WO2016177150A1 - 一种标签天线及其制备方法、计算机存储介质 - Google Patents

一种标签天线及其制备方法、计算机存储介质 Download PDF

Info

Publication number
WO2016177150A1
WO2016177150A1 PCT/CN2016/076810 CN2016076810W WO2016177150A1 WO 2016177150 A1 WO2016177150 A1 WO 2016177150A1 CN 2016076810 W CN2016076810 W CN 2016076810W WO 2016177150 A1 WO2016177150 A1 WO 2016177150A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiant panel
shaped groove
tag
tag antenna
Prior art date
Application number
PCT/CN2016/076810
Other languages
English (en)
French (fr)
Inventor
高清敏
李渭
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177150A1 publication Critical patent/WO2016177150A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the invention relates to radio frequency identification (RFID) technology, in particular to a tag antenna based on radio frequency identification technology, a preparation method thereof and a computer storage medium.
  • RFID radio frequency identification
  • radio frequency identification technology is a technology for non-contact two-way data communication through wireless radio frequency, identifying targets and obtaining relevant data.
  • RFID technology does not require manual intervention, does not require direct contact, and does not require optical visualization to complete information input and processing. It can work in a variety of harsh environments, can identify high-speed moving objects, and can identify multiple objects at the same time. Since the beginning of the 21st century, RFID technology has become more widely used and has a wider range of products, such as active electronic tags, passive electronic tags and semi-passive electronic tags. For example, BMW Germany applies RFID systems to automotive assembly lines to ensure that vehicles can accurately perform assembly tasks at various locations in the assembly line. Motorola uses RFID technology to automatically identify process control systems to meet semiconductor production environment. Special requirements while increasing production efficiency.
  • the performance of the tag antenna based on radio frequency identification technology will directly determine the performance of the entire RFID system, including the read distance and cost of the system.
  • the radio frequency identification antenna technology in the low frequency and high frequency bands has been relatively mature.
  • the research mainly focuses on the RFID tag antenna technology in the ultra high frequency band and the microwave frequency band.
  • the 900MHz band radio frequency identification technology application regulations divide the 800/900MHz frequency band into two frequency bands 840-845MHz and 920-925MHz for RFID applications. Therefore, how to design a miniaturized tag antenna with wide-band characteristics to suit different countries and regions is a technical challenge.
  • the UHF band antenna is significantly affected by the environment (such as metal and liquid), and when the tag is close to the reader, the impedance of the tag antenna changes due to the reflected wave. Therefore, how to design a tag antenna with a larger bandwidth to prevent the resonance frequency from shifting is also a technical problem.
  • the embodiment of the invention provides a tag antenna based on radio frequency identification technology, a preparation method thereof and a computer storage medium, which can ensure that the tag antenna has wide frequency band characteristics and is applicable to RFID standards of different countries and regions, thereby achieving production saving. And the purpose of labor costs.
  • An embodiment of the present invention provides a tag antenna, the tag antenna includes: an antenna radiant panel, a dielectric substrate, and a dielectric substrate; the antenna radiant panel is located above the dielectric substrate, and the dielectric substrate is located below the dielectric substrate;
  • a feed point is disposed at a center of the antenna radiant panel, and a double T-shaped slot is formed on the antenna radiant panel.
  • the antenna radiant panel is provided with a double T-shaped slot, including:
  • a first T-shaped groove is opened in a lower half of the antenna radiant panel, and the first T-shaped groove is cut to a longer side of a lower half of the antenna radiant panel;
  • a second T-shaped groove is formed in the upper half of the antenna radiant panel, and the second T-shaped groove is cut to the long side of the half of the antenna radiant panel.
  • the lengths of the first T-shaped groove and the second T-shaped groove are equal.
  • the input impedance of the tag antenna is changed by adjusting the length and width of the first T-shaped groove.
  • the return loss of the tag antenna is less than -10 dB in the entire ultra-high frequency band.
  • the reading distance of the tag antenna is as high as 7.58 m in the entire ultra-high frequency band.
  • the embodiment of the present invention further provides a method for preparing a tag antenna, the tag antenna includes an antenna radiant panel, a dielectric substrate, and a dielectric substrate, the antenna radiant panel is located above the dielectric substrate, and the dielectric substrate is located below the dielectric substrate;
  • the method includes:
  • Double T-slots are opened on the antenna radiant panel according to preset rules.
  • the step of opening a double T-shaped slot on the antenna radiant panel according to a preset rule includes:
  • a second T-shaped groove is opened in the upper half of the antenna radiant panel, and the second T-shaped groove is directly cut to the long side of the half of the antenna radiant panel.
  • the lengths of the first T-shaped groove and the second T-shaped groove are equal.
  • the method further includes:
  • the length and width of the first T-slot are adjusted to change the input impedance of the tag antenna.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the method for preparing the tag antenna according to the embodiment of the invention.
  • the tag antenna based on the radio frequency identification technology and the preparation method thereof and the computer storage medium provided by the embodiments of the present invention provide a feed point at the center of the antenna radiant panel; further, a double T-shaped slot is opened on the antenna radiant panel according to a preset rule. . In this way, by opening a double T-shaped slot on the antenna radiant panel and feeding at the center of the antenna radiant panel, it is ensured that the designed tag antenna has a wide width. At the same time, the frequency band characteristics are applicable to RFID standards of different countries and regions, thereby achieving the purpose of saving production and labor costs.
  • FIG. 1 is a schematic structural diagram of a tag antenna according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an antenna radiant panel in the tag antenna shown in FIG. 1 according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a simulation structure of a tag antenna according to an embodiment of the present invention.
  • FIG. 5 is a simulation graph of the input impedance imaginary part X A of the tag antenna according to the length of the T-shaped slot l1 according to an embodiment of the present invention
  • FIG. 6 is a simulation diagram of a real impedance RA of an input impedance of a tag antenna according to a width w1 of a first T-shaped slot according to an embodiment of the present invention
  • FIG. 7 is a simulation graph of an input impedance imaginary part XA of a tag antenna according to a width w1 of a first T-shaped slot according to an embodiment of the present invention
  • FIG. 8 is a graph showing input impedance of a tag antenna designed for a Philips test tag chip according to an embodiment of the present invention
  • Figure 9 is a graph showing the return loss of a tag antenna designed for a Philips test tag chip
  • Figure 10 is a radiation pattern of a tag antenna designed for a Philips test tag chip
  • FIG. 11 is a schematic flowchart 1 of an implementation process of a method for preparing a tag antenna according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of an implementation process of opening a double T-shaped slot on an antenna radiation board according to a preset rule according to an embodiment of the present invention
  • FIG. 13 is a second schematic diagram of an implementation process of a method for fabricating a tag antenna according to an embodiment of the present invention.
  • a feed point is disposed at a center of the antenna radiant panel, so that the omnidirectionality of the radiation pattern of the tag antenna is ensured by feeding at the center of the radiant panel of the antenna; further, the antenna is arranged according to a preset rule.
  • a double T-shaped groove is opened on the radiation plate to cut off the surface current path on the original radiation plate, so that the current flows around the groove and the path becomes long; thus, the equivalent circuit of the tag antenna is equivalent to introducing a cascade inductance, so that The input impedance of the tag antenna exhibits a large inductive reactance, which can be well matched with a tag chip whose impedance exhibits a large capacitive reactance.
  • the tag antenna includes an antenna radiating plate 11 , a dielectric substrate 12 , and a dielectric substrate 13 .
  • the antenna radiating plate 11 is located above the dielectric substrate 12 .
  • the dielectric substrate 13 is located below the dielectric substrate 12.
  • FIG. 2 is a schematic structural diagram of the antenna radiating plate 11 in the tag antenna according to the embodiment of the present invention. As shown in FIG. 2, the center of the antenna radiating plate 11 according to the embodiment of the present invention is shown. A feed point 111 is disposed, and the antenna radiant panel is provided with a double T-shaped groove, and the double T-shaped groove includes a first T-shaped groove 112 and a second T-shaped groove 113.
  • the antenna radiation plate is provided with a double T-shaped groove, comprising: a first T-shaped groove 112 is opened in a lower half of the antenna radiation plate, and the first T-shaped groove 112 is cut to a lower half of the antenna radiation plate Above the long side of the portion; a second T-shaped groove 113 is opened in the upper half of the antenna radiant panel, and the second T-shaped groove 113 is cut to the long side of the half of the antenna radiant panel.
  • the lengths of the first T-shaped groove 112 and the second T-shaped groove 113 are equal.
  • FIG. 3 is a schematic diagram of a simulation structure of a tag antenna according to an embodiment of the present invention.
  • the dielectric substrate material is the most commonly used FR-4 material in the design of the tag antenna.
  • the substrate thickness is 1.6 mm
  • l1 represents the length of the opened first T-shaped groove and the second T-shaped groove
  • w1 represents the width of the opened first T-shaped groove
  • the second T-shaped groove is directly cut onto the antenna radiation plate.
  • the width of the second T-shaped groove is fixed to 12.25mm.
  • the input impedance ZA of the tag antenna can be conveniently adjusted, thereby facilitating good matching between the tag antenna and the tag chip with different impedance.
  • the lengths of the first T-shaped groove and the second T-shaped groove are equal, the length of the first T-shaped groove is changed, and the length of the second T-shaped groove is also changed correspondingly.
  • the effect of changing the input impedance ZA of the tag antenna by changing the length and width of the first T-slot is visually expressed below by a specific simulation profile.
  • FIG. 4 is a simulation graph of the input impedance real part R A of the tag antenna according to the length of the T-shaped slot l1 according to the embodiment of the present invention
  • FIG. 5 is a diagram showing the input impedance imaginary part X A of the tag antenna according to the T-slot length l1 of the tag antenna according to the embodiment of the present invention
  • a simulated simulation of the changes As shown in Figure 4 and Figure 5, when l1 is 21mm, 21.5mm, and 22mm respectively, the real and imaginary parts of the input impedance of the tag antenna change between 840 and 960MHz in the UHF band. As the length l1 of the slot increases, both the real part and the imaginary part of the input impedance of the tag antenna increase.
  • the real part of the input impedance of the tag antenna varies between 4.0 and 23.5 ohms, and the imaginary part of the antenna input impedance varies between 236.3 and 536.9 ohms. It can be seen that the input impedance of the tag antenna can be adjusted by changing the length l1 of the T-slot so that it can obtain a good conjugate matching state with the tag chips of different impedances.
  • FIG. 6 is a simulation diagram of the input impedance real part RA of the tag antenna according to the width w1 of the first T-shaped slot according to the embodiment of the present invention
  • FIG. 7 is a schematic diagram of the input impedance imaginary part XA of the tag antenna according to the first T-type of the embodiment of the present invention
  • a simulation plot of the width w1 of the slot As shown in Figure 6 and Figure 7, when w1 is 10mm, 11mm, and 12mm respectively, the real and imaginary parts of the input impedance of the tag antenna change between 840 and 960MHz in the UHF band, with the first T. As the slot width w1 increases, both the real and imaginary parts of the input impedance of the tag antenna increase.
  • the real part of the input impedance of the tag antenna varies between 1.74 ⁇ 23.49 ohms
  • the imaginary part of the input impedance of the tag antenna varies from approximately 178.91 to 536.93 ohms. It can be seen that the input impedance of the tag antenna can also be adjusted by changing the width w1 of the first T-shaped groove so that it can obtain a good conjugate matching state with the tag chips of different impedances.
  • the input impedance of the UHF band tag antenna is significantly affected by the environment (metal, liquid), and when the tag is close to the reader, the impedance of the tag antenna changes due to the reflected wave. It can be seen from FIG. 4 to FIG. 7 that the input impedance of the tag antenna according to the embodiment of the present invention can be adjusted over a wide range by adjusting the length l1 of the T-shaped groove and the width w1 of the first T-shaped groove. Therefore, the tag antenna of the embodiment of the present invention has a larger bandwidth to prevent the offset of the resonance frequency, and can be applied to the above scenario.
  • the tag chip has a performance impedance of 11-j422 ohm at 915 MHz, which is obtained by simulation software optimization design.
  • l1 22 mm
  • FIG. 8 is a graph showing input impedance of a tag antenna designed for a Philips test tag chip according to an embodiment of the present invention.
  • the real part of the antenna input impedance varies from about 5.17 to 23.45 ohms, and the imaginary part varies from about 300.63 to 536.93 ohms. It can meet the matching requirements of most UHF band tag chips.
  • Figure 9 is a graph showing the return loss of a tag antenna designed for the Philips test tag chip. It can be seen from the figure that the return loss S11 is less than -10dB in the whole UHF frequency band of 840-960MHz, and the S11 corresponding to the lowest point of 916MHz is -51.57dB. It can be seen that the tag antenna and the test tag chip of Philips reach A good conjugate matching state. If other tag chips with different impedances are selected and matched with the broadband tag antenna, it may also be in the frequency band. Get a good match.
  • Figure 10 is a radiation pattern of a tag antenna designed for a Philips test tag chip.
  • the maximum theoretical read distance of the tag antenna can be calculated by using the distance calculation formula of the RFID tag antenna:
  • is the free space wavelength
  • P t is the reader transmit power
  • G t is the gain of the reader antenna
  • G r is the gain of the tag antenna
  • P th is the tag chip threshold activation power
  • is the reader antenna and The polarization matching coefficient between the tag antennas
  • is the power transmission coefficient. It can also be seen from FIG. 10 that the maximum radiation gain G r of the tag antenna is about -0.76 dBi, and the maximum theoretical reading distance of the tag antenna can be calculated to be 7.58 m according to the above formula.
  • the novel UHF band RFID tag antenna designed by the present invention is less than -10 dB in the whole UHF frequency band of 840 to 960 MHz, and the radiation pattern has good omnidirectionality, and the maximum theoretical reading is obtained.
  • the distance can be up to 7.58m, and the input impedance of the tag antenna can be adjusted over a wide range by adjusting the length l1 and the width w1 of the T-slot. Therefore, the tag antenna of the embodiment of the invention can meet the differential requirements of the RFID UHF band in different countries and regions.
  • the embodiment of the present invention further provides a method for preparing the tag antenna. As shown in FIG. 1 and FIG. 2, the embodiment of the present invention further provides a method for preparing the tag antenna. As shown in FIG.
  • Step S1101 setting a feed point at the center of the antenna radiant panel
  • Step S1102 Open a double T-shaped slot on the antenna radiant panel according to a preset rule.
  • steps S1101 and S1102 in the embodiment of the present invention is not limited by the chronological order.
  • the method according to the preset rule is to open a double T-shaped slot on the antenna radiant panel according to a preset rule, including:
  • Step S1102a opening a first T-shaped groove in a lower half of the antenna radiation plate, and cutting the first T-shaped groove to a longer side of a lower half of the antenna radiation plate;
  • Step S1102b opening a second T-shaped groove in the upper half of the antenna radiation plate, and cutting the second T-shaped groove directly to the long side of the half of the antenna radiation plate.
  • the method for preparing the tag antenna of the embodiment of the present invention may further include:
  • Step S1103 Adjust the length and width of the first T-shaped slot to change the input impedance of the tag antenna.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the method for preparing the tag antenna according to the embodiment of the invention.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • a feed point is disposed at a center of the antenna radiant panel; further, a double T-shaped slot is opened on the antenna radiant panel according to a preset rule.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明实施例提供一种标签天线及其制备方法、计算机存储介质,所述标签天线包括:天线辐射板、介质基板和介质底板;所述天线辐射板位于介质基板的上方,所述介质底板位于介质基板的下方;其中,所述天线辐射板的中心处设置有馈点,及所述天线辐射板上开有双T型槽。

Description

一种标签天线及其制备方法、计算机存储介质 技术领域
本发明涉及射频识别(Radio Frequency Identification,RFID)技术,尤其涉及一种基于射频识别技术的标签天线及其制备方法、计算机存储介质。
背景技术
目前,射频识别技术是通过无线射频方式进行非接触双向数据通信,对目标加以识别并获取相关数据的一种技术。射频识别技术不需要人工干预、不需要直接接触、也不需要光学可视即可完成信息输入和处理,可工作于各种恶劣环境,可识别高速运动物体,并且可同时识别多个物体。进入21世纪以来,射频识别技术应用更加广泛,产品种类也更加丰富,如有源电子标签、无源电子标签及半无源电子标签等。举例来说,德国BMW公司为保证汽车在流水线各个位置能准确地完成装配任务,将射频识别系统应用在汽车装配线上;Motorola公司采用射频识别技术的自动识别工序控制系统,得以满足半导体生产对于环境的特殊要求,同时提高生产效率。
基于射频识别技术的标签天线性能设计的好坏将直接决定整个射频识别系统性能的优劣,包括系统的读取距离、成本等。目前在低频和高频段的射频识别天线技术已经较为成熟,现阶段的研究主要集中在超高频段和微波频段的射频识别标签天线技术。
在实际应用中,标签天线与标签芯片之间的阻抗匹配是关键问题之一,良好的阻抗匹配可实现更长的读取距离。从制造成本来看,在保证天线性能不变的情况下,要求标签天线和读写器天线的尺寸尽可能小。众所周知,射频识别产品的制造必须遵守使用者所在国家和地区标准机构制定的标准,故标准的差异性使得产品的设计和生产更加复杂和昂贵。例如在欧洲, 射频识别技术所确定的超高频段(Ultra-high frequency,UHF)为866-869MHz、在日本和一些亚洲国家为952-955MHz、在南北美洲是902-928MHz,而我国信息产业部公布的800/900MHz频段射频识别技术应用规定(试行)则将800/900MHz频段划分为两个频段840-845MHz和920-925MHz用以射频识别应用。因此,如何设计具有宽频带特性的小型化标签天线以适用于不同国家和地区的标准是一个技术挑战。另外,由于UHF频段天线受环境(如金属、液体)影响明显,而且当标签贴近读写器时,标签天线的阻抗由于反射波也会产生改变。因此,如何设计标签天线具有更大的带宽以防止谐振频率的偏移也是一个技术难题。
发明内容
本发明实施例提供一种基于射频识别技术的标签天线及其制备方法、计算机存储介质,能够保证所述标签天线具有宽频带特性的同时,适用于不同国家和地区的RFID标准,从而达到节约生产和人力成本的目的。
本发明实施例的技术方案是这样实现的:
本发明实施例提供一种标签天线,所述标签天线包括:天线辐射板、介质基板和介质底板;所述天线辐射板位于介质基板的上方,所述介质底板位于介质基板的下方;
所述天线辐射板的中心处设置有馈点,及所述天线辐射板上开有双T型槽。
上述方案中,所述天线辐射板上开有双T型槽,包括:
在天线辐射板的下半部开有第一T型槽,所述第一T型槽被切至天线辐射板下半部的长边以上;
在天线辐射板的上半部开有第二T型槽,所述第二T型槽被切至天线辐射板上半部的长边。
上述方案中,所述第一T型槽和所述第二T型槽的长度相等。
上述方案中,通过调整所述第一T型槽的长度和宽度来改变所述标签天线的输入阻抗。
上述方案中,在整个超高频段内,所述标签天线的回波损耗均小于-10dB。
上述方案中,在整个超高频段内,所述标签天线的读取距离高达7.58m。
本发明实施例还提供一种标签天线的制备方法,所述标签天线包括天线辐射板、介质基板和介质底板,所述天线辐射板位于介质基板的上方,所述介质底板位于介质基板的下方;所述方法包括:
在天线辐射板中心处设置馈点;
按照预设规则在天线辐射板上开双T型槽。
上述方案中,所述按照预设规则在天线辐射板上开双T型槽,包括:
在天线辐射板的下半部开第一T型槽,将所述第一T型槽切至天线辐射板下半部的长边以上;
在天线辐射板的上半部开第二T型槽,将所述第二T型槽直接切至天线辐射板上半部的长边。
上述方案中,所述第一T型槽和所述第二T型槽的长度相等。
上述方案中,所述方法还包括:
调整所述第一T型槽的长度和宽度,以改变所述标签天线的输入阻抗。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述标签天线的制备方法。
本发明实施例所提供的基于射频识别技术的标签天线及其制备方法、计算机存储介质,在天线辐射板中心处设置馈点;进一步地,按照预设规则在天线辐射板上开双T型槽。如此,通过在天线辐射板上开双T型槽,及在天线辐射板中心处进行馈电的方式,能够保证所设计标签天线具有宽 频带特性的同时,适用于不同国家和地区的RFID标准,从而达到节约生产和人力成本的目的。
附图说明
图1为本发明实施例标签天线的组成结构示意图;
图2为本发明实施例如图1所示的标签天线中天线辐射板的组成结构示意图;
图3为本发明实施例标签天线的仿真结构示意图;
图4为本发明实施例标签天线的输入阻抗实部RA随T型槽长度l1变化的仿真曲线图;
图5为本发明实施例标签天线的输入阻抗虚部XA随T型槽长度l1变化的仿真曲线图;
图6为本发明实施例标签天线的输入阻抗实部RA随第一T型槽的宽度w1变化的仿真曲线图;
图7为本发明实施例标签天线的输入阻抗虚部XA随第一T型槽的宽度w1变化的仿真曲线图;
图8为本发明实施例针对Philips测试用标签芯片所设计的标签天线的输入阻抗曲线图;
图9为针对Philips测试用标签芯片所设计的标签天线的回波损耗曲线图;
图10为针对Philips测试用标签芯片所设计的标签天线的辐射方向图;
图11为本发明实施例标签天线的制备方法的实现流程示意图一;
图12为本发明实施例所述按照预设规则在天线辐射板上开双T型槽的实现流程示意图;
图13为本发明实施例标签天线的制备方法的实现流程示意图二。
具体实施方式
在本发明实施例中,在天线辐射板中心处设置馈点,使得通过在天线辐射板中心处进行馈电的方式保证标签天线辐射方向图的全向性;进一步地,按照预设规则在天线辐射板上开双T型槽,以切断原先辐射板上的表面电流路径,使电流绕槽边曲折流过而路径变长;这样,在标签天线等效电路中相当于引入级联电感,使得标签天线的输入阻抗呈现较大的感性电抗,可与阻抗呈现较大容性电抗的标签芯片达到良好的匹配。
下面结合附图及具体实施例对本发明再作进一步详细的说明。
图1为本发明实施例标签天线的组成结构示意图,如图1所示,所述标签天线包括天线辐射板11、介质基板12和介质底板13;所述天线辐射板11位于介质基板12的上方,所述介质底板13位于介质基板12的下方。
在图1所示的标签天线的基础上,图2为本发明实施例标签天线中天线辐射板11的组成结构示意图,如图2所示,本发明实施例所述天线辐射板11的中心处设置有馈点111,及所述天线辐射板上开有双T型槽,所述双T型槽包括第一T型槽112和第二T型槽113。
这里,所述天线辐射板上开有双T型槽,包括:在天线辐射板的下半部开有第一T型槽112,所述第一T型槽112被切至天线辐射板下半部的长边以上;在天线辐射板的上半部开有第二T型槽113,所述第二T型槽113被切至天线辐射板上半部的长边。
其中,所述第一T型槽112和所述第二T型槽113的长度相等。
图3为本发明实施例标签天线的仿真结构示意图。如图3所示,所述标签天线的总尺寸为L×W=33mm×25mm,介质基板材料选用标签天线设计中最常用的FR-4材料,基板厚度为1.6mm,其相对介电常数为εr=4.4,损耗角正切为tanδ=0.02,保证了天线的小型化和低成本。图3中l1代表的是所开第一T型槽和第二T型槽的长度,w1代表的是所开第一T型槽的宽 度,第二T型槽直接被切到天线辐射板上半部的长边,故第二T型槽的宽度固定为12.25mm。通过改变所述第一T型槽的长度和宽度,可以方便地调节该标签天线的输入阻抗ZA,从而有利于该标签天线跟阻抗不同的标签芯片进行良好的匹配。这里,需要说明的是,由于所述第一T型槽和第二T型槽的长度相等,所以在改变第一T型槽的长度的同时,也会相应改变第二T型槽的长度。
以下通过具体的仿真曲线图来直观地表达通过改变所述第一T型槽的长度和宽度来改变标签天线的输入阻抗ZA的效果。
图4为本发明实施例标签天线的输入阻抗实部RA随T型槽长度l1变化的仿真曲线图;图5为本发明实施例标签天线的输入阻抗虚部XA随T型槽长度l1变化的仿真曲线图。如图4和图5所示,当l1分别取值为21mm、21.5mm、22mm,在整个UHF频段840~960MHz之间,标签天线输入阻抗的实部和虚部均发生改变,随着T型槽的长度l1的增大,标签天线输入阻抗的实部与虚部均增大。在整个UHF频段840~960MHz内,该标签天线的输入阻抗的实部变化范围大约在4.0~23.5欧姆之间,天线输入阻抗的虚部变化范围大约在236.3~536.9欧姆之间。由此可见,通过改变T型槽的长度l1可以对标签天线的输入阻抗进行调节,以使得其可与不同阻抗的标签芯片之间得到良好的共轭匹配状态。
图6为本发明实施例标签天线的输入阻抗实部RA随第一T型槽的宽度w1变化的仿真曲线图;图7为本发明实施例标签天线的输入阻抗虚部XA随第一T型槽的宽度w1变化的仿真曲线图。如图6和图7所示,当w1分别取值为10mm、11mm、12mm,在整个UHF频段840~960MHz之间,标签天线输入阻抗的实部和虚部均发生改变,随着第一T型槽宽度w1的增大,标签天线输入阻抗的实部与虚部均增大。在整个UHF频段840~960MHz内,该标签天线输入阻抗的实部变化范围大约在1.74~23.49欧姆之间, 标签天线输入阻抗的虚部变化范围大约在178.91~536.93欧姆之间。由此可见,通过改变第一T型槽的宽度w1也可以对标签天线的输入阻抗进行调节,以使得其可与不同阻抗的标签芯片之间得到良好的共轭匹配状态。
由于UHF频段标签天线的输入阻抗受环境(金属、液体)影响明显,而且当标签贴近读写器时,标签天线的阻抗由于反射波也会产生改变。从图4~图7可以得出,通过调节T型槽的长度l1和第一T型槽的宽度w1,可以在很大范围内调整本发明实施例所述标签天线的输入阻抗。因此,本发明实施例所述标签天线具有更大的带宽以防止谐振频率的偏移,可以适用于以上场景。
针对Philips公司的测试用标签芯片,所述标签芯片在915MHz的表现阻抗为11-j422欧姆,通过仿真软件优化设计可得,当l1=22mm,w1=12.25mm时,本发明实施例所述标签天线与标签芯片之间可以达到良好的匹配状态,天线性能最佳。
图8为本发明实施例针对Philips测试用标签芯片所设计的标签天线的输入阻抗曲线图。在915MHz处,标签天线的输入阻抗ZA=12.39+j417.94欧姆,接近Philips公司的测试用标签芯片在915MHz的表现阻抗为11-j422欧姆的共轭阻抗,故标签天线可与该标签芯片实现良好的共轭匹配。而且从图8中还可看出,在全球整个UHF频段840~960MHz内,天线输入阻抗的实部变化范围约在5.17~23.45欧姆之间,虚部变化范围约在300.63~536.93欧姆之间,可以满足多数UHF频段标签芯片的匹配要求。
图9为针对Philips测试用标签芯片所设计的标签天线的回波损耗曲线图。由此图可以看出,在全球整个UHF频段840~960MHz内,回波损耗S11均小于-10dB,且最低点916MHz对应的S11为-51.57dB,可见标签天线与Philips公司的测试用标签芯片达到了良好的共轭匹配状态。若选取其他一些阻抗不同的标签芯片与该宽带标签天线进行匹配,亦可在该频段内 取得良好的匹配状态。
图10为针对Philips测试用标签芯片所设计的标签天线的辐射方向图。通常情况下,为使得标签具有良好的可读性,减小对特殊放置方向的依赖,一般都要求标签天线的辐射方向图具有良好的全向性。由此图可以看出,在phi=90deg方向上,该标签天线具有良好的全向性,符合标签天线的应用要求。利用RFID标签天线的距离计算公式可计算出该标签天线的最大理论读取距离:
Figure PCTCN2016076810-appb-000001
其中λ为自由空间波长,Pt为读写器发射功率,Gt为读写器天线的增益,Gr为标签天线的增益,Pth为标签芯片门限激活功率,χ为读写器天线与标签天线之间的极化匹配系数,τ为功率传输系数。从图10中还可看出,该标签天线的最大辐射增益Gr约为-0.76dBi,根据以上公式可以计算出该标签天线的最大理论读取距离可达7.58m。
从图8~图10可以看出,本发明所设计的新型UHF频段RFID标签天线在全球整个UHF频段840~960MHz内,S11均小于-10dB,辐射方向图具有良好的全向性,最大理论读取距离可长达7.58m,而且通过调整T型槽的长度l1和宽度w1,可以在很大范围内调整该标签天线的输入阻抗。因此本发明实施例所述标签天线可以满足不同国家和地区的RFID UHF频段的差异性需求。
对应图1和图2所示的标签天线,本发明实施例还提供所述标签天线的制备方法,如图11所示,本发明实施例标签天线的制备方法包括:
步骤S1101:在天线辐射板中心处设置馈点;
步骤S1102:按照预设规则在天线辐射板上开双T型槽。
这里,需要说明的是,本发明实施例步骤S1101和S1102的执行并不受时间先后顺序的限制。
具体地,如图12所示,本发明实施例在执行步骤S1102的过程中,所述按照预设规则在天线辐射板上开双T型槽,包括:
步骤S1102a:在天线辐射板的下半部开第一T型槽,将所述第一T型槽切至天线辐射板下半部的长边以上;
步骤S1102b:在天线辐射板的上半部开第二T型槽,将所述第二T型槽直接切至天线辐射板上半部的长边。
其中,所述第一T型槽和所述第二T型槽的长度相等。
在一实施例中如图13所示,本发明实施例标签天线的制备方法还可以包括:
步骤S1103:调整所述第一T型槽的长度和宽度,以改变所述标签天线的输入阻抗。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述标签天线的制备方法。
本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。
工业实用性
本发明实施例所提供的基于射频识别技术的标签天线的制备方法,在天线辐射板中心处设置馈点;进一步地,按照预设规则在天线辐射板上开双T型槽。如此,通过在天线辐射板上开双T型槽,及在天线辐射板中心处进行馈电的方式,能够保证所设计标签天线具有宽频带特性的同时,适用于不同国家和地区的RFID标准,从而达到节约生产和人力成本的目的。

Claims (11)

  1. 一种标签天线,所述标签天线包括:天线辐射板、介质基板和介质底板;所述天线辐射板位于介质基板的上方,所述介质底板位于介质基板的下方;
    所述天线辐射板的中心处设置有馈点,及所述天线辐射板上开有双T型槽。
  2. 根据权利要求1所述的标签天线,其中,所述天线辐射板上开有双T型槽,包括:
    在天线辐射板的下半部开有第一T型槽,所述第一T型槽被切至天线辐射板下半部的长边以上;
    在天线辐射板的上半部开有第二T型槽,所述第二T型槽被切至天线辐射板上半部的长边。
  3. 根据权利要求2所述的标签天线,其中,所述第一T型槽和所述第二T型槽的长度相等。
  4. 根据权利要求3所述的标签天线,其中,通过调整所述第一T型槽的长度和宽度来改变所述标签天线的输入阻抗。
  5. 根据权利要求1至4任一项所述的标签天线,其中,在整个超高频段内,所述标签天线的回波损耗均小于-10dB。
  6. 根据权利要求1至4任一项所述的标签天线,其中,在整个超高频段内,所述标签天线的读取距离高达7.58m。
  7. 一种标签天线的制备方法,所述标签天线包括天线辐射板、介质基板和介质底板,所述天线辐射板位于介质基板的上方,所述介质底板位于介质基板的下方;所述方法包括:
    在天线辐射板中心处设置馈点;
    按照预设规则在天线辐射板上开双T型槽。
  8. 根据权利要求7所述的方法,其中,所述按照预设规则在天线辐射板上开双T型槽,包括:
    在天线辐射板的下半部开第一T型槽,将所述第一T型槽切至天线辐射板下半部的长边以上;
    在天线辐射板的上半部开第二T型槽,将所述第二T型槽直接切至天线辐射板上半部的长边。
  9. 根据权利要求8所述的方法,其中,所述第一T型槽和所述第二T型槽的长度相等。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    调整所述第一T型槽的长度和宽度,以改变所述标签天线的输入阻抗。
  11. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求7至10任一项所述标签天线的制备方法。
PCT/CN2016/076810 2015-07-17 2016-03-18 一种标签天线及其制备方法、计算机存储介质 WO2016177150A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510423453.XA CN106356613A (zh) 2015-07-17 2015-07-17 一种标签天线及其制备方法
CN201510423453.X 2015-07-17

Publications (1)

Publication Number Publication Date
WO2016177150A1 true WO2016177150A1 (zh) 2016-11-10

Family

ID=57217389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076810 WO2016177150A1 (zh) 2015-07-17 2016-03-18 一种标签天线及其制备方法、计算机存储介质

Country Status (2)

Country Link
CN (1) CN106356613A (zh)
WO (1) WO2016177150A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654524A (zh) * 2016-12-29 2017-05-10 华侨大学 一种双层结构宽频带uhf rfid抗金属标签天线

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108429004A (zh) * 2017-02-14 2018-08-21 中兴通讯股份有限公司 射频识别rfid标签天线及其实现方法
CN112397874B (zh) * 2020-10-30 2023-03-28 西南电子技术研究所(中国电子科技集团公司第十研究所) 射频识别rfid抗金属微带标签天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317084B1 (en) * 2000-06-30 2001-11-13 The National University Of Singapore Broadband plate antenna
CN201117799Y (zh) * 2007-11-30 2008-09-17 华南理工大学 具有宽带特性的uhf rfid电子标签天线
CN101783435A (zh) * 2010-04-23 2010-07-21 上海大学 新型三频平面倒f天线
CN204375935U (zh) * 2014-12-18 2015-06-03 哈尔滨飞羽科技有限公司 一种基于双t型槽的超宽带天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202042595U (zh) * 2011-04-20 2011-11-16 付宇卓 可工作于金属表面的超高频射频识别电子标签天线
CN104463309B (zh) * 2013-09-25 2017-10-31 江苏本能科技有限公司 一种用于汽车挡风玻璃的超高频无源电子标签
CN104408510A (zh) * 2014-08-27 2015-03-11 北京中电华大电子设计有限责任公司 一种平面缝隙标签

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317084B1 (en) * 2000-06-30 2001-11-13 The National University Of Singapore Broadband plate antenna
CN201117799Y (zh) * 2007-11-30 2008-09-17 华南理工大学 具有宽带特性的uhf rfid电子标签天线
CN101783435A (zh) * 2010-04-23 2010-07-21 上海大学 新型三频平面倒f天线
CN204375935U (zh) * 2014-12-18 2015-06-03 哈尔滨飞羽科技有限公司 一种基于双t型槽的超宽带天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654524A (zh) * 2016-12-29 2017-05-10 华侨大学 一种双层结构宽频带uhf rfid抗金属标签天线

Also Published As

Publication number Publication date
CN106356613A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
US8665158B2 (en) Printed filtering antenna
US8561912B2 (en) RFID tag having capacitive load
Abdulkawi et al. Design of chipless RFID tag based on stepped impedance resonator for IoT applications
TWI488367B (zh) 射頻辨識標籤天線
WO2016177150A1 (zh) 一种标签天线及其制备方法、计算机存储介质
Barman et al. Spiral resonator loaded S‐shaped folded dipole dual band UHF RFID tag antenna
Murad et al. Hilbert curve fractal antenna for RFID application
Tang et al. Broadband UHF RFID tag antenna with quasi-isotropic radiation performance
WO2018149247A1 (zh) 射频识别rfid标签天线及其实现方法
CN102800948B (zh) 天线及无线通讯装置
Park et al. Design of UHF radio frequency identification metal tag antenna using T‐shaped slot
Yu et al. A Miniature Antenna for 2.45 GHz RFID Tag.
Tao et al. RFID tag antenna for metallic or non-metallic surfaces
CN102622646A (zh) 内置天线的超高频智能标签芯片
CN202142078U (zh) 读写器、电子标签和射频识别系统
TWI599108B (zh) 用於無線通信模組之天線
Jalal et al. A compact fractal-based asymmetrical dipole antenna for RFID tag applications
TW202022705A (zh) 無線射頻螺件天線與無線射頻螺件標籤
John et al. Series SRR Loaded UHF RFID Tag
Guan et al. A novel design of compact dipole antenna for 900 MHz and 2.4 GHz RFID tag applications
Chen et al. Research on U-shaped tuning stub RFID tag on different objects
TWI536673B (zh) 用於無線射頻之偶極天線
CN219759962U (zh) 一种天线、rfid系统及电子设备
Liu et al. Compact tri-band UHF RFID tag antenna for Monza4 chip
Wang et al. Design of a Miniaturized Polygonal RFID Tag Antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789144

Country of ref document: EP

Kind code of ref document: A1