WO2016177234A1 - 一种mrru小区的功率动态分配方法和装置 - Google Patents

一种mrru小区的功率动态分配方法和装置 Download PDF

Info

Publication number
WO2016177234A1
WO2016177234A1 PCT/CN2016/078357 CN2016078357W WO2016177234A1 WO 2016177234 A1 WO2016177234 A1 WO 2016177234A1 CN 2016078357 W CN2016078357 W CN 2016078357W WO 2016177234 A1 WO2016177234 A1 WO 2016177234A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
cell
sector
mrru
scheduler
Prior art date
Application number
PCT/CN2016/078357
Other languages
English (en)
French (fr)
Inventor
李军
赵伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177234A1 publication Critical patent/WO2016177234A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading

Definitions

  • the present application relates to, but is not limited to, the field of mobile communication technologies, and in particular, to a power dynamic allocation method and apparatus for an MRRU cell.
  • the RRU Radio Remote Unit
  • the RRU separates the baseband unit of the base station from the radio frequency unit, and converts the baseband optical signal into a radio frequency signal at a remote end to be amplified and transmitted.
  • the RRU centrally places the large-capacity macrocell base station in the available central equipment room, and the baseband part is processed centrally.
  • the radio frequency module in the base station is pulled to the remote radio unit by using the optical fiber, and is placed on the site determined by the network planning, thereby saving A large number of computer rooms required for conventional solutions; and, by using a large-capacity macro base station to support a large number of fiber extensions, conversion between capacity and coverage can be achieved.
  • the MRRU cell can simultaneously multiplex resources (power resources and code channel resources) of multiple RRUs.
  • the power allocation of the MRRU cell is fixedly configured by parameters.
  • the related power sharing method is a single-sector scenario, which solves the problem of power imbalance between common cells under the same RRU, and shares power surplus cells to cells with insufficient power, but cannot solve multiple RRUs. A scene like the MRRU cell.
  • the embodiment of the invention provides a method and a device for dynamically allocating power of a MRRU cell, which are used to solve the problem that the power consumption of the MRRU cell in the sector in the MRRU scenario is unbalanced in the related art.
  • An embodiment of the present invention provides a power dynamic allocation method for an MRRU cell, where the method includes the following steps:
  • the downlink data service scheduling is performed according to the dynamically allocated power information.
  • the method before the obtaining the power information of each MRRU cell sector, the method further includes:
  • a sector super scheduler is established for each sector, and a sector general scheduler is established for each corresponding MRRU cell sector.
  • the step of acquiring power information of each MRRU cell sector includes: the sector normal scheduler periodically reporting power information of a current MRRU cell sector to the sector super scheduler, where the power information is Includes available power and power usage.
  • the step of calculating the remaining power of each MRRU cell sector comprises: the sector super scheduler subtracting the used power with the available power of each MRRU cell sector, respectively, to obtain each MRRU cell sector. Remaining power.
  • the step of dynamically allocating power of a sector of the MRRU cell includes:
  • the sector super scheduler determines, according to the remaining power of each MRRU cell sector, whether there is a cell that can borrow power and a cell that needs to borrow power; if so, the power is reallocated and the reassigned power is Information is sent to the sector normal scheduler;
  • the sector normal scheduler receives the reassigned power information.
  • the step of determining whether there is a cell that can borrow power includes:
  • the sector super scheduler determines whether the cell satisfies the borrowing power less than or equal to the original cell of the cell.
  • the product of the area power and the maximum shared percentage, and the current used power of the cell sector when the power is borrowed is smaller than the product of the sector power after the cell sharing and the percentage of the borrowed power threshold. If yes, the cell can be loaned. The cell of power.
  • the step of determining whether there is a cell that needs to borrow power includes:
  • the sector super scheduler determines whether the current used power of the cell sector is greater than or equal to the product of the current sector power of the cell and the percentage of the borrowed power threshold when the cell satisfies the borrowing power, and if yes, the cell is a cell that needs to borrow power. .
  • the step of reallocating power includes: adjusting, by the sector super scheduler, the power of the cell sector according to a preset adjustment step, and reducing one or the cell that can borrow power
  • the power of the plurality of adjustment steps increases the power of the corresponding adjustment step for the cell that needs to borrow power.
  • An embodiment of the present invention further provides a power dynamic allocation device for a MRRU cell, where the device includes:
  • a sector super scheduler configured to: obtain power information of each MRRU cell sector, calculate remaining power of each MRRU cell sector according to the power information, and perform MRRU according to remaining power of each MRRU cell sector.
  • the power of the cell sector is dynamically allocated;
  • the sector common scheduler is connected to the sector super scheduler and configured to: perform downlink data service scheduling according to the dynamically allocated power information.
  • the device further includes: a parameter configuration unit, connected to the sector super scheduler, configured to: configure a maximum share percentage, a borrowed power threshold percentage, a lending power threshold percentage, and an adjustment step size, and configure The parameters are sent to the sector super scheduler.
  • a parameter configuration unit connected to the sector super scheduler, configured to: configure a maximum share percentage, a borrowed power threshold percentage, a lending power threshold percentage, and an adjustment step size, and configure The parameters are sent to the sector super scheduler.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which implement a power dynamic allocation method of the MRRU cell when the computer executable instructions are executed.
  • the power of the MRRU cell sector is dynamically allocated according to the remaining power of each MRRU cell sector.
  • the power of the MRRU cell sector with sufficient power is shared to the MRRU cell sector with insufficient power, and the sector power imbalance can be dynamically adjusted. Limit the use of sector power to increase throughput.
  • FIG. 1 is a flowchart of a power dynamic allocation method of an MRRU cell according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a power dynamic allocation apparatus of an MRRU cell according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural diagram of a power dynamic allocation apparatus for an MRRU cell according to Embodiment 3 and Embodiment 4 of the present invention
  • FIG. 4 is a flowchart of a power dynamic allocation method of an MRRU cell according to Embodiment 3 to Embodiment 5 of the present invention.
  • Embodiment 5 is a flowchart of an algorithm for dynamically adjusting according to Embodiment 3 to Embodiment 5 of the present invention
  • FIG. 6 is a schematic structural diagram of a power dynamic allocation apparatus for an MRRU cell according to Embodiment 5 of the present invention.
  • the flow of a power dynamic allocation method for an MRRU cell in the embodiment of the present invention is as shown in FIG. 1 , and the method includes the following steps:
  • Step s101 After the system is started, configure a maximum sharing percentage a, a borrowing power threshold percentage T in , a borrowing power threshold percentage T out , and an adjustment step length T step by parameters.
  • the borrowing power threshold percentage T in is the ratio of the used power to the available power when the borrowed power is required;
  • the borrowing power threshold percentage T out is the ratio of the used power to the available power when the power can be borrowed.
  • step s102 a sector super scheduler is established for each sector, and a sector general scheduler is established for each corresponding MRRU cell sector.
  • the sector super scheduler is configured to obtain power information of all MRRU cells in the sector, including available power, used power, original configured maximum power, and adjusted maximum power; determining the most sufficient MRRU cell according to remaining power order, and most lacking The MRRU cell; redistributes power according to certain rules, and transmits the redistributed information to the corresponding sector common scheduler.
  • the sector common scheduler is configured to perform traffic scheduling according to the power information reconfigured by the sector super scheduler; after scheduling, the power information is refreshed, and the information is notified to the sector super scheduler for the next dynamic allocation.
  • Step s103 Acquire power information of each MRRU cell sector.
  • the step of acquiring the power information of each MRRU cell sector includes: the sector common scheduler periodically reporting the power information of the current MRRU cell sector to the sector super scheduler, where the power information includes available power and used power. .
  • Step s104 Calculate the remaining power of each MRRU cell sector according to the power information.
  • the step of calculating the remaining power of each MRRU cell sector comprises: the sector super scheduler subtracting the used power by the available power of each MRRU cell sector, respectively, to obtain the remaining power of each MRRU cell sector. .
  • step s105 the power of the MRRU cell sector is dynamically allocated according to the remaining power of each MRRU cell sector.
  • the step of dynamically allocating power of the MRRU cell sector includes:
  • the sector super scheduler determines, according to the remaining power of each MRRU cell sector, whether there is a cell that can borrow power and a cell that needs to borrow power; if so, the power is reallocated and re-allocated Power information is sent to the sector normal scheduler.
  • the step of determining whether there is a cell that can borrow power includes: the sector super scheduler determines whether the cell satisfies the product that the borrowed power is less than or equal to the original sector power of the cell and the maximum shared percentage, and when the power is borrowed The current used power of the cell sector is less than the product of the product power of the cell after sharing and the percentage of the borrowed power threshold. If yes, the cell is a cell that can borrow power.
  • the step of determining whether there is a cell that needs to borrow power includes: the sector super scheduler determines whether the current used power of the cell sector is greater than or equal to the cell when the cell satisfies the borrowed power. The product of the current sector power and the percentage of the borrowed power threshold. If so, the cell is the cell that needs to borrow power.
  • the step of reallocating power includes: the sector super scheduler adjusts the power of the cell sector according to the pre-configured adjustment step, and reduces one or more adjustment steps for the cell that can borrow the power.
  • the power of the corresponding step is increased for the cell that needs to borrow power.
  • the sector normal scheduler receives the reassigned power information.
  • Step s106 Perform downlink data service scheduling according to the dynamically allocated power information.
  • An embodiment of the present invention establishes an independent power dynamic allocation device in each sector.
  • the power dynamic allocation device of the MRRU cell in this embodiment is shown in FIG. 2, where the device includes a parameter configuration unit 21 and a sector super scheduler. 22 and a sector normal scheduler 23, wherein the sector super scheduler 22 is connected to the parameter configuration unit 21 and the sector normal scheduler 23, respectively.
  • the parameter configuration unit 21 is configured to: configure a maximum sharing percentage, a borrowing power threshold percentage, a lending power threshold percentage, and an adjustment step size, and send the configured parameters to the sector super scheduler 22.
  • the sector super scheduler 22 is configured to: obtain power information of each MRRU cell sector, calculate remaining power of each MRRU cell sector according to the power information, and calculate MRRR according to remaining power of each MRRU cell sector.
  • the power of the cell sector is dynamically allocated.
  • the sector normal scheduler 23 is configured to perform downlink data service scheduling according to the dynamically allocated power information.
  • the MRRU cell (Cell) of the 3RRU is taken as an example, and the device structure is as shown in FIG. 3, and the number of cells is two, which are MCell 1 and MCell 2.
  • One user accesses the 1 and 2 sectors of the MCell 1 cell, and one user accesses the 2 and 3 sectors of the MCell 2 cell.
  • Adjust the step size T step to 1 watt (w) and adjust quickly.
  • the flow of the power dynamic allocation method in this embodiment is as shown in FIG. 4, and the method includes the following steps:
  • Step 1 Configure the maximum sharing percentage of the sector a, the maximum configured power value P max of the cell, the percentage of the borrowed power threshold T in the sector, the percentage of the borrowed power threshold T out , and the adjustment step T step .
  • T in is the ratio of the used power to the available power when borrowing power is required
  • T out is the ratio of the used power to the available power when the power can be borrowed.
  • Step 2 Establish a sector super scheduler for each sector, and establish a sector general scheduler for each MRRU cell sector corresponding thereto; as shown in FIG. 3, establish three sector super schedulers Sector1, Sector2 , Sector3, establishes 6 sector common schedulers C1_S1, C1_S2, C1_S3, C2_S1, C2_S2, C2_S3.
  • Step 3 Each sector common scheduler reports the current MRRU cell sector power and the MRRU cell sector available power to the sector super scheduler every 10 ms.
  • the reported values are P avail — 11 , P avail — 21 , P avail — 31 , P use — 11 , P use — 21 , and P use — 31 .
  • Step 4 The sector super scheduler subtracts the used power according to the available power of the cell power, obtains the remaining power, and sorts according to the remaining power from large to small; sequentially checks whether the sector can borrow the power threshold, and finds the borrowable power. The cell is checked again to see if the sector needs to borrow the power threshold and find the need to borrow the power cell. If it can be found, the lending power cell is reduced by 1w, and the borrowed power cell is increased by 1w, and the adjustment step is 1w. If not found, no power redistribution is performed. The cell power message in the latest sector is sent to each sector normal scheduler.
  • the lending power cannot exceed the product of the cell's original sector power and the maximum shared percentage a.
  • the current used power of the cell sector must be less than or equal to the product of the sector power and the percentage of the borrowed power threshold after the cell is shared.
  • the borrowed cell must meet the following conditions:
  • the current used power of the cell sector must be greater than or equal to the product of the current sector power of the cell and the percentage of the borrowed power threshold.
  • the 1 sector P max_s of MCell2 is reduced by 1w
  • the 1 sector P max_s of MCell 1 is increased by 1w
  • the 3 sector P max_s of MCell1 is decreased by 1w
  • the 3 sector P max_s of MCell2 is increased. 1w; and the adjusted power information is sent to each sector common scheduler.
  • Step 5 The sector super scheduler sends the latest dynamic allocation power status to the sector normal scheduler. For example, Sector1, Sector2, and Sector3 send power information to C1_S1, C1_S2, C1_S3, C2_S1, C2_S2, and C2_S3.
  • Step 6 The MRRU cell sector performs downlink data service scheduling according to the received power information. Among them, the received power is P max_s .
  • Step 7. Wait for the next 10ms to enter the next share.
  • the MRRU cell of the 3RRU is taken as an example, and the device structure is as shown in FIG. 3, and the number of cells is two, and the cells are MCell 1 and MCell 2.
  • One user accesses the 1 and 2 sectors of the MCell 1 cell, and one user accesses the 2 and 3 sectors of the MCell 2 cell with an adjustment step of 0.5 W and slow adjustment.
  • the flow of the power dynamic allocation method in this embodiment is as shown in FIG. 4, and the method includes the following steps:
  • Step 1 Configure the maximum sharing percentage of the sector a, the maximum configured power value P max of the cell, the percentage of the borrowed power threshold T in the sector, the percentage of the borrowed power threshold T out , and the adjustment step T step by using the network management parameter.
  • T in is the ratio of the used power to the available power when borrowing power is required
  • T out is the ratio of the used power to the available power when the power can be borrowed.
  • Step 2 Establish a sector super scheduler for each sector, and establish a sector general scheduler for each MRRU cell sector corresponding thereto; as shown in FIG. 3, establish three sector super schedulers Sector1, Sector2 , Sector3, establishes 6 sector common schedulers C1_S1, C1_S2, C1_S3, C2_S1, C2_S2, C2_S3.
  • Step 3 Each sector common scheduler reports the current MRRU cell sector power and the MRRU cell sector available power to the sector super scheduler every 10 ms.
  • the reported values are P avail — 11 , P avail — 21 , P avail — 31 , P use — 11 , P use — 21 , and P use — 31 .
  • Step 4 The sector super scheduler subtracts the used power according to the available power of the cell power, obtains the remaining power, and sorts according to the remaining power from large to small; sequentially checks whether the sector can borrow the power threshold, and finds the borrowable power. The cell is checked again to see if the sector needs to borrow the power threshold and find the need to borrow the power cell. If it can be found, the lending power cell is reduced by 0.5w, and the borrowed power cell is increased by 0.5w, and the adjustment step is 0.5w. If not found, no power redistribution is performed. The cell power message in the latest sector is sent to each sector normal scheduler.
  • the lending power cannot exceed the product of the cell's original sector power and the maximum shared percentage a.
  • the current used power of the cell sector must be less than or equal to the product of the sector power and the percentage of the borrowed power threshold after the cell is shared.
  • the borrowed cell must meet the following conditions:
  • the current used power of the cell sector must be greater than or equal to the product of the current sector power of the cell and the percentage of the borrowed power threshold.
  • Step 5 The sector super scheduler sends the latest dynamic allocation power status to the sector normal scheduler. For example, Sector1, Sector2, and Sector3 send power information to C1_S1, C1_S2, C1_S3, C2_S1, C2_S2, and C2_S3.
  • Step 6 The MRRU cell sector performs downlink data service scheduling according to the received power information. Among them, the received power is P max_s .
  • Step 7. Wait for the next 10ms to enter the next share.
  • the MRRU cell of the 2RRU is taken as an example, and the device structure is as shown in FIG. 6.
  • the number of cells is three, and the cells are MCell 1, MCell 2, and MCell 3.
  • One user accesses 1 sector and 2 sectors of the MCell 1 cell, one user accesses the 1 and 2 sectors of the MCell 2 cell, and the 1 and 2 sectors of the MCell 3 cell are idle, and the adjustment step is 1w.
  • the flow of the power dynamic allocation method in this embodiment is as shown in FIG. 4, and the method includes the following steps:
  • Step 1 Configure the maximum sharing percentage of the sector a, the maximum configured power value P max of the cell, the percentage of the borrowed power threshold T in the sector, the percentage of the borrowed power threshold T out , and the adjustment step T step by using the network management parameter.
  • T in is the ratio of the used power to the available power when borrowing power is required
  • T out is the ratio of the used power to the available power when the power can be borrowed.
  • Step 2 Establish a sector super scheduler for each sector, and establish a sector general scheduler for each MRRU cell sector corresponding to the sector. As shown in FIG. 6, two sector super schedulers Sector1, Sector2 are established, and six sector common schedulers C1_S1, C1_S2, C2_S1, C2_S2, C3_S1, and C3_S2 are established.
  • Step 3 Each sector common scheduler reports the current MRRU cell sector power and the MRRU cell sector available power to the sector super scheduler every 10 ms.
  • the reported values are P avail_11 , P avail_21 , P use_11 , P use_21 .
  • Step 4 The sector super scheduler subtracts the used power according to the available power of the cell power, obtains the remaining power, and sorts according to the remaining power from large to small; sequentially checks whether the sector can borrow the power threshold, and finds the borrowable power. The cell is checked again to see if the sector needs to borrow the power threshold and find the need to borrow the power cell. If it can be found, the lending power cell is reduced by 1w, and the borrowed power cell is increased by 1w. If not found, no power redistribution is performed. The cell power message in the latest sector is sent to each sector normal scheduler.
  • the lending power cannot exceed the product of the cell's original sector power and the maximum shared percentage a.
  • the current used power of the cell sector must be less than or equal to the product of the sector power and the percentage of the borrowed power threshold after the cell is shared.
  • the borrowed cell must meet the following conditions:
  • the current used power of the cell sector must be greater than or equal to the product of the current sector power of the cell and the percentage of the borrowed power threshold.
  • Step 5 The sector super scheduler sends the latest dynamic allocation power status to the sector normal scheduler.
  • Sector1, Sector2 send power information to C1_S1, C1_S2, C2_S1, C2_S2, C3_S1, C3_S2.
  • Step 6 The MRRU cell sector performs downlink data service scheduling according to the received power information. Among them, the received power is P max_s .
  • Step 7. Wait for the next 10ms to enter the next share.
  • the power of the MRRU cell sector is dynamically allocated according to the remaining power of each MRRU cell sector.
  • the power of the MRRU cell sector power is shared to the insufficient power MRRU cell sector, and the sector power imbalance can be dynamically adjusted to maximize the use of sector power, thereby improving throughput.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented by a processor to implement a power dynamic allocation method of the MRRU cell.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • This application is not limited to any particular form of hardware and software. Combine.
  • An embodiment of the present invention provides a method and a device for dynamically allocating power of a MRRU cell.
  • a scenario of a sector-based scheduling of downlink access services in an MRRU cell when the sector power usage of the MRRU cell is unbalanced, according to each MRRU cell sector Residual power, dynamic allocation of the power of the MRRU cell sector, sharing the power of the MRRU cell sector power to the MRRU cell sector with insufficient power, dynamically adjusting the sector power imbalance, and maximally utilizing the sector Power, thereby increasing throughput.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种MRRU小区的功率动态分配方法,包括以下步骤:获取每个MRRU小区扇区的功率信息;根据所述功率信息,计算每个MRRU小区扇区的剩余功率;根据每个MRRU小区扇区的剩余功率,对MRRU小区扇区的功率进行动态分配;根据动态分配的功率信息进行下行数据业务调度。上述方案在MRRU小区下行接入业务分扇区调度场景下,当MRRU小区扇区功率使用不均衡时,根据每个MRRU小区扇区的剩余功率,对MRRU小区扇区的功率进行动态分配,将功率充足的MRRU小区扇区功率,共享给功率不足的MRRU小区扇区,可以动态调整扇区功率的不平衡,最大限度地利用扇区功率,从而提升吞吐量。

Description

一种MRRU小区的功率动态分配方法和装置 技术领域
本申请涉及但不限于移动通信技术领域,特别是涉及一种MRRU小区的功率动态分配方法和装置。
背景技术
在移动通信系统中,RRU(Radio Remote Unit,射频拉远单元)把基站的基带单元和射频单元分离,在远端将基带光信号转成射频信号放大传送出去。RRU将大容量宏蜂窝基站集中放置在可获得的中心机房内,基带部分集中处理,采用光纤将基站中的射频模块拉到远端射频单元,分置于网络规划所确定的站点上,从而节省了常规解决方案所需要的大量机房;而且,通过采用大容量宏基站支持大量的光纤拉远,可实现容量与覆盖之间的转化。
在MRRU(Multiple-Radio Remote Unit,多重射频拉远单元)场景下,MRRU小区可以同时复用多个RRU的资源(功率资源和码道资源)。MRRU小区的功率分配都是通过参数固定配置的。
在MRRU场景下,在用户接入时,用户可能驻留在小区内的一个扇区,也可能同时驻留在多个扇区,此时,有的MRRU小区的扇区功率不足、有的过剩,由于扇区内MRRU小区使用的功率是不均衡的,导致扇区功率不能充分利用。然而,相关的功率共享方法是涉及单扇区的场景,解决的是同一个RRU下普通小区间的功率不均衡问题,将功率过剩小区共享给功率不足的小区,但是不能解决多个RRU下的MRRU小区这样的场景。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种MRRU小区的功率动态分配方法和装置,用以解决相关技术在MRRU场景下扇区内MRRU小区使用功率不均衡的问题。
本发明实施例提供一种MRRU小区的功率动态分配方法,所述方法包括以下步骤:
获取每个MRRU小区扇区的功率信息;
根据所述功率信息,计算每个MRRU小区扇区的剩余功率;
根据每个MRRU小区扇区的剩余功率,对MRRU小区扇区的功率进行动态分配;
根据动态分配的功率信息进行下行数据业务调度。
可选地,在所述获取每个MRRU小区扇区的功率信息之前,所述方法还包括:
通过参数配置最大共享百分比、借入功率门限百分比、借出功率门限百分比和调整步长;
为每个扇区建立扇区超级调度器,并给对应的每个MRRU小区扇区建立扇区普通调度器。
可选地,所述获取每个MRRU小区扇区的功率信息的步骤包括:所述扇区普通调度器定时上报当前MRRU小区扇区的功率信息给所述扇区超级调度器,所述功率信息包括可用功率和使用功率。
可选地,所述计算每个MRRU小区扇区的剩余功率的步骤包括:所述扇区超级调度器分别用每个MRRU小区扇区的可用功率减去使用功率,得到每个MRRU小区扇区的剩余功率。
可选地,
所述对MRRU小区扇区的功率进行动态分配的步骤包括:
所述扇区超级调度器根据每个MRRU小区扇区的剩余功率,判断是否有可以借出功率的小区和需要借入功率的小区;如果有,则对功率进行重新分配,并将重新分配的功率信息发送给所述扇区普通调度器;
所述扇区普通调度器接收所述重新分配的功率信息。
可选地,所述判断是否有可以借出功率的小区的步骤包括:
所述扇区超级调度器判断小区是否满足借出功率小于或等于小区原始扇 区功率与最大共享百分比的乘积,且借出功率时小区扇区当前的使用功率小于小区共享后扇区功率与借出功率门限百分比的乘积的条件,如果是,则所述小区为可以借出功率的小区。
可选地,所述判断是否有需要借入功率的小区的步骤包括:
所述扇区超级调度器判断小区是否满足借入功率时小区扇区当前的使用功率大于或等于小区当前扇区功率与借入功率门限百分比的乘积,如果是,则所述小区为需要借入功率的小区。
可选地,所述对功率进行重新分配的步骤包括:所述扇区超级调度器按照预先配置的调整步长对小区扇区的功率进行调整,对所述可以借出功率的小区减少一个或多个调整步长的功率,对所述需要借入功率的小区增加相应调整步长的功率。
本发明实施例还提供一种MRRU小区的功率动态分配装置,所述装置包括:
扇区超级调度器,设置为:获取每个MRRU小区扇区的功率信息,根据所述功率信息计算每个MRRU小区扇区的剩余功率,并根据每个MRRU小区扇区的剩余功率,对MRRU小区扇区的功率进行动态分配;
扇区普通调度器,与所述扇区超级调度器连接,设置为:根据动态分配的功率信息进行下行数据业务调度。
可选地,所述装置还包括:参数配置单元,与所述扇区超级调度器连接,设置为:配置最大共享百分比、借入功率门限百分比、借出功率门限百分比和调整步长,并将配置的参数发送给所述扇区超级调度器。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现所述MRRU小区的功率动态分配方法。
本发明实施例在MRRU小区下行接入业务分扇区调度场景下,当MRRU小区扇区功率使用不均衡时,根据每个MRRU小区扇区的剩余功率,对MRRU小区扇区的功率进行动态分配,将功率充足的MRRU小区扇区功率,共享给功率不足的MRRU小区扇区,可以动态调整扇区功率的不平衡,最大 限度地利用扇区功率,从而提升吞吐量。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是本发明实施例一的MRRU小区的功率动态分配方法的流程图;
图2是本发明实施例二的MRRU小区的功率动态分配装置的结构示意图;
图3是本发明实施例三和实施例四的MRRU小区的功率动态分配装置的结构示意图;
图4是本发明实施例三至实施例五的MRRU小区的功率动态分配方法的流程图;
图5是本发明实施例三至实施例五的动态调整的算法流程图;
图6是本发明实施例五的MRRU小区的功率动态分配装置的结构示意图。
本发明的实施方式
以下结合附图以及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不限定本申请。
实施例一
本发明实施例的一种MRRU小区的功率动态分配方法的流程如图1所示,所述方法包括以下步骤:
步骤s101,在系统启动后,通过参数配置最大共享百分比a、借入功率门限百分比Tin、借出功率门限百分比Tout和调整步长Tstep。其中,借入功率门限百分比Tin是需要借入功率时,使用功率占可用功率的比值;借出功率门限百分比Tout是可以借出功率时,使用功率占可用功率的比值。
步骤s102,为每个扇区建立扇区超级调度器,并给对应的每个MRRU小区扇区建立扇区普通调度器。
其中,扇区超级调度器用于获取扇区内所有MRRU小区的功率信息,包含可用功率、使用功率、原配置最大功率、调整后的最大功率;根据剩余功率排序确定最充足的MRRU小区、最缺乏的MRRU小区;按照一定的规则对功率进行再分配,并将再分配的信息发送给对应的扇区普通调度器。
扇区普通调度器用于根据扇区超级调度器重新配置下来的功率信息,进行业务调度;调度后会刷新功率的信息,并将这些信息通知给扇区超级调度器,进行下一次的动态分配。
步骤s103,获取每个MRRU小区扇区的功率信息。本实施例中,获取每个MRRU小区扇区的功率信息的步骤包括:扇区普通调度器定时上报当前MRRU小区扇区的功率信息给扇区超级调度器,该功率信息包括可用功率和使用功率。
步骤s104,根据功率信息,计算每个MRRU小区扇区的剩余功率。本实施例中,计算每个MRRU小区扇区的剩余功率的步骤包括:扇区超级调度器分别用每个MRRU小区扇区的可用功率减去使用功率,得到每个MRRU小区扇区的剩余功率。
步骤s105,根据每个MRRU小区扇区的剩余功率,对MRRU小区扇区的功率进行动态分配。本实施例中,对MRRU小区扇区的功率进行动态分配的步骤包括:
(1)扇区超级调度器根据每个MRRU小区扇区的剩余功率,判断是否有可以借出功率的小区和需要借入功率的小区;如果有,则对功率进行重新分配,并将重新分配的功率信息发送给所述扇区普通调度器。
本实施例中,判断是否有可以借出功率的小区的步骤包括:扇区超级调度器判断小区是否满足借出功率小于或等于小区原始扇区功率与最大共享百分比的乘积,且借出功率时小区扇区当前的使用功率小于小区共享后扇区功率与借出功率门限百分比的乘积的条件,如果是,则该小区为可以借出功率的小区。
本实施例中,判断是否有需要借入功率的小区的步骤包括:扇区超级调度器判断小区是否满足借入功率时小区扇区当前的使用功率大于或等于小区 当前扇区功率与借入功率门限百分比的乘积,如果是,则该小区为需要借入功率的小区。
本实施例中,对功率进行重新分配的步骤包括:扇区超级调度器按照预先配置的调整步长对小区扇区的功率进行调整,对可以借出功率的小区减少一个或多个调整步长的功率,对需要借入功率的小区增加相应调整步长的功率。
(2)扇区普通调度器接收所述重新分配的功率信息。
步骤s106,根据动态分配的功率信息进行下行数据业务调度。
实施例二
本发明实施例在每个扇区建立独立的功率动态分配装置,本实施例的一种MRRU小区的功率动态分配装置如图2所示,所述装置包括参数配置单元21、扇区超级调度器22和扇区普通调度器23,其中,扇区超级调度器22分别与参数配置单元21和扇区普通调度器23连接。
参数配置单元21设置为:配置最大共享百分比、借入功率门限百分比、借出功率门限百分比和调整步长,并将配置的参数发送给扇区超级调度器22。
扇区超级调度器22设置为:获取每个MRRU小区扇区的功率信息,根据所述功率信息计算每个MRRU小区扇区的剩余功率,并根据每个MRRU小区扇区的剩余功率,对MRRU小区扇区的功率进行动态分配。
扇区普通调度器23设置为:根据动态分配的功率信息进行下行数据业务调度。
实施例三
本实施例以3RRU的MRRU小区(Cell)为例,其装置结构如图3所示,小区个数为2个,分别为MCell 1、MCell 2。有一个用户接入MCell 1小区的1和2扇区,有一用户接入MCell 2小区的2和3扇区。调整步长Tstep为1瓦(w),快速调整。
本实施例的功率动态分配方法的流程如图4所示,所述方法包括以下步骤:
步骤1、通过网管参数配置扇区最大共享百分比a、小区最大配置功率值 Pmax、扇区需要借入功率门限百分比Tin、扇区可以借出功率门限百分比Tout、调整步长Tstep。设置a=50%,Tin=75%,Tout=65%,
其中,
Tin,是需要借入功率时,使用功率占可用功率的比值;
Tout,是可以借出功率时,使用功率占可用功率的比值。
步骤2、为每个扇区建立扇区超级调度器,并给对应下的每个MRRU小区扇区建立扇区普通调度器;如图3所示,建立三个扇区超级调度器Sector1、Sector2、Sector3,建立6个扇区普通调度器C1_S1、C1_S2、C1_S3、C2_S1、C2_S2、C2_S3。
步骤3、每个扇区普通调度器每10ms将当前的MRRU小区扇区使用功率、MRRU小区扇区可用功率上报给扇区超级调度器。例如,上报值为Pavail_11、Pavail_21、Pavail_31、Puse_11、Puse_21、Puse_31
步骤4、扇区超级调度器根据小区功率可用功率减去使用功率,得到剩余功率,并按照剩余功率从大到小进行排序;依次检查是否满足扇区可以借出功率门限,找到可以借出功率的小区;再检查是否满足扇区需要借入功率门限,找到需要借入功率小区。如果都能找到,借出功率小区减少1w,借入功率小区增加1w,此时调整步长为1w。如果找不到,则不进行功率重新分配。将最新的扇区内的小区功率消息发送给每个扇区普通调度器。
本实施例的动态调整的算法流程如图5所示:
1)通过如下公式计算扇区剩余功率Premain:Premain=Pavail-Puse;其中,Puse为使用功率,Pavail为可用功率;
2)根据Premain由大到小进行排序,从前往后判断小区扇区是否符合以下条件:
a、借出功率不能超过小区原始扇区功率与最大共享百分比a的乘积。
即:Premain>=Pmax*(1-a)
b、借出功率时,小区扇区当前的使用功率必须要小于或等于小区共享后扇区功率与借出功率门限百分比的乘积。
即:Puse<=Pmax_s*Tout
找到一个或多个满足条件MRRU小区扇区后,继续如下需要借入的MRRU小区扇区的查找过程,否则结束本次的共享。
借入小区必须满足如下条件:
a、借入功率时,小区扇区当前的使用功率必须要大于或等于小区当前扇区功率与借入功率门限百分比的乘积。
即:Puse>=Pmax_s*Tin
如果找到需要借入功率的MRRU小区,继续执行,否则结束本次共享。
3)按照设定的步长进行调整,MCell2的1扇区Pmax_s减少1w,MCell 1的1扇区Pmax_s增加1w,MCell1的3扇区Pmax_s减少1w,MCell2的3扇区Pmax_s增加1w;并将调整后的功率信息发送给每个扇区普通调度器。
步骤5、扇区超级调度器将最新的动态分配功率情况发送给扇区普通调度器。例如,Sector1、Sector2、Sector3将功率信息发送给C1_S1、C1_S2、C1_S3、C2_S1、C2_S2、C2_S3。
步骤6、MRRU小区扇区按照收到的功率信息进行下行数据业务调度。其中,收到的功率为Pmax_s
步骤7、等待下个10ms进入下一次共享。
实施例四
本实施例以3RRU的MRRU小区为例,其装置结构如图3所示,小区个数为2个,小区分别为MCell 1、MCell 2。有一个用户接入MCell 1小区的1和2扇区,有一用户接入MCell 2小区的2和3扇区,调整步长为0.5w,慢速调整。
本实施例的功率动态分配方法的流程如图4所示,所述方法包括以下步骤:
步骤1、通过网管参数配置扇区最大共享百分比a、小区最大配置功率值Pmax、扇区需要借入功率门限百分比Tin、扇区可以借出功率门限百分比Tout、调整步长Tstep。设置a=50%,Tin=75%,Tout=65%,
其中,
Tin,是需要借入功率时,使用功率占可用功率的比值;
Tout,是可以借出功率时,使用功率占可用功率的比值。
步骤2、为每个扇区建立扇区超级调度器,并给对应下的每个MRRU小区扇区建立扇区普通调度器;如图3所示,建立三个扇区超级调度器Sector1、Sector2、Sector3,建立6个扇区普通调度器C1_S1、C1_S2、C1_S3、C2_S1、C2_S2、C2_S3。
步骤3、每个扇区普通调度器每10ms将当前的MRRU小区扇区使用功率、MRRU小区扇区可用功率上报给扇区超级调度器。例如,上报值为Pavail_11、Pavail_21、Pavail_31、Puse_11、Puse_21、Puse_31
步骤4、扇区超级调度器根据小区功率可用功率减去使用功率,得到剩余功率,并按照剩余功率从大到小进行排序;依次检查是否满足扇区可以借出功率门限,找到可以借出功率的小区;再检查是否满足扇区需要借入功率门限,找到需要借入功率小区。如果都能找到,借出功率小区减少0.5w,借入功率小区增加0.5w,此时调整步长为0.5w。如果找不到,则不进行功率重新分配。将最新的扇区内的小区功率消息发送给每个扇区普通调度器。
本实施例的动态调整的算法流程如图5所示:
1)通过如下公式计算扇区剩余功率Premain:Premain=Pavail-Puse;其中,Puse为使用功率,Pavail为可用功率;
2)根据Premain由大到小进行排序,从前往后判断小区扇区是否符合以下条件:
a、借出功率不能超过小区原始扇区功率与最大共享百分比a的乘积。
即:Premain>=Pmax*(1-a)
b、借出功率时,小区扇区当前的使用功率必须要小于或等于小区共享后扇区功率与借出功率门限百分比的乘积。
即:Puse<=Pmax_s*Tout
找到一个或多个满足条件MRRU小区扇区后,继续如下需要借入的 MRRU小区扇区的查找过程,否则结束本次的共享。
借入小区必须满足如下条件:
a、借入功率时,小区扇区当前的使用功率必须要大于或等于小区当前扇区功率与借入功率门限百分比的乘积。
即:Puse>=Pmax_s*Tin
如果找到需要借入功率的MRRU小区,继续执行,否则结束本次共享。
3)按照设定的步长进行调整,MCell 2的1扇区Pmax_s减少0.5w,MCell 1的1扇区Pmax_s增加0.5w,MCell 1的3扇区Pmax_s减少0.5w,MCell 2的3扇区Pmax_s增加0.5w;并将调整后的功率信息发送给每个扇区普通调度器。
步骤5、扇区超级调度器将最新的动态分配功率情况发送给扇区普通调度器。例如,Sector1、Sector2、Sector3将功率信息发送给C1_S1、C1_S2、C1_S3、C2_S1、C2_S2、C2_S3。
步骤6、MRRU小区扇区按照收到的功率信息进行下行数据业务调度。其中,收到的功率为Pmax_s
步骤7、等待下个10ms进入下一次共享。
实施例五
本实施例以2RRU的MRRU小区为例,其装置结构如图6所示,小区个数为3个,小区分别为MCell 1、MCell 2、MCell 3。有一个用户接入MCell 1小区的1扇区和2扇区,有一用户接入MCell 2小区的1和2扇区,MCell 3小区的1和2扇区空闲,调整步长为1w。
本实施例的功率动态分配方法的流程如图4所示,所述方法包括以下步骤:
步骤1、通过网管参数配置扇区最大共享百分比a、小区最大配置功率值Pmax、扇区需要借入功率门限百分比Tin、扇区可以借出功率门限百分比Tout、调整步长Tstep。设置a=50%,Tin=75%,Tout=65%,
其中,
Tin,是需要借入功率时,使用功率占可用功率的比值;
Tout,是可以借出功率时,使用功率占可用功率的比值。
步骤2、为每个扇区建立扇区超级调度器,并给对应下的每个MRRU小区扇区建立扇区普通调度器。如图6所示,建立两个扇区超级调度器Sector1、Sector2,建立6个扇区普通调度器C1_S1、C1_S2、C2_S1、C2_S2、C3_S1、C3_S2。
步骤3、每个扇区普通调度器每10ms将当前的MRRU小区扇区使用功率、MRRU小区扇区可用功率上报给扇区超级调度器。例如,上报值为Pavail_11、Pavail_21、Puse_11、Puse_21
步骤4、扇区超级调度器根据小区功率可用功率减去使用功率,得到剩余功率,并按照剩余功率从大到小进行排序;依次检查是否满足扇区可以借出功率门限,找到可以借出功率的小区;再检查是否满足扇区需要借入功率门限,找到需要借入功率小区。如果都能找到,借出功率小区减少1w,借入功率小区增加1w。如果找不到,则不进行功率重新分配。将最新的扇区内的小区功率消息发送给每个扇区普通调度器。
本实施例的动态调整的算法流程如图5所示:
1)通过如下公式计算扇区剩余功率Premain:Premain=Pavail-Puse;其中,Puse为使用功率,Pavail为可用功率;
2)根据Premain由大到小进行排序,从前往后判断小区扇区是否符合以下条件:
a、借出功率不能超过小区原始扇区功率与最大共享百分比a的乘积。
即:Premain>=Pmax*(1-a)
b、借出功率时,小区扇区当前的使用功率必须要小于或等于小区共享后扇区功率与借出功率门限百分比的乘积。
即:Puse<=Pmax_s*Tout
找到一个或多个满足条件MRRU小区扇区后,继续如下需要借入的MRRU小区扇区的查找过程,否则结束本次的共享。
借入小区必须满足如下条件:
a、借入功率时,小区扇区当前的使用功率必须要大于或等于小区当前扇区功率与借入功率门限百分比的乘积。
即:Puse>=Pmax_s*Tin
如果找到需要借入功率的MRRU小区,继续执行,否则结束本次共享。
3)按照设定的步长进行调整,MCell 3的1扇区Pmax_s减少1w,MCell 1的1扇区Pmax_s增加1w,MCell1 3的2扇区Pmax_s减少1w,MCell 2的2扇区Pmax_s增加1w;并将调整后的功率信息发送给每个扇区普通调度器。
步骤5、扇区超级调度器将最新的动态分配功率情况发送给扇区普通调度器。例如,Sector1、Sector2将功率信息发送给C1_S1、C1_S2、C2_S1、C2_S2、C3_S1、C3_S2。
步骤6、MRRU小区扇区按照收到的功率信息进行下行数据业务调度。其中,收到的功率为Pmax_s
步骤7、等待下个10ms进入下一次共享。
本发明实施例在MRRU小区下行接入业务分扇区调度场景下,当MRRU小区扇区功率使用不均衡时,根据每个MRRU小区扇区的剩余功率,对MRRU小区扇区的功率进行动态分配,将功率充足的MRRU小区扇区功率,共享给功率不足的MRRU小区扇区,可以动态调整扇区功率的不平衡,最大限度地利用扇区功率,从而提升吞吐量。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现所述MRRU小区的功率动态分配方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软件的 结合。
尽管为示例目的,已经公开了本申请的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本申请的范围应当不限于上述实施例。
工业实用性
本发明实施例提供一种MRRU小区的功率动态分配方法及装置,在MRRU小区下行接入业务分扇区调度场景下,当MRRU小区扇区功率使用不均衡时,根据每个MRRU小区扇区的剩余功率,对MRRU小区扇区的功率进行动态分配,将功率充足的MRRU小区扇区功率,共享给功率不足的MRRU小区扇区,可以动态调整扇区功率的不平衡,最大限度地利用扇区功率,从而提升吞吐量。

Claims (10)

  1. 一种多重射频拉远单元MRRU小区的功率动态分配方法,包括以下步骤:
    获取每个MRRU小区扇区的功率信息;
    根据所述功率信息,计算每个MRRU小区扇区的剩余功率;
    根据每个MRRU小区扇区的剩余功率,对MRRU小区扇区的功率进行动态分配;
    根据动态分配的功率信息进行下行数据业务调度。
  2. 如权利要求1所述的MRRU小区的功率动态分配方法,在所述获取每个MRRU小区扇区的功率信息之前,所述方法还包括:
    通过参数配置最大共享百分比、借入功率门限百分比、借出功率门限百分比和调整步长;
    为每个扇区建立扇区超级调度器,并给对应的每个MRRU小区扇区建立扇区普通调度器。
  3. 如权利要求2所述的MRRU小区的功率动态分配方法,其中,所述获取每个MRRU小区扇区的功率信息的步骤包括:所述扇区普通调度器定时上报当前MRRU小区扇区的功率信息给所述扇区超级调度器,所述功率信息包括可用功率和使用功率。
  4. 如权利要求3所述的MRRU小区的功率动态分配方法,其中,所述计算每个MRRU小区扇区的剩余功率的步骤包括:所述扇区超级调度器分别用每个MRRU小区扇区的可用功率减去使用功率,得到每个MRRU小区扇区的剩余功率。
  5. 如权利要求4所述的MRRU小区的功率动态分配方法,其中,所述对MRRU小区扇区的功率进行动态分配的步骤包括:
    所述扇区超级调度器根据每个MRRU小区扇区的剩余功率,判断是否有可以借出功率的小区和需要借入功率的小区;如果有,则对功率进行重新分配,并将重新分配的功率信息发送给所述扇区普通调度器;
    所述扇区普通调度器接收所述重新分配的功率信息。
  6. 如权利要求5所述的MRRU小区的功率动态分配方法,其中,所述判断是否有可以借出功率的小区的步骤包括:
    所述扇区超级调度器判断小区是否满足借出功率小于或等于小区原始扇区功率与最大共享百分比的乘积,且借出功率时小区扇区当前的使用功率小于小区共享后扇区功率与借出功率门限百分比的乘积的条件,如果是,则所述小区为可以借出功率的小区。
  7. 如权利要求5所述的MRRU小区的功率动态分配方法,其中,所述判断是否有需要借入功率的小区的步骤包括:
    所述扇区超级调度器判断小区是否满足借入功率时小区扇区当前的使用功率大于或等于小区当前扇区功率与借入功率门限百分比的乘积,如果是,则所述小区为需要借入功率的小区。
  8. 如权利要求5所述的MRRU小区的功率动态分配方法,其中,所述对功率进行重新分配的步骤包括:所述扇区超级调度器按照预先配置的调整步长对小区扇区的功率进行调整,对所述可以借出功率的小区减少一个或多个调整步长的功率,对所述需要借入功率的小区增加相应调整步长的功率。
  9. 一种多重射频拉远单元MRRU小区的功率动态分配装置,包括:
    扇区超级调度器,设置为:获取每个MRRU小区扇区的功率信息,根据所述功率信息计算每个MRRU小区扇区的剩余功率,并根据每个MRRU小区扇区的剩余功率,对MRRU小区扇区的功率进行动态分配;
    扇区普通调度器,与所述扇区超级调度器连接,设置为:根据动态分配的功率信息进行下行数据业务调度。
  10. 如权利要求9所述的MRRU小区的功率动态分配装置,所述装置还包括:参数配置单元,与所述扇区超级调度器连接,设置为:配置最大共享百分比、借入功率门限百分比、借出功率门限百分比和调整步长,并将配置的参数发送给所述扇区超级调度器。
PCT/CN2016/078357 2015-07-31 2016-04-01 一种mrru小区的功率动态分配方法和装置 WO2016177234A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510461171.9 2015-07-31
CN201510461171.9A CN106413073B (zh) 2015-07-31 2015-07-31 一种mrru小区的功率动态分配方法和装置

Publications (1)

Publication Number Publication Date
WO2016177234A1 true WO2016177234A1 (zh) 2016-11-10

Family

ID=57217539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078357 WO2016177234A1 (zh) 2015-07-31 2016-04-01 一种mrru小区的功率动态分配方法和装置

Country Status (2)

Country Link
CN (1) CN106413073B (zh)
WO (1) WO2016177234A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021121001A1 (zh) * 2019-12-17 2021-06-24 中兴通讯股份有限公司 通信参数配置方法、装置、设备和存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020019349A1 (zh) 2018-07-27 2020-01-30 华为技术有限公司 用于功率共享的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886911A (zh) * 2003-11-28 2006-12-27 摩托罗拉公司 无线资源管理
CN1886912A (zh) * 2003-11-28 2006-12-27 摩托罗拉公司 无线电资源管理
CN101742522A (zh) * 2008-11-04 2010-06-16 鼎桥通信技术有限公司 一种多载波小区中的载波功率共享方法
CN102056307A (zh) * 2009-11-11 2011-05-11 中兴通讯股份有限公司 资源管理方法及装置
US8185145B1 (en) * 2009-05-19 2012-05-22 Sprint Spectrum L.P. Dynamic overhead channel power control
CN103281784A (zh) * 2013-05-24 2013-09-04 华为技术有限公司 一种基于rru共小区的资源分配方法及装置、基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813462B (zh) * 2011-09-19 2017-04-26 华为技术有限公司 一种多射频拉远单元共小区的资源分配方法及装置
CN102916754A (zh) * 2012-10-15 2013-02-06 华为技术有限公司 一种参考信号接收功率的测量方法及装置
CN103686973B (zh) * 2013-12-30 2017-05-17 大唐移动通信设备有限公司 一种射频拉远单元的功率调整方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886911A (zh) * 2003-11-28 2006-12-27 摩托罗拉公司 无线资源管理
CN1886912A (zh) * 2003-11-28 2006-12-27 摩托罗拉公司 无线电资源管理
CN101742522A (zh) * 2008-11-04 2010-06-16 鼎桥通信技术有限公司 一种多载波小区中的载波功率共享方法
US8185145B1 (en) * 2009-05-19 2012-05-22 Sprint Spectrum L.P. Dynamic overhead channel power control
CN102056307A (zh) * 2009-11-11 2011-05-11 中兴通讯股份有限公司 资源管理方法及装置
CN103281784A (zh) * 2013-05-24 2013-09-04 华为技术有限公司 一种基于rru共小区的资源分配方法及装置、基站

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021121001A1 (zh) * 2019-12-17 2021-06-24 中兴通讯股份有限公司 通信参数配置方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN106413073B (zh) 2021-06-01
CN106413073A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
EP3962032B1 (en) Method and apparatus for balancing server load in cloud ran systems
JP5094838B2 (ja) 分散型無線システムにおいて無線資源を調整制御する方法
JP4837742B2 (ja) 無線通信システム
JPWO2008004561A1 (ja) 無線基地局、負荷分散装置、集中制御装置、無線通信システム、負荷分散方法及び負荷分散プログラム
CN108112037B (zh) 基于雾计算和协作通信网络的负载均衡方法
WO2005094100A1 (fr) Procede pour reguler les ressources et le service de commande dans un reseau radio multimodal
US10051482B2 (en) Method and apparatus for adjusting air interface capacity density
EP3128778B1 (en) Network sharing method, apparatus and computer storage medium
JP4638507B2 (ja) 電気通信ネットワーク、電気通信ネットワークおよび対応する管理エンティティを設定する方法
WO2011116688A1 (zh) 一种载波负荷均衡的方法和设备
US8780879B2 (en) Frequency band adjusting method, communication apparatus and frequency band adjusting apparatus
CN111818581A (zh) 一种用户接入方法和接入网设备
JP2013545416A (ja) コグニティブ無線システムの動作モードを変換する方法及び装置
CN111818576A (zh) 一种用户接入方法和接入网设备
KR101742712B1 (ko) 통신 시스템 및 방법
WO2016177234A1 (zh) 一种mrru小区的功率动态分配方法和装置
JP2009246476A (ja) 無線通信システム及び無線通信制御方法
EP3043603A1 (en) Downlink control method and apparatus
CN116136799A (zh) 算力调度管理侧设备及方法、算力提供侧设备及方法
US20130190030A1 (en) A Method of Allocating Resources in a Radio Access Network (RAN) Shared by Different Network Operators
KR101801487B1 (ko) Ps­lte시스템에서 공공 안전 사용자 우선순위 기반 자원 할당 및 로드 밸런싱을 위한 사용자 선택 방법 및 시스템
KR102056894B1 (ko) 포그 산업용 사물인터넷 네트워크의 동적 리소스 재분배 방법
Jia et al. A novel method of baseband pool resource allocation in Cloud Radio Access Network system
US10454633B2 (en) Method and apparatus for determining subframe configuration of cell cluster
CN117880893B (zh) 一种应用于fttr组网的网络负载均衡方法、装置和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789228

Country of ref document: EP

Kind code of ref document: A1