WO2016178331A1 - 基地局及びユーザ装置 - Google Patents

基地局及びユーザ装置 Download PDF

Info

Publication number
WO2016178331A1
WO2016178331A1 PCT/JP2016/055092 JP2016055092W WO2016178331A1 WO 2016178331 A1 WO2016178331 A1 WO 2016178331A1 JP 2016055092 W JP2016055092 W JP 2016055092W WO 2016178331 A1 WO2016178331 A1 WO 2016178331A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing unit
transmission data
harq
base station
cells
Prior art date
Application number
PCT/JP2016/055092
Other languages
English (en)
French (fr)
Inventor
徹 内野
一樹 武田
高橋 秀明
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US15/511,268 priority Critical patent/US20170295584A1/en
Priority to JP2017516563A priority patent/JP6313905B2/ja
Priority to EP16789467.4A priority patent/EP3291598A4/en
Publication of WO2016178331A1 publication Critical patent/WO2016178331A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present invention relates to a wireless communication system.
  • HARQ Hybrid Automatic Repeat Request
  • UE User Equipment
  • eNB evolved NodeB
  • UE User Equipment
  • eNB evolved NodeB
  • a HARQ entity is set for each cell or component carrier (CC), and each HARQ entity maintains a plurality of HARQ processes.
  • the MAC layer of the user apparatus when transmitting data, transports data according to the modulation and coding scheme (Modulation and Coding Scheme: MCS) indicated by the uplink grant received from the base station.
  • MCS Modulation and Coding Scheme
  • a block size (TBS) is determined, and data of a corresponding size is acquired from an RLC (Radio Link Control) layer.
  • RLC Radio Link Control
  • RVI Redundancy Version Index
  • the three use cases are a use case that is a further development of mobile broadband, a use case such as IoT (Internet of Things) in which everything is connected to the network, and a use case that realizes highly reliable and ultra-low delay communication. It is a case.
  • IoT Internet of Things
  • one of the requirements for fifth generation communication is communication with high reliability and ultra-low delay.
  • the delay reduction effect may be limited even if the priority in the cell for the service is improved.
  • the transport block size transmitted from the HARQ process is determined based on the cell state such as the communication quality of each cell and the number of resources that can be allocated. For this reason, depending on the cell state of each cell to which HARQ sharing is applied, there is a possibility that the transport block size required for HARQ retransmission of the MAC PDU (Packet Data Unit) cannot be secured in the cell. For example, consider a case where initial transmission is performed with a component carrier with good communication quality, and then retransmission is performed with a component carrier with insufficient communication quality.
  • MAC PDU Packet Data Unit
  • a transport block size corresponding to good communication quality is used for initial transmission, and data corresponding to the transport block size is also used for retransmission in a component carrier that does not have sufficient communication quality. become.
  • a component carrier with insufficient communication quality may not be able to secure the transport block.
  • a transport block size of 1000 bits is used in CC # 2 having relatively high communication quality, and the MAC layer obtains data corresponding to the size from the RLC layer and transmits it. Generate a trusted MAC PDU.
  • CC # 1 where the communication quality is relatively low, only a 500-bit transport block size is allocated, and a MAC PDU corresponding to a 1000-bit transport block size cannot be transmitted in CC # 1, and HARQ Sharing cannot be realized.
  • an object of the present invention is to provide a technique for controlling the transport block size for realizing HARQ sharing.
  • an aspect of the present invention provides a cell management unit that manages a cell for wireless communication with a user apparatus, and HARQ sharing that manages one or more HARQ processes as a common HARQ process.
  • a base station having a MAC processing unit that controls retransmission processing via a plurality of cells, wherein the cell management unit obtains communication quality of a plurality of cells to which the HARQ sharing is applied
  • the MAC processing unit relates to a base station that controls to start transmission through the plurality of cells according to a minimum transmission data size among transmission data sizes corresponding to the acquired communication quality of each cell.
  • a cell management unit that manages a cell for wireless communication with a user apparatus and a HARQ sharing that manages one or a plurality of HARQ processes as a common HARQ process are used.
  • a base station having a MAC processing unit for controlling retransmission processing via a cell and an RLC processing unit for providing transmission data to the MAC processing unit, wherein the cell management unit is applied with the HARQ sharing.
  • the MAC processing A base station that obtains transmission data configured by a transmission data size corresponding to the detected communication quality from the RLC processing unit.
  • Another aspect of the present invention is to use a transmission / reception unit that transmits and receives a radio signal via a cell provided by a base station and HARQ sharing that manages one or more HARQ processes as a common HARQ process.
  • a user apparatus having a MAC processing unit that controls retransmission processing via a plurality of cells and an RLC processing unit that provides transmission data to the MAC processing unit, wherein the transmission / reception unit is applied with the HARQ sharing.
  • the MAC processing The unit obtains transmission data configured with a transmission data size corresponding to the detected communication quality from the RLC processing unit. On over laser device.
  • Still another aspect of the present invention is to use a cell management unit that manages a cell for wireless communication with a user apparatus, and HARQ sharing that manages one or more HARQ processes as a common HARQ process.
  • a base station having a MAC processing unit that controls retransmission processing via a plurality of cells, wherein the MAC processing unit transmits a bit sequence corresponding to a plurality of extended redundant versions at each transmission opportunity, When transmitting a bit sequence with a transmission data size smaller than the currently set transmission data size in the retransmission process, the bit sequence is transmitted with the smaller transmission data size by reducing the plurality of extended redundant versions.
  • the base station having a MAC processing unit that controls retransmission processing via a plurality of cells, wherein the MAC processing unit transmits a bit sequence corresponding to a plurality of extended redundant versions at each transmission opportunity, When transmitting a bit sequence with a transmission data size smaller than the currently set transmission data size in the retransmission process, the bit sequence is transmitted with the smaller
  • Another aspect of the present invention is to use a transmission / reception unit that transmits and receives a radio signal via a cell provided by a base station and HARQ sharing that manages one or more HARQ processes as a common HARQ process.
  • a MAC processing unit that controls retransmission processing via a plurality of cells, wherein the MAC processing unit transmits a bit sequence corresponding to a plurality of extended redundant versions at each transmission opportunity, and When a bit sequence is transmitted with a transmission data size smaller than the currently set transmission data size in the retransmission process, the bit sequence is transmitted with the smaller transmission data size by reducing the plurality of extended redundancy versions. It relates to a user device.
  • the transport block size for realizing HARQ sharing can be controlled.
  • FIG. 1 is a schematic diagram illustrating a typical use case of fifth generation communication.
  • FIG. 2 is a schematic diagram illustrating a protocol for HARQ retransmission using a plurality of cells.
  • FIG. 3 is a diagram illustrating HARQ retransmission using a plurality of cells according to the prior art.
  • FIG. 4A is a schematic diagram illustrating a wireless communication system according to an embodiment of the present invention.
  • FIG. 4B is a block diagram illustrating a hardware configuration of a base station according to an embodiment of the present invention.
  • FIG. 4C is a block diagram illustrating a hardware configuration of a user apparatus according to an embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating a configuration of a base station according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart showing HARQ transmission processing according to the first embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a base station according to the second embodiment of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a user apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a flowchart showing HARQ transmission processing according to the second embodiment of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a base station according to the third embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a configuration of a user apparatus according to the third embodiment of the present invention.
  • FIG. 12 is a flowchart showing HARQ transmission processing according to the third embodiment of the present invention.
  • a base station and a user apparatus that support HARQ sharing for managing one or a plurality of HARQ processes as a common HARQ process are disclosed.
  • the transport block size of retransmission data is dynamically adjusted according to the deterioration of communication quality of each cell during HARQ retransmission processing.
  • the transport block size set at the time of initial transmission cannot be ensured due to the deterioration of communication quality of each cell, as compared with the conventional HARQ control that is fixedly applied even at the time of retransmission. Can be dealt with appropriately.
  • FIG. 4A is a schematic diagram illustrating a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system 10 includes a base station 100 and a user device 200.
  • the radio communication system 10 is, for example, an LTE system or an LTE-Advanced system. That is, as illustrated, the user apparatus 200 can transmit and receive radio signals to and from the base station 100 using a plurality of component carriers CC # 1 and CC # 2 at the same time.
  • the user apparatus 200 is only shown to perform carrier aggregation communication with one base station 100, but the present invention is not limited to this.
  • the user apparatus 200 may transmit and receive simultaneously with the plurality of base stations 100 by simultaneously using component carriers provided by the plurality of base stations 100 (dual connectivity). In the illustrated embodiment, only one base station 100 is shown, but a large number of base stations 100 are arranged to cover the service area of the wireless communication system 10.
  • the base station 100 wirelessly connects to the user apparatus 200 to transmit a downlink (DL) packet received from an upper station or a server that is communicatively connected to a core network (not shown) to the user apparatus 200.
  • the uplink (UL) packet received from the user apparatus 200 is transmitted to the server.
  • the base station 100 may have a carrier aggregation function that simultaneously transmits and receives radio signals from the user apparatus 200 via a plurality of carriers.
  • the base station 100 typically includes an antenna 101 for transmitting and receiving radio signals to and from the user apparatus 200, and a first communication interface (for communicating with an adjacent base station 100).
  • X2 interface, etc.) 102 for communicating with the core network
  • S1 interface, etc. for communicating with the core network
  • a processor 104 for processing transmission / reception signals with the user device 200
  • a hardware resource such as a memory device 105, etc. Composed.
  • Each function and process of the base station 100 to be described later may be realized by the processor 104 processing or executing data or a program stored in the memory device 105.
  • the base station 100 is not limited to the hardware configuration described above, and may have any other appropriate hardware configuration.
  • User device 200 communicates with base station 100 via a plurality of cells provided by base station 100.
  • the user apparatus 200 has a carrier aggregation function that transmits and receives radio signals to and from the base station 100 by simultaneously using a plurality of cells provided by one or more base stations 100.
  • the user apparatus 200 may be any appropriate information processing apparatus having a wireless communication function such as a smartphone, a mobile phone, a tablet, a mobile router, and a wearable terminal as illustrated.
  • the user apparatus 200 transmits and receives radio signals to and from the base station 100, such as a CPU (Central Processing Unit) 201 such as a processor, a memory apparatus 202 such as a RAM (Random Access Memory) and flash memory, and the like.
  • a CPU Central Processing Unit
  • memory apparatus 202 such as a RAM (Random Access Memory) and flash memory, and the like.
  • Wireless communication device 203, and user interface 204 such as an input / output device or a peripheral device.
  • each function and process of the user device 200 described later may be realized by the CPU 201 processing or executing data or a program stored in the memory device 202.
  • the user apparatus 200 is not limited to the hardware configuration described above, and may be configured by a circuit that realizes one or more of the processes described below.
  • FIG. 5 is a block diagram illustrating a configuration of a base station according to the first embodiment of the present invention.
  • the base station 100A includes a cell management unit 110A and a MAC processing unit 120A.
  • the cell management unit 110A manages a cell for wireless communication with the user apparatus 200. Specifically, the cell management unit 110A acquires the communication quality of a plurality of cells provided by the base station 100A, and holds the acquired communication quality of each cell as cell quality information. For example, for downlink communication, the cell management unit 110A may acquire CQI (Channel Quality Indicator) of each cell from the user apparatus 200, and configure cell quality information based on the acquired CQI. In addition, for uplink communication, the cell management unit 110A receives PUCCH (Physical Uplink Control Channel), PUSCH (Physical Uplink Shared Channel), SRS (Sounding Reference Signal) quality measurement, etc. transmitted from the user apparatus 200. The cell quality information may be configured based on the measurement result.
  • CQI Channel Quality Indicator
  • the MAC processing unit 120A controls retransmission processing via a plurality of cells by using HARQ sharing that manages one or a plurality of HARQ processes as a common HARQ process. Specifically, when the base station 100A sets a plurality of cells for the user apparatus 200, the MAC processing unit 120A manages one or a plurality of HARQ processes set for these cells as a common HARQ process. Set up HARQ sharing.
  • HARQ processes # 0 to # 3 are shared between CC # 1 and CC # 2 and managed as a common HARQ process
  • the HARQ processes # 4 to # 7 may be shared between CC # 2 and CC # 3 and managed as a common HARQ process.
  • the MAC processing unit 120A manages a designated HARQ process among the set HARQ processes as a common HARQ process, and transmits retransmission data of the common HARQ process to the user apparatus 200 via a plurality of cells. . Thereby, it is possible to transmit the retransmission data to the user apparatus 200 more reliably due to the diversity effect.
  • the cell management unit 110A acquires the communication quality of a plurality of cells to which HARQ sharing is applied, and the MAC processing unit 120A includes the transmission data size corresponding to the acquired communication quality of each cell. Control is performed so as to start transmission through a plurality of cells with the minimum transmission data size. Specifically, when transmitting data on a plurality of component carriers related to a common HARQ process in HARQ sharing, the MAC processing unit 120A determines a transport block size expected on each component carrier based on cell quality information. Judgment is made, and transmission is started using the smallest transport block size among these transport block sizes.
  • the MAC processing unit 120A acquires data corresponding to the minimum transport block size from the RLC layer, generates a MAC PDU from the acquired data, and transmits the MAC PDU to the user apparatus 200.
  • the MAC processing unit 120A transmits an uplink grant instructing the minimum transport block size to the user apparatus 200, and when receiving the uplink grant, the user apparatus 200 is designated. Uplink transmission is performed according to the transport block size. Note that the receiving side may discard the retransmission data when receiving retransmission data having a transport block size different from the transport block size received in the initial transmission.
  • the MAC processing unit 120A may control the number of allocated resource blocks or the modulation and coding scheme in a cell in order to enable transmission of the minimum transmission data size in the retransmission processing. That is, if the minimum transport block size set at the time of initial transmission cannot be ensured at the time of HARQ retransmission, the MAC processing unit 120A can allocate the number of allocated resource blocks and / or MCS so as to ensure a transport block size equivalent to that of initial transmission. May be selected. In this case, the MAC processing unit 120A executes aggressive assignment with respect to actual communication quality, and in retransmission, the communication quality is not sufficient, and retransmission data may be lost.
  • the MAC processing unit 120A determines that the MCS that is safe with respect to the actual communication quality, that is, the MCS that can cope with more deteriorated communication quality instead of the MCS corresponding to the actual communication quality. May be selected.
  • FIG. 6 is a flowchart showing HARQ transmission processing according to the first embodiment of the present invention. This process is executed by the base station 100A when downlink data or uplink data is transmitted for the first time.
  • the base station 100 ⁇ / b> A acquires the communication quality of a cell for wireless communication with the user apparatus 200.
  • the base station 100A uses the CQI of each cell acquired from the user apparatus 200 for downlink communication, and receives quality of PUCCH, PUSCH, SRS, etc. transmitted from the user apparatus 200 for uplink communication.
  • the cell quality information may be configured by using the measurement result.
  • the base station 100A applies a common HARQ process. That is, the base station 100A uses HARQ sharing in which one or a plurality of HARQ processes are managed as a common HARQ process. This makes it possible to retransmit data from other cells related to the common HARQ process when it is necessary to retransmit data transmitted from the cells related to the common HARQ process. It is possible to reliably receive retransmission data.
  • the base station 100A controls to start HARQ transmission via a plurality of cells with a minimum transmission data size among transmission data sizes corresponding to the acquired communication quality of each cell. Specifically, the base station 100A applies the minimum transport block size among the transport block sizes corresponding to each component carrier to which the common HARQ process is applied to the transmission data of the common HARQ process. For example, for downlink transmission, the base station 100A acquires data corresponding to the minimum transport block size from the RLC layer, generates a MAC PDU from the acquired data, and transmits the MAC PDU to the user apparatus 200. On the other hand, for uplink transmission, the base station 100A transmits an uplink grant instructing the minimum transport block size to the user apparatus 200, and when receiving the uplink grant, the user apparatus 200 is designated. Perform uplink transmission according to transport block size.
  • FIG. 7 is a block diagram showing a configuration of a base station according to the second embodiment of the present invention.
  • the base station 100B has a cell management unit 110B, a MAC processing unit 120B, and an RLC processing unit 130B.
  • the cell management unit 110B manages a cell for wireless communication with the user apparatus 200. Specifically, as in the first embodiment, the cell management unit 110B acquires the communication quality of a plurality of cells provided by the base station 100B, and holds the acquired communication quality of each cell as cell quality information. . For example, for downlink communication, the cell management unit 110B may acquire the CQI of each cell from the user apparatus 200 and configure cell quality information based on the acquired CQI. Moreover, about uplink communication, the cell management part 110B may measure reception quality, such as PUCCH, PUSCH, SRS transmitted from the user apparatus 200, and may comprise cell quality information based on a measurement result.
  • reception quality such as PUCCH, PUSCH, SRS transmitted from the user apparatus 200
  • the MAC processing unit 120B controls retransmission processing via one or more cells by using HARQ sharing that manages one or more HARQ processes as a common HARQ process. Specifically, when the base station 100B sets a plurality of cells for the user apparatus 200, the MAC processing unit 120B manages one or a plurality of HARQ processes set for these cells as a common HARQ process. Set up HARQ sharing. In this case, the MAC processing unit 120B manages a designated HARQ process among the set HARQ processes as a common HARQ process, and transmits retransmission data of the common HARQ process to the user apparatus 200 via a plurality of cells. . Thereby, it is possible to transmit the retransmission data to the user apparatus 200 more reliably due to the diversity effect.
  • the RLC processing unit 130B provides transmission data to the MAC processing unit 120B. Specifically, the RLC processing unit 130B provides transmission data corresponding to the transport block size set by the MAC processing unit 120B to the MAC processing unit 120B.
  • the cell management unit 110B acquires the communication quality of a plurality of cells to which HARQ sharing is applied, and the communication quality detected for any of the plurality of cells is the currently set transmission data.
  • the MAC processing unit 120B notifies the RLC processing unit 130B of the event, and transmits the transmission data configured by the transmission data size corresponding to the detected communication quality to the RLC. Obtained from the processing unit 130B.
  • the cell management unit 110B monitors the communication quality of these cells during transmission or retransmission of data on a plurality of component carriers related to a common HARQ process.
  • the MAC processing unit 120B When a cell whose communication quality has decreased to a level lower than that required to transmit the currently set transmission data size is detected (or when a scheduling opportunity is detected in the cell), the MAC processing unit 120B The event is notified to the RLC processing unit 130B, a smaller transport block size corresponding to the detected communication quality is reset, and transmission data (RLC PDU) corresponding to the transport block size is acquired from the RLC processing unit 130B. .
  • the MAC processing unit 120B generates a MAC PDU from the acquired transmission data and transmits the MAC PDU to the user apparatus 200.
  • the notification from the MAC processing unit 120B to the RLC processing unit 130B includes information for identifying the corresponding HARQ process number and RLC PDU (or RLC PDU segment) (for example, SN (Sequence Number) and SO (Segment Offset)). It may be.
  • RLC PDU or RLC PDU segment
  • SN Sequence Number
  • SO Segment Offset
  • the RLC processing unit 130B includes a retransmission counter that counts the number of retransmissions of transmission data from the RLC processing unit 130B, and is configured with a transmission data size corresponding to the communication quality detected from the MAC processing unit 120B. In response to the request for the transmitted data, the RLC processing unit 130B may not increment the retransmission counter.
  • the RLC processing unit 130B counts the number of retransmissions in units of RLC PDUs, and retransmits data that could not be transmitted by the retransmission processing by the MAC processing unit 120B by the retransmission processing by the RLC processing unit 130B using the retransmission counter. .
  • the retransmission from the RLC processing unit 130B is performed after the retransmission excess by the MAC processing unit 120B.
  • the provision of transmission data from the RLC processing unit 130B accompanying the change of the transport block size by the MAC processing unit 120B described above is executed before the retransmission exceeds by the MAC processing unit 120B, and is counted as retransmission by the RLC processing unit 130B. Should not. For this reason, when the MAC processing unit 120B requests transmission data corresponding to the changed transport block size from the RLC processing unit 130B, the RLC processing unit 130B may not increment the retransmission counter.
  • whether or not to perform such processing is performed inside the base station 100B if it is a downlink, but may be determined based on an instruction from the base station 100B regarding the uplink. Specifically, when the user apparatus 200 is assigned an uplink grant from the base station 100B, it may be notified whether or not to perform the above control in the base station 100B, or different TBSs for the same HARQ process. Alternatively, the user apparatus 200 may implicitly determine this when the corresponding MCS selection) is performed, or both may be applied.
  • FIG. 8 is a block diagram showing a configuration of a user apparatus according to the second embodiment of the present invention.
  • the user apparatus 200B includes a transmission / reception unit 210B, a MAC processing unit 220B, and an RLC processing unit 230B.
  • the transmission / reception unit 210B transmits / receives a radio signal via a cell provided by the base station 100.
  • the transceiver unit 210B uses a plurality of component carriers provided by the base station 100, such as an uplink / downlink control channel and an uplink / downlink data channel with the base station 100. Send and receive various radio channels.
  • the transmission / reception unit 210B can simultaneously transmit and receive various wireless channels with one or more base stations 100 using the plurality of component carriers at the same time. .
  • the MAC processing unit 220B controls retransmission processing via a plurality of cells by using HARQ sharing that manages one or a plurality of HARQ processes as a common HARQ process. Specifically, when the base station 100 sets a plurality of cells for the user apparatus 200B, the MAC processing unit 220B manages one or a plurality of HARQ processes set for these cells as a common HARQ process. Set up HARQ sharing. In this case, the MAC processing unit 220B manages the designated HARQ process among the set HARQ processes as a common HARQ process, and transmits retransmission data of the common HARQ process to the base station 100 via a plurality of cells. . This makes it possible to transmit retransmission data to the base station 100 more reliably due to the diversity effect.
  • the RLC processing unit 230B provides transmission data to the MAC processing unit 220B. Specifically, the RLC processing unit 230B provides transmission data corresponding to the transport block size set by the MAC processing unit 220B to the MAC processing unit 220B.
  • the transmission / reception unit 210B acquires the communication quality of a plurality of cells to which HARQ sharing is applied, and the communication quality detected for any of the plurality of cells is the currently set transmission data size.
  • the MAC processing unit 220B notifies the RLC processing unit 230B of the event, and the RLC processing is performed on the transmission data configured by the transmission data size corresponding to the detected communication quality. From the unit 230B.
  • the transmission / reception unit 210B monitors the communication quality of these cells during transmission or retransmission of data on a plurality of component carriers related to a common HARQ process.
  • the MAC processing unit 220B When a cell whose communication quality has decreased to a level lower than that required to transmit the currently set transmission data size is detected (or when a scheduling opportunity is detected in the cell), the MAC processing unit 220B The event is notified to the RLC processing unit 230B, a smaller transport block size corresponding to the detected communication quality is reset, and transmission data (RLC PDU) corresponding to the transport block size is acquired from the RLC processing unit 230B. .
  • the MAC processing unit 220B generates a MAC PDU from the acquired transmission data and transmits it to the base station 100.
  • the notification from the MAC processing unit 220B to the RLC processing unit 230B may include information (for example, SN or SO) that identifies the corresponding HARQ process number or RLC PDU (or RLC PDU segment).
  • information for example, SN or SO
  • the transport block size can be dynamically changed according to the current communication quality. That is, this embodiment is considered to correspond to forcibly triggering retransmission of the upper RLC layer at the time of retransmission at the MAC layer.
  • the RLC processing unit 230B has a retransmission counter that counts the number of retransmissions of transmission data from the RLC processing unit 230B, and is configured with a transmission data size corresponding to the communication quality detected from the MAC processing unit 220B. In response to the requested transmission data, the RLC processing unit 230B may not increment the retransmission counter.
  • the RLC processing unit 230B counts the number of retransmissions in units of RLC PDU (or RLC PDU segment), and uses the retransmission counter to transmit data that could not be transmitted by the retransmission processing by the MAC processing unit 220B. Re-send by resending process by.
  • the retransmission from the RLC processing unit 230B is performed after the retransmission excess by the MAC processing unit 220B.
  • the provision of transmission data from the RLC processing unit 230B accompanying the change of the transport block size by the MAC processing unit 220B described above is executed before the retransmission exceeds by the MAC processing unit 220B, and is counted as retransmission by the RLC processing unit 230B. Should not. For this reason, when the MAC processing unit 220B requests transmission data corresponding to the changed transport block size from the RLC processing unit 230B, the RLC processing unit 230B may not increment the retransmission counter.
  • FIG. 9 is a flowchart showing HARQ transmission processing according to the second embodiment of the present invention.
  • This processing is executed by the transmission side apparatus during transmission and retransmission of downlink data or uplink data. That is, in downlink transmission, the process is executed by the base station 100B, and in uplink transmission, the process is executed by the user apparatus 200B.
  • the process will be described with a focus on downlink transmission, but it will be easily understood by those skilled in the art that it is equally applicable to uplink transmission.
  • step S ⁇ b> 201 the base station 100 ⁇ / b> B acquires the communication quality of the cell for wireless communication with the user apparatus 200.
  • the base station 100B may periodically acquire the CQI of each cell from the user apparatus 200 during downlink retransmission.
  • the base station 100B applies a common HARQ process. That is, the base station 100B uses HARQ sharing that manages one or a plurality of HARQ processes as a common HARQ process. This makes it possible to retransmit data from other cells related to the common HARQ process when it is necessary to retransmit data transmitted from the cells related to the common HARQ process. It is possible to reliably receive retransmission data.
  • step S203 the base station 100B reduces the communication quality detected for any of the plurality of cells to which the common HARQ process is applied to a level lower than that required to transmit the currently set transmission data size. Detect that For example, when the currently set transport block size corresponds to the CQI index X, the base station 100B determines that the CQI index Y of any cell to which the common HARQ process is applied is less than X. If detected, the transport block size corresponding to the detected CQI index Y is reset.
  • step S204 the base station 100B reconfigures transmission data based on the transmission data size corresponding to the detected communication quality, and transmits the transmission data to the user apparatus 200. Specifically, the base station 100B generates a MAC PDU corresponding to the transport block size corresponding to the detected CQI index Y, and transmits the MAC PDU to the user apparatus 200.
  • FIG. 10 is a block diagram showing a configuration of a base station according to the third embodiment of the present invention.
  • the base station 100C has a cell management unit 110C and a MAC processing unit 120C.
  • the cell management unit 110C manages a cell for wireless communication with the user apparatus 200. Specifically, as in the first and second embodiments, the cell management unit 110C acquires the communication quality of a plurality of cells provided by the base station 100C, and uses the acquired communication quality of each cell as cell quality information. Hold. For example, for downlink communication, the cell management unit 110C may acquire the CQI of each cell from the user apparatus 200 and configure cell quality information based on the acquired CQI. In addition, for uplink communication, the cell management unit 110C may measure reception quality of PUCCH, PUSCH, SRS and the like transmitted from the user apparatus 200, and configure cell quality information based on the measurement result.
  • the MAC processing unit 120C controls retransmission processing via a plurality of cells by using HARQ sharing that manages one or a plurality of HARQ processes as a common HARQ process. Specifically, when the base station 100C sets a plurality of cells for the user apparatus 200, the MAC processing unit 120C manages one or a plurality of HARQ processes set for these cells as a common HARQ process. Set up HARQ sharing. In this case, the MAC processing unit 120C manages the designated HARQ process among the set HARQ processes as a common HARQ process, and transmits retransmission data of the common HARQ process to the user apparatus 200 via a plurality of cells. . Thereby, it is possible to transmit the retransmission data to the user apparatus 200 more reliably due to the diversity effect.
  • the MAC processing unit 120C transmits a bit sequence corresponding to a plurality of extended redundancy versions at each transmission opportunity, and uses a transmission data size smaller than the currently set transmission data size in the retransmission process.
  • the bit sequence is transmitted with a smaller transmission data size by reducing the plurality of extended redundant versions.
  • a redundant version is defined by a redundant version index (RVI) of 0 to 3 by 2 bits, and a bit sequence corresponding to any one redundant version is transmitted at each transmission opportunity of HARQ.
  • the conventional redundant version is expanded, and bit sequences corresponding to a plurality of redundant versions are transmitted in one transmission opportunity.
  • the extended redundancy version may be defined by RVI from 0 to 15 using 4 bits.
  • the MAC processing unit 120C may transmit a bit sequence corresponding to one or more redundant versions in one transmission opportunity according to the communication quality of the cell. For example, in a cell with good communication quality, the MAC processing unit 120C may transmit a bit sequence of RVI0 to RVI3 with one transmission opportunity. It should be noted that the receiving side can determine which redundant version of the bit sequence has been transmitted based on the notified RVI and the total number of bit sequences. For example, assume that a 50-bit bit sequence is transmitted for each redundant version. At this time, when a 200-bit bit sequence is received together with the notification of RVI0, the receiving side can determine that the bit sequences of RVI0 to RVI3 have been transmitted. However, in practice, the bit sequence does not necessarily have to be configured in ascending order of RVI.
  • the MAC processing unit 120C when the transport block size smaller than the currently set transport block size is reset due to a decrease in the communication quality of the cell, the MAC processing unit 120C transmits in one transmission opportunity. Reduce the bit sequence. For example, assume that a 50-bit bit sequence is transmitted for each redundant version. At this time, when detecting that the communication quality of the cell has deteriorated after transmitting the 200-bit bit sequence of RVI0 to RVI in the initial transmission, the MAC processing unit 120C retransmits the 100-bit bit sequence of RVI4 to RVI, for example. May be.
  • the MAC processing unit 120C may apply a predetermined transport block size for the initial transmission of HARQ. . This is because data for at least the number of information bits (number of bits before encoding) needs to be received for decoding the transport block size.
  • the redundant version of the HARQ initial transmission can be expressed by the conventional 2-bit RVI
  • the number of bits expressing the RVI may be changed according to the reception state of the user apparatus 200. For example, when there is no retransmission HARQ process, the user apparatus 200 may perform blind decoding assuming that RVI is expressed by 2 bits.
  • the user apparatus 200 may perform blind decoding assuming that RVI is expressed by 4 bits in the subsequent subframes after 4 ms from the transmission of the retransmission request.
  • the user apparatus 200 may decode the subframe assuming both the conventional RVI represented by 2 bits and the extended RVI represented by 4 bits. Since which of the initial transmission HARQ process and the retransmission HARQ process is scheduled in the subframe depends on the base station 100C, the user apparatus 200 may perform blind decoding assuming both RVIs.
  • only the DCI (Downlink Control Information) transmitted in the USS (UE specific Search Space) may be specified by the extended RVI.
  • the extended redundant version is designated for each user device 200. That is, the user apparatus 200 performs blind decoding on the assumption that CSS (Common Search Space) is 2 bits and USS is 4 bits.
  • the CSS is cross-carrier scheduled and it is sufficient to control only the independent HARQ process. As a result, the overhead due to the extended RVI can be reduced as much as possible.
  • the extended redundancy version may have a different bit sequence length.
  • the bit sequence of RVI0 has a bit sequence length similar to the information bit length
  • the bit sequence of RVI1 also has a bit sequence length similar to the information bit length
  • the bit sequence of RVI2 has 1/2 of that
  • the bit sequence length of RVI3 has a bit sequence length of 1 ⁇ 2 of the bit sequence length, and may be configured in the same manner. That is, in the initial transmission, a larger bit sequence may be transmitted, and then the transport block size may be reduced in consideration of the possibility of communication quality degradation.
  • the transport block size corresponding to each RVI may be fixedly determined in advance or may be determined according to an instruction from the MAC processing unit 120C. Note that when the transport block size is changed in the base station 100C, the change may be notified in the CSS in order to avoid the possibility of a mismatch between UE and eNB.
  • FIG. 11 is a block diagram showing a configuration of a user apparatus according to the third embodiment of the present invention.
  • the user device 200C includes a transmission / reception unit 210C and a MAC processing unit 220C.
  • the transmission / reception unit 210C transmits / receives a radio signal via a cell provided by the base station 100.
  • the transceiver unit 210C uses a plurality of component carriers provided by the base station 100, such as an uplink / downlink control channel and an uplink / downlink data channel with the base station 100. Send and receive various radio channels.
  • the transmission / reception unit 210C can transmit / receive various wireless channels to / from one or more base stations 100 using the plurality of component carriers simultaneously. .
  • the MAC processing unit 220C controls retransmission processing via a plurality of cells by using HARQ sharing that manages one or a plurality of HARQ processes as a common HARQ process. Specifically, when the base station 100 sets a plurality of cells for the user apparatus 200C, the MAC processing unit 220C manages one or a plurality of HARQ processes set for these cells as a common HARQ process. Set up HARQ sharing. In this case, the MAC processing unit 220C manages the designated HARQ process among the set HARQ processes as a common HARQ process, and transmits retransmission data of the common HARQ process to the base station 100 via a plurality of cells. . This makes it possible to transmit retransmission data to the base station 100 more reliably due to the diversity effect.
  • the MAC processing unit 220C transmits a bit sequence corresponding to a plurality of extended redundant versions at each transmission opportunity, and uses a transmission data size smaller than the currently set transmission data size in the retransmission processing.
  • the bit sequence is transmitted with a smaller transmission data size by reducing the plurality of extended redundant versions.
  • the conventional redundant version is expanded, and bit sequences corresponding to a plurality of redundant versions are transmitted in one transmission opportunity.
  • an extended redundancy version may be defined by a redundancy version index from 0 to 15 using 4 bits.
  • the MAC processing unit 220C may transmit a bit sequence corresponding to one or more redundant versions in one transmission opportunity according to the communication quality of the cell. For example, in a cell with good communication quality, the MAC processing unit 220C may transmit, for example, a bit sequence of RVI0 to RVI3 in one transmission opportunity. In the present embodiment, when a smaller transport block size is reset due to a decrease in cell communication quality or the like, the MAC processing unit 220C reduces the bit sequence to be transmitted in one transmission opportunity. For example, assume that a 50-bit bit sequence is transmitted for each redundant version.
  • MAC processing unit 220C when detecting that the communication quality of the cell has deteriorated after transmitting the 200-bit bit sequence of RVI0 to RVI in the initial transmission, MAC processing unit 220C retransmits the 100-bit bit sequence of RVI4 to RVI, for example. May be.
  • the MAC processing unit 220C may apply a predetermined transport block size for the initial transmission of HARQ. .
  • the extended redundancy version may have a different bit sequence length.
  • a larger bit sequence may be transmitted in the initial transmission, and then the transport block size may be reduced in consideration of the possibility of communication quality degradation.
  • FIG. 12 is a flowchart showing HARQ transmission processing according to the third embodiment of the present invention.
  • This processing is executed by the transmission side apparatus during transmission and retransmission of downlink data or uplink data. That is, in downlink transmission, the process is executed by the base station 100C, and in uplink transmission, the process is executed by the user apparatus 200C.
  • the process will be described with a focus on downlink transmission, but it will be easily understood by those skilled in the art that it is equally applicable to uplink transmission.
  • the base station 100C acquires the communication quality of the cell for wireless communication with the user apparatus 200.
  • the base station 100C may periodically acquire the CQI of each cell from the user apparatus 200 during downlink retransmission.
  • the base station 100C applies a common HARQ process and transmits a bit sequence corresponding to a plurality of extended redundant versions at each transmission opportunity. That is, the base station 100C uses HARQ sharing that manages one or a plurality of HARQ processes as a common HARQ process, and transmits a bit sequence corresponding to a plurality of extended redundant versions at each HARQ transmission opportunity.
  • a redundant version is defined by RVI of 0 to 3 by 2 bits, and a bit sequence corresponding to any one redundant version is transmitted at each transmission opportunity of HARQ.
  • the conventional redundant version is expanded, and bit sequences corresponding to a plurality of redundant versions are transmitted in one transmission opportunity.
  • the extended redundancy version may be defined by RVI from 0 to 15 using 4 bits.
  • step S303 the base station 100C reduces the communication quality detected for any of the plurality of cells to which the common HARQ process is applied to a level lower than that required to transmit the currently set transmission data size. Detect that In this case, base station 100C needs to transmit a bit sequence with a transmission data size smaller than the currently set transmission data size in subsequent retransmission processing.
  • step S304 the base station 100C transmits the bit sequence with a smaller transmission data size by reducing the extended redundancy version. For example, assume that a 50-bit bit sequence is transmitted for each redundant version. At this time, if it is detected that the communication quality of the cell has deteriorated after transmitting the 200-bit bit sequence of RVI0 to RVI in the initial transmission, for example, the base station 100C retransmits the 100-bit bit sequence of RVI4 to RVI5. May be.
  • the transport block size is set according to the first embodiment, and in subsequent HARQ retransmissions, the second embodiment and / or the third embodiment are appropriately applied as the communication quality deteriorates. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

HARQシェアリングを実現するためのトランスポートブロックサイズを制御するための技術が開示される。本発明の一態様は、ユーザ装置と無線通信するためのセルを管理するセル管理部と、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御するMAC処理部とを有する基地局であって、前記セル管理部は、前記HARQシェアリングが適用される複数のセルの通信品質を取得し、前記MAC処理部は、前記取得した各セルの通信品質に対応する送信データサイズのうち最小の送信データサイズによって、前記複数のセルを介した送信を開始するよう制御する基地局に関する。

Description

基地局及びユーザ装置
 本発明は、無線通信システムに関する。
 LTE(Long Term Evolution)システムでは、HARQ(Hybrid Automatic Repeat Request)を用いた高速再送によって高いスループットを実現することが可能である。HARQはMAC(Medium Access Control)レイヤにおいて実行され、LTE規格では、ユーザ装置(User Equipment:UE)及び基地局(evolved NodeB:eNB)が管理するHARQプロセスの個数は、セルのデュプレクスモードなどに依存して決定される。また、キャリアアグリゲーションが設定されている場合、セル又はコンポーネントキャリア(Component Carrier:CC)毎にHARQエンティティが設定され、各HARQエンティティが複数のHARQプロセスを維持する。このようなMACレイヤにおけるHARQ制御では、数ミリ秒レベルでの高速再送が可能であり、受信側が一旦データの受信に失敗しても、以降の再送により当該データを早期に受信することができ、スループットの向上を図ることができる。
 LTEシステムでは、ユーザ装置のMACレイヤは、データを送信する際、基地局から受信したアップリンクグラントにより指示された変調符号化方式(Modulation and Coding Scheme:MCS)に従ってデータを送信するためのトランスポートブロックサイズ(TBS)を決定し、対応するサイズのデータをRLC(Radio Link Control)レイヤから取得する。また、データを再送する際は、トランスポートブロックサイズは初送と同一のサイズが使用され、RVI(Redundancy Version Index)によって、HARQ再送において送信される冗長バージョンが指定される。仮に、再送データのTBSが初送のものと異なると、ユーザ装置は初送データと再送データとを適切に合成することができなくなり、復号に失敗してしまう。
3GPP TS36.321 V12.5.0(2015-03) 3GPP TS36.322 V12.2.0(2015-03)
 第5世代(5G)通信では、図1に示されるような3つの代表的なユースケースが想定されている。すなわち、3つのユースケースは、モバイルブロードバンドをさらに発展させたユースケース、あらゆるものがネットワークに接続されるIoT(Internet of Things)などのユースケース、及び高信頼かつ超低遅延通信を実現させたユースケースである。
 このように第5世代通信の要求条件の1つとして、信頼性が高くかつ超低遅延な通信が挙げられている。従来、音声サービスなどの遅延要求の厳しいサービスに対しては、他の論理チャネルやユーザ装置よりも高い優先度によりスケジューリングすることによって、データの送受信が大きく遅延することを回避してきた。しかしながら、無線品質が十分に良好でない場合やセルが混雑している場合には、当該サービスに対するセル内の優先度を向上させたとしても、遅延低減効果は限定的となる可能性がある。
 一方、RLCレイヤからの再送をより迅速化することも考えられる。例えば、図2の左側に示されるように、ユーザ装置が2つのコンポーネントキャリアCC#1,CC#2を介し基地局と通信している場合、RLCレイヤから各CCに対応するHARQエンティティに再送データを迅速に提供することによって、遅延の低減を図ることも考えられる。しかしながら、RLCレイヤのRTT(Round Trip Time)は数10msとなり、遅延低減効果は限定的となる。また、一方のセルの無線品質が良好でない場合には、当該セルからのデータ再送は遅延すると考えられるため、遅延低減効果は同様に限定的となる。
 そこで、図2の右側に示されるように、複数のセル又はコンポーネントキャリア(Component Carrier:CC)でMAC送信又は再送を実行することによって、ダイバーシチ効果により低遅延を実現することが検討されている(HARQシェアリング)。すなわち、図示されるように、同一の再送データを複数のセルのリソースを用いて多重再送することによって、一方のセルの無線品質が良好でなかったり、あるいは混雑しているためデータがユーザ装置に届かなくても、他方のセルで当該データがユーザ装置により受信されれば、遅延を低減することが可能になる。
 一方、HARQプロセスから送信されるトランスポートブロックサイズは、各セルの通信品質や割当て可能なリソース数などのセル状態に基づき決定される。このため、HARQシェアリングが適用されている各セルのセル状態によっては、MAC PDU(Packet Data Unit)のHARQ再送に必要なトランスポートブロックサイズを当該セルにおいて確保することができない可能性がある。例えば、通信品質の良好なコンポーネントキャリアで初送を行い、その後に通信品質が十分でないコンポーネントキャリアで再送を行うケースを考える。この場合、初送では良好な通信品質に対応するトランスポートブロックサイズが利用され、当該トランスポートブロックサイズに対応するデータが、十分な通信品質を有さないコンポーネントキャリアにおける再送にも利用されることになる。しかしながら、この通信品質が十分でないコンポーネントキャリアでは、当該トランスポートブロックを確保することができない可能性がある。例えば、図3に示されるように、相対的に通信品質が高いCC#2において1000ビットのトランスポートブロックサイズが利用され、MACレイヤは、当該サイズに対応するデータをRLCレイヤから取得し、送信用のMAC PDUを生成する。一方、相対的に通信品質が低いCC#1では、500ビットのトランスポートブロックサイズしか割り当てられず、1000ビットのトランスポートブロックサイズに対応したMAC PDUは、CC#1においては送信できず、HARQシェアリングを実現することができない。
 上述した問題点を鑑み、本発明の課題は、HARQシェアリングを実現するためのトランスポートブロックサイズを制御するための技術を提供することである。
 上記課題を解決するため、本発明の一態様は、ユーザ装置と無線通信するためのセルを管理するセル管理部と、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御するMAC処理部とを有する基地局であって、前記セル管理部は、前記HARQシェアリングが適用される複数のセルの通信品質を取得し、前記MAC処理部は、前記取得した各セルの通信品質に対応する送信データサイズのうち最小の送信データサイズによって、前記複数のセルを介した送信を開始するよう制御する基地局に関する。
 本発明の他の態様は、ユーザ装置と無線通信するためのセルを管理するセル管理部と、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御するMAC処理部と、前記MAC処理部に送信データを提供するRLC処理部とを有する基地局であって、前記セル管理部は、前記HARQシェアリングが適用される複数のセルの通信品質を取得し、前記複数のセルの何れかについて検出された通信品質が、現在設定されている送信データサイズを送信するのに必要なレベル未満に低下すると、前記MAC処理部は、前記検出された通信品質に対応する送信データサイズにより構成された送信データを前記RLC処理部から取得する基地局に関する。
 本発明の他の態様は、基地局により提供されるセルを介し無線信号を送受信する送受信部と、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御するMAC処理部と、前記MAC処理部に送信データを提供するRLC処理部とを有するユーザ装置であって、前記送受信部は、前記HARQシェアリングが適用される複数のセルの通信品質を取得し、前記複数のセルの何れかについて検出された通信品質が、現在設定されている送信データサイズを送信するのに必要なレベル未満に低下すると、前記MAC処理部は、前記検出された通信品質に対応する送信データサイズにより構成された送信データを前記RLC処理部から取得するユーザ装置に関する。
 本発明の更なる他の態様は、ユーザ装置と無線通信するためのセルを管理するセル管理部と、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御するMAC処理部とを有する基地局であって、前記MAC処理部は、各送信機会において複数の拡張された冗長バージョンに対応するビット系列を送信し、前記再送処理において現在設定されている送信データサイズより小さな送信データサイズによりビット系列を送信する場合、前記複数の拡張された冗長バージョンを低減することによって、前記より小さな送信データサイズによりビット系列を送信する基地局に関する。
 本発明の他の態様は、基地局により提供されるセルを介し無線信号を送受信する送受信部と、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御するMAC処理部とを有するユーザ装置であって、前記MAC処理部は、各送信機会において複数の拡張された冗長バージョンに対応するビット系列を送信し、前記再送処理において現在設定されている送信データサイズより小さな送信データサイズによりビット系列を送信する場合、前記複数の拡張された冗長バージョンを低減することによって、前記より小さな送信データサイズによりビット系列を送信するユーザ装置に関する。
 本発明によると、HARQシェアリングを実現するためのトランスポートブロックサイズを制御することができる。
図1は、第5世代通信の典型的なユースケースを示す概略図である。 図2は、複数のセルを利用したHARQ再送のためのプロトコルを示す概略図である。 図3は、従来技術による複数のセルを利用したHARQ再送を示す図である。 図4Aは、本発明の一実施例による無線通信システムを示す概略図である。 図4Bは、本発明の一実施例による基地局のハードウェア構成を示すブロック図である。 図4Cは、本発明の一実施例によるユーザ装置のハードウェア構成を示すブロック図である。 図5は、本発明の第1実施例による基地局の構成を示すブロック図である。 図6は、本発明の第1実施例によるHARQ送信処理を示すフロー図である。 図7は、本発明の第2実施例による基地局の構成を示すブロック図である。 図8は、本発明の第2実施例によるユーザ装置の構成を示すブロック図である。 図9は、本発明の第2実施例によるHARQ送信処理を示すフロー図である。 図10は、本発明の第3実施例による基地局の構成を示すブロック図である。 図11は、本発明の第3実施例によるユーザ装置の構成を示すブロック図である。 図12は、本発明の第3実施例によるHARQ送信処理を示すフロー図である。
 以下、図面に基づいて本発明の実施の形態を説明する。
 以下の実施例では、一つ又は複数のHARQプロセスを共通HARQプロセスとして管理するHARQシェアリングをサポートする基地局及びユーザ装置が開示される。後述する実施例を概略すると、共通HARQプロセスが設定されている場合、HARQ再送処理中の各セルの通信品質の劣化に応じて、再送データのトランスポートブロックサイズが動的に調整される。これにより、初送時に設定されたトランスポートブロックサイズが再送時においても固定的に適用され続ける従来のHARQ制御と比較して、各セルの通信品質の劣化によって当該トランスポートブロックサイズが確保できない状況に適切に対処することが可能になる。
 図4Aを参照して、本発明の一実施例による無線通信システムを説明する。図4Aは、本発明の一実施例による無線通信システムを示す概略図である。
 図4Aに示されるように、無線通信システム10は、基地局100及びユーザ装置200を有する。無線通信システム10は、例えば、LTEシステム又はLTE-Advancedシステムである。すなわち、ユーザ装置200は、図示されるように、複数のコンポーネントキャリアCC#1,CC#2を同時に用いて基地局100との間で無線信号を送受信することができる。図示された実施例では、ユーザ装置200は、1つの基地局100とキャリアアグリゲーション通信を行うことしか示されていないが、本発明は、これに限定されるものでない。例えば、ユーザ装置200は、複数の基地局100により提供されるコンポーネントキャリアを同時に利用して、複数の基地局100と同時に送受信を行ってもよい(デュアルコネクティビティ)。また、図示された実施例では、1つの基地局100しか示されていないが、無線通信システム10のサービスエリアをカバーするよう多数の基地局100が配置される。
 基地局100は、ユーザ装置200と無線接続することによって、コアネットワーク(図示せず)上に通信接続された上位局やサーバから受信したダウンリンク(DL)パケットをユーザ装置200に送信すると共に、ユーザ装置200から受信したアップリンク(UL)パケットをサーバに送信する。基地局100は、複数のキャリアを介しユーザ装置200から無線信号を同時に送受信するキャリアアグリゲーション機能を有してもよい。
 図4Bに示されるように、基地局100は、典型的には、ユーザ装置200との間で無線信号を送受信するためのアンテナ101、隣接する基地局100と通信するための第1通信インタフェース(X2インタフェースなど)102、コアネットワークと通信するための第2通信インタフェース(S1インタフェースなど)103、ユーザ装置200との送受信信号を処理するためのプロセッサ104や回路、メモリ装置105などのハードウェアリソースにより構成される。後述される基地局100の各機能及び処理は、メモリ装置105に格納されているデータやプログラムをプロセッサ104が処理又は実行することによって実現されてもよい。しかしながら、基地局100は、上述したハードウェア構成に限定されず、他の何れか適切なハードウェア構成を有してもよい。
 ユーザ装置200は、基地局100により提供される複数のセルを介し基地局100と通信する。また、ユーザ装置200は、1以上の基地局100により提供される複数のセルを同時に利用して、基地局100と無線信号を送受信するキャリアアグリゲーション機能を有する。典型的には、ユーザ装置200は、図示されるように、スマートフォン、携帯電話、タブレット、モバイルルータ、ウェアラブル端末などの無線通信機能を備えた何れか適切な情報処理装置であってもよい。図4Cに示されるように、ユーザ装置200は、プロセッサなどのCPU(Central Processing Unit)201、RAM(Random Access Memory)やフラッシュメモリなどのメモリ装置202、基地局100との間で無線信号を送受信するための無線通信装置203、入出力装置や周辺装置などのユーザインタフェース204などから構成される。例えば、後述されるユーザ装置200の各機能及び処理は、メモリ装置202に格納されているデータやプログラムをCPU201が処理又は実行することによって実現されてもよい。しかしながら、ユーザ装置200は、上述したハードウェア構成に限定されず、後述する処理の1以上を実現する回路などにより構成されてもよい。
 次に、図5~6を参照して、本発明の第1実施例によるHARQ送信処理を説明する。図5は、本発明の第1実施例による基地局の構成を示すブロック図である。
 図5に示されるように、基地局100Aは、セル管理部110A及びMAC処理部120Aを有する。
 セル管理部110Aは、ユーザ装置200と無線通信するためのセルを管理する。具体的には、セル管理部110Aは、基地局100Aにより提供される複数のセルの通信品質を取得し、取得した各セルの通信品質をセル品質情報として保持する。例えば、ダウンリンク通信については、セル管理部110Aは、ユーザ装置200から各セルのCQI(Channel Quality Indicator)を取得し、取得したCQIに基づきセル品質情報を構成してもよい。また、アップリンク通信については、セル管理部110Aは、ユーザ装置200から送信されるPUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)、SRS(Sounding Reference Signal)などの受信品質を測定し、測定結果に基づきセル品質情報を構成してもよい。
 MAC処理部120Aは、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御する。具体的には、基地局100Aがユーザ装置200に対して複数のセルを設定するとき、MAC処理部120Aは、これらのセルについて設定された1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを設定する。例えば、3つのコンポーネントキャリアCC#1,CC#2,CC#3が設定される場合、HARQプロセス#0~3はCC#1,CC#2の間でシェアリングされて共通のHARQプロセスとして管理され、HARQプロセス#4~7はCC#2,CC#3の間でシェアリングされて共通のHARQプロセスとして管理されてもよい。この場合、MAC処理部120Aは、設定されたHARQプロセスのうち指定されたHARQプロセスを共通のHARQプロセスとして管理し、当該共通のHARQプロセスの再送データを複数のセルを介しユーザ装置200に送信する。これにより、ダイバーシチ効果によって再送データをより確実にユーザ装置200に送信することが可能になる。
 第1実施例では、セル管理部110Aは、HARQシェアリングが適用される複数のセルの通信品質を取得し、MAC処理部120Aは、取得した各セルの通信品質に対応する送信データサイズのうち最小の送信データサイズによって、複数のセルを介した送信を開始するよう制御する。具体的には、MAC処理部120Aは、HARQシェアリングにおける共通のHARQプロセスに関連する複数のコンポーネントキャリアでデータを送信する際、セル品質情報に基づき各コンポーネントキャリアで期待されるトランスポートブロックサイズを判断し、これらのトランスポートブロックサイズのうち最小のトランスポートブロックサイズを利用して送信を開始する。例えば、ダウンリンク送信については、MAC処理部120Aは、当該最小のトランスポートブロックサイズに対応したデータをRLCレイヤから取得し、取得したデータからMAC PDUを生成してユーザ装置200に送信する。他方、アップリンク送信については、MAC処理部120Aは、当該最小のトランスポートブロックサイズを指示したアップリンクグラントをユーザ装置200に送信し、当該アップリンクグラントを受信すると、ユーザ装置200は、指定されたトランスポートブロックサイズによりアップリンク送信を実行する。なお、受信側は、初送で受信したトランスポートブロックサイズと異なるトランスポートブロックサイズの再送データを受信した場合、当該再送データを破棄してもよい。
 一実施例では、MAC処理部120Aは、再送処理において当該最小の送信データサイズの送信を可能にするため、セルにおける割当てリソースブロック数又は変調符号化方式を制御してもよい。すなわち、MAC処理部120Aは、初送時に設定された最小のトランスポートブロックサイズをHARQ再送時に確保できない場合、初送と同等のトランスポートブロックサイズが担保できるように割当てリソースブロック数及び/又はMCSを選択してもよい。この場合、MAC処理部120Aは、実際の通信品質に対してアグレッシブな割当てを実行することになり、再送では、通信品質が十分でなく、再送データが欠落する可能性がある。このような可能性を鑑み、MAC処理部120Aは、実際の通信品質に対して安全なMCS、すなわち、実際の通信品質に対応したMCSの代わりに、より劣化した通信品質にも対応可能なMCSを選択してもよい。
 図6は、本発明の第1実施例によるHARQ送信処理を示すフロー図である。当該処理は、ダウンリンクデータ又はアップリンクデータの初送の際に、基地局100Aにより実行される。
 図6に示されるように、ステップS101において、基地局100Aは、ユーザ装置200と無線通信するためのセルの通信品質を取得する。例えば、基地局100Aは、ダウンリンク通信についてはユーザ装置200から取得した各セルのCQIを利用して、また、アップリンク通信についてはユーザ装置200から送信されるPUCCH、PUSCH、SRSなどの受信品質の測定結果を利用して、セル品質情報を構成してもよい。
 ステップS102において、基地局100Aは、共通HARQプロセスを適用する。すなわち、基地局100Aは、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用する。これにより、共通のHARQプロセスに関連するセルから送信されたデータについて再送が必要になった場合、共通のHARQプロセスに関連する他のセルからデータを再送することが可能になり、ダイバーシチ効果によってより確実に再送データを受信させることが可能になる。
 ステップS103において、基地局100Aは、取得した各セルの通信品質に対応する送信データサイズのうち最小の送信データサイズによって、複数のセルを介したHARQ送信を開始するよう制御する。具体的には、基地局100Aは、共通HARQプロセスが適用される各コンポーネントキャリアに対応するトランスポートブロックサイズのうち、最小のトランスポートブロックサイズを共通HARQプロセスの送信データに適用する。例えば、ダウンリンク送信については、基地局100Aは、当該最小のトランスポートブロックサイズに対応したデータをRLCレイヤから取得し、取得したデータからMAC PDUを生成してユーザ装置200に送信する。他方、アップリンク送信については、基地局100Aは、当該最小のトランスポートブロックサイズを指示したアップリンクグラントをユーザ装置200に送信し、当該アップリンクグラントを受信すると、ユーザ装置200は、指定されたトランスポートブロックサイズによりアップリンク送信を実行する。
 次に、図7~9を参照して、本発明の第2実施例によるHARQ送信処理を説明する。図7は、本発明の第2実施例による基地局の構成を示すブロック図である。
 図7に示されるように、基地局100Bは、セル管理部110B、MAC処理部120B及びRLC処理部130Bを有する。
 セル管理部110Bは、ユーザ装置200と無線通信するためのセルを管理する。具体的には、第1実施例と同様に、セル管理部110Bは、基地局100Bにより提供される複数のセルの通信品質を取得し、取得した各セルの通信品質をセル品質情報として保持する。例えば、ダウンリンク通信については、セル管理部110Bは、ユーザ装置200から各セルのCQIを取得し、取得したCQIに基づきセル品質情報を構成してもよい。また、アップリンク通信については、セル管理部110Bは、ユーザ装置200から送信されるPUCCH、PUSCH、SRSなどの受信品質を測定し、測定結果に基づきセル品質情報を構成してもよい。
 MAC処理部120Bは、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、1つ又は複数のセルを介した再送処理を制御する。具体的には、基地局100Bがユーザ装置200に対して複数のセルを設定するとき、MAC処理部120Bは、これらのセルについて設定された1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを設定する。この場合、MAC処理部120Bは、設定されたHARQプロセスのうち指定されたHARQプロセスを共通のHARQプロセスとして管理し、当該共通のHARQプロセスの再送データを複数のセルを介しユーザ装置200に送信する。これにより、ダイバーシチ効果によって再送データをより確実にユーザ装置200に送信することが可能になる。
 RLC処理部130Bは、MAC処理部120Bに送信データを提供する。具体的には、RLC処理部130Bは、MAC処理部120Bによって設定されたトランスポートブロックサイズに対応する送信データをMAC処理部120Bに提供する。
 第2実施例では、セル管理部110Bは、HARQシェアリングが適用される複数のセルの通信品質を取得し、複数のセルの何れかについて検出された通信品質が、現在設定されている送信データサイズを送信するのに必要なレベル未満に低下すると、MAC処理部120Bは、当該事象をRLC処理部130Bへ通知し、検出された通信品質に対応する送信データサイズにより構成された送信データをRLC処理部130Bから取得する。具体的には、セル管理部110Bは、共通のHARQプロセスに関連する複数のコンポーネントキャリアでデータの送信又は再送中、これらセルの通信品質をモニタする。現在設定されている送信データサイズを送信するのに必要なレベル未満まで通信品質が低下したセルが検出される(或いは、当該セルでスケジューリング機会を検出する場合)と、MAC処理部120Bは、当該事象をRLC処理部130Bへ通知し、検出した通信品質に対応したより小さいトランスポートブロックサイズを再設定し、当該トランスポートブロックサイズに対応する送信データ(RLC PDU)をRLC処理部130Bから取得する。MAC処理部120Bは、取得した送信データからMAC PDUを生成してユーザ装置200に送信する。MAC処理部120BからRLC処理部130Bに対する通知には、対応するHARQ process番号やRLC PDU(或いはRLC PDU segment)を特定する情報(例えば、SN(Sequence Number)やSO(Segment Offset)など)が含まれていてもよい。これにより、HARQ再送時に通信品質の劣化などにより送信可能なトランスポートブロックサイズが小さくなった場合、現在の通信品質に応じてトランスポートブロックサイズを動的に変更することができる。すなわち、本実施例は、MACレイヤでの再送時に上位のRLCレイヤの再送を強制的にトリガすることに相当すると考えられる。
 一実施例では、RLC処理部130Bは、RLC処理部130Bからの送信データの再送回数を計数する再送カウンタを有し、MAC処理部120Bから検出された通信品質に対応する送信データサイズにより構成された送信データを要求されたことに応答して、RLC処理部130Bは、再送カウンタをインクリメントしないようにしてもよい。RLC処理部130Bは、RLC PDU単位で再送回数を計数しており、当該再送カウンタを利用して、MAC処理部120Bによる再送処理で送信できなかったデータをRLC処理部130Bによる再送処理によって再送する。典型的には、RLC処理部130Bからの再送は、MAC処理部120Bによる再送超過後に実施される。一方、上述したMAC処理部120Bによるトランスポートブロックサイズの変更に伴うRLC処理部130Bからの送信データの提供は、MAC処理部120Bによる再送超過前に実行され、RLC処理部130Bによる再送としてカウントされるべきでない。このため、MAC処理部120Bが変更したトランスポートブロックサイズに対応する送信データをRLC処理部130Bに要求した場合、RLC処理部130Bは、再送カウンタをインクリメントしなくてもよい。尚、このような処理を行うか否かについては、下りリンクであれば基地局100B内部で行われるが、上りリンクについては基地局100Bからの指示を以て判定されてもよい。具体的には、ユーザ装置200は基地局100Bから上りグラントを割り当てられる際、その中で上記制御を行うか否かが通知されていてもよいし、或いは、同一HARQプロセスに対して異なるTBS(或いは、それに対応するMCS選択)がされている場合に、ユーザ装置200が暗示的にこれを判定してもよいし、或いはその両方が適用されてもよい。
 図8は、本発明の第2実施例によるユーザ装置の構成を示すブロック図である。図8に示されるように、ユーザ装置200Bは、送受信部210B、MAC処理部220B及びRLC処理部230Bを有する。
 送受信部210Bは、基地局100により提供されるセルを介し無線信号を送受信する。具体的には、送受信部210Bは、基地局100により提供される複数のコンポーネントキャリアを使用して、基地局100との間でアップリンク/ダウンリンク制御チャネルやアップリンク/ダウンリンクデータチャネルなどの各種無線チャネルを送受信する。例えば、ユーザ装置200Bにキャリアアグリゲーションが設定されている場合、送受信部210Bは、これら複数のコンポーネントキャリアを同時に使用して、1以上の基地局100との間で各種無線チャネルを送受信することができる。
 MAC処理部220Bは、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御する。具体的には、基地局100がユーザ装置200Bに対して複数のセルを設定するとき、MAC処理部220Bは、これらのセルについて設定された1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを設定する。この場合、MAC処理部220Bは、設定されたHARQプロセスのうち指定されたHARQプロセスを共通のHARQプロセスとして管理し、当該共通のHARQプロセスの再送データを複数のセルを介し基地局100に送信する。これにより、ダイバーシチ効果によって再送データをより確実に基地局100に送信することが可能になる。
 RLC処理部230Bは、MAC処理部220Bに送信データを提供する。具体的には、RLC処理部230Bは、MAC処理部220Bによって設定されたトランスポートブロックサイズに対応する送信データをMAC処理部220Bに提供する。
 第2実施例では、送受信部210Bは、HARQシェアリングが適用される複数のセルの通信品質を取得し、複数のセルの何れかについて検出された通信品質が、現在設定されている送信データサイズを送信するのに必要なレベル未満に低下すると、MAC処理部220Bは、当該事象をRLC処理部230Bへ通知し、検出された通信品質に対応する送信データサイズにより構成された送信データをRLC処理部230Bから取得する。具体的には、送受信部210Bは、共通のHARQプロセスに関連する複数のコンポーネントキャリアでデータの送信又は再送中、これらセルの通信品質をモニタする。現在設定されている送信データサイズを送信するのに必要なレベル未満まで通信品質が低下したセルが検出される(或いは、当該セルでスケジューリング機会を検出する場合)と、MAC処理部220Bは、当該事象をRLC処理部230Bへ通知し、検出した通信品質に対応したより小さいトランスポートブロックサイズを再設定し、当該トランスポートブロックサイズに対応する送信データ(RLC PDU)をRLC処理部230Bから取得する。MAC処理部220Bは、取得した送信データからMAC PDUを生成して基地局100に送信する。MAC処理部220BからRLC処理部230Bに対する通知には、対応するHARQ process番号やRLC PDU(或いはRLC PDU segment)を特定する情報(例えば、SNやSOなど)が含まれていてもよい。これにより、HARQ再送時に通信品質の劣化などにより送信可能なトランスポートブロックサイズが小さくなった場合、現在の通信品質に応じてトランスポートブロックサイズを動的に変更することができる。すなわち、本実施例は、MACレイヤでの再送時に上位のRLCレイヤの再送を強制的にトリガすることに相当すると考えられる。
 一実施例では、RLC処理部230Bは、RLC処理部230Bからの送信データの再送回数を計数する再送カウンタを有し、MAC処理部220Bから検出された通信品質に対応する送信データサイズにより構成された送信データを要求されたことに応答して、RLC処理部230Bは、再送カウンタをインクリメントしないようにしてもよい。RLC処理部230Bは、RLC PDU(或いはRLC PDU segment)単位で再送回数を計数しており、当該再送カウンタを利用して、MAC処理部220Bによる再送処理で送信できなかったデータをRLC処理部230Bによる再送処理によって再送する。典型的には、RLC処理部230Bからの再送は、MAC処理部220Bによる再送超過後に実施される。一方、上述したMAC処理部220Bによるトランスポートブロックサイズの変更に伴うRLC処理部230Bからの送信データの提供は、MAC処理部220Bによる再送超過前に実行され、RLC処理部230Bによる再送としてカウントされるべきでない。このため、MAC処理部220Bが変更したトランスポートブロックサイズに対応する送信データをRLC処理部230Bに要求した場合、RLC処理部230Bは、再送カウンタをインクリメントしなくてもよい。
 図9は、本発明の第2実施例によるHARQ送信処理を示すフロー図である。当該処理は、ダウンリンクデータ又はアップリンクデータの送信及び再送中に送信側の装置により実行される。すなわち、ダウンリンク送信では、当該処理は基地局100Bによって実行され、アップリンク送信では、当該処理はユーザ装置200Bによって実行される。以下では、ダウンリンク送信に着目として当該処理を説明するが、アップリンク送信に同様に適用可能であることは当業者に容易に理解されるであろう。
 図9に示されるように、ステップS201において、基地局100Bは、ユーザ装置200と無線通信するためのセルの通信品質を取得する。例えば、基地局100Bは、ダウンリンク再送中、各セルのCQIをユーザ装置200から定期的に取得してもよい。
 ステップS202において、基地局100Bは、共通HARQプロセスを適用する。すなわち、基地局100Bは、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用する。これにより、共通のHARQプロセスに関連するセルから送信されたデータについて再送が必要になった場合、共通のHARQプロセスに関連する他のセルからデータを再送することが可能になり、ダイバーシチ効果によってより確実に再送データを受信させることが可能になる。
 ステップS203において、基地局100Bは、共通のHARQプロセスが適用される複数のセルの何れかについて検出された通信品質が、現在設定されている送信データサイズを送信するのに必要なレベル未満に低下したことを検出する。例えば、現在設定されているトランスポートブロックサイズがCQIインデックスXに対応している場合、基地局100Bは、共通のHARQプロセスが適用される何れかのセルのCQIインデックスYがX未満であることを検出すると、検出されたCQIインデックスYに対応するトランスポートブロックサイズを再設定する。
 ステップS204において、基地局100Bは、検出された通信品質に対応する送信データサイズにより送信データを再構成し、ユーザ装置200に送信する。具体的には、基地局100Bは、検出されたCQIインデックスYに対応するトランスポートブロックサイズに対応するMAC PDUを生成し、ユーザ装置200に送信する。
 次に、図10~12を参照して、本発明の第3実施例によるHARQ送信処理を説明する。図10は、本発明の第3実施例による基地局の構成を示すブロック図である。
 図10に示されるように、基地局100Cは、セル管理部110C及びMAC処理部120Cを有する。
 セル管理部110Cは、ユーザ装置200と無線通信するためのセルを管理する。具体的には、第1、2実施例と同様に、セル管理部110Cは、基地局100Cにより提供される複数のセルの通信品質を取得し、取得した各セルの通信品質をセル品質情報として保持する。例えば、ダウンリンク通信については、セル管理部110Cは、ユーザ装置200から各セルのCQIを取得し、取得したCQIに基づきセル品質情報を構成してもよい。また、アップリンク通信については、セル管理部110Cは、ユーザ装置200から送信されるPUCCH、PUSCH、SRSなどの受信品質を測定し、測定結果に基づきセル品質情報を構成してもよい。
 MAC処理部120Cは、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御する。具体的には、基地局100Cがユーザ装置200に対して複数のセルを設定するとき、MAC処理部120Cは、これらのセルについて設定された1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを設定する。この場合、MAC処理部120Cは、設定されたHARQプロセスのうち指定されたHARQプロセスを共通のHARQプロセスとして管理し、当該共通のHARQプロセスの再送データを複数のセルを介しユーザ装置200に送信する。これにより、ダイバーシチ効果によって再送データをより確実にユーザ装置200に送信することが可能になる。
 第3実施例では、MAC処理部120Cは、各送信機会において複数の拡張された冗長バージョンに対応するビット系列を送信し、再送処理において現在設定されている送信データサイズより小さな送信データサイズによりビット系列を送信する場合、当該複数の拡張された冗長バージョンを低減することによって、より小さな送信データサイズによりビット系列を送信する。従来、冗長バージョンは2ビットにより0~3の冗長バージョンインデックス(RVI)により規定され、HARQの各送信機会では、何れか1つの冗長バージョンに対応するビット系列が送信されている。本実施例では、従来の冗長バージョンを拡張すると共に、1回の送信機会において複数の冗長バージョンに対応するビット系列が送信される。例えば、拡張された冗長バージョンは、4ビットを用いて0~15のRVIにより規定されてもよい。
 MAC処理部120Cは、セルの通信品質に応じて、1回の送信機会において1以上の冗長バージョンに対応するビット系列を送信してもよい。例えば、通信品質の良好なセルでは、MAC処理部120Cは、RVI0~3のビット系列を1回の送信機会で送信してもよい。なお、何れの冗長バージョンのビット系列まで送信されているかについて、受信側は、通知されたRVIとビット系列の総数とに基づき判定することが可能である。例えば、各冗長バージョンに対して50ビットのビット系列が送信されるとする。このとき、RVI0の通知と共に200ビットのビット系列を受信した場合、受信側は、RVI0~3までのビット系列が送信されたと判断することができる。ただし、実際には、ビット系列は必ずしもRVIの昇順により構成されている必要はない。
 本実施例では、セルの通信品質の低下などによって、現在設定されているトランスポートブロックサイズより小さいトランスポートブロックサイズが再設定される場合、MAC処理部120Cは、1回の送信機会において送信するビット系列を小さくする。例えば、各冗長バージョンに対して50ビットのビット系列が送信されるとする。このとき、初送においてRVI0~3の200ビットのビット系列を送信した後にセルの通信品質が低下したことを検出すると、MAC処理部120Cは、例えば、RVI4~5の100ビットのビット系列を再送してもよい。
 なお、上述した拡張されたRVIを用いてより細かい粒度により冗長バージョンを指定できる場合であっても、MAC処理部120Cは、HARQの初送については所定のトランスポートブロックサイズを適用してもよい。これは、トランスポートブロックサイズの復号には少なくとも情報ビット数(符号化前のビット数)分のデータが受信される必要があるためである。この場合、HARQの初送の冗長バージョンは、従来の2ビットのRVIにより表現することができるため、ユーザ装置200の受信状態に応じてRVIを表現するビット数が変更されてもよい。例えば、ユーザ装置200は、再送HARQプロセスが1つもない場合、2ビットによりRVIが表現されると想定してブラインド復号を実行してもよい。そして、NACKが発生した場合、ユーザ装置200は、再送要求を送信してから4ms後から以降のサブフレームでは、4ビットによりRVIが表現されると想定してブラインド復号を実行してもよい。あるいは、ユーザ装置200は、従来の2ビットにより表されたRVIと4ビットにより表された拡張されたRVIとの双方を想定してサブフレームを復号してもよい。当該サブフレームに初送HARQプロセスと再送HARQプロセスとの何れがスケジューリングされているかは基地局100C次第であるため、ユーザ装置200は、双方のRVIを想定してブラインド復号を実行してもよい。
 一実施例では、USS(UE specific Search Space)で送信されるDCI(Downlink Control Information)のみ拡張されたRVIにより指定可能とされてもよい。これは、拡張された冗長バージョンは、ユーザ装置200毎に指定されるためである。すなわち、ユーザ装置200は、CSS(Common Search Space)では2ビット、USSでは4ビットと想定してブラインド復号を実行する。CSSはクロスキャリアスケジューリングされており、独立HARQプロセスのみ制御すれば十分である。これにより、拡張されたRVIによるオーバヘッドを可能な限り削減することができる。
 一実施例では、拡張された冗長バージョンは、それぞれ異なるビット系列長を有してもよい。例えば、RVI0のビット系列は情報ビット長と同程度のビット系列長を有し、RVI1のビット系列もまた情報ビット長と同程度のビット系列長を有する一方、RVI2のビット系列はその1/2のビット系列長を有し、RVI3のビット系列は更にその1/2のビット系列長を有し、以下同様に構成されてもよい。すなわち、初送では、より大きなビット系列が送信され、その後、通信品質の劣化の可能性を考慮して、トランスポートブロックサイズを低減するようにしてもよい。
 また、各RVIに対応するトランスポートブロックサイズは、予め固定的に決定されてもよいし、MAC処理部120Cからの指示に従って決定されてもよい。なお、基地局100Cにおいてトランスポートブロックサイズが変更されるとき、UE-eNB間の不一致が発生する可能性を回避するため、当該変更がCSSにおいて通知されてもよい。
 図11は、本発明の第3実施例によるユーザ装置の構成を示すブロック図である。
 図11に示されるように、ユーザ装置200Cは、送受信部210C及びMAC処理部220Cを有する。
 送受信部210Cは、基地局100により提供されるセルを介し無線信号を送受信する。具体的には、送受信部210Cは、基地局100により提供される複数のコンポーネントキャリアを使用して、基地局100との間でアップリンク/ダウンリンク制御チャネルやアップリンク/ダウンリンクデータチャネルなどの各種無線チャネルを送受信する。例えば、ユーザ装置200Cにキャリアアグリゲーションが設定されている場合、送受信部210Cは、これら複数のコンポーネントキャリアを同時に使用して、1以上の基地局100との間で各種無線チャネルを送受信することができる。
 MAC処理部220Cは、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御する。具体的には、基地局100がユーザ装置200Cに対して複数のセルを設定するとき、MAC処理部220Cは、これらのセルについて設定された1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを設定する。この場合、MAC処理部220Cは、設定されたHARQプロセスのうち指定されたHARQプロセスを共通のHARQプロセスとして管理し、当該共通のHARQプロセスの再送データを複数のセルを介し基地局100に送信する。これにより、ダイバーシチ効果によって再送データをより確実に基地局100に送信することが可能になる。
 第3実施例では、MAC処理部220Cは、各送信機会において複数の拡張された冗長バージョンに対応するビット系列を送信し、再送処理において現在設定されている送信データサイズより小さな送信データサイズによりビット系列を送信する場合、当該複数の拡張された冗長バージョンを低減することによって、より小さな送信データサイズによりビット系列を送信する。本実施例では、従来の冗長バージョンを拡張すると共に、1回の送信機会において複数の冗長バージョンに対応するビット系列が送信される。例えば、拡張された冗長バージョンは、4ビットを用いて0~15の冗長バージョンインデックスにより規定されてもよい。
 MAC処理部220Cは、セルの通信品質に応じて、1回の送信機会において1以上の冗長バージョンに対応するビット系列を送信してもよい。例えば、通信品質の良好なセルでは、MAC処理部220Cは、例えば、RVI0~3のビット系列を1回の送信機会で送信してもよい。本実施例では、セルの通信品質の低下などによって、より小さいトランスポートブロックサイズが再設定される場合、MAC処理部220Cは、1回の送信機会において送信するビット系列を小さくする。例えば、各冗長バージョンに対して50ビットのビット系列が送信されるとする。このとき、初送においてRVI0~3の200ビットのビット系列を送信した後にセルの通信品質が低下したことを検出すると、MAC処理部220Cは、例えば、RVI4~5の100ビットのビット系列を再送してもよい。
 なお、上述した拡張されたRVIを用いてより細かい粒度により冗長バージョンを指定できる場合であっても、MAC処理部220Cは、HARQの初送については所定のトランスポートブロックサイズを適用してもよい。
 一実施例では、拡張された冗長バージョンは、それぞれ異なるビット系列長を有してもよい。この場合、初送では、より大きなビット系列が送信され、その後、通信品質の劣化の可能性を考慮して、トランスポートブロックサイズを低減するようにしてもよい。
 図12は、本発明の第3実施例によるHARQ送信処理を示すフロー図である。当該処理は、ダウンリンクデータ又はアップリンクデータの送信及び再送中に送信側の装置により実行される。すなわち、ダウンリンク送信では、当該処理は基地局100Cによって実行され、アップリンク送信では、当該処理はユーザ装置200Cによって実行される。以下では、ダウンリンク送信に着目として当該処理を説明するが、アップリンク送信に同様に適用可能であることは当業者に容易に理解されるであろう。
 図12に示されるように、ステップS301において、基地局100Cは、ユーザ装置200と無線通信するためのセルの通信品質を取得する。例えば、基地局100Cは、ダウンリンク再送中、各セルのCQIをユーザ装置200から定期的に取得してもよい。
 ステップS302において、基地局100Cは、共通HARQプロセスを適用すると共に、各送信機会において複数の拡張された冗長バージョンに対応するビット系列を送信する。すなわち、基地局100Cは、1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用すると共に、HARQの各送信機会において複数の拡張された冗長バージョンに対応するビット系列を送信する。従来、冗長バージョンは2ビットにより0~3のRVIにより規定され、HARQの各送信機会では、何れか1つの冗長バージョンに対応するビット系列が送信されていた。本実施例では、従来の冗長バージョンを拡張すると共に、1回の送信機会において複数の冗長バージョンに対応するビット系列が送信される。例えば、拡張された冗長バージョンは、4ビットを用いて0~15のRVIにより規定されてもよい。
 ステップS303において、基地局100Cは、共通のHARQプロセスが適用される複数のセルの何れかについて検出された通信品質が、現在設定されている送信データサイズを送信するのに必要なレベル未満に低下したことを検出する。この場合、基地局100Cは、以降の再送処理において、現在設定されている送信データサイズより小さな送信データサイズによりビット系列を送信する必要がある。
 ステップS304において、基地局100Cは、拡張された冗長バージョンを低減することによって、より小さな送信データサイズによりビット系列を送信する。例えば、各冗長バージョンに対して50ビットのビット系列が送信されるとする。このとき、初送においてRVI0~3の200ビットのビット系列を送信した後にセルの通信品質が低下したことを検出すると、基地局100Cは、例えば、RVI4~5の100ビットのビット系列を再送してもよい。
 第1~3実施例を個別に説明したが、これらが組み合わせ可能であることは当業者に理解されるであろう。例えば、HARQの初送時には、第1実施例によりトランスポートブロックサイズが設定され、以降のHARQ再送において、通信品質の劣化に伴って第2実施例及び/又は第3実施例が適宜適用されてもよい。
 以上、本発明の実施例について詳述したが、本発明は上述した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 本出願は、2015年5月1日に出願した日本国特許出願2015-094272号の優先権の利益に基づき、これを主張するものであり、2015-094272号の全内容を本出願に援用する。
10 無線通信システム
100 基地局
200 ユーザ装置

Claims (10)

  1.  ユーザ装置と無線通信するためのセルを管理するセル管理部と、
     1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御するMAC処理部と、
    を有する基地局であって、
     前記セル管理部は、前記HARQシェアリングが適用される複数のセルの通信品質を取得し、
     前記MAC処理部は、前記取得した各セルの通信品質に対応する送信データサイズのうち最小の送信データサイズによって、前記複数のセルを介した送信を開始するよう制御する基地局。
  2.  前記MAC処理部は、前記再送処理において前記最小の送信データサイズの送信を可能にするため、前記セルにおける割当てリソースブロック数又は変調符号化方式を制御する、請求項1記載の基地局。
  3.  ユーザ装置と無線通信するためのセルを管理するセル管理部と、
     1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御するMAC処理部と、
     前記MAC処理部に送信データを提供するRLC処理部と、
    を有する基地局であって、
     前記セル管理部は、前記HARQシェアリングが適用される複数のセルの通信品質を取得し、
     前記複数のセルの何れかについて検出された通信品質が、現在設定されている送信データサイズを送信するのに必要なレベル未満に低下すると、前記MAC処理部は、前記検出された通信品質に対応する送信データサイズにより構成された送信データを前記RLC処理部から取得する基地局。
  4.  前記RLC処理部は、前記RLC処理部からの送信データの再送回数を計数する再送カウンタを有し、
     前記MAC処理部から前記検出された通信品質に対応する送信データサイズにより構成された送信データを要求されたことに応答して、前記RLC処理部は、前記再送カウンタをインクリメントしない、請求項3記載の基地局。
  5.  基地局により提供されるセルを介し無線信号を送受信する送受信部と、
     1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御するMAC処理部と、
     前記MAC処理部に送信データを提供するRLC処理部と、
    を有するユーザ装置であって、
     前記送受信部は、前記HARQシェアリングが適用される複数のセルの通信品質を取得し、
     前記複数のセルの何れかについて検出された通信品質が、現在設定されている送信データサイズを送信するのに必要なレベル未満に低下すると、前記MAC処理部は、前記検出された通信品質に対応する送信データサイズにより構成された送信データを前記RLC処理部から取得するユーザ装置。
  6.  前記RLC処理部は、前記RLC処理部からの送信データの再送回数を計数する再送カウンタを有し、
     前記MAC処理部から前記検出された通信品質に対応する送信データサイズにより構成された送信データを要求されたことに応答して、前記RLC処理部は、前記再送カウンタをインクリメントしない、請求項5記載のユーザ装置。
  7.  ユーザ装置と無線通信するためのセルを管理するセル管理部と、
     1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御するMAC処理部と、
    を有する基地局であって、
     前記MAC処理部は、各送信機会において複数の拡張された冗長バージョンに対応するビット系列を送信し、前記再送処理において現在設定されている送信データサイズより小さな送信データサイズによりビット系列を送信する場合、前記複数の拡張された冗長バージョンを低減することによって、前記より小さな送信データサイズによりビット系列を送信する基地局。
  8.  前記拡張された冗長バージョンは、それぞれ異なるビット系列長を有する、請求項7記載の基地局。
  9.  基地局により提供されるセルを介し無線信号を送受信する送受信部と、
     1つ又は複数のHARQプロセスを共通のHARQプロセスとして管理するHARQシェアリングを利用することによって、複数のセルを介した再送処理を制御するMAC処理部と、
    を有するユーザ装置であって、
     前記MAC処理部は、各送信機会において複数の拡張された冗長バージョンに対応するビット系列を送信し、前記再送処理において現在設定されている送信データサイズより小さな送信データサイズによりビット系列を送信する場合、前記複数の拡張された冗長バージョンに対応するビット系列を低減することによって、前記より小さな送信データサイズによりビット系列を送信するユーザ装置。
  10.  前記拡張された冗長バージョンは、それぞれ異なるビット系列長を有する、請求項9記載のユーザ装置。
PCT/JP2016/055092 2015-05-01 2016-02-22 基地局及びユーザ装置 WO2016178331A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/511,268 US20170295584A1 (en) 2015-05-01 2016-02-22 Base station and user equipment
JP2017516563A JP6313905B2 (ja) 2015-05-01 2016-02-22 基地局及びユーザ装置
EP16789467.4A EP3291598A4 (en) 2015-05-01 2016-02-22 Base station and user device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015094272 2015-05-01
JP2015-094272 2015-05-01

Publications (1)

Publication Number Publication Date
WO2016178331A1 true WO2016178331A1 (ja) 2016-11-10

Family

ID=57218420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055092 WO2016178331A1 (ja) 2015-05-01 2016-02-22 基地局及びユーザ装置

Country Status (4)

Country Link
US (1) US20170295584A1 (ja)
EP (1) EP3291598A4 (ja)
JP (1) JP6313905B2 (ja)
WO (1) WO2016178331A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107197528B (zh) * 2016-03-14 2020-12-25 华为技术有限公司 一种资源调度和分配的方法和装置
CN108289331B (zh) * 2017-01-09 2021-11-19 华为技术有限公司 一种上行传输方法、终端、网络侧设备
CN109547167B (zh) * 2017-08-02 2022-03-29 华为技术有限公司 一种计数方法及通信装置
CN111865534B (zh) 2019-04-30 2021-07-13 大唐移动通信设备有限公司 一种信息传输方法、网络设备及终端
WO2021211728A1 (en) * 2020-04-14 2021-10-21 Idac Holdings, Inc. Methods and apparatuses for improved voice coverage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150103752A1 (en) * 2013-10-11 2015-04-16 Mediatek, Inc. HARQ Memory Space Management for LTE Carrier Aggregation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7584397B2 (en) * 2004-06-10 2009-09-01 Interdigital Technology Corporation Method and apparatus for dynamically adjusting data transmission parameters and controlling H-ARQ processes
DE602006012692D1 (de) * 2006-10-31 2010-04-15 Research In Motion Ltd Verfahren und Vorrichtung zur Wiedersegmentierung von Datenpaketen für HARQ Wiederübertragung
US8189559B2 (en) * 2007-07-23 2012-05-29 Samsung Electronics Co., Ltd. Rate matching for hybrid ARQ operations
KR101476203B1 (ko) * 2008-01-08 2014-12-24 엘지전자 주식회사 성좌 재배열 이득을 보장하기 위한 harq 기반 신호 전송 방법
WO2009157859A2 (en) * 2008-06-26 2009-12-30 Telefonaktiebolaget L M Ericsson (Publ) Error control in multi-carrier wireless systems
AU2010226125B2 (en) * 2009-03-16 2015-05-28 Wireless Innovations Llc HARQ process number management for downlink carrier aggregation
EP2629442B1 (en) * 2012-02-14 2014-12-10 Telefonaktiebolaget L M Ericsson (publ) Redundancy version selection based on receiving quality and transport format
US10313079B2 (en) * 2013-08-23 2019-06-04 Qualcomm Incorporated Common HARQ processes
KR102118750B1 (ko) * 2013-10-04 2020-06-03 이노스카이 주식회사 상향링크 스케줄링 및 harq 타이밍 제어 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150103752A1 (en) * 2013-10-11 2015-04-16 Mediatek, Inc. HARQ Memory Space Management for LTE Carrier Aggregation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Corrections to HARQ operation", 3GPP TSG-RAN WG2 MEETING #64BIS R2-090247, 12 January 2009 (2009-01-12), XP050322254 *
LG ELECTRONICS INC.: "HARQ buffer clarification", 3GPP TSG-RAN2 MEETING #64BIS R2-090319, 12 January 2009 (2009-01-12), XP050322310 *
See also references of EP3291598A4 *

Also Published As

Publication number Publication date
US20170295584A1 (en) 2017-10-12
JPWO2016178331A1 (ja) 2017-07-27
JP6313905B2 (ja) 2018-04-18
EP3291598A1 (en) 2018-03-07
EP3291598A4 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
US9848435B2 (en) Systems and methods to enhance radio link performance in a multi-carrier environment
US9525519B2 (en) Method and system of transferring data in a carrier aggregation environment
US11737085B2 (en) Data transmission method and apparatus, and system
US9173210B2 (en) Method for uplink transmission of radio link control layer and evolved node B
US20120057560A1 (en) Method and apparatus for transmitting and receiving duplicate data in a multicarrier wireless communication system
US20220225400A1 (en) Communications device, infrastructure equipment and methods
JP6313905B2 (ja) 基地局及びユーザ装置
US10440611B2 (en) RLC data packet offloading method and base station
US10555334B2 (en) Radio terminal, base station, and processor
US20230046263A1 (en) Methods and communications devices for transmission of uplink signals according to priorities
JP6343682B2 (ja) ユーザ装置及び基地局
CN107251605B (zh) 有效可靠传输的方法及用户装置
WO2022078441A1 (en) Enhancement for uplink data transmission
US11206571B2 (en) Base station
US10623987B2 (en) User apparatus and base station
WO2016147746A1 (ja) ユーザ装置及び無線通信方法
JP2022554261A (ja) 電力割り当て方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017516563

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016789467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016789467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15511268

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE