WO2016175484A1 - Method for increasing reactivity of two-dimensional material having layered structure and method for preparing graphene oxide by means of same - Google Patents

Method for increasing reactivity of two-dimensional material having layered structure and method for preparing graphene oxide by means of same Download PDF

Info

Publication number
WO2016175484A1
WO2016175484A1 PCT/KR2016/003931 KR2016003931W WO2016175484A1 WO 2016175484 A1 WO2016175484 A1 WO 2016175484A1 KR 2016003931 W KR2016003931 W KR 2016003931W WO 2016175484 A1 WO2016175484 A1 WO 2016175484A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional material
layered structure
reactivity
layer
increasing
Prior art date
Application number
PCT/KR2016/003931
Other languages
French (fr)
Korean (ko)
Inventor
양우석
박원규
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2016175484A1 publication Critical patent/WO2016175484A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside

Definitions

  • the present invention relates to a method for increasing the reactivity of a two-dimensional material of the layered structure and a method for producing graphene oxide using the same, and more particularly, to increase the reactivity of the two-dimensional material of the layered structure to obtain a product capable of quality control in a short time It relates to a method and a method for producing graphene oxide using the same.
  • Graphite has a structure in which graphene, a plate-shaped two-dimensional sheet in which carbon atoms are formed in a hexagonal shape, is stacked.
  • Graphite has the advantages of excellent electrical strength and thermal conductivity, excellent mechanical strength, high elasticity, high transparency, energy storage materials such as secondary batteries, fuel cells, supercapacitors, filtration membranes, chemical detectors, transparent electrodes, etc. It can be used in a variety of applications such as.
  • Graphene which is produced by oxidizing graphite, separating it into several layers, and then reducing it, also has excellent physical properties such as high thermal conductivity, high current transfer capability, and excellent rigidity, so that nanoscale electric and electronic devices and nanosensors It is evaluated to be applied to various fields such as optoelectronic devices and high performance composite materials.
  • Graphene can generally be produced through chemical vapor deposition (CVD), chemical synthesis (oxidation / reduction of graphite) and the like. Since the announcement that it is possible to produce graphene by the mechanical peeling method known as the Scotch tape method, many technologies have been researched and developed.
  • graphite is oxidized with strong acid, dispersed and exfoliated with graphene oxide (GO), and then GO is reduced by heat treatment to reduce graphene oxide (rGO).
  • graphene oxide is a raw material of graphene, which is a key starting material for the graphene-based industry.
  • the present invention has been made to solve the above problems, an object of the present invention, a method for increasing the reactivity of the layered two-dimensional material to obtain a product capable of quality control in a short time and the production of graphene oxide using the same In providing a method.
  • a method of increasing the reactivity of a two-dimensional material having a layered structure is a method of increasing the reactivity of the two-dimensional material by applying stress to the two-dimensional material having a layered structure. Stressing an end portion and an end portion of the second layer adjacent to the first layer such that the interlayer distance at the ends of the first layer and the second layer is greater than the average interlayer distance.
  • the increase in reactivity may be due to an increase in the interlaminar penetration rate of the reactant with the two-dimensional material due to the increase of the interlayer distance at the end.
  • Stress can be imparted by applying two or more different flows of fluid to two-dimensional materials.
  • stress can be imparted to a two-dimensional material by applying a first fluid flow and a double fluid flow having a second fluid flow, which is a fluid flow in a direction different from the first fluid flow.
  • the dual fluid flow may be a vortex in a ring pair arrangement or may be a Taylor Vortex.
  • Taylor vortices can be generated in a Couet-Taylor reactor that includes fluid with a rotation of at least one of the inner cylinder and the inner cylinder, including inner cylinders and inner cylinders having the same center and different diameters.
  • Polar solvents may be added to the Kuet-Taylor reactor, which may be water, acetone, chloroform, isopropanol, cyclohexanone, N-methyl pyrrolidone, N, N-thimethylacetamide, dimethylformamide, or ethanol. , Methanol, hexane and toluene.
  • Further water may be introduced through the inlet at a different position from the inlet into which the polar solvent is introduced.
  • ultrasonic waves may also be applied to the Kuet-Taylor reactor.
  • vortices may also form inside the layered structure.
  • Vortex inside the layered structure may be formed by applying a bubble inside the layered structure.
  • the two-dimensional material having a layered structure may be at least one of graphite, graphite oxide, hexagonal boron nitride (hBN) and transition metal chalcogenide, and the transition metal chalcogenide may be tungsten sulfide (WS 2 ) and molybdenum sulfide. It may be at least one of (MoS 2 ).
  • graphite oxide is introduced into a Kuet-Taylor reactor in which Taylor vortex is formed to stress the end of the first layer of graphite oxide and the end of the second layer adjacent to the first layer, thereby providing a first
  • a method for producing graphene oxide comprising the step of peeling with graphene oxide so that the interlayer distance at the end of the layer and the second layer is greater than the average interlayer distance.
  • the exfoliated graphene oxide has an average size of 100 nm to 100 ⁇ m, and may have a 1 to 10 layer structure.
  • the mass production process can be performed, and the continuous process is possible, thereby reducing the process cost and reducing the process time. Due to this, the amount of reactant and sewage waste water can be minimized, which is advantageous in terms of cost savings and environmentally beneficial effects.
  • FIG. 1 is a view schematically illustrating stressing a two-dimensional material having a layered structure according to an embodiment of the present invention.
  • FIG. 2 is a view showing penetration of a reactant into a two-dimensional material having a layered structure before stress is applied
  • FIG. 3 is a view showing penetration of a reactant into a two-dimensional material having a layered structure after stress is applied.
  • FIG. 4 is a diagram illustrating a Kuet-Taylor reactor for stressing a two-dimensional material having a layered structure according to another embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating a fluid flow in the Kuet-Taylor reactor of FIG. 4.
  • FIG. 6 illustrates a Queet-Taylor reactor in accordance with another embodiment of the present invention.
  • FIG. 1 is a view schematically showing stressing a two-dimensional material having a layered structure according to an embodiment of the present invention
  • Figure 2 is a reaction material to the two-dimensional material having a layered structure before the stress is applied
  • 3 is a diagram illustrating penetration
  • FIG. 3 is a diagram illustrating penetration of a reactant into a two-dimensional material having a layered structure after stress is applied.
  • the method of increasing the reactivity of a layered two-dimensional material according to the present invention is a method of increasing the reactivity in a layered material, wherein the layered two-dimensional material is graphite, graphite oxide, hexagonal boron nitride ( hBN) and the transition metal chalcogenide compound.
  • Transition Metal Dichalcogenides are compounds composed of at least one Group 16 (chalcogen) element and at least one electropositive element.
  • chalcogen elements include S, Se, and Te.
  • positive electrode elements include Ti, Hf, Zr, V, Nb, Ta, Mo, W, Tc, Re, Pd, and Pt. have.
  • the transition metal chalcogenide compound is a two-dimensional material having a layered structure and having a layered structure that can be separated into a single layer.
  • the transition metal chalcogen compound is a structure in which a single layer is surrounded by a chalcogen atom layer on both sides, and three atomic layers constitute a single layer and show semiconductor characteristics. It is a material.
  • the transition metal chalcogen compound may be, for example, at least one of tungsten sulfide (WS2) and molybdenum sulfide (MoS2).
  • a two-dimensional material having a layered structure is composed of several layers.
  • the layered structure is formed when the bonding force between molecules and atoms in the layer and the bonding force between layers are different.
  • the two-dimensional material having a layered structure may be used for various purposes, but may be used as such, but may be used by inserting another compound between layers, or by converting it into another material by reacting it with a reactant such as an oxidizing agent or a reducing agent.
  • the layered structure may be broken and the layered structure may be used by peeling a plurality of layered layers into flakes having layers of 1 to 10 layers.
  • the method for increasing the reactivity of a two-dimensional material of a layered structure increases the reactivity of the two-dimensional material by stressing the two-dimensional material having a layered structure. To this end, it is possible to stress the end of the two-dimensional material having a layered structure.
  • a first layer 110 one of several layers of a two-dimensional material 100 having a layered structure is called a first layer 110, and a layer adjacent to the first layer 110 is referred to as a second layer 120.
  • stress S is applied to the ends of the first layer 110 and the second layer 120, the interlayer distance d2 at the ends of the first layer 110 and the second layer 120 is the average interlayer distance. It becomes larger than (d1).
  • the interlayer penetration rate of the two-dimensional material 100 having the layered structure and the reactant may increase due to the increase in the interlayer distance d2 between the ends.
  • the penetration rate of the reactant 230 to penetrate between the first layer 210 and the second layer 220 of the two-dimensional material having the layered structure without stress is the layered structure in FIG. 3.
  • the penetration rate of the reactant 330 to penetrate between the first layer 310 and the second layer 320 of the two-dimensional material having a layered structure after stress is applied to the two-dimensional material is inevitably smaller. This is because the interlayer distance between the first layer 310 and the second layer 320 is widened in FIG. 3, so that the reactant 330 easily penetrates.
  • stress can be applied, which stress can be applied by applying two or more different directions of fluid flow to the layered two-dimensional material.
  • stress can be applied by applying two or more different directions of fluid flow to the layered two-dimensional material.
  • the fluid flow in one direction since the two-dimensional material having a layered structure moves together with the flow of the fluid, no stress is applied, and stress is applied only when two or more fluid flows flowing in different directions exist. .
  • FIG. 4 illustrates a Kuet-Taylor reactor for stressing a two-dimensional material having a layered structure in accordance with the present invention
  • FIG. 5 schematically illustrates the fluid flow in the Kuet-Taylor reactor of FIG. One drawing.
  • the Couette-Taylor reactor 400 is a device that uses a spiral vortex called Taylor vortex.
  • the inner cylinder 410 rotates when the fluid flows between two cylinders having the same center. Fluid flows in the direction of rotation.
  • the fluid present in the inner cylinder 410 by the centrifugal force and Coriolis force (force) to the direction of the outer cylinder 420 is generated, and as the rotational speed increases gradually becomes unstable and regular along the axial direction And vortices of ring pair arrays rotating in opposite directions are formed.
  • This helical vortex imparts shear stress to the layered two-dimensional material, which stresses parallel to each layer of the layered two-dimensional material, making each layer open more easily. Since the reactants can easily penetrate through the gaps as shown in FIG. 3, each layer of the two-dimensional material having a layered structure can easily react.
  • the dispersion flows in a different direction from the first fluid flow 431 according to the rotation of the inner cylinder 410.
  • the second fluid flow 432 is formed so that the double fluid flow 430 is applied to the two-dimensional material having a layered structure. Accordingly, the two-dimensional material having a layered structure increases reactivity, reacts with the reactants, or collapses the layered structure to be converted into a smaller number of layers and discharged to the outlet.
  • the dual fluid flow 430 may be a vortex 530 of a ring pair array, as shown in FIG. 5, which is called Taylor Vortex.
  • the flow direction of the first fluid flow 531 and the flow direction of the second fluid flow 532 formed between the inner cylinder 510 and the outer cylinder 520 are different from each other, and thereby the reactivity of the two-dimensional material having a layered structure. This is to be increased.
  • FIG. 6 illustrates a Queet-Taylor reactor in accordance with another embodiment of the present invention.
  • vortices may be formed inside the layered structure.
  • Vortex inside the layered structure may be formed by applying a bubble inside the layered structure.
  • a polar solvent may be added to the Kuet-Taylor reactor 600.
  • the polar solvent may be at least one of water, acetone, chloroform, isopropanol, cyclohexanone, N-methyl pyrrolidone, N, N-thimethylacetamide, dimethylformamide, ethanol, methanol, hexane and toluene.
  • Water or intercalation material may be further introduced through the inlet 640 at a location different from that of the polar solvent.
  • Intercalants include K, Cs, NaK 2 , K / THF, CIF 3 , ICI, IBr, FeCl 3 , Li / Pc, N-butyl lithium, H 2 SO 4 , eutectic salt, CSA, H 2 O 2 or an ionic liquid. Accordingly, the polar solvent and the additionally introduced water or intercalation material generate bubbles between the layers of the two-dimensional material having a layered structure, and the bubbles can be further opened between the layers, so that a state similar to that in which additional stress is applied is generated. Can further increase the reactivity.
  • the tip sonicator 650 may be further positioned so that ultrasonic waves may also be applied to the Kuet-taylor reactor 600.
  • ultrasonic waves may also be applied to the Kuet-taylor reactor 600.
  • a product having a more homogeneous size can be obtained when the two-dimensional material having a layered structure is peeled off.
  • graphite oxide is introduced into a Kuet-Taylor reactor in which Taylor vortex is formed to stress the end of the first layer of graphite oxide and the end of the second layer adjacent to the first layer, thereby providing a first
  • a graphene oxide manufacturing method comprising the step of peeling the graphene oxide so that the interlayer distance at the end of the layer and the second layer is greater than the average interlayer distance.
  • This embodiment is a method of manufacturing graphene oxide by peeling graphite oxide, by applying stress to the graphite oxide, a two-dimensional material having the above-described layered structure to increase the graphite oxide interlayer distance, and eventually to be peeled off with graphene oxide do. Since the detailed stress applying method is as described above, a description thereof will be omitted.
  • graphene oxide is exfoliated from graphite oxide using an ultrasonic wave or a chemical substance.
  • large area graphene oxide of 10 ⁇ m or more could not be obtained.
  • the exfoliated graphene oxide may have a large area as compared with a 1-10 layer structure having an average size of 100 nm to 100 ⁇ m.
  • the graphite oxide may be separated into graphene oxide by using a Kuet-Taylor reactor, and when ultrasonic waves are additionally applied by using the tip sonicator 650 as shown in FIG. Since the size of the area of graphene oxide can be controlled, it is possible to obtain a large-area graphene oxide of uniform size.
  • graphene oxide may be obtained by using a method of increasing the reactivity of a two-dimensional material having a layered structure according to the present invention. That is, when oxidizing the graphite, it is possible to stress the end of the layers to increase the reactivity with the oxidizing agent, thereby obtaining the graphite oxide in a short time. In addition, stress may be applied to the ends of the layers of the obtained graphite oxide to exfoliate it to obtain graphene oxide.
  • the two Kuet-Taylor reactors When stressing is performed through the Kuet-Taylor reactor, the two Kuet-Taylor reactors are connected to each other, and then graphite is added together with the oxidant to the first Kuet-Taylor reactor, and when the graphite is oxidized, the oxide is A large area of homogeneous graphene oxide can be obtained in a short time from graphite by being put into a Cuet-Taylor reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Disclosed is a method for increasing the reactivity of a two-dimensional material having a layered structure and a method for preparing graphene oxide by means of same, the method in which a product, for which quality controlling is possible, can be obtained in a short time. A method for increasing the reactivity of an environment-friendly two-dimensional material having a layered structure, according to an embodiment of the present invention, is a method for increasing the reactivity of a two-dimensional material by means of applying stress to a two-dimensional material having a layered structure and comprises a stress applying step for applying pressure to an end portion of a first layer of a two-dimensional material and an end portion of a second layer that is adjacent to the first layer, thereby enabling the distance between the end portions of the first layer and second layer to be greater than an average interlayer distance.

Description

층상 구조의 2차원 물질의 반응성 증가방법 및 이를 이용한 산화그래핀 제조방법Method for increasing the reactivity of a two-dimensional layer of a layered structure and a method for producing graphene oxide using the same
본 발명은 층상 구조의 2차원 물질의 반응성 증가방법 및 이를 이용한 산화그래핀 제조방법에 관한 것으로, 보다 상세하게는 단시간에 품질제어가 가능한 생성물이 획득될 수 있는 층상 구조의 2차원 물질의 반응성 증가방법 및 이를 이용한 산화그래핀 제조방법에 관한 것이다.The present invention relates to a method for increasing the reactivity of a two-dimensional material of the layered structure and a method for producing graphene oxide using the same, and more particularly, to increase the reactivity of the two-dimensional material of the layered structure to obtain a product capable of quality control in a short time It relates to a method and a method for producing graphene oxide using the same.
그래파이트(graphite)는 탄소 원자가 6각형 모양으로 형성된 판상의 2차원 시트인 그래핀이 적층된 구조를 갖는다. 그래파이트는 전기 전도성 및 열전도성이 매우 뛰어나 기계적 강도가 우수하고 탄성이 높으며 투명도가 높다는 장점 등이 있는 바, 2차 전지, 연료 전지, 슈퍼 캐패시터와 같은 에너지 저장소재, 여과막, 화학검출기, 투명전극 등과 같은 다양한 응용분야에서 사용될 수 있다. Graphite has a structure in which graphene, a plate-shaped two-dimensional sheet in which carbon atoms are formed in a hexagonal shape, is stacked. Graphite has the advantages of excellent electrical strength and thermal conductivity, excellent mechanical strength, high elasticity, high transparency, energy storage materials such as secondary batteries, fuel cells, supercapacitors, filtration membranes, chemical detectors, transparent electrodes, etc. It can be used in a variety of applications such as.
이러한 그래파이트를 산화시킨 후 여러층으로 분리한 후 다시 환원시켜 제조되는 그래핀(graphene) 역시 높은 열전도도, 높은 전류 이송 능력, 우수한 강성 등의 뛰어난 물성을 지니고 있으므로 나노 스케일의 전기전자 디바이스, 나노센서, 광전자 디바이스, 고기능 복합재 등 다양한 분야에서 응용될 것으로 평가되고 있다. Graphene, which is produced by oxidizing graphite, separating it into several layers, and then reducing it, also has excellent physical properties such as high thermal conductivity, high current transfer capability, and excellent rigidity, so that nanoscale electric and electronic devices and nanosensors It is evaluated to be applied to various fields such as optoelectronic devices and high performance composite materials.
그래핀은 일반적으로 화학기상증착법(CVD법), 화학적 합성법(흑연의 산화/환원법) 등을 통해 제조될 수 있다. 소위 스카치 테이프법으로 알려져 있는 기계적 박리 방법에 의해 그래핀을 생산 가능하다는 발표 이후, 많은 기술들이 연구 개발되고 분류된 결과다. Graphene can generally be produced through chemical vapor deposition (CVD), chemical synthesis (oxidation / reduction of graphite) and the like. Since the announcement that it is possible to produce graphene by the mechanical peeling method known as the Scotch tape method, many technologies have been researched and developed.
이러한 방법들 중, 탑다운 공법으로 대량생산이 가능할뿐더러 비교적 저비용으로 그래핀을 생산할 수 있는 화학적 합성법이 가장 현실적이고도 간편한 방법으로 알려져 있다.Among these methods, a chemical synthesis method capable of producing a graphene at a relatively low cost as well as mass production by a top-down method is known as the most realistic and convenient method.
화학적 합성법을 개략적으로 설명하면, 그래파이트를 강산으로 산화 처리하여 산화 그래핀(graphene oxide, GO)으로 분산 및 박리시킨 다음에 다시 열처리를 통하여 GO를 환원시켜서 환원된 그래핀 산화물(reduced graphene oxide, rGO)로 만드는 방법이다. 즉, 산화 그래핀은 그래핀의 원료물질에 해당하는 것으로, 그래핀 기반 산업에 있어 핵심적인 출발 물질에 해당한다. In the chemical synthesis method, graphite is oxidized with strong acid, dispersed and exfoliated with graphene oxide (GO), and then GO is reduced by heat treatment to reduce graphene oxide (rGO). ) In other words, graphene oxide is a raw material of graphene, which is a key starting material for the graphene-based industry.
그러나 상술한 것과 같은 화학적 합성법을 이용하여 산화 그래핀을 제조하는 전통적인 방법(소위 험머스 방법으로 알려짐, Hummer's method)에서는 그래파이트의 층간 거리가 0.34nm로 매우 협소한 것을 이유로, 층간 화학 반응을 유도하기 위해 오랜 시간(대략 2내지 5일)이 소요되는 문제가 있어 경쟁력 있는 산화 그래핀 제조가 현실적으로 어렵다. However, in the traditional method of preparing graphene oxide using a chemical synthesis method as described above (known as the Hummer's method, Hummer's method), the interlayer chemical reaction is induced because the interlayer distance of graphite is very narrow at 0.34 nm. It takes a long time (about 2 to 5 days) to manufacture a competitive graphene oxide is practically difficult.
그리고 제조시간 단축을 위해서 강산 및 온도제어 등을 통해 반응속도를 조정하는 방안이 제안되고는 있으나, 이 경우에는 폐산액 증가에 따른 환경문제 및 이들을 처리하기 위한 비용이 증가되는 문제점이 발생하고 있다. In order to shorten the manufacturing time, a method of adjusting the reaction rate through strong acid and temperature control has been proposed, but in this case, an environmental problem caused by an increase in waste acid solution and a cost for treating them have increased.
이러한 문제점은 그래파이트와 같이 층간화합물의 경우, 층간 거리가 대부분 매우 협소하여 반응을 위한 반응물질이 층 사이로 삽입되는 것이 어렵기 때문이므로 우수한 특성을 갖는 층간화합물의 반응성을 높여 이를 이용하고자 하는 기술의 개발이 요청된다. This problem is because, in the case of an interlayer compound such as graphite, since the distance between layers is very narrow, it is difficult to insert the reactant for reaction between layers. Is requested.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 단시간에 품질제어가 가능한 생성물이 획득될 수 있는 층상 구조의 2차원 물질의 반응성 증가방법 및 이를 이용한 산화그래핀 제조방법을 제공함에 있다.The present invention has been made to solve the above problems, an object of the present invention, a method for increasing the reactivity of the layered two-dimensional material to obtain a product capable of quality control in a short time and the production of graphene oxide using the same In providing a method.
본 발명의 일 측면에 따르면, 층상 구조의 2차원 물질의 반응성 증가방법은 층상구조를 갖는 2차원 물질에 응력을 부여하여 2차원 물질의 반응성을 증가시키는 방법으로서, 2차원 물질의 제1층의 단부 및 제1층과 인접한 제2층의 단부에 응력을 부여하여 제1층 및 제2층의 단부에서의 층간거리가 평균층간거리보다 크도록 하는 응력부여단계;를 포함한다. According to an aspect of the present invention, a method of increasing the reactivity of a two-dimensional material having a layered structure is a method of increasing the reactivity of the two-dimensional material by applying stress to the two-dimensional material having a layered structure. Stressing an end portion and an end portion of the second layer adjacent to the first layer such that the interlayer distance at the ends of the first layer and the second layer is greater than the average interlayer distance.
반응성의 증가는 단부에서의 층간거리의 증가로 2차원 물질과의 반응물질의 층간 침투속도가 증가한 것일 수 있다. The increase in reactivity may be due to an increase in the interlaminar penetration rate of the reactant with the two-dimensional material due to the increase of the interlayer distance at the end.
응력은 2차원 물질에 2이상의 서로 상이한 방향의 유체흐름을 적용시켜 부여될 수 있다. Stress can be imparted by applying two or more different flows of fluid to two-dimensional materials.
또한, 응력은 2차원 물질에 제1유체흐름 및 제1유체흐름과 상이한 방향의 유체흐름인 제2유체흐름을 갖는 이중유체흐름을 적용시켜 부여될 수 있다. In addition, stress can be imparted to a two-dimensional material by applying a first fluid flow and a double fluid flow having a second fluid flow, which is a fluid flow in a direction different from the first fluid flow.
이중유체흐름은 고리쌍 배열의 와류일 수 있고, 테일러 와류(Taylor Vortex)일 수도 있다. The dual fluid flow may be a vortex in a ring pair arrangement or may be a Taylor Vortex.
테일러 와류는 중심이 동일하고 직경은 상이한 내부원통 및 내부원통을 포함하여, 내부원통 및 내부원통 중 적어도 하나의 회전에 따라 유체를 흐르게 하는 쿠에트-테일러 반응기 내에서 발생될 수 있다.Taylor vortices can be generated in a Couet-Taylor reactor that includes fluid with a rotation of at least one of the inner cylinder and the inner cylinder, including inner cylinders and inner cylinders having the same center and different diameters.
쿠에트-테일러 반응기에는 극성용매를 투입할 수 있는데, 극성용매는 물, 아세톤, 클로로포름, 이소프로판올, 시클로헥사논, N-메틸 피롤리돈, N,N-티메틸아세트아미드, 디메틸포름아미드, 에탄올, 메탄올, 헥산 및 톨루엔 중 적어도 하나일 수 있다.Polar solvents may be added to the Kuet-Taylor reactor, which may be water, acetone, chloroform, isopropanol, cyclohexanone, N-methyl pyrrolidone, N, N-thimethylacetamide, dimethylformamide, or ethanol. , Methanol, hexane and toluene.
극성용매가 유입된 유입구와 상이한 위치의 유입구를 통해 물이 더 투입될 수 있다. 아울러, 쿠에트-테일러 반응기에 초음파도 적용될 수 있다. Further water may be introduced through the inlet at a different position from the inlet into which the polar solvent is introduced. In addition, ultrasonic waves may also be applied to the Kuet-Taylor reactor.
층상구조를 갖는 2차원 물질에 응력을 부여할 때, 층상구조 내부에도 와류가 형성될 수 있다. When stress is applied to a two-dimensional material having a layered structure, vortices may also form inside the layered structure.
층상구조 내부의 와류는 층상구조 내부에 기포를 적용시켜 형성될 수 있다.Vortex inside the layered structure may be formed by applying a bubble inside the layered structure.
층상구조를 갖는 2차원 물질은 그래파이트, 산화그래파이트, 헥사고날 보론 나이트라이드(hBN) 및 전이금속 칼코겐화합물 중 적어도 어느 하나일 수 있고, 전이금속 칼코겐화합물은 텅스텐 설파이드(WS2) 및 몰리브덴 설파이드(MoS2) 중 적어도 어느 하나일 수 있다. The two-dimensional material having a layered structure may be at least one of graphite, graphite oxide, hexagonal boron nitride (hBN) and transition metal chalcogenide, and the transition metal chalcogenide may be tungsten sulfide (WS 2 ) and molybdenum sulfide. It may be at least one of (MoS 2 ).
본 발명의 다른 측면에 따르면, 산화그래파이트를 테일러 와류가 형성되는 쿠에트-테일러 반응기에 투입하여 산화그래파이트의 제1층의 단부 및 제1층과 인접한 제2층의 단부에 응력을 부여하여 제1층 및 제2층의 단부에서의 층간거리가 평균층간거리보다 크도록 하여 산화그래핀으로 박리하는 단계;를 포함하는 산화그래핀 제조방법이 제공된다. 여기서, 박리된 산화그래핀은 평균크기가 100 nm 내지 100 ㎛이고, 1 내지 10층 구조일 수 있다. According to another aspect of the present invention, graphite oxide is introduced into a Kuet-Taylor reactor in which Taylor vortex is formed to stress the end of the first layer of graphite oxide and the end of the second layer adjacent to the first layer, thereby providing a first There is provided a method for producing graphene oxide comprising the step of peeling with graphene oxide so that the interlayer distance at the end of the layer and the second layer is greater than the average interlayer distance. Here, the exfoliated graphene oxide has an average size of 100 nm to 100 μm, and may have a 1 to 10 layer structure.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 층상구조를 갖는 2차원 물질의 반응성을 높여 반응시간을 획기적으로 단축시키는 효과가 있다. As described above, according to the embodiments of the present invention, it is possible to increase the reactivity of the two-dimensional material having a layered structure to significantly shorten the reaction time.
본 발명에 따라 쿠에트-테일러 반응기를 이용하여 층상구조를 갖는 2차원 물질의 반응성을 증가시키는 경우, 대량생산공정 수행이 가능하고, 연속공정이 가능하여 공정비용의 절감효과가 있고, 공정시간단축으로 인하여 반응물질 및 하-폐수 생산량이 최소화될 수 있어 비용적인 절감 뿐 아니라 환경적으로도 유리한 효과가 있다. According to the present invention, when the reactivity of a two-dimensional material having a layered structure is increased by using the Cuet-Taylor reactor, the mass production process can be performed, and the continuous process is possible, thereby reducing the process cost and reducing the process time. Due to this, the amount of reactant and sewage waste water can be minimized, which is advantageous in terms of cost savings and environmentally beneficial effects.
또한, 극성용매 및 초음파 공정을 추가하여 생성된 단층상물질의 크기 및 층수 제어가 가능하여 원하는 품질의 생성물 획득이 가능한 효과가 있다. In addition, it is possible to control the size and number of layers of the monolayer material generated by adding a polar solvent and an ultrasonic process, thereby obtaining a product of a desired quality.
아울러, 본 발명에 따른 반응성 증가방법을 이용하여 산화그래파이트로부터 산화그래핀을 제조하면, 단시간에 대면적의 균질한 크기의 산화그래핀을 획득할 수 있는 효과가 있다. In addition, when the graphene oxide is prepared from graphite oxide using the method for increasing reactivity according to the present invention, there is an effect of obtaining a homogeneous size of graphene oxide with a large area in a short time.
도 1은 본 발명의 일 실시예에 따른 층상구조를 갖는 2차원 물질에 응력을 부여하는 것을 개략적으로 도시한 도면이다. 1 is a view schematically illustrating stressing a two-dimensional material having a layered structure according to an embodiment of the present invention.
도 2는 응력이 부여되기 전의 층상구조를 갖는 2차원 물질에 반응물질이 침투하는 것을 도시한 도면이고, 도 3은 응력이 부여된 후에 층상구조를 갖는 2차원 물질에 반응물질이 침투하는 것을 도시한 도면이다. FIG. 2 is a view showing penetration of a reactant into a two-dimensional material having a layered structure before stress is applied, and FIG. 3 is a view showing penetration of a reactant into a two-dimensional material having a layered structure after stress is applied. One drawing.
도 4는 본 발명의 다른 실시예에 따라 층상구조를 갖는 2차원 물질에 응력을 부여하기 위한 쿠에트-테일러 반응기를 도시한 도면이다. 4 is a diagram illustrating a Kuet-Taylor reactor for stressing a two-dimensional material having a layered structure according to another embodiment of the present invention.
도 5는 도 4의 쿠에트-테일러 반응기에서의 유체흐름을 개략적으로 도시한 도면이다. FIG. 5 is a diagram schematically illustrating a fluid flow in the Kuet-Taylor reactor of FIG. 4.
도 6은 본 발명의 또다른 실시예에 따른 쿠에트-테일러 반응기를 도시한 도면이다. FIG. 6 illustrates a Queet-Taylor reactor in accordance with another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정 패턴을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정패턴 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다. Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art. In the accompanying drawings, there may be a component having a specific pattern or having a predetermined thickness, but this is for convenience of description or distinction. It is not limited only.
도 1은 본 발명의 일 실시예에 따른 층상구조를 갖는 2차원 물질에 응력을 부여하는 것을 개략적으로 도시한 도면이고, 도 2는 응력이 부여되기 전의 층상구조를 갖는 2차원 물질에 반응물질이 침투하는 것을 도시한 도면이며, 도 3은 응력이 부여된 후에 층상구조를 갖는 2차원 물질에 반응물질이 침투하는 것을 도시한 도면이다. 1 is a view schematically showing stressing a two-dimensional material having a layered structure according to an embodiment of the present invention, Figure 2 is a reaction material to the two-dimensional material having a layered structure before the stress is applied 3 is a diagram illustrating penetration, and FIG. 3 is a diagram illustrating penetration of a reactant into a two-dimensional material having a layered structure after stress is applied.
본 발명에 따른 층상 구조의 2차원 물질의 반응성 증가방법은 층상구조를 갖는 물질에 있어서 반응성을 증가시키는 방법으로서, 여기서, 층상구조를 갖는 2차원 물질은 그래파이트, 산화그래파이트, 헥사고날 보론 나이트라이드(hBN) 및 전이금속 칼코겐화합물 중 적어도 어느 하나일 수 있다. The method of increasing the reactivity of a layered two-dimensional material according to the present invention is a method of increasing the reactivity in a layered material, wherein the layered two-dimensional material is graphite, graphite oxide, hexagonal boron nitride ( hBN) and the transition metal chalcogenide compound.
전이금속 칼코겐화합물(TMDs, Transition Metal Dichalcogenides)은 적어도 하나의 16족(칼코겐)원소와 적어도 하나의 양전성(electropositive) 원소로 구성된 화합물이다. 칼코겐 원소로는 S, Se, 및 Te를 예로 들 수 있고, 양전성 원소로는 Ti, Hf, Zr, V, Nb, Ta, Mo, W, Tc, Re, Pd, 및 Pt를 예로 들 수 있다. 전이금속 칼코겐 화합물은 층상구조를 가지고 있어 단일층으로 분리 가능한 층상구조를 갖는 2차원 물질이다. 전이금속 칼코겐 화합물은 단일층이 내부의 전이금속 원자층이 양 측의 칼코겐 원자층에 의해 둘러싸인 구조로, 3개의 원자층이 단일층을 구성하며 반도체 특성을 보여 차세대 박막 반도체 소자원료로 부각되는 소재이다. Transition Metal Dichalcogenides (TMDs) are compounds composed of at least one Group 16 (chalcogen) element and at least one electropositive element. Examples of chalcogen elements include S, Se, and Te. Examples of positive electrode elements include Ti, Hf, Zr, V, Nb, Ta, Mo, W, Tc, Re, Pd, and Pt. have. The transition metal chalcogenide compound is a two-dimensional material having a layered structure and having a layered structure that can be separated into a single layer. The transition metal chalcogen compound is a structure in which a single layer is surrounded by a chalcogen atom layer on both sides, and three atomic layers constitute a single layer and show semiconductor characteristics. It is a material.
전이금속 칼코겐 화합물은 예를 들면, 텅스텐 설파이드(WS2) 및 몰리브덴 설파이드(MoS2) 중 적어도 어느 하나일 수 있다. The transition metal chalcogen compound may be, for example, at least one of tungsten sulfide (WS2) and molybdenum sulfide (MoS2).
도 1을 참조하면, 층상구조를 갖는 2차원 물질은 여러 층으로 구성되어 있는데, 이러한 층상구조는 층안의 분자나 원자간의 결합력과 층간의 결합력이 상이할 때 형성된다. 층상구조를 갖는 2차원 물질은 여러가지 용도로 사용될 수 있는데, 그 자체로도 사용될 수 있으나, 층간에 다른 화합물을 삽입하여 사용하거나, 산화제나 환원제등과 같이 반응물질로 반응시켜 다른 물질로 변환하여 사용하거나, 또는 층상구조를 파괴하여 다수층의 층상구조를 1내지 10층 이내의 층을 갖는 박편으로 박리하여 사용될 수 있다. Referring to FIG. 1, a two-dimensional material having a layered structure is composed of several layers. The layered structure is formed when the bonding force between molecules and atoms in the layer and the bonding force between layers are different. The two-dimensional material having a layered structure may be used for various purposes, but may be used as such, but may be used by inserting another compound between layers, or by converting it into another material by reacting it with a reactant such as an oxidizing agent or a reducing agent. Alternatively, the layered structure may be broken and the layered structure may be used by peeling a plurality of layered layers into flakes having layers of 1 to 10 layers.
본 발명에 따른 층상 구조의 2차원 물질의 반응성 증가방법은, 층상구조를 갖는 2차원 물질에 응력을 부여하여 2차원 물질의 반응성을 증가시킨다. 이를 위해, 층상구조를 갖는 2차원 물질의 단부에 응력을 부여할 수 있다. 도 1을 참조하면, 층상구조를 갖는 2차원 물질(100)의 여러 층 중 어느 하나의 층을 제1층(110)이라 하고, 제1층(110)과 인접한 층을 제2층(120)이라 하자. 제1층(110) 및 제2층(120)의 단부에 응력(S)이 부여되면, 제1층(110) 및 제2층(120)의 단부에서의 층간거리(d2)가 평균층간거리(d1)보다 크게 된다. The method for increasing the reactivity of a two-dimensional material of a layered structure according to the present invention increases the reactivity of the two-dimensional material by stressing the two-dimensional material having a layered structure. To this end, it is possible to stress the end of the two-dimensional material having a layered structure. Referring to FIG. 1, one of several layers of a two-dimensional material 100 having a layered structure is called a first layer 110, and a layer adjacent to the first layer 110 is referred to as a second layer 120. Let's say When stress S is applied to the ends of the first layer 110 and the second layer 120, the interlayer distance d2 at the ends of the first layer 110 and the second layer 120 is the average interlayer distance. It becomes larger than (d1).
이에 따라, 단부간 층간거리(d2)의 증가로 층상구조를 갖는 2차원 물질(100)과 반응물질의 층간 침투속도가 증가할 수 있다. 도 2에서, 응력이 부여되지 않은 층상구조를 갖는 2차원 물질의 제1층(210) 및 제2층(220) 사이에 침투하려는 반응물질(230)의 침투속도는 도 3에서 층상구조를 갖는 2차원 물질에 응력이 부여된 후의 층상구조를 갖는 2차원 물질의 제1층(310) 및 제2층(320) 사이에 침투하려는 반응물질(330)의 침투속도보다 작을 수 밖에 없다. 이는 도 3에서 제1층(310) 및 제2층(320) 사이의 층간거리가 넓어지게 되므로 반응물질(330)이 침투하기 용이하기 때문이다. Accordingly, the interlayer penetration rate of the two-dimensional material 100 having the layered structure and the reactant may increase due to the increase in the interlayer distance d2 between the ends. In FIG. 2, the penetration rate of the reactant 230 to penetrate between the first layer 210 and the second layer 220 of the two-dimensional material having the layered structure without stress is the layered structure in FIG. 3. The penetration rate of the reactant 330 to penetrate between the first layer 310 and the second layer 320 of the two-dimensional material having a layered structure after stress is applied to the two-dimensional material is inevitably smaller. This is because the interlayer distance between the first layer 310 and the second layer 320 is widened in FIG. 3, so that the reactant 330 easily penetrates.
층상구조를 갖는 2차원 물질의 반응성을 증가시키기 위해, 응력을 부여할 수 있는데, 이러한 응력은 층상구조를 갖는 2차원 물질에 2이상의 서로 상이한 방향의 유체흐름을 적용시켜 부여될 수 있다. 한 방향의 유체흐름을 적용시키는 경우에는 층상구조를 갖는 2차원 물질이 그 유체의 흐름에 따라 함께 이동하게 되므로 응력이 부여되지 않고, 서로 상이한 방향으로 흐르는 유체흐름이 2이상 존재하여야 응력이 부여된다. In order to increase the reactivity of the layered two-dimensional material, stress can be applied, which stress can be applied by applying two or more different directions of fluid flow to the layered two-dimensional material. In the case of applying the fluid flow in one direction, since the two-dimensional material having a layered structure moves together with the flow of the fluid, no stress is applied, and stress is applied only when two or more fluid flows flowing in different directions exist. .
특히, 층상구조를 갖는 2차원 물질의 반응성을 증가시키기 위해, 2차원 물질에 제1유체흐름 및 제1유체흐름과 상이한 방향의 유체흐름인 제2유체흐름을 갖는 이중유체흐름을 적용시켜 응력이 부여될 수 있다. 도 4는 본 발명에 따라 층상구조를 갖는 2차원 물질에 응력을 부여하기 위한 쿠에트-테일러 반응기를 도시한 도면이고, 도 5는 도 4의 쿠에트-테일러 반응기에서의 유체흐름을 개략적으로 도시한 도면이다.In particular, in order to increase the reactivity of the two-dimensional material having a layered structure, stress is applied to the two-dimensional material by applying a double fluid flow having a first fluid flow and a second fluid flow which is a fluid flow in a direction different from that of the first fluid flow. Can be given. FIG. 4 illustrates a Kuet-Taylor reactor for stressing a two-dimensional material having a layered structure in accordance with the present invention, and FIG. 5 schematically illustrates the fluid flow in the Kuet-Taylor reactor of FIG. One drawing.
쿠에트-테일러(Couette-Taylor) 반응기(400)는 테일러 와류(Taylor vortex)라는 나선형 와류를 사용하는 장비로, 중심이 같은 두 개의 원통 사이에 유체가 흐를 때 내부원통(410)이 회전을 하면서 유체는 회전방향으로 흐름이 생기게 된다. 이 때, 원심력과 코리올리힘(Coriolis force)에 의해 내부원통(410) 쪽에 존재하는 유체들이 외부원통(420) 방향으로 나가려는 힘이 생기고, 회전속도가 올라갈수록 점점 불안정하게 되어 축 방향에 따라 규칙적이며 서로 반대 방향으로 회전하는 고리쌍 배열의 와류가 형성하게 된다. 이 나선형 와류는 층상구조를 갖는 2차원 물질에 전단응력을 주게 되는데, 이 힘은 층상구조를 갖는 2차원 물질의 각 층에 평행하게 응력을 주기 때문에 각 층이 좀더 쉽게 벌어지게 만들어 준다. 도 3에서와 같이 벌어진 틈 사이로 반응물질이 쉽게 침투할 수 있기 때문에 층상구조를 갖는 2차원 물질의 각 층이 쉽게 반응을 일으킬 수 있게 된다. The Couette-Taylor reactor 400 is a device that uses a spiral vortex called Taylor vortex. The inner cylinder 410 rotates when the fluid flows between two cylinders having the same center. Fluid flows in the direction of rotation. At this time, the fluid present in the inner cylinder 410 by the centrifugal force and Coriolis force (force) to the direction of the outer cylinder 420 is generated, and as the rotational speed increases gradually becomes unstable and regular along the axial direction And vortices of ring pair arrays rotating in opposite directions are formed. This helical vortex imparts shear stress to the layered two-dimensional material, which stresses parallel to each layer of the layered two-dimensional material, making each layer open more easily. Since the reactants can easily penetrate through the gaps as shown in FIG. 3, each layer of the two-dimensional material having a layered structure can easily react.
쿠에트-테일러 반응기(400)에서 유입구(In)에 층상구조를 갖는 2차원 물질이 분산된 분산액이 투입되면, 내부원통(410)의 회전에 따라 제1유체흐름(431)과 상이한 방향으로 흐르는 제2유체흐름(432)이 형성되어 이중유체흐름(430)이 층상구조를 갖는 2차원 물질에 적용되게 된다. 이에 따라 층상구조를 갖는 2차원 물질은 반응성이 증가되고, 반응물질과 반응이 일어나거나 층상구조가 붕괴되어 더 적은 층수의 물질로 변환되어 유출구(Out)로 배출되게 된다. When a dispersion in which a two-dimensional material having a layered structure is dispersed is introduced into the inlet In in the Kuet-Taylor reactor 400, the dispersion flows in a different direction from the first fluid flow 431 according to the rotation of the inner cylinder 410. The second fluid flow 432 is formed so that the double fluid flow 430 is applied to the two-dimensional material having a layered structure. Accordingly, the two-dimensional material having a layered structure increases reactivity, reacts with the reactants, or collapses the layered structure to be converted into a smaller number of layers and discharged to the outlet.
이중유체흐름(430)을 더 상세히 보면, 도 5와 같이 고리쌍 배열의 와류(530)일 수 있고, 이를 테일러 와류(Taylor Vortex)라 한다. 내부원통(510)과 외부원통(520) 사이에 형성된 제1유체흐름(531)의 흐름 방향과 제2유체흐름(532)의 흐름방향은 서로 상이하며 이에 의해 층상구조를 갖는 2차원 물질의 반응성이 증가되는 것이다. In more detail, the dual fluid flow 430 may be a vortex 530 of a ring pair array, as shown in FIG. 5, which is called Taylor Vortex. The flow direction of the first fluid flow 531 and the flow direction of the second fluid flow 532 formed between the inner cylinder 510 and the outer cylinder 520 are different from each other, and thereby the reactivity of the two-dimensional material having a layered structure. This is to be increased.
도 6은 본 발명의 또다른 실시예에 따른 쿠에트-테일러 반응기를 도시한 도면이다. 층상구조를 갖는 2차원 물층상구조를 갖는 2차원 물질에 응력을 부여할 때, 층상구조 내부에도 와류가 형성될 수 있다. 층상구조 내부의 와류는 층상구조 내부에 기포를 적용시켜 형성될 수 있다.FIG. 6 illustrates a Queet-Taylor reactor in accordance with another embodiment of the present invention. When stress is applied to a two-dimensional material having a two-dimensional water layer structure having a layered structure, vortices may be formed inside the layered structure. Vortex inside the layered structure may be formed by applying a bubble inside the layered structure.
이를 위해, 쿠에트-테일러 반응기(600)에는 극성용매가 투입될 수 있다. 극성용매는 물, 아세톤, 클로로포름, 이소프로판올, 시클로헥사논, N-메틸 피롤리돈, N,N-티메틸아세트아미드, 디메틸포름아미드, 에탄올, 메탄올, 헥산 및 톨루엔 중 적어도 하나일 수 있다. To this end, a polar solvent may be added to the Kuet-Taylor reactor 600. The polar solvent may be at least one of water, acetone, chloroform, isopropanol, cyclohexanone, N-methyl pyrrolidone, N, N-thimethylacetamide, dimethylformamide, ethanol, methanol, hexane and toluene.
극성용매가 유입된 유입구와 상이한 위치의 유입구(640)를 통해 물 또는 층간삽입(intercalation)물질이 더 투입될 수 있다. 층간삽입물질로는 K, Cs, NaK2, K/THF, CIF3, ICI, IBr, FeCl3, Li/Pc, N-butyl lithium, H2SO4, 공융염(eutectic salt), CSA, H2O2 또는 이온성 액체(Ionic liquid)을 예로 들 수 있다. 이에 따라, 극성용매와 추가적으로 투입된 물 또는 층간삽입물질이 층상구조를 갖는 2차원 물질의 층간에 기포를 발생시키고, 기포에 의해 층 사이가 더욱 벌어질 수 있게 되어 추가적으로 응력이 부여된 것과 유사한 상태가 되어 반응성을 더욱 증가시킬 수 있다. Water or intercalation material may be further introduced through the inlet 640 at a location different from that of the polar solvent. Intercalants include K, Cs, NaK 2 , K / THF, CIF 3 , ICI, IBr, FeCl 3 , Li / Pc, N-butyl lithium, H 2 SO 4 , eutectic salt, CSA, H 2 O 2 or an ionic liquid. Accordingly, the polar solvent and the additionally introduced water or intercalation material generate bubbles between the layers of the two-dimensional material having a layered structure, and the bubbles can be further opened between the layers, so that a state similar to that in which additional stress is applied is generated. Can further increase the reactivity.
아울러, 쿠에트-테일러 반응기(600)에 초음파도 적용될 수 있도록 팁 소니케이터(650)가 더 위치할 수 있다. 초음파를 적용하는 경우, 층상구조를 갖는 2차원 물질을 박리하는 경우 보다 균질한 크기의 생성물을 얻을 수 있다. In addition, the tip sonicator 650 may be further positioned so that ultrasonic waves may also be applied to the Kuet-taylor reactor 600. In the case of applying the ultrasonic wave, a product having a more homogeneous size can be obtained when the two-dimensional material having a layered structure is peeled off.
본 발명의 다른 측면에 따르면, 산화그래파이트를 테일러 와류가 형성되는 쿠에트-테일러 반응기에 투입하여 산화그래파이트의 제1층의 단부 및 제1층과 인접한 제2층의 단부에 응력을 부여하여 제1층 및 제2층의 단부에서의 층간거리가 평균층간거리보다 크도록 하여 산화그래핀을 박리하는 단계;를 포함하는 산화그래핀 제조방법이 제공된다. 본 실시예는 산화그래파이트를 박리하여 산화그래핀을 제조하는 방법으로서, 전술한 층상구조를 갖는 2차원 물질인 산화그래파이트에 응력을 부여하여 산화그래파이트 층간거리를 증가시키고, 결국 산화그래핀으로 박리되도록 한다. 상세한 응력부여방법은 전술한 바와 같으므로 설명은 생략하기로 한다. According to another aspect of the present invention, graphite oxide is introduced into a Kuet-Taylor reactor in which Taylor vortex is formed to stress the end of the first layer of graphite oxide and the end of the second layer adjacent to the first layer, thereby providing a first There is provided a graphene oxide manufacturing method comprising the step of peeling the graphene oxide so that the interlayer distance at the end of the layer and the second layer is greater than the average interlayer distance. This embodiment is a method of manufacturing graphene oxide by peeling graphite oxide, by applying stress to the graphite oxide, a two-dimensional material having the above-described layered structure to increase the graphite oxide interlayer distance, and eventually to be peeled off with graphene oxide do. Since the detailed stress applying method is as described above, a description thereof will be omitted.
종래에는 초음파를 부여하거나 화학적 물질을 이용하여 산화그래파이트를 산화그래핀을 박리하였으나, 이 경우에는 초음파로 인하여 산화그래파이트 전면에 힘이 가해져 대면적의 산화그래핀 획득이 어려웠다. 특히 10㎛ 이상의 대면적 산화그래핀은 얻을 수 없었다. 본 발명과 같은 제조방법에 의하면, 산화그래파이트의 층의 단부에 응력을 부여하기 때문에 보다 대면적의 산화그래핀 획득이 가능하다. 여기서, 박리된 산화그래핀은 평균크기가 100 nm 내지 100 ㎛으로 층수가 1 내지 10층 구조인 데 비해 대면적일 수 있다. Conventionally, graphene oxide is exfoliated from graphite oxide using an ultrasonic wave or a chemical substance. In this case, it is difficult to obtain graphene oxide with a large area due to the force applied to the entire surface of the graphite oxide due to the ultrasonic wave. In particular, large area graphene oxide of 10 µm or more could not be obtained. According to the production method as in the present invention, since a stress is applied to the end of the layer of graphite oxide, a larger area of graphene oxide can be obtained. Here, the exfoliated graphene oxide may have a large area as compared with a 1-10 layer structure having an average size of 100 nm to 100 μm.
전술한 바와 같이 본 발명에서는 쿠에트-테일러 반응기를 이용하여 산화그래파이트를 산화그래핀으로 박리할 수 있는데, 도 6에서와 같이 팁 소니케이터(650)를 이용하여 추가적으로 초음파를 적용하는 경우, 대면적의 산화그래핀의 크기를 제어할 수 있어서, 균일한 크기의 대면적 산화그래핀 획득이 가능하다. As described above, in the present invention, the graphite oxide may be separated into graphene oxide by using a Kuet-Taylor reactor, and when ultrasonic waves are additionally applied by using the tip sonicator 650 as shown in FIG. Since the size of the area of graphene oxide can be controlled, it is possible to obtain a large-area graphene oxide of uniform size.
그래파이트를 산화시키고, 이로부터 얻은 산화그래파이트를 박리하여 산화그래핀을 제조하고자 하는 경우, 본 발명에 따른 층상 구조의 2차원 물질의 반응성 증가방법을 이용하여 산화그래핀을 얻을 수 있다. 즉, 그래파이트를 산화시킬 때, 산화제와의 반응성을 높일 수 있도록 층들의 단부에 응력을 부여할 수 있고, 이를 통해 단시간에 산화그래파이트를 얻을 수 있다. 또한, 얻은 산화그래파이트의 층들의 단부에 응력을 부여하여 이를 박리하고 산화그래핀을 얻을 수 있다. 응력 부여를 쿠에트-테일러 반응기를 통하여 수행하는 경우, 쿠에트-테일러 반응기를 2개 연결하여 먼저 제1쿠에트-테일러 반응기에 그래파이트를 산화제와 함께 투입하고, 그래파이트가 산화되면, 산화물이 제2쿠에트-테일러 반응기에 투입되어 하나의 공정으로 그래파이트로부터 대면적의 균일한 산화그래핀을 단시간에 획득가능하다. When the graphite is oxidized and the graphite oxide obtained therefrom is peeled off to prepare graphene oxide, graphene oxide may be obtained by using a method of increasing the reactivity of a two-dimensional material having a layered structure according to the present invention. That is, when oxidizing the graphite, it is possible to stress the end of the layers to increase the reactivity with the oxidizing agent, thereby obtaining the graphite oxide in a short time. In addition, stress may be applied to the ends of the layers of the obtained graphite oxide to exfoliate it to obtain graphene oxide. When stressing is performed through the Kuet-Taylor reactor, the two Kuet-Taylor reactors are connected to each other, and then graphite is added together with the oxidant to the first Kuet-Taylor reactor, and when the graphite is oxidized, the oxide is A large area of homogeneous graphene oxide can be obtained in a short time from graphite by being put into a Cuet-Taylor reactor.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.While the above has been shown and described with respect to preferred embodiments of the present invention, the present invention is not limited to the specific embodiments described above, it is usually in the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.

Claims (15)

  1. 층상구조를 갖는 2차원 물질에 응력을 부여하여 상기 2차원 물질의 반응성을 증가시키는 방법으로서, As a method of increasing the reactivity of the two-dimensional material by applying stress to the two-dimensional material having a layered structure,
    상기 2차원 물질의 제1층의 단부 및 상기 제1층과 인접한 제2층의 단부에 응력을 부여하여 상기 제1층 및 상기 제2층의 단부에서의 층간거리가 평균층간거리보다 크도록 하는 응력부여단계;를 포함하는 층상 구조의 2차원 물질의 반응성 증가방법.Stressing the end of the first layer of the two-dimensional material and the end of the second layer adjacent to the first layer such that the interlayer distance at the ends of the first layer and the second layer is greater than the average interlayer distance. Stressing step; increase the reactivity of the two-dimensional material of the layered structure comprising a.
  2. 제 1항에 있어서, The method of claim 1,
    상기 반응성의 증가는, The increase in reactivity is
    상기 단부에서의 층간거리의 증가로 상기 2차원 물질과의 반응물질의 층간 침투속도가 증가한 것인 층상 구조의 2차원 물질의 반응성 증가방법.The method of increasing the reactivity of the two-dimensional material of the layered structure, which increases the interlayer penetration rate of the reactant material with the two-dimensional material by increasing the interlayer distance at the end.
  3. 제 1항에 있어서, The method of claim 1,
    상기 응력은, The stress is
    상기 2차원 물질에 2이상의 서로 상이한 방향의 유체흐름을 적용시켜 부여되는 것인 층상 구조의 2차원 물질의 반응성 증가방법.The method of increasing the reactivity of the two-dimensional material of the layered structure that is given by applying a fluid flow in two or more different directions to the two-dimensional material.
  4. 제 1항에 있어서, The method of claim 1,
    상기 응력은, The stress is
    상기 2차원 물질에 제1유체흐름 및 상기 제1유체흐름과 상이한 방향의 유체흐름인 제2유체흐름을 갖는 이중유체흐름을 적용시켜 부여되는 것인 층상 구조의 2차원 물질의 반응성 증가방법.And applying a double fluid flow having a first fluid flow and a second fluid flow having a second fluid flow in a direction different from the first fluid flow to the two-dimensional material.
  5. 제 4항에 있어서, The method of claim 4, wherein
    상기 이중유체흐름은, 테일러 와류(Taylor Vortex)인 층상 구조의 2차원 물질의 반응성 증가방법.The double fluid flow, Taylor Vortex (Taylor Vortex) is a method of increasing the reactivity of the layered two-dimensional material.
  6. 제 5항에 있어서, The method of claim 5,
    상기 테일러 와류는, The taylor vortex,
    중심이 동일하고 직경은 상이한 내부원통 및 내부원통을 포함하여, 상기 내부원통 및 상기 내부원통 중 적어도 하나의 회전에 따라 유체를 흐르게 하는 쿠에트-테일러 반응기 내에서 발생되는 것인 층상 구조의 2차원 물질의 반응성 증가방법.A two-dimensional layered structure of a layered structure, including an inner cylinder and an inner cylinder having the same center and having a diameter, which is generated in a Kuet-Taylor reactor that flows fluid upon rotation of at least one of the inner cylinder and the inner cylinder How to increase the reactivity of a substance.
  7. 제 6항에 있어서, The method of claim 6,
    상기 쿠에트-테일러 반응기에 극성용매가 투입되는 것을 특징으로 하는 층상 구조의 2차원 물질의 반응성 증가방법.A method of increasing the reactivity of a two-dimensional material of a layered structure, characterized in that the polar solvent is introduced into the Kuet-Taylor reactor.
  8. 제 7항에 있어서, The method of claim 7, wherein
    상기 극성용매는 물, 아세톤, 클로로포름, 이소프로판올, 시클로헥사논, N-메틸 피롤리돈, N,N-티메틸아세트아미드, 디메틸포름아미드, 에탄올, 메탄올, 헥산 및 톨루엔 중 적어도 하나인 것을 특징으로 하는 층상 구조의 2차원 물질의 반응성 증가방법.The polar solvent is at least one of water, acetone, chloroform, isopropanol, cyclohexanone, N-methyl pyrrolidone, N, N- dimethylacetamide, dimethylformamide, ethanol, methanol, hexane and toluene Method for increasing the reactivity of the two-dimensional material of the layered structure.
  9. 제 7항에 있어서, The method of claim 7, wherein
    상기 극성용매가 유입된 유입구와 상이한 위치의 유입구를 통해 물 또는 층간삽입물질이 투입되는 것을 특징으로 하는 층상 구조의 2차원 물질의 반응성 증가방법.Method for increasing the reactivity of the two-dimensional material of the layered structure, characterized in that the water or the intercalation material is introduced through the inlet of the position different from the inlet in which the polar solvent is introduced.
  10. 제 7항에 있어서, The method of claim 7, wherein
    상기 쿠에트-테일러 반응기에 초음파를 적용하는 것을 특징으로 하는 층상 구조의 2차원 물질의 반응성 증가방법.The method of increasing the reactivity of the two-dimensional material of the layered structure, characterized in that the ultrasonic applied to the Kuet-Taylor reactor.
  11. 제 1항에 있어서, The method of claim 1,
    상기 층상구조 내부에 와류가 형성되는 것을 특징으로 하는 층상 구조의 2차원 물질의 반응성 증가방법.Method for increasing the reactivity of the two-dimensional material of the layered structure, characterized in that the vortex is formed inside the layered structure.
  12. 제 1항에 있어서, The method of claim 1,
    상기 층상구조를 갖는 2차원 물질은, The two-dimensional material having the layered structure,
    그래파이트, 산화그래파이트, 헥사고날 보론 나이트라이드(hBN) 및 전이금속 칼코겐화합물 중 적어도 어느 하나인 층상 구조의 2차원 물질의 반응성 증가방법.A method of increasing the reactivity of a layered two-dimensional material of at least one of graphite, graphite oxide, hexagonal boron nitride (hBN) and transition metal chalcogenide.
  13. 산화그래파이트를 테일러 와류가 형성되는 쿠에트-테일러 반응기에 투입하고, 산화그래파이트의 제1층의 단부 및 상기 제1층과 인접한 제2층의 단부에 응력을 부여하여 상기 제1층 및 상기 제2층의 단부에서의 층간거리가 평균층간거리보다 크도록 하여 산화그래핀으로 박리하는 단계;를 포함하는 산화그래핀 제조방법.Graphite oxide is introduced into a Kuet-Taylor reactor in which Taylor vortex is formed, and stress is applied to the end of the first layer of graphite oxide and the end of the second layer adjacent to the first layer, thereby providing the first layer and the second layer. A step of peeling with graphene oxide so that the interlayer distance at the end of the layer is greater than the average interlayer distance; Graphene oxide manufacturing method comprising a.
  14. 제 13항에 있어서, The method of claim 13,
    상기 박리된 산화그래핀은 평균크기가 100 nm 내지 100 ㎛인 것을 특징으로 하는 산화그래핀 제조방법.The exfoliated graphene oxide is a graphene oxide production method, characterized in that the average size of 100 nm to 100 ㎛.
  15. 제 13항에 있어서, The method of claim 13,
    상기 박리된 산화그래핀은 1 내지 10층 구조인 것을 특징으로 하는 산화그래핀 제조방법.The exfoliated graphene oxide is a graphene oxide manufacturing method, characterized in that 1 to 10 layer structure.
PCT/KR2016/003931 2015-04-27 2016-04-15 Method for increasing reactivity of two-dimensional material having layered structure and method for preparing graphene oxide by means of same WO2016175484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150059020A KR20160127885A (en) 2015-04-27 2015-04-27 Method to enhance reactivity of layer-structured material and preparing method of graphene oxide using the same
KR10-2015-0059020 2015-04-27

Publications (1)

Publication Number Publication Date
WO2016175484A1 true WO2016175484A1 (en) 2016-11-03

Family

ID=57198538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003931 WO2016175484A1 (en) 2015-04-27 2016-04-15 Method for increasing reactivity of two-dimensional material having layered structure and method for preparing graphene oxide by means of same

Country Status (2)

Country Link
KR (1) KR20160127885A (en)
WO (1) WO2016175484A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3248676A1 (en) * 2016-05-23 2017-11-29 Laminar Co., Ltd. Surface treating method using a couette-taylor reactor
US10953380B1 (en) * 2019-10-21 2021-03-23 Global Graphene Group, Inc. Continuous production of 2D inorganic compound platelets

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180072952A (en) * 2016-12-22 2018-07-02 전자부품연구원 Preparing method of graphene oxide
KR20190036774A (en) * 2017-09-28 2019-04-05 전자부품연구원 Preparing method of graphene oxide functionalized with Fe3O4
KR101993365B1 (en) 2017-11-14 2019-06-26 울산과학기술원 Method of manufacturing transition metal chalcogen compound
KR102277797B1 (en) * 2018-07-27 2021-07-15 주식회사 하윤 Method for Preparing Chemically Modified Graphene
KR102263567B1 (en) 2019-05-09 2021-06-09 울산과학기술원 Doped transition metal chalcogenide structure and method of manufacturing the same
KR102196693B1 (en) 2019-05-13 2020-12-30 울산과학기술원 Transition metal chalcogen compound patterned structure, method of manufacturing the same, and electrode having the same for two-dimensional planar electronic device
KR102162010B1 (en) 2019-05-13 2020-10-06 울산과학기술원 Doped transition metal chalcogen compound patterned structure, method of manufacturing the same, and electrode having the same for two-dimensional planar electronic device
KR102371496B1 (en) * 2020-08-10 2022-03-04 강원대학교산학협력단 Method for Preparing Two-Dimensional Molybdenum Disulfide Nanosheets Using Fluid Dynamics
KR102585622B1 (en) * 2021-02-25 2023-10-10 한국과학기술원 Multi-taylor-couette device and method for manufacturing two-dimensional materials using the same
DE112022001023T5 (en) * 2021-04-08 2023-11-23 The Industry & Academic Cooperation In Chungnam National University (Iac) GRAPHITE ACTIVE MATERIAL, METHOD FOR PRODUCING THEREOF AND HIGH PERFORMANCE SECONDARY BATTERY FOR HIGH SPEED CHARGING USING THE SAME
KR102592740B1 (en) 2021-08-17 2023-10-23 동국대학교 산학협력단 Multi-functional catalyst for water electrolysis in which transition metal-chalcogen compound is electrodeposited, catalyst electrode using same, and method for manufacturing the same.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120049679A (en) * 2010-11-09 2012-05-17 한국전기연구원 Manufacturing method of single-layered reduced graphene oxide dispersion solution using shear stress and the single-layered reduced graphene oxide dispersion solution thereby
KR20140028666A (en) * 2012-08-30 2014-03-10 엘지전자 주식회사 Method for manufacturing graphene oxide and the graphene oxide manufactured by the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120049679A (en) * 2010-11-09 2012-05-17 한국전기연구원 Manufacturing method of single-layered reduced graphene oxide dispersion solution using shear stress and the single-layered reduced graphene oxide dispersion solution thereby
KR20140028666A (en) * 2012-08-30 2014-03-10 엘지전자 주식회사 Method for manufacturing graphene oxide and the graphene oxide manufactured by the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, XIANJUE ET AL.: "Vortex Fluidic Exfoliation of Graphite and Boron Nitride", CHEMICAL COMMUNICATIONS, vol. 48, no. 31, 2012, pages 3703 - 3705 *
PARK, WON KYU ET AL.: "Facile Synthesis of Graphene Oxide in a Couette-Taylor Flow Reactor", CARBON, vol. 83, 20 November 2014 (2014-11-20), pages 217 - 223, XP029115880 *
WAHID, M. HANIFF ET AL.: "Functional Multi-layer Graphene-algae Hybrid Material Formed using Vortex Fluidics", GREEN CHEMISTRY, vol. 15, no. 3, 2013, pages 650 - 655, XP055326245 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3248676A1 (en) * 2016-05-23 2017-11-29 Laminar Co., Ltd. Surface treating method using a couette-taylor reactor
US10953380B1 (en) * 2019-10-21 2021-03-23 Global Graphene Group, Inc. Continuous production of 2D inorganic compound platelets

Also Published As

Publication number Publication date
KR20160127885A (en) 2016-11-07

Similar Documents

Publication Publication Date Title
WO2016175484A1 (en) Method for increasing reactivity of two-dimensional material having layered structure and method for preparing graphene oxide by means of same
Li et al. MXenes: an emerging platform for wearable electronics and looking beyond
VahidMohammadi et al. The world of two-dimensional carbides and nitrides (MXenes)
Srivastava et al. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene
Zou et al. Single carbon fibers with a macroscopic‐thickness, 3D highly porous carbon nanotube coating
Naguib et al. Synthesis of two-dimensional materials by selective extraction
Wang et al. Current advances and future perspectives of MXene-based electromagnetic interference shielding materials
CN104058396A (en) Method for preparing large-size high-quality graphene with controllable number of layers
KR101103672B1 (en) Apparatus for continuous synthesis and purification of graphene oxide with centrifugal separation type for mass production, and method of synthesis and purification of graphene oxide using the same
CN107416818B (en) Preparation method of graphene oxide
Ma et al. Scallion-inspired graphene scaffold enabled high rate lithium metal battery
CN104973591A (en) High-quality graphene and preparation method thereof
Haleem et al. Highly porous and thermally stable tribopositive hybrid bimetallic cryogel to boost up the performance of triboelectric nanogenerators
Firestein et al. Delaminated V2C MXene nanostructures prepared via LiF salt etching for electrochemical applications
WO2011019184A2 (en) Method and apparatus for producing a nanoscale material having a graphene structure
Otgonbayar et al. Recent advances in two-dimensional MXene for supercapacitor applications: progress, challenges, and perspectives
CN103579625B (en) Carbon system/active substance complex and manufacture method thereof
WO2013154224A1 (en) Carbon nanomaterial having higher order structure by means of multiple hydrogen bonds and method for preparing same
Wang et al. A New (De) Intercalation MXene/Bi Cathode for Ultrastable Aqueous Zinc‐Ion Battery
Shan et al. Electrochemical preparation of hydroxylated boron nitride nanosheets for solid–state flexible supercapacitors using deep eutectic solvent and water mixture as electrolytes
Ma et al. Foot-scale MXene film of ultrathin electronic skin for wearable motion sensors
Jiang et al. Enhanced performance of silicon negative electrodes composited with titanium carbide based MXenes for lithium-ion batteries
Mudila et al. Enhanced electrocapacitive performance and high power density of polypyrrole/graphene oxide nanocomposites prepared at reduced temperature
Worku et al. Recent advances in MXene-based materials for high-performance metal-air batteries
KR20180072952A (en) Preparing method of graphene oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786670

Country of ref document: EP

Kind code of ref document: A1