WO2016175387A1 - Gasification method for generating synthetic gas from waste, gasification apparatus for generating synthetic gas from waste, and power generation system comprising same - Google Patents

Gasification method for generating synthetic gas from waste, gasification apparatus for generating synthetic gas from waste, and power generation system comprising same Download PDF

Info

Publication number
WO2016175387A1
WO2016175387A1 PCT/KR2015/007792 KR2015007792W WO2016175387A1 WO 2016175387 A1 WO2016175387 A1 WO 2016175387A1 KR 2015007792 W KR2015007792 W KR 2015007792W WO 2016175387 A1 WO2016175387 A1 WO 2016175387A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
pyrolysis
gasifier
pyrolysis step
syngas
Prior art date
Application number
PCT/KR2015/007792
Other languages
French (fr)
Korean (ko)
Inventor
이상주
이봉주
구민
구동진
최윤석
오국신
윤석진
Original Assignee
㈜그린사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜그린사이언스 filed Critical ㈜그린사이언스
Publication of WO2016175387A1 publication Critical patent/WO2016175387A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Definitions

  • Embodiments of the present invention relate to a gasification method for generating syngas from waste, a gasification apparatus for generating syngas from waste, and a power generation system including the same.
  • waste or biomass can be broadly divided into flammable and organic wastes, which include, for example, municipal waste, workplace, construction and agriculture waste, landfill waste, and organic waste, for example, food waste. , Sewage sludge, and livestock manure.
  • gasification is a substance in the gaseous state by heat, chemical energy conversion methods such as coal, waste, wood-based biomass (chaff, corn stalks, sawdust, wood chips, etc.)
  • chemical energy conversion methods such as coal, waste, wood-based biomass (chaff, corn stalks, sawdust, wood chips, etc.)
  • the gasification method can be largely divided into a fixed bed method, a fluidized bed method and a fractionated bed method.
  • a bottom-up gasification method in which a solid raw material is introduced from the upper side and an oxidant is supplied in a direction opposite thereto, and a direction in which the solid raw material is fed and an air feeding direction are parallel and a tar content is relatively low. It can be subdivided into a top-down gasification method which can be produced, and a countercurrent gasification method in which the introduction of an oxidant is made in terms of.
  • the fluidized bed method may be subdivided into a circulating fluidized bed gasification method, a bubble bed fluidized bed gasification method, a dual bed fluidized bed gasification method, and the like, and may be a fuel of several millimeters to several centimeters, for example, waste or fine fuel having various properties.
  • a circulating fluidized bed gasification method a bubble bed fluidized bed gasification method, a dual bed fluidized bed gasification method, and the like
  • it can be used for gasification of lower coal, which cannot be used as a furnace
  • sand is added as a heat medium and a fluidizing material that induces or promotes a reaction in the reactor, so the calorific value is low, the fluctuation is high, and fluidization is performed to operate the fluidized bed gasifier. This requires a certain pressure, a certain flow rate, a gas above a certain temperature, and thus complicated reactor design.
  • the pyrolysis gasification method emits a large amount of dioxin, which is an environmentally harmful substance.
  • the tar content is high at a low gasification temperature and the quality of the generated synthesis gas is low.
  • the burning valves easily clog and corrode and are expensive to remove.
  • the pyrolysis gasification method as described above is a waste after pre-treatment such as crushing / crushing, primary magnetic screening, hot air drying, primary wind screening, grinding, secondary magnetic screening, slaked injection, molding, cooling, vibrating screen screening, etc. Since it is supplied to the gasifier, a lot of energy and cost is used in the pretreatment step.
  • the fractionation layer method is used for gasification by putting an excess of fine fuel together with an oxidant in a high temperature combustion zone of 1600 ° C or higher, and is generally used for gasification of coal, which is easy to be finely divided. It is hard to be applied to waste which is hard to make.
  • Embodiments of the present invention are to provide a gasification method and a gasification apparatus for generating syngas from waste, which can minimize the emission of environmentally harmful substances.
  • embodiments of the present invention are to provide a gasification method and a gasifier for producing syngas from waste, in which the pretreatment of the waste is simple.
  • embodiments of the present invention to provide a power generation system using a syngas generated from waste, which can minimize the emission of environmentally harmful substances.
  • a first pyrolysis step for generating char from the waste; And a second pyrolysis step of gasifying a car produced in the first pyrolysis step and a product other than the car, wherein the temperature at which the second pyrolysis step is carried out begins to decompose at least one of dioxins and tars.
  • a gasification method for generating syngas from waste that is at or above a temperature.
  • the first pyrolysis step may be performed under a temperature range of 300 to 900 ° C and atmospheric pressure.
  • the size of the crushed tea may be 50 ⁇ m ⁇ 5 mm.
  • the first pyrolysis step may be performed in a fixed bed pyrolysis method.
  • the second pyrolysis step may be performed in a fractionation layer pyrolysis method in a temperature range of 900 ⁇ 2500 °C.
  • the second pyrolysis step may be performed by a microwave steam plasma gasifier.
  • the method of generating syngas from the waste may further include supplying at least a portion of the syngas generated in the first pyrolysis step to the first pyrolysis step.
  • the gasification method of generating a synthesis gas from the waste may further include the step of rapidly cooling the product gas generated in the second pyrolysis step.
  • the rapid cooling step may be performed at 60 ° C or less.
  • Waste supplied to the first pyrolysis step may be magnetic screening and non-ferrous metal sorting.
  • a pyrolysis gasifier for generating char from waste
  • a gasifier for producing syngas from waste comprising a char produced in the pyrolysis gasifier and a fractionation bed gasifier for gasifying other products except the char.
  • the pyrolysis gasifier may be a fixed bed type.
  • the fractionation layer gasifier may be a microwave steam plasma gasifier.
  • the fractionation layer gasifier may be integrated with the pyrolysis gasifier so that at least one of the gas and the char generated in the pyrolysis gasifier may be directly supplied to the fractionation layer gasifier.
  • a gasification apparatus for generating syngas from the waste;
  • a gas engine supplied with the synthesis gas generated by the gasifier;
  • a power generation system is provided that is connected to the gas engine and includes a generator for generating power.
  • a first pyrolysis step for generating tea from waste comprising a car produced in the first pyrolysis step, and a second pyrolysis step for gasifying a product other than the car in a fractionation bed manner.
  • the second pyrolysis step may be performed by a microwave steam plasma gasifier.
  • a first pyrolysis step for generating tea from waste And a second pyrolysis step of gasifying the car generated in the first pyrolysis step in a fractionation layer manner.
  • the gasification method for producing syngas from the waste includes a third pyrolysis step of pyrolyzing other products except for the cha, generated in the first pyrolysis step, wherein the temperature at which the third pyrolysis step is performed is dioxin and At least one of the tars may be above the temperature at which it begins to decompose.
  • FIG. 1 is a schematic diagram of a gasification apparatus for generating syngas from waste and a power generation system including the same, according to an embodiment of the present invention
  • FIG. 2 is a flow chart illustrating a gasification method for generating syngas from waste, according to another embodiment of the present invention
  • FIG. 3 is a schematic diagram of a gasifier for producing syngas from waste, in accordance with a variant of the present invention
  • Figure 6 is a graph showing the composition of the synthesis gas produced over time when the pyrolysis temperature is 300 °C in the experimental example of the present invention as a volumetric concentration (%) (vollumetric concentration (%)),
  • FIG. 10 is a graph showing the composition of the synthesis gas produced over time as a volume concentration when the pyrolysis temperature is 700 °C in the experimental example of the present invention
  • FIG. 11 is a graph showing the composition of the synthesis gas produced over time as the volume concentration when the pyrolysis temperature is 800 °C in the experimental example of the present invention
  • FIG. 12 is a graph showing the volume concentration of the generated CH 4 gas with time when the pyrolysis temperature is 300, 400, 500, 600, 700, 800 °C in the experimental example of the present invention, respectively.
  • FIG. 1 there is shown a schematic diagram of a gasifier 100 for generating syngas from waste, and a power generation system 1000 including the same, in accordance with one embodiment of the present invention.
  • the gasifier 100 for generating syngas from waste is a pyrolysis gasifier for pyrolyzing waste W to generate char. 10, and a fractionation-bed gasifier 40 for receiving and gasifying a product produced from the pyrolysis gasifier 10 and a product including tar or dioxins other than the char, for example, a pyrolysis gasifier If the cha produced in (10) is not easily crushed (ie, broken easily even in a small impact or collision), the crusher 30 for crushing the tea may be further included.
  • the powder can be crushed by a grinder or can be supplied to the fractionation layer gasifier 40 in an easily pulverized state, so that the syngas is discharged from the waste using the fractionation layer gasifier 40 without crushing the waste.
  • dioxins and tars can be decomposed in the fractionation layer gasifier 40, thereby minimizing the emission of environmentally harmful substances.
  • the pyrolysis gasifier 10 may convert waste into a cha, for example under a temperature range of 300-900 ° C. and atmospheric pressure, and may be configured, for example, with a fixed bed pyrolysis gasifier. If the pyrolysis temperature is less than 300 ° C, not only the production of tea is difficult, but also the amount of syngas generated is very small, and if the pyrolysis temperature exceeds 900 ° C, the synthesis gas is generated for an excessively short time, which makes it difficult to use in subsequent processes. .
  • Fixed bed pyrolysis gasifiers are disclosed, for example, in Korean Patent Publication Nos. 10-0537247, 10-1363270, 10-1391723, 10-1466836, 10-1452327, 10-1218976, and the like. It may have a configuration such as, but is not limited to this, it is possible to have a configuration necessary to generate a car from the waste, it can be operated under conditions such as temperature and pressure suitable for this.
  • the solid waste W is, for example, above the reactor 15 by the waste supply unit 20 that can pretreat the waste, which will be described later.
  • an oxidant such as, for example, air, oxygen or steam can be supplied, for example, in the same way as the waste W supply direction, or in the same or transverse direction.
  • the waste W supplied into the reactor 15 can be maintained in the reaction zone by, for example, a grate 16 provided below the reactor 15.
  • the temperature of the reactor 15 is initially raised by a starter burner (not shown), and during operation can be maintained by oxidizing syngas and tar produced by pyrolysis of waste with oxidant.
  • the char generated from the waste W in the reactor 15 may pass through the grate 16 and move to the outlet 17 side disposed below the grate 16.
  • a funnel-shaped discharge part 17 is formed at the lower end of the pyrolysis gasifier 10, and thus, the car generated in the reactor 15 may be discharged to the outside of the pyrolysis gasifier 10.
  • the discharge unit 17 may be provided with valves 18 and 19 to control the opening and closing of the discharge unit.
  • the grinder 30 for crushing the cha is disposed below the outlet 17 of the pyrolysis gasifier 10, for example. Can be.
  • the grinder 30 can be directly supplied with the car from the pyrolysis gasifier 10 without passing through a separate car moving means.
  • the grinder 30 may grind the tea supplied from the pyrolysis gasifier 10 to have an average particle size of, for example, 50 ⁇ m to 10 mm, or to make an average particle size of 50 ⁇ m to 5 mm.
  • the cha is pulverized in this way, it may be completely reacted in the fractionation layer gasifier 40 described later, for example, for a residence time of about 1 to 15 seconds, or about 2 to 5 seconds.
  • the finely pulverized char as described above may be supplied to the fractionation layer gasifier 40 through the char supply line 31, for example.
  • the waste is converted into a cha easily pulverized, and the pulverized waste is fed to the chafing fractionation gasifier 40 in a finely divided state or easily pulverized. Not only is it possible to gasify, but it also saves the energy used to crush waste in the pretreatment stage.
  • products other than the char generated in the pyrolysis gasifier 10, such as syngas, tar and dioxins, may be supplied to the fractionation bed gasifier 40 via, for example, the product supply line 11. have.
  • at this time, at least a portion of the syngas may be fed back into the reactor 15 via, for example, the return line 12, and by re-supplying such syngas into the reactor 15, By continuously changing the flow of the waste (W) it can increase the thermal decomposition rate or efficiency of the waste (W).
  • the fractionation layer gasifier 40 is capable of gasifying fine fuel of tens to hundreds of microns with an oxidizing agent, for example, into a high-temperature combustion zone of 1600 ° C. or higher, and is composed of, for example, a microwave steam plasma gasifier. Can be.
  • the microwave steam plasma gasifier may include, for example, a configuration disclosed in Korean Patent Publication Nos. 10-1294219, 10-1316607, 10-1347788, and 10-1294219, but is not limited thereto. It is not.
  • the fractionation layer gasifier 40 is configured as a microwave steam plasma gasifier as described above, the fractionation layer gasifier 40 is connected to an electromagnetic wave oscillator (not shown) or an electromagnetic wave oscillator that is supplied with electric power to generate electromagnetic waves.
  • a circulator for outputting electromagnetic waves
  • a tuner for inducing impedance matching by adjusting the intensity of incident and reflected waves of the electromagnetic waves output from the circulator
  • a waveguide for transmitting electromagnetic waves from the tuner to the discharge tube
  • It may include a discharge tube (not shown) for generating a plasma from the electromagnetic wave and auxiliary gas supplied from the waveguide.
  • the plasma thus generated is, for example, a steam plasma flame of about 2000 ° C. or more, and for example, syngas can be generated by directly gasifying the pulverized char supplied through the cha feed line 31 by direct heating under atmospheric pressure ( Scheme 1).
  • FIG. 4 a graph showing the change in volume concentration (%) over time of the gas produced by gasification of a differential, for example, petroleum cokes, into a microwave steam plasma gasifier (915 MHz). Is shown. As shown, the cha meets and reacts with the steam plasma to generate syngas, ie carbon monoxide and hydrogen.
  • the gasifier 100 for generating syngas from waste can generate syngas by pyrolysis gas waste while minimizing the environmentally harmful substances discharged.
  • the gasifier 100 for producing a synthesis gas from the waste is generated and discharged from the fractionation layer gasifier 40, the synthesis gas, and dioxin and tar decomposed gas, etc. It may include a cooling unit 50 for cooling the product gas comprising a.
  • the cooling unit 50 may include, for example, a configuration disclosed in Korean Utility Model Publication No. 20-0314598, and the like, but is not limited thereto, and may suppress a DE-NOVO phenomenon.
  • the cooling unit 50 can suppress the recombination of decomposed dioxins and tars by rapidly cooling the generated gas discharged from the fractionation layer gasifier 40 to a temperature of, for example, 60 ° C. or less.
  • syngas is passed through, for example, a wet scrubber (not shown), and through this process, dust and ash, which are rotten in the syngas, can be removed and purified.
  • the pulverizer 30 is directly connected to the lower end of the pyrolysis gasifier 10, but is not limited thereto. As described below, cooling the product generated from the pyrolysis gasifier 10 is performed. If necessary, that is, when the pyrolysis temperature of the pyrolysis gasifier 10 is 300 to 400 ° C., a cooling device (not shown) for cooling the product generated from the pyrolysis gasifier 10 is provided. It may be provided between the lower end and the grinder 30.
  • the gas engine 60 is driven by receiving the synthesis gas generated in the gasifier 100 for generating a synthesis gas from waste, And a generator (not shown) connected to the gas engine 60 to produce electric power.
  • the power generation system 1000 includes a steam generator (not shown) capable of converting water into high-temperature, high-pressure steam by using high-temperature combustion gas generated from the gas engine 60, and power generation using the steam. It may also include a turbine (not shown).
  • a flow diagram illustrating a gasification method for generating syngas from waste is shown.
  • a gasification method for producing syngas from waste according to another embodiment of the present invention includes a first pyrolysis step (S3) for converting the waste into a char; And a second pyrolysis step (S5) which is carried out in a temperature range for converting the car into a syngas and decomposing at least one of dioxins or tars produced in the first pyrolysis step (S3), for example
  • the tea crushing step S4-1 may be further included for crushing the tea.
  • the car produced by converting the waste in the first pyrolysis step S3 is easily crushed or crushed (S4-1) and supplied to the second pyrolysis step S5. Since it is converted into syngas, the gasification of the tea can be performed smoothly in the second pyrolysis step (S5) (see Scheme 1), and the emission of environmentally harmful substances is not only small, but also the generation of tar and dioxins can be decomposed. It is possible to gasify the waste while minimizing this.
  • the first pyrolysis step (S3) for converting the waste to char may be carried out, for example, under a temperature range of 300 to 900 ° C. and under atmospheric pressure.
  • the temperature of the reactor 15 of the pyrolysis gasifier 10 is initially increased by using a starter burner, and the waste W is introduced to synthesize the waste W as it is pyrolyzed.
  • Reactor 15 temperature can be maintained by oxidizing with gas or tar, for example, with air or oxygen.
  • the chemical reaction (exothermic reaction) that occurs at this time is as follows.
  • the first pyrolysis step S3 may be performed in a fixed bed manner in which wastes supplied to the pyrolysis gasifier 10 are accumulated therein.
  • the waste can be supplied into the reactor 15 in a large particle size or a dump state without being crushed and pyrolyzed, the pretreatment process described later can be simplified.
  • the waste steel (magnetic) in the waste is, for example For example, it may be selectively removed by an electromagnet of about 5,000 Gauss, and metal material waste (such as aluminum cans) having no magnetism may be selectively removed using, for example, an eddy current separator. Therefore, breakage or failure of the grinder 30 due to the metal can be prevented in the grinding step S4-1 of the below-mentioned car.
  • the gasification method according to another embodiment of the present invention, the shredding of the waste, vibrating screen screening for sorting the shredded waste of a predetermined particle size, and It does not require a step such as drying to remove the moisture of the waste, and can be supplied to the first pyrolysis step (S3) of the fixed bed type only by magnetic screening and non-ferrous metal screening (S2), which is considerably compared to the conventional pretreatment step. It can be simplified, and thus the effect of increasing the amount of waste that can be treated per hour and saving energy can be obtained.
  • the tea produced in the first pyrolysis step S1 may go through the tea grinding step S4-1, for example, when the tea is not easily crushed.
  • the cha is ground to have an average particle size of about 50 ⁇ m to 5 mm, so that the second pyrolysis step (S5) described below, in particular about 2 to 5 in a fractionation layer gasification method such as in a microwave steam plasma gasifier It can react completely during the residence time of seconds.
  • the cha can be easily crushed compared to the waste, thereby saving energy, cost and time compared to crushing the waste.
  • the state of the product may be a liquid of the same properties as asphalt, in this case, such a product is naturally cooled or rapidly When cooled, it can be ground in micro units.
  • a product including syngas, tar, dioxins, and the like, produced in the first pyrolysis step S1 is supplied to the second pyrolysis step S5 through, for example, the product supply line 11 (S4-). 2).
  • the synthesis gas for example, may be supplied back to the first pyrolysis step (S3) through the return line 12, by the re-supply of the synthesis gas, in the case of a fixed bed type reactor ( 15)
  • the wastes in the stream can be continuously flowed to increase the thermal decomposition efficiency or speed of the wastes.
  • the second pyrolysis step (S5) is a process for converting the tea in a easily crushed state or converting the crushed tea into syngas and decomposing at least one of tar and dioxin, for example, 900 to 2,500 ° C. Can be carried out under a temperature range of and atmospheric pressure. Since dioxin starts to decompose from 850 ° C. and tar also begins to decompose from 850 ° C., dioxin and tar can be decomposed and removed in this temperature range.
  • the second pyrolysis step (S5) can also be carried out in a fractionated bed manner, for example in a microwave steam plasma gasifier, in which case the plasma flame can be, for example, 2000 ° C. or higher, so that dioxin Staying for a few seconds can break down and tar can break down.
  • the micronized tea may react directly with at least one of an oxidizing agent, for example, oxygen, air, and steam, and by controlling the amount of the oxidizing agent, all reactions may be completed within a maximum of 5 seconds, and the amount of dioxins generated Can be significantly reduced.
  • an oxidizing agent for example, oxygen, air, and steam
  • the second pyrolysis step (S5) can reduce the amount of dioxins generated, even if dioxin is generated is decomposed by the high temperature, and also the tar and dioxins produced in the first pyrolysis step (S3) Since it can be decomposed by the high temperature of the second pyrolysis step (S5), the waste gasification method according to the present invention can gasify the waste while minimizing the emission of environmentally harmful substances.
  • the product gas including the syngas generated in the second pyrolysis step S5 may undergo a rapid cooling step S6, whereby the decomposed dioxins and tar contained in the product gas recombine. Can be suppressed.
  • the rapidly cooled product gas may go through a purification step S7 such as, for example, passing through a wet scrubber, in which dust or ash in the product gas is removed to be located downstream, It is possible to reduce the failure, shorten the life of the gas engine 60 using the synthesis gas.
  • a purification step S7 such as, for example, passing through a wet scrubber, in which dust or ash in the product gas is removed to be located downstream
  • the purified synthesis gas is supplied to the gas engine 60, for example, to drive the gas engine 60, so that electricity can be generated in the generator connected to the gas engine 60, and the gas engine ( By generating a steam at a high temperature generated in 60) it is possible to generate electricity by rotating a turbine (not shown) (S8).
  • the car produced in the pyrolysis gasifier 10, and the product except the cha are not limited thereto.
  • at least one of the products other than the tea may be integrated with each other so that the products may be directly supplied without passing through the tea supply line 31 or the product supply line 11.
  • FIG. 3 there is shown a diagram of a gasifier 100a for generating syngas from waste, according to one variation of the present invention.
  • the following description will focus on differences from the gasifier 100 for generating syngas from waste, according to an embodiment of the present invention.
  • the gasifier 100a for generating syngas from waste is connected to a lower end through a connection part 34 on an upper side of the pyrolysis gasifier 10a.
  • a storage tank 33 may be provided on the cha supply line 31 for supplying the fractionated bed gasifier 40a and supplying the pulverized car to the fractionated bed gasifier 40a.
  • Synthetic gas exiting the discharge line 41 of the fractionation layer gasifier 40a may be supplied to the cooling unit 50 as illustrated in FIG. 1.
  • waste may be supplied into the reactor 15 of the pyrolysis gasifier 10a through the waste supply 20 as shown in FIG.
  • the synthesis gas (G) produced by the pyrolysis gasifier 10, such as dioxin and tar, is not supplied through the separate product supply line 11, but through the connection part 34. It can be supplied directly to the lower portion of the fractionation layer gasifier 40a, so that the configuration can be simplified.
  • the storage tank 33 is arrange
  • the integration of the pyrolysis gasifier 10a and the fractionation layer gasifier 40 is not limited thereto, and the fractionation layer gasifier 40 may be connected to, for example, a lower end or a side surface of the pyrolysis gasifier 10a. Can be.
  • the crusher 30 is not necessarily disposed between the pyrolysis gasifier 10a and the fractionation layer gasifier 40. That is, the char discharged from the pyrolysis gasifier 10a may be directly supplied to the fractionation layer gasifier 40 without passing through the grinder 30.
  • a product containing dioxins, tars, and the like produced in the first pyrolysis step S3 or the pyrolysis gasifier 10 Although described as being supplied to the second pyrolysis step (S5) or fractionation bed gasifier (40; 40a), it is not limited thereto, and is only supplied to the second pyrolysis step (S5) or fractionation bed gasifier (40; 40a) It is also possible to supply other products, except for the char, to be supplied to a separate pyrolysis step or a pyrolysis device to decompose dioxins and tars contained in the product.
  • 6 to 11 are graphs showing the volume of the composition of the synthesis gas generated according to the reaction time when the pyrolysis temperature is 300, 400, 500, 600, 700, and 800 ° C., respectively.
  • FIG. 12 is a graph showing the volume concentration (%) of CH 4 according to temperature according to time in the above-described experiment.
  • CH 4 is generated at a constant level for a certain time, and thus, stably. Supply to gas engines is possible.
  • FIG. 12 it can be seen that, even when the pyrolysis temperature is 900 ° C., the generation of the car and the generation of syngas are possible through the change in the graph form as the pyrolysis temperature is changed from a low temperature to a high temperature.

Abstract

The purpose of the present invention is to provide a gasification method and gasification apparatus for generating synthetic gas from waste, capable of minimizing the discharge of environmentally hazardous substances. According to the present invention, provided is a gasification method comprising: a first thermal decomposition step for generating char from waste; and a second thermal decomposition step for gasifying the char generated in the first thermal decomposition and the other products excluding the char, wherein the temperature for performing the second thermal decomposition step is higher than a temperature at which at least one of dioxin and tar starts to decompose.

Description

폐기물로부터 합성가스를 생성하는 가스화 방법, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치 및 이를 포함하는 발전 시스템Gasification method for producing syngas from waste, gasification apparatus for generating syngas from waste, and power generation system including the same
본 발명의 실시예들은 폐기물로부터 합성가스를 생성하는 가스화 방법, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치, 및 이를 포함하는 발전 시스템에 관한 것이다.Embodiments of the present invention relate to a gasification method for generating syngas from waste, a gasification apparatus for generating syngas from waste, and a power generation system including the same.
일반적으로 폐기물 또는 바이오매스는 크게 가연성 폐기물과 유기성 폐기물로 나눌 수 있으며, 가연성 폐기물은, 예를 들어 생활 폐기물, 사업장, 건설 및 농림 폐기물, 매립지 폐기물 등이 있으며, 유기성 폐기물은, 예를 들어 음식물 폐기물, 하폐수 슬러지, 축산 분뇨 등이 있다.In general, waste or biomass can be broadly divided into flammable and organic wastes, which include, for example, municipal waste, workplace, construction and agriculture waste, landfill waste, and organic waste, for example, food waste. , Sewage sludge, and livestock manure.
한편, 가스화(또는 열분해)는 고체 상태의 물질, 예를 들어 석탄, 폐기물, 목질계 바이오매스(왕겨, 옥수수대, 톱밥, 우드칩 등) 등을 열, 화학적 에너지 전환방법에 의하여 기체 상태의 물질인 합성가스(syngas)의 형태로 생산하는 것으로서, 가스화하는 방법은 크게 고정층 방식, 유동층 방식 및 분류층 방식으로 구분될 수 있다.On the other hand, gasification (or pyrolysis) is a substance in the gaseous state by heat, chemical energy conversion methods such as coal, waste, wood-based biomass (chaff, corn stalks, sawdust, wood chips, etc.) As a form of phosphorus syngas, the gasification method can be largely divided into a fixed bed method, a fluidized bed method and a fractionated bed method.
이 중에서, 고정층 방식은 고체 원료가 상측에서 투입되고, 산화제는 이와 대향되는 방향으로 공급되는 상향식 가스화 방법, 고체 원료의 투입 방향과 공기의 투입 방향이 평행을 이루며, 타르 함량이 비교적 적은 합성가스를 생성할 수 있는 하향식 가스화 방법, 및 산화제의 투입이 측면에서 이루어지는 향류식 가스화 방법으로 세분화될 수 있다.Among them, in the fixed bed method, a bottom-up gasification method in which a solid raw material is introduced from the upper side and an oxidant is supplied in a direction opposite thereto, and a direction in which the solid raw material is fed and an air feeding direction are parallel and a tar content is relatively low. It can be subdivided into a top-down gasification method which can be produced, and a countercurrent gasification method in which the introduction of an oxidant is made in terms of.
다음으로, 유동층 방식은 순환유동층 가스화 방법, 버블베드 유동층 가스화 방법, 및 듀얼베드 유동층 가스화 방법 등으로 세분화될 수 있으며, 수 밀리에서 수 센티미터 크기의 연료, 예를 들어 다양한 성상을 가지는 폐기물 또는 미분연료로 사용이 불가능한 저급석탄의 가스화에 활용될 수 있으나, 반응기 내에서 반응을 유도또는 촉진하는 열매체 및 유동화 물질로 모래 등을 첨가하므로, 발열량이 낮고, 변동이 심하며, 유동층 가스화기 운전을 위해서는 유동화를 위해 일정 압력, 일정 유량, 일정 온도 이상의 기체가 요구되고, 따라서 반응기 설계가 굉장이 복잡해 진다.Next, the fluidized bed method may be subdivided into a circulating fluidized bed gasification method, a bubble bed fluidized bed gasification method, a dual bed fluidized bed gasification method, and the like, and may be a fuel of several millimeters to several centimeters, for example, waste or fine fuel having various properties. Although it can be used for gasification of lower coal, which cannot be used as a furnace, sand is added as a heat medium and a fluidizing material that induces or promotes a reaction in the reactor, so the calorific value is low, the fluctuation is high, and fluidization is performed to operate the fluidized bed gasifier. This requires a certain pressure, a certain flow rate, a gas above a certain temperature, and thus complicated reactor design.
그런데, 이와 같은 열분해 가스화 방법은 환경유해 물질인 다이옥신을 다량 배출하며, 특히 고정층 가스화 방법의 경우에는 낮은 가스화 온도로 타르 함량이 높고, 생성되는 합성가스의 품질이 낮다는 단점이 있다. 타르는 밸브, 파이프, 및 보조 장비를 쉽게 막히게 하고 부식시키며, 제거 비용이 많이 든다.However, the pyrolysis gasification method emits a large amount of dioxin, which is an environmentally harmful substance. In particular, in the case of the fixed-bed gasification method, there is a disadvantage in that the tar content is high at a low gasification temperature and the quality of the generated synthesis gas is low. The burning valves easily clog and corrode and are expensive to remove.
또한, 상술된 바와 같은 열분해 가스화 방법은 폐기물을 파봉/파쇄, 1차 자력선별, 열풍 건조, 1차 풍력 선별, 분쇄, 2차 자력선별, 소석회투입, 성형, 냉각, 진동 스크린 선별 등의 전처리 후 가스화기에 공급하고 있어, 전처리 단계에 많은 에너지와 비용이 사용된다.In addition, the pyrolysis gasification method as described above is a waste after pre-treatment such as crushing / crushing, primary magnetic screening, hot air drying, primary wind screening, grinding, secondary magnetic screening, slaked injection, molding, cooling, vibrating screen screening, etc. Since it is supplied to the gasifier, a lot of energy and cost is used in the pretreatment step.
한편, 분류층 방식은 1600℃ 이상의 고온 연소영역에 산화제와 함께 과량의 미분연료를 투입하여 가스화를 수행하며, 일반적으로 미분화가 쉬운 석탄의 가스화에 주로 활용되고 있으나, 수십~백 마이크론 단위의 미분연료로 만들기 어려운 폐기물에는 적용되기 어렵다.On the other hand, the fractionation layer method is used for gasification by putting an excess of fine fuel together with an oxidant in a high temperature combustion zone of 1600 ° C or higher, and is generally used for gasification of coal, which is easy to be finely divided. It is hard to be applied to waste which is hard to make.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
대한민국 등록특허공보 제10-1391723호 (2014. 02. 28.)Republic of Korea Patent Publication No. 10-1391723 (2014. 02. 28.)
대한민국 등록특허공보 제10-1428160호 (2014. 08. 01.)Republic of Korea Patent Publication No. 10-1428160 (2014. 08. 01.)
대한민국 등록특허공보 제10-1452327호 (2014. 10. 13.)Republic of Korea Patent Publication No. 10-1452327 (2014. 10. 13.)
대한민국 등록특허공보 제10-0537247호 (2005. 12. 09.)Republic of Korea Patent Publication No. 10-0537247 (2005. 12. 09.)
대한민국 등록특허공보 제10-1218976호 (2012. 12. 29.)Republic of Korea Patent Publication No. 10-1218976 (2012. 12. 29.)
대한민국 등록특허공보 제10-1466836호 (2014. 11. 24.)Republic of Korea Patent Publication No. 10-1466836 (2014. 11. 24.)
대한민국 등록특허공보 제10-1363270호 (2014. 02. 07.)Republic of Korea Patent Publication No. 10-1363270 (2014. 02. 07.)
대한민국 등록특허공보 제10-1391723호 (2014. 04. 28.)Republic of Korea Patent Publication No. 10-1391723 (2014. 04. 28.)
대한민국 등록특허공보 제10-1041592호 (2011. 06. 08.)Republic of Korea Patent Publication No. 10-1041592 (2011. 06. 08.)
대한민국 등록특허공보 제10-1294219호 (2013. 08. 01.)Republic of Korea Patent Publication No. 10-1294219 (2013. 08. 01.)
대한민국 등록특허공보 제10-1347788호 (2013. 12. 27.)Republic of Korea Patent Publication No. 10-1347788 (2013. 12. 27.)
대한민국 등록실용신안공보 제20-0314598호 (2003. 05. 27.)Republic of Korea Utility Model Registration Publication No. 20-0314598 (2003. 05. 27.)
본 발명의 실시예들은, 환경유해 물질의 배출을 최소화할 수 있는, 폐기물로부터 합성가스를 생성하기 위한 가스화 방법 및 가스화 장치를 제공하기 위한 것이다.Embodiments of the present invention are to provide a gasification method and a gasification apparatus for generating syngas from waste, which can minimize the emission of environmentally harmful substances.
또한, 본 발명의 실시예들은, 폐기물을 전처리하는 단계가 간단한, 폐기물로부터 합성가스를 생성하기 위한 가스화 방법 및 가스화 장치를 제공하기 위한 것이다.In addition, embodiments of the present invention are to provide a gasification method and a gasifier for producing syngas from waste, in which the pretreatment of the waste is simple.
또한, 본 발명의 실시예들은, 환경유해 물질의 배출을 최소화할 수 있는, 폐기물로부터 생성된 합성가스를 사용하는 발전 시스템을 제공하기 위한 것이다.In addition, embodiments of the present invention to provide a power generation system using a syngas generated from waste, which can minimize the emission of environmentally harmful substances.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 한정되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 측면에 따르면, 폐기물로부터 챠(char)를 생성하기 위한 제 1 열분해 단계; 및 상기 제 1 열분해 단계에서 생성되는 챠, 및 상기 챠를 제외한 다른 생성물을 가스화하는 제 2 열분해 단계를 포함하며, 상기 제 2 열분해 단계가 실시되는 온도는 다이옥신 및 타르 중 적어도 어느 하나가 분해되기 시작하는 온도 이상인, 폐기물로부터 합성가스를 생성하는 가스화 방법이 제공된다.According to one aspect of the invention, a first pyrolysis step for generating char from the waste; And a second pyrolysis step of gasifying a car produced in the first pyrolysis step and a product other than the car, wherein the temperature at which the second pyrolysis step is carried out begins to decompose at least one of dioxins and tars. Provided is a gasification method for generating syngas from waste that is at or above a temperature.
상기 제 1 열분해 단계는 300 ~ 900 ℃의 온도 범위 및 대기압 하에서 행해질 수 있다.The first pyrolysis step may be performed under a temperature range of 300 to 900 ° C and atmospheric pressure.
상기 폐기물로부터 합성가스를 생성하는 가스화 방법은, 상기 제 1 열분해 단계가 300 ~ 400 ℃의 온도 범위에서 행해지는 경우, 상기 제 1 열분해 단계에서 생성되는 챠를 냉각하는 단계; 및 상기 챠를 분쇄하는 분쇄 단계를 더 포함할 수 있다.The gasification method for generating a synthesis gas from the waste, the step of cooling the car produced in the first pyrolysis step, when the first pyrolysis step is performed in a temperature range of 300 ~ 400 ℃; And a grinding step of grinding the tea.
상기 분쇄된 챠의 사이즈는 50 ㎛ ~ 5 mm일 수 있다.The size of the crushed tea may be 50 ㎛ ~ 5 mm.
상기 제 1 열분해 단계는 고정층 열분해 방식으로 행해질 수 있다.The first pyrolysis step may be performed in a fixed bed pyrolysis method.
상기 제 2 열분해 단계는 900 ~ 2500 ℃의 온도 범위에서 분류층 열분해 방식으로 행해질 수 있다.The second pyrolysis step may be performed in a fractionation layer pyrolysis method in a temperature range of 900 ~ 2500 ℃.
상기 제 2 열분해 단계는 마이크로웨이브 스팀 플라즈마 가스화기에 의해서 행해질 수 있다. The second pyrolysis step may be performed by a microwave steam plasma gasifier.
상기 폐기물로부터 합성가스를 생성하는 방법은, 상기 제 1 열분해 단계에서 생성된 합성가스의 적어도 일부를 다시 상기 제 1 열분해 단계로 공급하는 단계를 더 포함할 수 있다. The method of generating syngas from the waste may further include supplying at least a portion of the syngas generated in the first pyrolysis step to the first pyrolysis step.
상기 폐기물로부터 합성가스를 생성하는 가스화 방법은, 상기 제 2 열분해 단계에서 생성되는 생성 가스를 급속 냉각하는 단계를 더 포함할 수 있다.The gasification method of generating a synthesis gas from the waste may further include the step of rapidly cooling the product gas generated in the second pyrolysis step.
상기 급속 냉각 단계는 60 ℃이하에서 행해질 수 있다. The rapid cooling step may be performed at 60 ° C or less.
상기 제 1 열분해 단계에 공급되는 폐기물은 자력선별 및 비철 금속 선별될 수 있다. Waste supplied to the first pyrolysis step may be magnetic screening and non-ferrous metal sorting.
본 발명의 다른 측면에 따르면, 폐기물로부터 챠를 생성하기 위한 열분해 가스화기; 상기 열분해 가스화기에서 생성된 챠, 및 상기 챠를 제외한 다른 생성물을 가스화하기 위한 분류층 가스화기를 포함하는, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치가 제공된다.According to another aspect of the invention, there is provided a pyrolysis gasifier for generating char from waste; A gasifier for producing syngas from waste is provided, comprising a char produced in the pyrolysis gasifier and a fractionation bed gasifier for gasifying other products except the char.
상기 열분해 가스화기는 고정층 방식일 수 있다.The pyrolysis gasifier may be a fixed bed type.
상기 분류층 가스화기는 마이크로웨이브 스팀 플라즈마 가스화기일 수 있다.The fractionation layer gasifier may be a microwave steam plasma gasifier.
상기 분류층 가스화기는, 상기 열분해 가스화기에서 발생되는 가스 및 챠 중 적어도 어느 하나가 상기 분류층 가스화기에 직접 공급될 수 있도록, 상기 열분해 가스화기와 일체화될 수 있다.The fractionation layer gasifier may be integrated with the pyrolysis gasifier so that at least one of the gas and the char generated in the pyrolysis gasifier may be directly supplied to the fractionation layer gasifier.
본 발명의 또 다른 측면에 따르면, 상기 폐기물로부터 합성가스를 생성하기 위한 가스화 장치; 상기 가스화 장치에서 생성되는 합성가스를 공급받는 가스엔진; 상기 가스엔진에 연결되고, 발전하기 위한 제너레이터를 포함하는, 발전 시스템이 제공된다.According to another aspect of the present invention, there is provided a gasification apparatus for generating syngas from the waste; A gas engine supplied with the synthesis gas generated by the gasifier; A power generation system is provided that is connected to the gas engine and includes a generator for generating power.
본 발명의 또 다른 측면에 따르면, 폐기물로부터 챠를 생성하기 위한 제 1 열분해 단계; 상기 제 1 열분해 단계에서 생성된 챠, 및 상기 챠를 제외한 생성물을 분류층 방식으로 가스화하는 제 2 열분해 단계를 포함하는, 폐기물로부터 합성가스를 생성하는 가스화 방법이 제공된다.According to another aspect of the invention, a first pyrolysis step for generating tea from waste; A gasification method for producing syngas from waste is provided, comprising a car produced in the first pyrolysis step, and a second pyrolysis step for gasifying a product other than the car in a fractionation bed manner.
상기 제 2 열분해 단계는 마이크로웨이브 스팀 플라즈마 가스화기에 의해서 행해질 수 있다.The second pyrolysis step may be performed by a microwave steam plasma gasifier.
본 발명의 또 다른 측면에 따르면, 폐기물로부터 챠를 생성하기 위한 제 1 열분해 단계; 및 상기 제 1 열분해 단계에서 생성된 챠를 분류층 방식으로 가스화하는 제 2 열분해 단계를 포함하는, 폐기물로부터 합성가스를 생성하는 가스화 방법이 제공된다.According to another aspect of the invention, a first pyrolysis step for generating tea from waste; And a second pyrolysis step of gasifying the car generated in the first pyrolysis step in a fractionation layer manner.
상기 폐기물로부터 합성가스를 생성하는 가스화 방법은, 상기 제 1 열분해 단계에서 생성된, 상기 챠를 제외한 다른 생성물을 열분해하는 제 3 열분해 단계를 포함하며, 상기 제 3 열분해 단계가 실시되는 온도는 다이옥신 및 타르 중 적어도 어느 하나가 분해되기 시작하는 온도 이상일 수 있다.The gasification method for producing syngas from the waste includes a third pyrolysis step of pyrolyzing other products except for the cha, generated in the first pyrolysis step, wherein the temperature at which the third pyrolysis step is performed is dioxin and At least one of the tars may be above the temperature at which it begins to decompose.
도 1은 본 발명의 일 실시예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치 및 이를 포함하는 발전 시스템의 개략적인 다이어그램,1 is a schematic diagram of a gasification apparatus for generating syngas from waste and a power generation system including the same, according to an embodiment of the present invention;
도 2는 본 발명의 다른 실시예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 방법을 설명하는 순서도,2 is a flow chart illustrating a gasification method for generating syngas from waste, according to another embodiment of the present invention;
도 3은 본 발명의 일 변형예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치의 개략적인 다이어그램,3 is a schematic diagram of a gasifier for producing syngas from waste, in accordance with a variant of the present invention;
도 4는 챠가 마이크로웨이브 스팀 플라즈마 장치에서 가스화될 때 생성되는 가스의 용적 농도를 시간에 따라 나타내는 그래프,4 is a graph showing the volume concentration of the gas produced over time when the char is gasified in a microwave steam plasma apparatus;
도 5는 본 발명의 실험예에서 사용된 쓰레기 시험편의 성상 및 성분에 관한 표,5 is a table relating to the properties and components of the waste test piece used in the experimental example of the present invention,
도 6은 본 발명의 실험예에서 열분해 온도가 300 ℃ 일 때, 시간에 따라 생성되는 합성가스의 조성을 용적 농도(volumetric concentration(%))로 나타낸 그래프,Figure 6 is a graph showing the composition of the synthesis gas produced over time when the pyrolysis temperature is 300 ℃ in the experimental example of the present invention as a volumetric concentration (%) (vollumetric concentration (%)),
도 7은 본 발명의 실험예에서 열분해 온도가 400 ℃ 일 때, 시간에 따라 생성되는 합성가스의 조성을 용적 농도로 나타낸 그래프,7 is a graph showing the composition of the synthesis gas produced according to time when the pyrolysis temperature is 400 ℃ in the experimental example of the present invention in volumetric concentration,
도 8은 본 발명의 실험예에서 열분해 온도가 500 ℃ 일 때, 시간에 따라 생성되는 합성가스의 조성을 용적 농도로 나타낸 그래프,8 is a graph showing the composition of the synthesis gas produced according to time when the pyrolysis temperature is 500 ℃ in the experimental example of the present invention in volumetric concentration,
도 9은 본 발명의 실험예에서 열분해 온도가 600 ℃ 일 때, 시간에 따라 생성되는 합성가스의 조성을 용적 농도로 나타낸 그래프,9 is a graph showing the composition of the synthesis gas produced according to time when the pyrolysis temperature is 600 ℃ in the experimental example of the present invention in volumetric concentration,
도 10은 본 발명의 실험예에서 열분해 온도가 700 ℃ 일 때, 시간에 따라 생성되는 합성가스의 조성을 용적 농도로 나타낸 그래프,10 is a graph showing the composition of the synthesis gas produced over time as a volume concentration when the pyrolysis temperature is 700 ℃ in the experimental example of the present invention,
도 11은 본 발명의 실험예에서 열분해 온도가 800 ℃ 일 때, 시간에 따라 생성되는 합성가스의 조성을 용적 농도로 나타낸 그래프,11 is a graph showing the composition of the synthesis gas produced over time as the volume concentration when the pyrolysis temperature is 800 ℃ in the experimental example of the present invention,
도 12는 본 발명의 실험예에서 열분해 온도가 각각 300, 400, 500, 600, 700, 800 ℃ 일 때, 생성되는 CH4 가스의 용적 농도를 시간에 따라 나타낸 그래프.12 is a graph showing the volume concentration of the generated CH 4 gas with time when the pyrolysis temperature is 300, 400, 500, 600, 700, 800 ℃ in the experimental example of the present invention, respectively.
이하, 도면을 참조하여 본 발명의 구체적인 실시형태를 설명하기로 한다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, this is only an example and the present invention is not limited thereto.
본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 등에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
본 발명의 기술적 사상은 청구범위에 의해 결정되며, 이하의 실시예는 본 발명의 기술적 사상을 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 효율적으로 설명하기 위한 일 수단일 뿐이다.The technical spirit of the present invention is determined by the claims, and the following embodiments are merely means for efficiently explaining the technical spirit of the present invention to those skilled in the art.
도 1을 참조하면, 본 발명의 일 실시예에 따른, 폐기물로부터 합성가스(syngas)를 생성하기 위한 가스화 장치(100), 및 이를 포함하는 발전 시스템(1000)의 개략적인 다이어그램이 도시된다.Referring to FIG. 1, there is shown a schematic diagram of a gasifier 100 for generating syngas from waste, and a power generation system 1000 including the same, in accordance with one embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치(100)는, 폐기물(W)을 열분해하여 챠(char)를 생성하기 위한 열분해 가스화기(10), 및 열분해 가스화기(10)에서 생성되는 챠, 및 챠 이외의 타르 또는 다이옥신 등을 포함하는 생성물을 공급받아 가스화하는 분류층 가스화기(40)를 포함하며, 예를 들어 열분해 가스화기(10)에서 생성되는 챠가 용이하게 분쇄되는 상태(즉, 작은 충격이나 충돌에도 쉽게 부스러지는 상태)가 아닌 경우에는, 챠를 분쇄하기 위한 분쇄기(30)를 더 포함할 수 있다.As shown in FIG. 1, the gasifier 100 for generating syngas from waste according to an embodiment of the present invention is a pyrolysis gasifier for pyrolyzing waste W to generate char. 10, and a fractionation-bed gasifier 40 for receiving and gasifying a product produced from the pyrolysis gasifier 10 and a product including tar or dioxins other than the char, for example, a pyrolysis gasifier If the cha produced in (10) is not easily crushed (ie, broken easily even in a small impact or collision), the crusher 30 for crushing the tea may be further included.
상술된 바와 같은 구성에 따르면, 본 발명의 일 실시예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치(100)는, 열분해 가스화기(10)에서 폐기물(W)을 열분해 가스화하여 챠를 생성하고, 이 챠를 분쇄기로 분쇄하거나, 또는 용이하게 분쇄되는 상태에서 분류층 가스화기(40)에 공급할 수 있으므로, 폐기물을 분쇄하지 않고서도 분류층 가스화기(40)를 이용하여 폐기물로부터 합성가스를 생산할 수 있을 뿐만 아니라, 분류층 가스화기(40)에서 다이옥신 및 타르가 분해될 수 있어, 환경유해 물질의 배출을 최소화할 수 있다.According to the configuration as described above, according to an embodiment of the present invention, the gasifier 100 for producing syngas from the waste, pyrolysis gasifier 10 in the pyrolysis gasifier 10 to generate a car The powder can be crushed by a grinder or can be supplied to the fractionation layer gasifier 40 in an easily pulverized state, so that the syngas is discharged from the waste using the fractionation layer gasifier 40 without crushing the waste. In addition to production, dioxins and tars can be decomposed in the fractionation layer gasifier 40, thereby minimizing the emission of environmentally harmful substances.
열분해 가스화기(10)는, 예를 들어 300 ~ 900 ℃의 온도 범위 및 대기압 하에서, 폐기물을 챠로 변환시킬 수 있으며, 예를 들어 고정층 열분해 가스화기로 구성될 수 있다. 열분해 온도가 300 ℃ 미만이면, 챠의 생성이 어려울 뿐만 아니라, 합성가스의 생성량도 극히 소량이고, 열분해 온도가 900 ℃를 넘으면, 합성가스가 지나치게 짧은 시간 동안 발생하여 후속 공정에서 이용에 곤란한 점이 있다. 고정층 열분해 가스화기는, 예를 들어 대한민국 등록특허공보 제10-0537247호, 제10-1363270호, 제10-1391723호, 제10-1466836호, 제10-1452327호, 및 제10-1218976호 등에 개시되는 구성 등을 가질 수 있으나, 이에 한정되는 것은 아니며, 폐기물로부터 챠를 생성하는 데 필요한 구성을 갖고, 이에 적합한 온도 및 압력 등의 조건으로 운전될 수 있으면 가능하다.The pyrolysis gasifier 10 may convert waste into a cha, for example under a temperature range of 300-900 ° C. and atmospheric pressure, and may be configured, for example, with a fixed bed pyrolysis gasifier. If the pyrolysis temperature is less than 300 ° C, not only the production of tea is difficult, but also the amount of syngas generated is very small, and if the pyrolysis temperature exceeds 900 ° C, the synthesis gas is generated for an excessively short time, which makes it difficult to use in subsequent processes. . Fixed bed pyrolysis gasifiers are disclosed, for example, in Korean Patent Publication Nos. 10-0537247, 10-1363270, 10-1391723, 10-1466836, 10-1452327, 10-1218976, and the like. It may have a configuration such as, but is not limited to this, it is possible to have a configuration necessary to generate a car from the waste, it can be operated under conditions such as temperature and pressure suitable for this.
이와 같은 열분해 가스화기(10)의 반응기(15) 내에는, 후술되는, 폐기물의 전처리를 할 수 있는 폐기물 공급부(20)에 의해서, 예를 들어 반응기(15)의 상측에서 고체 폐기물(W)이 공급될 수 있으며, 산화제 공급 라인(14)을 통해서, 예를 들어 공기, 산소 또는 스팀과 같은 산화제가, 예를 들어 폐기물(W) 공급 방향과 반대로, 또는 동일하게 또는 횡방향 등으로 공급될 수 있다. 반응기(15) 내에 공급된 폐기물(W)은, 예를 들어 반응기(15)의 하측에 설치되어 있는 그레이트(16; grate)에 의해서 그 반응영역이 유지될 수 있다. 반응기(15)의 온도는 초기에 기동 버너(도시 안됨)에 의해서 상승되며, 운전 중에는 폐기물이 열분해되어 생성되는 합성가스 및 타르를 산화제로 산화시켜 유지될 수 있다. 반응기(15) 내에서 폐기물(W)로부터 생성되는 챠는 그레이트(16)를 통과해서 그레이트(16)의 하측에 배치되는 배출부(17) 측으로 이동될 수 있다.In the reactor 15 of such a pyrolysis gasifier 10, the solid waste W is, for example, above the reactor 15 by the waste supply unit 20 that can pretreat the waste, which will be described later. Through the oxidant supply line 14, an oxidant such as, for example, air, oxygen or steam can be supplied, for example, in the same way as the waste W supply direction, or in the same or transverse direction. have. The waste W supplied into the reactor 15 can be maintained in the reaction zone by, for example, a grate 16 provided below the reactor 15. The temperature of the reactor 15 is initially raised by a starter burner (not shown), and during operation can be maintained by oxidizing syngas and tar produced by pyrolysis of waste with oxidant. The char generated from the waste W in the reactor 15 may pass through the grate 16 and move to the outlet 17 side disposed below the grate 16.
열분해 가스화기(10)의 하단부에는 깔때기 형상의 배출부(17)가 형성되어 있어, 이를 통해서 반응기(15)에서 생성된 챠가 열분해 가스화기(10)의 외부로 배출될 수 있다. 또한, 배출부(17)에는 배출부의 개폐를 조절할 수 있는 밸브(18, 19)가 배치될 수 있다.A funnel-shaped discharge part 17 is formed at the lower end of the pyrolysis gasifier 10, and thus, the car generated in the reactor 15 may be discharged to the outside of the pyrolysis gasifier 10. In addition, the discharge unit 17 may be provided with valves 18 and 19 to control the opening and closing of the discharge unit.
열분해 가스화기(10)에서 생성되는 챠가 용이하게 분쇄되는 상태가 아닌 경우, 챠를 분쇄하기 위한 분쇄기(30)는, 예를 들어 열분해 가스화기(10)의 배출부(17)의 하측에 배치될 수 있다. 이와 같은 배치에 의해서, 분쇄기(30)는 별도의 챠 이동 수단을 거치지 않고, 바로 열분해 가스화기(10)로부터 챠를 공급받을 수 있다. 분쇄기(30)는 열분해 가스화기(10)로부터 공급받은 챠를 평균 입자 사이즈가 예를 들어 50 ㎛ ~ 10 mm 가 되도록 분쇄하거나, 또는, 평균 입자 사이즈가 50 ㎛ ~ 5 mm 가 되도록 분쇄할 수 있으며, 챠가 이와 같이 분쇄되는 경우, 후술되는 분류층 가스화기(40) 내에서, 예를 들어 1 ~ 15초, 또는 2 ~ 5초 정도의 체류 시간 동안에 완전히 반응될 수 있다. 이와 같이 미분쇄된 챠는, 예를 들어 챠 공급 라인(31)을 통해서 분류층 가스화기(40)에 공급될 수 있다.When the cha produced in the pyrolysis gasifier 10 is not easily crushed, the grinder 30 for crushing the cha is disposed below the outlet 17 of the pyrolysis gasifier 10, for example. Can be. By such an arrangement, the grinder 30 can be directly supplied with the car from the pyrolysis gasifier 10 without passing through a separate car moving means. The grinder 30 may grind the tea supplied from the pyrolysis gasifier 10 to have an average particle size of, for example, 50 μm to 10 mm, or to make an average particle size of 50 μm to 5 mm. In the case where the cha is pulverized in this way, it may be completely reacted in the fractionation layer gasifier 40 described later, for example, for a residence time of about 1 to 15 seconds, or about 2 to 5 seconds. The finely pulverized char as described above may be supplied to the fractionation layer gasifier 40 through the char supply line 31, for example.
이와 같이, 폐기물을 분쇄가 용이한 챠로 변환시키고, 이를 분쇄하여 미분 상태로, 또는 용이하게 분쇄되는 상태의 챠로 분류층 가스화기(40)에 공급하기 때문에, 분류층 가스화기(40)에 의한 폐기물의 가스화가 가능할 뿐만 아니라, 전처리 단계에서 폐기물을 분쇄하기 위해 사용되는 에너지를 절약할 수 있다.In this way, the waste is converted into a cha easily pulverized, and the pulverized waste is fed to the chafing fractionation gasifier 40 in a finely divided state or easily pulverized. Not only is it possible to gasify, but it also saves the energy used to crush waste in the pretreatment stage.
또한, 열분해 가스화기(10)에서 생성되는 챠 이외의 생성물, 예를 들어 합성가스, 타르 및 다이옥신 등은, 예를 들어 생성물 공급 라인(11)을 통해서 분류층 가스화기(40)에 공급될 수 있다. 이때, 합성가스의 적어도 일부는, 예를 들어 리턴 라인(12)을 통해서 다시 반응기(15) 내로 공급될 수 있으며, 이와 같은 합성가스의 반응기(15)로의 재공급에 의해서, 반응기(15) 내 폐기물(W)의 유동을 계속적으로 변하게 만들어 폐기물(W)의 열분해 속도 또는 효율을 높일 수 있다.In addition, products other than the char generated in the pyrolysis gasifier 10, such as syngas, tar and dioxins, may be supplied to the fractionation bed gasifier 40 via, for example, the product supply line 11. have. At this time, at least a portion of the syngas may be fed back into the reactor 15 via, for example, the return line 12, and by re-supplying such syngas into the reactor 15, By continuously changing the flow of the waste (W) it can increase the thermal decomposition rate or efficiency of the waste (W).
분류층 가스화기(40)는 수십 ~ 수백 마이크론 단위의 미분 연료를 산화제와 함께, 예를 들어 1600 ℃ 이상의 고온 연소영역에 투입하여 가스화할 수 있는 것으로서, 예를 들어 마이크로웨이브 스팀 플라즈마 가스화기로 구성될 수 있다. 마이크로웨이브 스팀 플라즈마 가스화기는, 예를 들어 대한민국 등록특허공보 제10-1294219호, 제10-1316607호, 제10-1347788호, 제10-1294219호 등에 개시되는 구성을 포함할 수 있으나, 이에 한정되는 것은 아니다. 이와 같이 분류층 가스화기(40)가 마이크로웨이브 스팀 플라즈마 가스화기로 구성되는 경우, 분류층 가스화기(40)는 전력을 공급받아 전자파를 발진하는 전자파 발진기(도시 안됨), 전자파 발진기에 연결되어 발진된 전자파를 출력하는 순환기(도시 안됨), 순환기에서 출력된 전자파의 입사파와 반사파의 세기를 조절하여 임피던스 정합을 유도하는 튜너(도시 안됨), 전자파를 튜너로부터 방전관에 전송하는 도파관(도시 안됨), 및 도파관으로부터 공급되는 전자파 및 보조가스로부터 플라즈마를 생성하는 방전관(도시 안됨)을 포함할 수 있다. 이렇게 생성된 플라즈마는, 예를 들어 약 2000 ℃ 이상의 스팀 플라즈마 화염이며, 예를 들어 챠 공급 라인(31)을 통해서 공급되는 분쇄된 챠를 대기압 하에서 직접 가열하여 가스화함으로써 합성가스를 생성할 수 있다(반응식 1).The fractionation layer gasifier 40 is capable of gasifying fine fuel of tens to hundreds of microns with an oxidizing agent, for example, into a high-temperature combustion zone of 1600 ° C. or higher, and is composed of, for example, a microwave steam plasma gasifier. Can be. The microwave steam plasma gasifier may include, for example, a configuration disclosed in Korean Patent Publication Nos. 10-1294219, 10-1316607, 10-1347788, and 10-1294219, but is not limited thereto. It is not. When the fractionation layer gasifier 40 is configured as a microwave steam plasma gasifier as described above, the fractionation layer gasifier 40 is connected to an electromagnetic wave oscillator (not shown) or an electromagnetic wave oscillator that is supplied with electric power to generate electromagnetic waves. A circulator (not shown) for outputting electromagnetic waves, a tuner (not shown) for inducing impedance matching by adjusting the intensity of incident and reflected waves of the electromagnetic waves output from the circulator, a waveguide (not shown) for transmitting electromagnetic waves from the tuner to the discharge tube, and It may include a discharge tube (not shown) for generating a plasma from the electromagnetic wave and auxiliary gas supplied from the waveguide. The plasma thus generated is, for example, a steam plasma flame of about 2000 ° C. or more, and for example, syngas can be generated by directly gasifying the pulverized char supplied through the cha feed line 31 by direct heating under atmospheric pressure ( Scheme 1).
(반응식 1) 챠 + H2O 플라즈마 -> CO + H2 (Scheme 1) CH + H 2 O Plasma-> CO + H 2
도 4를 참조하면, 미분의 챠, 예를 들어 페트로 코크스(petroleum cokes)를 마이크로웨이브 스팀 플라즈마 가스화기(915 MHz)로 가스화하여 생성되는 가스의 시간에 따른 용적 농도(%)의 변화를 나타내는 그래프가 도시된다. 도시된 바와 같이, 챠가 스팀 플라즈마를 만나 반응하여, 합성가스, 즉 일산화탄소와 수소가 생성될 수 있다.Referring to FIG. 4, a graph showing the change in volume concentration (%) over time of the gas produced by gasification of a differential, for example, petroleum cokes, into a microwave steam plasma gasifier (915 MHz). Is shown. As shown, the cha meets and reacts with the steam plasma to generate syngas, ie carbon monoxide and hydrogen.
또한, 이때, 생성물 공급 라인(11)을 통해서 공급되는 다이옥신은 약 850 ℃에서부터, 그리고 타르도 약 850 ℃에서부터 분해되기 시작하므로, 예를 들어 약 2000 ℃ 이상의 플라즈마 화염에 수초 동안 노출됨으로써 분해될 수 있다. 따라서, 본 발명의 일 실시예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치(100)는 배출되는 환경유해 물질을 최소화하면서, 폐기물을 열분해 가스화하여 합성가스를 생성할 수 있다.In addition, since dioxin supplied through the product supply line 11 starts to decompose from about 850 ° C., and tar from about 850 ° C., for example, it may be decomposed by being exposed to a plasma flame of about 2000 ° C. or more for several seconds. have. Therefore, according to an embodiment of the present invention, the gasifier 100 for generating syngas from waste can generate syngas by pyrolysis gas waste while minimizing the environmentally harmful substances discharged.
또한, 본 발명의 일 실시예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치(100)는 분류층 가스화기(40)에서 생성되어 배출되는, 합성가스, 및 다이옥신과 타르가 분해된 가스 등을 포함하는 생성 가스를 냉각시키기 위한 냉각부(50)를 포함할 수 있다. 이와 같은 냉각부(50)는, 예를 들어 대한민국 등록실용신안공보 제20-0314598호 등에 개시되어 있는 구성을 포함할 수 있으나, 이에 한정되는 것은 아니며, 디노보(DE-NOVO) 현상을 억제할 수 있도록 배출 가스를 냉각시킬 수 있으면 가능하다. 이때, 냉각부(50)는 분류층 가스화기(40)에서 배출되는 생성 가스를, 예를 들어 60 ℃ 이하의 온도로 급속 냉각시킴으로써, 분해된 다이옥신 및 타르의 재결합을 억제할 수 있다.In addition, according to an embodiment of the present invention, the gasifier 100 for producing a synthesis gas from the waste is generated and discharged from the fractionation layer gasifier 40, the synthesis gas, and dioxin and tar decomposed gas, etc. It may include a cooling unit 50 for cooling the product gas comprising a. The cooling unit 50 may include, for example, a configuration disclosed in Korean Utility Model Publication No. 20-0314598, and the like, but is not limited thereto, and may suppress a DE-NOVO phenomenon. It is possible if the exhaust gas can be cooled so that it can At this time, the cooling unit 50 can suppress the recombination of decomposed dioxins and tars by rapidly cooling the generated gas discharged from the fractionation layer gasifier 40 to a temperature of, for example, 60 ° C. or less.
이와 같이 생성된 합성가스는, 예를 들어 도시되지 않은 습식 스크러버 등에 통과되며, 이 과정을 통해서 합성가스에 썩여있는 분진이나 재 등이 제거되어, 정제될 수 있다.Thus produced syngas is passed through, for example, a wet scrubber (not shown), and through this process, dust and ash, which are rotten in the syngas, can be removed and purified.
또한, 상술된 설명에서, 열분해 가스화기(10)의 하단에 바로 분쇄기(30)가 연결되나, 이에 한정되는 것은 아니며, 후술되는 바와 같이, 열분해 가스화기(10)로부터 생성되는 생성물을 냉각시키는 것이 필요한 경우, 즉 열분해 가스화기(10)의 열분해 온도가 300 ~ 400 ℃인 경우에는, 열분해 가스화기(10)로부터 생성되는 생성물을 냉각시키기 위한 냉각 장치(도시 안됨)가 열분해 가스화기(10)의 하단과 분쇄기(30) 사이에 마련될 수도 있다.In addition, in the above description, the pulverizer 30 is directly connected to the lower end of the pyrolysis gasifier 10, but is not limited thereto. As described below, cooling the product generated from the pyrolysis gasifier 10 is performed. If necessary, that is, when the pyrolysis temperature of the pyrolysis gasifier 10 is 300 to 400 ° C., a cooling device (not shown) for cooling the product generated from the pyrolysis gasifier 10 is provided. It may be provided between the lower end and the grinder 30.
본 발명의 또 다른 실시예에 따른 발전 시스템(1000)은, 상술된 바와 같은, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치(100)에서 생성된 합성가스를 공급받아 구동되는 가스 엔진(60), 및 이 가스 엔진(60)에 연결되어 전력을 생산하기 위한 제너레이터(도시 안됨)를 포함할 수 있다. 또한, 발전 시스템(1000)은 가스 엔진(60)에서 발생되는 고온의 연소 가스를 이용하여 물을 고온, 고압의 스팀으로 전환할 수 있는 스팀 생성부(도시 안됨), 및 이 스팀을 이용하여 발전하는 터빈(도시 안됨)을 포함할 수도 있다. Power generation system 1000 according to another embodiment of the present invention, as described above, the gas engine 60 is driven by receiving the synthesis gas generated in the gasifier 100 for generating a synthesis gas from waste, And a generator (not shown) connected to the gas engine 60 to produce electric power. In addition, the power generation system 1000 includes a steam generator (not shown) capable of converting water into high-temperature, high-pressure steam by using high-temperature combustion gas generated from the gas engine 60, and power generation using the steam. It may also include a turbine (not shown).
도 2를 참조하면, 본 발명의 또 다른 실시예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 방법을 나타내는 순서도가 도시된다. 도 2에 도시된 바와 같이, 본 발명의 또 다른 실시예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 방법은 폐기물을 챠로 변환시키기 위한 제 1 열분해 단계(S3); 및 이 챠를 합성가스로 변환시키고, 제 1 열분해 단계(S3)에서 생성된 다이옥신 또는 타르 중 적어도 어느 하나를 분해하기 위한 온도 범위에서 행해지는 제 2 열분해 단계(S5)를 포함하며, 예를 들어 제 1 열분해 단계(S3)에서 생성된 챠가 용이하게 분쇄되는 상태가 아닌 경우에는, 이 챠를 분쇄하기 위한 챠 분쇄 단계(S4-1)를 더 포함할 수 있다.With reference to FIG. 2, a flow diagram illustrating a gasification method for generating syngas from waste, according to another embodiment of the present invention, is shown. As shown in FIG. 2, a gasification method for producing syngas from waste according to another embodiment of the present invention includes a first pyrolysis step (S3) for converting the waste into a char; And a second pyrolysis step (S5) which is carried out in a temperature range for converting the car into a syngas and decomposing at least one of dioxins or tars produced in the first pyrolysis step (S3), for example When the tea generated in the first pyrolysis step S3 is not easily crushed, the tea crushing step S4-1 may be further included for crushing the tea.
상술된 바와 같은 방법에 따르면, 제 1 열분해 단계(S3)에서 폐기물이 변환되어 생성되는 챠는 용이하게 분쇄되는 상태로, 또는 분쇄되어(S4-1), 제 2 열분해 단계(S5)에 공급되어 합성가스로 변환되므로, 제 2 열분해 단계(S5)에서 챠의 가스화가 원할하게 행해질 수 있고(반응식 1 참조), 아울러 타르 및 다이옥신의 발생량이 적을 뿐만 아니라 이들이 분해될 수 있으므로, 환경유해 물질의 배출을 최소화하면서 폐기물을 가스화하는 것이 가능하다.According to the method as described above, the car produced by converting the waste in the first pyrolysis step S3 is easily crushed or crushed (S4-1) and supplied to the second pyrolysis step S5. Since it is converted into syngas, the gasification of the tea can be performed smoothly in the second pyrolysis step (S5) (see Scheme 1), and the emission of environmentally harmful substances is not only small, but also the generation of tar and dioxins can be decomposed. It is possible to gasify the waste while minimizing this.
폐기물을 챠로 변환하기 위한 제 1 열분해 단계(S3)는, 예를 들어 300 ~ 900 ℃ 의 온도 범위 및 대기압 하에서 행해질 수 있다. 제 1 열분해 단계(S3)는, 예를 들어 초기에는 기동버너를 이용해서 열분해 가스화기(10)의 반응기(15) 온도를 높이고, 폐기물(W)을 투입하여 폐기물(W)이 열분해되면서 나오는 합성가스 및 타르를 투입되는, 예를 들어 공기 또는 산소로 산화시켜 반응기(15) 온도를 유지할 수 있다. 이때 일어나는 화학 반응(발열 반응)은 아래와 같다.The first pyrolysis step (S3) for converting the waste to char may be carried out, for example, under a temperature range of 300 to 900 ° C. and under atmospheric pressure. In the first pyrolysis step (S3), for example, the temperature of the reactor 15 of the pyrolysis gasifier 10 is initially increased by using a starter burner, and the waste W is introduced to synthesize the waste W as it is pyrolyzed. Reactor 15 temperature can be maintained by oxidizing with gas or tar, for example, with air or oxygen. The chemical reaction (exothermic reaction) that occurs at this time is as follows.
(반응식 2) C + O2 -> -394 KJ/molScheme 2 C + O 2- > -394 KJ / mol
(반응식 3) CO + 1/2 O2 -> -283 KJ/mol(Scheme 3) CO + 1/2 O 2- > -283 KJ / mol
(반응식 4) H2 + 1/2 O2 -> -242 KJ/mol(Scheme 4) H 2 + 1/2 O 2- > -242 KJ / mol
(반응식 5) CH4 + 2 O2 -> -803 KJ/mol Scheme 5 CH 4 + 2 O 2- > -803 KJ / mol
또한, 제 1 열분해 단계(S3)는 열분해 가스화기(10)에 공급되는 폐기물이 내부에 쌓이는 고정층 방식으로 행해질 수 있다. 이 경우, 폐기물은 분쇄될 필요 없이 큰 입경 또는 덤프 상태로 반응기(15) 내에 공급되어 열분해되는 것이 가능하므로, 후술되는 전처리 프로세스가 간단해질 수 있다.In addition, the first pyrolysis step S3 may be performed in a fixed bed manner in which wastes supplied to the pyrolysis gasifier 10 are accumulated therein. In this case, since the waste can be supplied into the reactor 15 in a large particle size or a dump state without being crushed and pyrolyzed, the pretreatment process described later can be simplified.
즉, 제 1 열분해 단계(S3)에 공급되는 폐기물은, 입고되면(S1), 먼저 자력선별 및 비철금속 선별 단계(S2)를 거치며, 이 단계에서, 폐기물 중 철재(자성을 갖는) 폐기물은, 예를 들어 약 5,000 Gauss의 전자석에 의해서 선별적으로 제거될 수 있고, 자성을 갖지 않은 금속재 폐기물(알루미늄 캔류 등)은, 예를 들어 와전류선별기 등을 이용하여 선별적으로 제거될 수 있다. 따라서, 후술되는 챠의 분쇄 단계(S4-1)에서 금속에 의한 분쇄기(30)의 파손이나 고장 등을 방지할 수 있다.That is, when the waste supplied to the first pyrolysis step S3 is received (S1), firstly, through the magnetic screening and the non-ferrous metal sorting step (S2), in this step, the waste steel (magnetic) in the waste is, for example For example, it may be selectively removed by an electromagnet of about 5,000 Gauss, and metal material waste (such as aluminum cans) having no magnetism may be selectively removed using, for example, an eddy current separator. Therefore, breakage or failure of the grinder 30 due to the metal can be prevented in the grinding step S4-1 of the below-mentioned car.
폐기물 공급부(20)에서 실시될 수 있는 이와 같은 전 처리 단계에 따르면, 본 발명의 또 다른 실시예에 따른 가스화 방법은, 폐기물의 파쇄, 소정 입도의 파쇄된 폐기물을 선별하기 위한 진동 스크린 선별, 및 폐기물의 수분을 제거하기 위한 건조 등의 단계를 필요로 하지 않으며, 자력선별 및 비철금속 선별(S2)만 거치면 고정층 방식의 제 1 열분해 단계(S3)에 공급될 수 있으므로, 기존의 전처리 단계에 비하여 상당히 간략해질 수 있고, 따라서 시간당 처리될 수 있는 폐기물 양의 증대 및 에너지 절감의 효과를 얻을 수 있다.According to such a pretreatment step that can be carried out in the waste supply unit 20, the gasification method according to another embodiment of the present invention, the shredding of the waste, vibrating screen screening for sorting the shredded waste of a predetermined particle size, and It does not require a step such as drying to remove the moisture of the waste, and can be supplied to the first pyrolysis step (S3) of the fixed bed type only by magnetic screening and non-ferrous metal screening (S2), which is considerably compared to the conventional pretreatment step. It can be simplified, and thus the effect of increasing the amount of waste that can be treated per hour and saving energy can be obtained.
다음으로, 제 1 열분해 단계(S1)에서 생성되는 챠는, 예를 들어 챠가 용이하게 분쇄되는 상태가 아닌 경우, 챠 분쇄 단계(S4-1)를 거칠 수 있다. 이 단계에서, 챠는 50 ㎛ ~ 5 mm 정도의 평균 입자 사이즈를 갖도록 분쇄되어, 후술 되는 제 2 열분해 단계(S5), 특히 마이크로웨이브 스팀 플라즈마 가스화기에서와 같은 분류층 가스화 방식에서 약 2 ~ 5 초의 체류 시간 동안에 완전히 반응될 수 있다. 또한, 챠는 폐기물에 비하여 용이하게 분쇄될 수 있으므로, 폐기물을 분쇄하는 것에 비하여 에너지, 비용 및 시간을 절약할 수 있다.Next, the tea produced in the first pyrolysis step S1 may go through the tea grinding step S4-1, for example, when the tea is not easily crushed. In this step, the cha is ground to have an average particle size of about 50 μm to 5 mm, so that the second pyrolysis step (S5) described below, in particular about 2 to 5 in a fractionation layer gasification method such as in a microwave steam plasma gasifier It can react completely during the residence time of seconds. In addition, the cha can be easily crushed compared to the waste, thereby saving energy, cost and time compared to crushing the waste.
한편, 후술되는 바와 같이, 제 1 열분해 단계(S3)의 열분해 온도가 300 ~ 400 ℃인 경우, 생성물의 상태가 아스팔트와 같은 성질의 액체류일 수 있으나, 이 경우, 이와 같은 생성물을 자연 냉각 또는 급속 냉각시키면 마이크로 단위로 분쇄할 수 있다.On the other hand, as will be described later, when the pyrolysis temperature of the first pyrolysis step (S3) is 300 ~ 400 ℃, the state of the product may be a liquid of the same properties as asphalt, in this case, such a product is naturally cooled or rapidly When cooled, it can be ground in micro units.
또한, 제 1 열분해 단계(S1)에서 생성되는, 합성가스, 타르 및 다이옥신 등을 포함하는 생성물은, 예를 들어 생성물 공급라인(11)을 통해서 제 2 열분해 단계(S5)에 공급된다(S4-2). 이때, 합성가스의 적어도 일부는, 예를 들어 리턴 라인(12)을 통해서, 다시 제 1 열분해 단계(S3)로 공급될 수 있으며, 이와 같은 합성가스의 재공급에 의해서, 고정층 방식의 경우 반응기(15) 내의 폐기물이 계속적으로 유동될 수 있어 폐기물의 열분해 효율 또는 속도를 높일 수 있다.In addition, a product including syngas, tar, dioxins, and the like, produced in the first pyrolysis step S1 is supplied to the second pyrolysis step S5 through, for example, the product supply line 11 (S4-). 2). At this time, at least a part of the synthesis gas, for example, may be supplied back to the first pyrolysis step (S3) through the return line 12, by the re-supply of the synthesis gas, in the case of a fixed bed type reactor ( 15) The wastes in the stream can be continuously flowed to increase the thermal decomposition efficiency or speed of the wastes.
제 2 열분해 단계(S5)는, 용이하게 분쇄되는 상태의 챠를, 또는 분쇄된 챠를 합성가스로 변환시키고, 타르 및 다이옥신 중 적어도 어느 하나를 분해하기 위한 공정으로서, 예를 들어 900 ~ 2,500 ℃의 온도 범위 및 대기압 하에서 행해질 수 있다. 다이옥신은 850 ℃에서부터 분해되기 시작하고, 타르도 850 ℃에서부터 분해되기 시작하기 때문에, 이와 같은 온도 범위에서 다이옥신 및 타르는 분해되어 제거될 수 있다. 또한, 제 2 열분해 단계(S5)는 분류층 방식으로, 예를 들어 마이크로웨이브 스팀 플라즈마 가스화기에서 행해질 수 있으며, 이와 같은 경우 플라즈마 화염은, 예를 들어 2000 ℃ 이상일 수 있으므로, 다이옥신은 이 화염에서 수초 동안 체류하면 파괴될 수 있고, 타르도 분해될 수 있다.The second pyrolysis step (S5) is a process for converting the tea in a easily crushed state or converting the crushed tea into syngas and decomposing at least one of tar and dioxin, for example, 900 to 2,500 ° C. Can be carried out under a temperature range of and atmospheric pressure. Since dioxin starts to decompose from 850 ° C. and tar also begins to decompose from 850 ° C., dioxin and tar can be decomposed and removed in this temperature range. The second pyrolysis step (S5) can also be carried out in a fractionated bed manner, for example in a microwave steam plasma gasifier, in which case the plasma flame can be, for example, 2000 ° C. or higher, so that dioxin Staying for a few seconds can break down and tar can break down.
또한, 제 2 열분해 단계(S5)에서, 미분화된 챠는 분류층 방식으로, 예를 들어 마이크로웨이브 스팀 플라즈마 가스화기 내에서 대기압 하에, 예를 들어 2 ~ 5 초의 짧은 체류 시간 동안에, 예를 들어 2000 ℃ 이상의 플라즈마 화염에 의해서 직접 가열되어 완전히 반응될 수 있다. 또한, 이때 미분화된 챠는 산화제, 예를 들어 산소, 공기, 스팀 중 적어도 어느 하나와 직접적으로 반응할 수 있으며, 산화제의 양을 조절함으로써, 최대 5초 이내에 모든 반응을 마칠 수 있고, 다이옥신의 발생량을 현저히 감소시킬 수 있다.Further, in the second pyrolysis step S5, the micronized char is fed in a fractionation bed manner, for example in a microwave steam plasma gasifier under atmospheric pressure, for example a short residence time of 2-5 seconds, for example 2000 Directly heated by a plasma flame of < RTI ID = 0.0 > In this case, the micronized tea may react directly with at least one of an oxidizing agent, for example, oxygen, air, and steam, and by controlling the amount of the oxidizing agent, all reactions may be completed within a maximum of 5 seconds, and the amount of dioxins generated Can be significantly reduced.
상술된 바와 같은 구성에 따르면, 제 2 열분해 단계(S5)는 다이옥신의 발생량을 줄일 수 있으며, 다이옥신이 발생된다고 하더라도 고온에 의해서 분해되며, 아울러 제 1 열분해 단계(S3)에서 생성된 타르 및 다이옥신 또한 제 2 열분해 단계(S5)의 높은 온도에 의해서 분해될 수 있으므로, 본 발명에 따른 폐기물의 가스화 방법은 환경유해 물질의 배출을 최소화하면서, 폐기물을 가스화할 수 있다.According to the configuration as described above, the second pyrolysis step (S5) can reduce the amount of dioxins generated, even if dioxin is generated is decomposed by the high temperature, and also the tar and dioxins produced in the first pyrolysis step (S3) Since it can be decomposed by the high temperature of the second pyrolysis step (S5), the waste gasification method according to the present invention can gasify the waste while minimizing the emission of environmentally harmful substances.
다음으로, 제 2 열분해 단계(S5)에서 생성된, 합성가스 등을 포함하는 생성 가스는 급속 냉각 단계(S6)를 거칠 수 있으며, 이에 의해서, 생성 가스에 포함되어 있는 분해된 다이옥신 및 타르가 재결합되는 것이 억제될 수 있다.Next, the product gas including the syngas generated in the second pyrolysis step S5 may undergo a rapid cooling step S6, whereby the decomposed dioxins and tar contained in the product gas recombine. Can be suppressed.
다음으로, 급속 냉각된 생성 가스는, 예를 들어 습식 스크러버를 통과하는 등과 같은 정제 단계(S7)를 거칠 수 있으며, 이 단계에서 생성 가스 중에 있는 분진 또는 재 등이 제거되어, 하류 측에 위치하고, 합성가스를 사용하는 가스엔진(60)의 고장이나 수명 단축 등을 감소시킬 수 있다.Next, the rapidly cooled product gas may go through a purification step S7 such as, for example, passing through a wet scrubber, in which dust or ash in the product gas is removed to be located downstream, It is possible to reduce the failure, shorten the life of the gas engine 60 using the synthesis gas.
이와 같이 정제된 합성가스는, 예를 들어 가스엔진(60)에 공급되어, 가스엔진(60)을 구동시킴으로써, 가스엔진(60)에 연결된 제너레이터에서 전기가 발생되도록 할 수 있고, 또한 가스엔진(60)에 발생되는 고온으로 증기를 발생시켜 터빈(도시 안됨)을 회전시킴으로써 전기가 발생되도록 할 수 있다(S8).Thus, the purified synthesis gas is supplied to the gas engine 60, for example, to drive the gas engine 60, so that electricity can be generated in the generator connected to the gas engine 60, and the gas engine ( By generating a steam at a high temperature generated in 60) it is possible to generate electricity by rotating a turbine (not shown) (S8).
상술된 설명에서, 본 발명의 일 실시예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치(100)의 경우, 열분해 가스화기(10)에서 생성된 챠, 및 챠를 제외한 생성물이 챠 공급 라인(31) 및 생성물 공급 라인(11)을 통해서 분류층 가스화기(40)에 공급되는 것으로 설명되나, 이에 한정되는 것은 아니며, 열분해 가스화기(10)와 분류층 가스화기(40)는, 챠, 및 챠를 제외한 다른 생성물 중 적어도 어느 하나가 챠 공급 라인(31) 또는 생성물 공급 라인(11)을 통하지 않고 직접 공급될 수 있도록 서로 일체화될 수 있다. 예를 들어, 도 3을 참조하면, 본 발명의 일 변형예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치(100a)의 다이어그램이 도시된다. 설명의 간결성을 위해서, 이하 본 발명의 일 실시예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치(100)와 다른 점을 위주로 설명한다.In the above description, in the case of the gasifier 100 for producing syngas from the waste, according to one embodiment of the present invention, the car produced in the pyrolysis gasifier 10, and the product except the cha Although described as being supplied to the fractionation layer gasifier 40 through the 31 and the product supply line 11, the pyrolysis gasifier 10 and the fractionation layer gasifier 40 are not limited thereto. And at least one of the products other than the tea may be integrated with each other so that the products may be directly supplied without passing through the tea supply line 31 or the product supply line 11. For example, referring to FIG. 3, there is shown a diagram of a gasifier 100a for generating syngas from waste, according to one variation of the present invention. For simplicity of explanation, the following description will focus on differences from the gasifier 100 for generating syngas from waste, according to an embodiment of the present invention.
도 3에 도시된 바와 같이, 본 발명의 일 변형예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치(100a)는 열분해 가스화기(10a)의 상측에 연결부(34)를 통해서 하단이 연결되는 분류층 가스화기(40a)를 포함하며, 또한 여기서, 분쇄된 챠를 분류층 가스화기(40a)에 공급하는 챠 공급 라인(31) 상에는 분쇄된 챠를 저장할 수 있는 저장 탱크(33)가 마련될 수 있다. 분류층 가스화기(40a)의 배출 라인(41)을 통해서 나오는 합성가스는 도 1에 도시된 바와 같은 냉각부(50) 등에 공급될 수 있다. 또한, 폐기물은 도 1에 도시된 바와 같이 폐기물 공급부(20)를 통해서 열분해 가스화기(10a)의 반응기(15) 내에 공급될 수 있다.As shown in FIG. 3, according to a modification of the present invention, the gasifier 100a for generating syngas from waste is connected to a lower end through a connection part 34 on an upper side of the pyrolysis gasifier 10a. A storage tank 33 may be provided on the cha supply line 31 for supplying the fractionated bed gasifier 40a and supplying the pulverized car to the fractionated bed gasifier 40a. Can be. Synthetic gas exiting the discharge line 41 of the fractionation layer gasifier 40a may be supplied to the cooling unit 50 as illustrated in FIG. 1. In addition, waste may be supplied into the reactor 15 of the pyrolysis gasifier 10a through the waste supply 20 as shown in FIG.
이와 같은 구성에 따르면, 열분해 가스화기(10)에서 생성된 합성 가스, 다이옥신 및 타르 등의 생성 가스(G)가, 별도의 생성물 공급 라인(11)을 통해서 공급되지 않고, 연결부(34)를 통해서 분류층 가스화기(40a)의 하부에 직접 공급될 수 있어, 구성을 간략화할 수 있다. 또한, 챠 공급 라인(31) 상에 저장 탱크(33)가 배치되어 있어, 분쇄된 챠를 분류층 가스화기(40a)에 일정한 수준으로 안정적으로 공급하는 것이 가능하다.According to such a structure, the synthesis gas (G) produced by the pyrolysis gasifier 10, such as dioxin and tar, is not supplied through the separate product supply line 11, but through the connection part 34. It can be supplied directly to the lower portion of the fractionation layer gasifier 40a, so that the configuration can be simplified. Moreover, the storage tank 33 is arrange | positioned on the cha supply line 31, and it is possible to stably supply the crushed cha to the fractionation layer gasifier 40a at a fixed level.
또한, 열분해 가스화기(10a)와 분류층 가스화기(40)의 일체화는 이에 한정되는 것이 아니며, 분류층 가스화기(40)가, 예를 들어 열분해 가스화기(10a)의 하단에 또는 측면 등에 연결될 수 있다. 이때, 분쇄기(30)는 열분해 가스화기(10a)와 분류층 가스화기(40) 사이에 반드시 배치되는 것은 아니다. 즉, 열분해 가스화기(10a)에서 배출된 챠는 분쇄기(30)를 거치지 않고 직접 분류층 가스화기(40)에 공급될 수 있다.In addition, the integration of the pyrolysis gasifier 10a and the fractionation layer gasifier 40 is not limited thereto, and the fractionation layer gasifier 40 may be connected to, for example, a lower end or a side surface of the pyrolysis gasifier 10a. Can be. At this time, the crusher 30 is not necessarily disposed between the pyrolysis gasifier 10a and the fractionation layer gasifier 40. That is, the char discharged from the pyrolysis gasifier 10a may be directly supplied to the fractionation layer gasifier 40 without passing through the grinder 30.
또한, 상술된 본 발명의 실시예 및 변형예에서, 제 1 열분해 단계(S3) 또는 열분해 가스화기(10; 10a)에서 생성되는 다이옥신, 타르 등을 포함하는 생성물 또는 생성 가스가 미분된 챠와 함께 제 2 열분해 단계(S5) 또는 분류층 가스화기(40; 40a)에 공급되는 것으로 설명되었으나, 이에 한정되지 않고, 챠만 제 2 열분해 단계(S5) 또는 분류층 가스화기(40; 40a)에 공급되고, 챠를 제외한 다른 생성물은 별도의 열분해 단계 또는 열분해 장치 등에 공급되어, 생성물에 포함된 다이옥신 및 타르를 분해하는 것도 가능하다.Further, in the above-described embodiments and modifications of the present invention, a product containing dioxins, tars, and the like produced in the first pyrolysis step S3 or the pyrolysis gasifier 10; Although described as being supplied to the second pyrolysis step (S5) or fractionation bed gasifier (40; 40a), it is not limited thereto, and is only supplied to the second pyrolysis step (S5) or fractionation bed gasifier (40; 40a) It is also possible to supply other products, except for the char, to be supplied to a separate pyrolysis step or a pyrolysis device to decompose dioxins and tars contained in the product.
<실험예>Experimental Example
본 발명의 실시예에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 방법의 제 1 열분해 단계(S3)에서 행해지는 제 1 열분해와 관련하여, 하기와 같은 조건 하에서 폐기물을 열분해 하였으며, 이의 결과는 표 1에 정리된다.In connection with the first pyrolysis performed in the first pyrolysis step (S3) of the gasification method for producing syngas from the waste according to an embodiment of the present invention, the waste was pyrolyzed under the following conditions, the results are shown in Table It is summarized in 1.
실험 조건Experimental conditions
(1) 폐기물 : 양구 군청 생활쓰레기 시료(성상 및 조성은 도 5 참조)(1) Waste: Samples of household garbage from Yanggu County Office (see Fig. 5 for properties and composition)
(2) 시료 무게 : 130 g(2) sample weight: 130 g
(3) 열분해 온도 : 300, 400, 500, 600, 700, 800 ℃(3) Pyrolysis temperature: 300, 400, 500, 600, 700, 800 ℃
(4) 열분해 가열 시간 : 30 ~ 60 분(4) pyrolysis heating time: 30 ~ 60 minutes
(5) 비활성 가스 : N2_20 lpm (단, 300 ℃ 의 경우에는 사용 안함)(5) Inert gas: N2_20 lpm (not used in case of 300 ℃)
(6) 압력 : 대기압(6) pressure: atmospheric pressure
Figure PCTKR2015007792-appb-T000001
Figure PCTKR2015007792-appb-T000001
또한, 도 6 내지 도 11은 열분해 온도가 각각 300, 400, 500, 600, 700, 800 ℃인 경우에, 반응 시간에 따라 발생되는 합성가스의 조성을 용적 농도로 표시한 그래프이다.6 to 11 are graphs showing the volume of the composition of the synthesis gas generated according to the reaction time when the pyrolysis temperature is 300, 400, 500, 600, 700, and 800 ° C., respectively.
도 6에 도시된 바와 같이, 열분해 온도가 300 ℃이면, 60분 동안 거의 가스 조성의 변화가 없었으며, 합성가스의 발생량이 소량이었다.As shown in FIG. 6, when the pyrolysis temperature was 300 ° C., there was almost no change in gas composition for 60 minutes, and a small amount of syngas was generated.
도 7에 도시된 바와 같이, 열분해 온도가 400 ℃이면, 30분 동안 시간이 지남에 따라 CH4가 미소하게 증가되었으며, 합성가스의 발생량은 소량이었다.As shown in FIG. 7, when the pyrolysis temperature is 400 ° C., CH 4 slightly increased over time for 30 minutes, and the amount of syngas generated was small.
도 8에 도시된 바와 같이, 열분해 온도가 500 ℃이면, 30분 동안 시간이 지남에 따라, CH4의 발생량이 큰 폭으로 증가되었으며, 합성가스의 생산량도 증가되었다.As shown in FIG. 8, when the pyrolysis temperature is 500 ° C., as time passes for 30 minutes, the generation amount of CH 4 is greatly increased, and the production amount of the synthesis gas is also increased.
도 9에 도시된 바와 같이, 열분해 온도가 600 ℃이면, 일정 시간 동안에 CH4가 일정한 수준으로 생성되었으며, 합성가스의 생산량도 다량이었다.As shown in FIG. 9, when the pyrolysis temperature is 600 ° C., CH 4 is generated at a constant level for a certain time, and the amount of syngas produced is also large.
도 10에 도시된 바와 같이, 열분해 온도가 700 ℃이면, 600 ℃의 경우에 비하여, 더 짧은 시간 동안 CH4가 더 높은 일정한 농도로 생성되었으며, 반응이 더 빠르게 완료 되었고, 합성가스의 생산량도 다량이었다.As shown in FIG. 10, when the pyrolysis temperature is 700 ° C., CH 4 was generated at a higher constant concentration for a shorter time than in the case of 600 ° C., the reaction was completed more quickly, and the amount of syngas produced was also large. It was.
도 11에 도시된 바와 같이, 열분해 온도가 800 ℃이면, 약 30초 후부터 반응이 시작되어 약 10분 쯤에 열분해가 완료되었고, 이 시간 동안에 CH4가 집중적으로 발생되었으며, H2의 발생량도 증가되었다.As shown in FIG. 11, when the pyrolysis temperature is 800 ° C., the reaction is started after about 30 seconds and pyrolysis is completed in about 10 minutes. During this time, CH 4 is intensively generated and the amount of H 2 is also increased. It became.
또한, 도 12는 전술된 실험에서 CH4의 용적 농도(%)를 시간에 따라 온도 별로 나타낸 그래프로서, 열분해 온도가 600 ℃인 경우, CH4가 일정 시간 동안 일정한 수준으로 생성되고 있어, 안정적으로 가스 엔진에 공급이 가능하다. 또한, 도 12에서, 열분해 온도가 낮은 온도에서 높은 온도로 변함에 따른 그래프 형태의 변화 추이를 통해, 열분해 온도가 900 ℃인 경우에도, 챠의 생성 및 합성가스의 생성이 가능함을 알 수 있다.In addition, FIG. 12 is a graph showing the volume concentration (%) of CH 4 according to temperature according to time in the above-described experiment. When the pyrolysis temperature is 600 ° C., CH 4 is generated at a constant level for a certain time, and thus, stably. Supply to gas engines is possible. In addition, in FIG. 12, it can be seen that, even when the pyrolysis temperature is 900 ° C., the generation of the car and the generation of syngas are possible through the change in the graph form as the pyrolysis temperature is changed from a low temperature to a high temperature.
전술된 바와 같이, 본 발명은 실시예를 중심으로 설명되었으나, 본 발명의 기술적 사상에서 벗어나지 않는 한도 내에서, 상술된 변형 이외의 또 다른 여러 변형이 가능함은 본 발명이 속하는 분야에서 통상의 지식을 가진 자에게 명백할 것이다.As described above, the present invention has been described with reference to the embodiments, but it is possible to make other various modifications other than the above-described modifications without departing from the technical spirit of the present invention. It will be apparent to those who have it.
또한, 본 발명에서 보이는 구성요소들을 공지의 유사한 기능을 수행하는 기술요소로 치환하거나 변형하는 것도 본 발명이 속하는 분야에서 통상의 지식을 가지는 자에게 명백하거나, 기술 상식에 속할 것이다.In addition, the substitution or modification of the components shown in the present invention to the technical elements that perform a known similar function will be apparent to those skilled in the art, or belong to the common sense.
따라서, 본 발명의 기술적 범위 내지 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 아래의 청구범위에서 보이는 사상 및 그 균등범위까지 미친다.Therefore, the technical scope of the present invention to the scope of the claims should not be limited to the described embodiments, but extends to the spirit and equivalents shown in the claims below.
[부호의 설명][Description of the code]
10; 10a : 열분해 가스화기10; 10a: pyrolysis gasifier
11 : 생성물 공급 라인11: product feed line
12 : 리턴 라인12: return line
14 : 산화제 공급 라인14: oxidant supply line
15 : 반응기15: reactor
16 : 그레이트16: great
17 : 배출부17: discharge part
18 : 밸브18: valve
19 : 밸브19: valve
20 : 폐기물 공급부20: waste supply unit
30 : 분쇄기30: grinder
31 : 챠 공급 라인31: tea supply line
40 : 분류층 가스화기40: fractionation layer gasifier
50 : 냉각부50: cooling unit
60 : 가스엔진60 gas engine
100; 100a : 가스화 장치100; 100a: gasifier
1000 : 발전 시스템1000: Power Generation System

Claims (20)

  1. 폐기물로부터 챠(char)를 생성하기 위한 제 1 열분해 단계; 및A first pyrolysis step for producing char from the waste; And
    상기 제 1 열분해 단계에서 생성되는 챠, 및 상기 챠를 제외한 다른 생성물을 가스화하는 제 2 열분해 단계를 포함하며,A second pyrolysis step of gasifying a tea produced in the first pyrolysis step and a product other than the tea,
    상기 제 2 열분해 단계가 실시되는 온도는 다이옥신 및 타르 중 적어도 어느 하나가 분해되기 시작하는 온도 이상인, 폐기물로부터 합성가스를 생성하는 가스화 방법.Wherein the temperature at which the second pyrolysis step is carried out is at least the temperature at which any of dioxin and tar begins to decompose, thereby producing syngas from the waste.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제 1 열분해 단계는 300 ~ 900 ℃의 온도 범위 및 대기압 하에서 행해지는, 폐기물로부터 합성가스를 생성하는 가스화 방법.The first pyrolysis step is a gasification method for producing syngas from waste, which is performed under a temperature range of 300 to 900 ° C. and atmospheric pressure.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 폐기물로부터 합성가스를 생성하는 가스화 방법은,Gasification method for generating a synthesis gas from the waste,
    상기 제 1 열분해 단계가 300 ~ 400 ℃의 온도 범위에서 행해지는 경우, 상기 제 1 열분해 단계에서 생성되는 챠를 냉각하는 단계; 및When the first pyrolysis step is performed at a temperature in the range of 300 to 400 ° C., cooling the tea produced in the first pyrolysis step; And
    상기 챠를 분쇄하는 분쇄 단계를 더 포함하는, 폐기물로부터 합성가스를 생성하는 가스화 방법.And a pulverizing step of pulverizing the cha, the gasification method for producing syngas from the waste.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 분쇄된 챠의 사이즈는 50 ㎛ ~ 5 mm인, 폐기물로부터 합성가스를 생성하는 가스화 방법.The size of the pulverized car is 50㎛ ~ 5mm, gasification method for producing a synthesis gas from the waste.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 제 1 열분해 단계는 고정층 열분해 방식으로 행해지는, 폐기물로부터 합성가스를 생성하는 가스화 방법.Wherein said first pyrolysis step is carried out in a fixed bed pyrolysis manner.
  6. 청구항 1 내지 청구항 5 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    상기 제 2 열분해 단계는 900 ~ 2500 ℃의 온도 범위에서 분류층 열분해 방식으로 행해지는, 폐기물로부터 합성가스를 생성하는 가스화 방법.The second pyrolysis step is a gasification method for producing syngas from waste, which is carried out in a fractionation bed pyrolysis method in the temperature range of 900 ~ 2500 ℃.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 제 2 열분해 단계는 마이크로웨이브 스팀 플라즈마 가스화기에 의해서 행해지는, 폐기물로부터 합성가스를 생성하는 가스화 방법.Wherein said second pyrolysis step is performed by a microwave steam plasma gasifier.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 폐기물로부터 합성가스를 생성하는 방법은,The method for generating syngas from the waste,
    상기 제 1 열분해 단계에서 생성된 합성가스의 적어도 일부를 다시 상기 제 1 열분해 단계로 공급하는 단계를 더 포함하는, 폐기물로부터 합성가스를 생성하는 가스화 방법.And supplying at least a portion of the syngas produced in the first pyrolysis step back to the first pyrolysis step.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 폐기물로부터 합성가스를 생성하는 가스화 방법은,Gasification method for generating a synthesis gas from the waste,
    상기 제 2 열분해 단계에서 생성되는 생성 가스를 급속 냉각하는 단계를 더 포함하는, 폐기물로부터 합성가스를 생성하는 가스화 방법.And rapidly cooling the product gas produced in the second pyrolysis step, the gasification method of producing syngas from the waste.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 급속 냉각 단계는 60 ℃ 이하에서 행해지는, 폐기물로부터 합성가스를 생성하는 가스화 방법.The rapid cooling step is carried out at 60 ℃ or less, the gasification method for producing syngas from the waste.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 제 1 열분해 단계에 공급되는 폐기물은 자력선별 및 비철 금속 선별되는, 폐기물로부터 합성가스를 생성하는 가스화 방법.Waste that is supplied to the first pyrolysis step is magnetic screening and non-ferrous metal sorting, the gasification method for producing syngas from the waste.
  12. 폐기물로부터 챠를 생성하기 위한 열분해 가스화기;Pyrolysis gasifiers for producing char from waste;
    상기 열분해 가스화기에서 생성된 챠, 및 상기 챠를 제외한 다른 생성물을 가스화하기 위한 분류층 가스화기를 포함하는, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치.And a fractionation bed gasifier for gasifying the product produced in the pyrolysis gasifier and other products except the cha.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 열분해 가스화기는 고정층 방식인, 폐기물로 합성가스를 생성하기 위한 가스화 장치.The pyrolysis gasifier is a fixed bed type, gasifier for producing syngas from waste.
  14. 청구항 12에 있어서,The method according to claim 12,
    상기 분류층 가스화기는 마이크로웨이브 스팀 플라즈마 가스화기인, 폐기물로 합성가스를 생성하기 위한 가스화 장치.The fractionation layer gasifier is a microwave steam plasma gasifier, a gasifier for producing syngas from waste.
  15. 청구항 12에 있어서,The method according to claim 12,
    상기 분류층 가스화기는, 상기 열분해 가스화기에서 발생되는 가스 및 챠 중 적어도 어느 하나가 상기 분류층 가스화기에 직접 공급될 수 있도록, 상기 열분해 가스화기와 일체화되는, 폐기물로 합성가스를 생성하기 위한 가스화 장치.The fractionation layer gasifier is integrated with the pyrolysis gasifier so that at least one of the gas and the char generated in the pyrolysis gasifier can be directly supplied to the fractionation layer gasifier, a gasifier for producing syngas from the waste. .
  16. 청구항 12 내지 청구항 15 중 어느 한 항에 따른, 폐기물로부터 합성가스를 생성하기 위한 가스화 장치;A gasifier for producing syngas from waste according to claim 12;
    상기 가스화 장치에서 생성되는 합성가스를 공급받는 가스엔진;A gas engine supplied with the synthesis gas generated by the gasifier;
    상기 가스엔진에 연결되고, 발전하기 위한 제너레이터를 포함하는, 발전 시스템.A generator coupled to the gas engine and including a generator for generating electricity.
  17. 폐기물로부터 챠를 생성하기 위한 제 1 열분해 단계;A first pyrolysis step for producing tea from the waste;
    상기 제 1 열분해 단계에서 생성된 챠, 및 상기 챠를 제외한 생성물을 분류층 방식으로 가스화하는 제 2 열분해 단계를 포함하는, 폐기물로부터 합성가스를 생성하는 가스화 방법.And a second pyrolysis step of gasifying the car produced in the first pyrolysis step and a product except the car in a fractionation layer manner.
  18. 청구항 17에 있어서,The method according to claim 17,
    상기 제 2 열분해 단계는 마이크로웨이브 스팀 플라즈마 가스화기에 의해서 행해지는, 폐기물로부터 합성가스를 생성하는 가스화 방법.Wherein said second pyrolysis step is performed by a microwave steam plasma gasifier.
  19. 폐기물로부터 챠를 생성하기 위한 제 1 열분해 단계; 및A first pyrolysis step for producing tea from the waste; And
    상기 제 1 열분해 단계에서 생성된 챠를 분류층 방식으로 가스화하는 제 2 열분해 단계를 포함하는, 폐기물로부터 합성가스를 생성하는 가스화 방법.And a second pyrolysis step of gasifying the car generated in the first pyrolysis step in a fractionation layer manner.
  20. 청구항 19에 있어서,The method according to claim 19,
    상기 폐기물로부터 합성가스를 생성하는 가스화 방법은,Gasification method for generating a synthesis gas from the waste,
    상기 제 1 열분해 단계에서 생성된, 상기 챠를 제외한 다른 생성물을 열분해하는 제 3 열분해 단계를 포함하며,A third pyrolysis step of pyrolyzing other products except for the tea produced in the first pyrolysis step,
    상기 제 3 열분해 단계가 실시되는 온도는 다이옥신 및 타르 중 적어도 어느 하나가 분해되기 시작하는 온도 이상인, 폐기물로부터 합성가스를 생성하는 가스화 방법.And the temperature at which the third pyrolysis step is carried out is at least a temperature at least one of dioxin and tar begins to decompose, thereby producing syngas from the waste.
PCT/KR2015/007792 2015-04-30 2015-07-27 Gasification method for generating synthetic gas from waste, gasification apparatus for generating synthetic gas from waste, and power generation system comprising same WO2016175387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150061546A KR101669004B1 (en) 2015-04-30 2015-04-30 Gasification mehtod of producing syngas from waste, gasification apparatus for producing syngas from waste, and electric power generating system including the same
KR10-2015-0061546 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016175387A1 true WO2016175387A1 (en) 2016-11-03

Family

ID=57199181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007792 WO2016175387A1 (en) 2015-04-30 2015-07-27 Gasification method for generating synthetic gas from waste, gasification apparatus for generating synthetic gas from waste, and power generation system comprising same

Country Status (2)

Country Link
KR (1) KR101669004B1 (en)
WO (1) WO2016175387A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113692391A (en) * 2019-03-29 2021-11-23 伊士曼化工公司 Gasification of densified textiles and solid fossil fuels

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824602B (en) * 2017-11-21 2023-10-31 清华大学 Household garbage microwave plasma gasification and recovery integrated system
KR20200093097A (en) * 2019-01-25 2020-08-05 (주)바이오프랜즈 Disposal system for combustibility waste
EP3947265A4 (en) * 2019-03-29 2023-01-25 Eastman Chemical Company Gasification of densified textiles and solid fossil fuels to produce organic compounds
WO2020205410A1 (en) * 2019-03-29 2020-10-08 Eastman Chemical Company Gasification of size reduced textiles and solid fossil fuels to produce organic compounds
WO2020205392A1 (en) * 2019-03-29 2020-10-08 Eastman Chemical Company Gasification of size reduced textiles and solid fossil fuels
WO2020205404A1 (en) 2019-03-29 2020-10-08 Eastman Chemical Company Polymers, articles, and chemicals made from densified textile derived syngas
KR102280407B1 (en) 2021-02-02 2021-07-23 김강륜 Gasification apparatus having brown's gas generation module for treating combustible waste
KR102256662B1 (en) 2021-02-02 2021-05-27 김강륜 Gasification apparatus having electricity generating device using organic rankine cycle and brown's gas generating module for treating combustible waste
KR102256668B1 (en) 2021-02-02 2021-05-27 김강륜 Gasification apparatus having electricity generating device of organic rankine cycle for treating combustible waste
KR102254729B1 (en) 2021-02-08 2021-05-24 창조이앤이 주식회사 Hydrogen and carbon dioxide manufacturing method using combustible waste
KR102497426B1 (en) * 2021-03-18 2023-02-10 한국에너지기술연구원 Waste pyrolytic gasification device and Energy system having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0147900B1 (en) * 1995-12-22 1998-08-01 이종훈 High temperature and high pressure entrained flow reaction apparatus
JP2004115688A (en) * 2002-09-27 2004-04-15 Jfe Plant & Service Corp Method and apparatus for gasifying waste
WO2007037768A1 (en) * 2005-09-28 2007-04-05 Gep Yesil Enerji Uretim Teknolojileri Limited Sirketi Solid waste gasification
US20120124960A1 (en) * 2005-06-29 2012-05-24 Tetronics Limited Waste treatment process and apparatus
KR20140120310A (en) * 2011-12-29 2014-10-13 우한 카이디 엔지니어링 테크놀로지 리서치 인스티튜트 코오퍼레이션 엘티디. Microwave plasma biomass entrained flow gasifier and process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0147900B1 (en) * 1995-12-22 1998-08-01 이종훈 High temperature and high pressure entrained flow reaction apparatus
JP2004115688A (en) * 2002-09-27 2004-04-15 Jfe Plant & Service Corp Method and apparatus for gasifying waste
US20120124960A1 (en) * 2005-06-29 2012-05-24 Tetronics Limited Waste treatment process and apparatus
WO2007037768A1 (en) * 2005-09-28 2007-04-05 Gep Yesil Enerji Uretim Teknolojileri Limited Sirketi Solid waste gasification
KR20140120310A (en) * 2011-12-29 2014-10-13 우한 카이디 엔지니어링 테크놀로지 리서치 인스티튜트 코오퍼레이션 엘티디. Microwave plasma biomass entrained flow gasifier and process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113692391A (en) * 2019-03-29 2021-11-23 伊士曼化工公司 Gasification of densified textiles and solid fossil fuels
CN113692391B (en) * 2019-03-29 2024-04-23 伊士曼化工公司 Gasification of densified textiles and solid fossil fuels

Also Published As

Publication number Publication date
KR101669004B1 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
WO2016175387A1 (en) Gasification method for generating synthetic gas from waste, gasification apparatus for generating synthetic gas from waste, and power generation system comprising same
CA2594842C (en) Waste treatment process and apparatus
US8443741B2 (en) Waste treatment process and apparatus
EP0776962B1 (en) Method and apparatus for treating wastes by gasification
US5849050A (en) Process for generating burnable gas
KR100993908B1 (en) Method of transforming combustible wastes into energy fuel and Gasification system of combustible wastes
WO2009136737A9 (en) Combustible waste pyrolysis system and pyrolysis method
WO2015122688A1 (en) System for producing biochar, and method for producing biochar
JPH11290810A (en) Method and apparatus for waste disposal
GB2478797A (en) Treatment of wastes using two plasma chambers
CA2832892C (en) Waste treatment
US20150033755A1 (en) Treatment of a feedstock material
KR101097443B1 (en) Method of transforming combustible wastes into energy fuel and Gasification system of combustible wastes
KR100754932B1 (en) Gas Melting Furnaces Apparatus and Waste Disposal Progress by using Hydrogen-Oxygen Gas
JP2000279916A (en) Waste treatment
JP2000239671A (en) High-speed thermal decomposition method for coal
KR20100045049A (en) Method of transforming combustible wastes into energy fuel
JP2003261883A (en) Gasification apparatus for biomass such as wood
JP2003261884A (en) Gasification apparatus for biomass such as wood
ITTO980058A1 (en) PROCEDURE AND EQUIPMENT FOR THE PRODUCTION OF COMBUSTIBLE GAS FROM CARBON WASTE.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890828

Country of ref document: EP

Kind code of ref document: A1