WO2016178554A1 - Method of transmitting/receiving signal in iops mode in wireless communication system, and device for same - Google Patents

Method of transmitting/receiving signal in iops mode in wireless communication system, and device for same Download PDF

Info

Publication number
WO2016178554A1
WO2016178554A1 PCT/KR2016/004835 KR2016004835W WO2016178554A1 WO 2016178554 A1 WO2016178554 A1 WO 2016178554A1 KR 2016004835 W KR2016004835 W KR 2016004835W WO 2016178554 A1 WO2016178554 A1 WO 2016178554A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
network
iops
epc
terminal
Prior art date
Application number
PCT/KR2016/004835
Other languages
French (fr)
Korean (ko)
Inventor
김래영
류진숙
김현숙
김재현
김태훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2016178554A1 publication Critical patent/WO2016178554A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/40Security arrangements using identity modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for selecting and relaying a signal through a relay.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • the technical problem is to recognize the IOPS mode, the operation of the relay node in the IOPS mode.
  • An embodiment of the present invention provides a method for a relay in a wireless communication system for transmitting and receiving a signal in an isolated E-UTRAN operation for public safety (IOPS) mode, the method comprising: identifying that the network has switched to the IOPS mode; Attaching to a local Evolved Packet Core (EPC); Receiving an IP address from the local EPC; And transmitting information related to the IP address of the remote terminal serving before performing the attach to the local EPC, wherein the information related to the IP address of the remote terminal is the IP of the relay terminal allocated by the local EPC.
  • a signal transmission / reception method in an IOPS mode which is mapping information between an address and an IP address of the remote terminal.
  • a relay terminal device for transmitting and receiving a signal in an isolated E-UTRAN Operation for Public Safety (IOPS) mode in a wireless communication system, the relay device; And a processor, wherein the processor identifies that the network has switched to IOPS mode, attaches to a local Evolved Packet Core (EPC), receives an IP (Internet Protocol) address from the local EPC, and performs the attach
  • EPC Evolved Packet Core
  • IP Internet Protocol
  • the information related to the IP address of the remote terminal, which has been served before, is transmitted to the local EPC, and the information related to the IP address of the remote terminal is between the IP address of the relay terminal allocated by the local EPC and the IP address of the remote terminal.
  • the relay terminal device which is mapping information of.
  • the information related to the IP address of the remote terminal may be to force the packet data network gateway (PGW) of the local EPC to transmit traffic to the remote terminal to the relay terminal.
  • PGW packet data network gateway
  • the relay terminal may perform registration with an IP Multimedia Subsystem (IMS) / Session Initiation Protocol (SIP) core connected to the local EPC of the remote terminal.
  • IMS IP Multimedia Subsystem
  • SIP Session Initiation Protocol
  • the message transmitted by the relay terminal for registration in the IMS / SIP core may include both registration information of the relay terminal and registration information of the remote terminal.
  • the registration information of the relay terminal may include an IP address of the relay terminal, and the registration information of the remote terminal may include an IP address of the remote terminal.
  • the IP address of the relay terminal may be received from the local EPC, and the IP address of the remote terminal may be independent of the local EPC.
  • the relay terminal may omit new IP address assignment to the remote terminal.
  • the local EPC may include only one PGW, and the PGW may be the one PGW.
  • the relay terminal may identify that the network has switched to the IOPS mode through information included in a system information block (SIB).
  • SIB system information block
  • the information included in the SIB may be a flag indicating the start of the IOPS mode.
  • Attaching to the local EPC may include transmitting an attach request to the MME of the local EPC.
  • the remote UE does not need to be reassigned an IP address, and does not need to register with the IMS core individually, which is efficient.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access procedure.
  • RRC radio resource control
  • 11 illustrates an IOPS operation based on local EPC.
  • FIG. 13 illustrates an IOPS mode operation according to an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • Packet Data Network-Gateway (PDN-GW) / PGW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
  • EPC 3GPP core network
  • ProSe communication Means communication through a ProSe communication path between two or more ProSe capable terminals. Unless specifically stated otherwise, ProSe communication may mean one of ProSe E-UTRA communication, ProSe-assisted WLAN direct communication between two terminals, ProSe group communication, or ProSe broadcast communication.
  • ProSe-assisted WLAN direct communication ProSe communication using a direct communication path
  • ProSe communication path As a communication path supporting ProSe communication, a ProSe E-UTRA communication path may be established between ProSe-enabled UEs or through a local eNB using E-UTRA. ProSe-assisted WLAN direct communication path can be established directly between ProSe-enabled UEs using WLAN.
  • EPC path (or infrastructure data path): user plane communication path through EPC
  • ProSe Discovery A process of identifying / verifying a nearby ProSe-enabled terminal using E-UTRA
  • ProSe Group Communication One-to-many ProSe communication using a common communication path between two or more ProSe-enabled terminals in close proximity.
  • ProSe UE-to-Network Relay ProSe-enabled public safety terminal acting as a communication relay between ProSe-enabled network using E-UTRA and ProSe-enabled public safety terminal
  • ProSe UE-to-UE Relay A ProSe-enabled public safety terminal operating as a ProSe communication relay between two or more ProSe-enabled public safety terminals.
  • -Remote UE In the UE-to-Network Relay operation, a ProSe-enabled public safety terminal that is connected to the EPC network through ProSe UE-to-Network Relay without receiving service by E-UTRAN, that is, provides a PDN connection, and is a UE.
  • a ProSe-enabled public safety terminal In -to-UE Relay operation, a ProSe-enabled public safety terminal that communicates with other ProSe-enabled public safety terminals through a ProSe UE-to-UE Relay.
  • ProSe-enabled Network A network that supports ProSe Discovery, ProSe Communication, and / or ProSe-assisted WLAN direct communication.
  • the ProSe-enabled Network may be referred to simply as a network.
  • ProSe-enabled UE a terminal supporting ProSe discovery, ProSe communication and / or ProSe-assisted WLAN direct communication.
  • the ProSe-enabled UE and the ProSe-enabled Public Safety UE may be called terminals.
  • Proximity Satisfying proximity criteria defined in discovery and communication, respectively.
  • SLP SULP Location Platform
  • SLP An entity that manages Location Service Management and Position Determination.
  • SLP includes a SPL (SUPL Location Center) function and a SPC (SUPL Positioning Center) function.
  • SPL SUPL Location Center
  • SPC SUPL Positioning Center
  • OMA Open Mobile Alliance
  • the application / service layer includes Temporary Mobile Group Identity (TMGI) for each MBMS service, session start and end time, frequencies, MBMS service area identities (MBMS SAIs) information belonging to the MBMS service area. To put in USD to the terminal. See 3GPP TS 23.246 for details.
  • TMGI Temporary Mobile Group Identity
  • MBMS SAIs MBMS service area identities
  • ISR Interle mode Signaling Reduction
  • MBMS Single Frequency Network A simulcast transmission technique implemented by simultaneously transmitting the same waveform to multiple grouped cells covering a certain area.
  • EPC Evolved Packet Core
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active.
  • BCHs broadcaster channels
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing).
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE.
  • the UE in the idle state can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit that is larger than the cell unit.
  • the tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • Prose service means a service capable of discovery and direct communication between physically adjacent devices, communication through a base station, or communication through a third device.
  • FIG. 7 illustrates a default data path through which two UEs communicate in EPS. This basic route goes through the operator's base station (eNodeB) and the core network (ie, EPC). In the present invention, such a path will be referred to as an infrastructure data path (or EPC path). In addition, communication through such an infrastructure data path will be referred to as infrastructure communication.
  • eNodeB operator's base station
  • EPC core network
  • FIG. 8 shows a direct mode communication path between two UEs based on Prose. This direct mode communication path does not go through an eNodeB and a core network (ie, EPC) operated by an operator.
  • FIG. 8 (a) illustrates a case where UE-1 and UE-2 camp on different eNodeBs while transmitting and receiving data through a direct mode communication path.
  • FIG. 8 (b) illustrates camping on the same eNodeB.
  • FIG. 2 illustrates a case in which two UEs that are on exchange data via a direct mode communication path.
  • FIG. 9 shows a communication path (locally-routed data path) through an eNodeB between two UEs based on Prose.
  • the communication path through the eNodeB does not go through the core network (ie, EPC) operated by the operator.
  • EPC core network
  • 3GPP Release 13 is studying a solution for providing a mobile communication service in an E-UTRAN without a backhaul (ie, a core network) or a connection with a backhaul that is limited.
  • 3GPP SP-140714 the E-UTRAN without a backhaul (that is, the core network) and the connection with the backhaul and the E-UTRAN having a limited connection with the backhaul are called isolated E-UTRAN, in particular, such an isolated E-UTRAN.
  • the mobile communication service in UTRAN is for public safety terminal / scenario.
  • the operation of the isolated E-UTRAN is called IOPS (Isolated E-UTRAN Operation for Public Safety). IOPS is? No backhaul ?,? Limited bandwidth signaling only backhaul ?,? Limited bandwidth signaling and user data backhaul? Assume such cases.
  • FIG. 10 illustrates a process in which a remote UE prepares a connection service to a network by searching for a UE-to-Network Relay to form a one-to-one direct communication with each other.
  • TR 23.713 See Section 1.1.
  • step S1001 the UE-Network Relay performs an initial E-UTRAN attach procedure and / or establish a PDN connection for the relay.
  • the relay gets the IPv6 prefix from the prefix delegation function.
  • step S1002 the remote UE performs discovery of the UE-Network Relay through model A discovery or model B discovery.
  • Model A discovery is a direct discovery in which an announce UE operates to inform its neighboring UEs of its presence, and monitors whether the announce UE is in a proximate location where the monitoring UE announces information of interest.
  • Model B discovery is a direct discovery in which a Discoveree UE responds with information related to the request when the Discoverer UE sends a request including information to be discovered.
  • step S1003 the remote UE selects a UE-Network Relay and establishes a connection for one-to-one communication.
  • step S1004 when IPv6 is used on PC5, the remote UE performs IPv6 Stateless Address auto-configuration.
  • the remode UE transmits a Router Solicitation message to the network using a Destination Layer-2 ID.
  • Router Advertisement messages contain an assigned IPv6 prefix.
  • the remote UE configures a full IPv6 address through IPv6 stateless address auto-configuration.
  • the remote UE should not use any identifiers defined in TS 23.003 as the basis for generating the interface identifier.
  • the remote UE changes the interface identifier used to generate a full IPv6 address without involving the network.
  • the remote UE must use an auto-configured IPv6 address while transmitting the packet.
  • step S1005 the remote UE uses DHCPv4 'when IPv4 is used on PC5.
  • the remote UE must send a DHCPv4 discovery message using the Destination Layer-2 ID.
  • the relay acting as a DHCPv4 server, transmits a DHCPv4 Offer with an assigned Remote UE IPv4 address.
  • the remote UE receives the lease offer, it transmits a DHCP REQUEST message including the received IPv4 address.
  • the relay operating as a DHCPv4 server transmits a DHCPACK message including a lease duration and configuration information requested by the client to the remote UE.
  • the remote UE Upon receiving the DHCPACK message, the remote UE completes the TCP / IP configuration process.
  • a Local EPC instance including at least the MME, SGW / PGW and means to locally deliver security / access control as required by 3GPP SA3 used in IOPS mode. This allows to replicate the behavior of nomadic EPSs isolated from the macro network.
  • Support of application services on the IOPS network is based on EPS bearer services supported by the LTE-Uu air interface and Local EPC.
  • the eNB If the eNB can reach the local EPC for the IOPS mode, the eNB must use the local EPC. If the eNB cannot reach the local EPC for IOPS mode, it enters a state where the UE does not attempt to select a cell.
  • Nomadic EPS assists public safety services in uncovered areas, either via an IOPS network using local EPC or an eNB serving macro EPC.
  • the eNB enters an IOPS mode operation after detecting that the S1 connection to the macro EPC is lost. In this mode, the eNB starts advertising the PLMN ID dedicated to IOPS. Only authorized UEs can access this PLMN. The UE should be configured to handle this PLMN ID with lower preference (for EUTRAN access) so that other PLMNs in Macro EPC are preferentially selected in automatic PLMN selection.
  • the dedicated IOPS PLMN like the Access Class status of 11 or 15, needs to be configured within the USIM as an HPLMN.
  • the eNB sends the IOPS PLMN cell to? Not Barred ?. &? reserved? Should be directed / broadcasted. Cell reserved for operator use?
  • the feature allows a public safety terminal to gain access to an IOPS network while barring other users in the same area.
  • a UE When a UE selects an IOPS-mode cell, it attaches to a dedicated PLMN and authenticates using a security procedure. If the service range of the Local EPC is a single eNB, all cells served by the eNB must share the same TAI (allocated for use in ISOP mode). And neighbor eNBs operating in IOPS mode, which are assigned the same dedicated PLMN-Id, are assigned different TAIs and thus the TAU is triggered according to mobility. This TAU results in TAU rejection due to the lack of proper credentials / identity and allows the UE to re-attach to the co-sited EPC via the new eNB.
  • TAI allocated for use in ISOP mode
  • the TAI configuration for IOPS is in accordance with the local operator policy, in which reselection to a cell operating in normal mode PLMN always triggers the TAU.
  • the EUTRAN PLMN operation is configured to the terminal with a higher priority than the IOPS PLMN.
  • the TAI assigned to the cell in the Nomadic EPS to trigger the TAU between these systems is assumed to be different from the TAI assigned to the IOPS mode.
  • a local IP address is assigned to the terminal.
  • the local EPC acts as an IP router between terminals attached locally to the same IOPS network. If the backhaul to the macro EPC is reestablished, the S1 connection to the local EPC is released according to the IOPS network policy to move the UE into idle mode.
  • the following describes the IOPS network configuration / establishment.
  • the IOPS network may consist of a local EPC instance and a single isolated eNB (which may be co-located). Or, it may be configured with a local EPC instance and two or more eNBs, and one eNB may be co-located with the local EPC.
  • the procedure defined in LTE standard document TS 36.300 can be used for the dynamic configuration of the S1-MME interface.
  • IOPS capable eNB can be pre-provisioned with IP endpoint information.
  • the eNB may attempt to initialize the SCTP association in turn.
  • the eNB and the eNB exchange application-level configuration data with the S1 Setup Procedure through the S1-MME application protocol.
  • the eNB can be provisioned with an IP endpoint of the preferred Local EPC MME instance and one or more alternative EPC MME instances.
  • Alternative local EPC instances are used when the S1-MME route cannot be established with the MME of the preferred local EPC instance.
  • the eNB's decision whether to enter IOPS mode should be made according to the local policy of the RAN operator. This policy is affected by the RAN sharing agreement, which may be in place.
  • TACs broadcast by cells of eNBs connected to different local EPCs must be distinguished to assure the required UE mobility behavior. Therefore, the TAC broadcast by the eNB's cell operating in IOPS mode should be dependent on the local EPC with which the S1-MME connection is established with the eNB. Support of S1-flex by IOPS depends on local operator policy and configuration.
  • Some distinct UE mobility scenarios can be identified by the following assumptions. Multiple eNBs may be configured to be served by a single local EPC. A single, dedicated PLMN-Id may be advertised by all eNBs operating in IOPS mode. All cells served by the IOPS-eNB must share the same TAI, and the TAIs broadcast by cells served by different local EPCs must be different.
  • the mobility scenario is as follows.
  • the UE moves from a cell operating in IOPS mode to a cell controlled by normal macro EPC
  • the UE mobility behavior expected by each of these scenarios is shown in Table 2 below.
  • Radio link failure followed by cell re-selection -UE performs radio measurements but source and target cells are on different networks so HO not possible.- Radio link failure occurs and UE returns to Idle mode.- UE performs cell selection based upon radio measurements -UE proceeds as per behavior for Idle Mode.
  • - TAI of new cell is the same as in the old cell or is in TAI list.
  • - UE camps on new cell Connected Mode mobility as per normal:-E-UTRAN initiated HO based upon radio measurements.
  • - TAI of new cell is the same as in the old cell or is in TAI list.
  • 11 illustrates an IOPS operation based on local EPC.
  • step S1101 it is detected that the backhaul is lost by the eNB.
  • step S1102 the eNB supporting the IOPS mode, by a) preventing the UE from selecting a cell using a method such as cell barring, b) activate the local EPC, c) establish an S1 link with the local EPC, Transition to IOPS mode.
  • step S1103 the eNB advertises a PLMN ID for IOPS mode operation.
  • the announced TAI is from (selected) the TAI pool allocated for nomadic systems and IOPS. It can only be reused by an eNB that is not expected to be connected to the same local EPC.
  • step S1104 the UE that detects the IOPS PLMN ID attempts to reselect another suitable cell serving the Macro EPC.
  • the user may switch to the manual PLMN selection mode and select the IOPS PLMN to maintain group communication.
  • step S1105 if the UE does not find a suitable cell serving the Macro EPC or manually selects the IOPS PLMN, the UE attaches to the local EPC and obtains a local IP address.
  • step S1106 if the public safety service is supported by the IOPS network, it is started at this time.
  • the eNB may detect that the backhaul to the macro EPC has been restored.
  • step S1108 the S1 connection to the local EPC is released according to the IOPS network policy to put the UE into idle mode and the eNB stops IOPS mode operation.
  • the PLMN ID of the macro EPC is announced, the normal TAI of the macro EPC is advertised to allow the UE to reselect the normal PLMN, and the TAU procedure is triggered.
  • the TAU is rejected due to lack of proper credentials / identity, and a new attach to the macro EPC is performed.
  • step S1109 if authentication is successful, the UE attaches to the macro EPC.
  • FIG. 12A illustrates a network connection through UE-2, which is a remote UE, and UE-1, which is a UE-to-Network Relay. Also, UE-5 and UE-6, which are remote UEs, are UE-to- FIG.
  • the following shows a scenario where a network connection is provided through UE-4, a network relay.
  • UE-1 and UE-4 are in coverage of eNodeB # 1 and eNodeB # 2, respectively.
  • FIG. 12B illustrates a situation in which the eNodeB # 1 has a failure in connection to the backhaul in the situation of FIG. 12A and is disconnected to the backhaul (ie, Macro EPC) and instead connected to the Local EPC. That is, eNodeB # 1 operates in IOPS mode.
  • UE # 1 which is a UE-to-Network Relay
  • eNodeB # 1 which has been serviced
  • IOPS mode changes to IOPS mode.
  • the present invention proposes a ProSe UE-to-Network Relay mechanism for efficiently supporting the isolated E-UTRAN operation.
  • the relay terminal After the relay terminal (relay or UE-to-network relay) according to an embodiment of the present invention identifies that the network has switched to the IOPS mode, it may attach to a local Evolved Packet Core (EPC). In addition, the relay terminal may receive an IP (Internet Protocol) address from the local EPC.
  • EPC Evolved Packet Core
  • the relay terminal may transmit the information related to the IP address of the remote terminal (remote UE) that was serving before performing the attach to the local EPC, and the information related to the IP address of the remote terminal may be the IP of the relay terminal allocated by the local EPC.
  • the PGW of the local EPC may route traffic transmitted to the remote UE to the UE-to-Network relay. That is, the information related to the IP address of the remote terminal may be to force the PGW of the local EPC to transmit traffic to the remote terminal to the relay terminal. Thereafter, when the UE-to-Network relay receives the traffic destined for the remote UE, it may transmit it to the remote UE. In addition, in case of traffic transmitted by the remote UE, the UE-to-Network relay may receive it and transmit it to the network / P-GW.
  • the relay terminal may perform registration with an IP Multimedia Subsystem (IMS) / Session Initiation Protocol (SIP) core connected to the local EPC of the remote terminal.
  • IMS IP Multimedia Subsystem
  • SIP Session Initiation Protocol
  • the relay terminal may replace / substitute for registration in the IMS / SIP core of the remote terminals it serves.
  • the message transmitted by the relay terminal for registration in the IMS / SIP core may include both registration information of the relay terminal and registration information of the remote terminal. That is, when the relay terminal itself registers with the IMS / SIP core, the relay terminal performs registration with all the remote UEs served by the relay terminal.
  • the registration information of the relay terminal may include the IP address of the relay terminal
  • the registration information of the remote terminal may include the IP address of the remote terminal.
  • the IP address of the relay terminal is received from the local EPC, and the IP address of the remote terminal is independent of the local EPC.
  • the relay terminal may perform registration for all the remote UEs that it serves. This may include the registration information of all the remote UEs (including the IP addresses of the remote UEs) in one registration message.
  • the relay terminal may perform registration with respect to all the remote UEs that it serves. This may include the registration information of one remote UE (which includes the IP address of the remote UE) in one registration message.
  • the registration message may be a SIP REGISTER message, and may explicitly or implicitly include information that the UE-to-Network relay supports the relay to the remote UE.
  • Step S1004 to S1005 may be omitted in the ProSe UE-Network relay procedure.
  • the UE-to-Network relay which is receiving the service from the eNB switched to the IOPS mode, can save signaling and PC5 resources due to reallocating the IP address all the time to the remote UE providing the relay service. This may be more effective when there are a large number of UE-to-Network relays serviced from the eNB.
  • the local EPC may be assumed to include only one PGW or to operate only one PGW. Even if multiple Public Safety Servers (or Public Safety Application Servers or MCPTT Servers / ASs, Group Communication Service Servers / ASs, etc.) exist in the local EPC, they are all connected to the same P-GW, so all traffic is routed through the P-GWs. Can be routed. In addition, if the local EPC has an IMS or SIP core (i.e., has a connection with the IMS / SIP core), a P-CSCF or a corresponding SIP server is connected to the P-GW. / SIP messages can be routed through the P-GW.
  • Public Safety Servers or Public Safety Application Servers or MCPTT Servers / ASs, Group Communication Service Servers / ASs, etc.
  • the terminal is one of the following to identify / whether the network (where the network may be a radio access network (RAN), a core network (CN) and / or a public safety application domain) has switched to the IOPS mode
  • the above method can be used.
  • This acknowledgment may be interpreted as acknowledging that the IP address is changed / updated.
  • This acknowledgment may be interpreted as acknowledging that one-to-one direct communication connection with the remote UE should be changed / updated. May be interpreted as knowing that the remote UE needs to change / update the IP address, or such acknowledgment may be interpreted as recognizing that a normal connection to the network is not possible.
  • the relay terminal may identify that the network has switched to the IOPS mode through information included in the SystemInformationBlock (SIB). That is, the switch to the IOPS mode can be identified through the information indicating that the switch to the IOPS mode transmitted by the eNB.
  • SIB SystemInformationBlock
  • the existing SIB may be extended or may be a new SIB.
  • the present invention is not limited thereto, and various methods may be used, such as the eNodeB transmitting the information in a dedicated channel to the UE-to-Network relay. For example,? Start_IOPS_mode ⁇ ?
  • the same IE / flag can be set to TRUE / YES / 1. That is, the information included in the SIB may be a flag indicating the start of the IOPS mode.
  • the PLMN ID sent by the eNodeB is the PLMN ID for IOPS, which identifies the transition to IOPS mode. This means that the eNodeB broadcasts the PLMN ID dedicated to the IOPS mode, proposed in Section 6.1 of the above-mentioned TR 23.797.
  • the cell sent by the eNodeB may identify the switching to the IOPS mode of the network through the information indicating that the cell which is allowed to use the IOPS network may be selected / reselected.
  • the information indicating that the normal mode sent by the eNodeB is stopped may indicate that the network has switched to the IOPS mode. Such information may be, for example, a System Information Block (SIB) transmitted by the eNodeB. This may be an extension of an existing SIB or may be a new SIB.
  • SIB System Information Block
  • the present invention is not limited thereto, and various methods may be used, such as the eNodeB transmitting the information in a dedicated channel to the UE-to-Network Relay.
  • the information As an example of the information,? Stopped_normal_mode ⁇ ? Set to TRUE / YES / 1, etc. There may be the same IE / flag.
  • Information that prevents the eNodeB from selecting or reselecting the sending cell indicates that the network has switched to IOPS mode.
  • Such information may be barring information (cellBarred (IE type:? Barred? Or? Not barred?)) Of a cell transmitted through the existing SIB1.
  • the eNodeB may extend the existing SIB and send it through a new SIB.
  • the present invention is not limited thereto, and various methods may be used, such as the eNodeB transmitting the information in a dedicated channel to the UE-to-Network Relay.
  • the UE-to-Network Relay cell camping-on cell or serving cell
  • the network has switched to the IOPS mode.
  • the eNodeB / cell (s) that normally operated even though the UE-to-Network Relay did not move at all stop.
  • the UE-to-Network relay message includes information indicating that the remote UE will continuously provide the UE-to-Network relay service and / or information indicating that the UE-to-Network relay service will be provided without changing the IP address. Can also be transmitted.
  • step S1301 UE-1 and UE-2 perform a relay discovery operation and a ProSe one-to-one communication setting operation (see the ProSe UE-Network relay procedure shown in FIG. 10).
  • UE-1 is a remote UE and UE-2 is a UE-to-Network relay.
  • step S1302 to step S1303 the UE-1 is assigned an IP address from UE-2, and registers the newly obtained IP address into the IMS network.
  • steps S1304 to S1305 the IMS network performs 3rd party registration with the MCPTT AS (Application Server).
  • MCPTT AS Application Server
  • the MCPTT AS is illustrated as a third party AS, but may be an AS (eg, MMTel AS) that provides various types of services instead of the MCPTT service.
  • AS eg, MMTel AS
  • the operation is switched to the IOPS mode operation and the IOPS mode operation is started.
  • the detailed operation may correspond to steps S1101 to S1104 of FIG. 11.
  • UE-2 UE-to-Network Relay
  • UE-2 assigns the IP address (the IP address used by UE-1 before switching to IOPS mode) of UE-1, which is a remote UE, to P-GW (this is a P-GW belonging to the local EPC). To send). The message containing the information is transmitted to the MME using a NAS message (an existing message or a newly defined message), and the MME transmits this information to the P-GW through the S-GW.
  • P-GW the IP address used by UE-1 before switching to IOPS mode
  • P-GW this is a P-GW belonging to the local EPC.
  • the message containing the information is transmitted to the MME using a NAS message (an existing message or a newly defined message), and the MME transmits this information to the P-GW through the S-GW.
  • UE-2 registers with the local IMS network on behalf of UE-1.
  • the relay relates to a method of supporting the use of an existing IP address of a remote UE.
  • the relay relates to a method of changing / updating the address of a remote UE.
  • the UE-to-Network Relay performs an operation of changing / updating an IP address for the remote UE that provided the network connection service.
  • the operation may be performed after the UE-to-Network Relay attaches to the Local EPC to obtain a new IP address (or after creating a PDN connection), and the UE-to-Network Relay is being served by the UE-to-Network Relay. You can do this immediately after recognizing that the network has switched to an IOPS network.
  • the operation of changing / updating the IP address to the remote UE by the UE-to-Network Relay may be interpreted as a one-to-one direct communication change / update operation with the remote UE.
  • the UE-to-Network Relay can send to the remote UE when an IP address is available to update (or assign) to the remote UE.
  • the UE-to-Network Relay transmits an IP address to the remote UE.
  • a Router Advertisement message including an IPv6 prefix is transmitted to the remote UE.
  • the message including the information may be transmitted as a direct discovery related message, a direct communication related message, or a PC5 signaling message.
  • the UE-to-Network Relay sends a message to the remote UE to initiate the IP address acquisition procedure. This message may be sent to each remote UE individually or may be broadcast.
  • the message may be transmitted as a direct discovery related message, a direct communication related message, or a PC5 signaling message.
  • the message may explicitly indicate to the remote UE to initiate an IP address acquisition procedure (either by information or by the message name itself) or by implicit information (e.g., information indicating that it is connected to an IOPS network). Initiation of an address acquisition procedure may be encouraged.
  • the remote UE receiving the message initiates an IP address acquisition procedure (e.g., sends a Router Solicitation message to the UE-to-Network Relay if an IPv6 address is used, a DHCPv4 Discovery message or a DHCPv4 if an IPv4 address is used).
  • Send request message to UE-to-Network Relay).
  • the UE-to-Network Relay receives a request for obtaining an IP address from the remote UE, and then transmits a new IP address to the remote UE.
  • the UE-to-Network Relay may recognize the connection restoration based on one or more of the following information.
  • Information indicating that the eNodeB has switched to normal mode (this information may be informed, for example, by a SystemInformationBlock (SIB) transmitted by the eNodeB. This may be an extension of an existing SIB or a new SIB.
  • SIB SystemInformationBlock
  • Various methods may be used such that the eNodeB transmits the information to the UE-to-Network Relay in a dedicated channel, for example, IE / flag such as? End_IOPS_mode?
  • the PLMN ID sent by the eNodeB is the PLMN ID for normal mode (this may be a PLMN ID that broadcasts in normal / normal mode rather than the PLMN ID dedicated to IOPS mode proposed in the solution worked in Section 6.1 of TR 23.797).
  • the UE-to-Network Relay aware of the restoration of the connection, can change / update the IP address to the remote UE. That is, the UE-to-Network Relay performs an operation of changing / updating an IP address for a remote UE that has provided a network connection service. The operation may be performed after the UE-to-Network Relay attaches to the Macro EPC to obtain a new IP address, or may be performed immediately after recognition of the restoration.
  • the UE-to-Network Relay identifying that the network is transitioning or switching to the IOPS mode may inform other UEs that the UE-to-Network Relay service cannot be provided.
  • the network is switched to the IOPS mode through the information indicating that the network described in the first embodiment has switched to the IOPS mode and additionally indicating that the eNodeB is in the IOPS mode. You may notice that you are transitioning.
  • Such information may be, for example, a System Information Block (SIB) transmitted by the eNodeB. This may be an extension of an existing SIB or may be a new SIB.
  • SIB System Information Block
  • the present invention is not limited thereto, and various methods may be used, such as the eNodeB transmitting the information in a dedicated channel to the UE-to-Network Relay.
  • the information As an example of the information,? Processing_IOPS_mode_transition ⁇ ? Set to TRUE / YES / 1, etc. There may be the same IE / flag.
  • the UE-to-Network Relay may inform other UE with one or more of the following information that it cannot provide and / or provide UE-to-Network Relay service. Such a notification may be interpreted as indicating that the network to which the UE-to-Network Relay belongs is being switched to or switched to an IOPS network.
  • This information may include information indicating that a connection has been made, g) information indicating a transition from a normal mode to an IOPS mode, and h) information indicating / indicating to use a direct group communication through a network instead of a group communication through a network. .
  • the UE-to-Network Relay identifying that the network has switched to IOPS mode recognizes that there is no normal network (or cell) that can be selected / reselected. Or before or after) as a result.
  • the UE-to-Network Relay may inform other UEs of one or more of the information of a) to h) only under certain conditions.
  • any threshold value for example, Group # 1.
  • UE-to-Network Relay service was provided to 7 UEs.
  • any threshold value which can be provisioned to UE-to-Network Relay
  • Group # For 1 the information of a) to h) may be informed to other UEs, but not for Group # 2.
  • one or more of the information of a) to h) may be informed to the other UE depending on whether the IOPS network provides the MBMS. For example, if the IOPS network does not provide MBMS, the UE-to-Network Relay informs another UE of the information of a) to h). You can broadcast when notifying other UEs, and you can also notify each of the remote UEs you have been serving.
  • the UE-to-Network Relay may transmit a message for advertising the information in the form of advertise / announce, and may transmit a message from another UE (a remote UE that is already serving and / or a UE searching for a UE-to-Network Relay). If received, the response may be included and sent.
  • the information may utilize various UE-to-Network Relay discovery parameters proposed in Section 6.1 (Solution for Direct Discovery (public safety use)) of the above-mentioned TR 23.713, or may define and use new parameters.
  • An example of using an existing UE-to-Network Relay discovery parameter is to use a Status / maintenance flags parameter, a Radio Layer Information parameter, a PLMN ID parameter, and the like.
  • the remote UE receiving the message including the above information from the UE-to-Network Relay may perform one or more of the following operations. i) Searching for another UE-to-Network Relay (especially when receiving a) to d). ii) Maintaining an existing UE-to-Network Relay (this is i) followed by other available / If there is no selectable UE-to-Network Relay, ii) may be performed, or ii) may be performed without i) and iii) disconnecting from the existing UE-to-Network Relay. That is, it decides not to receive network connection service from UE-to-Network Relay, iv) decides to use direct group communication without network instead of group communication through network, v) decides to use only ProSe direct discovery / communication. Can be.
  • the above-described invention is an operation in which the UE-to-Network relay is connected to the normal network and then to the IOPS network, but this is because the UE-to-Network relay is connected to the normal network but the IP address is changed / updated. It can also be extended.
  • the above-described invention is that the IP address of the remote UE is changed as the UE-to-Network relay is connected to the normal network and connected to the IOPS network, but the IP address of the remote UE is maintained. IP addresses can also be extended to use existing ones. In this case, the P-GW can tell the IP address that it was using so that the P-GW can route properly.
  • the present invention is not limited to the LTE / EPC network, but can be applied to the entire UMTS / EPS mobile communication system including both 3GPP access networks (eg, UTRAN / GERAN / E-UTRAN) and non-3GPP access networks (eg, WLAN, etc.). have. In addition, it can be applied in all other wireless mobile communication system environments in the environment where control of the network is applied.
  • 3GPP access networks eg, UTRAN / GERAN / E-UTRAN
  • non-3GPP access networks eg, WLAN, etc.
  • FIG. 14 is a diagram showing the configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
  • the terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
  • the transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the processor 120 may be configured to perform a terminal operation proposed in the present invention.
  • the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the network node device 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
  • the processor 220 may be configured to perform the network node operation proposed in the present invention.
  • the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An embodiment of the present invention, with respect to a method of transmitting/receiving a signal in IOPS (Isolated E-UTRAN Operation for Public Safety) mode by means of a relay in a wireless communication system, comprises the steps of: discerning that a network has been switched to IOPS mode; attaching to a local EPC (Evolved Packet Core); receiving an IP (Internet Protocol) address from the local EPC; and transmitting information related to the IP address of the remote terminal that served before the attachment was implemented to the local EPC, and is a method of transmitting/receiving a signal in IOPS mode, in which the information related to the IP address of the remote terminal is mapping information between the IP address of the relay terminal allocated from the local EPC and the IP address of the remote terminal.

Description

무선 통신 시스템에서 IOPS 모드에서 신호 송수신 방법 및 이를 위한 장치Method for transmitting / receiving signal in IOPS mode in wireless communication system and apparatus therefor
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 릴레이의 선택 및 릴레이를 통한 신호 송수신 방법 및 장치에 대한 것이다.The following description relates to a wireless communication system, and more particularly, to a method and apparatus for selecting and relaying a signal through a relay.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data. In general, a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access (MCD) systems and multi-carrier frequency division multiple access (MC-FDMA) systems.
본 발명에서는 IOPS 모드의 인지, IOPS 모드에서 릴레이 노드의 동작 등을 기술적 과제로 한다.In the present invention, the technical problem is to recognize the IOPS mode, the operation of the relay node in the IOPS mode.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
본 발명의 일 실시예는, 무선통신시스템에서 릴레이가 IOPS(Isolated E-UTRAN Operation for Public Safety) 모드에서 신호를 송수신하는 방법에 있어서, 네트워크가 IOPS 모드로 전환했음을 식별하는 단계; 로컬 EPC(Evolved Packet Core)에 어태치하는 단계; 상기 로컬 EPC로부터 IP(Internet Protocol) 주소를 수신하는 단계; 및 상기 어태치를 수행하기 전 서빙하던 리모트 단말의 IP 주소에 관련된 정보를 상기 로컬 EPC로 전송하는 단계를 포함하며, 상기 리모트 단말의 IP 주소에 관련된 정보는 상기 로컬 EPC에서 할당한 상기 릴레이 단말의 IP 주소와 상기 리모트 단말의 IP 주소 사이의 매핑 정보인, IOPS 모드에서 신호 송수신 방법이다.An embodiment of the present invention provides a method for a relay in a wireless communication system for transmitting and receiving a signal in an isolated E-UTRAN operation for public safety (IOPS) mode, the method comprising: identifying that the network has switched to the IOPS mode; Attaching to a local Evolved Packet Core (EPC); Receiving an IP address from the local EPC; And transmitting information related to the IP address of the remote terminal serving before performing the attach to the local EPC, wherein the information related to the IP address of the remote terminal is the IP of the relay terminal allocated by the local EPC. A signal transmission / reception method in an IOPS mode, which is mapping information between an address and an IP address of the remote terminal.
본 발명의 일 실시예는, 무선 통신 시스템에서 IOPS(Isolated E-UTRAN Operation for Public Safety) 모드에서 신호를 송수신하는 릴레이 단말 장치에 있어서, 송수신 장치; 및 프로세서를 포함하고, 상기 프로세서는, 네트워크가 IOPS 모드로 전환했음을 식별하고, 로컬 EPC(Evolved Packet Core)에 어태치하고, 상기 로컬 EPC로부터 IP(Internet Protocol) 주소를 수신하며, 상기 어태치를 수행하기 전 서빙하던 리모트 단말의 IP 주소에 관련된 정보를 상기 로컬 EPC로 전송하고, 상기 리모트 단말의 IP 주소에 관련된 정보는 상기 로컬 EPC에서 할당한 상기 릴레이 단말의 IP 주소와 상기 리모트 단말의 IP 주소 사이의 매핑 정보인, 릴레이 단말 장치이다.An embodiment of the present invention, a relay terminal device for transmitting and receiving a signal in an isolated E-UTRAN Operation for Public Safety (IOPS) mode in a wireless communication system, the relay device; And a processor, wherein the processor identifies that the network has switched to IOPS mode, attaches to a local Evolved Packet Core (EPC), receives an IP (Internet Protocol) address from the local EPC, and performs the attach The information related to the IP address of the remote terminal, which has been served before, is transmitted to the local EPC, and the information related to the IP address of the remote terminal is between the IP address of the relay terminal allocated by the local EPC and the IP address of the remote terminal. The relay terminal device which is mapping information of.
상기 리모트 단말의 IP 주소에 관련된 정보는 상기 로컬 EPC의 PGW(Packet Data Network-Gateway)가 상기 리모트 단말로의 트래픽을 상기 릴레이 단말로 전송하도록 강제하는 것일 수 있다.The information related to the IP address of the remote terminal may be to force the packet data network gateway (PGW) of the local EPC to transmit traffic to the remote terminal to the relay terminal.
상기 릴레이 단말은, 상기 리모트 단말의 상기 로컬 EPC에 연결된 IMS(IP Multimedia Subsystem)/SIP(Session Initiation Protocol) 코어에의 등록을 수행할 수 있다.The relay terminal may perform registration with an IP Multimedia Subsystem (IMS) / Session Initiation Protocol (SIP) core connected to the local EPC of the remote terminal.
상기 릴레이 단말이 상기 IMS/SIP 코어에 등록을 위해 전송하는 메시지에는, 상기 릴레이 단말의 등록 정보 및 상기 리모트 단말의 등록 정보가 모두 포함될 수 있다.The message transmitted by the relay terminal for registration in the IMS / SIP core may include both registration information of the relay terminal and registration information of the remote terminal.
상기 릴레이 단말의 등록 정보는 상기 릴레이 단말의 IP 주소를 포함하고, 상기 리모트 단말의 등록 정보는 상기 리모트 단말의 IP 주소를 포함할 수 있다.The registration information of the relay terminal may include an IP address of the relay terminal, and the registration information of the remote terminal may include an IP address of the remote terminal.
상기 릴레이 단말의 IP 주소는 상기 로컬 EPC로부터 수신한 것이고, 상기 리모트 단말의 IP 주소는 상기 로컬 EPC와 무관한 것일 수 있다.The IP address of the relay terminal may be received from the local EPC, and the IP address of the remote terminal may be independent of the local EPC.
상기 릴레이 단말은 상기 리모트 단말로의 새 IP 주소 할당을 생략할 수 있다.The relay terminal may omit new IP address assignment to the remote terminal.
상기 로컬 EPC는 하나의 PGW만을 포함하며, 상기 PGW는 상기 하나의 PGW일 수 있다.The local EPC may include only one PGW, and the PGW may be the one PGW.
상기 릴레이 단말은 SIB(SystemInformationBlock)에 포함된 정보를 통해 상기 네트워크가 IOPS 모드로 전환했음을 식별할 수 있다.The relay terminal may identify that the network has switched to the IOPS mode through information included in a system information block (SIB).
상기 SIB에 포함된 정보는 IOPS 모드의 시작을 알리는 플래그일 수 있다.The information included in the SIB may be a flag indicating the start of the IOPS mode.
상기 로컬 EPC에 어태치하는 단계는, 상기 로컬 EPC의 MME로 어태치 요청을 전송하는 단계를 포함할 수 있다.Attaching to the local EPC may include transmitting an attach request to the MME of the local EPC.
본 발명에 따르면, 리모트 UE가 IP 주소를 다시 할당받을 필요가 없으며, IMS 코어에 개별적으로 등록할 필요가 없어 효율적이다.According to the present invention, the remote UE does not need to be reassigned an IP address, and does not need to register with the IMS core individually, which is efficient.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다. BRIEF DESCRIPTION OF THE DRAWINGS The drawings appended hereto are for the purpose of providing an understanding of the present invention and for illustrating various embodiments of the present invention and for describing the principles of the present invention together with the description of the specification.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다. 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.5 is a flowchart illustrating a random access procedure.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.6 is a diagram illustrating a connection process in a radio resource control (RRC) layer.
도 7은 EPS를 통한 데이터 경로를 나타낸다.7 shows a data path through EPS.
도 8 내지 도 9는 직접 모드에서 데이터 경로를 나타낸다.8-9 show data paths in direct mode.
도 10은 ProSe UE-Network 릴레이 절차를 나타낸다.10 shows a ProSe UE-Network relay procedure.
도 11에는 로컬 EPC에 기반한 IOPS 동작이 예시되어 있다.11 illustrates an IOPS operation based on local EPC.
도 12는 종래 기술의 문제점을 설명하기 위한 도면이다.12 is a view for explaining the problems of the prior art.
도 13은 본 발명의 일 실시예에 의한 IOPS 모드 동작을 설명하기 위한 도면이다.FIG. 13 illustrates an IOPS mode operation according to an embodiment of the present invention. FIG.
도 14는 본 발명의 실시예에 따른 노드 장치에 대한 구성을 예시한 도면이다.14 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the present invention in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.Specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.The following techniques can be used in various wireless communication systems. For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다. Terms used in this document are defined as follows.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.UMTS (Universal Mobile Telecommunications System): A third generation mobile communication technology based on Global System for Mobile Communication (GSM) developed by 3GPP.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다. Evolved Packet System (EPS): A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN. UMTS is an evolutionary network.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.NodeB: base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.eNodeB: base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다. UE (User Equipment): a user device. The UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like. In addition, the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device. In the context of MTC, the term UE or UE may refer to an MTC device.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다. Home NodeB (HNB): A base station of a UMTS network, which is installed indoors and has a coverage of a micro cell.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다. HeNB (Home eNodeB): A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.Mobility Management Entity (MME): A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.Packet Data Network-Gateway (PDN-GW) / PGW: A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.Serving Gateway (SGW): A network node of an EPS network that performs mobility anchor, packet routing, idle mode packet buffering, and triggers the MME to page the UE.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다. Non-Access Stratum (NAS): Upper stratum of the control plane between the UE and the MME. A functional layer for exchanging signaling and traffic messages between a UE and a core network in an LTE / UMTS protocol stack, which supports session mobility and establishes and maintains an IP connection between the UE and the PDN GW. Supporting is the main function.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크. Packet Data Network (PDN): A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결. PDN connection: A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다. RAN (Radio Access Network): a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.Home Location Register (HLR) / Home Subscriber Server (HSS): A database containing subscriber information in the 3GPP network. The HSS may perform functions such as configuration storage, identity management, and user state storage.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.Public Land Mobile Network (PLMN): A network composed for the purpose of providing mobile communication services to individuals. It may be configured separately for each operator.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
- ProSe 커뮤니케이션: 둘 이상의 ProSe 가능한 단말들 사이의, ProSe 커뮤니케이션 경로를 통한 커뮤니케이션을 의미한다. 특별히 달리 언급되지 않는 한, ProSe 커뮤니케이션은 ProSe E-UTRA 커뮤니케이션, 두 단말 사이의 ProSe-assisted WLAN direct communication, ProSe 그룹 커뮤니케이션 또는 ProSe 브로드캐스트 커뮤니케이션 중 하나를 의미할 수 있다.ProSe communication: Means communication through a ProSe communication path between two or more ProSe capable terminals. Unless specifically stated otherwise, ProSe communication may mean one of ProSe E-UTRA communication, ProSe-assisted WLAN direct communication between two terminals, ProSe group communication, or ProSe broadcast communication.
- ProSe E-UTRA 커뮤니케이션 : ProSe E-UTRA 커뮤니케이션 경로를 사용한 ProSe 커뮤니케이션-ProSe E-UTRA communication: ProSe communication using ProSe E-UTRA communication path
- ProSe-assisted WLAN direct communication: 직접 커뮤니케이션 경로를 사용한 ProSe 커뮤니케이션ProSe-assisted WLAN direct communication: ProSe communication using a direct communication path
- ProSe 커뮤니케이션 경로 : ProSe 커뮤니케이션을 지원하는 커뮤니케이션 경로로써, ProSe E-UTRA 커뮤니케이션 경로는 E-UTRA를 사용하여 ProSe-enabled UE들 사이에서 또는 로컬 eNB를 통해 수립될 수 있다. ProSe-assisted WLAN direct communication path는 WLAN을 사용하여 ProSe-enabled UEs 사이에서 직접 수립될 수 있다.ProSe communication path: As a communication path supporting ProSe communication, a ProSe E-UTRA communication path may be established between ProSe-enabled UEs or through a local eNB using E-UTRA. ProSe-assisted WLAN direct communication path can be established directly between ProSe-enabled UEs using WLAN.
- EPC 경로 (또는 infrastructure data path): EPC를 통한 사용자 평면 커뮤니케이션 경로EPC path (or infrastructure data path): user plane communication path through EPC
- ProSe 디스커버리: E-UTRA를 사용하여, 근접한 ProSe-enabled 단말을 식별/확인하는 과정ProSe Discovery: A process of identifying / verifying a nearby ProSe-enabled terminal using E-UTRA
- ProSe Group Communication: 근접한 둘 이상의 ProSe-enabled 단말 사이에서, 공통 커뮤니케이션 경로를 사용하는 일 대 다 ProSe 커뮤니케이션ProSe Group Communication: One-to-many ProSe communication using a common communication path between two or more ProSe-enabled terminals in close proximity.
- ProSe UE-to-Network Relay : E-UTRA를 사용하는 ProSe-enabled 네트워크와 ProSe-enabled 퍼블릭 세이프티 단말 사이의 커뮤니케이션 릴레이로 동작하는 ProSe-enabled 퍼블릭 세이프티 단말ProSe UE-to-Network Relay: ProSe-enabled public safety terminal acting as a communication relay between ProSe-enabled network using E-UTRA and ProSe-enabled public safety terminal
- ProSe UE-to-UE Relay: 둘 이상의 ProSe-enabled 퍼블릭 세이프티 단말 사이에서 ProSe 커뮤니케이션 릴레이로 동작하는 ProSe-enabled 퍼블릭 세이프티 단말ProSe UE-to-UE Relay: A ProSe-enabled public safety terminal operating as a ProSe communication relay between two or more ProSe-enabled public safety terminals.
- Remote UE: UE-to-Network Relay 동작에서는 E-UTRAN에 의해 서비스 받지 않고 ProSe UE-to-Network Relay를 통해 EPC 네트워크에 연결되는, 즉 PDN 연결을 제공받는 ProSe-enabled 퍼블릭 세이프티 단말이며, UE-to-UE Relay 동작에서는 ProSe UE-to-UE Relay를 통해 다른 ProSe-enabled 퍼블릭 세이프티 단말과 통신하는 ProSe-enabled 퍼블릭 세이프티 단말.-Remote UE: In the UE-to-Network Relay operation, a ProSe-enabled public safety terminal that is connected to the EPC network through ProSe UE-to-Network Relay without receiving service by E-UTRAN, that is, provides a PDN connection, and is a UE. In -to-UE Relay operation, a ProSe-enabled public safety terminal that communicates with other ProSe-enabled public safety terminals through a ProSe UE-to-UE Relay.
- ProSe-enabled Network: ProSe 디스커버리, ProSe 커뮤니케이션 및/또는 ProSe-assisted WLAN 직접 통신을 지원하는 네트워크. 이하에서는 ProSe-enabled Network 를 간단히 네트워크라고 지칭할 수 있다.ProSe-enabled Network: A network that supports ProSe Discovery, ProSe Communication, and / or ProSe-assisted WLAN direct communication. Hereinafter, the ProSe-enabled Network may be referred to simply as a network.
- ProSe-enabled UE: ProSe 디스커버리, ProSe 커뮤니케이션 및/또는 ProSe-assisted WLAN 직접 통신을 지원하는 단말. 이하에서는 ProSe-enabled UE 및 ProSe-enabled Public Safety UE를 단말이라 칭할 수 있다.ProSe-enabled UE: a terminal supporting ProSe discovery, ProSe communication and / or ProSe-assisted WLAN direct communication. Hereinafter, the ProSe-enabled UE and the ProSe-enabled Public Safety UE may be called terminals.
- Proximity: 디스커버리와 커뮤니케이션에서 각각 정의되는 proximity 판정 기준을 만족하는 것Proximity: Satisfying proximity criteria defined in discovery and communication, respectively.
- SLP(SUPL Location Platform): 위치 서비스 관리(Location Service Management)와 포지션 결정(Position Determination)을 관장하는 엔티티. SLP는 SLC(SUPL Location Center) 기능과 SPC(SUPL Positioning Center) 기능을 포함한다. 자세한 사항은 Open Mobile Alliance(OMA) 표준문서 OMA AD SUPL: "Secure User Plane Location Architecture"을 참고하기로 한다.SULP Location Platform (SLP): An entity that manages Location Service Management and Position Determination. SLP includes a SPL (SUPL Location Center) function and a SPC (SUPL Positioning Center) function. For details, refer to the Open Mobile Alliance (OMA) standard document OMA AD SUPL: "Secure User Plane Location Architecture".
- USD(User Service Description): 애플리케이션/서비스 레이어는 각 MBMS 서비스를 위한 TMGI(Temporary Mobile Group Identity), 세션의 시작 및 종료 시간, frequencies, MBMS 서비스 지역에 속하는 MBMS service area identities(MBMS SAIs) 정보 등을 USD에 담아 단말에게 전송한다. 자세한 사항은 3GPP TS 23.246 내용을 참고하기로 한다.User Service Description (USD): The application / service layer includes Temporary Mobile Group Identity (TMGI) for each MBMS service, session start and end time, frequencies, MBMS service area identities (MBMS SAIs) information belonging to the MBMS service area. To put in USD to the terminal. See 3GPP TS 23.246 for details.
- ISR(Idle mode Signalling Reduction): 단말이 E-UTRAN과 UTRAN/GERAN 사이를 자주 이동하게 되는 경우 반복적인 위치 등록 절차에 의한 네트워크 자원의 낭비가 발생한다. 이를 줄이기 위한 방법으로써 단말이 idle mode인 경우 E-UTRAN과 UTRAN/GERAN을 경유하여 각각 MME와 SGSN (이하 이 두 노드를 mobility management node라 칭함)에게 위치 등록 후, 이미 등록한 두 RAT(Radio Access Technology) 사이의 이동 또는 cell reselection을 수행한 경우 별도의 위치 등록을 하지 않게 하는 기술이다. 따라서 해당 단말로의 DL(downlink) data가 도착하는 경우 paging을 E-UTRAN과 UTRAN/GERAN에 동시에 보냄으로써, 단말을 성공적으로 찾아 DL data를 전달할 수 있다. [3GPP TS 23.401 및 3GPP TS 23.060 참조]ISR (Idle mode Signaling Reduction): When a terminal frequently moves between E-UTRAN and UTRAN / GERAN, waste of network resources occurs by repeated location registration procedure. As a way to reduce this, when the terminal is in idle mode, two RATs (Radio Access Technology) already registered after the location registration with MME and SGSN (hereinafter referred to as mobility management node) via E-UTRAN and UTRAN / GERAN, respectively. This is a technology that does not register a separate location when moving between cells or performing cell reselection. Therefore, when DL (downlink) data arrives to the terminal, paging is simultaneously sent to the E-UTRAN and UTRAN / GERAN, thereby successfully finding the terminal and delivering the DL data. [See 3GPP TS 23.401 and 3GPP TS 23.060]
- MBSFN(MBMS Single Frequency Network): 어떠한 지역을 커버하는 그룹핑된 다수 셀에 동일한 waveform을 동시에 전송함으로써 구현되는 simulcast 전송 기술.MBMS Single Frequency Network (MBSFN): A simulcast transmission technique implemented by simultaneously transmitting the same waveform to multiple grouped cells covering a certain area.
EPC(Evolved Packet Core)Evolved Packet Core (EPC)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.EPC is a key element of System Architecture Evolution (SAE) to improve the performance of 3GPP technologies. SAE is a research project to determine network structure supporting mobility between various kinds of networks. SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다. Specifically, the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services. In a conventional mobile communication system (i.e., a second generation or third generation mobile communication system), the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data. The function has been implemented. However, in the 3GPP LTE system, an evolution of the third generation mobile communication system, the sub-domains of CS and PS have been unified into one IP domain. That is, in the 3GPP LTE system, the connection between the terminal and the terminal having the IP capability (capability), IP-based base station (for example, eNodeB (evolved Node B)), EPC, application domain (for example, IMS ( IP Multimedia Subsystem)). That is, EPC is an essential structure for implementing end-to-end IP service.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.The EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다. The SGW (or S-GW) acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW. In addition, when the UE moves over the area served by the eNodeB, the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later). SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다. The PDN GW (or P-GW) corresponds to the termination point of the data interface towards the packet data network. The PDN GW may support policy enforcement features, packet filtering, charging support, and the like. In addition, mobility management between 3GPP networks and non-3GPP networks (for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다. Although the example of the network structure of FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다. The MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like. The MME controls control plane functions related to subscriber and session management. The MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks. The MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다. SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다. The ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다. As described with reference to FIG. 1, a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.). In the 3GPP system, a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point. Table 1 below summarizes the reference points shown in FIG. 1. In addition to the examples of Table 1, there may be various reference points according to the network structure.
Figure PCTKR2016004835-appb-T000001
Figure PCTKR2016004835-appb-T000001
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.Among the reference points shown in FIG. 1, S2a and S2b correspond to non-3GPP interfaces. S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW. S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.As shown, an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active. Can perform functions for dynamic allocation to the UE, configuration and provision for measurement of the eNodeB, radio bearer control, radio admission control, and connection mobility control. Within the EPC, paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station, and FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.The air interface protocol is based on the 3GPP radio access network standard. The air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.The protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.Hereinafter, each layer of the radio protocol of the control plane shown in FIG. 3 and the radio protocol in the user plane shown in FIG. 4 will be described.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.The physical layer, which is the first layer, provides an information transfer service using a physical channel. The physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel. In addition, data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.The physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis. Here, one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis. One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers. The transmission time interval (TTI), which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.According to 3GPP LTE, the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
제2계층에는 여러 가지 계층이 존재한다.There are several layers in the second layer.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.First, the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing). The MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.The Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.The Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size. In addition, in the LTE system, the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.The radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release. In this case, RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.Hereinafter, the RRC state and the RRC connection method of the UE will be described. The RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell. That is, the terminal in the RRC_IDLE state is only detected whether the terminal exists in a larger area than the cell, and the terminal must transition to the RRC_CONNECTED state in order to receive a normal mobile communication service such as voice or data. Each TA is identified by a tracking area identity (TAI). The terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell. When it is necessary to establish an RRC connection, the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state. There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.A non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.The following describes the NAS layer shown in FIG. 3 in detail.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.ESM (evolved Session Management) belonging to the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network. The default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN). At this time, the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer. LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth. In case of Default bearer, Non-GBR bearer is assigned. In the case of a dedicated bearer, a bearer having a QoS characteristic of GBR or non-GBR may be allocated.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.The bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID. One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.5 is a flowchart illustrating a random access procedure in 3GPP LTE.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.The random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.The UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB. Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.Transmission of the random access preamble is limited to a specific time and frequency resource for each cell. The PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.The UE sends the randomly selected random access preamble to the eNodeB. The UE selects one of the 64 candidate random access preambles. Then, the corresponding subframe is selected by the PRACH configuration index. The UE transmits the selected random access preamble in the selected subframe.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE. The random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.6 shows a connection process in a radio resource control (RRC) layer.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.As shown in FIG. 6, the RRC state is shown depending on whether the RRC is connected. The RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB. When the RRC state is connected, the RRC state is referred to as an RRC connected state. The non-state is called the RRC idle state.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.Since the UE in the connected state has an RRC connection, the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE. On the other hand, the UE in the idle state (idle state) can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit that is larger than the cell unit. The tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.There are several cases in which the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.In order to establish an RRC connection with the eNodeB, the UE in an idle state must proceed with an RRC connection procedure as described above. The RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.1) When a UE in idle mode attempts to establish an RRC connection due to a call attempt, a data transmission attempt, or a response to an eNodeB's paging, the UE first sends an RRC connection request message. Send to eNodeB.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.2) When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.3) When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
ProSeProSe (Proximity Service) (Proximity Service)
Prose서비스는 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스를 의미한다.Prose service means a service capable of discovery and direct communication between physically adjacent devices, communication through a base station, or communication through a third device.
도 7은 EPS에서 두 UE가 통신하는 기본적인 경로 (default data path)를 도시하고 있다. 이러한 기본적인 경로는 사업자가 운영하는 기지국(eNodeB) 및 core network(즉, EPC)을 거친다. 본 발명에서는 이러한 경로를 인프라스트럭처 데이터 경로(infrastructure data path) (또는 EPC path)라고 부르기로 한다. 또한, 이러한 인프라스트럭처 데이터 경로를 통한 통신을 인프라스트럭처 통신이라고 부르기로 한다.FIG. 7 illustrates a default data path through which two UEs communicate in EPS. This basic route goes through the operator's base station (eNodeB) and the core network (ie, EPC). In the present invention, such a path will be referred to as an infrastructure data path (or EPC path). In addition, communication through such an infrastructure data path will be referred to as infrastructure communication.
도 8은 Prose에 기반한 두 UE 간의 직접 모드 통신 경로(direct mode data path)를 보여준다. 이러한 직접 모드 통신 경로는 사업자가 운영하는 eNodeB 및 core network (즉, EPC)을 거치지 않는다. 도 8(a)는 UE-1과 UE-2가 각각 다른 eNodeB에 캠프 온 (camp-on) 하고 있으면서 직접 모드 통신 경로를 통해 데이터를 주고 받는 경우를, 도 8(b)는 동일한 eNodeB에 캠프 온 하고 있는 두 UE가 직접 모드 통신 경로를 통해 데이터를 주고 받는 경우를 도시하고 있다.8 shows a direct mode communication path between two UEs based on Prose. This direct mode communication path does not go through an eNodeB and a core network (ie, EPC) operated by an operator. FIG. 8 (a) illustrates a case where UE-1 and UE-2 camp on different eNodeBs while transmitting and receiving data through a direct mode communication path. FIG. 8 (b) illustrates camping on the same eNodeB. FIG. 2 illustrates a case in which two UEs that are on exchange data via a direct mode communication path.
도 9는 Prose에 기반한 두 UE 간의 eNodeB를 거치는 통신 경로(locally-routed data path)를 보여준다. 이러한 eNodeB를 거치는 통신 경로는 사업자가 운영하는 core network (즉, EPC)은 거치지 않는다.9 shows a communication path (locally-routed data path) through an eNodeB between two UEs based on Prose. The communication path through the eNodeB does not go through the core network (ie, EPC) operated by the operator.
한편 3GPP Release 13에서는 backhaul (즉, core network)과의 연결이 없는/끊어진 E-UTRAN 및 backhaul과의 연결이 제한적인 E-UTRAN에서의 이동통신 서비스를 제공하기 위한 솔루션을 스터디 중에 있다. (3GPP SP-140714) 상기와 같이 backhaul (즉, core network)과의 연결이 없는/끊어진 E-UTRAN 및 backhaul과의 연결이 제한적인 E-UTRAN을 isolated E-UTRAN이라 부르며, 특히 이러한 isolated E-UTRAN에서의 이동통신 서비스는 Public Safety 단말/시나리오를 위한 바, 이러한 isolated E-UTRAN의 동작을 IOPS(Isolated E-UTRAN Operation for Public Safety)라 명명하고 있다. IOPS는 ?No backhaul?, ?Limited bandwidth signalling only backhaul?, ?Limited bandwidth signalling and user data backhaul? 등의 경우를 가정한다.Meanwhile, 3GPP Release 13 is studying a solution for providing a mobile communication service in an E-UTRAN without a backhaul (ie, a core network) or a connection with a backhaul that is limited. (3GPP SP-140714) As described above, the E-UTRAN without a backhaul (that is, the core network) and the connection with the backhaul and the E-UTRAN having a limited connection with the backhaul are called isolated E-UTRAN, in particular, such an isolated E-UTRAN. The mobile communication service in UTRAN is for public safety terminal / scenario. The operation of the isolated E-UTRAN is called IOPS (Isolated E-UTRAN Operation for Public Safety). IOPS is? No backhaul ?,? Limited bandwidth signaling only backhaul ?,? Limited bandwidth signaling and user data backhaul? Assume such cases.
도 10은 리모트 UE가 UE-to-Network Relay를 탐색하여 서로 One-to-One Direct Communication을 형성함으로써 네트워크로의 연결 서비스를 준비하는 과정을 예시한 것으로, 보다 상세한 내용은 TR 23.713에 의해 참조될 수 있다.FIG. 10 illustrates a process in which a remote UE prepares a connection service to a network by searching for a UE-to-Network Relay to form a one-to-one direct communication with each other. For more details, refer to TR 23.713. Can be.
단계 S1001에서, UE-Network Relay는 초기 E-UTRAN 어태치 과정 및/또는 릴레이를 위한 PDN 연결 수립을 수행한다. IPv6 case에서, 릴레이는 prefix delegation function 으로부터 IPv6 prefix를 얻는다.In step S1001, the UE-Network Relay performs an initial E-UTRAN attach procedure and / or establish a PDN connection for the relay. In the IPv6 case, the relay gets the IPv6 prefix from the prefix delegation function.
단계 S1002에서, 리모트 UE는 모델 A 디스커버리 또는 모델 B 디스커버리를 통해 UE-Network Relay의 디스커버리를 수행한다. In step S1002, the remote UE performs discovery of the UE-Network Relay through model A discovery or model B discovery.
모델 A 디스커버리는 어나운싱 UE가 자신의 존재를 근접 UE들에게 알리는 동작을 하고, 모니터링 UE가 관심이 있는 정보를 알리는 어나운싱 UE가 근접 위치에 있는지 모니터링하는 형태의 직접 디스커버리이다. 모델 B 디스커버리는 Discoverer UE가 탐색하고자 하는 정보를 포함하여 요청을 전송하면 상기 요청에 관련된 정보를 포함하여 Discoveree UE가 응답을 하는 형태의 직접 디스커버리이다.Model A discovery is a direct discovery in which an announce UE operates to inform its neighboring UEs of its presence, and monitors whether the announce UE is in a proximate location where the monitoring UE announces information of interest. Model B discovery is a direct discovery in which a Discoveree UE responds with information related to the request when the Discoverer UE sends a request including information to be discovered.
단계 S1003에서, 리모트 UE는 UE-Network Relay를 선택하고, One-to-One Communication을 위한 연결을 수립한다. In step S1003, the remote UE selects a UE-Network Relay and establishes a connection for one-to-one communication.
단계 S1004에서, PC5 상에서 IPv6가 사용될 때 리모트 UE는 IPv6 Stateless Address auto-configuration을 수행한다. 리모드 UE는 Destination Layer-2 ID를 사용하여 네트워크로 Router Solicitation message를 전송한다. Router Advertisement messages는 할당된 IPv6 prefix를 포함한다. 리모트 UE가 Router Advertisement message를 수신한 후, IPv6 Stateless Address auto-configuration 을 통해 full IPv6 address를 구성한다. 그러나, 리모트 UE는 interface identifier 를 생성하기 위한 기저로써, TS 23.003에 정의된 어떤 identifiers도 사용해선 안된다. 프라이버시를 위해, 리모트 UE는 네트워크에 involving 되지 않으면서, full IPv6 address 를 생성하기 위해 사용되는 interface identifier를 변경한다. 리모트 UE는 패킷을 전송하는 동안 auto-configured IPv6 address를 사용하여야만 한다.In step S1004, when IPv6 is used on PC5, the remote UE performs IPv6 Stateless Address auto-configuration. The remode UE transmits a Router Solicitation message to the network using a Destination Layer-2 ID. Router Advertisement messages contain an assigned IPv6 prefix. After the remote UE receives the Router Advertisement message, the remote UE configures a full IPv6 address through IPv6 stateless address auto-configuration. However, the remote UE should not use any identifiers defined in TS 23.003 as the basis for generating the interface identifier. For privacy, the remote UE changes the interface identifier used to generate a full IPv6 address without involving the network. The remote UE must use an auto-configured IPv6 address while transmitting the packet.
단계 S1005에서, PC5 상에서 IPv4가 사용될 때 리모트 UE는 DHCPv4 를 사용한다. 리모트 UE는 Destination Layer-2 ID를 사용하여, DHCPv4 디스커버리 메시지를 전송하여야만 한다. DHCPv4 서버로 동작하는 릴레이는 할당된 Remote UE IPv4 address 와 함께DHCPv4 Offer를 전송한다. 리모트 UE가 lease offer를 수신하면 수신된 received IPv4 address 를 포함하는 DHCP REQUEST message를 전송한다. DHCPv4 서버로 동작하는 릴레이는 lease duration 및 클라이언트가 요청한 구성 정보를 포함하는 DHCPACK 메시지를 리모트 UE로 전송한다. DHCPACK 메시지를 수신하면 리모트 UE는 TCP/IP 구성 프로세스를 완료한다. In step S1005, the remote UE uses DHCPv4 'when IPv4 is used on PC5. The remote UE must send a DHCPv4 discovery message using the Destination Layer-2 ID. The relay, acting as a DHCPv4 server, transmits a DHCPv4 Offer with an assigned Remote UE IPv4 address. When the remote UE receives the lease offer, it transmits a DHCP REQUEST message including the received IPv4 address. The relay operating as a DHCPv4 server transmits a DHCPACK message including a lease duration and configuration information requested by the client to the remote UE. Upon receiving the DHCPACK message, the remote UE completes the TCP / IP configuration process.
IOPS 솔루션은 TR 23.797에 스터디 중이다. 아래는 TR 23.797의 6.1절에 작업된 backhaul로의 연결이 없는/끊어진 경우에 대한 솔루션이다.The IOPS solution is being studied in TR 23.797. Below is a solution for the case where there is no / disconnected connection to the backhaul worked in section 6.1 of TR 23.797.
이 솔루션은 eNB는 IOPS 모드에 사용되는 Local EPC instance (including at least the MME, SGW/PGW and means to locally deliver security/access control as required by 3GPP SA3)에 co-sited되거나 또는 도달 가능한 것으로 가정한다. 이는 Macro network 로부터 격리된 nomadic EPS의 동작을 복제하도록 허용한다.This solution assumes that the eNB is co-sited or reachable by a Local EPC instance (including at least the MME, SGW / PGW and means to locally deliver security / access control as required by 3GPP SA3) used in IOPS mode. This allows to replicate the behavior of nomadic EPSs isolated from the macro network.
IOPS 네트워크 상의 애플리케이션 서비스의 지원은 LTE-Uu 무선 인터페이스 및 Local EPC 에 의해 지원되는 EPS 베어러 서비스에 기반한다. Support of application services on the IOPS network is based on EPS bearer services supported by the LTE-Uu air interface and Local EPC.
매크로 EPC로의 백홀이 상실(lost)된 경우, 다음 내용이 기대된다. If the backhaul to the macro EPC is lost, the following is expected.
만약, eNB가 IOPS 모드를 위한 로컬 EPC에 도달할 수 있으면, eNB는 로컬 EPC를 사용하여야만 한다. 만약, eNB가 IOPS 모드를 위한 로컬 EPC에 도달할 수 없으면, UE가 셀을 선택하기 위해 시도하지 않는 상태에 진입한다.If the eNB can reach the local EPC for the IOPS mode, the eNB must use the local EPC. If the eNB cannot reach the local EPC for IOPS mode, it enters a state where the UE does not attempt to select a cell.
Nomadic EPS는 로컬 EPC를 사용하는 IOPS 네트워크 또는 매크로 EPC를 서빙하는 eNB를 통해, 커버리지가 없는 area에서 퍼블릭 세이프티 서비스를 돕는다. eNB는 매크로 EPC로의 S1 연결이 상실된 것을 검출한 후 IOPS 모드 오퍼레이션에 진입한다. 이 모드에서, eNB는 IOPS 에 전용되는 PLMN ID를 광고하기 시작한다. 단지 authorized UE만 이 PLMN에 액세스할 수 있다. UE는 자동 PLMN 선택에서 Macro EPC의 다른 PLMN이 우선적으로 선택되도록, lower preference (for EUTRAN access) 로 이 PLMN ID를 다룰 수 있게 구성되어야 한다. Nomadic EPS assists public safety services in uncovered areas, either via an IOPS network using local EPC or an eNB serving macro EPC. The eNB enters an IOPS mode operation after detecting that the S1 connection to the macro EPC is lost. In this mode, the eNB starts advertising the PLMN ID dedicated to IOPS. Only authorized UEs can access this PLMN. The UE should be configured to handle this PLMN ID with lower preference (for EUTRAN access) so that other PLMNs in Macro EPC are preferentially selected in automatic PLMN selection.
전용 IOPS PLMN은 Access Class status of 11 or 15와 마찬가지로 HPLMN 으로서 USIM 내에서 구성될 필요가 있다. IOPS 모드 오퍼레이션에서 eNB는 IOPS PLMN cell을 ?Not Barred? & ?reserved? 로 지시/브로드캐스트하여야 한다. 이 ?Cell reserved for operator use? 특징은, 동일 area에서 다른 사용자를 barring하면서 퍼블릭 세이프티 단말이 IOPS 네트워크로의 액세스를 구할 수 있도록 허용해 준다. The dedicated IOPS PLMN, like the Access Class status of 11 or 15, needs to be configured within the USIM as an HPLMN. In the IOPS mode operation, the eNB sends the IOPS PLMN cell to? Not Barred ?. &? reserved? Should be directed / broadcasted. Cell reserved for operator use? The feature allows a public safety terminal to gain access to an IOPS network while barring other users in the same area.
Authorized PS(Public Safety) UE가 IOPS-mode cell을 선택할 때, dedicated PLMN에 어태치하고, security 절차를 사용하여 인증된다. 만약, Local EPC 의 서비스 범위가 단일 eNB라면, eNB 에 의해 서빙되는 모든 셀은 동일한 TAI(ISOP 모드에서 사용을 위해 할당된)를 공유해야 한다. 그리고 동일한 전용 PLMN-Id가 할당된, IOPS 모드에서 동작하는 이웃 eNB 는 상이한 TAIs가 할당되며 따라서 TAU 가 이동성에 따라 트리거된다. 이 TAU 는 적절한 credentials/identity 가 없음으로 인한 TAU 거절을 가져오며, UE 가 새 eNB를 통해 co-sited EPC에 재-어태치하게 한다.Authorized PS (Public Safety) When a UE selects an IOPS-mode cell, it attaches to a dedicated PLMN and authenticates using a security procedure. If the service range of the Local EPC is a single eNB, all cells served by the eNB must share the same TAI (allocated for use in ISOP mode). And neighbor eNBs operating in IOPS mode, which are assigned the same dedicated PLMN-Id, are assigned different TAIs and thus the TAU is triggered according to mobility. This TAU results in TAU rejection due to the lack of proper credentials / identity and allows the UE to re-attach to the co-sited EPC via the new eNB.
그러나, 만약 복수의 eNB 가 단일 로컬 EPC에 의해 서빙되도록 구성된 경우, IOPS를 위한 TAI 구성은, 노멀 모드 PLMN 에서 동작하는 셀로의 재선택은 항상 TAU를 트리거하는 방법으로, 로컬 오퍼레이터 정책에 따라 이루어진다. 허용된, 노멀 모드에서 EUTRAN PLMN 동작은 IOPS PLMN 보다 높은 우선순위로써 단말에게 구성된다. 만약, 동일한 PLMN-Id가 공유되는 경우, 이 시스템 사이에서 TAU를 트리거 하기 위해 Nomadic EPS 에서 셀에 할당된 TAI는 IOPS mode에 할당된 TAI와는 상이한 것으로 가정된다. 로컬 EPC로의 어태치 절차 동안, Macro EPC에 어태치할 때와 같이 일반적 절차에 따라, 로컬 IP 주소가 단말에게 할당된다. However, if multiple eNBs are configured to be served by a single local EPC, the TAI configuration for IOPS is in accordance with the local operator policy, in which reselection to a cell operating in normal mode PLMN always triggers the TAU. In the allowed, normal mode, the EUTRAN PLMN operation is configured to the terminal with a higher priority than the IOPS PLMN. If the same PLMN-Id is shared, the TAI assigned to the cell in the Nomadic EPS to trigger the TAU between these systems is assumed to be different from the TAI assigned to the IOPS mode. During the attach procedure to the local EPC, according to a general procedure, such as when attaching to the Macro EPC, a local IP address is assigned to the terminal.
로컬 EPC는 동일한 IOPS 네트워크에 로컬하게 어태치한 단말들 사이에서 IP 라우터 역할을 수행한다. 매크로 EPC로의 백홀이 재수립된 경우, 로컬 EPC로의 S1 연결은 UE 를 유휴 모드로 이동시키기 위해, IOPS 네트워크 정책에 따라 릴리즈된다.The local EPC acts as an IP router between terminals attached locally to the same IOPS network. If the backhaul to the macro EPC is reestablished, the S1 connection to the local EPC is released according to the IOPS network policy to move the UE into idle mode.
이하, IOPS 네트워크 구성/수립에 대해 설명한다.The following describes the IOPS network configuration / establishment.
IOPS 네트워크는 로컬 EPC instance와 단일의 격리된 eNB (co-located 될 수 있는)로 구성될 수 있다. 또는, 로컬 EPC instance와 둘 이상의 eNB로 구성될 수 있는데, 하나의 eNB는 로컬 EPC와 co-located될 수 있다.The IOPS network may consist of a local EPC instance and a single isolated eNB (which may be co-located). Or, it may be configured with a local EPC instance and two or more eNBs, and one eNB may be co-located with the local EPC.
LTE 표준문서 TS 36.300에 기 정의되어 있는 절차가 S1-MME 인터페이스의 동적 구성을 위해 사용될 수 있다. IOPS capable한 eNB는 IP endpoint 정보와 함께 미리 프로비전될 수 있다. 각 MME를 위해 eNB는 차례대로 SCTP 연관의 초기화를 시도할 수 있다. SCTP가 수립되면, eNB와 eNB는 애플리케이션 레벨의 구성 데이터를 S1 Setup Procedure 와 함께 S1-MME 애플리케이션 프로토콜을 통해 교환한다. 오퍼레이터 정책에 따라, eNB는 선호하는 Local EPC MME instance의 IP endpoint 및 하나 이상의 얼터너티브 EPC MME instances 와 함께 프로비전될수 있다. 얼터너티브 로컬 EPC instances는 S1-MME 경로가, 선호하는 로컬 EPC instance 의 MME와 함께 수립될 수 없는 경우 사용된다. The procedure defined in LTE standard document TS 36.300 can be used for the dynamic configuration of the S1-MME interface. IOPS capable eNB can be pre-provisioned with IP endpoint information. For each MME, the eNB may attempt to initialize the SCTP association in turn. Once the SCTP is established, the eNB and the eNB exchange application-level configuration data with the S1 Setup Procedure through the S1-MME application protocol. Depending on the operator policy, the eNB can be provisioned with an IP endpoint of the preferred Local EPC MME instance and one or more alternative EPC MME instances. Alternative local EPC instances are used when the S1-MME route cannot be established with the MME of the preferred local EPC instance.
IOPS 모드로 진입할지에 대한 eNB의 결정은 RAN 오퍼레이터의 로컬 정책에 따라 이루어져야 한다. 이러한 정책은 준비되어 있을 수 있는 RAN 공유 협약에 의해 영향을 받는다.The eNB's decision whether to enter IOPS mode should be made according to the local policy of the RAN operator. This policy is affected by the RAN sharing agreement, which may be in place.
퍼블릭 세이프티 인증 / 오퍼레이터에 의해 도입된 모든 로컬 EPC instances는 동일한 PLMN-Id를 가정해야만 한다. 분리된 IOPS 네트워크상의 서로 다른 TAI의 브로드캐스트를 달성하기 위해, 서로 다른 로컬 EPC에 연결된 eNB의 셀에 의해 브로드캐스트되는 TACs는 요구되는 UE 이동성 행동을 확신하도록 구별되어야 한다. 따라서, IOPS 모드에서 동작하는 eNB의 셀에 의한 TAC 브로드캐스트는 eNB와 S1-MME 연결이 수립된 로컬 EPC 에 종속되어야 한다. IOPS에 의한 S1-flex의 지원은 로컬 오퍼레이터 정책 및 구성에 달려 있다. All local EPC instances introduced by the public safety authentication / operator must assume the same PLMN-Id. To achieve broadcast of different TAIs on separate IOPS networks, TACs broadcast by cells of eNBs connected to different local EPCs must be distinguished to assure the required UE mobility behavior. Therefore, the TAC broadcast by the eNB's cell operating in IOPS mode should be dependent on the local EPC with which the S1-MME connection is established with the eNB. Support of S1-flex by IOPS depends on local operator policy and configuration.
몇가지 구별되는 UE 이동성 시나리오는 다음과 같은 가정에 의해 식별될 수 있다. 복수의 eNBs가 단일 로컬 EPC에 의해 서빙되도록 구성될 수 있다. 단일, 전용 PLMN-Id는 IOPS 모드에서 동작하는 모든 eNB에 의해 애드버타이즈될 수 있다. IOPS-eNB에 의해 서빙되는 모든 셀은 동일한 TAI를 공유해야 하며, 상이한 로컬 EPC에 의해 서빙되는 셀에 의해 브로드캐스트되는 TAI는 상이해야 한다.Some distinct UE mobility scenarios can be identified by the following assumptions. Multiple eNBs may be configured to be served by a single local EPC. A single, dedicated PLMN-Id may be advertised by all eNBs operating in IOPS mode. All cells served by the IOPS-eNB must share the same TAI, and the TAIs broadcast by cells served by different local EPCs must be different.
이동성 시나리오는 다음과 같다. The mobility scenario is as follows.
첫째, 노멀 매크로 EPC에 의해 제어되는 셀로부터 IOPS 모드에서 동작하는 셀로의 UE 이동First, UE movement from a cell controlled by normal macro EPC to a cell operating in IOPS mode
둘째, IOPS 모드에서 동작하는 셀로부터 노멀 매크로 EPC에 의해 제어되는 셀로의 UE 이동Second, the UE moves from a cell operating in IOPS mode to a cell controlled by normal macro EPC
셋째, 단일 로컬 EPC에 의해 서빙되는 eNB를 가지며, IOPS 모드에서 동작하는 셀로부터, 서로 다른 로컬 EPC에 의해 서빙되는 eNB를 가지며 IOPS 모드에서 동작하는 셀로의 이동.Third, moving from a cell having an eNB served by a single local EPC and operating in an IOPS mode to a cell operating in an IOPS mode with an eNB served by a different local EPC.
넷째, 동일한 로컬 EPC에 의해 서빙되는 eNB를 가지며, IOPS 모드에서 동작하는 셀 사이에서의 UE 이동Fourth, UE movement between cells having eNBs served by the same local EPC and operating in IOPS mode
이러한 각 시나리오에 의해 기대되는 UE 이동성 행동은 다음 표 2에 나타나 있다.The UE mobility behavior expected by each of these scenarios is shown in Table 2 below.
ECM stateECM state
MOBILITYTRANSITIONMOBILITYTRANSITION IDLE MODEIDLE MODE CONNECTED MODECONNECTED MODE
Normal mode cell to IOPS mode cellNormal mode cell to IOPS mode cell Cell re-selection followed by TAU Reject:- UE performs cell re-selection based upon radio measurements.- TAI of new cell not in UE?s TAI list so UE requests TAU.- TAU rejected because of lack of recognised identity / credentials in new network.- UE enters De-registered state and initiates Attach procedure towards Local/Normal EPC.Cell re-selection followed by TAU Reject:-UE performs cell re-selection based upon radio measurements.- TAI of new cell not in UE? S TAI list so UE requests TAU.- TAU rejected because of lack of recognised identity / credentials in new network.- UE enters De-registered state and initiates Attach procedure towards Local / Normal EPC. Radio link failure followed by cell re-selection:- UE performs radio measurements but source and target cells are on different networks so HO not possible.- Radio link failure occurs and UE returns to Idle mode.- UE performs cell selection based upon radio measurements.- UE proceeds as per behaviour for Idle Mode.Radio link failure followed by cell re-selection:-UE performs radio measurements but source and target cells are on different networks so HO not possible.- Radio link failure occurs and UE returns to Idle mode.- UE performs cell selection based upon radio measurements -UE proceeds as per behavior for Idle Mode.
IOPS mode cell to Normal mode cellIOPS mode cell to Normal mode cell
Inter-IOPS network cell transitionInter-IOPS network cell transition
Intra-IOPS network cell transitionIntra-IOPS network cell transition Idle Mode mobility as per normal:- UE performs cell re-selection based upon radio measurements.- TAI of new cell is the same as in the old cell or is in TAI list.- UE camps on new cellIdle Mode mobility as per normal:-UE performs cell re-selection based upon radio measurements.- TAI of new cell is the same as in the old cell or is in TAI list.- UE camps on new cell Connected Mode mobility as per normal:- E-UTRAN initiated HO based upon radio measurements.- TAI of new cell is the same as in the old cell or is in TAI list.- Handover of active bearersConnected Mode mobility as per normal:-E-UTRAN initiated HO based upon radio measurements.- TAI of new cell is the same as in the old cell or is in TAI list.- Handover of active bearers
도 11에는 로컬 EPC에 기반한 IOPS 동작이 예시되어 있다.11 illustrates an IOPS operation based on local EPC.
단계 S1101에서, eNB에 의해 백홀이 유실(lost)된 것이 검출된다. In step S1101, it is detected that the backhaul is lost by the eNB.
단계 S1102에서, IOPS 모드를 지원하는 eNB는, a) cell barring 등의 방법을 사용하여 UE가 셀을 선택하는 것을 방지하며 b) 로컬 EPC를 활성화시키고, c) 로컬 EPC와의 S1 링크를 수립함으로써, IOPS 모드로 천이한다. In step S1102, the eNB supporting the IOPS mode, by a) preventing the UE from selecting a cell using a method such as cell barring, b) activate the local EPC, c) establish an S1 link with the local EPC, Transition to IOPS mode.
단계 S1103에서, eNB 는 IOPS 모드 동작을 위한 PLMN ID를 애드버타이즈한다. 어나운스되는 TAI는 nomadic 시스템과 IOPS를 위해 할당된 TAI 풀로부터 온(선택된) 것이다. 이는 동일한 로컬 EPC에 연결된 것으로 기대되지 않는 eNB에 의해서만 재사용될 수 있다.In step S1103, the eNB advertises a PLMN ID for IOPS mode operation. The announced TAI is from (selected) the TAI pool allocated for nomadic systems and IOPS. It can only be reused by an eNB that is not expected to be connected to the same local EPC.
단계 S1104에서, IOPS PLMN ID를 검출한 UE는 Macro EPC를 서빙하는 다른 적절한 셀을 재선택하기 위해 시도한다. 사용자 선호도에 따라, 예를 들어, 노멀 모드에서 동작하는 셀이 선택 가능하더라도, 그룹 커뮤니케이션의 유지를 위해 사용자는 수동 PLMN 선택 모드로 전환하고, IOPS PLMN를 선택할 수 있다.In step S1104, the UE that detects the IOPS PLMN ID attempts to reselect another suitable cell serving the Macro EPC. According to the user preferences, for example, even if a cell operating in the normal mode is selectable, the user may switch to the manual PLMN selection mode and select the IOPS PLMN to maintain group communication.
단계 S1105에서, UE가 Macro EPC를 서빙하는 적절한 셀을 찾지 못하거나, 또는 IOPS PLMN을 수동으로 선택하면, UE는 로컬 EPC에 어태치하고 로컬 IP 주소를 획득한다. In step S1105, if the UE does not find a suitable cell serving the Macro EPC or manually selects the IOPS PLMN, the UE attaches to the local EPC and obtains a local IP address.
단계 S1106에서, IOPS 네트워크에 의해 퍼블릭 세이프티 서비스가 지원되면 이 때 개시된다.In step S1106, if the public safety service is supported by the IOPS network, it is started at this time.
단계 S1107에서, 어느 시기이건, eNB는 매크로 EPC로의 백홀이 복구된 것을 검출할 수 있다. At step S1107, at any time, the eNB may detect that the backhaul to the macro EPC has been restored.
단계 S1108에서, UE를 유휴 모드로 되게 하기 위해 IOPS 네트워크 정책에 따라 로컬 EPC로의 S1연결이 릴리즈되고 eNB는 IOPS 모드 동작을 중지한다. 매크로 EPC의 PLMN ID는 어나운스되고, 매크로 EPC의 노멀 TAI는 UE가 노멀 PLMN을 재선택하도록 애드버타이즈되며, TAU 절차가 트리거된다. TAU는 적절한 credentials/identity이 없음으로 인해 거절되고, 매크로 EPC로의 새 어태치가 수행된다.In step S1108, the S1 connection to the local EPC is released according to the IOPS network policy to put the UE into idle mode and the eNB stops IOPS mode operation. The PLMN ID of the macro EPC is announced, the normal TAI of the macro EPC is advertised to allow the UE to reselect the normal PLMN, and the TAU procedure is triggered. The TAU is rejected due to lack of proper credentials / identity, and a new attach to the macro EPC is performed.
단계 S1109에서, 만약, 인증에 성공하면, UE는 매크로 EPC에 어태치한다.In step S1109, if authentication is successful, the UE attaches to the macro EPC.
도 12a는 remote UE인 UE-2, UE-3이 UE-to-Network Relay인 UE-1을 통해 네트워크 연결을 제공받고 있으며, 또한, remote UE인 UE-5, UE-6이 UE-to-Network Relay인 UE-4를 통해 네트워크 연결을 제공받고 있는 시나리오를 보여준다. 여기서 UE-1과 UE-4는 각각 eNodeB#1과 eNodeB#2의 커버리지에 있다. 도 12b는 도 12a의 상황에서 eNodeB#1이 backhaul로의 연결에 장애가 발생하여 backhaul (즉, Macro EPC)로의 연결이 끊어지고 대신 Local EPC로 연결된 상황을 보여준다. 즉, eNodeB#1은 IOPS 모드로 동작하게 된다.FIG. 12A illustrates a network connection through UE-2, which is a remote UE, and UE-1, which is a UE-to-Network Relay. Also, UE-5 and UE-6, which are remote UEs, are UE-to- FIG. The following shows a scenario where a network connection is provided through UE-4, a network relay. Here UE-1 and UE-4 are in coverage of eNodeB # 1 and eNodeB # 2, respectively. FIG. 12B illustrates a situation in which the eNodeB # 1 has a failure in connection to the backhaul in the situation of FIG. 12A and is disconnected to the backhaul (ie, Macro EPC) and instead connected to the Local EPC. That is, eNodeB # 1 operates in IOPS mode.
종래 기술에서는 이러한 경우, UE-to-Network Relay 서비스를 어떻게 처리해야 하는지에 대한 언급이 없다.In the prior art, there is no mention of how to handle the UE-to-Network Relay service in this case.
특히, UE-to-Network Relay인 UE#1은 자신이 서비스 받던 eNodeB#1이 IOPS 모드로 전환함에 따라 Local EPC에 attach하여 IP 주소를 새로 획득하게 된다 (도 11의 단계 S1105 참고). 이후에 자신이 UE-to-Network Relay 서비스를 제공하던 UE#2, UE#3에게 지속적으로 UE-to-Network Relay 서비스를 제공하기 위해 remote UE의 IP 주소를 처리하는 방안이 요구된다. 이에 본 발명에서는 isolated E-UTRAN operation을 효율적으로 지원하기 위한 ProSe UE-to-Network Relay 메커니즘을 제안한다.In particular, UE # 1, which is a UE-to-Network Relay, acquires an IP address by attaching to Local EPC as eNodeB # 1, which has been serviced, changes to IOPS mode (see step S1105 of FIG. 11). Afterwards, there is a need for a method of processing an IP address of a remote UE in order to continuously provide UE-to-Network Relay service to UE # 2 and UE # 3, which have provided UE-to-Network Relay service. Accordingly, the present invention proposes a ProSe UE-to-Network Relay mechanism for efficiently supporting the isolated E-UTRAN operation.
실시예Example 1 One
본 발명의 일 실시예에 의한 릴레이 단말(릴레이 또는 UE-to-Network 릴레이)은 네트워크가 IOPS 모드로 전환했음을 식별한 후, 로컬 EPC(Evolved Packet Core)에 어태치할 수 있다. 그리고 릴레이 단말은 로컬 EPC로부터 IP(Internet Protocol) 주소를 수신할 수 있다. After the relay terminal (relay or UE-to-network relay) according to an embodiment of the present invention identifies that the network has switched to the IOPS mode, it may attach to a local Evolved Packet Core (EPC). In addition, the relay terminal may receive an IP (Internet Protocol) address from the local EPC.
여기서, 릴레이 단말은 어태치를 수행하기 전 서빙하던 리모트 단말(리모트 UE)의 IP 주소에 관련된 정보를 로컬 EPC로 전송할 수 있는데, 리모트 단말의 IP 주소에 관련된 정보는 로컬 EPC에서 할당한 릴레이 단말의 IP 주소와 리모트 단말의 IP 주소 사이의 매핑 정보 또는 IOPS 모드로 전환되기 전에 사용하던 IP 주소일 수 있다. 이 동작은 UE-to-Network 릴레이가 로컬 EPC에 어태치하여 새로운 IP 주소를 획득한 후 (또는 PDN connection을 생성한 후)에 수행할 수도 있고, 로컬 EPC에 어태치하여 PDN connection을 생성하면서 수행할 수도 있다.Here, the relay terminal may transmit the information related to the IP address of the remote terminal (remote UE) that was serving before performing the attach to the local EPC, and the information related to the IP address of the remote terminal may be the IP of the relay terminal allocated by the local EPC. The mapping information between the address and the IP address of the remote terminal or the IP address used before the switch to the IOPS mode. This can be done after the UE-to-Network relay attaches to the local EPC to obtain a new IP address (or after creating a PDN connection) or while creating a PDN connection by attaching to the local EPC. You may.
이를 통해 로컬 EPC의 PGW가 리모트 UE로 전송된 트래픽을 상기 UE-to-Network 릴레이에게 라우팅하도록 할 수 있다. 즉, 리모트 단말의 IP 주소에 관련된 정보는 로컬 EPC의 PGW가 리모트 단말로의 트래픽을 릴레이 단말로 전송하도록 강제하는 것일 수 있다. 이후, 리모트 UE로 향하는 트래픽을 UE-to-Network 릴레이가 수신하면 이를 리모트 UE에게 전송할 수 있다. 그리고, 리모트 UE가 송신하는 트래픽의 경우 UE-to-Network 릴레이가 받아서 이를 네트워크/P-GW로 전송할 수 있다.This allows the PGW of the local EPC to route traffic transmitted to the remote UE to the UE-to-Network relay. That is, the information related to the IP address of the remote terminal may be to force the PGW of the local EPC to transmit traffic to the remote terminal to the relay terminal. Thereafter, when the UE-to-Network relay receives the traffic destined for the remote UE, it may transmit it to the remote UE. In addition, in case of traffic transmitted by the remote UE, the UE-to-Network relay may receive it and transmit it to the network / P-GW.
릴레이 단말은, 리모트 단말의 로컬 EPC에 연결된 IMS(IP Multimedia Subsystem)/SIP(Session Initiation Protocol) 코어에의 등록을 수행할 수 있다. 이와 관련하여, 릴레이 단말은 자신이 서빙하던 리모트 단말들의 IMS/SIP 코어에 등록을 대신/대리해 줄 수 있다. The relay terminal may perform registration with an IP Multimedia Subsystem (IMS) / Session Initiation Protocol (SIP) core connected to the local EPC of the remote terminal. In this regard, the relay terminal may replace / substitute for registration in the IMS / SIP core of the remote terminals it serves.
구체적으로, 릴레이 단말이 IMS/SIP 코어에 등록을 위해 전송하는 메시지에는, 릴레이 단말의 등록 정보 및 리모트 단말의 등록 정보가 모두 포함될 수 있다. 즉, 릴레이 단말 자신이 IMS/SIP 코어로 등록을 수행 시 릴레이 단말이 서빙하는 모든 리모트 UE에 대한 등록을 함께 수행하는 것이다. 이 경우, 릴레이 단말의 등록 정보는 릴레이 단말의 IP 주소를 포함하고, 리모트 단말의 등록 정보는 리모트 단말의 IP 주소를 포함할 수 있다. 이 경우, 릴레이 단말의 IP 주소는 로컬 EPC로부터 수신한 것이고, 리모트 단말의 IP 주소는 로컬 EPC와 무관한 것이다. 또는, 릴레이 단말이 IMS/SIP 코어로 등록을 수행한 후, 또는 수행 전, 자신이 서빙하는 모든 리모트 UE에 대한 등록을 수행할 수 있다. 이는 하나의 등록 메시지에 상기 모든 리모트 UE의 등록 정보 (이는 리모트 UE의 IP 주소를 포함)를 포함하는 것일 수 있다. 또는, 릴레이 단말이 IMS/SIP 코어로 등록을 수행 후, 또는 수행 전 자신이 서빙하는 모든 리모트 UE에 대한 등록을 각각 수행할 수 있다. 이는 하나의 등록 메시지에 하나의 리모트 UE의 등록 정보 (이는 리모트 UE의 IP 주소를 포함)를 포함하는 것일 수 있다. 상기 등록 메시지는 SIP REGISTER 메시지일 수 있으며, UE-to-Network 릴레이가 리모트 UE에게 릴레이를 지원한다는 정보를 명시적으로 또는 암시적으로 포함할 수 있다. Specifically, the message transmitted by the relay terminal for registration in the IMS / SIP core may include both registration information of the relay terminal and registration information of the remote terminal. That is, when the relay terminal itself registers with the IMS / SIP core, the relay terminal performs registration with all the remote UEs served by the relay terminal. In this case, the registration information of the relay terminal may include the IP address of the relay terminal, and the registration information of the remote terminal may include the IP address of the remote terminal. In this case, the IP address of the relay terminal is received from the local EPC, and the IP address of the remote terminal is independent of the local EPC. Alternatively, after the relay terminal performs registration with the IMS / SIP core or before the relay terminal, the relay terminal may perform registration for all the remote UEs that it serves. This may include the registration information of all the remote UEs (including the IP addresses of the remote UEs) in one registration message. Alternatively, after the relay terminal performs registration with the IMS / SIP core, or before the relay terminal, the relay terminal may perform registration with respect to all the remote UEs that it serves. This may include the registration information of one remote UE (which includes the IP address of the remote UE) in one registration message. The registration message may be a SIP REGISTER message, and may explicitly or implicitly include information that the UE-to-Network relay supports the relay to the remote UE.
상술한 바와 같은 구성을 통해, UE-to-Network 릴레이가 로컬 EPC에 어태치하여 IP 주소를 획득한 이후, 자신이 서비스하고 있던 리모트 UE로 새로운 IP 주소를 할당해 주어야 하는 작업 (도 10에 예시된 ProSe UE-Network 릴레이 절차에서 단계 S1004 내지는 단계 S1005)이 생략될 수 있다. 이로 인해 상기 IOPS 모드로 전환되는 eNB로부터 서비스를 받고 있던 UE-to-Network 릴레이가 릴레이 서비스를 제공하던 리모트 UE로 한꺼번에 IP 주소를 재할당해 주는데 따른 시그널링과 PC5 resource를 아낄 수 있다. 이는 상기 eNB로부터 서비스 받는 UE-to-Network 릴레이가 다수인 경우 더욱 효과적일 수 있다.Through the above-described configuration, after the UE-to-Network relay attaches to the local EPC to obtain an IP address, an operation of allocating a new IP address to the remote UE that has been serving (example of FIG. 10) Step S1004 to S1005) may be omitted in the ProSe UE-Network relay procedure. As a result, the UE-to-Network relay, which is receiving the service from the eNB switched to the IOPS mode, can save signaling and PC5 resources due to reallocating the IP address all the time to the remote UE providing the relay service. This may be more effective when there are a large number of UE-to-Network relays serviced from the eNB.
상술한 설명에서, 로컬 EPC는 하나의 PGW만을 포함하거나 또는 하나의 PGW만을 운영하는 것으로 전제될 수 있다. 다수의 Public Safety Server (또는 Public Safety Application Server 또는 MCPTT Server/AS, Group Communication Service Server/AS 등)가 로컬 EPC에 존재하더라도 모두 동일한 P-GW에 연결되는 바, 모든 트래픽을 상기 P-GW를 통해 라우팅할 수 있다. 또한, 로컬 EPC가 IMS 또는 SIP 코어를 가지고 있는 경우 (즉, IMS/SIP 코어와의 연결을 가지고 있는 경우), P-CSCF 또는 그에 상응하는 SIP Server가 상기 P-GW에 연결되는 바, 모든 IMS/SIP 메시지가 상기 P-GW을 통해 라우팅될 수 있다.In the above description, the local EPC may be assumed to include only one PGW or to operate only one PGW. Even if multiple Public Safety Servers (or Public Safety Application Servers or MCPTT Servers / ASs, Group Communication Service Servers / ASs, etc.) exist in the local EPC, they are all connected to the same P-GW, so all traffic is routed through the P-GWs. Can be routed. In addition, if the local EPC has an IMS or SIP core (i.e., has a connection with the IMS / SIP core), a P-CSCF or a corresponding SIP server is connected to the P-GW. / SIP messages can be routed through the P-GW.
상술한 설명 중, 단말이 네트워크(여기서 네트워크는 RAN(Radio Access Network), CN(Core Network) 및/또는 Public Safety application domain일 수 있다)가 IOPS 모드로 전환하였음의 식별/인지를 위해 다음 중 하나 이상의 방법이 사용될 수 있다. (이러한 인지는 IP 주소가 변경/갱신됨을 인지하는 것으로 해석될 수도 있다. 이러한 인지는 리모트 UE와의 One-to-One direct communication 연결을 변경/갱신해야 함을 인지하는 것으로 해석될 수도 있다. 이러한 인지는 리모트 UE에게 IP 주소를 변경해/갱신해 주어야 함을 인지하는 것으로 해석될 수도 있다. 또는, 이러한 인지는 네트워크로의 정상적인 연결이 불가능함을 인지하는 것으로 해석될 수도 있다. 이러한 인지는 자신이 UE-to-Network Relay 서비스를 더 이상 제공할 수 없음을 인지하는 것으로 해석될 수도 있다.) 릴레이 단말은 SIB(SystemInformationBlock)에 포함된 정보를 통해 네트워크가 IOPS 모드로 전환했음을 식별할 수 있다. 즉, eNB가 전송하는 IOPS 모드로 전환했음을 알리는 정보를 통해 IOPS 모드로의 전환을 식별할 수 있다. 여기서, 기존의 SIB을 확장할 수도 있고 새로운 SIB일 수도 있다. 그러나 여기에 국한되지 않고 eNodeB가 UE-to-Network 릴레이에게 dedicated channel로 상기 정보를 전송하는 등 다양한 방법이 사용될 수 있다. 예로써, ?start_IOPS_mode뮸? 같은 IE/flag를 TRUE/YES/1 등으로 설정할 수 있다. 즉, SIB에 포함된 정보는 IOPS 모드의 시작을 알리는 플래그일 수 있다. 또 다른 방법으로, eNodeB가 보내는 PLMN ID가 IOPS 용 PLMN ID이고, 이를 통해 IOPS 모드로의 전환을 식별할 수 있다. 이는 상술한 TR 23.797 6.1절에서 제안된, eNodeB가 IOPS 모드에 dedicate 된 PLMN ID를 브로드캐스트하는 것을 의미한다. 또는, eNodeB가 보내는 cell이 IOPS 네트워크 사용이 허용된 UE에게만 선택/재선택될 수 있음을 알리는 정보를 통해, 네트워크의 IOPS 모드로의 전환을 식별할 수 있다. eNodeB가 cell에 대해 ?Not Barred? & ?reserved for operator use뮯? 브로드캐스트하는 것이 그 예일 수 있다. 상기 2개의 IE는 모두 SIB1에 포함되며, cellBarred = ?not barred뮮? cellReservedForOperatorUse = ?reserved뮮? 설정된다. 또 다른 예로써, eNodeB가 보내는 정상 모드가 멈추었음을 알리는 정보를 통해 네트워크가 IOPS 모드로 전환했음을 인지할 수 있다. 이러한 정보는 예를 들면 eNodeB가 전송하는 SIB(SystemInformationBlock)일 수 있다. 이는 기존의 SIB을 확장할 수도 있고 새로운 SIB일 수도 있다. 그러나 여기에 국한되지 않고 eNodeB가 UE-to-Network Relay에게 dedicated channel로 상기 정보를 전송하는 등 다양한 방법이 사용될 수 있다. 상기 정보의 예로 TRUE/YES/1 등으로 설정된 ?stopped_normal_mode뮸? 같은 IE/flag가 있을 수 있다. eNodeB가 보내는 cell을 select하거나 reselect 하는 것을 방지하는 정보를 통해 네트워크가 IOPS 모드로 전환했음을 인지할 수 있다. 이러한 정보는 기존의 SIB1을 통해 전송하던 cell의 barring 정보 (cellBarred (IE type: ?barred? or ?not barred?)) 일 수 있다. 또는 예를 들면, eNodeB가 기존의 SIB을 확장하여 보낼 수도 있고 새로운 SIB을 통해 보낼 수도 있다. 그러나 여기에 국한되지 않고 eNodeB가 UE-to-Network Relay에게 dedicated channel로 상기 정보를 전송하는 등 다양한 방법이 사용될 수 있다. 또는, UE-to-Network Relay의 cell (camping-on cell 또는 serving cell)이 더 이상 잡히지 않는 경우 또는 eNodeB로부터 아무런 정보를 받을 수 없는 경우 네트워크가 IOPS 모드로 전환했음을 인지할 수 있다. 예로써, UE-to-Network Relay가 전혀 이동하지 않았는데도 불구하고 정상적으로 동작하던 eNodeB/cell(s)이 동작을 멈춘 경우를 들 수 있다.In the above description, the terminal is one of the following to identify / whether the network (where the network may be a radio access network (RAN), a core network (CN) and / or a public safety application domain) has switched to the IOPS mode The above method can be used. (This acknowledgment may be interpreted as acknowledging that the IP address is changed / updated. This acknowledgment may be interpreted as acknowledging that one-to-one direct communication connection with the remote UE should be changed / updated. May be interpreted as knowing that the remote UE needs to change / update the IP address, or such acknowledgment may be interpreted as recognizing that a normal connection to the network is not possible. It may be interpreted as recognizing that it is no longer able to provide a -to-Network Relay service.) The relay terminal may identify that the network has switched to the IOPS mode through information included in the SystemInformationBlock (SIB). That is, the switch to the IOPS mode can be identified through the information indicating that the switch to the IOPS mode transmitted by the eNB. Here, the existing SIB may be extended or may be a new SIB. However, the present invention is not limited thereto, and various methods may be used, such as the eNodeB transmitting the information in a dedicated channel to the UE-to-Network relay. For example,? Start_IOPS_mode 뮸? The same IE / flag can be set to TRUE / YES / 1. That is, the information included in the SIB may be a flag indicating the start of the IOPS mode. Alternatively, the PLMN ID sent by the eNodeB is the PLMN ID for IOPS, which identifies the transition to IOPS mode. This means that the eNodeB broadcasts the PLMN ID dedicated to the IOPS mode, proposed in Section 6.1 of the above-mentioned TR 23.797. Alternatively, the cell sent by the eNodeB may identify the switching to the IOPS mode of the network through the information indicating that the cell which is allowed to use the IOPS network may be selected / reselected. The eNodeB is not Barred for the cell. &? reserved for operator use 뮯? Broadcast may be an example. Both IEs are included in SIB1 and cellBarred =? Not barred \? cellReservedForOperatorUse =? reserved 뮮? Is set. As another example, the information indicating that the normal mode sent by the eNodeB is stopped may indicate that the network has switched to the IOPS mode. Such information may be, for example, a System Information Block (SIB) transmitted by the eNodeB. This may be an extension of an existing SIB or may be a new SIB. However, the present invention is not limited thereto, and various methods may be used, such as the eNodeB transmitting the information in a dedicated channel to the UE-to-Network Relay. As an example of the information,? Stopped_normal_mode 뮸? Set to TRUE / YES / 1, etc. There may be the same IE / flag. Information that prevents the eNodeB from selecting or reselecting the sending cell indicates that the network has switched to IOPS mode. Such information may be barring information (cellBarred (IE type:? Barred? Or? Not barred?)) Of a cell transmitted through the existing SIB1. Or, for example, the eNodeB may extend the existing SIB and send it through a new SIB. However, the present invention is not limited thereto, and various methods may be used, such as the eNodeB transmitting the information in a dedicated channel to the UE-to-Network Relay. Alternatively, when the UE-to-Network Relay cell (camping-on cell or serving cell) is no longer caught or if no information is received from the eNodeB, it may be recognized that the network has switched to the IOPS mode. For example, the eNodeB / cell (s) that normally operated even though the UE-to-Network Relay did not move at all stop.
추가적으로 UE-to-Network 릴레이는 리모트 UE에게 지속적으로 UE-to-Network 릴레이 서비스를 제공해 줄 것을 알리는 정보 및/또는 IP 주소 변경 없이 UE-to-Network 릴레이 서비스를 제공해 줄 것을 알리는 정보를 포함하는 메시지를 전송할 수도 있다.In addition, the UE-to-Network relay message includes information indicating that the remote UE will continuously provide the UE-to-Network relay service and / or information indicating that the UE-to-Network relay service will be provided without changing the IP address. Can also be transmitted.
도 13에는 상술한 설명의 일 예가 도시되어 있다. 도 13을 참조하면, 단계 S1301에서, UE-1과 UE-2는 릴레이 디스커버리 동작 및 ProSe one-to-one communication 설정 동작을 수행한다 (도 10에 도시된 ProSe UE-Network 릴레이 절차 참고). 이에 UE-1은 리모트 UE이고 UE-2는 UE-to-Network 릴레이가 된다. 단계 S1302 내지 단계 S1303에서 UE-1은 UE-2로부터 IP 주소를 할당 받은 바, 새롭게 획득한 IP 주소를 IMS 망으로 등록한다. 단계 S1304 내지 단계 S1305에서 IMS 망은 MCPTT AS (Application Server)에게 3rd party 등록을 수행한다. 본 실시예에서는 3rd party AS로 MCPTT AS를 도시하였으나 MCPTT 서비스가 아닌 다양한 종류의 서비스를 제공하는 AS (예, MMTel AS)일 수도 있다. 단계 S1306에서, IOPS 모드 오퍼레이션으로 전환되어 IOPS 모드 오퍼레이션이 개시된다. 자세한 동작은 도 11의 단계 S1101~S1104에 해당할 수 있다. 단계 S1307에서, UE-2 (UE-to-Network 릴레이)는 로컬 EPC에 어태치한다. 이에 로컬 EPC로부터 새로운 IP 주소를 획득한다. 단계 S1308 내지 단계 S1309에서, UE-2는 리모트 UE인 UE-1의 IP 주소 (IOPS 모드로 전환되기 전에 UE-1이 사용하던 IP 주소)를 P-GW (이는 로컬 EPC에 속한 P-GW임)로 전송한다. 상기 정보를 담은 메시지는 NAS 메시지 (기존의 메시지 내지는 새롭게 정의한 메시지)를 이용하여 MME로 전송되고, MME가 이 정보를 S-GW를 통해 P-GW로 전송한다. 단계 S1310에서, UE-2가 UE-1을 대신하여 로컬 IMS 망에 등록을 수행한다. 13 illustrates an example of the above description. Referring to FIG. 13, in step S1301, UE-1 and UE-2 perform a relay discovery operation and a ProSe one-to-one communication setting operation (see the ProSe UE-Network relay procedure shown in FIG. 10). UE-1 is a remote UE and UE-2 is a UE-to-Network relay. In step S1302 to step S1303, the UE-1 is assigned an IP address from UE-2, and registers the newly obtained IP address into the IMS network. In steps S1304 to S1305, the IMS network performs 3rd party registration with the MCPTT AS (Application Server). In the present embodiment, the MCPTT AS is illustrated as a third party AS, but may be an AS (eg, MMTel AS) that provides various types of services instead of the MCPTT service. In step S1306, the operation is switched to the IOPS mode operation and the IOPS mode operation is started. The detailed operation may correspond to steps S1101 to S1104 of FIG. 11. In step S1307, UE-2 (UE-to-Network Relay) attaches to the local EPC. This obtains a new IP address from the local EPC. In steps S1308 to S1309, UE-2 assigns the IP address (the IP address used by UE-1 before switching to IOPS mode) of UE-1, which is a remote UE, to P-GW (this is a P-GW belonging to the local EPC). To send). The message containing the information is transmitted to the MME using a NAS message (an existing message or a newly defined message), and the MME transmits this information to the P-GW through the S-GW. In step S1310, UE-2 registers with the local IMS network on behalf of UE-1.
실시예Example 2 2
실시예 1에서는 릴레이가 리모트 UE의 기존 IP 주소 사용을 지원해 주는 방법에 관한 것이었으나, 실시예 2에서는 릴레이가 리모트 UE의 주소를 변경해/갱신해 주는 방법에 관한 것이다.In Embodiment 1, the relay relates to a method of supporting the use of an existing IP address of a remote UE. In Embodiment 2, the relay relates to a method of changing / updating the address of a remote UE.
앞서 설명된 방법 등에 의해 네트워크가 IOPS 모드로 전환함을 인지한 UE-to-Network Relay는 자신이 네트워크 연결 서비스를 제공해 주던 리모트 UE에 대해 IP 주소를 변경해/갱신해 주는 동작을 수행한다. 상기 동작은 UE-to-Network Relay가 Local EPC에 attach하여 새로운 IP 주소를 획득한 후 (또는 PDN connection을 생성한 후)에 수행할 수도 있고, 상기 UE-to-Network Relay가 자신이 서비스 받고 있던 네트워크가 IOPS 네트워크로 전환했음을 인지 후에 바로 수행할 수도 있다. 상기의 UE-to-Network Relay가 리모트 UE에게 IP 주소를 변경해/갱신해 주는 동작은 리모트 UE와의 One-to-One direct communication 변경/갱신 동작으로 해석될 수도 있다. UE-to-Network Relay는 리모트 UE에게 갱신해 줄 (또는 할당해 줄) IP 주소가 가용해지면 리모트 UE에게 이를 전송할 수 있다. 구체적으로, UE-to-Network Relay는 리모트 UE에게 IP 주소를 전송한다. 예를 들어, IPv6 주소가 사용되는 경우 IPv6 prefix를 포함하는 Router Advertisement 메시지를 리모트 UE에게 전송한다. 또는 상기 정보를 포함하는 메시지를 direct discovery 관련 메시지 또는 direct communication 관련 메시지 또는 PC5 signalling 메시지 등으로 전송할 수도 있다. UE-to-Network Relay는 리모트 UE로 하여금 IP 주소 획득 절차를 개시하도록 하는 메시지를 전송한다. 이러한 메시지는 각 리모트 UE에게 개별적으로 전송될 수도 있고 브로드캐스트될 수도 있다. 상기 메시지는 direct discovery 관련 메시지 또는 direct communication 관련 메시지 또는 PC5 signalling 메시지 등으로 전송할 수 있다. 상기 메시지는 리모트 UE로 하여금 IP 주소 획득 절차를 개시하도록 명시적으로 나타낼 수도 있고 (정보로 또는 메시지 이름 자체로), 암시적인 정보 (예, IOPS 네트워크에 연결되었음을 나타내는 정보 등)로 나타냄으로써, IP 주소 획득 절차 개시를 유도할 수도 있다.Recognizing that the network switches to the IOPS mode by the method described above, the UE-to-Network Relay performs an operation of changing / updating an IP address for the remote UE that provided the network connection service. The operation may be performed after the UE-to-Network Relay attaches to the Local EPC to obtain a new IP address (or after creating a PDN connection), and the UE-to-Network Relay is being served by the UE-to-Network Relay. You can do this immediately after recognizing that the network has switched to an IOPS network. The operation of changing / updating the IP address to the remote UE by the UE-to-Network Relay may be interpreted as a one-to-one direct communication change / update operation with the remote UE. The UE-to-Network Relay can send to the remote UE when an IP address is available to update (or assign) to the remote UE. In detail, the UE-to-Network Relay transmits an IP address to the remote UE. For example, when an IPv6 address is used, a Router Advertisement message including an IPv6 prefix is transmitted to the remote UE. Alternatively, the message including the information may be transmitted as a direct discovery related message, a direct communication related message, or a PC5 signaling message. The UE-to-Network Relay sends a message to the remote UE to initiate the IP address acquisition procedure. This message may be sent to each remote UE individually or may be broadcast. The message may be transmitted as a direct discovery related message, a direct communication related message, or a PC5 signaling message. The message may explicitly indicate to the remote UE to initiate an IP address acquisition procedure (either by information or by the message name itself) or by implicit information (e.g., information indicating that it is connected to an IOPS network). Initiation of an address acquisition procedure may be encouraged.
상기 메시지를 수신한 리모트 UE는 IP 주소 획득 절차를 개시한다 (예를 들어, IPv6 주소가 사용되는 경우 Router Solicitation 메시지를 UE-to-Network Relay에게 전송, IPv4 주소가 사용되는 경우 DHCPv4 Discovery 메시지 또는 DHCPv4 Request 메시지를 UE-to-Network Relay에게 전송). UE-to-Network Relay는 리모트 UE로부터 IP 주소 획득 요청을 받은 후, 새로운 IP 주소를 리모트 UE에게 전송한다.The remote UE receiving the message initiates an IP address acquisition procedure (e.g., sends a Router Solicitation message to the UE-to-Network Relay if an IPv6 address is used, a DHCPv4 Discovery message or a DHCPv4 if an IPv4 address is used). Send request message to UE-to-Network Relay). The UE-to-Network Relay receives a request for obtaining an IP address from the remote UE, and then transmits a new IP address to the remote UE.
UE-to-Network Relay가 속한 isolated E-UTRAN이 Local EPC에 연결되어 Macro EPC로의 연결이 복원된 경우, UE-to-Network Relay는 이를 다음 중 하나 이상의 정보에 기반하여 연결 복원을 인지할 수 있다. i) eNodeB가 보내는 정상 모드로 전환했음을 알리는 정보(이러한 정보는 예를 들면 eNodeB가 전송하는 SIB(SystemInformationBlock)으로 알릴 수 있다. 이는 기존의 SIB을 확장할 수도 있고 새로운 SIB일 수도 있다. 그러나 여기에 국한되지 않고 eNodeB가 UE-to-Network Relay에게 dedicated channel로 상기 정보를 전송하는 등 다양한 방법이 사용될 수 있다. 상기 정보의 예로는 TRUE/YES/1 등으로 설정된 ?end_IOPS_mode뮸? 같은 IE/flag) ii) eNodeB가 보내는 PLMN ID가 정상 모드용 PLMN ID (이는 TR 23.797의 6.1절에 작업된 솔루션에서 제안한 IOPS mode에 dedicate 된 PLMN ID가 아닌 일반/정상 모드에서 브로드캐스트하는 PLMN ID일 수 있다) iii) eNodeB가 보내는 cell이 IOPS 네트워크 사용이 허용된 UE 이외의 UE에게도 선택/재선택될 수 있음을 알리는 정보(이러한 정보의 예로는 eNodeB가 cell에 대해 ?Not Barred? & ?Not reserved for operator use뮯? 브로드캐스트하는 것이다. 참고로, 상기 2개의 IE는 모두 SIB1에 포함되며, cellBarred = ?not barred뮮? cellReservedForOperatorUse = ?not reserved뮮? 설정된다) When the isolated E-UTRAN to which the UE-to-Network Relay belongs is connected to the Local EPC and the connection to the Macro EPC is restored, the UE-to-Network Relay may recognize the connection restoration based on one or more of the following information. . i) Information indicating that the eNodeB has switched to normal mode (this information may be informed, for example, by a SystemInformationBlock (SIB) transmitted by the eNodeB. This may be an extension of an existing SIB or a new SIB. Various methods may be used such that the eNodeB transmits the information to the UE-to-Network Relay in a dedicated channel, for example, IE / flag such as? End_IOPS_mode? Set to TRUE / YES / 1, etc.). ii) The PLMN ID sent by the eNodeB is the PLMN ID for normal mode (this may be a PLMN ID that broadcasts in normal / normal mode rather than the PLMN ID dedicated to IOPS mode proposed in the solution worked in Section 6.1 of TR 23.797). ) Information indicating that the cell sent by the eNodeB may be selected / reselected by a UE other than the UEs allowed to use the IOPS network (Example of such information is that the eNodeB sends? Not Barred? &? Not res for the cell. erved for operator use? ”For reference, both IEs are included in SIB1, and cellBarred =? not barred 뮮? cellReservedForOperatorUse =? not reserved 뮮?)
연결 복원을 인지한 UE-to-Network Relay는 리모트 UE에게 IP 주소를 변경해/갱신해 줄 수 있다. 즉, UE-to-Network Relay는 자신이 네트워크 연결 서비스를 제공해 주던 리모트 UE에 대해 IP 주소를 변경해/갱신해 주는 동작을 수행한다. 상기 동작은 UE-to-Network Relay가 Macro EPC에 attach하여 새로운 IP 주소를 획득한 후에 수행할 수도 있고, 상기 복원의 인지 후에 바로 수행할 수도 있다.The UE-to-Network Relay, aware of the restoration of the connection, can change / update the IP address to the remote UE. That is, the UE-to-Network Relay performs an operation of changing / updating an IP address for a remote UE that has provided a network connection service. The operation may be performed after the UE-to-Network Relay attaches to the Macro EPC to obtain a new IP address, or may be performed immediately after recognition of the restoration.
실시예Example 3 3
네트워크가 IOPS 모드로 전환 중이거나 전환한 것을 식별한 UE-to-Network Relay가 UE-to-Network Relay 서비스를 제공할 수 없음을 다른 UE에게 알릴 수 있다. 네트워크가 IOPS 모드로 전환 중임을 식별하는 방법으로 실시예 1에서 상술한 네트워크가 IOPS 모드로 전환한 것을 식별하는 방법과 함께 추가적으로 eNodeB가 보내는 IOPS 모드로 전환 중임을 알리는 정보를 통해 네트워크가 IOPS 모드로 전환 중임을 인지할 수 있다. 이러한 정보는 예를 들면 eNodeB가 전송하는 SIB(SystemInformationBlock)일 수 있다. 이는 기존의 SIB을 확장할 수도 있고 새로운 SIB일 수도 있다. 그러나 여기에 국한되지 않고 eNodeB가 UE-to-Network Relay에게 dedicated channel로 상기 정보를 전송하는 등 다양한 방법이 사용될 수 있다. 상기 정보의 예로 TRUE/YES/1 등으로 설정된 ?processing_IOPS_mode_transition뮥? 같은 IE/flag가 있을 수 있다. UE-to-Network Relay는 자신이 UE-to-Network Relay 서비스를 및/또는 제공할 수 없음을 다른 UE에게 다음 중 하나 이상의 정보로 알릴 수 있다. 이러한 알림은 UE-to-Network Relay가 속한 네트워크가 IOPS 네트워크로 전환 중 또는 전환되었음을 알리는 것으로 해석될 수도 있다. a) UE-to-Network Relay 서비스를 제공할 수 없음을 나타내는 정보, b) 네트워크로의 연결이 없음을/끊어졌음을 나타내는 정보, c) 정상적인 네트워크 (또는 Macro EPC)로의 연결이 없음을/끊어졌음을 나타내는 정보, d) 다른 UE-to-Network Relay를 선택하도록 지시하는/나타내는 정보, e) IOPS 네트워크 (또는 Local EPC)로의 연결이 진행 중임을/있음을 나타내는 정보, f) IOPS 용 PLMN에 연결되었음을 나타내는 정보, g) Normal mode에서 IOPS mode로 전환했음을 나타내는 정보, h) 네트워크를 통한 그룹 통신 대신 네트워크를 통하지 않는 직접 그룹 통신을 사용할 것을 지시하는/나타내는 정보 등이 이에 해당하는 정보일 수 있다.The UE-to-Network Relay identifying that the network is transitioning or switching to the IOPS mode may inform other UEs that the UE-to-Network Relay service cannot be provided. As a method of identifying that the network is in the IOPS mode, the network is switched to the IOPS mode through the information indicating that the network described in the first embodiment has switched to the IOPS mode and additionally indicating that the eNodeB is in the IOPS mode. You may notice that you are transitioning. Such information may be, for example, a System Information Block (SIB) transmitted by the eNodeB. This may be an extension of an existing SIB or may be a new SIB. However, the present invention is not limited thereto, and various methods may be used, such as the eNodeB transmitting the information in a dedicated channel to the UE-to-Network Relay. As an example of the information,? Processing_IOPS_mode_transition 뮥? Set to TRUE / YES / 1, etc. There may be the same IE / flag. The UE-to-Network Relay may inform other UE with one or more of the following information that it cannot provide and / or provide UE-to-Network Relay service. Such a notification may be interpreted as indicating that the network to which the UE-to-Network Relay belongs is being switched to or switched to an IOPS network. a) information indicating that the UE-to-Network Relay service cannot be provided, b) information indicating that there is no connection / disconnection to the network, and c) no connection / connection to the normal network (or Macro EPC). Information indicating that a connection has been made, d) information indicating / indicating to select another UE-to-Network Relay, e) information indicating that a connection to / from an IOPS network (or Local EPC) is in progress, and f) in the PLMN for IOPS. This information may include information indicating that a connection has been made, g) information indicating a transition from a normal mode to an IOPS mode, and h) information indicating / indicating to use a direct group communication through a network instead of a group communication through a network. .
또는, 네트워크가 IOPS 모드로 전환한 것을 식별한 UE-to-Network Relay는 선택/재선택할 수 있는 정상적인 네트워크 (또는 cell)이 없음을 인지하여 (이러한 인지 시점은 상기 IOPS 모드로 전환 시점과 동시이거나 또는 그 전 또는 후일 수도 있음) 그 결과 다른 UE에게 알릴 수도 있다.Or, the UE-to-Network Relay identifying that the network has switched to IOPS mode recognizes that there is no normal network (or cell) that can be selected / reselected. Or before or after) as a result.
상기와 달리 UE-to-Network Relay는 특정 조건인 경우에만 상기 a) 내지 h)의 정보 중 하나 이상을 다른 UE에게 알릴 수도 있다. 구체적인 예로써, UE-to-Network Relay 서비스를 제공하고 있던 UE들이 속한 그룹 (또는 UE들이 서비스 받고 있던 그룹)의 UE의 수가 어떠한 threshold 값 이하 (또는 미만)인 경우, 예를 들어, Group#1의 경우 5개 UE, Group#2의 경우 7개 UE에게 UE-to-Network Relay 서비스를 제공하고 있었는데, 어떠한 threshold 값 (이는 UE-to-Network Relay에 provisioning 될 수 있음)이 5인 경우 Group#1에 대해서는 상기 a) 내지 h)의 정보를 다른 UE에게 알리고 Group#2에 대해서는 알리지 않을 수 있다. 또는 상기 a) 내지 h)의 정보와 함께 더 이상 UE-to-Network Relay 서비스를 제공할 수 없는 그룹 정보를 추가로 제공하거나, 계속 UE-to-Network Relay 서비스를 제공할 수 있는 그룹 정보를 추가로 제공할 수도 있다. Unlike the above, the UE-to-Network Relay may inform other UEs of one or more of the information of a) to h) only under certain conditions. As a specific example, if the number of UEs in the group to which the UEs providing the UE-to-Network Relay service belongs (or the group in which the UEs are being served) is below (or below) any threshold value, for example, Group # 1. In case of 5 UE and Group # 2, UE-to-Network Relay service was provided to 7 UEs. If any threshold value (which can be provisioned to UE-to-Network Relay) is 5, Group # For 1, the information of a) to h) may be informed to other UEs, but not for Group # 2. Or together with the information of a) to h), further provides group information that can no longer provide a UE-to-Network Relay service, or adds group information that can continue to provide a UE-to-Network Relay service. You can also provide.
또는, IOPS 네트워크가 MBMS를 제공하는지 여부에 따라 a) 내지 h)의 정보 중 하나 이상을 다른 UE에게 알릴 수도 있다. 예를 들어, IOPS 네트워크가 MBMS를 제공하지 않는 경우 UE-to-Network Relay는 상기 a) 내지 h)의 정보를 다른 UE에게 알린다. 다른 UE에게 알릴 때 브로드캐스트할 수 있고, 자신이 서비스하고 있던 리모트 UE 각각에게 개별적으로 알릴 수도 있다. UE-to-Network Relay는 상기 정보를 알리기 위한 메시지를 advertise/announce 형태로 전송할 수도 있고, 다른 UE (이미 서비스 하고 있던 리모트 UE 및/또는 UE-to-Network Relay를 탐색 중인 UE)로부터 어떤 메시지를 받으면 이에 대한 응답을 하면서 상기 정보를 포함시켜 보낼 수도 있다. 예를 들어, 상기 정보는 상술한 TR 23.713의 6.1절 (Solution for Direct Discovery (public safety use))에 제안된 다양한 UE-to-Network Relay discovery 파라미터를 활용할 수도 있고, 새로운 파라미터를 정의하여 사용할 수도 있다. 기존의 UE-to-Network Relay discovery 파라미터를 활용하는 예로는 Status/maintenance flags 파라미터, Radio Layer Information 파라미터, PLMN ID 파라미터 등을 사용하는 것이다.Alternatively, one or more of the information of a) to h) may be informed to the other UE depending on whether the IOPS network provides the MBMS. For example, if the IOPS network does not provide MBMS, the UE-to-Network Relay informs another UE of the information of a) to h). You can broadcast when notifying other UEs, and you can also notify each of the remote UEs you have been serving. The UE-to-Network Relay may transmit a message for advertising the information in the form of advertise / announce, and may transmit a message from another UE (a remote UE that is already serving and / or a UE searching for a UE-to-Network Relay). If received, the response may be included and sent. For example, the information may utilize various UE-to-Network Relay discovery parameters proposed in Section 6.1 (Solution for Direct Discovery (public safety use)) of the above-mentioned TR 23.713, or may define and use new parameters. . An example of using an existing UE-to-Network Relay discovery parameter is to use a Status / maintenance flags parameter, a Radio Layer Information parameter, a PLMN ID parameter, and the like.
상술한 정보를 포함하는 메시지를 UE-to-Network Relay로부터 수신한 리모트 UE는 다음 중 하나 이상의 동작을 수행할 수 있다. i) 다른 UE-to-Network Relay를 탐색(특히, 상기 a) 내지 d)를 수신한 경우) ii) 기존의 UE-to-Network Relay를 유지(이는 상기 i)을 수행 후, 다른 가용한/선택가능한 UE-to-Network Relay가 없는 경우 ii)를 할 수도 있고, i)을 하지 않고 ii)를 할 수도 있다), iii) 기존의 UE-to-Network Relay와의 연결을 해제한다. 즉, UE-to-Network Relay로부터 네트워크 연결 서비스를 받지 않는 것을 결정, iv) 네트워크를 통한 그룹 통신 대신 네트워크를 통하지 않는 직접 그룹 통신을 사용할 것을 결정, v) ProSe direct discovery/communication 만을 사용하는 것을 결정할 수 있다.The remote UE receiving the message including the above information from the UE-to-Network Relay may perform one or more of the following operations. i) Searching for another UE-to-Network Relay (especially when receiving a) to d). ii) Maintaining an existing UE-to-Network Relay (this is i) followed by other available / If there is no selectable UE-to-Network Relay, ii) may be performed, or ii) may be performed without i) and iii) disconnecting from the existing UE-to-Network Relay. That is, it decides not to receive network connection service from UE-to-Network Relay, iv) decides to use direct group communication without network instead of group communication through network, v) decides to use only ProSe direct discovery / communication. Can be.
상술한 설명에서는 주로 backhaul로의 연결이 없는/끊어진 경우에 대해 설명하고 있으나 본 발명은 limited backhaul 시나리오에도 확장 적용될 수 있다.The above description mainly describes the case where there is no connection / disconnection to the backhaul, but the present invention can be extended to the limited backhaul scenario.
또한, 상기한 발명은 UE-to-Network 릴레이가 정상적인 네트워크에 연결되어 있다가 IOPS 네트워크로 연결됨에 따른 동작이나, 이는 UE-to-Network 릴레이가 정상적인 네트워크에 계속 연결되지만 IP 주소가 변경/갱신되는 경우에도 확장 적용될 수 있다.In addition, the above-described invention is an operation in which the UE-to-Network relay is connected to the normal network and then to the IOPS network, but this is because the UE-to-Network relay is connected to the normal network but the IP address is changed / updated. It can also be extended.
또한, 상기한 발명은 UE-to-Network 릴레이가 정상적인 네트워크에 연결되어 있다가 IOPS 네트워크로 연결됨에 따라 자신의 IP 주소는 변경되나 리모트 UE의 IP 주소는 기존 것을 유지하도록 하고 있으나, 이 때 자신의 IP 주소도 기존 것을 그대로 유지하여 사용하는 것으로 확장 적용될 수 있다. 이러한 경우, P-GW로 자신이 원래 사용하던 IP 주소를 알려서 P-GW가 적절히 라우팅할 수 있도록 할 수 있다.In addition, the above-described invention is that the IP address of the remote UE is changed as the UE-to-Network relay is connected to the normal network and connected to the IOPS network, but the IP address of the remote UE is maintained. IP addresses can also be extended to use existing ones. In this case, the P-GW can tell the IP address that it was using so that the P-GW can route properly.
본 발명은 LTE/EPC망에 국한되지 않고 3GPP 접속망 (예, UTRAN/GERAN/E-UTRAN) 및 non-3GPP 접속망 (예, WLAN 등)을 모두 포함하는 UMTS/EPS 이동통신 시스템 전반에 적용 될 수 있다. 또한 그 외 네트워크의 제어가 적용되는 환경에서 기타 모든 무선 이동통신 시스템 환경에서 적용 될 수 있다.The present invention is not limited to the LTE / EPC network, but can be applied to the entire UMTS / EPS mobile communication system including both 3GPP access networks (eg, UTRAN / GERAN / E-UTRAN) and non-3GPP access networks (eg, WLAN, etc.). have. In addition, it can be applied in all other wireless mobile communication system environments in the environment where control of the network is applied.
도 14는 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다.14 is a diagram showing the configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
도 14를 참조하여 본 발명에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. Referring to FIG. 14, the terminal device 100 according to the present invention may include a transceiver 110, a processor 120, and a memory 130. The transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device. The terminal device 100 may be connected to an external device by wire and / or wirelessly. The processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device. In addition, the processor 120 may be configured to perform a terminal operation proposed in the present invention. The memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
도 14를 참조하면 본 발명에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. Referring to FIG. 14, the network node device 200 according to the present invention may include a transceiver 210, a processor 220, and a memory 230. The transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device. The network node device 200 may be connected to an external device by wire and / or wirelessly. The processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device. In addition, the processor 220 may be configured to perform the network node operation proposed in the present invention. The memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다. In addition, the specific configuration of the terminal device 100 and the network device 200 as described above, may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. Embodiments of the present invention described above may be implemented through various means. For example, embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.For implementation in hardware, a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of an implementation by firmware or software, the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations. The software code may be stored in a memory unit and driven by a processor. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.The detailed description of the preferred embodiments of the invention disclosed as described above is provided to enable any person skilled in the art to make and practice the invention. Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art will variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. I can understand that you can. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.Various embodiments of the present invention as described above have been described with reference to the 3GPP system, but may be applied to various mobile communication systems in the same manner.

Claims (12)

  1. 무선통신시스템에서 릴레이가 IOPS(Isolated E-UTRAN Operation for Public Safety) 모드에서 신호를 송수신하는 방법에 있어서,In a wireless communication system, a relay transmits and receives a signal in an isolated E-UTRAN operation for public safety (IOPS) mode,
    네트워크가 IOPS 모드로 전환했음을 식별하는 단계;Identifying that the network has switched to IOPS mode;
    로컬 EPC(Evolved Packet Core)에 어태치하는 단계;Attaching to a local Evolved Packet Core (EPC);
    상기 로컬 EPC로부터 IP(Internet Protocol) 주소를 수신하는 단계; 및Receiving an IP address from the local EPC; And
    상기 어태치를 수행하기 전 서빙하던 리모트 단말의 IP 주소에 관련된 정보를 상기 로컬 EPC로 전송하는 단계;Transmitting information related to the IP address of the remote terminal serving before performing the attach to the local EPC;
    를 포함하며,Including;
    상기 리모트 단말의 IP 주소에 관련된 정보는 상기 로컬 EPC에서 할당한 상기 릴레이 단말의 IP 주소와 상기 리모트 단말의 IP 주소 사이의 매핑 정보인, IOPS 모드에서 신호 송수신 방법.And the information related to the IP address of the remote terminal is mapping information between the IP address of the relay terminal and the IP address of the remote terminal allocated by the local EPC.
  2. 제1항에 있어서,The method of claim 1,
    상기 리모트 단말의 IP 주소에 관련된 정보는 상기 로컬 EPC의 PGW(Packet Data Network-Gateway)가 상기 리모트 단말로의 트래픽을 상기 릴레이 단말로 전송하도록 강제하는 것인, IOPS 모드에서 신호 송수신 방법.The information related to the IP address of the remote terminal is a packet data network-gateway (PGW) of the local EPC to force to send traffic to the remote terminal, the signal transmission and reception method in the IOPS mode.
  3. 제1항에 있어서,The method of claim 1,
    상기 릴레이 단말은, 상기 리모트 단말의 상기 로컬 EPC에 연결된 IMS(IP Multimedia Subsystem)/SIP(Session Initiation Protocol) 코어에의 등록을 수행하는, IOPS 모드에서 신호 송수신 방법.The relay terminal is a signal transmission and reception method in the IOPS mode to perform registration to the IP Multimedia Subsystem (IMS) / Session Initiation Protocol (SIP) core connected to the local EPC of the remote terminal.
  4. 제3항에 있어서,The method of claim 3,
    상기 릴레이 단말이 상기 IMS/SIP 코어에 등록을 위해 전송하는 메시지에는, 상기 릴레이 단말의 등록 정보 및 상기 리모트 단말의 등록 정보가 모두 포함되는, IOPS 모드에서 신호 송수신 방법.The message transmitted by the relay terminal for registration with the IMS / SIP core includes both the registration information of the relay terminal and the registration information of the remote terminal.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 릴레이 단말의 등록 정보는 상기 릴레이 단말의 IP 주소를 포함하고, 상기 리모트 단말의 등록 정보는 상기 리모트 단말의 IP 주소를 포함하는, IOPS 모드에서 신호 송수신 방법.The registration information of the relay terminal includes the IP address of the relay terminal, the registration information of the remote terminal includes the IP address of the remote terminal, the signal transmission and reception method in the IOPS mode.
  6. 제5항에 있어서,The method of claim 5,
    상기 릴레이 단말의 IP 주소는 상기 로컬 EPC로부터 수신한 것이고, 상기 리모트 단말의 IP 주소는 상기 로컬 EPC와 무관한 것인, IOPS 모드에서 신호 송수신 방법.The IP address of the relay terminal is received from the local EPC, the IP address of the remote terminal is independent of the local EPC, signal transmission and reception method in the IOPS mode.
  7. 제1항에 있어서,The method of claim 1,
    상기 릴레이 단말은 상기 리모트 단말로의 새 IP 주소 할당을 생략하는, IOPS 모드에서 신호 송수신 방법.And the relay terminal omits allocation of a new IP address to the remote terminal.
  8. 제2항에 있어서,The method of claim 2,
    상기 로컬 EPC는 하나의 PGW만을 포함하며, 상기 PGW는 상기 하나의 PGW인, IOPS 모드에서 신호 송수신 방법.The local EPC includes only one PGW, and the PGW is the one PGW.
  9. 제1항에 있어서,The method of claim 1,
    상기 릴레이 단말은 SIB(SystemInformationBlock)에 포함된 정보를 통해 상기 네트워크가 IOPS 모드로 전환했음을 식별하는, IOPS 모드에서 신호 송수신 방법.The relay terminal is a signal transmission and reception method in the IOPS mode to identify that the network has switched to the IOPS mode through the information contained in the System Information Block (SIB).
  10. 제9항에 있어서,The method of claim 9,
    상기 SIB에 포함된 정보는 IOPS 모드의 시작을 알리는 플래그인, IOPS 모드에서 신호 송수신 방법.The information included in the SIB is a flag indicating the start of the IOPS mode, the method of transmitting and receiving signals in the IOPS mode.
  11. 제1항에 있어서,The method of claim 1,
    상기 로컬 EPC에 어태치하는 단계는, 상기 로컬 EPC의 MME로 어태치 요청을 전송하는 단계를 포함하는, IOPS 모드에서 신호 송수신 방법.Attaching to the local EPC includes transmitting an attach request to the MME of the local EPC.
  12. 무선 통신 시스템에서 IOPS(Isolated E-UTRAN Operation for Public Safety) 모드에서 신호를 송수신하는 릴레이 단말 장치에 있어서,In the relay terminal device for transmitting and receiving a signal in an isolated E-UTRAN Operation for Public Safety (IOPS) mode in a wireless communication system,
    송수신 장치; 및A transceiver; And
    프로세서를 포함하고, Includes a processor,
    상기 프로세서는, 네트워크가 IOPS 모드로 전환했음을 식별하고, 로컬 EPC(Evolved Packet Core)에 어태치하고, 상기 로컬 EPC로부터 IP(Internet Protocol) 주소를 수신하며, 상기 어태치를 수행하기 전 서빙하던 리모트 단말의 IP 주소에 관련된 정보를 상기 로컬 EPC로 전송하고,The processor identifies that the network has switched to IOPS mode, attaches to a local Evolved Packet Core (EPC), receives an IP (Internet Protocol) address from the local EPC, and serves the remote terminal before serving the attach. Send information related to the IP address of the local EPC,
    상기 리모트 단말의 IP 주소에 관련된 정보는 상기 로컬 EPC에서 할당한 상기 릴레이 단말의 IP 주소와 상기 리모트 단말의 IP 주소 사이의 매핑 정보인, 릴레이 단말 장치.And the information related to the IP address of the remote terminal is mapping information between the IP address of the relay terminal allocated by the local EPC and the IP address of the remote terminal.
PCT/KR2016/004835 2015-05-05 2016-05-09 Method of transmitting/receiving signal in iops mode in wireless communication system, and device for same WO2016178554A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562157410P 2015-05-05 2015-05-05
US201562157417P 2015-05-05 2015-05-05
US201562157412P 2015-05-05 2015-05-05
US62/157,417 2015-05-05
US62/157,410 2015-05-05
US62/157,412 2015-05-05

Publications (1)

Publication Number Publication Date
WO2016178554A1 true WO2016178554A1 (en) 2016-11-10

Family

ID=57217659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004835 WO2016178554A1 (en) 2015-05-05 2016-05-09 Method of transmitting/receiving signal in iops mode in wireless communication system, and device for same

Country Status (1)

Country Link
WO (1) WO2016178554A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108377564A (en) * 2016-11-14 2018-08-07 中兴通讯股份有限公司 Method and device, downlink data delivering method and the device of accessing terminal to network
KR20190067026A (en) * 2017-12-06 2019-06-14 주식회사 유캐스트 IOPS operation method under the RAN sharing or S1-FLEX and System and eNB using the IOPS operation
EP3675542A1 (en) * 2018-12-31 2020-07-01 Air Lynx Device and method for managing mutual authentication for direct communication between mobile structures of a mobile radio communication system
FR3094860A1 (en) * 2019-04-02 2020-10-09 Air-Lynx Device and method for managing mutual authentication for direct communication between mobile structures of a mobile radio communication system
US20220110187A1 (en) * 2020-10-01 2022-04-07 Apple Inc. Emergency Communication Routing for Non-cellular Coverage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026111A1 (en) * 2013-08-18 2015-02-26 엘지전자 주식회사 Repeater operation method and apparatus in wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026111A1 (en) * 2013-08-18 2015-02-26 엘지전자 주식회사 Repeater operation method and apparatus in wireless communication system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT ET AL.: "IOPS Alternatives", S2-150581, SA WG2 MEETING #107, 30 January 2015 (2015-01-30), Sorrento, Italy, XP050942478 *
ERICSSON: "PLMN Selection", S2-150774, SA WG2 MEETING #108, 6 April 2015 (2015-04-06), San Jose Del Cabo, Mexico, XP050942657 *
ERICSSON: "PLMN Selection", SA WG2 MEETING #108 S2-151316, 18 April 2015 (2015-04-18), San Jose Del Cabo, Mexico, pages 2 - 151316, XP050943005 *
SAMSUNG ET AL.: "IOPS Solution for Backhaul-less Scenario", S2-150346, SA WG2 MEETING #107, 20 January 2015 (2015-01-20), Sorrento, Italy, XP050942317 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108377564A (en) * 2016-11-14 2018-08-07 中兴通讯股份有限公司 Method and device, downlink data delivering method and the device of accessing terminal to network
CN108377564B (en) * 2016-11-14 2023-05-30 中兴通讯股份有限公司 Method and device for accessing terminal to network and method and device for delivering downlink data
KR20190067026A (en) * 2017-12-06 2019-06-14 주식회사 유캐스트 IOPS operation method under the RAN sharing or S1-FLEX and System and eNB using the IOPS operation
KR101990576B1 (en) 2017-12-06 2019-06-19 주식회사 유캐스트 IOPS operation method under the RAN sharing or S1-FLEX and System and eNB using the IOPS operation
EP3675542A1 (en) * 2018-12-31 2020-07-01 Air Lynx Device and method for managing mutual authentication for direct communication between mobile structures of a mobile radio communication system
US11115817B2 (en) 2018-12-31 2021-09-07 Air Lynx Device and method for managing the mutual authentication for the direct communication between mobile structures of a mobile radio communication system
FR3094860A1 (en) * 2019-04-02 2020-10-09 Air-Lynx Device and method for managing mutual authentication for direct communication between mobile structures of a mobile radio communication system
US20220110187A1 (en) * 2020-10-01 2022-04-07 Apple Inc. Emergency Communication Routing for Non-cellular Coverage

Similar Documents

Publication Publication Date Title
WO2018155934A1 (en) Method for receiving data related to non-3gpp through 3gpp access in wireless communication system, and device therefor
WO2017052335A1 (en) Method for performing device-to-device direct communication in wireless communication system and device therefor
WO2018084635A1 (en) Method for moving from ngs to eps in wireless communication system and apparatus therefor
WO2018088836A1 (en) Registration method through network access belonging to identical plmn in wireless communication system, and device therefor
WO2018199668A1 (en) Method for performing amf registration-related procedure by udm in wireless communication system, and device therefor
WO2016024773A1 (en) Method and device for selecting relay in wireless communication system
WO2017069430A1 (en) Method for direct communication between terminals in wireless communication system and apparatus for method
WO2017142362A1 (en) Method for transmitting/receiving location registration-related message in wireless communication system and apparatus for same
WO2017043854A1 (en) Method for supporting device-to-device direct communication in wireless communication system, and apparatus therefor
WO2016190672A1 (en) Method and terminal for performing attach procedure for sponsored connectivity in wireless communication system
WO2017191973A1 (en) Method for performing location registration by remote ue in wireless communication system, and apparatus therefor
WO2019066544A1 (en) Method for transmitting and receiving signal related to handover from 5gs to eps in wireless communication system and device therefor
WO2017074012A1 (en) Method for direct communication between terminals in wireless communication system and device therefor
WO2016186414A1 (en) Method for providing broadcast service in wireless communication system and apparatus therefor
WO2016039579A1 (en) Method for establishing mcptt group call in wireless communication system and device therefor
WO2017146523A1 (en) Method and user equipment for requesting connection to network
WO2015002456A1 (en) Method for selecting or reselecting relay for proximity service
WO2017086618A1 (en) Device-to-device direct communication method in wireless communication system and device therefor
WO2017026872A1 (en) Signal transmission and reception method by remote ue in a wireless communication system and device for same
WO2019022442A9 (en) Method for supporting sms transmission for user equipment that can receive service from 3gpp 5g system and from eps in wireless communication system, and apparatus therefor
WO2016105004A1 (en) Method for transmitting and receiving nbifom capability in wireless communication system, and device therefor
WO2015174702A1 (en) Method and apparatus for signal transmission and reception of hss/mme in wireless communication system
WO2017126948A1 (en) Method for transmitting/receiving v2x message in local network in wireless communication system and apparatus for same
WO2016144009A1 (en) Method and terminal for controlling network traffic in wireless communication system
WO2017026772A1 (en) Method for selecting p-cscf and transmitting sip message in wireless communication system and device for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789660

Country of ref document: EP

Kind code of ref document: A1