用点UV胶组装,最后将组装后的弹簧管总成装进开槽不锈钢管6中,边缘空隙处使用A/B胶填满。
单模光纤1外部套有不锈钢弹簧管2(覆有PTFE膜),在有效保护脆弱的光纤的同时,降低了探头旋转时的阻力,使微探头扫描起来更平稳顺畅。支撑不锈钢管7的主要作用是在OCT探头进行扫描时起支撑作用,使整个探头旋转扫描时更加平稳,开槽不锈钢管6的槽口可以使光束通过此槽口照射到被测样品上。
增透膜可以降低光线在光学面之间的反射及增加透光性能,从而降低由于光学面的反射光对信号光的影响,因此,本实施例中,通过改变自聚焦透镜的长度,可改变OCT探头的工作距离,实现在指定工作距离的条件下获得最佳横 向分辨率,自聚焦透镜4与空气接触的面镀有增透膜,另外,自聚焦透镜与空气接触的面可加工成4°-8°斜面,此设计可进一步降低光线通过此面所形成的干扰信号,图2a与图2b的区别在于:自聚焦透镜4有无做出射面倾斜角度设计,图2b做了出射面倾斜4°-8°设计,这一设计使此面反射回去的无用光信号降到最低,提高了OCT探头的成像质量。同时玻璃棒3的一端与自聚焦透镜4零度角面胶合,提高了微探头的灵敏度和分辨率。玻璃棒3的另一端与单模光纤1的胶合面有一定倾斜角度,在本实施例中,此处胶合面的倾斜角度可为8°,胶合面的倾斜有效降低了反射光对信号光的干扰,玻璃棒3的设计使用,增大OCT探头的数值孔径,从而提高横向分辨率,并且可以通过改变此两个端面的胶合距离来改变OCT探头的工作距离以达到预期所要求的工作距离。由于45°角安装反射镜5,使得入射光线和反射光线垂直从而造成光线干扰,本实施例中微探头前端安装40°角反射镜5,反射镜5封装于开槽不锈钢管6内且反射面朝向开槽不锈钢管6的开槽口,同时为了降低光源通过圆柱形内管的散光对成像的影响,本实施例中此处的反射镜是根据圆柱形内管的内外径以及内管材料的折射率而设计柱面反射镜,所述反射镜可以将前向的光线变为侧向,且所述反射镜为柱面反射镜,可以改变OCT探头外的保护套管对聚集光束造成的散光影响。
实施例2
如图3所示,一种OCT内窥扫描成像系统,包括扫频激光模块、干涉模块、探测器模块、数据采集模块、数据处理模块、图像显示模块、执行机构、球囊导管、充放气设备、以及图1和图2所示的OCT微探头,其中,
所述扫频激光模块包括高速扫频激光器、光纤隔离器与光纤耦合器,将从扫频激光器输出的光学信号与后续光路隔离,防止后续光路返回的光学信号干扰激光器正常工作;所述干涉模块可采用光纤式马赫—曾德尔干涉仪(MZI)或光纤式迈克尔逊(Michelson)干涉仪结构。其中马赫—曾德尔干涉仪结构主要由两个光纤耦合器、两个光纤环形器以及两个光纤偏振控制器组成,其中第一个光纤耦合器一般采用非对称式光纤耦合器,将大部分激光输出至样品臂的微探头;在参考臂与样品臂中均放置一个光纤环形器以收集从两个臂反射或散射回的光学信号;第二个光纤耦合器可采用对称式2×2光纤耦合器(即分光比为50/50)以产生光学干涉信号并降低直流共模信号,光纤偏振控制器被对称的放 置在参考臂与样品臂中,用于调整两个臂的偏振状态以获得最佳的光学干涉信号。迈克尔逊干涉仪结构则由一个对称式2×2光纤耦合器、一个光纤环形器以及两个光学偏振控制器组成,扫频激光首先经过光纤环形器后在进入光纤耦合器,从参考臂与样品臂反射或散射回的光学信号在经过同一个光纤耦合器产生干涉信号,光纤偏振控制器被对称的放置在参考臂与样品臂中,用于调整两个臂的偏振状态以获得最佳的光学干涉信号。马赫—曾德尔干涉仪(MZI)的优点在于结构对称、色散管理简单、探测灵敏度高。迈克尔逊(Michelson)干涉仪的优点在于结构简单、且不会引入偏正模色散(PMD),两者的共同之处在于两个臂中间的光程差决定了发生光学时钟的自由光谱区(FSR),也最终决定了OCT图像的最大成像深度;探测器模块可采用高速平衡光电探测器,主要用于将从干涉模块输出的干涉光学信号转换成电学信号;所述数据采集模块是高速模数采集卡,主要用于将模拟电学信号转换成数字电学信号,并将数字信号提供给数据处理模块进行数字信号处理;所述数据处理模块是具有数字信号处理能力的芯片(如CPU,GPGPU、DSP、FPGA等),主要用于对原始信号进行处理并转化为最终的图像信号;所述图像显示模块主要用于显示图像信号并负责图像的后处理以及测量工作;所述执行机构由光纤旋转连接器、电机以及电动平移台组成,主要用于驱动OCT微探头机械螺旋扫描以获得OCT图像;所述OCT微探头主要用于进入人体内部脏器以传输扫频激光并采集从生物组织中背向散射的光学信号;所述球囊导管用于扩张人体内部脏器管道,消除皱褶并将OCT微探头稳定于球囊中心;所述充放气设备主要用于扩张球囊导管。
实施例3
一种OCT内窥扫描成像系统,与实施例2相似,所不同的是所述球囊导管如图4所示,包括:手柄12,手柄12的一个接口为主机接口14,另一接口为通气接口13;双腔管11,可以允许OCT光学探头通过;球囊10,球囊10的前端封堵且球囊上有刻度,其前端封堵是一实心焊接结构,其阻塞套设在内管之内,当设备在腔体内移动时,腔体与内管和球囊进行摩擦,不会接触到该封堵软头,即使接触到软头,摩擦力会趋向于将软头压入内管;内管9,内管9与球囊10的同心度在额定使用的3个大气压下偏离不超过500微米;膜套15,如图5所示,所述膜套位于球囊与双腔管接合处,控制内管在管腔里面的浮动,从而保证与球囊的中心不发生偏离,解决偏心问题;软头8,为实心结构,其中,双 腔管11一端与手柄12连接,另一端与内管9及球囊10的一端连接,球囊10与内管9的另一端与软头8连接,双腔管11通过UV粘胶与手柄12相连,其他各部分均通过焊接的方式相连。
手柄12材料为聚碳酸酯,双腔管11和软头8材料为嵌段聚醚酰胺,球囊10和内管9材料为尼龙及其改性聚合物。
球囊10上有油墨印刷刻度,线条宽度≤0.1mm,能够辨别探头扫描的方向,既不会影响正常图像的扫描判断同时也能在显示屏上分辨出扫描位置。双腔管11上印有刻度,因此,医生能够判断扫描的位置。传统的球囊导管需要导丝支撑及导引,导丝直径一般为0.018in、0.035in、0.014in、0.038in,本实施例中OCT球囊导管用的双腔管11可以通过0.055inOCT光学探头。进行光学成像时,探头发出的探测光束需要穿过内管壁进而达到被测对象,此外,OCT探头成像时还需要在内管内转动,以便对被测对象全面探测。在这一过程中,如果内管壁过厚,由于探测光在穿过内管壁的时候会造成衰减,导致探测光能量损失,造成成像不清晰;如果内管壁过薄,由于OCT探头会在内管内部高速转动,太薄的管壁会导致探头卡顿,内管变形,使得成像不均匀,因此本申请对内管的内径和外径进行了限定,以此确定内管的厚度,本实施例中内管9内径为1.4mm,外径为1.65mm,专门为OCT探头设计。这一内管厚度对于OCT探头成像最为合适,能够保证在这一厚度之下光能量衰减较小,同时保证内管的强度,不会因探头卡顿、内管变形导致成像不均匀和不清晰的问题。
所述内管长度根据所述球囊的长度定长,且其长度短于所述球囊,所述球囊与所述软头焊接时,将所述球囊下推一定距离,使其与内管平齐并固定后焊接,使得球囊在充盈时有一个伸长余量,从而匹配内管的拉伸并保持同心。
在进行光学成像时,需要球囊撑开被测对象所在的腔道,以便成像完全,如果气压较低,球囊表面会形成褶皱,这必然会影响成像效果,但是如果气压过高,可能会对被测对象造成损伤和破坏,因此,为了保证设备使用时不对被测对象造成损伤和破坏,同时保证球囊能够完全充盈不产生褶皱,申请人优选了3个大气压这一指标。另外,这一指标也能对球囊的长度以及内管长度起到限定作用。本申请球囊的工艺能保证其在3个大气压下内管与球囊的同心度偏离不超过500微米,以便于光学成像。
若内管与球囊的同心度偏离不超过500微米,则成像效果较好,若内管与 球囊若偏离程度超过500微米,则呈现出的图像显示不全。图6为偏心度在500微米左右的一个标准圆,图7和图8分别为内管与球囊偏心程度小于500微米和偏心程度超过500微米时扫描出来的图像。从以上两幅图来看,偏心程度小于500微米则能够符合成像完全的要求。相比之下,市面上一般产品对该指标没有加以控制,不能达到内管与球囊的同心度在3个大气压下偏离不超过500微米的要求,我们选取市面上一个产品作为对比,其成像效果如图9所示,其中右上角区域成像不完全,不能满足实际扫描要求。
实施例4
一种OCT内窥扫描成像系统,与实施例2或3相似,所不同的是所述充放气设备是自动充放气设备,如图10所示,所述自动充放气设备包括:电源部分、控制和显示部分和气泵及其控制系统部分,所述气泵及其控制系统部分包括:气泵、充气电磁阀、放气电磁阀、节流阀、压力传感器、防爆压力传感器、机械压力开关。
本申请的压力传感器为多个,其中至少一压力传感器与球囊相连,至少一压力传感器设置在节流阀与充气电磁阀、放气电磁阀之间,所述压力传感器的作用是在充放气过程中对管路气压和球囊气压实时进行监测。其中压力传感器是由103、105两个压力传感器组成,其配合本申请中的多个电磁阀组件共同构成充放气过程的压力检测系统,具体结构为:气泵101与压力传感器103之间设有充气电磁阀102和放气电磁阀107,压力传感器103、105被节流阀104隔开的,压力传感器105与球囊相连。通过这种结构设置,可以达到如下三点功效:
(1)设置103、105两个压力传感器,经节流阀104进行分隔后,压力传感器105直接与球囊相连,获取的数据更为准确,而对于压力传感器103,其一来可以监测管路气压与105气压进行校对,再者在进行充放气过程中,在充气电磁阀102和放气电磁阀107打开后,节流阀104打开前,可以对气泵的充放气压强起到预警监测的作用,如压强有问题可以通过自动控制及时关闭电磁阀,防止过强的充放气压对球囊甚至病人的体腔造成不必要的损害,极大加强了系统的安全性。
(2)压力传感器103、104均是通过电磁阀与气泵和外界相连,通过电磁阀隔离了气泵及外界气压对其压力监测的干扰。
(3)对球囊以及官路气压进行双重监测,即使单个传感器故障系统仍能正常工作,增强系统稳定性。
本申请的压力监测系统还包括一与球囊相连的防爆压力传感器,该防爆压力传感器的作用是在充放气过程中实时对气压进行监测,其监测数据与压力传感器是独立的,当监测数据超过预设的气压值上限会启用泄压保护机制,若监测数据长时间不变,其会阻止气泵继续加压。本申请的压力监测系统分为压力传感器和防爆压力传感器,其通过设置多个传感器的方式实现了对气压的多重监测,增强了系统的稳定性;另外,不同的传感器设置在不同的位置相互之间还可以进行校对验证,传感器之间还有电磁阀进行隔离避免了充放气设备、泄压设备对压力测量的干扰,提高压力测量的准确性;最后,多个压力传感器配合电磁阀行程压力监测系统在自动控制功能的支持下,能防止过强的充放气压对球囊甚至病人的体腔造成不必要的损害,增强了系统的安全性。
如图11所示,所述自动充放气设备的使用过程包括:
1)充气过程:首先用户设定球囊10气压、充气时间等参数,发出充气命令,控制系统读取压力传感器103、105的数据,如果小于用户设定的气压,则启动气泵101,打开充气电磁阀102、节流阀104,充气过程中实时读取压力传感器103、105的反馈值,直到充到设定的气压值,关闭气泵101,关闭节流阀104、充气电磁阀102;
2)放气过程:首先用户设定球囊10气压、放气时间等参数,控制系统读取压力传感器105的数据,如果大于用户设定的气压,则启动气泵101,打开放气电磁阀107、节流阀104,放气过程中实时读取压力传感器105的反馈值,直到吸到设定的气压值,关闭气101泵,关闭节流阀104、放气电磁阀107。
充放气过程中,系统实时对防爆压力传感器106的反馈值进行监控,如果超过用户气压上限设定值,则立即进行软件程序保护,关闭气泵101,并报警;机械压力开关108为硬件保护,如超过设定值,则开关打开,泄压进行保护。
泄压保护机制是通过自动控制功能引导整个充放气设备系统实现的,其通过防爆压力传感器来监测触发,通过三种途径实施:其一,软件保护,即当防爆压力传感器监测到压力超限,会关闭气泵充气功能,同时关闭充气电磁阀,如有必要,还会打开节流阀及放气电磁阀由气泵主动抽气泄压,该过程中压力传感器会配合进行压力监测,当压力正常后,会关闭电磁阀和气泵结束软件保 护泄压,以防过度泄压导致危险;其二,硬件保护,在防爆压力开关监测到压力超限后,机械开关会自动打开进行泄压保护;其三,泄压阀保护,当设备不能正常运转时还可以通过打开泄压阀上的开关进行手动泄压。本申请结合防爆压力传感器对系统的过压风险提供了软件保护、硬件保护及泄压阀保护三重保护途径,实现了加强系统的安全性、稳定性,提升泄压系统准确度的功效。
此外,本申请的自动充放气设备还具备以下优势:
1、可以由用户随时在控制与显示模块上设置需要的压力值及充气时间等参数,并将相关参数实时上传至数据系统,系统会即时根据新的参数对系统进行监控、操作,能够操作过程中的各种突发状况进行及时应变,加强系统安全性。同时,精确的气压控制使得球囊充气后形状一致性较高,使得对扫描对象多次获取图像数据相关度更高,更容易进行对比。
2、因为气泵长时间工作气压没有变化或变化较小极有可能是球囊破裂或者漏气,如果保持气泵继续充气或者抽气可能会对病人的体腔造成伤害,因此若压力系统监测到气泵长时间充气或放气时气压一直没有变化或变化较小,则会自动启动保护机制,关闭气泵,加强系统安全性。
3、本申请能够通过自动控制的方式实现快速开闭电磁阀,减小充放气对监测系统的干扰,增加监测系统准确度。
4、本申请充气与抽气是两个不同的通道,可以快速的在充放气两个过程之间切换,尤其是在泄压保护过程中,快速的抽气能够够好的防止过度充气对球囊和病人体腔的损害,加强系统安全性。
5、本申请采用自动充放气气泵,其充气压力范围较大,根据本申请所采用的体腔环境,压力范围一般控制在1~5个大气压。而手动供压所能提供的气压压力范围远小于本申请的压力范围。
实施例5
如图12所示,一种在OCT内窥扫描成像系统中使用的光学时钟模块,其包括干涉模块、探测器模块和光学时钟转化电路模块,所述光学时钟转化电路模块包括宽频90度移相器、过零比较器以及异或门、或门组成的电路以及光学时钟信号输出模块。其中,干涉模块采用全光纤式马赫-曾德尔干涉仪(MZI)结构,主要由两个光纤耦合器构成,其中第二个耦合器为对称式2×2光纤耦合器,首先在第一光纤耦合器处分成两路光,该两路光分别经过两段固定光程差 的第一光纤和第二光纤,在第二光纤耦合器处发生干涉。探测器模块由高速平衡光电探测器组成,主要用于将从干涉模块输出的干涉光学信号转换成电学信号。经探测器模块转换后的MZI电学信号一部分传输到宽频90度移相器,另一部分传输到过零比较器,传输到宽频90度移相器的电学信号发生的90度的相位移动,过零比较器主要用于对发生相位移动和未发生相位移动的信号进行过零比较以转换为数字信号。异或门主要用于将两个数字时钟信号进行合并,以获得在一个自由光谱区(FSR)中产生两个时钟信号,这样在不增加FSR前提下增加了OCT最大成像深度,减少了有光学信号产生的抖动(jitter)。由于扫频激光器在两个相邻扫描之间总是存在一些空闲时间,光学时钟信号还需要通过一个或门在空白处填入一些假的时钟信号以保证高速模数采集卡可以正常工作,或门实现了将真实光学时钟信号与假的时钟信号合并的功能。光学时钟信号输出模块主要用于将合并后的真实光学时钟信号与假的时钟信号输送到数据采集模块。
如图13所示,91为经宽频90度移相器后发生90度相位移动的MZI电学信号,92为未发生相位移动的MZI电学信号,93为发生相位移动的MZI信号91进行过零比较后的数字信号,94为未发生相位移动的MZI信号92进行过零比较后的数字信号,因MZI信号的零点在频域上均匀分布,因此过零比较后产生的数字信号的上升沿或下降沿也在频域上均匀分布,96为频域上分布均匀的数字信号93和94经异或门合并之后的信号,95为假的时钟信号,95和96共同组成经或门合并之后的光学时钟信号。
如图14所示,一种OCT内窥扫描成像系统,与实施例2-4相似,所不同的是包括扫频激光模块、光学时钟模块、数据采集模块、数据处理模块、图像显示模块、执行机构、OCT微探头与球囊导管以及充放气设备,其中:所述的光学时钟模块如图12所示,包括干涉模块、探测器模块和光学时钟转化电路模块,所述光学时钟转化电路模块包括宽频90度移相器、过零比较器以及异或门、或门组成的电路以及外部时钟信号输出模块,从MZI产生的光学干涉信号由一个平衡光电探测器转换为电学信号后,经过一个由宽频90度移相器、过零比较器以及异或门组成的电路而转换为在频域上均匀、在时域上变频率的光学时钟信号,或门将真实光学时钟信号与假的时钟信号合并以高速模数采集卡的正常工作。
所述扫频激光模块包括有高速扫频激光器、光纤隔离器与光纤耦合器,将从扫频激光器输出的光学信号与后续光路隔离,防止后续光路返回的光学信号干扰激光器正常工作,并将一小部分扫频激光输出分出至光学时钟模块,大部分激光继续输出;所述光学时钟模块包括干涉模块、探测器模块和光学时钟转化电路模块,主要用于获得在频域上均匀、在时域上变频率的光学时钟信号;所述数据采集模块可采用高速模数采集卡,主要以光学时钟模块输出的光学时钟信号为基准采集原始图像信号,并提供给数据处理模块进行处理;所述数据处理模块是具有数字信号处理能力的芯片(如CPU,GPGPU、DSP、FPGA等),主要用于对原始信号进行处理并转化为最终的图像信号;所述图像显示模块主要用于显示图像信号并负责图像的后处理以及测量工作;所述执行机构由光纤旋转连接器、电机以及电动平移台组成,主要用于驱动OCT微探头机械螺旋扫描以获得OCT图像;所述OCT微探头主要用于进入人体内部脏器以传输扫频激光并采集从生物组织中背向散射的光学信号;所述球囊导管用于扩张人体内部脏器管道,消除皱褶并将OCT微探头稳定于球囊中心;所述充放气设备主要用于扩张球囊导管。
实施例6
一种OCT内窥扫描成像系统,与实施例2-5相似,所不同的是利用通用图像处理器处理OCT信号的方案如图15所示,包括依次相连的(1)数据采集;(2)数据传输;(3)数据处理和(4)传递至图像显示库几个步骤,其中在数据传输时由于总线传输速度相对较慢,在传输数据的同时,通用图像处理器将上一次传输至设备内存中的OCT原始数据进行并行处理,其并行传输与处理过程如图16所示;数据处理的过程分为三步:一维数字重采样、一维快速傅立叶变换(FFT)以及计算幅值并归一化,其中,一维数字重采样步骤中通过两次线性纹理查找实现快速一次一维三次插值以提高重采样的精度。
如图15所示,一种利用通用图像处理器处理OCT信号的方案包括依次相连的(1)数据采集;(2)数据传输;(3)数据处理和(4)传递至图像显示库这几个步骤。
其中,(1)数据采集,本发明通过外部采集设备获取FD-OCT原始数据;
(2)数据传输,在数据采集步骤获得的FD-OCT原始数据被放置在计算机系统或嵌入式系统内存中,这些数据在系统内存中以帧为单位存放,当满足一 定条件后(如数据积累够一帧或多帧),这些数据可以通过数据总线(如PCI Express)传输至通用图像处理器(GPGPU)的设备内存中;由于总线传输速度相对较慢,在传输数据的同时,通用图像处理器将上一次传输至设备内存中的OCT原始数据进行并行处理。
例如:如附图16所示,当第n帧的原始数据被传输至通用图像处理器设备内存的同时,第n-1帧的原始数据同时在通用图像处理器中被进行数字信号处理,并在数据传输和处理结束后进行帧同步,即不管是数据传输还是数据处理完成的一方将等待后完成的一方结束后再进行下一帧的操作,通过这种并行信号传输/处理模型可以有效的提高通用图像处理器的数据处理速度。
(3)数据处理,如图15所示,在通用图像处理器中进行的数字信号处理分为三步:一维数字重采样、一维快速傅立叶变换(FFT)以及计算幅值并归一化。其中数字重采样可以通过图像处理器(GPU)内置的纹理查找功能实现,图像处理器内置的纹理查找功能对插值可以自动实现二维线性插值,而且图像处理器的纹理查找模块对插值具有特殊的硬件优化,相对于一般的通用图像处理器插值速度更快,特别是针对OCT信号处理中的非等距插值;通过精确设置一个维度上的查找点,可以通过图像处理器内置的纹理查找功能实现一维线型插值。在此基础上,通过两次线性纹理查找实现快速一次一维三次插值,从而以提高重采样的精度,由于纹理查找模块对非等距插值进行了特殊优化,这种方法比直接的三次插值在通用图像处理器上实现起来计算量更小、计算效率更高;FFT可以通过常见的商用基于图像处理器的数值计算库(如nVidia的cuFFT库或OpenCL FFT库)实现;计算幅度并归一化则可以通过自己编写图像处理器程序实现,例如可以使用nVidia提供的CUDA库来编写相应的核函数(kernel function)实现对二维数据的快速遍历以实现幅值与归一化计算。
(4)传递至图像显示库,处理好的数据放置于图像显示库的内存中,图像显示库可以直接调用,无需再通过总线传输,极大的提高了传输效率,节省了总线资源,具有高效的并行信号处理能力,实现实时数字信号处理,可移植性高,由于与流行的图像显示库可以无缝结合,也提高了软件显示的灵活性(例如:还可以通过通用图像处理器对图像进行后处理),可实现较低的硬件与软件开发成本。
实施例7
如图17所示,一种用于人体食管进行OCT成像扫描的微探头,将微探头从球囊近端手柄导丝腔插入直至球囊内管9中,将球囊手柄通气接口13连接到自动充气泵(图中未示出),将球囊10内充气到额定气压,以便于将食道扩展开,所述球囊10及内管9都是光学透明材料制成,具有极好的透光性能。球囊10的作用是扩展食道以减小食道折皱及将OCT微探头固定在其工作距离范围之内。球囊10扩展的半径大约在8-10mm之间,这也是食道完全展开后的半径,因此,一个相对较大的工作距离(大约在8-10mm)是OCT微探头所必须具有的特性。在工作距离较大时OCT微探头需要选择较长的自聚焦透镜,其不易于弯折,在体腔内使用时会造成诸多不便,而且过度弯折时会导致透镜碎裂,存在安全隐患。因此通过设置玻璃棒改变自聚焦透镜的工作距离,使其成为多节结构,能够保证微探头具有更好的过弯性,使得整个微探头在工作距离较大时仍可以进入狭窄的通道。
本实施例中特别设计了玻璃棒3,前述中已经提及改变玻璃棒3与单模光纤1的胶合距离可以改变微探头的工作距离,此例微探头用于人体食道,工作距离大约在8-10mm,通过计算和测试玻璃棒3和单模光纤1两面的胶合距离应小于0.3mm。玻璃棒3的设计应用不仅使OCT微探头能工作在较长的工作距离范围内,还能改变微探头的数值孔径和横向分辨率,从而使得改变玻璃棒与单模光纤的胶合距离加大工作距离的同时能够增大数值孔径并提高微探头的横向分辨率。
数值孔径与光学元件的通光孔径关系如下:
Figure PCTCN2016081353-appb-000001
其中,D为光学元件的通光孔径,W.D为工作距离,N.A为数值孔径,当工作距离W.D.一定时,数值孔径与光学元件的通光孔径(D)成正比,由于自聚焦透镜本身加工工艺的缺陷,通光孔径只能达到其直径的80%左右,但是由于单模光纤较细,在实际应用中通过单模光纤直接连接自聚焦透镜所能实际使用的通光孔径仅有自聚集透镜自身直径10%不到,为了增大自聚焦透镜实际使用的通光孔径,本申请加入了该玻璃棒,由于光在玻璃棒中会进行扩散传输,使玻璃棒对光线起到了扩束作用,增大了光纤通过自聚焦透镜时实际使用的通光孔径。分辨率和数值孔径的关系如下:
Figure PCTCN2016081353-appb-000002
其中,λ为入射光波长是定值,横向分辨率△X正比于数值孔径(N.A),即数值孔径越大,横向分辨率越高(数值越小)。
综上可知,玻璃棒3的使用不仅增加了微探头的工作距离,并且增大了微探头的数值孔径,而数值孔径的增加也导致横向分辨率的提高,同时这一设计,也极大的减短了自聚焦透镜的长度,保证了微探头的过弯性,这样整个微探头仍然可以通过内镜钳道与球囊导管一起直接进入人体食道。这一有效设计,使探头的横向分辨率约为10-30微米,工作距离能达到8-10毫米,工作距离和微探头的横向分辨率的关系如图18。整个微探头的直径小于1.5毫米,如采用直径1.0毫米自聚焦透镜,整个微探头的直径小于1.3毫米;如采用直径0.7毫米自聚焦透镜,整个微探头的直径小于1.0毫米;如采用直径0.5毫米自聚焦透镜,整个微探头的直径小于0.7毫米。本申请使得该OCT微探头能够应用于狭窄空间,且具有较大的工作距离,较大的数值孔径和较高的分辨率。
图19为通过OCT内窥扫描成像系统获得的一段健康动物食管图像,图像尺寸为1200横向扫描数×4096纵向扫描,扫描速率为0.2cm/3s,标尺为1mm。图20为图19健康动物食管图像的局部放大图,可辨别的图层包括,81:鳞状上皮层(SE)、82:固有层(LP)、83:肌粘膜(MM)、84:粘膜下层(SM)和85:固有基层(MP)。图21为通过OCT内窥扫描成像系统进行管腔表面及深度扫描,然后将扫描数据进行软件重建产生的健康动物食管3D图像。
上所述仅是本申请的优选实施方式,使本领域技术人员能够理解或实现本申请的发明。对于这些实施例的多种修改及组合对于本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其他实施例中实现。因此,本申请将不会被限制在本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (16)

  1. 一种应用于OCT内窥扫描成像的OCT微探头,其特征在于,所述微探头包括:
    弹簧管,此弹簧管能提供足够的扭力,使一定长度的探头在旋转时保持远近两端同步,并且此弹簧管中穿插有传递光信号的单模光纤;
    透镜组件,使通过光纤传播的光聚集在预定的工作距离处,所述透镜组件包括:
    玻璃棒,通过增加所述玻璃棒长度能够增大OCT探头的数值孔径,从而提高横向分辨率;
    自聚焦透镜,与所述玻璃棒的胶合,通过改变自聚焦透镜的长度,从而改变OCT探头的工作距离,实现在指定工作距离的条件下获得最佳横向分辨率;
    反射镜,通过反射镜将前向的光线变为侧向,且所述反射镜为柱面反射镜。
  2. 根据权利要求1所述的应用于OCT内窥扫描成像的OCT微探头,其特征在于:所述自聚焦透镜与空气接触的面镀有增透膜,可降低光线在光学面之间的反射及增加透光性能。
  3. 根据权利要求2所述的应用于OCT内窥扫描成像的OCT微探头,其特征在于:所述自聚焦透镜与空气接触的面加工成4°-8°斜面。
  4. 根据权利要求1所述的应用于OCT内窥扫描成像的OCT微探头,其特征在于:所述玻璃棒与所述单模光纤的胶合面为斜面,降低反射光对信号光的干扰。
  5. 根据权利要求4所述的应用于OCT内窥扫描成像的OCT微探头,其特征在于:所述玻璃棒与所述单模光纤的胶合面的角度为4°-12°。
  6. 根据权利要求1所述的应用于OCT内窥扫描成像的OCT微探头,其特征在于:还包括反射镜,以及一通过该OCT微探头的圆柱形内管,该反射镜为根据该圆柱形内管的内外径以及内管材料的折射率设计的柱面反射镜。
  7. 一种OCT内窥扫描成像系统,其特征在于:所述OCT系统包括扫频激光模块、干涉模块、探测器模块、数据采集模块、数据处理模块、图像显示模块、执行机构、球囊导管、充放气设备、以及权利要求1-7所述的OCT微探头。
  8. 根据权利要求7所述的OCT内窥扫描成像系统,其特征在于,所述执行 机构驱动所述OCT微探头进行旋转扫描,可产生3D图像。
  9. 根据权利要求7所述的OCT内窥扫描成像系统,其特征在于,所述球囊导管包括:
    手柄,所述手柄的一个接口为主机接口,另一接口为通气接口;
    双腔管,所述双腔管可以允许OCT光学探头通过;
    球囊,所述球囊的前端封堵且球囊上有刻度;
    内管,所述内管长度根据所述球囊的长度定长,且其长度短于所述球囊,所述球囊与所述软头焊接时,将所述球囊下推一定距离,使其与内管平齐并固定后焊接,所述内管专门为OCT探头设计,内管内径为1.4mm,内管外径为1.65mm,所述内管与所述球囊的同心度在额定使用大气压下偏离不超过500微米;
    软头,所述软头为实心结构,其中,
    所述双腔管一端与所述手柄连接,另一端与所述内管及所述球囊的一端连接,所述球囊与所述内管另一端与所述软头连接。
  10. 根据权利要求9所述的OCT内窥扫描成像系统,其特征在于,所述额定使用大气压为3-5个大气压。
  11. 根据权利要求10所述的OCT内窥扫描成像系统,其特征在于,所述额定使用大气压为3个大气压,所述内管与所述球囊的同心度在3个大气压下偏离不超过500微米。
  12. 根据权利要求9所述的OCT内窥扫描成像系统,其特征在于,还包括膜套,所述膜套位于球囊与双腔管接合处。
  13. 根据权利7所述的OCT内窥扫描成像系统,其特征在于,所述充放气设备为自动充放气设备,所述自动充放气设备包括:控制和显示模块、气泵、充气电磁阀、放气电磁阀、压力传感器、防爆压力传感器、机械压力开关。
  14. 根据权利要求7所述OCT内窥扫描成像系统,其特征在于:所述系统包括由所述干涉模块、所述探测器模块和光学时钟转化电路模块组成的光学时钟模块,其中,所述光学时钟转化电路模块包括依次连接的宽频90度移相器、过零比较器、异或门、或门以及光学时钟信号输出模块,将经所述探测器模块转换后的电学信号转换为在频域上均匀、在时域上变频率的光学时钟信号,其中,
    所述宽频90度移相器使部分MZI电学信号的相位移动90度;
    所述过零比较器对原始MZI电学信号和发生相位移动后的MZI电学信号进行过零比较并转换为数字信号,经转换后的数字信号在频域上分布均匀;
    所述异或门主要用于将经过零比较器转换后的两个数字时钟信号进行合并;
    所述或门主要用于将真实光学时钟信号与假的时钟信号合并;
    所述光学时钟信号输出模块主要用于将合并后的真实光学时钟信号与假的光学时钟信号输送到数据采集模块。
  15. 根据权利要求7所述OCT内窥扫描成像系统,其特征在于:OCT内窥扫描成像系统中处理OCT信号的方法包括:a.数据采集;b.数据传输;c.数据处理;d.传递至图像显示库;其特征在于,在传输数据的同时,通过通用图像处理器将上一次传输至设备内存中的OCT原始数据进行并行处理,并将处理好的数据放置于图像显示库的内存中。
  16. 一种OCT内窥成像系统的成像方法,步骤包括:
    a.将OCT微探头导入到球囊导管内管中,所述OCT微探头包括穿插有单模光纤的弹簧管和透镜组件,所述透镜组件包括玻璃棒和自聚焦透镜;
    b.通过透镜组件给单模光纤提供光源并使光斑在预定的工作距离处聚集,光斑聚集调节过程如下:
    b1.光斑位置调节:通过改变所述玻璃棒与所述单模光纤的胶合距离可以改变OCT探头的工作距离;
    b2.光斑大小调节:通过所述自聚焦透镜与所述玻璃棒的胶合,可以增大所述自聚焦透镜的通光孔径,进而提高OCT探头的数值孔径和横向分辨率。
    c.采集返回的光信号;
    d.根据返回的光信号进行处理得到OCT数据。
PCT/CN2016/081353 2015-05-08 2016-05-06 内窥式oct微探头、oct成像系统及使用方法 WO2016180291A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES16792141T ES2888273T3 (es) 2015-05-08 2016-05-06 Microsonda endoscópica OCT, sistema de obtención de imágenes OCT y método de uso
JP2018509964A JP6670928B2 (ja) 2015-05-08 2016-05-06 内視式octミニプローブ、oct撮影システム
EP16792141.0A EP3295988B1 (en) 2015-05-08 2016-05-06 Endoscopic oct microprobe, oct imaging system, and use method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510234798.0A CN104825121B (zh) 2015-05-08 2015-05-08 内窥式oct微探头、oct成像系统及使用方法
CN201510234798.0 2015-05-08

Publications (1)

Publication Number Publication Date
WO2016180291A1 true WO2016180291A1 (zh) 2016-11-17

Family

ID=53803616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081353 WO2016180291A1 (zh) 2015-05-08 2016-05-06 内窥式oct微探头、oct成像系统及使用方法

Country Status (5)

Country Link
EP (1) EP3295988B1 (zh)
JP (1) JP6670928B2 (zh)
CN (1) CN104825121B (zh)
ES (1) ES2888273T3 (zh)
WO (1) WO2016180291A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108362646A (zh) * 2018-02-07 2018-08-03 上海交通大学 一种微型光声显微成像头、制作方法及其组成的系统
CN113520272A (zh) * 2021-06-29 2021-10-22 上海应用技术大学 一种内窥导管-多模态光学成像耦合检测系统
CN115553713A (zh) * 2022-11-09 2023-01-03 北京犀燃科技有限公司 一种oct与眼科手术设备整合系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104799802B (zh) * 2015-05-08 2017-09-12 南京微创医学科技股份有限公司 自动充放气设备在oct内窥扫描成像系统中的应用
CN104794740A (zh) * 2015-05-08 2015-07-22 南京微创医学科技有限公司 利用通用图像处理器处理oct信号的方法及系统
CN104825121B (zh) * 2015-05-08 2017-04-26 南京微创医学科技股份有限公司 内窥式oct微探头、oct成像系统及使用方法
CN107121159A (zh) * 2016-12-23 2017-09-01 哈尔滨医科大学附属第二医院 一种基于内窥成像识别的自动光程校准方法和系统
CN106691405A (zh) * 2016-12-29 2017-05-24 天津恒宇医疗科技有限公司 一种超细oct成像导管
CN108042125B (zh) * 2017-05-27 2023-04-21 天津恒宇医疗科技有限公司 一种高速内窥光学相干血流成像系统
CN109567727B (zh) * 2019-01-24 2021-06-01 安多特(北京)内窥镜技术有限公司 一种医用内窥镜的组件
EP3861920A1 (de) 2020-02-05 2021-08-11 Erbe Elektromedizin GmbH Chirurgisches instrument mit einer positionserkennungseinrichtung
CN113080850B (zh) * 2021-03-25 2022-08-02 苏州阿格斯医疗技术有限公司 一种光学干涉断层成像系统扫描范围的测量方法
CN113256530B (zh) * 2021-06-10 2022-05-10 广州永士达医疗科技有限责任公司 一种呼吸道oct数据处理方法和处理系统
CN113665150B (zh) * 2021-08-31 2022-07-12 广州永士达医疗科技有限责任公司 一种软管制作方法及探头软管
CN113545735B (zh) * 2021-09-18 2021-12-14 广州永士达医疗科技有限责任公司 Oct图像显示调整的方法及装置
CN114159029B (zh) * 2021-11-30 2022-10-21 深圳先进技术研究院 光学相干层析扫描系统及其成像导管
CN115429215B (zh) * 2022-11-09 2023-03-24 北京犀燃科技有限公司 一种眼内oct光纤探头

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2505853Y (zh) * 2001-10-18 2002-08-14 福州康顺光通讯有限公司 一种指向精度校正型准直器
CN101032390A (zh) * 2007-03-29 2007-09-12 浙江大学 用于在体光学活检的谱域oct内窥成像系统
CN101600388A (zh) * 2007-01-10 2009-12-09 光学实验室成像公司 用于扫频源光学相干断层的方法和装置
US20130204125A1 (en) * 2012-02-03 2013-08-08 Ninepoint Medical, Inc. Inflation apparatus with pressure relief, related systems, methods and kits
CN104248419A (zh) * 2014-10-21 2014-12-31 白晓苓 一种内窥成像用超声/光学双模成像探头及成像方法
CN104794740A (zh) * 2015-05-08 2015-07-22 南京微创医学科技有限公司 利用通用图像处理器处理oct信号的方法及系统
CN104799802A (zh) * 2015-05-08 2015-07-29 南京微创医学科技有限公司 自动充放气设备在oct内窥扫描成像系统中的应用
CN104825121A (zh) * 2015-05-08 2015-08-12 南京微创医学科技有限公司 内窥式oct微探头、oct成像系统及使用方法
CN104825120A (zh) * 2015-05-08 2015-08-12 南京微创医学科技有限公司 Oct内窥扫描成像系统中使用的光学时钟信号发生系统和方法
CN104825118A (zh) * 2015-05-08 2015-08-12 南京微创医学科技有限公司 应用于oct内窥扫描成像的球囊导管、使用方法及oct成像系统
CN204636278U (zh) * 2015-05-08 2015-09-16 南京微创医学科技有限公司 内窥式oct微探头及oct成像系统
CN204636277U (zh) * 2015-05-08 2015-09-16 南京微创医学科技有限公司 具有自动充放气设备的oct内窥扫描成像系统
CN204671101U (zh) * 2015-05-08 2015-09-30 南京微创医学科技有限公司 应用于oct内窥扫描成像的球囊导管及oct成像系统
CN204698494U (zh) * 2015-05-08 2015-10-14 南京微创医学科技有限公司 Oct内窥扫描成像系统中使用的光学时钟模块

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208008A (ja) * 1992-01-31 1993-08-20 Toshiba Corp X線ctスキャナにおけるデータ収集処理方法
US6615072B1 (en) * 1999-02-04 2003-09-02 Olympus Optical Co., Ltd. Optical imaging device
US6939321B2 (en) * 2002-09-26 2005-09-06 Advanced Cardiovascular Systems, Inc. Catheter balloon having improved balloon bonding
JP4789922B2 (ja) * 2004-03-23 2011-10-12 カリフォルニア インスティテュート オブ テクノロジー 前方走査撮像光ファイバ検出器
EP1991301A4 (en) * 2006-03-03 2010-08-18 Prescient Medical Inc BALLOON CATHETERS FOR MEDICAL IMAGING APPLICATIONS
JP4160603B2 (ja) * 2006-03-13 2008-10-01 オリンパス株式会社 光イメージング装置
US20070265521A1 (en) * 2006-05-15 2007-11-15 Thomas Redel Integrated MRI and OCT system and dedicated workflow for planning, online guiding and monitoring of interventions using MRI in combination with OCT
JP5276259B2 (ja) * 2006-06-16 2013-08-28 富士フイルム株式会社 医療装置
WO2008081653A1 (ja) * 2006-12-28 2008-07-10 Terumo Kabushiki Kaisha 光プローブ
WO2008086615A1 (en) * 2007-01-19 2008-07-24 Sunnybrook Health Sciences Centre Medical imaging probe with rotary encoder
WO2008137710A1 (en) * 2007-05-03 2008-11-13 University Of Washington High resolution optical coherence tomography based imaging for intraluminal and interstitial use implemented with a reduced form factor
JP2009201969A (ja) * 2008-02-01 2009-09-10 Fujifilm Corp Oct用光プローブおよび光断層画像化装置
WO2009140617A2 (en) * 2008-05-15 2009-11-19 Axsun Technologies, Inc. Oct combining probes and integrated systems
DE102008040914A1 (de) * 2008-08-01 2010-02-04 Biotronik Vi Patent Ag Ballonkatheter und Verfahren zu dessen Herstellung
JP2010264060A (ja) * 2009-05-14 2010-11-25 Fujifilm Corp 流体制御装置及び流体制御方法並びに内視鏡装置
JP2011072402A (ja) * 2009-09-29 2011-04-14 Fujifilm Corp 光プローブ及び内視鏡装置
US10285568B2 (en) * 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US9131850B2 (en) * 2011-07-18 2015-09-15 St. Jude Medical, Inc. High spatial resolution optical coherence tomography rotation catheter
US9250060B2 (en) * 2011-08-15 2016-02-02 The Johns Hopkins University Optical coherence tomography system having real-time artifact and saturation correction
US9237851B2 (en) * 2012-02-03 2016-01-19 Ninepoint Medical, Inc. Imaging system producing multiple registered images of a body lumen
CN102578993B (zh) * 2012-02-29 2014-05-28 无锡微奥科技有限公司 一种内窥oct成像装置及成像方法
WO2014186121A2 (en) * 2013-05-17 2014-11-20 Ninepoint Medical, Inc. Optical coherence tomography optical probe systems and methods to reduce artifacts
WO2015042093A1 (en) * 2013-09-17 2015-03-26 The Johns Hopkins University Device and methods for color corrected oct imaging endoscope/catheter to achieve high-resolution
CN104095604B (zh) * 2013-12-24 2015-12-02 北京华科创智健康科技股份有限公司 工作距离自动连续调节的内窥oct探头
CN204072038U (zh) * 2014-09-02 2015-01-07 乐普(北京)医疗器械股份有限公司 Oct内窥成像探头和oct成像导管

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2505853Y (zh) * 2001-10-18 2002-08-14 福州康顺光通讯有限公司 一种指向精度校正型准直器
CN101600388A (zh) * 2007-01-10 2009-12-09 光学实验室成像公司 用于扫频源光学相干断层的方法和装置
CN101032390A (zh) * 2007-03-29 2007-09-12 浙江大学 用于在体光学活检的谱域oct内窥成像系统
US20130204125A1 (en) * 2012-02-03 2013-08-08 Ninepoint Medical, Inc. Inflation apparatus with pressure relief, related systems, methods and kits
CN104248419A (zh) * 2014-10-21 2014-12-31 白晓苓 一种内窥成像用超声/光学双模成像探头及成像方法
CN104799802A (zh) * 2015-05-08 2015-07-29 南京微创医学科技有限公司 自动充放气设备在oct内窥扫描成像系统中的应用
CN104794740A (zh) * 2015-05-08 2015-07-22 南京微创医学科技有限公司 利用通用图像处理器处理oct信号的方法及系统
CN104825121A (zh) * 2015-05-08 2015-08-12 南京微创医学科技有限公司 内窥式oct微探头、oct成像系统及使用方法
CN104825120A (zh) * 2015-05-08 2015-08-12 南京微创医学科技有限公司 Oct内窥扫描成像系统中使用的光学时钟信号发生系统和方法
CN104825118A (zh) * 2015-05-08 2015-08-12 南京微创医学科技有限公司 应用于oct内窥扫描成像的球囊导管、使用方法及oct成像系统
CN204636278U (zh) * 2015-05-08 2015-09-16 南京微创医学科技有限公司 内窥式oct微探头及oct成像系统
CN204636277U (zh) * 2015-05-08 2015-09-16 南京微创医学科技有限公司 具有自动充放气设备的oct内窥扫描成像系统
CN204671101U (zh) * 2015-05-08 2015-09-30 南京微创医学科技有限公司 应用于oct内窥扫描成像的球囊导管及oct成像系统
CN204698494U (zh) * 2015-05-08 2015-10-14 南京微创医学科技有限公司 Oct内窥扫描成像系统中使用的光学时钟模块

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108362646A (zh) * 2018-02-07 2018-08-03 上海交通大学 一种微型光声显微成像头、制作方法及其组成的系统
CN113520272A (zh) * 2021-06-29 2021-10-22 上海应用技术大学 一种内窥导管-多模态光学成像耦合检测系统
CN113520272B (zh) * 2021-06-29 2023-06-27 上海应用技术大学 一种内窥导管-多模态光学成像耦合检测系统
CN115553713A (zh) * 2022-11-09 2023-01-03 北京犀燃科技有限公司 一种oct与眼科手术设备整合系统
CN115553713B (zh) * 2022-11-09 2023-04-11 北京犀燃科技有限公司 一种oct与眼科手术设备整合系统

Also Published As

Publication number Publication date
CN104825121A (zh) 2015-08-12
EP3295988A4 (en) 2019-03-27
JP6670928B2 (ja) 2020-03-25
CN104825121B (zh) 2017-04-26
EP3295988A1 (en) 2018-03-21
ES2888273T3 (es) 2022-01-03
JP2018519973A (ja) 2018-07-26
EP3295988B1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
WO2016180291A1 (zh) 内窥式oct微探头、oct成像系统及使用方法
WO2016180290A1 (zh) 应用于oct内窥扫描成像的球囊导管、使用方法及oct成像系统
WO2016180289A1 (zh) 自动充放气设备在oct内窥扫描成像系统中的应用
WO2016180286A1 (zh) Oct内窥扫描成像系统中使用的光学时钟信号发生系统和方法
WO2016180287A1 (zh) 利用通用图像处理器处理oct信号的方法及系统
JP7069236B2 (ja) イメージングシステムの動作を制御する方法及びイメージを取得するシステム
US11660001B2 (en) Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
JP5856061B2 (ja) スペクトル符号化共焦点顕微鏡法を用いた特定の細胞を撮像するための装置及び方法
CN105877910B (zh) 一种对硬化血管或肿瘤进行精确诊断与治疗的一体化系统
US10285568B2 (en) Apparatus and method for devices for imaging structures in or at one or more luminal organs
CN204636278U (zh) 内窥式oct微探头及oct成像系统
CN204698494U (zh) Oct内窥扫描成像系统中使用的光学时钟模块
CN108670177B (zh) 一种乳管内窥镜成像探头
US11179028B2 (en) Objective lens arrangement for confocal endomicroscopy
CN204671101U (zh) 应用于oct内窥扫描成像的球囊导管及oct成像系统
CN204636277U (zh) 具有自动充放气设备的oct内窥扫描成像系统
CN106880339A (zh) 一种呼吸道oct系统
Balakrishnan Endoscopic optical coherence tomography imaging of the airway
AU2021321456B2 (en) Guidewire sensing apparatus
KR20190132679A (ko) 광 간섭 단층 촬영 시스템
Mora Development of a novel method using optical coherence tomography (OCT) for guidance of robotized interventional endoscopy
Lee Advances in the endoscopic management of esophageal neoplasia using ultrahigh speed endoscopic optical coherence tomography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018509964

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE