WO2016177114A1 - 一种移动宽带数据传输的管理方法和装置 - Google Patents

一种移动宽带数据传输的管理方法和装置 Download PDF

Info

Publication number
WO2016177114A1
WO2016177114A1 PCT/CN2016/076394 CN2016076394W WO2016177114A1 WO 2016177114 A1 WO2016177114 A1 WO 2016177114A1 CN 2016076394 W CN2016076394 W CN 2016076394W WO 2016177114 A1 WO2016177114 A1 WO 2016177114A1
Authority
WO
WIPO (PCT)
Prior art keywords
wlan
resource function
access node
future evolution
function modules
Prior art date
Application number
PCT/CN2016/076394
Other languages
English (en)
French (fr)
Inventor
杨立
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177114A1 publication Critical patent/WO2016177114A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present application relates to, but is not limited to, the field of mobile communications, and more particularly to a cellular mobile system in the 3GPP (3rd Generation Partnership) family of standards, which utilizes multiple WLAN access nodes (APs) to implement mobility.
  • Method and system for broadband data transmission are not limited to, the field of mobile communications, and more particularly to a cellular mobile system in the 3GPP (3rd Generation Partnership) family of standards, which utilizes multiple WLAN access nodes (APs) to implement mobility.
  • the cellular mobile system within the 3GPP (3rd Generation Partnership) family system may include a Long Term Evolution (LTE, Long Term Evolution, including network side NW and terminal side UE) and its subsequent next generation cellular system, and A cross-system joint interoperability mode between a wireless local area network (WLAN, Wireless Local Access Network, including the network side and the terminal side) and its subsequent next generation systems such as HEW (High Efficient WLAN).
  • LTE Long Term Evolution
  • WLAN Wireless Local Access Network
  • HEW High Efficient WLAN
  • Multi-RATs wireless access and data transmission services are provided together, and key performance indicators (KPIs) for user mobile communication are enhanced in order to enhance inter-system mobility performance. Key Performance Indicator), saving hardware and software development and maintenance costs, and facilitating operators to manage the operation and maintenance of "Multi-RAT large network”.
  • 3GPP has developed a variety of standardization technologies to implement the above various wireless communication systems. Coupled together in varying degrees/levels to form so-called cross-system joint interoperability. As shown in the example of a network architecture in Figure 1, the WLAN AP and the three main radio access network units of the 3GPP are connected to the same core network (CN, Core Network), and the operators can flexibly coordinate different transmissions.
  • CN Core Network
  • the capability/configuration/status information between the RATs is used to formulate a reasonable mobility policy, and the UE is served under the most suitable RAT base station/cell according to the characteristics of the quality of service (QoS) and the state of the resource.
  • QoS quality of service
  • the advantage of enhancing the inter-RAT interoperability is that different RATs can better utilize the advantages of their respective systems. Different RATs can share the wireless communication load of users more flexibly and evenly. Different RATs can form hardware resources. The dynamic complementarity of wireless coverage and capacity brings higher performance KPIs to the entire “Multi-RAT Large Network”, bringing better mobile communication experience and experience to users.
  • a terminal having WLAN/3GPP multi-mode capability can simultaneously be in a communication connection/data transmission state with an access node of an AP or WLAN future evolution or revolutionary system and a base station of a certain RAT in the 3GPP family.
  • the following will focus on the joint interoperability between WLAN and LTE systems (the idea principle is also applicable to joint interoperability between other RATs), for example, a certain WLAN/LTE dual-mode capability terminal is simultaneously in the WLAN/LTE cell wireless.
  • the terminal Under the signal coverage, the terminal first establishes an RRC (Radio Resource Control) connection with the LTE network, and then performs two-way data transmission of a certain IP service flow A, and then the user initiates a new IP service flow B.
  • RRC Radio Resource Control
  • the terminal Under the user manual control mode UP (User Preference), the terminal searches for the coverage signal of the WLAN and completes the necessary AP network association authentication registration (this process is called WLAN network selection registration), and then the fusion CN can be based on A certain policy rule and upper layer protocol signaling, the IP service flow B is migrated to the WLAN system that has been successfully registered before the terminal, and then the IP service flow A of the terminal is still carried in the LTE network, and the IP service flow B is carried in the WLAN network.
  • Medium this process is called WLAN data splitting
  • the user plane data of the bearer is transmitted by the target APs that are tightly coupled to each other.
  • the anchor MeNB of the radio access side controls the addition/reconfiguration/deletion of the target AP and the forwarding and recovery of the related offload data, which can be understood as: MeNB (Primary base station node) is the centralized control node of all APs in LWA mode of operation.
  • the 3GPP system deployed on the network side of the carrier has fewer resources (for example, the deployed LTE authorized carrier is small and narrow, the BU (Branching Unit) related to the 3GPP system processes less resources), and the WLAN related to the network side is deployed. If there are many resources (for example, the deployed WLAN unlicensed carrier is large and wide, and the WLAN system has more BU processing resources), then for the "single AP connection capability" UE, it must be out of balance with the network side capability allocation ratio (Mismatch). As a result, the 3GPP related capability resource part in the UE is idle, and since the UE has only one WLAN resource module, the WLAN resources on the network side cannot be fully utilized.
  • Embodiments of the present invention provide a method and an apparatus for managing mobile broadband data transmission, which can fully utilize WLAN resources that are redundant on the network side.
  • a management method for mobile broadband data transmission comprising:
  • the at least two sets of WLAN resource function modules to perform association authentication with a corresponding access node (AP) or an access node of a WLAN future evolution or revolution system;
  • the terminal is configured to use the at least two sets of WLAN resource function modules to transmit mobile broadband data with an access node of a corresponding AP or WLAN future evolution or revolution system.
  • the capability information of the WLAN resource function module includes at least one of non-LWA mechanism capability information, a supported WLAN radio frequency band, and a working bandwidth.
  • the performing, according to the capability information, configuring, for the at least two sets of WLAN resource function modules, association authentication with an access node of a corresponding AP or WLAN future evolution or revolution system including:
  • the WLAN resource function module in the idle state is configured.
  • any two sets of WLAN resource function modules are connected to APs or WLANs are different from the future evolution or revolutionary system access nodes.
  • the management uses the at least two sets of WLAN resource function modules to transmit mobile broadband data with an access node of a corresponding AP or WLAN future evolution or revolution system, including:
  • Condition 1 All WLAN resource function modules in the UE have been utilized
  • Condition 2 The AP or the access node of the WLAN future evolution or revolutionary system that matches the capability information of the WLAN resource function module is not found.
  • the capability and status information of the access node of the revolutionary system includes at least one of signal coverage strength and quality, radio load, backhaul bandwidth, WLAN authentication information, and WLAN registration information of the access node of the AP or WLAN future evolution or revolutionary system.
  • Determining the future evolution or revolution of the AP or WLAN with the capability and status information of the access node of the AP or WLAN future evolution or revolutionary system according to the capabilities and status information of the access node of the AP or WLAN future evolution or revolutionary system The access node of the system.
  • the method further includes:
  • the at least two WLAN resource function modules are configured to be configured with the corresponding access node AP or the WLAN future evolution or revolution system.
  • the access node performs the operation of association authentication.
  • a management device for mobile broadband data transmission comprising:
  • the first obtaining module is configured to: acquire capability information of at least two sets of WLAN resource function modules in the terminal;
  • the association module is configured to: perform association authentication with the access node of the corresponding AP or WLAN future evolution or revolution system for the at least two sets of WLAN resource function modules according to the capability information;
  • a management module configured to: manage, by the terminal, use the at least two sets of WLAN resource function modules to transmit mobile broadband data with an access node of a corresponding AP or WLAN future evolution or revolution system.
  • the capability information of the WLAN resource function module includes at least one of non-LWA mechanism capability information, a supported WLAN radio frequency band, and a working bandwidth.
  • the association module includes:
  • An acquiring unit configured to: obtain a WLAN resource function module that is in an idle state in the terminal;
  • the configuration unit is configured to: configure the WLAN resource function module that is in an idle state.
  • any two sets of WLAN resource function modules are connected to APs or WLANs are different from the future evolution or revolutionary system access nodes.
  • the management module is set to:
  • nth secondary WLAN link in the terminal Controlling the nth secondary WLAN link in the terminal to perform offloading or reverse offloading to carry uplink and downlink mobile broadband data between the UE and the network; wherein the IP flows carried by the nth secondary WLAN link are from The remaining mobile broadband data of the UE on the 3GPP network side; or, the primary WLAN The link, the first to the n-1th WLAN link have been offloaded mobile broadband data; wherein n ⁇ m-1, n and m are positive integers, and m is a WLAN resource function module in the terminal total.
  • the device further comprises:
  • the stopping module is configured to: stop, when the following conditions are detected, configure the at least two sets of WLAN resource function modules to perform association authentication with the corresponding access node AP or the access node of the WLAN future evolution or revolution system:
  • Condition 1 All WLAN resource function modules in the UE have been utilized
  • Condition 2 The AP or the access node of the WLAN future evolution or revolutionary system that matches the capability information of the WLAN resource function module is not found.
  • the stop module includes:
  • a determining unit configured to: determine, according to the capability information of the terminal, capability and status information of an AP or a WLAN future evolution or a revolutionary system access node that matches the capability information of the WLAN resource function module in the terminal, where
  • the capability and status information of the access nodes of the AP or WLAN future evolution or revolutionary system include the signal coverage strength and quality of the access nodes of the AP or WLAN future evolution or revolutionary system, the radio load, the backhaul bandwidth, the WLAN authentication information and the WLAN. At least one of the registration information;
  • a searching unit configured to: find an AP having capability and status information of an access node of the AP or WLAN future evolution or revolution system according to capability and status information of an access node of the AP or WLAN future evolution or revolution system Or an access node for a future evolution or revolutionary system of WLAN.
  • the device further comprises:
  • a second acquiring module configured to: acquire an operating state of all WLAN resource function modules in the UE and/or capability information of an access node of an AP or WLAN future evolution or revolution system;
  • the startup module is configured to: after the working state of the WLAN resource function module in the idle state in the UE and/or the access node of the AP or WLAN future evolution or revolution system matching the capability information of the WLAN resource function module Starting for the at least two sets of WLAN resources
  • the source function module configures the operation of associating authentication with the corresponding access node AP or the access node of the WLAN future evolution or revolutionary system.
  • the device is applied to an evolved base station (eNodeB) on the network side in a future evolution or revolutionary system of LTE or LTE.
  • eNodeB evolved base station
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method for managing the mobile broadband data transmission when the computer executable instructions are executed.
  • the embodiment provided by the present application uses at least two sets of WLAN resource function modules in the terminal to establish a connection with the access node for each WLAN resource function module, thereby implementing multiple transmission links between the terminal and the network side, thereby improving data transmission. Efficiency, and make full use of resources on the network side.
  • 1 is a schematic diagram of an architecture of WLAN/3GPP joint interoperation coupling in the related art
  • FIG. 2a is a schematic diagram of a state before being diverted to a WLAN AP node IP Flow in the related art
  • 2b is a schematic diagram of a state after being shunted to a WLAN AP node IP Flow in the related art
  • FIG. 3 is a flowchart of a method for managing mobile broadband data transmission according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a method for managing mobile broadband data transmission according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a method for managing mobile broadband data transmission according to Embodiment 2 of the present invention.
  • FIG. 6 is a structural diagram of a device for managing mobile broadband data transmission according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for managing mobile broadband data transmission according to an embodiment of the present invention. The method shown in Figure 3 includes the following steps:
  • Step 301 Obtain capability information of at least two sets of WLAN resource function modules in the terminal.
  • Step 302 Perform association authentication with the corresponding AP or the access node of the WLAN future evolution or revolution system for the at least two sets of WLAN resource function modules, according to the capability information.
  • the access node of the AP or WLAN future evolution or revolutionary system is an AP.
  • the AP or WLAN future evolution or the access node of the revolutionary system has the function of the AP in the LTE.
  • the WLAN resource module is also adapted to have a function matching the system
  • Step 303 The terminal is configured to perform mobile broadband data transmission by using the at least two sets of WLAN resource function modules and corresponding APs or access nodes of a WLAN future evolution or revolution system.
  • the "management” specifically refers to the basic operations of establishing, configuring, reconfiguring, maintaining, and deleting each WLAN link independently.
  • the basic operation is consistent with the existing single WLAN link.
  • the method provided by the embodiment of the present invention uses the at least two sets of WLAN resource function modules in the terminal to establish a connection with the access node for each WLAN resource function module, thereby implementing multiple transmission links between the terminal and the network side, and improving data. Transmission efficiency, and make full use of resources on the network side.
  • the capability information of the WLAN resource function module includes at least one of non-LWA mechanism capability information, a supported WLAN radio frequency band, and a working bandwidth.
  • an appropriate AP or a WLAN future evolution or a revolutionary system access node may be selected for the WLAN resource module according to the capability information to ensure the stability of the established connection.
  • the at least two sets of WLAN resource function modules are configured to perform association authentication with the access nodes of the corresponding AP or WLAN future evolution or revolution system, including:
  • the WLAN resource function module in the idle state is configured.
  • some modules may be in a working state. If the module in the working state is configured, the data being transmitted by the module may be affected, causing the data transmission to be interrupted. Therefore, in order to ensure that the normal transmission of data in the UE is not affected during the configuration process, the working state of the module needs to be detected before configuration to avoid data interruption caused by the configuration operation.
  • any two sets of WLAN resource function modules are connected to APs or WLANs are different from the future evolution or revolutionary system access nodes.
  • the link obtained by each AP connected to the WLAN resource function module or the access node of the WLAN future evolution or revolution system corresponds to the establishment between the UE and the network side AP or the access node of the WLAN future evolution or revolution system.
  • the multi-WLAN working link, in the established time sequence can be established at the same time if the conditions are met, that is, only the logical order is processed sequentially, and there is no time to establish a difference.
  • the management uses the at least two sets of WLAN resource function modules to transmit mobile broadband data with an access node of a corresponding AP or WLAN future evolution or revolution system, including:
  • nth secondary WLAN link in the terminal Controlling the nth secondary WLAN link in the terminal to offload the bearer or reverse offloading to carry the mobile broadband data in the UE; wherein the IP flows carried by the nth secondary WLAN link are from the UE in the 3GPP network The remaining mobile broadband data; or, is the mobile broadband data that the primary WLAN link and the first to the n-1th secondary WLAN links have been offloaded; wherein n ⁇ m-1, n and m are A positive integer, m is the total number of WLAN resource function modules in the terminal.
  • the 3GPP network side allows the AP1 node deployed on the network side and the WLAN in the UE according to a related non-LWA mechanism.
  • the resource function module first forms an association connection and completes the necessary WLAN access authentication registration process.
  • the UE is established to obtain the primary WLAN link PWL (Primary WLAN Link).
  • PWL Primary WLAN Link
  • the 3GPP network side uses the non-LWA mechanism related technology to allow AP1 and the UE to perform related air interface uplink and downlink data transmission, that is, according to the policy criteria parameters specified by the non-LWA mechanism, use PWL to offload bearer or reverse The offloading carries some of the IP Flows in the UE.
  • S2 After S1, if there is still a certain WLAN resource function module in the UE that is idle and unused, the 3GPP network side is based on some non-LWA that it can support within the capability of the WLAN resource function module.
  • the first secondary WLAN link (SWL) is obtained.
  • the 3GPP network side uses the non-LWA mechanism related technology to enable AP2 and the UE to perform related air interface uplink and downlink data transmission, that is, to use the 1st SWL to offload the bearer according to the policy criterion parameters specified by the non-LWA mechanism. Reverse unloading to carry some IP flows in the UE.
  • the IP flows carried by the 1st SWL may be from the user data stream remaining by the UE on the 3GPP network side, or may be the user data stream that the PWL has been offloaded.
  • the 3GPP network side continues to detect the WLAN resource function module that has not been utilized in the UE. Based on certain non-LWA mechanisms that it can support, under certain conditions, the network is tried according to relevant technical methods.
  • the other APx nodes deployed on the side form an association connection with the set of WLAN resource function modules in the UE, and complete the necessary WLAN access authentication registration process. At this time, the UE is established to obtain more second/third/fourth auxiliary devices.
  • WLAN link SWL (2nd/3rd/4th...Secondary WLAN Link).
  • the 3GPP network side uses the related technologies of the non-LWA mechanism to enable the APx and the UE to perform related air interface uplink and downlink data transmission, that is, to use more 2nd/3rd/ according to the policy criterion parameters specified by the non-LWA mechanism.
  • 4th...SWL goes The offloading or reverse unloading carries some IP flows in the UE.
  • the IP flows carried by the 2nd/3rd/4th...SWL may be from the user data stream remaining by the UE on the 3GPP network side, or may be the user data stream that has been previously offloaded by the PWL and the 1st SWL, and then sequentially recursively.
  • PWL and 1st, 2nd, 3rd, 4th...SWL may be based on the same policy criterion parameters corresponding to the same non-LWA mechanism (corresponding to the same set of policy criterion parameters for all target APs on the 3GPP network side, etc.) ), and under the same state conditions, in this case PWL and 1st, 2nd, 3rd, 4th ... SWL in addition to the name difference in order to facilitate the description of the difference, there is no essential difference (can be called PWL); PWL and 1st, 2nd, 3rd, 4th...SWL may also be based on different kinds of non-LWA mechanisms corresponding to the policy criteria parameters, etc.
  • PWL and 1st, 2nd, 3rd, 4th...SWL have multiple differences in shunting capacity and build/maintenance/release, so it needs to be stricter Be distinguished.
  • the at least two sets of WLAN resource function modules are configured to perform association authentication with the corresponding access node AP or the access node of the WLAN future evolution or revolution system:
  • Condition 1 All WLAN resource function modules in the UE have been utilized
  • Condition 2 The AP or the access node of the WLAN future evolution or revolutionary system that matches the capability information of the WLAN resource function module is not found.
  • the LTE or LTE future evolved or revolutionary access node that matches the capability information of the WLAN resource function module is determined by:
  • the capability information of the access node includes at least one of a signal coverage strength, a radio load, a backhaul bandwidth, WLAN authentication information, and WLAN registration information of an access node of an AP or WLAN future evolution or revolutionary system;
  • the method further includes: after the operation of performing association authentication with the access node of the AP or the WLAN future evolution or the revolutionary system is stopped for the at least two WLAN resource function modules, the method further includes:
  • the at least The two sets of WLAN resource function modules are configured to perform associated authentication operations with corresponding access node APs or access nodes of the WLAN future evolution or revolutionary system.
  • an operator deploys an LTE Macro Cell network to provide basic wireless coverage for users.
  • the operator further expands an unlicensed carrier frequency in the unlicensed 2.4G and 5G bands.
  • WLAN APs with 40M bandwidth are deployed to offload IP flows carrying user services.
  • a terminal UE 1 normally resides in the LTE macro cell, and the base station (eNB) maintains a radio resource control (RRC) connection state, and the UE 1 is also under the wireless signal coverage of multiple WLAN APs.
  • RRC radio resource control
  • the internal hardware of UE 1 is equipped with: 1 set of WLAN radio frequency baseband function module A (referred to as WLAN module A) capable of supporting 2.4G band 40M bandwidth +1 sets of WLAN radio frequency baseband function module B capable of supporting 5G band 40M bandwidth (referred to as WLAN)
  • the module B) reports the LTE air interface RRC information to the eNB, so that the LTE network side learns that the UE 1 can support the related capability of the “multi-AP connection”.
  • both WLAN modules of UE 1 support the ITW joint interoperability mechanism.
  • the eNB configures the ITW-related policy criterion parameters of the WLAN module A of the UE 1 by using the RRC dedicated signaling.
  • a specific WLAN condition according to the related ITW technical mode, an AP1 node and the UE 1 in the 2.4G frequency band
  • the WLAN module A first forms an associated connection and completes the necessary WLAN access authentication registration process.
  • the UE 1 is established to obtain the primary WLAN link PWL.
  • some IP Flows originally carried in the LTE macro cell are offloaded by the PWL.
  • the eNB further configures, by using RRC dedicated signaling, the WLAN module B of the UE 1 and the ITW-related policy criterion parameters, and in a specific WLAN condition, according to the related ITW technical mode, an AP2 node and the UE 1 in the 5G frequency band
  • the WLAN module B can also form an associated connection and complete the necessary WLAN access authentication registration process.
  • the UE 1 is established to obtain a secondary WLAN link SWL. After successful establishment, some IP Flows originally carried in the LTE macro cell can be offloaded by the SWL.
  • the two WLAN modules in the UE 1 cannot perform the LTE carrier aggregation on the vertical plane of the spectrum. Operation (the WLAN module cannot align the transmission time of multiple data blocks).
  • the UE 1 performs WLAN data offloading with the two target APs at the same time, which can further enhance the offloading capability of the LTE macro network to the WLAN network, and improve the user data throughput rate.
  • S104 Although the eNB temporarily detects that all WLAN modules in the UE 1 have been utilized, as the UE moves and the WLAN's own conditions change (such as signal coverage strength, wireless load), polling detection is required to update. Do "Double AP Connection" and use the WLAN APs resources on the network side and the two WLAN modules in the UE as much as possible. The target AP nodes in the 2.4G and 5G bands of the UE 1 will be updated and changed independently, and the specific conditions of the offloaded IP Flows continue to be performed according to the ITW related policy criterion parameters respectively configured by the eNB.
  • an operator deploys an LTE macro cell network to provide basic wireless coverage for users. To enhance network capacity, the operator further expands the unlicensed carrier frequency of the unlicensed 2.4G.
  • WLAN APs with 80M bandwidth are deployed in parallel to distribute IP flows carrying user services.
  • a terminal UE 2 normally resides in the LTE macro cell, and maintains an RRC connection state with the eNB base station, and the UE 2 is also under the overlapping coverage of the wireless signals of two adjacent WLAN APs.
  • the internal hardware of UE 2 is equipped with: 2 sets of WLAN RF baseband function modules (referred to as WLAN module A/B) that can support the 80G bandwidth of 2.4G band +1 sets of WLAN RF baseband function modules C capable of supporting 5G band 80M bandwidth (referred to as The WLAN module C) reports the LTE air interface RRC information to the eNB, so that the LTE network side learns that the UE 2 can support the related capability of the “multi-AP connection”.
  • the UE 2's three WLAN modules support the eANDSF joint interoperability mechanism.
  • the eNB configures, by using RRC dedicated signaling, the WLAN module A/B configuration of the UE 2 and the eANDSF related policy criterion parameter, and according to the related eANDSF technical mode, an AP1 node and the UE in the 2.4G frequency band under specific WLAN conditions.
  • the WLAN module A first forms an associated connection and completes the necessary WLAN access authentication registration process. At this time, the UE 2 is established to obtain the primary WLAN link PWL. After successful establishment, some IP Flows originally carried in the LTE macro cell are offloaded by the PWL.
  • the AP2 node adjacent to the AP1 node in the 2.4G band also forms an associated connection with the WLAN module B in the UE 2, and completes the necessary WLAN access authentication.
  • UE 2 is established at this time to obtain a secondary WLAN link SWL. After successful establishment, some IP Flows originally carried in the LTE macro cell and on the PWL can be offloaded by the SWL.
  • the AP1 and AP2 on the same WLAN unlicensed working frequency may not be able to send data blocks to the UE 2 at the same time. Whoever successfully successfully preempts the local channel resources can send data blocks.
  • the network side may also choose to allow adjacent AP1 and AP2 to carry the same IP Flow to form a transmit-receive diversity gain.
  • the eNB temporarily detects that all WLAN modules in the UE 2 have been utilized as much as possible, as the UE moves and the WLAN itself changes (such as signal coverage) Intensity quality, wireless load, entering the coverage of WLAN AP nodes in the 5G band), also need polling detection and update to do "multi-AP connection", as much as possible to use network side WLAN APs resources and 3 sets of UEs WLAN module.
  • the target AP nodes in the 2.4G or 5G frequency band of the UE 2 will update and change independently, and the specific IP flows of the offloading will continue to be performed according to the eANDSF related policy criterion parameters respectively configured by the eNB.
  • FIG. 6 is a structural diagram of a device for managing mobile broadband data transmission according to an embodiment of the present invention.
  • the device shown in Figure 6 includes:
  • the first obtaining module 601 is configured to: acquire capability information of at least two sets of WLAN resource function modules in the terminal;
  • the association module 602 is configured to: perform, according to the capability information, the associated authentication of the at least two sets of WLAN resource function modules with the access nodes of the corresponding AP or WLAN future evolution or revolution system;
  • the management module 603 is configured to: manage, by the terminal, use the at least two sets of WLAN resource function modules to transmit mobile broadband data with an access node of a corresponding AP or WLAN future evolution or revolution system.
  • the capability information of the WLAN resource function module includes at least one of non-LWA mechanism capability information, a supported WLAN radio frequency band, and a working bandwidth.
  • the association module 602 includes:
  • An acquiring unit configured to: obtain a WLAN resource function module that is in an idle state in the terminal;
  • the configuration unit is configured to: configure the WLAN resource function module that is in an idle state.
  • any two sets of WLAN resource function modules are connected to APs or WLANs are different from the future evolution or revolutionary system access nodes.
  • the management module 603 is configured to:
  • the device further comprises:
  • the stopping module is configured to: stop, when the following conditions are detected, configure the at least two sets of WLAN resource function modules to perform association authentication with the corresponding access node AP or the access node of the WLAN future evolution or revolution system:
  • Condition 1 All WLAN resource function modules in the UE have been utilized
  • Condition 2 The AP or the access node of the WLAN future evolution or revolutionary system that matches the capability information of the WLAN resource function module is not found.
  • the stop module includes:
  • a determining unit configured to: determine, according to the capability information of the terminal, capability and status information of an AP or a WLAN future evolution or a revolutionary system access node that matches the capability information of the WLAN resource function module in the terminal, where
  • the capability and status information of the access nodes of the AP or WLAN future evolution or revolutionary system include the signal coverage strength and quality of the access nodes of the AP or WLAN future evolution or revolutionary system, the radio load, the backhaul bandwidth, the WLAN authentication information and the WLAN. At least one of the registration information;
  • a searching unit configured to: find an AP having capability and status information of an access node of the AP or WLAN future evolution or revolution system according to capability and status information of an access node of the AP or WLAN future evolution or revolution system Or an access node for a future evolution or revolutionary system of WLAN.
  • the device further comprises:
  • a second acquiring module configured to: acquire an operating state of all WLAN resource function modules in the UE and/or capability information of an access node of an AP or WLAN future evolution or revolution system;
  • the startup module is configured to: have a WLAN resource function module in an idle state in the UE After the working state of the block and/or the AP or the access node of the WLAN future evolution or revolution system matching the capability information of the WLAN resource function module, the at least two sets of WLAN resource function modules are configured and corresponding to the access node.
  • the access node of the AP or WLAN future evolution or revolutionary system performs association authentication.
  • the device is applied to an evolved base station (eNodeB) on the network side in a future evolution or revolutionary system of LTE or LTE.
  • eNodeB evolved base station
  • the device embodiment provided by the present application uses at least two sets of WLAN resource function modules in the terminal to establish a connection with the access node for each WLAN resource function module, thereby implementing multiple transmission links between the terminal and the network side, and improving data. Transmission efficiency, and make full use of resources on the network side.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method for managing the mobile broadband data transmission when the computer executable instructions are executed.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, the application is not limited to any particular combination of hardware and software.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • An embodiment of the present invention provides a method and a device for managing mobile bandwidth data transmission.
  • the at least two sets of WLAN resource function modules in the terminal are used to establish a connection with an access node for each WLAN resource function module, so that the terminal and the network side have Multiple transmission links improve data transmission efficiency and make full use of resources on the network side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种移动宽带数据传输的管理方法,包括:获取终端内至少两套无线局域网WLAN资源功能模块的能力信息;根据所述能力信息,为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证;管理所述终端利用所述至少两套WLAN资源功能模块与对应的AP或者WLAN未来演进或革命系统的接入节点进行移动宽带数据的传输。

Description

一种移动宽带数据传输的管理方法和装置 技术领域
本申请涉及但不限于移动通信领域,尤其涉及3GPP(3rd Generation Partnership,第三代合作伙伴计划)家族制式内的蜂窝移动系统中一种利用多个WLAN接入节点(Access Point,AP)实现移动宽带数据传输的方式方法和系统。
背景技术
3GPP(3rd Generation Partnership,第三代合作伙伴计划)家族制式内的蜂窝移动系统可以包括长期演进系统(LTE,Long Term Evolution,包括网络侧NW和终端侧UE)及其后续下一代蜂窝系统,和无线局域网系统(WLAN,Wireless Local Access Network,包括网络侧和终端侧)及其后续下一代系统如HEW(High Efficient WLAN,高效无线局域网)之间的跨系统联合互操作工作模式。
随着移动通信运营商签约用户数和用户语音数据等移动业务量的不断增多,未来呈现出指数级别地增长,移动通信网络基础设施的投入和部署规模也必须要相应地扩增,使得无线覆盖的广度深度和系统通信容量都能应对满足用户不断增长的客观需求。以欧洲大部分移动通信运营商为例,它们在历史上先后部署了3种不同RAT(Radio Access Technology,无线接入技术)制式的移动通信系统(它们都是3GPP通信系统家族内的制式):GSM(Global System of Mobile communication,全球移动通信系统)、UMTS(Universal Mobile Telecommunications System,通用移动通信系统)和LTE,这些蜂窝式移动系统都工作在授权频谱内的授权载波上。为了进一步增强移动通信网络的功能和扩充系统容量,移动通信运营商还广泛大量地部署了IEEE通信系统家族内诸如WLAN系统(正在朝着下一代HEW系统演进),用来作为有效且低成本的无线容量补充。虽然不能高性能地独立组建类似3GPP式的蜂窝移动网,但因为WLAN系统比3GPP系统在物理实现上要技术简单且成本低廉地很多,且工作在免费的且带宽更为广阔的非授权频谱内的非授权载波 上,因此有着其强大的市场生命力和竞争力。
由于上述多种无线通信系统(Multi-RAT)长期地演进共存部署着,共同提供着无线接入和数据传输服务,为了增强跨系统间的移动性能,增强用户移动通信的关键性能指标(KPI,Key Performance Indicator)体验,节约软硬件开发维护成本,便于运营商们对“Multi-RAT大网”的运维管理,3GPP已经开发制定出了多种版本的标准化技术,把上述各种无线通信系统以不同程度/级别的方式耦合在一起工作,形成所谓跨系统联合互操作。如图1中的一个网络架构例子所示:WLAN AP和3GPP的3种主要无线接入网单元共同连接于同一个融合核心网(CN,Core Network)上,运营商能够较灵活地协同传输不同RAT间的能力/配置/状态等信息,制定合理的移动策略,根据业务QOS(Quality of Service,服务质量)特点和资源状态的需要,让UE被服务于最合适的RAT基站/小区下。增强不同RAT间联合互操作的好处在于:不同RAT可以更好地发挥出各自系统的优势特点,不同RAT间可以更加灵活均衡地去分担广大用户的无线通信负荷,不同RAT间能够形成硬件资源、无线覆盖和容量的动态互补,从而为整个“Multi-RAT大网”带来更高性能KPI,为广大用户带来更好的移动通信体验和感受。
根据相关公开技术,具备WLAN/3GPP多模能力的终端,可以同时和AP或者WLAN未来演进或革命系统的接入节点和3GPP家族中某种RAT的基站同时处于通信连接/数据传输状态。下面将集中以WLAN和LTE系统间联合互操作为例(思想原理对于其他RAT间的联合互操作基本也都适用),比如某种WLAN/LTE双模能力的终端同时处于WLAN/LTE小区的无线信号覆盖下,某时刻该终端率先和LTE网络建立RRC(Radio Resource Control,无线资源控制)连接,继而进行某种IP业务流A的双向数据传输,后来用户又发起了一个新的IP业务流B。在用户手动控制模UP(User Preference,用户偏好)下,终端搜寻发现了WLAN的覆盖信号并且完成了必要的AP入网关联鉴权注册(这个过程称为WLAN选网注册),随后融合CN可以根据一定的策略规则和上层协议信令,把IP业务流B迁移到终端之前已经成功注册的WLAN系统中,此后终端的IP业务流A仍然承载在LTE网络中,而IP业务流B承载在WLAN网络中(这个过程称为WLAN数据分流),上述基 本过程如图2a/2b示意。
截止到3GPP Rel-13版本,针对WLAN-LTE的耦合联合互操作已经有多种基本机制,除了上面示例的手动配置UP,还有(e)ANDSF(Enhacend Access Network Discovery Selection Function,增强的接入网络发现选择功能),(e)ITW(Enhanced RAN Rule Based Interworking,增强的基于接入网规则的互操作机制),LWA(LTE WLAN Aggregation,LTE和WLAN系统间聚合)等机制。上述这些机制除了LWA机制之外,都需要依赖UE释放掉原本在LTE网络内的IP Flow/DRB(Data Radio Bearer,数据无线承载)无线承载,通过WLAN空口信令和目标AP建立/维护WLAN连接,实现承载用户业务数据的IP Flows在核心网侧的迁移和分流;而作为紧耦合方式的LWA机制并不会导致IP Flows在核心网侧的迁移,仅仅让LTE网络内的IP Flow/DRB无线承载的用户面部分数据通过相互紧耦合的目标AP来传输,由无线接入侧的锚点MeNB来控制目标AP的添加/重配/删除和相关分流数据的转发回收等,可以理解为:MeNB(主基站节点)是所有处于LWA工作模式下的AP的集中控制节点。
过去3GPP针对上述机制的广泛讨论中,都是基于“单AP连接能力”的UE,即特定UE在某个特定时刻最多只能和一个目标AP发生关联认证,同时只能通过一条WLAN空口链路进行数据传输。这种“单AP连接能力”的UE通常在内部只配置了一套WLAN相关的射频基带资源,这种UE能力配置上的物理限制有如下缺点:
如果运营商网络侧部署的3GPP系统相关资源较少(比如:部署的LTE授权载波少且窄,3GPP系统相关的BU(Branching Unit,支路单元)处理资源少),而网络侧部署的WLAN相关的资源较多(比如:部署的WLAN非授权载波多且宽,WLAN系统相关BU处理资源多),那么对于“单AP连接能力”UE,它必然和网络侧的能力配置比例发生失衡(Mismatch),造成UE内的3GPP相关能力资源部分被闲置,而由于UE只有一套WLAN资源模块,却无法充分地利用网络侧的WLAN资源。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种移动宽带数据传输的管理方法和装置,能够充分地利用网络侧富余的WLAN资源。
本申请提供了如下技术方案:
一种移动宽带数据传输的管理方法,包括:
获取终端内至少两套无线局域网(WLAN)资源功能模块的能力信息;
根据所述能力信息,为所述至少两套WLAN资源功能模块配置与对应的接入节点(AP)或者WLAN未来演进或革命系统的接入节点进行关联认证;
管理所述终端利用所述至少两套WLAN资源功能模块与对应的AP或者WLAN未来演进或革命系统的接入节点进行移动宽带数据的传输。
其中,所述WLAN资源功能模块的能力信息包括非LWA机制能力信息、支持的WLAN射频频段和工作带宽中的至少一个。
其中,所述根据所述能力信息,为所述至少两套WLAN资源功能模块配置与对应的AP或者WLAN未来演进或革命系统的接入节点进行关联认证,包括:
获取所述终端内处于闲置状态的WLAN资源功能模块;
对所述处于闲置状态的WLAN资源功能模块进行配置。
其中,任意两套WLAN资源功能模块连接的AP或者WLAN未来演进或革命系统的接入节点不同。
其中,所述管理所述终端利用所述至少两套WLAN资源功能模块与对应的AP或者WLAN未来演进或革命系统的接入节点进行移动宽带数据的传输,包括:
控制所述终端内的主WLAN链路去分流承载或者反向卸流去承载UE和网络间的上下行移动宽带数据;
控制所述终端内的第n个辅WLAN链路去分流承载或者反向卸流去承载 UE和网络间的上下行移动宽带数据;其中,所述第n个辅WLAN链路承载的IP Flows来自UE在3GPP网络侧剩下的移动宽带数据;或者,是主WLAN链路、第1个至第n-1个辅WLAN链路已经分流承载的移动宽带数据;其中,n<m-1,n和m均为正整数,m为所述终端内WLAN资源功能模块的总数。
其中,在检测如下条件时,停止为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作:
条件一:UE内部所有的WLAN资源功能模块都已经被利用;
条件二:未找到与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点。
其中,通过如下方式判断是否有与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点:
根据终端的所述能力信息,确定与终端内与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息,其中,所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息包括AP或者WLAN未来演进或革命系统的接入节点的信号覆盖强度和质量、无线负荷、回传带宽、WLAN鉴权信息和WLAN注册信息中的至少一个;
根据所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息,查找具有所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息的AP或者WLAN未来演进或革命系统的接入节点。
其中,停止为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作之后,所述方法还包括:
获取所述UE内部所有的WLAN资源功能模块的工作状态和/或AP或者WLAN未来演进或革命系统的接入节点的能力信息;
在所述UE内有处于闲置状态的WLAN资源功能模块的工作状态和/或有 与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点后,启动为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作。
一种移动宽带数据传输的管理装置,包括:
第一获取模块,设置为:获取终端内至少两套WLAN资源功能模块的能力信息;
关联模块,设置为:根据所述能力信息,为所述至少两套WLAN资源功能模块配置与对应的AP或者WLAN未来演进或革命系统的接入节点进行关联认证;
管理模块,设置为:管理所述终端利用所述至少两套WLAN资源功能模块与对应的AP或者WLAN未来演进或革命系统的接入节点进行移动宽带数据的传输。
其中,所述WLAN资源功能模块的能力信息包括非LWA机制能力信息、支持的WLAN射频频段和工作带宽中的至少一个。
其中,所述关联模块包括:
获取单元,设置为:获取所述终端内处于闲置状态的WLAN资源功能模块;
配置单元,设置为:对所述处于闲置状态的WLAN资源功能模块进行配置。
其中,任意两套WLAN资源功能模块连接的AP或者WLAN未来演进或革命系统的接入节点不同。
其中,所述管理模块是设置为:
控制所述终端内的主WLAN链路去分流承载或者反向卸流去承载UE和网络间的上下行移动宽带数据;
控制所述终端内的第n个辅WLAN链路去分流承载或者反向卸流去承载UE和网络间的上下行移动宽带数据;其中,所述第n个辅WLAN链路承载的IP Flows来自UE在3GPP网络侧剩下的移动宽带数据;或者,是主WLAN 链路、第1个至第n-1个辅WLAN链路已经分流承载的移动宽带数据;其中,n<m-1,n和m均为正整数,m为所述终端内WLAN资源功能模块的总数。
其中,所述装置还包括:
停止模块,设置为:在检测如下条件时,停止为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作:
条件一:UE内部所有的WLAN资源功能模块都已经被利用;
条件二:未找到与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点。
其中,所述停止模块包括:
确定单元,设置为:根据终端的所述能力信息,确定与终端内与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息,其中,所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息包括AP或者WLAN未来演进或革命系统的接入节点的信号覆盖强度和质量、无线负荷、回传带宽、WLAN鉴权信息和WLAN注册信息中的至少一个;
查找单元,设置为:根据所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息,查找具有所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息的AP或者WLAN未来演进或革命系统的接入节点。
其中,所述装置还包括:
第二获取模块,设置为:获取所述UE内部所有的WLAN资源功能模块的工作状态和/或AP或者WLAN未来演进或革命系统的接入节点的能力信息;
启动模块,设置为:在所述UE内有处于闲置状态的WLAN资源功能模块的工作状态和/或有与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点后,启动为所述至少两套WLAN资 源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作。
其中,所述装置应用于LTE或LTE的未来演进或革命的系统中网络侧的演进基站(eNodeB)。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现所述移动宽带数据传输的管理方法。
本申请提供的实施例,利用终端内至少两套WLAN资源功能模块,分别为每个WLAN资源功能模块建立与接入节点的连接,实现终端与网络侧有多条传输链路,提高了数据传输效率,且充分利用了网络侧的资源。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为相关技术中WLAN/3GPP联合互操作耦合的架构的示意图;
图2a为相关技术中向WLAN AP节点IP Flow分流前的状态示意图;
图2b为相关技术中向WLAN AP节点IP Flow分流后的状态示意;
图3为本发明实施例提供的移动宽带数据传输的管理方法的流程图
图4为本发明实施例一提供的移动宽带数据传输的管理方法的示意图;
图5为本发明实施例二提供的移动宽带数据传输的管理方法的示意图;
图6为本发明实施例提供的移动宽带数据传输的管理装置的结构图。
本发明的实施方式
下面将结合附图及具体实施例对本申请作进一步的详细描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图3为本发明实施例提供的移动宽带数据传输的管理方法的流程图。图3所示方法包括以下步骤:
步骤301、获取终端内至少两套WLAN资源功能模块的能力信息;
步骤302、根据所述能力信息,逐个为所述至少两套WLAN资源功能模块配置与对应的AP或者WLAN未来演进或革命系统的接入节点进行关联认证;
其中,在LTE系统中,AP或者WLAN未来演进或革命系统的接入节点为AP,当然,在LTE的未来演进系统中AP或者WLAN未来演进或革命系统的接入节点为具有LTE中AP的功能的节点;
相应地,当系统为WLAN未来演进或革命系统时,该WLAN资源模块也适应具有与该系统匹配的功能;
步骤303、管理所述终端利用所述至少两套WLAN资源功能模块与对应的AP或者WLAN未来演进或革命系统的接入节点进行移动宽带数据的传输。
其中,“管理”具体指:每条WLAN链路的各自独立的建立、配置、重配、维护、删除等基本动作,基本操作和已有的单WLAN链路一致。
本发明实施例提供的方法,利用终端内至少两套WLAN资源功能模块,分别为每个WLAN资源功能模块建立与接入节点的连接,实现终端与网络侧有多条传输链路,提高了数据传输效率,且充分利用了网络侧的资源。
下面对本发明实施例提供的方法做进一步说明:
其中,所述WLAN资源功能模块的能力信息包括非LWA机制能力信息、支持的WLAN射频频段和工作带宽中的至少一个。
具体而言,通过获知WLAN资源功能模块的能力信息,可以根据该能力信息,为该WLAN资源模块选择合适的AP或者WLAN未来演进或革命系统的接入节点,以保证建立的连接的稳定性。
另外,所述根据所述能力信息,逐个为所述至少两套WLAN资源功能模块配置与对应的AP或者WLAN未来演进或革命系统的接入节点进行关联认证,包括:
获取所述终端内处于闲置状态的WLAN资源功能模块;
对所述处于闲置状态的WLAN资源功能模块进行配置。
具体而言,在对WLAN资源功能模块逐个配置过程中,有可能存在部分模块正处于工作状态,如果对处于工作状态的模块进行配置,会影响该模块正在传输的数据,造成数据传输中断的问题,因此,为了保证配置过程中不影响UE内数据的正常传输,需要在进行配置前,对模块的工作状态进行检测,以避免因配置操作造成数据中断的问题。
其中,任意两套WLAN资源功能模块连接的AP或者WLAN未来演进或革命系统的接入节点不同。
具体而言,每套WLAN资源功能模块连接的AP或者WLAN未来演进或革命系统的接入节点得到的链路,对应于UE和网络侧AP或者WLAN未来演进或革命系统的接入节点间建立的多WLAN工作链路,在建立的时间顺序上,如果条件被满足,可以同时被建立,即只有逻辑上处理先后的顺序差别,没有时间上较大的先后建立差别。
由于不同的链路逻辑上独立存在于网络侧AP或者WLAN未来演进或革命系统的接入节点和UE内多套WLAN功能模块之间,因此它们可以彼此独立地工作,任何一条WLAN链路的工作状态变化不会影响到其他WLAN链路的工作状态,仅仅受到3GPP网络侧为每条WLAN链接配置的策略准则参数等控制和状态条件的影响。
其中,所述管理所述终端利用所述至少两套WLAN资源功能模块与对应的AP或者WLAN未来演进或革命系统的接入节点进行移动宽带数据的传输,包括:
控制所述终端内的主WLAN链路去分流承载或者反向卸流去承载UE中的移动宽带数据;
控制所述终端内的第n个辅WLAN链路去分流承载或者反向卸流去承载UE中的移动宽带数据;其中,所述第n个辅WLAN链路承载的IP Flows来自UE在3GPP网络侧剩下的移动宽带数据;或者,是主WLAN链路、第1个至第n-1个辅WLAN链路已经分流承载的移动宽带数据;其中,n<m-1,n和m均为正整数,m为所述终端内WLAN资源功能模块的总数。
为方便理解,下面以一具体流程进行说明:
下文以系统为LTE为例进行说明:
S1:在UE内部某套WLAN资源功能模块的能力范围内,3GPP网络侧基于它能支持的某种非LWA机制,按照相关技术方式,让网络侧部署的某AP1节点和该UE内该套WLAN资源功能模块先形成关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE被建立而获得主WLAN链路PWL(Primary WLAN Link)。成功建立后,3GPP网络侧基于该套非LWA机制相关技术,让AP1和UE进行相关的空口上下行数据传输,即按照该非LWA机制所规定的策略准则参数等,用PWL去分流承载或者反向卸流去承载UE中的部分IP Flows。
S2:在S1之后,如果UE内还有某套WLAN资源功能模块处于闲置没被利用的状态,则在该套WLAN资源功能模块的能力范围内,3GPP网络侧基于它能支持的某种非LWA机制,在一定的条件下,按照相关技术方式,让网络侧部署的某AP2节点和UE内该套WLAN资源功能模块形成关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE被建立而获得第一辅WLAN链路SWL(1st Secondary WLAN Link)。成功建立后,3GPP网络侧基于该套非LWA机制相关技术,让AP2和UE进行相关的空口上下行数据传输,即按照该非LWA机制所规定的策略准则参数等,用1st SWL去分流承载或者反向卸流去承载UE中的部分IP Flows。1st SWL承载的IP Flows可以来自UE在3GPP网络侧剩下的用户数据流,也可以是PWL已经分流承载的用户数据流。
S3:类似S2处理的原则方式,3GPP网络侧继续检测UE内部尚未被利用的WLAN资源功能模块,基于它能支持的某种非LWA机制,在一定的条件下,按照相关技术方式,尝试让网络侧部署的其它APx节点和UE内该套WLAN资源功能模块形成关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE被建立而获得更多的第二/第三/第四等辅WLAN链路SWL(2nd/3rd/4th…Secondary WLAN Link)。成功建立后,3GPP网络侧基于该套非LWA机制相关技术,让APx和UE进行相关的空口上下行数据传输,即按照该非LWA机制规定的策略准则参数等,用更多的2nd/3rd/4th…SWL去 分流承载或者反向卸流去承载UE中的部分IP Flows。2nd/3rd/4th…SWL承载的IP Flows可以来自UE在3GPP网络侧剩下的用户数据流,也可以是之前PWL和1st SWL已经分流承载的用户数据流,后续依次递推。
需要说明的是,PWL和1st,2nd,3rd,4th…SWL之间既可以是基于同一种非LWA机制所对应的策略准则参数等(对应3GPP网络侧为所有目标APs配置同一套策略准则参数等),和在相同的状态条件下建立而成,这种情况下PWL和1st,2nd,3rd,4th…SWL之间除了名称不同为了方便描述上的区别,实质并无本质差别(可以都称为PWL);PWL和1st,2nd,3rd,4th…SWL之间也可以是基于不同种的非LWA机制所对应的策略准则参数等(对应3GPP网络侧为不同的目标APs配置不同的策略准则参数等),或在不同的状态条件下建立而成,这种情况下PWL和1st,2nd,3rd,4th…SWL之间有着分流能力和建立/维护/释放等方面的多重差别,因此需要更严格地被区分。
另外,在检测如下条件时,停止为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作:
条件一:UE内部所有的WLAN资源功能模块都已经被利用;
条件二:未找到与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点。
其中,通过如下方式判断是否有与WLAN资源功能模块的能力信息匹配的LTE或者LTE未来演进或革命的接入节点:
根据终端的所述能力信息,确定与终端内与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点的能力信息,其中,所述AP或者WLAN未来演进或革命系统的接入节点的能力信息包括AP或者WLAN未来演进或革命系统的接入节点的信号覆盖强度、无线负荷、回传带宽、WLAN鉴权信息和WLAN注册信息中的至少一个;
根据所述AP或者WLAN未来演进或革命系统的接入节点的能力信息,查找具有所述AP或者WLAN未来演进或革命系统的接入节点的能力信息的AP或者WLAN未来演进或革命系统的接入节点。
当然,在停止为所述至少两套WLAN资源功能模块配置与AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作之后,所述方法还包括:
获取所述UE内部所有的WLAN资源功能模块的工作状态和/或AP或者WLAN未来演进或革命系统的接入节点的能力信息;
在所述UE内有处于闲置状态的WLAN资源功能模块的工作状态和/或有与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点后,启动为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作。
由此可以看出,在资源能力不符合建立“多AP连接”时,及时停止建立流程,通过对UE和网络侧资源的能力信息的管理,可以对建立“多AP连接”的流程进行管理,以保证及时建立“多AP连接”,尽可能地多利用网络侧多WLAN APs资源和UE内多套WLAN功能模块资源,提高资源的利用率。
下面以两个实施例对上述方法作以说明。
实施例一
如图4所示,某运营商部署了LTE宏小区(Macro Cell)网络提供用户基本无线覆盖,为了增强网络容量,该运营商进一步在非授权2.4G和5G频段内的某非授权载波频点上,又分别部署了40M带宽的WLAN APs,用来分流承载用户业务的IP Flows。某终端UE 1正常驻留在LTE宏小区内,和基站(eNB)保持着无线资源控制(RRC)连接态,同时该UE 1也处于多个WLAN APs无线信号覆盖之下。
S100:UE 1内部硬件装配了:1套能支持2.4G频段40M带宽的WLAN射频基带功能模块A(简称WLAN模块A)+1套能支持5G频段40M带宽的WLAN射频基带功能模块B(简称WLAN模块B),通过LTE空口RRC信息上报给了eNB,从而LTE网络侧获悉UE 1能支持“多AP连接”的相关能力。此外UE 1的两个WLAN模块都支持ITW联合互操作机制。
S101:eNB通过RRC专有信令给UE 1的WLAN模块A配置和ITW相关的策略准则参数,在特定的WLAN条件下,按照相关ITW技术方式,2.4G频段上的某AP1节点和UE 1内WLAN模块A先形成了关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE 1被建立而获得主WLAN链路PWL。成功建立后,原先承载在LTE宏小区内的某些IP Flows被PWL分流出去。
S102:eNB进一步通过RRC专有信令给UE 1的WLAN模块B配置和ITW相关的策略准则参数,在特定的WLAN条件下,按照相关ITW技术方式,5G频段上的某AP2节点和UE 1内WLAN模块B也能形成了关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE 1被建立而获得一条辅WLAN链路SWL。成功建立后,原先承载在LTE宏小区内的某些IP Flows又能被SWL分流出去。
注:由于WLAN系统在空口基于非授权无线资源竞争的LBT(Listen Before Talk,先听后说)的工作方式,因此UE 1内两套WLAN模块在频谱垂直面上,无法进行像LTE载波聚合那样的操作(WLAN模块无法对齐多个数据块的传输时间)。UE 1同时和两个目标APs进行WLAN数据分流,这能进一步增强LTE宏网络向WLAN网络的分流能力,提升用户数据吞吐率。
S103:由于UE 1只有两套WLAN模块,且都已经被利用,因此无法建立更多的SWL。
S104:虽然eNB暂时检测到UE 1内部所有的WLAN模块都已经被利用,但是随着UE位置移动和WLAN自身条件的变化(比如信号覆盖强度质量,无线负荷),还需要轮询检测更新地去做“双AP连接”,尽可能地去多利用网络侧WLAN APs资源和UE内两套WLAN模块。UE 1在2.4G和5G频段内的目标AP节点会独立地发生更新变化,而分流的IP Flows具体情况继续按照eNB分别配置的ITW相关的策略准则参数而进行。
实施例二
如图5所示,某运营商部署了LTE宏小区网络提供用户基本无线覆盖,为了增强网络容量,该运营商进一步在非授权2.4G的某非授权载波频点 上,又连续相邻部署了80M带宽的WLAN APs,用来分流承载用户业务的IP Flows。某终端UE 2正常驻留在LTE宏小区内,和eNB基站保持着RRC连接态,同时该UE 2也处于两个相邻的WLAN APs无线信号的重叠覆盖之下。
S200:UE 2内部硬件装配了:2套能支持2.4G频段80M带宽的WLAN射频基带功能模块(简称WLAN模块A/B)+1套能支持5G频段80M带宽的WLAN射频基带功能模块C(简称WLAN模块C),通过LTE空口RRC信息上报给了eNB,从而LTE网络侧获悉UE 2能支持“多AP连接”的相关能力。此外UE 2的3个WLAN模块都支持eANDSF联合互操作机制。
S201:eNB通过RRC专有信令给UE 2的WLAN模块A/B配置和eANDSF相关的策略准则参数,在特定的WLAN条件下,按照相关eANDSF技术方式,2.4G频段上的某AP1节点和UE 2内WLAN模块A先形成了关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE 2被建立而获得主WLAN链路PWL。成功建立后,原先承载在LTE宏小区内的某些IP Flows被PWL分流出去。
S202:进一步地,在特定的WLAN条件下,按照相关eANDSF技术方式,2.4G频段上与AP1节点相邻的AP2节点也和UE 2内WLAN模块B形成了关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE 2被建立而获得一条辅WLAN链路SWL。成功建立后,原先承载在LTE宏小区内和PWL上的某些IP Flows又能被SWL分流出去。
注:由于WLAN系统在空口基于非授权无线资源竞争的LBT(Listen Before Talk)的工作方式,因此在同一WLAN非授权工作频点上的AP1和AP2不一定能同时地向UE 2发送数据块,谁先成功抢占到本地信道资源,谁就可以发送数据块。网络侧也可以选择让相邻的AP1和AP2承载相同的IP Flow,形成发送接收分集增益。
S203:虽然UE 2还有1套闲置的WLAN模块C,但是因为网络侧没有提供5G频段内的WLAN AP节点资源,因此无法建立更多的SWL。
S204:虽然eNB暂时检测到UE 2内部所有的WLAN模块都已经尽可能地被利用,但是随着UE位置移动和WLAN自身条件的变化(比如信号覆盖 强度质量,无线负荷,进入到5G频段内WLAN AP节点覆盖范围内),还需要轮询检测更新地去做“多AP连接”,尽可能地去多利用网络侧WLAN APs资源和UE内3套WLAN模块。UE 2在2.4G或者5G频段内的目标AP节点会独立地发生更新变化,而分流的IP Flows具体情况继续按照eNB分别配置的eANDSF相关的策略准则参数而进行。
图6为本发明实施例提供的移动宽带数据传输的管理装置的结构图。图6所示装置,包括:
第一获取模块601,设置为:获取终端内至少两套WLAN资源功能模块的能力信息;
关联模块602,设置为:根据所述能力信息,为所述至少两套WLAN资源功能模块配置与对应的AP或者WLAN未来演进或革命系统的接入节点进行关联认证;
管理模块603,设置为:管理所述终端利用所述至少两套WLAN资源功能模块与对应的AP或者WLAN未来演进或革命系统的接入节点进行移动宽带数据的传输。
其中,所述WLAN资源功能模块的能力信息包括非LWA机制能力信息、支持的WLAN射频频段和工作带宽中的至少一个。
其中,所述关联模块602包括:
获取单元,设置为:获取所述终端内处于闲置状态的WLAN资源功能模块;
配置单元,设置为:对所述处于闲置状态的WLAN资源功能模块进行配置。
其中,任意两套WLAN资源功能模块连接的AP或者WLAN未来演进或革命系统的接入节点不同。
其中,所述管理模块603是设置为:
控制所述终端内的主WLAN链路去分流承载或者反向卸流去承载UE和网络间的上下行移动宽带数据;
控制所述终端内的第n个辅WLAN链路去分流承载或者反向卸流去承载 UE和网络间的上下行移动宽带数据;其中,所述第n个辅WLAN链路承载的IP Flows来自UE在3GPP网络侧剩下的移动宽带数据;或者,是主WLAN链路、第1个至第n-1个辅WLAN链路已经分流承载的移动宽带数据;其中,n<m-1,n和m均为正整数,m为所述终端内WLAN资源功能模块的总数。
其中,所述装置还包括:
停止模块,设置为:在检测如下条件时,停止为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作:
条件一:UE内部所有的WLAN资源功能模块都已经被利用;
条件二:未找到与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点。
其中,所述停止模块包括:
确定单元,设置为:根据终端的所述能力信息,确定与终端内与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息,其中,所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息包括AP或者WLAN未来演进或革命系统的接入节点的信号覆盖强度和质量、无线负荷、回传带宽、WLAN鉴权信息和WLAN注册信息中的至少一个;
查找单元,设置为:根据所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息,查找具有所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息的AP或者WLAN未来演进或革命系统的接入节点。
其中,所述装置还包括:
第二获取模块,设置为:获取所述UE内部所有的WLAN资源功能模块的工作状态和/或AP或者WLAN未来演进或革命系统的接入节点的能力信息;
启动模块,设置为:在所述UE内有处于闲置状态的WLAN资源功能模 块的工作状态和/或有与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点后,启动为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作。
其中,所述装置应用于LTE或LTE的未来演进或革命的系统中网络侧的演进基站(eNodeB)。
本申请提供的装置实施例,利用终端内至少两套WLAN资源功能模块,分别为每个WLAN资源功能模块建立与接入节点的连接,实现终端与网络侧有多条传输链路,提高了数据传输效率,且充分利用了网络侧的资源。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现所述移动宽带数据传输的管理方法。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。例如通过处理器执行存储于存储器中的程序/指令来实现相应功能。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求所述的保护范围为准。
工业实用性
本发明实施例提供一种移动带宽数据传输的管理方法和装置,利用终端内至少两套WLAN资源功能模块,分别为每个WLAN资源功能模块建立与接入节点的连接,实现终端与网络侧有多条传输链路,提高了数据传输效率,且充分利用了网络侧的资源。

Claims (18)

  1. 一种移动宽带数据传输的管理方法,包括:
    获取终端内至少两套无线局域网WLAN资源功能模块的能力信息;
    根据所述能力信息,为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证;
    管理所述终端利用所述至少两套WLAN资源功能模块与对应的AP或者WLAN未来演进或革命系统的接入节点进行移动宽带数据的传输。
  2. 根据权利要求1所述的方法,其中,所述WLAN资源功能模块的能力信息包括非长期演进LTE和WLAN间聚合LWA机制能力信息、支持的WLAN射频频段和工作带宽中的至少一个。
  3. 根据权利要求1所述的方法,其中,所述根据所述能力信息,为所述至少两套WLAN资源功能模块配置与对应的AP或者WLAN未来演进或革命系统的接入节点进行关联认证,包括:
    获取所述终端内处于闲置状态的WLAN资源功能模块;
    对所述处于闲置状态的WLAN资源功能模块进行配置。
  4. 根据权利要求1或3所述的方法,其中,任意两套WLAN资源功能模块连接的AP或者WLAN未来演进或革命系统的接入节点不同。
  5. 根据权利要求1所述的方法,其中,所述管理所述终端利用所述至少两套WLAN资源功能模块与对应的AP或者WLAN未来演进或革命系统的接入节点进行移动宽带数据的传输,包括:
    控制所述终端内的主WLAN链路去分流承载或者反向卸流去承载用户设备UE和网络间的上下行移动宽带数据;
    控制所述终端内的第n个辅WLAN链路去分流承载或者反向卸流去承载UE和网络间的上下行移动宽带数据;其中,所述第n个辅WLAN链路承载的IP Flows来自UE在3GPP网络侧剩下的移动宽带数据;或者,是主WLAN链路、第1个至第n-1个辅WLAN链路已经分流承载的移动宽带数据;其 中,n<m-1,n和m均为正整数,m为所述终端内WLAN资源功能模块的总数。
  6. 根据权利要求1所述的方法,所述方法还包括:在检测如下条件时,停止为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作:
    条件一:UE内部所有的WLAN资源功能模块都已经被利用;
    条件二:未找到与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点。
  7. 根据权利要求6所述的方法,其中,通过如下方式判断是否有与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点:
    根据终端的所述能力信息,确定终端内与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息,其中,所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息包括AP或者WLAN未来演进或革命系统的接入节点的信号覆盖强度和质量、无线负荷、回传带宽、WLAN鉴权信息和WLAN注册信息中的至少一个;
    根据所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息,查找具有所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息的AP或者WLAN未来演进或革命系统的接入节点。
  8. 根据权利要求6或7所述的方法,所述停止为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作之后,所述方法还包括:
    获取所述UE内部所有的WLAN资源功能模块的工作状态和/或AP或者WLAN未来演进或革命系统的接入节点的能力信息;
    在所述UE内有处于闲置状态的WLAN资源功能模块的工作状态和/或有与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系 统的接入节点后,启动为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作。
  9. 一种移动宽带数据传输的管理装置,包括:
    第一获取模块,设置为:获取终端内至少两套无线局域网WLAN资源功能模块的能力信息;
    关联模块,设置为:根据所述能力信息,为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证;
    管理模块,设置为:管理所述终端利用所述至少两套WLAN资源功能模块与对应的AP或者WLAN未来演进或革命系统的接入节点进行移动宽带数据的传输。
  10. 根据权利要求9所述的装置,其中,所述WLAN资源功能模块的能力信息包括非LWA机制能力信息、支持的WLAN射频频段和工作带宽中的至少一个。
  11. 根据权利要求9所述的装置,其中,所述关联模块包括:
    获取单元,设置为:获取所述终端内处于闲置状态的WLAN资源功能模块;
    配置单元,设置为:对所述处于闲置状态的WLAN资源功能模块进行配置。
  12. 根据权利要求9或11所述的装置,其中,任意两套WLAN资源功能模块连接的AP或者WLAN未来演进或革命系统的接入节点不同。
  13. 根据权利要求9所述的装置,其中,所述管理模块是设置为:
    控制所述终端内的主WLAN链路去分流承载或者反向卸流去承载UE和网络间的上下行移动宽带数据;
    控制所述终端内的第n个辅WLAN链路去分流承载或者反向卸流去承载 UE和网络间的上下行移动宽带数据;其中,所述第n个辅WLAN链路承载的IP Flows来自UE在3GPP网络侧剩下的移动宽带数据;或者,是主WLAN链路、第1个至第n-1个辅WLAN链路已经分流承载的移动宽带数据;其中,n<m-1,n和m均为正整数,m为所述终端内WLAN资源功能模块的总数。
  14. 根据权利要求9所述的装置,所述装置还包括:
    停止模块,设置为:在检测如下条件时,停止为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作:
    条件一:UE内部所有的WLAN资源功能模块都已经被利用;
    条件二:未找到与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点。
  15. 根据权利要求14所述的装置,其中,所述停止模块包括:
    确定单元,设置为:根据终端的所述能力信息,确定与终端内与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息,其中,所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息包括AP或者WLAN未来演进或革命系统的接入节点的信号覆盖强度和质量、无线负荷、回传带宽、WLAN鉴权信息和WLAN注册信息中的至少一个;
    查找单元,设置为:根据所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息,查找具有所述AP或者WLAN未来演进或革命系统的接入节点的能力和状态信息的AP或者WLAN未来演进或革命系统的接入节点。
  16. 根据权利要求14或15所述的装置,所述装置还包括:
    第二获取模块,设置为:获取所述UE内部所有的WLAN资源功能模块的工作状态和/或AP或者WLAN未来演进或革命系统的接入节点的能力信息;
    启动模块,设置为:在所述UE内有处于闲置状态的WLAN资源功能模 块的工作状态和/或有与WLAN资源功能模块的能力信息匹配的AP或者WLAN未来演进或革命系统的接入节点后,启动为所述至少两套WLAN资源功能模块配置与对应的接入节点AP或者WLAN未来演进或革命系统的接入节点进行关联认证的操作。
  17. 根据权利要求9所述的装置,其中,所述装置应用于长期演进LTE或LTE的未来演进或革命的系统中网络侧的演进基站eNodeB。
  18. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现权利要求1至8任一项所述的方法。
PCT/CN2016/076394 2015-07-14 2016-03-15 一种移动宽带数据传输的管理方法和装置 WO2016177114A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510412209.3A CN106358294B (zh) 2015-07-14 2015-07-14 一种移动宽带数据传输的管理方法和装置
CN201510412209.3 2015-07-14

Publications (1)

Publication Number Publication Date
WO2016177114A1 true WO2016177114A1 (zh) 2016-11-10

Family

ID=57218073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076394 WO2016177114A1 (zh) 2015-07-14 2016-03-15 一种移动宽带数据传输的管理方法和装置

Country Status (2)

Country Link
CN (1) CN106358294B (zh)
WO (1) WO2016177114A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769524A (zh) * 2019-09-26 2020-02-07 维沃移动通信有限公司 一种多网络接入方法及终端设备
CN113259948A (zh) * 2021-07-14 2021-08-13 广州朗国电子科技股份有限公司 一种sta和ap同时工作的方法及相关设备
CN113423116B (zh) * 2021-08-25 2021-12-24 广州朗国电子科技股份有限公司 基于Android系统的5G热点默认模式的配置方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080305825A1 (en) * 2007-06-08 2008-12-11 Interdigital Technology Corporation Method and apparatus for providing capability and core network information to support interworking between 3gpp and non-3gpp networks
CN102739541A (zh) * 2012-06-30 2012-10-17 华为终端有限公司 一种路由功能启动及数据传输的方法、设备和系统
CN103781090A (zh) * 2012-10-18 2014-05-07 中国移动通信集团公司 网络接入控制方法、装置、网络侧设备和终端
WO2014084760A1 (en) * 2012-11-27 2014-06-05 Telefonaktiebolaget Lm Ericsson (Publ) System for handling access by wireless devices in wi-fi network
CN103945406A (zh) * 2013-01-17 2014-07-23 美国博通公司 利用增强空中接口的无线通信系统
CN104168669A (zh) * 2013-05-15 2014-11-26 黑莓有限公司 用于使用蜂窝基础设施来管理小小区接入的方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9351338B2 (en) * 2013-11-14 2016-05-24 Netgear, Inc. Multi radio wireless LAN networks
US9648633B2 (en) * 2013-12-23 2017-05-09 Apple Inc. Virtual WLAN interface for cellular data offloading in a wireless device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080305825A1 (en) * 2007-06-08 2008-12-11 Interdigital Technology Corporation Method and apparatus for providing capability and core network information to support interworking between 3gpp and non-3gpp networks
CN102739541A (zh) * 2012-06-30 2012-10-17 华为终端有限公司 一种路由功能启动及数据传输的方法、设备和系统
CN103781090A (zh) * 2012-10-18 2014-05-07 中国移动通信集团公司 网络接入控制方法、装置、网络侧设备和终端
WO2014084760A1 (en) * 2012-11-27 2014-06-05 Telefonaktiebolaget Lm Ericsson (Publ) System for handling access by wireless devices in wi-fi network
CN103945406A (zh) * 2013-01-17 2014-07-23 美国博通公司 利用增强空中接口的无线通信系统
CN104168669A (zh) * 2013-05-15 2014-11-26 黑莓有限公司 用于使用蜂窝基础设施来管理小小区接入的方法和系统

Also Published As

Publication number Publication date
CN106358294B (zh) 2021-11-09
CN106358294A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
US11013049B2 (en) Multi-RAT radio resource aggregation with split bearer support
EP3152954B1 (en) Radio resource control (rrc) protocol for integrated wlan/3gpp radio access technologies
TWI583236B (zh) 裝置對裝置(d2d)通訊技術
TWI578840B (zh) 多頻帶無線通訊之設備、系統及方法
CN105981432B (zh) 用于在无线通信系统中导向业务的方法和使用该方法的装置
EP3207730B1 (en) System, method and aggregator controller
TWI552556B (zh) 相應於非蜂巢式網路之蜂巢式網路通訊的設備、系統及方法
US9544827B2 (en) Enhanced local access in mobile communications with FDD resource allocation
JP2019050617A (ja) 無線通信システムと方法と無線基地局と制御局
EP3300432B1 (en) Terminal, base station, cell access method and data transmission method
CN106341907B (zh) 一种数据传输方法、装置和系统
CN104885525B (zh) 用于在支持多接入网络的无线通信系统中通信的方法和支持其的装置
JP7302683B2 (ja) マスターノード、セカンダリノード、通信システム並びにマスターノード及びセカンダリノードの制御方法
US20210235343A1 (en) Hand-In with Topology Hiding
WO2013113202A1 (zh) 用于ue网络切换的信息处理方法和基站
CN105684543A (zh) 承载配置信令
US20190082366A1 (en) Radio resource control rrc configuration method and related device
US11792698B2 (en) Handling of inactive/idle measurement configurations and inactive/idle measurements upon inter-RAT cell reselection
WO2013166907A1 (zh) 网络接入方法及装置
JP2018520616A (ja) 端末がwlan測定を実行するかどうかを決定する方法及び装置
WO2020180226A1 (en) Early measurement configuration handling in 2- steps resume request - release
JP2012156898A (ja) 通信システム、移動機及び切替制御方法
JP2018525921A (ja) 端末がwlan測定を実行する方法及び装置
WO2016177114A1 (zh) 一种移动宽带数据传输的管理方法和装置
WO2014190021A2 (en) Call re-establishment in a multi-layer heterogeneous network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789108

Country of ref document: EP

Kind code of ref document: A1