WO2016175376A1 - System for 3d modeling of drop-off curve - Google Patents

System for 3d modeling of drop-off curve Download PDF

Info

Publication number
WO2016175376A1
WO2016175376A1 PCT/KR2015/006119 KR2015006119W WO2016175376A1 WO 2016175376 A1 WO2016175376 A1 WO 2016175376A1 KR 2015006119 W KR2015006119 W KR 2015006119W WO 2016175376 A1 WO2016175376 A1 WO 2016175376A1
Authority
WO
WIPO (PCT)
Prior art keywords
curve
unit
ellipsoid
modeling
water level
Prior art date
Application number
PCT/KR2015/006119
Other languages
French (fr)
Korean (ko)
Inventor
성주식
신진수
Original Assignee
(주)티아이랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)티아이랩 filed Critical (주)티아이랩
Publication of WO2016175376A1 publication Critical patent/WO2016175376A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics

Definitions

  • the present invention relates to a 3D modeling system for realizing a sleep lowering curve in the vicinity of a sump well or a positive well with augmented reality. More specifically, the present invention relates to a system for calculating equilibrium water level lines and modeling a water surface depression curve in 3D using information obtained from a collecting well or a positive well and nearby observation wells.
  • climate change affects various parts of the natural environment and human life. Among these effects, the increase in rainfall due to climate change increases the amount of water flowing into the ground or changes the flow of groundwater. It is called up.
  • the sink hole is a hole made by the hollow space below the sink, the sink hole that occurs mainly in Korea is a collapsed sink hole.
  • Sinkholes occur when rapid changes in groundwater flow occur.
  • the groundwater flow changes due to the increase in rainfall, the groundwater flow is often disturbed when excessive groundwater is used and various development projects are carried out, and water and sewage pipe leakage is the main cause.
  • Excessive use of groundwater causes the groundwater in the bedrock to escape, creating an empty space in the bedrock to create a sinkhole, and sinkholes are generated when the groundwater flows to the surface or changes in existing groundwater flow after the development project or development. .
  • Korean Registered Patent No. 10-1450233 has proposed a method for predicting groundwater main gun based on geographic information system for landslide analysis.
  • the distribution of groundwater was calculated in consideration of rainfall infiltration and groundwater flow based on geographic data of the Geographic Information System (GIS).
  • GIS Geographic Information System
  • the prior art method requires complicated input conditions such as rainfall intensity and rainfall duration cumulative penetration amount, and it is not only calculated using constantly changing parameters, but also the groundwater distribution can be calculated only on the ground where GIS topographical data exist. .
  • the present invention was derived to solve the problems of the prior art as described above, by implementing the groundwater distribution modeling the groundwater impact radius in augmented reality, an object of 3D modeling the groundwater distribution of the survey area by a simple calculation.
  • the input unit for receiving a measurement distance for implementing the sleep lowering curve;
  • a control unit for calculating the water surface depression curve using the distance and modeling an equal water level line;
  • an output unit configured to output the sleep lowering curve to augmented reality.
  • the input unit characterized in that for receiving the diameter of the ellipsoid of the iso-water level line to be implemented from the center of the positive well as the measurement distance.
  • the control unit may further include: an operation unit defining at least two ellipsoids connected to the water level of the measurement distance and the equal water level; And an implementation unit for implementing a water level curve connecting the ellipsoids.
  • the calculation unit may calculate the level of the measurement distance using the following equation 1 for the measurement distance received from the input unit.
  • K is the permeability coefficient (m / sec).
  • the operation unit is characterized in that to define the ellipsoid connecting the equal water level of the measurement distance using the following formula (2).
  • the calculating unit may define an eighth quartile of the ellipsoid using Equation 3 below.
  • the calculating unit may define an ellipsoid with respect to a measurement distance of a distance closer to the measurement distance by using Equation 4 below.
  • the implementation unit characterized in that for modeling the water level curve connecting the at least two ellipsoids defined in three dimensions.
  • the output unit characterized in that to implement the water level curve augmented reality in which the flow direction of the water.
  • the present invention is derived to solve the problems of the prior art as described above, by implementing the groundwater distribution modeling the groundwater impact radius in augmented reality, it is possible to 3D model the groundwater distribution of the survey area by a simple calculation.
  • FIG. 1 is a block diagram of a 3D modeling system of a sleep depression curve according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a surface distribution according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an embodiment for defining an ellipsoid forming an equal water level according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating another embodiment for defining an ellipsoid forming an equal water level according to an embodiment of the present invention.
  • FIG. 5 is a view showing another embodiment for defining an ellipsoid forming an equal water level according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of modeling a surface lowering curve according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an embodiment of a water surface lowering curve modeled on a positive well according to an embodiment of the present invention.
  • FIG. 8 is a view showing an embodiment of a sleep lowering curve implemented by augmented reality according to an embodiment of the present invention.
  • the input unit for receiving a measurement distance for implementing the sleep lowering curve;
  • a control unit for calculating the water surface depression curve using the distance and modeling an equal water level line;
  • an output unit configured to output the sleep lowering curve to augmented reality.
  • the input unit characterized in that for receiving the diameter of the ellipsoid of the iso-water level line to be implemented from the center of the positive well as the measurement distance.
  • the control unit may further include: an operation unit defining at least two ellipsoids connected to the water level of the measurement distance and the equal water level; And an implementation unit for implementing a water level curve connecting the ellipsoids.
  • the calculation unit may calculate the level of the measurement distance using the following equation 1 for the measurement distance received from the input unit.
  • K is the permeability coefficient (m / sec).
  • the operation unit is characterized in that to define the ellipsoid connecting the equal water level of the measurement distance using the following formula (2).
  • the calculating unit may define an eighth quartile of the ellipsoid using Equation 3 below.
  • the calculating unit may define an ellipsoid with respect to a measurement distance of a distance closer to the measurement distance by using Equation 4 below.
  • the implementation unit characterized in that for modeling the water level curve connecting the at least two ellipsoids defined in three dimensions.
  • the output unit characterized in that to implement the water level curve augmented reality in which the flow direction of the water.
  • FIG. 1 is a block diagram of a 3D modeling system of a sleep depression curve according to an embodiment of the present invention
  • FIG. 2 is a plan view showing a surface distribution according to an embodiment of the present invention.
  • the 3D modeling system of the sleep lowering curve is composed of an input unit 110, a control unit 120, and an output unit 130.
  • the role of each unit will be described later.
  • the pumping well 210 serves as a reference point for modeling a water drop curve with a well installed by arranging a suction pipe to pump sewage.
  • the wells 210 not only the wells 210 but also the wells that collect water by laying a collecting pipe in the aquifer 230 may also play a role as the wells 210. Therefore, hereinafter, the description will be made based on the positive crystal 110.
  • an observation well 220 is installed to grasp the physical and chemical properties of the groundwater at a constant depth in the aquifer 230.
  • a method of implementing a sleep declining curve using the distance between the positive well 210 and the observation well 220 and the height and distance of the water surface will be described.
  • the positive well 210 is spaced apart from the observation well 120 by a distance r1, and water is present in the positive well 210 by the height of hw from the bottom of the positive well 210.
  • R which is a range to implement a sleep deterioration curve, may be measured or measured in the air through an aircraft or drone. The measured R becomes the diameter of the ellipsoid which forms the isowater level described later from the center of the positive crystal.
  • the sleep lowering curve is implemented by connecting ellipsoids having different distances from the positive well 210 as shown in FIGS. 5 and 6. Therefore, ellipsoids are drawn for each level by calculating R1, R2, R3, etc., which are smaller than R ellipsoids, and the water surface curve can be modeled by connecting the water level curves based on the intercepts of the ellipsoids. In this case, the larger the number of ellipsoids, the more accurate the sleep depression curve can be realized.
  • the input unit 110 receives R1, R2, and R3 of a distance closer to R and R, which are the longest distances of the water drop curve to be implemented, from the center of the positive crystal 210.
  • the number of input R may be added or subtracted and is not limited to R1, R2, and R3.
  • the control unit 120 is composed of a calculation unit 121 and the implementation unit 122, the calculation unit 121 calculates the ellipsoid by the level of the water drop curve, that is, the ellipsoid of the iso-water level line.
  • the ellipsoid of the isoline is described in detail later through the embodiment of FIG. 3.
  • the implementation unit 122 generates a sleep lowering curve by connecting the calculated ellipsoid, and is finally modeled and output in 3D of augmented reality by the output unit 130.
  • the calculating unit 121 uses the distance r1 between the wells 210 and the observation well 120, the height hw of water filled from the bottom of the wells 210, the height h1 of the water observed in the observation well 220, and R described above. Calculate the height of the ellipsoid located at distance R, or the water level H.
  • the water level H is shown in Equation 1 below.
  • K is the coefficient of permeability to be.
  • FIG. 3 is a diagram illustrating an embodiment for defining an ellipsoid forming an equal water level.
  • the ellipsoid forming the surface of the river and the water level is defined as in Equation 2 below.
  • c is a distance spaced apart from the center of the ellipsoid by the center of the positive crystal 210.
  • ellipsoids that form isoforms can be defined by calculating the quartile and eighth quartile points of the ellipsoid.
  • Figure 4 shows another embodiment of defining an ellipsoid forming an equal water level. Each of the quartile points of the ellipsoid It can be obtained as shown in Equation 3 below.
  • the ellipsoid may be defined by setting s, p, q, r to the eighth quartile coordinates of the ellipsoid.
  • the reason for setting the eighth quartile is to indicate the direction of water flow in the water surface depression curve by connecting the eighth quartile of each ellipsoid in the process described below.
  • the line sq Rp is defined as Is defined as Therefore, in Equation 2 , when, Meet with s, , when, The point of meeting is q. , when, The point of meeting is p, , when, The point of meeting is the coordinate of r.
  • Equation 1 the height of the water surface is calculated using Equation 1 described above at a distance R1 closer than R, as shown in the embodiment of FIG. Define.
  • c1 is a distance spaced apart from the center of the ellipsoid by the center of the positive crystal 210.
  • Hn of Rn closer than R1 is calculated using Equation 1 and the ellipsoid of cn is calculated by defining c and c1 using Equations 2 and 4, thereby defining the ellipsoid of FIG. 5.
  • the ellipsoid segment means the eighth quartile set using Equation 2 and Equation 3, and the eighth quartile of each ellipsoid is connected in a straight line to express the flow of water in 3D modeling.
  • FIG. 7 and 8 illustrate an embodiment in which 3D modeling of a sleep lowering curve implemented by augmented reality by the output unit 130 is output. If the position coordinates of the ellipsoid center of the isospores are calculated from the calculation unit 121 from the position coordinates of latitude and longitude of the positive crystal 210, the isoline can be increased as shown in FIG. 8.
  • the 3D modeling system of sleep depression curve may be implemented in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • Program instructions recorded on the media may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
  • Magneto-optical media and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.
  • the present invention relates to a 3D modeling system for realizing a sleep lowering curve in the vicinity of a sump well or a positive well with augmented reality. More specifically, the present invention relates to a system for calculating equilibrium water level lines and modeling a water surface depression curve in 3D using information obtained from a collecting well or a positive well and nearby observation wells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The present invention relates to a 3D-modeling system for realizing, in augmented reality, a drop-off curve for the vicinity of a collecting well or a pumping well. More specifically, the present invention relates to a system for calculating a contour water level using information acquired from a monitoring well which is installed in a collecting well or a pumping well and in the vicinity thereof, and three-dimensionally modeling a drop-off curve.

Description

수면저하곡선의 3D 모델링 시스템3D modeling system of sleep curve
본 발명은 집수정 또는 양수정 부근의 수면저하곡선을 증강현실로 구현하기 위한 3D모델링 시스템에 관한 것이다. 더욱 상세하게는 집수정 또는 양수정 및 부근에 설치된 관측정으로부터 취득한 정보를 이용하여 등수위선을 계산하고 수면저하곡선을 3D로 모델링하는 시스템에 관한 것이다.The present invention relates to a 3D modeling system for realizing a sleep lowering curve in the vicinity of a sump well or a positive well with augmented reality. More specifically, the present invention relates to a system for calculating equilibrium water level lines and modeling a water surface depression curve in 3D using information obtained from a collecting well or a positive well and nearby observation wells.
최근 기후변화는 자연환경과 인간의 생활 등 여러 부분에 영향을 주고 있으며, 이러한 영향들 중 기후변화에 의한 강우량의 증가는 지하로 유입되는 물의 양을 증가시키거나 지하수의 흐름을 변화시켜 다양한 문제를 불러일으킨다. Recently, climate change affects various parts of the natural environment and human life. Among these effects, the increase in rainfall due to climate change increases the amount of water flowing into the ground or changes the flow of groundwater. It is called up.
최근 지반이 불안정하여 발생하는 싱크홀에 대한 문제점이 야기되고 있는데, 싱크홀은 하의 빈 공간이 침하를 일으켜 만들어 진 구멍으로, 국내에서 주로 발생하는 싱크홀은 붕괴형 싱크홀이다. 싱크홀은 지하수의 흐름에 급격한 변화가 일어났을 때 발생한다. 강우량의 증가에 의해 지하수의 흐름이 변하기도 하지만 주로, 과다한 지하수의 사용 및 다양한 개발 사업 추진 시 지하수의 흐름을 교란시키기도 하며, 상,하수도 관의 누수 등이 주된 원인이다. 지하수의 과다 사용은 암반층의 지하수를 빠져 나가게 하여 암반의 빈 공간을 만들어 싱크홀을 만들고, 개발 사업 추진 과정 또는 개발 이후 지하수를 지표로 유출시키거나 기존의 지하수 흐름이 변할 때 싱크홀이 발생하게 된다.Recently, there is a problem about the sink hole caused by the unstable ground, the sink hole is a hole made by the hollow space below the sink, the sink hole that occurs mainly in Korea is a collapsed sink hole. Sinkholes occur when rapid changes in groundwater flow occur. Although the groundwater flow changes due to the increase in rainfall, the groundwater flow is often disturbed when excessive groundwater is used and various development projects are carried out, and water and sewage pipe leakage is the main cause. Excessive use of groundwater causes the groundwater in the bedrock to escape, creating an empty space in the bedrock to create a sinkhole, and sinkholes are generated when the groundwater flows to the surface or changes in existing groundwater flow after the development project or development. .
따라서 이러한 재해를 미연에 방지하기 위해서는 지하수의 영향 반경을 미리 조사할 필요가 있는데, 지하수의 등수위선을 계산하려면 입력 조건이 많고 계산 조건이 복잡한 문제점이 있다. 종래의 지하수 분포 예측 방법으로 한국등록특허 제10-1450233호 "산사태해석을 위한 지리정보시스템 기반의 지하수 본포 예측 방법"이 제안되었다. 상기 선행 기술에서는 지리정보시스템(GIS)의 지형 자료를 기반으로 강우의 침투와 지하수의 흐름을 고려하여 지하수의 분포를 계산하였다.Therefore, in order to prevent such a disaster in advance, it is necessary to investigate the radius of influence of the groundwater in advance. To calculate the level water level line of the groundwater, there are many input conditions and complicated calculation conditions. As a conventional method for predicting the distribution of groundwater, Korean Registered Patent No. 10-1450233 has proposed a method for predicting groundwater main gun based on geographic information system for landslide analysis. In the prior art, the distribution of groundwater was calculated in consideration of rainfall infiltration and groundwater flow based on geographic data of the Geographic Information System (GIS).
그러나 선행 기술의 방법은 강우 강도와 강우 지속 시간 누적 침투량등 복잡한 입력 조건이 필요하고, 항시 변하는 파라미터를 이용하여 계산할 뿐만 아니라 GIS의 지형 자료가 존재하는 지반에 한해서만 지하수 분포를 계산할 수 있는 문제점이 있다.However, the prior art method requires complicated input conditions such as rainfall intensity and rainfall duration cumulative penetration amount, and it is not only calculated using constantly changing parameters, but also the groundwater distribution can be calculated only on the ground where GIS topographical data exist. .
본 발명은 상기와 같은 종래 기술의 문제점을 해결하고자 도출된 것으로서, 지하수 영향 반경인 지하수 분포 모델링을 증강현실로 구현하여, 조사 지역의 지하수 분포를 간략한 계산으로 3D모델링하는 것을 목적으로 한다.The present invention was derived to solve the problems of the prior art as described above, by implementing the groundwater distribution modeling the groundwater impact radius in augmented reality, an object of 3D modeling the groundwater distribution of the survey area by a simple calculation.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 실시 예에 따른 수면저하곡선의 3D 모델링 시스템은, 수면저하곡선을 구현하기 위한 측정 거리를 입력받는 입력부; 상기 거리를 이용하여 상기 수면저하곡선을 연산하고 등수위선을 모델링하는 제어부; 및 상기 수면저하곡선을 증강현실로 출력하는 출력부;를 포함한다.In order to achieve the above object, the 3D modeling system of the sleep lowering curve according to an embodiment of the present invention, the input unit for receiving a measurement distance for implementing the sleep lowering curve; A control unit for calculating the water surface depression curve using the distance and modeling an equal water level line; And an output unit configured to output the sleep lowering curve to augmented reality.
이때, 상기 입력부는, 양수정의 중심으로부터 구현될 상기 등수위선의 타원체의 지름을 상기 측정 거리로 입력받는 것을 특징으로 한다.In this case, the input unit, characterized in that for receiving the diameter of the ellipsoid of the iso-water level line to be implemented from the center of the positive well as the measurement distance.
또한, 상기 제어부는, 상기 측정 거리의 수위 및 상기 등수위로 연결된 적어도 2개 이상의 타원체를 정의하는 연산부; 및 상기 타원체들을 연결한 수위곡선을 구현하는 구현부;를 더 포함하는 것을 특징으로 한다.The control unit may further include: an operation unit defining at least two ellipsoids connected to the water level of the measurement distance and the equal water level; And an implementation unit for implementing a water level curve connecting the ellipsoids.
또한, 상기 연산부는, 상기 입력부에서 입력받은 측정 거리를 하기 식1을 이용하여 측정 거리의 수위를 계산하는 것을 특징으로 한다.The calculation unit may calculate the level of the measurement distance using the following equation 1 for the measurement distance received from the input unit.
(식1)(Eq. 1)
Figure PCTKR2015006119-appb-I000001
Figure PCTKR2015006119-appb-I000001
이때, Q는 양수율
Figure PCTKR2015006119-appb-I000002
, K는 투수계수(m/sec)이다.
Where Q is the positive rate
Figure PCTKR2015006119-appb-I000002
, K is the permeability coefficient (m / sec).
또한, 상기 연산부는, 상기 측정 거리의 등수위를 연결한 상기 타원체를 하기 식2를 이용하여 정의하는 것을 특징으로 한다.In addition, the operation unit is characterized in that to define the ellipsoid connecting the equal water level of the measurement distance using the following formula (2).
(식2)(Eq. 2)
Figure PCTKR2015006119-appb-I000003
Figure PCTKR2015006119-appb-I000004
Figure PCTKR2015006119-appb-I000003
Figure PCTKR2015006119-appb-I000004
또한, 상기 연산부는, 상기 타원체의 8분위를 하기 식3을 이용하여 정의하는 것을 특징으로 한다.  The calculating unit may define an eighth quartile of the ellipsoid using Equation 3 below.
(식3)(Eq. 3)
Figure PCTKR2015006119-appb-I000005
Figure PCTKR2015006119-appb-I000006
Figure PCTKR2015006119-appb-I000007
Figure PCTKR2015006119-appb-I000005
Figure PCTKR2015006119-appb-I000006
Figure PCTKR2015006119-appb-I000007
또한, 상기 연산부는, 상기 측정 거리보다 가까운 거리의 측정 거리에 대한 타원체를 하기 식4를 이용하여 정의하는 것을 특징으로 한다. The calculating unit may define an ellipsoid with respect to a measurement distance of a distance closer to the measurement distance by using Equation 4 below.
(식4)(Eq. 4)
Figure PCTKR2015006119-appb-I000008
Figure PCTKR2015006119-appb-I000009
Figure PCTKR2015006119-appb-I000010
Figure PCTKR2015006119-appb-I000011
Figure PCTKR2015006119-appb-I000008
Figure PCTKR2015006119-appb-I000009
Figure PCTKR2015006119-appb-I000010
Figure PCTKR2015006119-appb-I000011
또한, 상기 구현부는, 상기 정의된 적어도 2개 이상의 타원체를 연결한 상기 수위곡선을 3차원으로 모델링 하는 것을 특징으로 한다.In addition, the implementation unit, characterized in that for modeling the water level curve connecting the at least two ellipsoids defined in three dimensions.
또한, 상기 출력부는, 상기 수위곡선을 물의 흐름 방향이 표시된 증강현실로 구현하는 것을 특징으로 한다.In addition, the output unit, characterized in that to implement the water level curve augmented reality in which the flow direction of the water.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하고자 도출된 것으로서, 지하수 영향 반경인 지하수 분포 모델링을 증강현실로 구현하여, 조사 지역의 지하수 분포를 간략한 계산으로 3D모델링할 수 있다.The present invention is derived to solve the problems of the prior art as described above, by implementing the groundwater distribution modeling the groundwater impact radius in augmented reality, it is possible to 3D model the groundwater distribution of the survey area by a simple calculation.
도 1은 본 발명의 일 실시예에 따른 수면저하곡선의 3D 모델링 시스템의 블록도를 나타낸 도면이다.1 is a block diagram of a 3D modeling system of a sleep depression curve according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 수면 분포를 도시한 평면도이다.2 is a plan view showing a surface distribution according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 등수위를 이루는 타원체를 정의하기 위한 실시예를 도시한 도면이다.3 is a diagram illustrating an embodiment for defining an ellipsoid forming an equal water level according to an embodiment of the present invention.
도 4은 본 발명의 일 실시예에 따른 등수위를 이루는 타원체를 정의하기 위한 다른 실시예를 도시한 도면이다.FIG. 4 is a diagram illustrating another embodiment for defining an ellipsoid forming an equal water level according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 등수위를 이루는 타원체를 정의하기 위한 다른 실시예를 도시한 도면이다.5 is a view showing another embodiment for defining an ellipsoid forming an equal water level according to an embodiment of the present invention.
도 6는 본 발명의 일 실시예에 따른 수면면저하곡선을 모델링한 실시예를 도시한 도면이다.6 is a diagram illustrating an example of modeling a surface lowering curve according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 양수정에 모델링된 수면저하곡선의 실시예를 도시한 도면이다.7 is a diagram illustrating an embodiment of a water surface lowering curve modeled on a positive well according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 증강현실로 구현된 수면저하곡선의 실시예를 도시한 도면이다.8 is a view showing an embodiment of a sleep lowering curve implemented by augmented reality according to an embodiment of the present invention.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 실시 예에 따른 수면저하곡선의 3D 모델링 시스템은, 수면저하곡선을 구현하기 위한 측정 거리를 입력받는 입력부; 상기 거리를 이용하여 상기 수면저하곡선을 연산하고 등수위선을 모델링하는 제어부; 및 상기 수면저하곡선을 증강현실로 출력하는 출력부;를 포함한다.In order to achieve the above object, the 3D modeling system of the sleep lowering curve according to an embodiment of the present invention, the input unit for receiving a measurement distance for implementing the sleep lowering curve; A control unit for calculating the water surface depression curve using the distance and modeling an equal water level line; And an output unit configured to output the sleep lowering curve to augmented reality.
이때, 상기 입력부는, 양수정의 중심으로부터 구현될 상기 등수위선의 타원체의 지름을 상기 측정 거리로 입력받는 것을 특징으로 한다.In this case, the input unit, characterized in that for receiving the diameter of the ellipsoid of the iso-water level line to be implemented from the center of the positive well as the measurement distance.
또한, 상기 제어부는, 상기 측정 거리의 수위 및 상기 등수위로 연결된 적어도 2개 이상의 타원체를 정의하는 연산부; 및 상기 타원체들을 연결한 수위곡선을 구현하는 구현부;를 더 포함하는 것을 특징으로 한다.The control unit may further include: an operation unit defining at least two ellipsoids connected to the water level of the measurement distance and the equal water level; And an implementation unit for implementing a water level curve connecting the ellipsoids.
또한, 상기 연산부는, 상기 입력부에서 입력받은 측정 거리를 하기 식1을 이용하여 측정 거리의 수위를 계산하는 것을 특징으로 한다.The calculation unit may calculate the level of the measurement distance using the following equation 1 for the measurement distance received from the input unit.
(식1)(Eq. 1)
Figure PCTKR2015006119-appb-I000012
Figure PCTKR2015006119-appb-I000012
이때, Q는 양수율
Figure PCTKR2015006119-appb-I000013
, K는 투수계수(m/sec)이다.
Where Q is the positive rate
Figure PCTKR2015006119-appb-I000013
, K is the permeability coefficient (m / sec).
또한, 상기 연산부는, 상기 측정 거리의 등수위를 연결한 상기 타원체를 하기 식2를 이용하여 정의하는 것을 특징으로 한다.In addition, the operation unit is characterized in that to define the ellipsoid connecting the equal water level of the measurement distance using the following formula (2).
(식2)(Eq. 2)
Figure PCTKR2015006119-appb-I000014
Figure PCTKR2015006119-appb-I000015
Figure PCTKR2015006119-appb-I000014
Figure PCTKR2015006119-appb-I000015
또한, 상기 연산부는, 상기 타원체의 8분위를 하기 식3을 이용하여 정의하는 것을 특징으로 한다.The calculating unit may define an eighth quartile of the ellipsoid using Equation 3 below.
(식3)(Eq. 3)
Figure PCTKR2015006119-appb-I000016
Figure PCTKR2015006119-appb-I000017
Figure PCTKR2015006119-appb-I000018
Figure PCTKR2015006119-appb-I000016
Figure PCTKR2015006119-appb-I000017
Figure PCTKR2015006119-appb-I000018
또한, 상기 연산부는, 상기 측정 거리보다 가까운 거리의 측정 거리에 대한 타원체를 하기 식4를 이용하여 정의하는 것을 특징으로 한다.The calculating unit may define an ellipsoid with respect to a measurement distance of a distance closer to the measurement distance by using Equation 4 below.
(식4)(Eq. 4)
Figure PCTKR2015006119-appb-I000019
Figure PCTKR2015006119-appb-I000020
Figure PCTKR2015006119-appb-I000021
Figure PCTKR2015006119-appb-I000022
Figure PCTKR2015006119-appb-I000019
Figure PCTKR2015006119-appb-I000020
Figure PCTKR2015006119-appb-I000021
Figure PCTKR2015006119-appb-I000022
또한, 상기 구현부는, 상기 정의된 적어도 2개 이상의 타원체를 연결한 상기 수위곡선을 3차원으로 모델링 하는 것을 특징으로 한다.In addition, the implementation unit, characterized in that for modeling the water level curve connecting the at least two ellipsoids defined in three dimensions.
또한, 상기 출력부는, 상기 수위곡선을 물의 흐름 방향이 표시된 증강현실로 구현하는 것을 특징으로 한다.In addition, the output unit, characterized in that to implement the water level curve augmented reality in which the flow direction of the water.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략하기로 한다. 또한 본 발명의 실시예들을 설명함에 있어 구체적인 수치는 실시예에 불과하다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, if it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, in describing the embodiments of the present invention, specific numerical values are merely examples.
도 1은 본 발명의 일 실시예에 따른 수면저하곡선의 3D 모델링 시스템의 블록도를 도시하며, 도 2는 본 발명의 일 실시예에 따른 수면 분포를 도시한 평면도이다.1 is a block diagram of a 3D modeling system of a sleep depression curve according to an embodiment of the present invention, and FIG. 2 is a plan view showing a surface distribution according to an embodiment of the present invention.
수면저하곡선의 3D 모델링 시스템은 입력부(110), 제어부(120), 출력부(130)로 구성되며 각 부의 역할은 후술하도록 한다. 도 2를 참고하면, 양수정(210)은 하수를 양수하기 위해 흡입관을 배치하여 설치한 우물로 수면저하곡선을 모델링 하기 위한 기준점이 된다. 이때 양수정(210)뿐만 아니라 대수층(230)에 집수관을 매설하여 물을 모으는 우물인 집수정 또한 양수정(210) 같은 역할을 수행할 수 있다. 따라서 이하에서는 양수정(110)을 기준으로 설명한다.The 3D modeling system of the sleep lowering curve is composed of an input unit 110, a control unit 120, and an output unit 130. The role of each unit will be described later. Referring to FIG. 2, the pumping well 210 serves as a reference point for modeling a water drop curve with a well installed by arranging a suction pipe to pump sewage. At this time, not only the wells 210 but also the wells that collect water by laying a collecting pipe in the aquifer 230 may also play a role as the wells 210. Therefore, hereinafter, the description will be made based on the positive crystal 110.
양수정(210)의 근처에는 대수층(230)내의 일정한 깊이에서의 지하수의 물리 화학적인 성질을 파악하기 위한 관측정(220)이 설치된다. 이하에서는 양수정(210)과 관측정(220) 사이의 거리 및 수면의 높이 및 거리를 이용하여 수면저하곡선을 구현하는 방법을 설명한다.In the vicinity of the positive well 210, an observation well 220 is installed to grasp the physical and chemical properties of the groundwater at a constant depth in the aquifer 230. Hereinafter, a method of implementing a sleep declining curve using the distance between the positive well 210 and the observation well 220 and the height and distance of the water surface will be described.
도 2와 같이 양수정(210)은 관측정(120)과 r1의 거리만큼 이격되어있고, 양수정(210)내부에는 양수정(210)저면으로부터 hw의 높이만큼 물이 존재한다. 물은 하천에서 지하로 유입되어 대수층을 이루며, 도 1의 실시예인 대수층(230)과 같이 분포될 수 있으며, 관측정(220)은 대수층(230)을 감지한 높이인 h1을 관측할 수 있다. 이때 수면저하곡선을 구현하고자 하는 범위인 R은 실측하거나 항공기, 드론 등을 통해 공중에서 측정할 수 있다. 측정된 R은 양수정의 중심으로부터 후술하는 등수위를 이루는 타원체의 지름이 된다. 수면저하곡선은 도 5 및 도6과 같이 양수정(210)과의 거리가 서로 다른 타원체들을 연결함으로써 구현된다. 따라서, R의 타원체뿐만 아니라 R보다 작은 R1, R2, R3등을 계산하여 수위 별로 타원체가 그려 지게 되며, 타원체의 절편을 기준으로 수위 곡선을 연결하여 수면저하곡선을 모델링 할 수 있다. 이때, 타원체의 개수가 많을수록 더욱 정확한 수면저하곡선을 구현할 수 있다.As shown in FIG. 2, the positive well 210 is spaced apart from the observation well 120 by a distance r1, and water is present in the positive well 210 by the height of hw from the bottom of the positive well 210. Water flows into the basement from the river to form an aquifer and may be distributed as in the aquifer 230 of the embodiment of FIG. 1, and the observation well 220 may observe h1, which is the height at which the aquifer is detected. In this case, R, which is a range to implement a sleep deterioration curve, may be measured or measured in the air through an aircraft or drone. The measured R becomes the diameter of the ellipsoid which forms the isowater level described later from the center of the positive crystal. The sleep lowering curve is implemented by connecting ellipsoids having different distances from the positive well 210 as shown in FIGS. 5 and 6. Therefore, ellipsoids are drawn for each level by calculating R1, R2, R3, etc., which are smaller than R ellipsoids, and the water surface curve can be modeled by connecting the water level curves based on the intercepts of the ellipsoids. In this case, the larger the number of ellipsoids, the more accurate the sleep depression curve can be realized.
입력부(110)는 상술하였듯이 양수정(210)의 중심으로부터 구현하고자 하는 수면저하곡선의 최장거리인 R 및 R보다 가까운 거리의 R1, R2, R3를 입력 받는다. 이때 입력 받는 R의 개수는 가감될 수 있으며 R1, R2, R3에 한정되지 않는다.As described above, the input unit 110 receives R1, R2, and R3 of a distance closer to R and R, which are the longest distances of the water drop curve to be implemented, from the center of the positive crystal 210. At this time, the number of input R may be added or subtracted and is not limited to R1, R2, and R3.
입력부(110)로 입력된 R은 제어부(120)에서 계산된다. 제어부(120)는 연산부(121)와 구현부(122)로 구성되며, 연산부(121)는 수면저하곡선의 수위 별 타원체 즉 등수위선의 타원체를 계산한다. 등수위선의 타원체는 도 3의 실시예를 통해 상세히 후술한다. 구현부(122)는 계산된 타원체를 연결하여 수면저하곡선을 생성하고, 최종적으로 출력부(130)에 의해 증강현실의 3D로 모델링되어 출력된다.R input to the input unit 110 is calculated by the control unit 120. The control unit 120 is composed of a calculation unit 121 and the implementation unit 122, the calculation unit 121 calculates the ellipsoid by the level of the water drop curve, that is, the ellipsoid of the iso-water level line. The ellipsoid of the isoline is described in detail later through the embodiment of FIG. 3. The implementation unit 122 generates a sleep lowering curve by connecting the calculated ellipsoid, and is finally modeled and output in 3D of augmented reality by the output unit 130.
연산부(121)은 양수정(210)과 관측정(120)의 이격된 거리 r1, 양수정(210)저면으로부터 차 있는 물의 높이 hw, 관측정(220)에 관측된 물의 높이 h1, 및 상술한 R을 이용하여 R 거리에 위치한 타원체의 높이 즉 수위 H를 계산한다. 수위 H는 하기의 식1과같다.The calculating unit 121 uses the distance r1 between the wells 210 and the observation well 120, the height hw of water filled from the bottom of the wells 210, the height h1 of the water observed in the observation well 220, and R described above. Calculate the height of the ellipsoid located at distance R, or the water level H. The water level H is shown in Equation 1 below.
(식1)(Eq. 1)
Figure PCTKR2015006119-appb-I000023
Figure PCTKR2015006119-appb-I000023
이때, Q는 양수율
Figure PCTKR2015006119-appb-I000024
, K는 투수계수
Figure PCTKR2015006119-appb-I000025
이다.
Where Q is the positive rate
Figure PCTKR2015006119-appb-I000024
, K is the coefficient of permeability
Figure PCTKR2015006119-appb-I000025
to be.
도 3은 등수위를 이루는 타원체를 정의하기 위한 실시예를 도시한 도면이다. 하천 수면과 등수위를 이루는 타원체는 하기 식2와 같이 정의된다. 이때 c는 타원체의 중심에서 양수정(210)의 중심만큼 이격된 거리이다.FIG. 3 is a diagram illustrating an embodiment for defining an ellipsoid forming an equal water level. The ellipsoid forming the surface of the river and the water level is defined as in Equation 2 below. In this case, c is a distance spaced apart from the center of the ellipsoid by the center of the positive crystal 210.
(식2)(Eq. 2)
Figure PCTKR2015006119-appb-I000026
Figure PCTKR2015006119-appb-I000027
Figure PCTKR2015006119-appb-I000028
Figure PCTKR2015006119-appb-I000026
Figure PCTKR2015006119-appb-I000027
Figure PCTKR2015006119-appb-I000028
또한 세밀한 타원체를 정의하기 위해 타원체의 4분위 점 및 8분위 점을 계산하여 등수위를 이루는 타원체를 정의할 수 있다. 도 4는 등수위를 이루는 타원체를 정의하는 다른 일 실시예를 나타낸다. 타원체의 4분위 점을 각각
Figure PCTKR2015006119-appb-I000029
라 하며, 하기의 식 3과 같이 구할 수 있다.
In addition, in order to define fine ellipsoids, ellipsoids that form isoforms can be defined by calculating the quartile and eighth quartile points of the ellipsoid. Figure 4 shows another embodiment of defining an ellipsoid forming an equal water level. Each of the quartile points of the ellipsoid
Figure PCTKR2015006119-appb-I000029
It can be obtained as shown in Equation 3 below.
(식3)(Eq. 3)
Figure PCTKR2015006119-appb-I000030
,
Figure PCTKR2015006119-appb-I000031
,
Figure PCTKR2015006119-appb-I000032
,
Figure PCTKR2015006119-appb-I000033
Figure PCTKR2015006119-appb-I000030
,
Figure PCTKR2015006119-appb-I000031
,
Figure PCTKR2015006119-appb-I000032
,
Figure PCTKR2015006119-appb-I000033
또한, 타원체의 8분위 좌표 각각 s,p,q,r로 설정하여 타원체를 정의할 수 있다. 8분위를 설정하는 이유는 후술하는 과정에서 각 타원체의 8분위를 연결하여 수면저하곡선에서 물이 흐르는 방향을 나타내기 위함이다. 도 4의 각
Figure PCTKR2015006119-appb-I000034
와 각
Figure PCTKR2015006119-appb-I000035
의 크기는 동일하므로, 선sq는
Figure PCTKR2015006119-appb-I000036
로 정의 되며, 선rp는 로 정의된다. 따라서 상기식 2에서
Figure PCTKR2015006119-appb-I000038
,
Figure PCTKR2015006119-appb-I000039
일 때,
Figure PCTKR2015006119-appb-I000040
와 만나는 점은 s이고,
Figure PCTKR2015006119-appb-I000041
,
Figure PCTKR2015006119-appb-I000042
일 때,
Figure PCTKR2015006119-appb-I000043
와 만나는 점은 q가 된다.
Figure PCTKR2015006119-appb-I000044
,
Figure PCTKR2015006119-appb-I000045
일 때,
Figure PCTKR2015006119-appb-I000046
와 만나는 점은 p가 되고,
Figure PCTKR2015006119-appb-I000047
,
Figure PCTKR2015006119-appb-I000048
일 때,
Figure PCTKR2015006119-appb-I000049
와 만나는 점은 r의 좌표가 된다.
In addition, the ellipsoid may be defined by setting s, p, q, r to the eighth quartile coordinates of the ellipsoid. The reason for setting the eighth quartile is to indicate the direction of water flow in the water surface depression curve by connecting the eighth quartile of each ellipsoid in the process described below. Angle of FIG. 4
Figure PCTKR2015006119-appb-I000034
And each
Figure PCTKR2015006119-appb-I000035
Since the size of is the same, the line sq
Figure PCTKR2015006119-appb-I000036
Rp is defined as Is defined as Therefore, in Equation 2
Figure PCTKR2015006119-appb-I000038
,
Figure PCTKR2015006119-appb-I000039
when,
Figure PCTKR2015006119-appb-I000040
Meet with s,
Figure PCTKR2015006119-appb-I000041
,
Figure PCTKR2015006119-appb-I000042
when,
Figure PCTKR2015006119-appb-I000043
The point of meeting is q.
Figure PCTKR2015006119-appb-I000044
,
Figure PCTKR2015006119-appb-I000045
when,
Figure PCTKR2015006119-appb-I000046
The point of meeting is p,
Figure PCTKR2015006119-appb-I000047
,
Figure PCTKR2015006119-appb-I000048
when,
Figure PCTKR2015006119-appb-I000049
The point of meeting is the coordinate of r.
상술한 도 3의 과정을 통해 R거리의 타원체를 정의하였다. 계속해서 등수위선을 그리기 위해 도 4의 실시예와 같이 R보다 가까운 거리의 R1에서 수면의 높이 H1를 상술한 식1을 이용하여 계산하고, 하기의 식4을 이용하여 H1의 등수위를 이루는 타원체를 정의한다. 이때 c1은 타원체의 중심에서 양수정(210)의 중심만큼 이격된 거리이다.Through the process of FIG. 3 described above, an ellipsoid of R distance was defined. Subsequently, the height H1 of the water surface is calculated using Equation 1 described above at a distance R1 closer than R, as shown in the embodiment of FIG. Define. At this time, c1 is a distance spaced apart from the center of the ellipsoid by the center of the positive crystal 210.
(식4)(Eq. 4)
Figure PCTKR2015006119-appb-I000050
Figure PCTKR2015006119-appb-I000051
Figure PCTKR2015006119-appb-I000052
Figure PCTKR2015006119-appb-I000053
Figure PCTKR2015006119-appb-I000050
Figure PCTKR2015006119-appb-I000051
Figure PCTKR2015006119-appb-I000052
Figure PCTKR2015006119-appb-I000053
도 5의 과정과 마찬가지로 R1보다 가까운 거리의 Rn의 Hn를 식1을 이용하여 계산하고 식2 및 식4를 이용해 c 및 c1을 구한 것과 같이 cn을 계산한 타원체를 정의함으로써, 도 5의 실시예와 같이 등수위선을 정의할 수 있다. 구현부(122)는 타원체의 절편을 기준으로 수위곡선을 구현하여 도 6와 같이 수면저하곡선을 모델링할 수 있다. 타원체의 절편이란 상기 식 2 및 식3을 이용하여 설정한 8분위를 뜻하며, 각 타원체의 8분위를 직선으로 연결하여 3D모델링 상에서 물의 흐름을 도 6과 같이 표현할 수 있다. 도 7 및 도 8은 출력부(130)에 의해 증강현실로 구현된 수면저하곡선의 3D모델링이 출력된 실시예를 도시한다. 양수정(210)의 위도, 경도인 위치 좌표로부터, 등수위선의 타원체 중심의 위치 좌표를 연산부(121)에서 계산하면 도 8과 같이 등수위선의 증강이 가능하다.In the same manner as in the process of FIG. 5, Hn of Rn closer than R1 is calculated using Equation 1 and the ellipsoid of cn is calculated by defining c and c1 using Equations 2 and 4, thereby defining the ellipsoid of FIG. 5. You can define the isolines as The implementation unit 122 may model the water surface curve as shown in FIG. 6 by implementing the water level curve based on the intercept of the ellipsoid. The ellipsoid segment means the eighth quartile set using Equation 2 and Equation 3, and the eighth quartile of each ellipsoid is connected in a straight line to express the flow of water in 3D modeling. 7 and 8 illustrate an embodiment in which 3D modeling of a sleep lowering curve implemented by augmented reality by the output unit 130 is output. If the position coordinates of the ellipsoid center of the isospores are calculated from the calculation unit 121 from the position coordinates of latitude and longitude of the positive crystal 210, the isoline can be increased as shown in FIG. 8.
본 발명의 일 실시예에 따른 수면저하곡선의 3D 모델링 시스템은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The 3D modeling system of sleep depression curve according to an embodiment of the present invention may be implemented in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium. The computer readable medium may include program instructions, data files, data structures, etc. alone or in combination. Program instructions recorded on the media may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks. Magneto-optical media, and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like. Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like. The hardware device described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.In the present invention as described above has been described by the specific embodiments, such as specific components and limited embodiments and drawings, but this is provided to help a more general understanding of the present invention, the present invention is not limited to the above embodiments. For those skilled in the art, various modifications and variations are possible from these descriptions.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and all of the equivalents and equivalents of the claims, as well as the following claims, will fall within the scope of the present invention. .
본 발명은 집수정 또는 양수정 부근의 수면저하곡선을 증강현실로 구현하기 위한 3D모델링 시스템에 관한 것이다. 더욱 상세하게는 집수정 또는 양수정 및 부근에 설치된 관측정으로부터 취득한 정보를 이용하여 등수위선을 계산하고 수면저하곡선을 3D로 모델링하는 시스템에 관한 것이다.The present invention relates to a 3D modeling system for realizing a sleep lowering curve in the vicinity of a sump well or a positive well with augmented reality. More specifically, the present invention relates to a system for calculating equilibrium water level lines and modeling a water surface depression curve in 3D using information obtained from a collecting well or a positive well and nearby observation wells.

Claims (9)

  1. 수면저하곡선을 구현하기 위한 측정 거리를 입력받는 입력부;An input unit to receive a measurement distance for implementing a sleep depression curve;
    상기 거리를 이용하여 상기 수면저하곡선을 연산하고 등수위선을 모델링하는 제어부; 및A control unit for calculating the water surface depression curve using the distance and modeling an equal water level line; And
    상기 수면저하곡선을 증강현실로 출력하는 출력부;를 포함하는 수면저하곡선의 3D 모델링 시스템.3D modeling system of the sleep lower curve comprising a; output unit for outputting the sleep lower curve to augmented reality.
  2. 제 1항에 있어서,The method of claim 1,
    상기 입력부는,The input unit,
    양수정의 중심으로부터 구현될 상기 등수위선의 타원체의 지름을 상기 측정 거리로 입력받는 것을 특징으로 하는 수면저하곡선의 3D 모델링 시스템.The 3D modeling system of the water drop curve, characterized in that for receiving the diameter of the ellipsoid of the iso-water level to be implemented from the center of the positive well as the measurement distance.
  3. 제 1항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    상기 측정 거리의 수위 및 상기 등수위로 연결된 적어도 2개 이상의 타원체를 정의하는 연산부; 및 상기 타원체들을 연결한 수위곡선을 구현하는 구현부;를 더 포함하는 것을 특징으로 하는 수면저하곡선의 3D 모델링 시스템.An operation unit defining at least two ellipsoids connected with the water level of the measurement distance and the equivalence level; And an implementation unit for implementing a water level curve connecting the ellipsoids.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 연산부는,The calculation unit,
    상기 입력부에서 입력받은 측정 거리를 하기 식1을 이용하여 측정 거리의 수위를 계산하는 것을 특징으로 하는 수면저하곡선의 3D 모델링 시스템.The 3D modeling system of the surface falling curve, characterized in that for calculating the level of the measured distance using the following equation 1 measured distance received from the input unit.
    (식1)(Eq. 1)
    Figure PCTKR2015006119-appb-I000054
    Figure PCTKR2015006119-appb-I000054
    이때, Q는 양수율
    Figure PCTKR2015006119-appb-I000055
    , K는 투수계수(m/sec)이다.
    Where Q is the positive rate
    Figure PCTKR2015006119-appb-I000055
    , K is the permeability coefficient (m / sec).
  5. 제 3항에 있어서,The method of claim 3, wherein
    상기 연산부는,The calculation unit,
    상기 측정 거리의 등수위를 연결한 상기 타원체를 하기 식2를 이용하여 정의하는 것을 특징으로 하는 수면저하곡선의 3D 모델링 시스템.3D modeling system of the water surface lowering curve, characterized in that the ellipsoid connecting the equal level of the measured distance is defined using the following Equation 2.
    (식2)(Eq. 2)
    Figure PCTKR2015006119-appb-I000056
    Figure PCTKR2015006119-appb-I000057
    Figure PCTKR2015006119-appb-I000056
    Figure PCTKR2015006119-appb-I000057
  6. 제 3항에 있어서,The method of claim 3, wherein
    상기 연산부는,The calculation unit,
    상기 타원체의 8분위를 하기 식3을 이용하여 정의하는 것을 특징으로 하는 수면 저하곡선의 3D모델링 시스템.The eighth quartile of the ellipsoid is defined using Equation 3 below.
    (식3)(Eq. 3)
    Figure PCTKR2015006119-appb-I000058
    Figure PCTKR2015006119-appb-I000059
    Figure PCTKR2015006119-appb-I000060
    Figure PCTKR2015006119-appb-I000058
    Figure PCTKR2015006119-appb-I000059
    Figure PCTKR2015006119-appb-I000060
  7. 제 3항에 있어서,The method of claim 3, wherein
    상기 연산부는,The calculation unit,
    상기 측정 거리보다 가까운 거리의 측정 거리에 대한 타원체를 하기 식4를 이용하여 정의하는 것을 특징으로 하는 수면저하곡선의 3D 모델링 시스템.3D modeling system of the surface depression curve characterized in that the ellipsoid for the measured distance of the distance closer to the measured distance is defined using the following equation (4).
    (식4)(Eq. 4)
    Figure PCTKR2015006119-appb-I000061
    Figure PCTKR2015006119-appb-I000062
    Figure PCTKR2015006119-appb-I000063
    Figure PCTKR2015006119-appb-I000064
    Figure PCTKR2015006119-appb-I000061
    Figure PCTKR2015006119-appb-I000062
    Figure PCTKR2015006119-appb-I000063
    Figure PCTKR2015006119-appb-I000064
  8. 제 3항에 있어서,The method of claim 3, wherein
    상기 구현부는,The implementation unit,
    상기 정의된 적어도 2개 이상의 타원체를 연결한 상기 수위곡선을 3차원으로 모델링 하는 것을 특징으로 하는 수면저하곡선의 3D 모델링 시스템.3D modeling of the water surface lowering curve, characterized in that for modeling the water level curve connecting the at least two ellipsoids defined in three dimensions.
  9. 제 1항에 있어서,The method of claim 1,
    상기 출력부는,The output unit,
    상기 수위곡선을 물의 흐름 방향이 표시된 증강현실로 구현하는 것을 특징으로 하는 수면저하곡선의 3D 모델링 시스템.3D modeling system of the water surface lowering curve, characterized in that to implement the water level curve in the augmented reality displayed the flow direction of the water.
PCT/KR2015/006119 2015-04-28 2015-06-17 System for 3d modeling of drop-off curve WO2016175376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0059592 2015-04-28
KR20150059592 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016175376A1 true WO2016175376A1 (en) 2016-11-03

Family

ID=57199378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006119 WO2016175376A1 (en) 2015-04-28 2015-06-17 System for 3d modeling of drop-off curve

Country Status (1)

Country Link
WO (1) WO2016175376A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091295A (en) * 2003-09-19 2005-04-07 Makoto Nishigaki Groundwater level survey method
KR20070111942A (en) * 2006-05-19 2007-11-22 다이치로 구스노세 Three-dimensional surveying system, three-dimensional image making system and three-dimensional image making method in the bottom of the water
KR20120103015A (en) * 2011-03-09 2012-09-19 한국지질자원연구원 Method and system for managing groundwater well
US20130138349A1 (en) * 2010-05-10 2013-05-30 Groundswell Technologies, Inc. Method and apparatus for groundwater basin storage tracking, remediation performance monitoring and optimization
KR101450233B1 (en) * 2013-07-03 2014-10-15 연세대학교 산학협력단 Predicting method groundwater distribution to precipitation based on gis for a landslslide analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091295A (en) * 2003-09-19 2005-04-07 Makoto Nishigaki Groundwater level survey method
KR20070111942A (en) * 2006-05-19 2007-11-22 다이치로 구스노세 Three-dimensional surveying system, three-dimensional image making system and three-dimensional image making method in the bottom of the water
US20130138349A1 (en) * 2010-05-10 2013-05-30 Groundswell Technologies, Inc. Method and apparatus for groundwater basin storage tracking, remediation performance monitoring and optimization
KR20120103015A (en) * 2011-03-09 2012-09-19 한국지질자원연구원 Method and system for managing groundwater well
KR101450233B1 (en) * 2013-07-03 2014-10-15 연세대학교 산학협력단 Predicting method groundwater distribution to precipitation based on gis for a landslslide analysis

Similar Documents

Publication Publication Date Title
Kaufmann et al. Karst aquifer evolution in fractured rocks
CN103983234B (en) Rock stratum attitude measurement method based on intelligent mobile equipment
CN109436197A (en) Interior estimates act on coupled motions and the dynamometry experimental system for simulating of lower ocean floating structure
CN101183004A (en) Method for online real-time removing oscillation error of optical fibre gyroscope SINS system
CN110489928A (en) Shallow buried coal seam mining area water flowing fractured zone development height method for predicting and system
CN110135069A (en) Sediment characteristics acquisition methods when water-conveyance tunnel water delivery, device, computer equipment
CN104202818A (en) Floor identification method based on building open edge distance weighting
WO2016175376A1 (en) System for 3d modeling of drop-off curve
CN106197379A (en) A kind of novel mapping system of eminence object
WO2018131992A1 (en) Method for searching for location of oil well using productivity potential area map
US20080122834A1 (en) 3d line of sight (los) analysis of 3d vertical barriers in 3d virtual reality environments
KR101730481B1 (en) A route detection equipment for underground utilities and server for providing location information
Hashimoto et al. Outdoor navigation system by AR
CN103853882B (en) Drawing method and system for engineering geological profile
KR102341114B1 (en) 3D modeling data image processing system for underground facilities
Lewicki et al. Eddy covariance network design for mapping and quantification of surface CO2 leakage fluxes
CN103996991B (en) Selection method and system for transmission line of electricity
JP7220276B1 (en) Inundation simulation device, inundation simulation method and program
CN114838714A (en) Real-time acquisition processing system and processing method for surveying and mapping operation data
Singh et al. Development of geoid model-A case study on western India
CN208187404U (en) A kind of architectural engineering field surveys device
CN106054212A (en) Drawing system and application thereof
TWI632390B (en) Adaptive weighting positioning method
Gede et al. Laser Scanning Survey in the Pál-völgy Cave, Budapest
CN205449081U (en) Position positioning system is used in survey and drawing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890817

Country of ref document: EP

Kind code of ref document: A1