WO2016175242A1 - Gear pump device - Google Patents

Gear pump device Download PDF

Info

Publication number
WO2016175242A1
WO2016175242A1 PCT/JP2016/063197 JP2016063197W WO2016175242A1 WO 2016175242 A1 WO2016175242 A1 WO 2016175242A1 JP 2016063197 W JP2016063197 W JP 2016063197W WO 2016175242 A1 WO2016175242 A1 WO 2016175242A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear pump
pressure
fluid
suction
introduction groove
Prior art date
Application number
PCT/JP2016/063197
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 羽柴
袴田 尚樹
貴寛 永沼
倫明 川端
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Priority to CN201680016026.2A priority Critical patent/CN107407275B/en
Priority to US15/558,675 priority patent/US20180112662A1/en
Publication of WO2016175242A1 publication Critical patent/WO2016175242A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • F04C15/0026Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/086Carter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/92Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/17Tolerance; Play; Gap

Definitions

  • the present invention relates to a gear pump device such as a trochoid pump that pumps fluid by meshing gears.
  • This mechanical seal has a structure in which a metal inner rotor and an outer rotor are strongly pressed against a metal case based on the elastic force of the seal member and the pressure of the high-pressure fluid for sealing. Therefore, if the loss torque of the sliding surfaces of the outer rotor, the inner rotor, and the case is large, the pump discharge capacity is affected, and there is a problem that the motor size must be increased. Also, when there are large and small portions of torque loss in rotation on the sliding surface between the outer rotor and inner rotor and the case, heat is generated in portions where the loss torque is large due to high-speed or long-time rotation of the pump. . An adverse effect on the pump discharge capacity due to the expansion of the heat generating portion is also considered.
  • Patent Document 1 proposes a gear pump device corresponding to these problems. Specifically, radial polishing bars are provided on the sliding surface of the case that bears the mechanical seal function. As a result, the contact area between the sliding surface of the case and both rotors can be reduced and the friction coefficient can be reduced, so that the supply of oil to the sliding surface is promoted. Thereby, it is possible to measure the reduction of the loss torque.
  • the present invention provides a gear pump device that improves the push-back effect of pushing back from the sliding surface side of the case toward both rotor sides and can further reduce the loss torque.
  • an outer rotor having an inner tooth portion and an inner rotor that meshes with the outer rotor while forming a plurality of gap portions are formed.
  • a gear pump that performs suction and discharge operations of fluid by rotating the outer rotor and the inner rotor based on rotation of the inserted shaft, a case that forms a housing portion that houses the gear pump, and a pump axial direction in the case and the gear pump.
  • One of the gaps between the suction side of the gear pump and the low pressure side including the periphery of the shaft, the discharge side from which the fluid is discharged, and the outer periphery of the outer rotor and the case are disposed between one of the end faces.
  • the sliding surface includes the center of the gear pump.
  • a fluid introduction groove into which a fluid in a gap between the outer periphery of the outer rotor on the high pressure side and the case is introduced.
  • the fluid introduction groove is separated from the center hole and the suction side. It is characterized by being.
  • the high pressure fluid is introduced into the fluid introduction groove because the fluid introduction groove is communicated with the outer peripheral high pressure region that has a high discharge pressure. For this reason, the pushing-back effect which pushes back a gear pump based on a high pressure fluid can be acquired.
  • the fluid introduction groove communicates with the outer peripheral high pressure region, it does not communicate with each part that becomes the low pressure region. For this reason, the inside of the fluid introduction groove can be maintained at a high pressure, and a reduction in the pushing back effect can be suppressed. Therefore, it is possible to prevent a reduction in the loss torque reduction effect and further reduce the loss torque.
  • FIG. 3 is a cross-sectional view taken along the line III-III ′ of FIG. It is the figure which showed the cylinder 71 when it sees from the gear pump 19 or the gear pump 39 side.
  • FIG. 6 is a diagram showing a relationship between polishing bars 71f formed on a cylinder 71 and pressure distribution on sliding surfaces 71b and 71c of the cylinder 71 and the like. It is the figure which showed the cylinder 71 when it sees from the gear pump 19 provided in the gear pump apparatus concerning 2nd Embodiment of this invention or the gear pump 39 side.
  • FIG. 6 is a diagram showing a relationship between polishing bars 71f formed on a cylinder 71 and pressure distribution on sliding surfaces 71b and 71c of the cylinder 71 and the like. It is the figure which showed the discharge pressure area
  • FIG. 6 is a view showing a pressure distribution between the gear pumps 19 and 39 and sliding surfaces 71b and 71c of a cylinder 71. It is the figure which showed the cylinder 71 when it sees from the gear pump 19 provided in the gear pump apparatus concerning 3rd Embodiment of this invention or the gear pump 39 side. It is the figure which showed the cylinder 71 when it sees from the gear pump 19 with which the gear pump apparatus concerning 4th Embodiment of this invention is equipped, or the gear pump 39 side.
  • FIG. 1 A hydraulic circuit of a vehicle brake device 1 to which a gear pump device according to an embodiment of the present invention is applied will be described with reference to FIG.
  • the right front wheel and the left rear wheel are connected to the first piping system, and the left front wheel and the right rear wheel. It is applicable also to X piping etc. which make 2nd piping system.
  • the vehicle brake device 1 includes a brake pedal 11, a booster device 12, an M / C 13, W / Cs 14, 15, 34, and 35, and a brake fluid pressure control actuator 50. And are provided.
  • a brake ECU 70 is assembled to the brake fluid pressure control actuator 50, and the brake ECU 70 controls the braking force generated by the vehicle brake device 1.
  • the brake pedal 11 is connected to the booster 12 and the M / C 13, and when the driver depresses the brake pedal 11, the pedaling force is boosted by the booster 12, and the master piston disposed in the M / C 13. Press 13a, 13b. As a result, the same M / C pressure is generated in the primary chamber 13c and the secondary chamber 13d defined by the master pistons 13a and 13b. The M / C pressure generated in the M / C 13 is transmitted to each of the W / Cs 14, 15, 34, 35 through the brake hydraulic pressure control actuator 50 constituting the hydraulic pressure path.
  • a master reservoir 13e having a passage communicating with each of the primary chamber 13c and the secondary chamber 13d is connected to the M / C 13.
  • the master reservoir 13e supplies brake fluid into the M / C 13 and stores excess brake fluid in the M / C 13.
  • the brake fluid pressure control actuator 50 has a first piping system 50a and a second piping system 50b.
  • the first piping system 50a is a rear system that controls the brake fluid pressure applied to the right rear wheel RR and the left rear wheel RL
  • the second piping system 50b is the brake fluid pressure that is applied to the left front wheel FL and the right front wheel FR. It is assumed to be a front system.
  • first and second piping systems 50a and 50b will be described. However, since the first piping system 50a and the second piping system 50b have substantially the same configuration, the first piping system 50a will be described here.
  • the second piping system 50b refer to the first piping system 50a.
  • the first piping system 50a transmits the M / C pressure described above to the W / C 14 provided in the left rear wheel RL and the W / C 15 provided in the right rear wheel RR, and generates a W / C pressure.
  • a conduit A is provided.
  • a braking force is generated by generating a W / C pressure in each of the W / Cs 14 and 15 through the pipeline A.
  • the pipe A is provided with a differential pressure control valve 16 that can be controlled to a communication state and a differential pressure state.
  • the valve position of this differential pressure control valve 16 is adjusted so that it is in a communicating state during normal braking (when motion control is not executed) that generates a braking force corresponding to the operation of the brake pedal 11 by the driver. Yes.
  • a current flows through a solenoid coil provided in the differential pressure control valve 16
  • the valve position of the differential pressure control valve 16 is adjusted so that the larger the current value, the larger the differential pressure state.
  • the differential pressure control valve 16 is in the differential pressure state, the flow of the brake fluid is regulated so that the W / C pressure is higher than the M / C pressure by the amount of the differential pressure.
  • the pipe A branches into two pipes A1 and A2 on the W / C 14 and 15 side downstream of the differential pressure control valve 16.
  • the line A1 is provided with a pressure increase control valve 17 for controlling the increase of the brake fluid pressure to the W / C 14, and the line A2 is a pressure increase control for controlling the increase of the brake fluid pressure to the W / C 15.
  • a valve 18 is provided.
  • the pressure increase control valves 17 and 18 are constituted by two-position solenoid valves capable of controlling the communication / blocking state.
  • the pressure-increasing control valves 17 and 18 are normally controlled to be in a communication state when no control current is supplied to the solenoid coils provided in the pressure-increasing control valves 17 and 18 and in a disconnected state when the control current is supplied to the solenoid coils. It is an open type.
  • a pressure reduction control valve 21 and a pressure reduction control valve 22 are provided in a pressure reduction control line 17 connecting the pressure increase control valves 17 and 18 and the W / Cs 14 and 15 and the pressure regulating reservoir 20 in the line A. Each is arranged.
  • These pressure reduction control valves 21 and 22 are constituted by two-position solenoid valves that can control the communication / cutoff state, and are of a normally closed type that is cut off when not energized.
  • a pipe C serving as a reflux pipe is disposed between the pressure regulating reservoir 20 and the pipe A.
  • the pipe C is provided with a self-priming gear pump 19 driven by a motor 60 so as to suck and discharge brake fluid from the pressure regulating reservoir 20 toward the M / C 13 side or the W / C 14, 15 side. Yes.
  • a conduit D serving as an auxiliary conduit is provided between the pressure regulating reservoir 20 and the M / C 13.
  • the brake fluid is sucked from the M / C 13 by the gear pump 19 through this pipe D and discharged to the pipe A, so that the brake is applied to the W / C 14 and 15 side during motion control such as skid prevention control and traction control. Liquid is supplied, and the W / C pressure of the wheel to be controlled is increased.
  • the second piping system 50b has substantially the same configuration as the first piping system 50a.
  • the differential pressure control valve 16 corresponds to the differential pressure control valve 36.
  • the pressure increase control valves 17 and 18 correspond to the pressure increase control valves 37 and 38, respectively, and the pressure reduction control valves 21 and 22 correspond to the pressure reduction control valves 41 and 42, respectively.
  • the pressure regulation reservoir 20 corresponds to the pressure regulation reservoir 40.
  • the gear pump 19 corresponds to the gear pump 39.
  • the pipeline A, the pipeline B, the pipeline C, and the pipeline D correspond to the pipeline E, the pipeline F, the pipeline G, and the pipeline H, respectively.
  • the hydraulic circuit of the vehicle brake device 1 is configured, and the gear pump device is obtained by integrating the gear pumps 19 and 39 among them. The detailed structure of the gear pump device will be described later.
  • the brake ECU 70 controls a control system of the vehicle brake device 1 and is configured by a known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like.
  • the brake ECU 70 executes processing such as various calculations according to a program stored in a ROM or the like, and executes vehicle motion control such as skid prevention control. Specifically, the brake ECU 70 calculates various physical quantities based on detection of sensors (not shown), and determines whether or not to execute vehicle motion control based on the calculation results.
  • the brake ECU 70 obtains a control amount for the wheel to be controlled, that is, a W / C pressure generated in the W / C of the wheel to be controlled.
  • the brake ECU 70 controls each control valve 16-18, 21, 22, 36-38, 41, 42 and the motor 60 for driving the gear pumps 19, 39, so that the W of the wheel to be controlled is controlled. / C pressure is controlled and vehicle motion control is performed.
  • the gear pumps 19 and 39 are driven and the differential pressure control valves 16 and 36 are set in a differential pressure state.
  • the brake fluid is supplied to the downstream side of the differential pressure control valves 16, 36, that is, the W / C 14, 15, 34, 35 side through the pipelines D, H.
  • the pressure increase control valve 17, 18, 37, 38 and the pressure reduction control valves 21, 22, 41, 42 are appropriately controlled to control the pressure increase / decrease of the wheel to be controlled. Control to achieve a desired control amount.
  • ABS anti-skid
  • FIG. 2 shows a state where the pump body 100 is assembled to the housing 101 of the brake fluid pressure control actuator 50.
  • the vehicle brake device 1 includes two systems, the first piping system 50a and the second piping system 50b.
  • the pump main body 100 includes two gear pumps 19 for the first piping system 50a and a gear pump 39 for the second piping system 50b.
  • the gear pumps 19 and 39 built in the pump main body 100 are driven by the motor 60 rotating the rotary shaft 54 supported by the first bearing 51 and the second bearing 52.
  • the outer shape of the pump body 100 is constituted by an aluminum cylinder 71 and a plug 72.
  • the first bearing 51 is disposed on the cylinder 71, and the second bearing 52 is disposed on the plug 72.
  • the pump main body 100 is comprised by providing the gear pumps 19 and 39, various sealing members, etc. with the cylinder 71 and the plug 72.
  • the pump body 100 having an integral structure is configured.
  • the pump body 100 having an integral structure is inserted into a substantially cylindrical recess 101a formed in an aluminum housing 101 from the right side of the drawing.
  • a ring-shaped male screw member (screw) 102 is screwed into the female screw groove 101 b dug in the entrance of the recess 101 a, and the pump body 100 is fixed to the housing 101.
  • the pump main body 100 is structured not to be detached from the housing 101 by screwing the male screw member 102.
  • the gear pump device is configured by fixing the pump main body 100 to the housing 101 in this way.
  • the cylinder 71, the plug 72 and the housing 101 constitute a gear pump device case, and the gear pumps 19 and 39 are accommodated in the case.
  • the direction of insertion of the pump body 100 into the recess 101a of the housing 101 is simply referred to as the insertion direction.
  • the axial direction and the circumferential direction of the pump main body 100 and the gear pumps 19 and 39, in other words, the pump axial direction and the pump axial circumferential direction that coincide with the axial direction and circumferential direction of the rotary shaft 54 are simply referred to as axial direction and circumferential direction.
  • a circular second concave portion 101c is formed at the front end position in the insertion direction of the concave portion 101a, that is, at the position corresponding to the front end (left end portion in FIG. 2) of the rotating shaft 54 in the bottom portion of the concave portion 101a.
  • the diameter of the second recess 101c is larger than the diameter of the rotation shaft 54, and the tip of the rotation shaft 54 is located in the second recess 101c so that the rotation shaft 54 does not contact the housing 101. Yes.
  • the cylinder 71 and the plug 72 are provided with center holes 71a and 72a, respectively.
  • the rotation shaft 54 is inserted into the center holes 71 a and 72 a, and the first bearing 51 fixed to the inner periphery of the center hole 71 a in the cylinder 71 and the second bearing 52 fixed to the inner periphery of the center hole 72 a in the plug 72. It is supported by.
  • Gear pumps 19 and 39 are provided on both sides of the first bearing 51, that is, in a region in front of the first bearing 51 in the insertion direction and a region sandwiched between the first and second bearings 51 and 52, respectively.
  • the gear pump 19 is disposed in a rotor chamber (accommodating portion) 100 a constituted by a recess in which one end surface of the cylinder 71 is recessed in a circular shape.
  • the gear pump 19 is constituted by an inscribed gear pump (trochoid pump) driven by a rotating shaft 54 inserted into the rotor chamber 100a.
  • the gear pump 19 includes a rotating portion including an outer rotor 19a having an inner tooth portion formed on the inner periphery and an inner rotor 19b having an outer tooth portion formed on the outer periphery, and the center of the inner rotor 19b.
  • the rotary shaft 54 is inserted into the hole 19ba.
  • a key 54b is inserted into a hole 54a formed in the rotating shaft 54, and torque is transmitted to the inner rotor 19b by the key 54b.
  • the outer rotor 19a and the inner rotor 19b have a plurality of gaps 19c formed by meshing inner teeth and outer teeth formed respectively. Then, the suction and discharge of the brake fluid is performed by changing the size of the gap 19c by the rotation of the rotating shaft 54.
  • the gear pump 39 is disposed in a rotor chamber (accommodating portion) 100b constituted by a concave portion in which the other end surface of the cylinder 71 is recessed in a circular shape. It is driven by a rotating shaft 54 inserted into the inside.
  • the gear pump 39 includes an outer rotor 39a and an inner rotor 39b, and a rotation shaft 54 is inserted into the center hole 39ba of the inner rotor 39b.
  • Each rotor 39a, 39b is constituted by an internal gear pump that sucks and discharges brake fluid in a plurality of gaps 39c formed by meshing both teeth.
  • the gear pump 39 is arranged such that the gear pump 19 is rotated approximately 180 ° around the rotation shaft 54.
  • the gaps 19c, 39c on the suction side and the gaps 19c, 39c on the discharge side of the gear pumps 19, 39 are symmetrical with respect to the rotation shaft 54.
  • the force applied to the first bearing 51 by the high brake fluid pressure can be offset.
  • These gear pumps 19 and 39 basically have the same structure.
  • the polishing bars 71f formed on the sliding surfaces 71b and 71c of the cylinder 71 that constitutes a part of the case of the gear pumps 19 and 39 (see FIGS. 4 and 5).
  • the configuration is changed from the conventional one. As a result, the loss torque is reduced. Details of the structure of the polishing bar 71f will be described later.
  • a seal mechanism 111 that presses the gear pump 19 toward the cylinder 71 is provided on the opposite side of the cylinder 71 with the gear pump 19 interposed therebetween, that is, between the cylinder 71 and the gear pump 19 and the housing 101. It has been. Further, on the other end face side of the cylinder 71, a seal mechanism 115 that presses the gear pump 39 toward the cylinder 71 on the opposite side of the cylinder 71 with the gear pump 39 interposed therebetween, that is, between the cylinder 71 and the gear pump 39 and the plug 72. Is provided.
  • the seal mechanism 111 is composed of a ring-shaped member having a hollow portion into which the rotating shaft 54 is inserted. With this sealing mechanism 111, the outer rotor 19a and the inner rotor 19b are pressed toward the cylinder 71, thereby sealing a relatively low pressure portion and a relatively high pressure portion on one end face side of the gear pump 19. Yes. Specifically, the sealing mechanism 111 exhibits a sealing function by contacting the bottom surface of the concave portion 101a that is an outline of the housing 101 and desired positions of the outer rotor 19a and the inner rotor 19b.
  • the seal mechanism 111 is configured to include an inner member 112 having a hollow frame shape, an annular rubber member 113, and an outer member 114 having a hollow frame shape. Then, the inner member 112 is fitted into the outer member 114 with the annular rubber member 113 disposed between the outer peripheral wall of the inner member 112 and the inner peripheral wall of the outer member 114.
  • the outer diameter of the seal mechanism 111 is set to be smaller than the inner diameter of the concave portion 101a of the housing 101 at least above the plane of FIG. For this reason, it is set as the structure which can flow brake fluid through the clearance gap between the sealing mechanism 111 and the recessed part 101a of the housing 101 above the paper surface.
  • This gap constitutes the discharge chamber 80 and is connected to a discharge conduit 90 formed at the bottom of the recess 101 a of the housing 101.
  • the gear pump 19 can discharge brake fluid using the discharge chamber 80 and the discharge conduit 90 as a discharge path.
  • the outer member 114 is pressed against the gear pump 19 by the high brake fluid pressure on the discharge side, and the sealing performance of one end face of the gear pump 19 by the seal mechanism 111 is further ensured. Yes.
  • the cylinder 71 is formed with a suction port 81 communicating with the gap portion 19c on the suction side of the gear pump 19.
  • the suction port 81 extends from the end surface of the cylinder 71 on the gear pump 19 side to the outer peripheral surface, and is connected to a suction pipe 91 provided on the side surface of the recess 101 a of the housing 101.
  • a suction groove 71 d that connects the center hole 71 a and the suction port 81 is formed on the end surface of the cylinder 71 on the gear pump 19 side.
  • the seal mechanism 115 is also composed of a ring-shaped member having a central part into which the rotating shaft 54 is inserted.
  • the sealing mechanism 115 With this sealing mechanism 115, the outer rotor 39a and the inner rotor 39b are pressed toward the cylinder 71, thereby sealing a relatively low pressure portion and a relatively high pressure portion on one end face side of the gear pump 39. Yes.
  • the sealing mechanism 115 exhibits a sealing function by contacting the end surface of the portion of the plug 72 in which the sealing mechanism 115 is accommodated and the desired positions of the outer rotor 39a and the inner rotor 39b.
  • the seal mechanism 115 is also configured to include an inner member 116 having a hollow frame shape, an annular rubber member 117, and an outer member 118 having a hollow frame shape.
  • the inner member 116 is fitted into the outer member 118 with the annular rubber member 117 disposed between the outer peripheral wall of the inner member 116 and the inner peripheral wall of the outer member 118.
  • the basic structure of the seal mechanism 115 is the same as that of the seal mechanism 111, but the structure constituting the seal is opposite to that of the seal mechanism 111 described above, and the structure is changed accordingly.
  • the sealing mechanism 115 is configured to have a symmetrical shape with respect to the sealing mechanism 111, and is arranged with a 180 ° phase shift with respect to the sealing mechanism 111 around the rotation shaft 54.
  • the seal mechanism 115 has the same structure as the seal mechanism 111.
  • the outer diameter of the seal mechanism 115 is smaller than the inner diameter of the plug 72 at least on the lower side of the drawing. For this reason, the brake fluid can flow through the gap between the seal mechanism 115 and the plug 72 below the paper surface.
  • This gap constitutes the discharge chamber 82, and is connected to a communication path 72 b formed in the plug 72 and a discharge conduit 92 formed on the side surface of the recess 101 a of the housing 101.
  • the gear pump 39 can discharge brake fluid using the discharge chamber 82, the communication path 72b, and the discharge pipe line 92 as discharge paths.
  • the outer member 118 is pressed toward the gear pump 39 by the brake fluid pressure on the high discharge side, and the sealing performance of one end face of the gear pump 39 by the seal mechanism 115 is further ensured. Yes.
  • the end faces of the cylinder 71 on the side of the gear pumps 19 and 39 also serve as sliding surfaces 71b and 71c, that is, the surfaces on which the rotors 19a, 19b, 39a and 39b slide, A seal (mechanical seal) is made by contact.
  • a seal mechanical seal
  • the cylinder 71 is formed with a suction port 83 communicating with the suction side gap 39c of the gear pump 39.
  • the suction port 83 extends from the end surface of the cylinder 71 on the gear pump 39 side to the outer peripheral surface, and is connected to a suction conduit 93 provided on the side surface of the recess 101 a of the housing 101.
  • the gear pump 39 can introduce brake fluid using the suction pipe 93 and the suction port 83 as a suction path.
  • the suction conduit 91 and the discharge conduit 90 correspond to the conduit C in FIG. 1
  • the suction conduit 93 and the discharge conduit 92 correspond to the conduit G in FIG.
  • annular resin member 120a having a U-shaped radial cross section and an annular rubber member fitted in the annular resin member 120a at the rear of the first bearing 51 in the center hole 71a of the cylinder 71 in the insertion direction.
  • the sealing member 120 provided with 120b is accommodated.
  • the seal member 120 provides a seal between the two systems in the center hole 71a of the cylinder 71.
  • the center hole 72a of the plug 72 has a stepped shape in which the inner diameter is reduced in three steps from the front to the rear in the insertion direction, and the first stepped portion on the rearmost side in the insertion direction.
  • the seal member 121 is accommodated in the housing.
  • the seal member 121 is obtained by fitting a ring-shaped elastic ring 121a made of an elastic member such as rubber into a ring-shaped resin member 121b in which a groove having a radial direction as a depth direction is formed.
  • the resin member 121b is pressed by the elastic force of 121a and comes into contact with the rotating shaft 54.
  • the sealing mechanism 115 mentioned above is accommodated in the step part of the 2nd step used as the step next to the step in which the sealing member 121 is arrange
  • the communication passage 72b described above is formed so as to reach from the stepped portion to the outer peripheral surface of the plug 72.
  • an end of the cylinder 71 on the rear side in the insertion direction is press-fitted into a third stepped portion on the front side in the insertion direction of the center hole 72a.
  • a portion of the cylinder 71 that is fitted into the center hole 72 a of the plug 72 has a smaller outer diameter than other portions of the cylinder 71.
  • the cylinder 71 Since the axial dimension of the portion of the cylinder 71 whose outer diameter is reduced is made larger than the axial dimension of the third stepped portion of the center hole 72 a, the cylinder 71 is connected to the center hole 72 a of the plug 72. A groove 74c formed by the cylinder 71 and the plug 72 is formed at the tip end position of the plug 72 when press-fitted into the plug 72.
  • the diameter of the central hole 72a of the plug 72 is partially enlarged even in the rear in the insertion direction, and an oil seal (seal member) 122 is provided in this portion.
  • an oil seal (seal member) 122 is provided in this portion.
  • O-rings 73a to 73d as annular seal members are provided on the outer periphery of the pump main body 100 thus configured so as to seal each part. These O-rings 73a to 73d seal brake fluid between the two systems formed in the housing 101 or between the discharge path and the suction path of each system.
  • the O-ring 73 a is disposed between the discharge chamber 80 and the discharge conduit 90 and the suction port 81 and the suction conduit 91.
  • the O-ring 73 b is disposed between the suction port 81 and the suction conduit 91 and the suction port 83 and the suction conduit 93.
  • the O-ring 73 c is disposed between the suction port 83 and the suction conduit 93 and the discharge chamber 82 and the discharge conduit 92.
  • the O-ring 73 d is disposed between the discharge chamber 82 and the discharge conduit 92 and the outside of the housing 101.
  • the O-rings 73a, 73c, and 73d are simply arranged in a circular shape so as to wrap around the circumferential direction around the rotation axis 54, but the O-ring 73b is an axis that surrounds the circumferential direction around the rotation axis 54. By disposing in the direction, the size can be reduced in the axial direction of the rotating shaft 54.
  • groove portions 74a to 74d are provided on the outer periphery of the pump body 100 so that the O-rings 73a to 73d can be arranged.
  • the groove portions 74 a and 74 b are formed by partially denting the outer periphery of the cylinder 71.
  • the groove 74 c is formed by a recessed portion on the outer periphery of the cylinder 71 and a tip portion of the plug 72.
  • the recess 74d is formed by partially denting the outer periphery of the plug 72.
  • the O-rings 73a to 73d are formed on the inner wall surface of the recess 101a. It is crushed and made to function as a seal.
  • the outer peripheral surface of the plug 72 is reduced in diameter in the rear in the insertion direction to form a stepped portion.
  • the ring-shaped male screw member 102 described above is fitted into the reduced diameter portion, and the pump body 100 is fixed.
  • the gear pump device is configured by the above structure. Next, the detailed structure of the sliding surfaces 71b and 71c of the cylinder 71 constituting part of the case of the gear pumps 19 and 39 described above will be described. Since the sliding surfaces 71b and 71c have the same configuration, both the sliding surfaces 71b and 71c are illustrated as being the same in FIGS.
  • Sliding surfaces 71b and 71c as shown in FIG. 4 and FIG. 5 are configured by the end surface of the cylinder 71 opposite to the seal mechanisms 111 and 115 with the gear pumps 19 and 39 interposed therebetween. Specifically, a central hole 71a is formed at the center position of the end surface, and the discharge grooves are disposed at positions corresponding to the suction ports 81 and 83 and the discharge chambers 80 and 82 on both sides of the center hole 71a. 71e is formed.
  • the portions other than the central hole 71a, the suction port 81, and the discharge groove 71e on the end surface are formed as sliding surfaces 71b, 71c on which the rotors 19a, 19b, 39a, 39b slide when the gear pumps 19, 39 are driven. Yes.
  • the sliding surfaces 71b and 71c are formed with polishing bars 71f constituting fluid introduction grooves.
  • the polishing streaks 71f are formed by polishing, for example.
  • a plurality of polishing bars 71 f are formed so as to extend radially from the centers of the gear pumps 19 and 39.
  • the center of the gear pumps 19 and 39 is the center of the center hole 71a.
  • the plurality of polishing bars 71f are communicated with portions of the rotor chambers 100a and 100b outside the outer rotors 19a and 39a (hereinafter referred to as outer peripheral high pressure regions).
  • the plurality of polishing bars 71f are configured not to communicate with the central hole 71a, the suction ports 81 and 83, and the suction groove 71d in which the portion communicated with the outer peripheral high pressure region becomes the low pressure region.
  • the end on the inner peripheral side of the plurality of polishing bars 71f is separated from the center hole 71a, the suction ports 81 and 83, and the suction groove 71d.
  • the polishing bars 71 f are formed on the sliding surfaces 71 b and 71 c of the cylinder 71.
  • the polishing bar 71f having such a configuration is formed, since the polishing bar 71f is in communication with the outer peripheral high-pressure region having a high discharge pressure, a high-pressure brake fluid is introduced into the polishing bar 71f. For this reason, it is possible to obtain a push-back effect of pushing back the gear pumps 19 and 39 based on a high brake fluid pressure. Even if the polishing bar 71f communicates with the outer peripheral high-pressure region, it does not communicate with each part that becomes the low-pressure region. For this reason, the inside of the polishing bar 71f can be maintained at a high pressure, and a reduction in the pushing back effect can be suppressed. Therefore, it is possible to prevent a reduction in the loss torque reduction effect and further reduce the loss torque.
  • a plurality of the polishing bars 71f are formed so as to extend radially from the centers of the gear pumps 19 and 39, while the low-pressure gap 19c of the polishing bars 71f is formed.
  • the low pressure portion 71fa that can communicate with 39c is separated from the high pressure portion 71fb that communicates with the outer peripheral high pressure region on the outer peripheral side.
  • the fluid pressure of each part in the gear pumps 19 and 39 is shown as shown in FIG. 8, and the high pressure region Ra into which the discharge pressure is introduced, the low pressure region Rb into which the suction pressure is introduced, and the intermediate pressure between them. Region Rc exists.
  • the pressure between the gear pumps 19 and 39 and the sliding surfaces 71b and 71c of the cylinder 71 is shown in FIG. Therefore, based on the pressure relationship shown in FIGS. 8 and 9, the low pressure portion 71fa is formed in a range including the low pressure region Rb, and the high pressure portion 71fb is not formed in the low pressure region Rb.
  • the suction ports 81 and 83, the suction groove 71d, and the center hole 71a are at a low pressure.
  • the gaps 19c and 39c are in a low pressure state when communicating with the suction ports 81 and 83 and the suction groove 71d, and further until the volume increases after communicating with the suction ports 81 and 83 and the suction groove 71d.
  • the place which can be communicated with the low pressure gaps 19c and 39c in the polishing bar 71f is the low pressure part 71fa, and the place where the gap between the outer circumference of the high pressure outer rotor 19a and 39a and the cylinder 71 is communicated. These are separated as the high-pressure portion 71fb.
  • the polishing bar 71f is not formed in the predetermined region. Specifically, as shown in FIGS. 6 and 8, the confined portions 19d and 39d that become the intermediate pressure region Rc in which neither the high-pressure region Ra nor the low-pressure region Rb communicates among the gaps 19c and 39c.
  • the polishing streaks 71f are not formed in the range where the is located. That is, the polishing streaks 71f are not formed in the range of the trajectory of the closing portions 19d and 39d. Further, the polishing bar 71f is not formed in a range along the movement locus of the gaps 19c, 39c on the outer peripheral side of the area where the gaps 19c, 39c are in a low pressure state.
  • the binding portions 19d and 39d referred to here mean that of the gap portions 19c and 39c when the volume is maximum. Specifically, in the rotational direction of the gear pumps 19 and 39, the gaps 19 c and 39 c are moved from the site communicating with the suction ports 81 and 83 to the site communicating with the discharge chambers 80 and 82. The gaps 19c and 39c when the volume becomes the maximum are called the closed portions 19d and 39d.
  • the gaps 19c and 39c also have closed portions 19e and 39e when the volume is minimized, and the closed portions 19e and 39e communicate with the low pressure portion 71fa of the polishing bar 71f. Since the volumes of the confinement portions 19e and 39e are small, even if the confinement portions 19e and 39e communicate with the low pressure portion 71fa, the influence of pressure fluctuations is small. For this reason, the low-pressure part 71fa communicates with the confining parts 19e, 39e. However, the polishing bar 71f may not be provided in this region.
  • the polishing bar 71f is configured to separate the low pressure portion 71fa communicated with the low pressure region Rb such as the suction ports 81 and 83 and the high pressure portion 71fb communicated with the high pressure region Ra such as the discharge chambers 80 and 82. You may do it. If it does in this way, it can control that a high pressure fluid leaks from a higher pressure field to the low pressure field side. Therefore, it is possible to further prevent the loss torque from being reduced, and it is possible to further reduce the loss torque.
  • the polishing bar 71 f is configured by a radial curve extending from the center of the gear pumps 19 and 39.
  • the low pressure portion 71fa and the high pressure portion 71fb of each polishing bar 71f are positioned so that their intermediate positions are located in front of the rotation direction of the gear pumps 19 and 39 rather than both ends. That is, the low-pressure part 71fa and the high-pressure part 71fb are curved to have a convex shape so that the convex part faces the front in the rotational direction.
  • the curved portions when the gear pumps 19 and 39 are rotated serve as wedges, and the brake fluid introduced into the interior is contained inside. This hinders the flow in the circumferential direction. For this reason, it becomes difficult for the brake fluid in the polishing bar 71f to escape from the high pressure region to the low pressure region side, and the high pressure state of the polishing bar 71f can be maintained. As a result, it is possible to further prevent the loss torque from being reduced, and to further reduce the loss torque.
  • a virtual circle C indicated by a one-dot chain line in the figure is set at the center position of the gear pumps 19 and 39, and a polishing bar 71f is provided so as to extend in the tangential direction of the virtual circle C. I am doing so.
  • the polishing bar 71f is provided so that the inner peripheral side ends of the gear pumps 19 and 39 of the polishing bar 71f are located in front of the outer peripheral side in the rotational direction.
  • the size of the imaginary circle C is arbitrary and is, for example, equal to or smaller than the diameter of the center hole 71a.
  • the same effect as that of the first embodiment can be obtained even when the polishing bar 71f has a layout extending in the tangential direction with respect to the virtual circle C.
  • the polishing bar 71f is provided so that the inner peripheral side end portions of the gear pumps 19 and 39 of the polishing bar 71f are located in front of the outer peripheral side end portion in the rotational direction. For this reason, based on the rotational movement of the gear pumps 19 and 39, the brake fluid that has flowed in from the outer peripheral end is easily flowed to the inner peripheral end. Therefore, it becomes easy to ensure a high pressure state in the entire area of the polishing bar 71f, and the effect shown in the first embodiment can be obtained.
  • the fluid introduction groove may be configured by a groove other than the polishing line 71f.
  • the fluid introduction groove may be constituted by a laser processing groove by laser processing.
  • the laser processing groove since no burrs are generated by machining, the influence of burrs can be eliminated.
  • the laser processing groove since it is possible to perform processing even when the processing surface is at a deep position, it is possible to facilitate formation of the fluid introduction groove.
  • the gear pump device having the two gear pumps 19 and 39 constituted by the inscribed gear pump is taken as an example. However, it may be a gear pump device to which only one gear pump is applied. Further, in each of the above embodiments, a gear pump device including two gear pumps 19 and 39 is used, and a case constituting a housing portion (rotor chamber 100a and 100b) of each gear pump 19 and 39 is formed by a housing 101, a cylinder 71, and a plug 72. It is composed. However, this is also merely an example, and the case may be configured only by what constitutes the outer shape of the pump body 100, for example.
  • suction groove 71d is formed on one end surface of the cylinder 71, a structure without the suction groove 71d may be employed. In that case, it is preferable that the polishing bar 71f is also formed in the portion where the suction groove 71d is located.

Abstract

In the present invention, polishing lines 71f are connected to an outer circumferential high-pressure region, but are not connected to each area that is a low-pressure region. In this configuration, the polishing lines 71f are connected to the outer circumferential high-pressure region where there is high discharge pressure, so high-pressure brake fluid is introduced within the polishing lines 71f. Therefore, a pushback effect is obtained, wherein gear pumps 19 and 39 are pushed back on the basis of the high-pressure brake fluid pressure. Furthermore, the polishing lines 71f are connected to the outer circumferential high-pressure region but are not connected to each area that is a low-pressure region, so high-pressure can be maintained within the polishing lines 71f, and a reduction in the pushback effect can be prevented. Accordingly, a decrease in the loss torque reduction effect can be prevented, and the loss torque can be further reduced.

Description

ギヤポンプ装置Gear pump device
 本発明は、ギヤの噛み合いによって流体を圧送するトロコイドポンプなどのギヤポンプ装置に関するものである。 The present invention relates to a gear pump device such as a trochoid pump that pumps fluid by meshing gears.
 従来より、ギヤポンプ装置において、ギヤポンプの軸方向の両端面共に樹脂などで形成されるシール部材を用いたシール方法を採用することはコストアップの要因となることから、一方をメカニカルシールとしてコスト削減を図る構造が提案されている。具体的には、ギヤポンプに備えられるインナーロータおよびアウターロータの一端面側のみをシール部材にてシールし、他端面側は各ロータが収容されるケースの摺動面に各ロータを直接押し当てるメカニカルシールとしている。 Conventionally, in a gear pump device, adopting a sealing method using a sealing member formed of resin or the like on both end faces in the axial direction of the gear pump has been a factor in cost increase, so one of them is a mechanical seal to reduce costs. A structure has been proposed. Specifically, only one end face side of the inner rotor and outer rotor provided in the gear pump is sealed with a seal member, and the other end face is a mechanical that directly presses each rotor against the sliding surface of the case in which each rotor is accommodated. It is a seal.
 このメカニカルシールは金属製のインナーロータ及びアウターロータを金属製のケースにシール部材の弾性力や高圧流体の圧力に基づいて強く押し当ててシールする構造である。よって、アウターロータ、インナーロータ、およびケースの摺動面の損失トルクが大きいとポンプ吐出能力に影響を与え、モータ体格を大きくしなければならない等の弊害を生じる。また、アウターロータ、インナーロータとケース間の摺動面において回転の損失トルクが大きい部分と小さい部分とが生じる場合、ポンプの高速あるいは長時間の回転に伴って損失トルクが大きい部分で発熱を生じる。この発熱部分が膨張することによるポンプ吐出能力への弊害も考えられる。 This mechanical seal has a structure in which a metal inner rotor and an outer rotor are strongly pressed against a metal case based on the elastic force of the seal member and the pressure of the high-pressure fluid for sealing. Therefore, if the loss torque of the sliding surfaces of the outer rotor, the inner rotor, and the case is large, the pump discharge capacity is affected, and there is a problem that the motor size must be increased. Also, when there are large and small portions of torque loss in rotation on the sliding surface between the outer rotor and inner rotor and the case, heat is generated in portions where the loss torque is large due to high-speed or long-time rotation of the pump. . An adverse effect on the pump discharge capacity due to the expansion of the heat generating portion is also considered.
 そこで、特許文献1において、これらの課題に対応したギヤポンプ装置が提案されている。具体的には、ケースのうちのメカニカルシール機能を担う摺動面に、放射状の研磨筋を施している。これにより、ケースの摺動面と両ロータとの接触面積を減少させられ、摩擦係数を減少させるため、摺動面への油の供給が促進される。これにより、損失トルクの低減を測ることが可能となるようにしている。 Therefore, Patent Document 1 proposes a gear pump device corresponding to these problems. Specifically, radial polishing bars are provided on the sliding surface of the case that bears the mechanical seal function. As a result, the contact area between the sliding surface of the case and both rotors can be reduced and the friction coefficient can be reduced, so that the supply of oil to the sliding surface is promoted. Thereby, it is possible to measure the reduction of the loss torque.
特開2003-129964号公報JP 2003-129964 A
 しかしながら、特許文献1に記載されたギヤポンプ装置では、ケースの摺動面において、アウターロータよりも外側からシャフトが配置されるインナーロータよりも内側にかけて全面に放射状の研磨筋を設けている。このため、アウターロータよりも外側の高圧領域とインナーロータよりも内側の低圧領域とが研磨筋を介して連通し、高圧領域から高圧流体が低圧領域側に洩れてしまう。これにより、シール部材の弾性力に対して、高圧領域の高圧流体によってケースの摺動面側から両ロータ側に向けて押し返す押し返し効果が十分に得られず、損失トルクの低減効果が低下するという問題がある。 However, in the gear pump device described in Patent Document 1, radial polishing bars are provided on the entire surface of the sliding surface of the case from the outer side of the outer rotor to the inner side of the inner rotor where the shaft is disposed. For this reason, the high-pressure region outside the outer rotor and the low-pressure region inside the inner rotor communicate with each other via the polishing bar, and high-pressure fluid leaks from the high-pressure region to the low-pressure region side. As a result, with respect to the elastic force of the seal member, the effect of pushing back from the sliding surface side of the case toward both rotors by the high-pressure fluid in the high-pressure region cannot be sufficiently obtained, and the loss torque reduction effect is reduced. There's a problem.
 本発明は上記点に鑑みて、ケースの摺動面側から両ロータ側に向けて押し返す押し返し効果を向上させ、損失トルクの更なる低減を行うことができるギヤポンプ装置を提供する。 In view of the above points, the present invention provides a gear pump device that improves the push-back effect of pushing back from the sliding surface side of the case toward both rotor sides and can further reduce the loss torque.
 上記目的を達成するため、請求項1に記載の発明では、内歯部を有するアウターロータおよびアウターロータと複数の空隙部を形成しつつ噛み合わされるインナーロータを有し、インナーロータの中心孔に挿通される軸の回転に基づいてアウターロータおよびインナーロータが回転させられることで流体の吸入吐出動作を行うギヤポンプと、ギヤポンプが収容される収容部を形成するケースと、ケースとギヤポンプにおけるポンプ軸方向端面の一方との間に配設され、ギヤポンプのうち流体を吸入する吸入側および軸の周りを含む低圧側と流体が吐出される吐出側およびアウターロータの外周とケースとの間の隙間の一部を含む高圧側とを区画するシール機構とを備え、シール機構の押し付け力に基づいてギヤポンプにおけるポンプ軸方向端面の他方の端面がケースの摺動面に当接されることで、当該端面でのギヤポンプの低圧側と高圧側との間がシールされるギヤポンプ装置において、摺動面には、ギヤポンプの中心から放射状に伸びる筋によって構成され、高圧側となるアウターロータの外周とケースとの間の隙間の流体が導入される流体導入溝を有し、流体導入溝は、中心孔および吸入側から離間させられていることを特徴としている。 In order to achieve the above object, according to the first aspect of the present invention, an outer rotor having an inner tooth portion and an inner rotor that meshes with the outer rotor while forming a plurality of gap portions are formed. A gear pump that performs suction and discharge operations of fluid by rotating the outer rotor and the inner rotor based on rotation of the inserted shaft, a case that forms a housing portion that houses the gear pump, and a pump axial direction in the case and the gear pump One of the gaps between the suction side of the gear pump and the low pressure side including the periphery of the shaft, the discharge side from which the fluid is discharged, and the outer periphery of the outer rotor and the case are disposed between one of the end faces. And a seal mechanism for partitioning the high pressure side including the portion, and the pump axial direction in the gear pump based on the pressing force of the seal mechanism In the gear pump device in which the gap between the low pressure side and the high pressure side of the gear pump at the end surface is sealed by contacting the other end surface of the surface with the sliding surface of the case, the sliding surface includes the center of the gear pump. And a fluid introduction groove into which a fluid in a gap between the outer periphery of the outer rotor on the high pressure side and the case is introduced. The fluid introduction groove is separated from the center hole and the suction side. It is characterized by being.
 このような構成の流体導入溝を形成した場合、流体導入溝が高圧な吐出圧とされる外周高圧領域と連通させられていることから、流体導入溝内に高圧な流体が導入される。このため、高圧な流体に基づいてギヤポンプを押し返す押し返し効果を得ることができる。 When the fluid introduction groove having such a configuration is formed, the high pressure fluid is introduced into the fluid introduction groove because the fluid introduction groove is communicated with the outer peripheral high pressure region that has a high discharge pressure. For this reason, the pushing-back effect which pushes back a gear pump based on a high pressure fluid can be acquired.
 そして、流体導入溝を外周高圧領域に連通させていても、低圧領域となる各部には連通させていない。このため、流体導入溝内を高圧に保つことができ、押し返し効果が低減することを抑制できる。したがって、損失トルクの低減効果の低下を防ぐことができ、損失トルクの更なる低減を行うことが可能となる。 And even though the fluid introduction groove communicates with the outer peripheral high pressure region, it does not communicate with each part that becomes the low pressure region. For this reason, the inside of the fluid introduction groove can be maintained at a high pressure, and a reduction in the pushing back effect can be suppressed. Therefore, it is possible to prevent a reduction in the loss torque reduction effect and further reduce the loss torque.
本発明の第1実施形態にかかるギヤポンプ装置を適用した車両用ブレーキ装置1の油圧回路を示す図である。It is a figure which shows the hydraulic circuit of the brake device 1 for vehicles to which the gear pump apparatus concerning 1st Embodiment of this invention is applied. ギヤポンプ装置の断面図である。It is sectional drawing of a gear pump apparatus. 図2のIII-III'断面図である。FIG. 3 is a cross-sectional view taken along the line III-III ′ of FIG. ギヤポンプ19もしくはギヤポンプ39側から見たときのシリンダ71を示した図である。It is the figure which showed the cylinder 71 when it sees from the gear pump 19 or the gear pump 39 side. シリンダ71に形成される研磨筋71fとシリンダ71の摺動面71b、71cなどでの圧力分布との関係を示した図である。FIG. 6 is a diagram showing a relationship between polishing bars 71f formed on a cylinder 71 and pressure distribution on sliding surfaces 71b and 71c of the cylinder 71 and the like. 本発明の第2実施形態にかかるギヤポンプ装置に備えられるギヤポンプ19もしくはギヤポンプ39側から見たときのシリンダ71を示した図である。It is the figure which showed the cylinder 71 when it sees from the gear pump 19 provided in the gear pump apparatus concerning 2nd Embodiment of this invention or the gear pump 39 side. シリンダ71に形成される研磨筋71fとシリンダ71の摺動面71b、71cなどでの圧力分布との関係を示した図である。FIG. 6 is a diagram showing a relationship between polishing bars 71f formed on a cylinder 71 and pressure distribution on sliding surfaces 71b and 71c of the cylinder 71 and the like. ギヤポンプ装置における吐出圧領域Ra、吸入圧領域Rbおよび中間圧領域Rcを示した図である。It is the figure which showed the discharge pressure area | region Ra, the suction pressure area | region Rb, and the intermediate pressure area | region Rc in a gear pump apparatus. ギヤポンプ19、39とシリンダ71の摺動面71b、71cとの間における圧力分布を示した図である。FIG. 6 is a view showing a pressure distribution between the gear pumps 19 and 39 and sliding surfaces 71b and 71c of a cylinder 71. 本発明の第3実施形態にかかるギヤポンプ装置に備えられるギヤポンプ19もしくはギヤポンプ39側から見たときのシリンダ71を示した図である。It is the figure which showed the cylinder 71 when it sees from the gear pump 19 provided in the gear pump apparatus concerning 3rd Embodiment of this invention or the gear pump 39 side. 本発明の第4実施形態にかかるギヤポンプ装置に備えられるギヤポンプ19もしくはギヤポンプ39側から見たときのシリンダ71を示した図である。It is the figure which showed the cylinder 71 when it sees from the gear pump 19 with which the gear pump apparatus concerning 4th Embodiment of this invention is equipped, or the gear pump 39 side.
 以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 本発明の一実施形態にかかるギヤポンプ装置を適用した車両用ブレーキ装置1の油圧回路について、図1を参照して説明する。なお、ここでは前後配管の油圧回路を構成する車両に本発明にかかる車両用ブレーキ装置1を適用した例について説明するが、右前輪と左後輪を第1配管系統、左前輪と右後輪を第2配管系統とするX配管などにも適用可能である。
(First embodiment)
A hydraulic circuit of a vehicle brake device 1 to which a gear pump device according to an embodiment of the present invention is applied will be described with reference to FIG. Here, an example in which the vehicle brake device 1 according to the present invention is applied to a vehicle constituting a hydraulic circuit of front and rear pipes will be described. The right front wheel and the left rear wheel are connected to the first piping system, and the left front wheel and the right rear wheel. It is applicable also to X piping etc. which make 2nd piping system.
 図1に示されるように、車両用ブレーキ装置1には、ブレーキペダル11と、倍力装置12と、M/C13と、W/C14、15、34、35と、ブレーキ液圧制御用アクチュエータ50とが備えられている。また、ブレーキ液圧制御用アクチュエータ50にはブレーキECU70が組み付けられ、このブレーキECU70にて、車両用ブレーキ装置1が発生させる制動力を制御している。 As shown in FIG. 1, the vehicle brake device 1 includes a brake pedal 11, a booster device 12, an M / C 13, W / Cs 14, 15, 34, and 35, and a brake fluid pressure control actuator 50. And are provided. A brake ECU 70 is assembled to the brake fluid pressure control actuator 50, and the brake ECU 70 controls the braking force generated by the vehicle brake device 1.
 ブレーキペダル11は、倍力装置12およびM/C13に接続されており、ドライバがブレーキペダル11を踏み込むと、倍力装置12にて踏力が倍力され、M/C13に配設されたマスタピストン13a、13bを押圧する。これにより、マスタピストン13a、13bによって区画されるプライマリ室13cとセカンダリ室13dとに同圧のM/C圧が発生させられる。このM/C13に発生させられるM/C圧が、液圧経路を構成するブレーキ液圧制御用アクチュエータ50を通じて各W/C14、15、34、35に伝えられる。 The brake pedal 11 is connected to the booster 12 and the M / C 13, and when the driver depresses the brake pedal 11, the pedaling force is boosted by the booster 12, and the master piston disposed in the M / C 13. Press 13a, 13b. As a result, the same M / C pressure is generated in the primary chamber 13c and the secondary chamber 13d defined by the master pistons 13a and 13b. The M / C pressure generated in the M / C 13 is transmitted to each of the W / Cs 14, 15, 34, 35 through the brake hydraulic pressure control actuator 50 constituting the hydraulic pressure path.
 また、M/C13には、プライマリ室13cおよびセカンダリ室13dそれぞれと連通された通路を有するマスタリザーバ13eが接続されている。マスタリザーバ13eは、M/C13内にブレーキ液を供給したり、M/C13内の余剰のブレーキ液を貯留したりする。 Also, a master reservoir 13e having a passage communicating with each of the primary chamber 13c and the secondary chamber 13d is connected to the M / C 13. The master reservoir 13e supplies brake fluid into the M / C 13 and stores excess brake fluid in the M / C 13.
 ブレーキ液圧制御用アクチュエータ50は、第1配管系統50aと第2配管系統50bとを有している。第1配管系統50aは、右後輪RRと左後輪RLに加えられるブレーキ液圧を制御するリア系統、第2配管系統50bは、左前輪FLと右前輪FRに加えられるブレーキ液圧を制御するフロント系統とされる。 The brake fluid pressure control actuator 50 has a first piping system 50a and a second piping system 50b. The first piping system 50a is a rear system that controls the brake fluid pressure applied to the right rear wheel RR and the left rear wheel RL, and the second piping system 50b is the brake fluid pressure that is applied to the left front wheel FL and the right front wheel FR. It is assumed to be a front system.
 以下、第1、第2配管系統50a、50bについて説明するが、第1配管系統50aと第2配管系統50bとは、略同様の構成であるため、ここでは第1配管系統50aについて説明し、第2配管系統50bについては第1配管系統50aを参照する。 Hereinafter, the first and second piping systems 50a and 50b will be described. However, since the first piping system 50a and the second piping system 50b have substantially the same configuration, the first piping system 50a will be described here. For the second piping system 50b, refer to the first piping system 50a.
 第1配管系統50aは、上述したM/C圧を左後輪RLに備えられたW/C14および右後輪RRに備えられたW/C15に伝達し、W/C圧を発生させる主管路となる管路Aを備えている。この管路Aを通じて各W/C14、15それぞれにW/C圧が発生させられることで、制動力が発生させられる。 The first piping system 50a transmits the M / C pressure described above to the W / C 14 provided in the left rear wheel RL and the W / C 15 provided in the right rear wheel RR, and generates a W / C pressure. A conduit A is provided. A braking force is generated by generating a W / C pressure in each of the W / Cs 14 and 15 through the pipeline A.
 管路Aには、連通状態と差圧状態に制御できる差圧制御弁16が備えられている。この差圧制御弁16は、ドライバによるブレーキペダル11の操作に対応した制動力を発生させる通常ブレーキ時(運動制御が実行されていない時)には連通状態となるように弁位置が調整されている。そして、差圧制御弁16は、差圧制御弁16に備えられるソレノイドコイルに電流が流されると、この電流値が大きいほど大きな差圧状態となるように弁位置が調整される。この差圧制御弁16が差圧状態とされていると、W/C圧がM/C圧よりも差圧量分高くなるようにブレーキ液の流動が規制される。 The pipe A is provided with a differential pressure control valve 16 that can be controlled to a communication state and a differential pressure state. The valve position of this differential pressure control valve 16 is adjusted so that it is in a communicating state during normal braking (when motion control is not executed) that generates a braking force corresponding to the operation of the brake pedal 11 by the driver. Yes. When a current flows through a solenoid coil provided in the differential pressure control valve 16, the valve position of the differential pressure control valve 16 is adjusted so that the larger the current value, the larger the differential pressure state. When the differential pressure control valve 16 is in the differential pressure state, the flow of the brake fluid is regulated so that the W / C pressure is higher than the M / C pressure by the amount of the differential pressure.
 管路Aは、この差圧制御弁16よりも下流になるW/C14、15側において、2つの管路A1、A2に分岐する。管路A1にはW/C14へのブレーキ液圧の増圧を制御する増圧制御弁17が備えられ、管路A2にはW/C15へのブレーキ液圧の増圧を制御する増圧制御弁18が備えられている。 The pipe A branches into two pipes A1 and A2 on the W / C 14 and 15 side downstream of the differential pressure control valve 16. The line A1 is provided with a pressure increase control valve 17 for controlling the increase of the brake fluid pressure to the W / C 14, and the line A2 is a pressure increase control for controlling the increase of the brake fluid pressure to the W / C 15. A valve 18 is provided.
 増圧制御弁17、18は、連通・遮断状態を制御できる2位置電磁弁により構成されている。増圧制御弁17、18は、増圧制御弁17、18に備えられるソレノイドコイルに制御電流が流されない非通電時には連通状態、ソレノイドコイルに制御電流が流される通電時には遮断状態に制御されるノーマルオープン型とされている。 The pressure increase control valves 17 and 18 are constituted by two-position solenoid valves capable of controlling the communication / blocking state. The pressure-increasing control valves 17 and 18 are normally controlled to be in a communication state when no control current is supplied to the solenoid coils provided in the pressure-increasing control valves 17 and 18 and in a disconnected state when the control current is supplied to the solenoid coils. It is an open type.
 管路Aにおける増圧制御弁17、18および各W/C14、15の間と調圧リザーバ20とを結ぶ減圧管路としての管路Bには、減圧制御弁21と減圧制御弁22とがそれぞれ配設されている。これら減圧制御弁21、22は、連通・遮断状態を制御できる2位置電磁弁により構成され、非通電時に遮断状態となるノーマルクローズ型とされている。 A pressure reduction control valve 21 and a pressure reduction control valve 22 are provided in a pressure reduction control line 17 connecting the pressure increase control valves 17 and 18 and the W / Cs 14 and 15 and the pressure regulating reservoir 20 in the line A. Each is arranged. These pressure reduction control valves 21 and 22 are constituted by two-position solenoid valves that can control the communication / cutoff state, and are of a normally closed type that is cut off when not energized.
 調圧リザーバ20と管路Aとの間には、還流管路となる管路Cが配設されている。この管路Cには調圧リザーバ20からM/C13側あるいはW/C14、15側に向けてブレーキ液を吸入吐出するように、モータ60によって駆動される自吸式のギヤポンプ19が設けられている。 Between the pressure regulating reservoir 20 and the pipe A, a pipe C serving as a reflux pipe is disposed. The pipe C is provided with a self-priming gear pump 19 driven by a motor 60 so as to suck and discharge brake fluid from the pressure regulating reservoir 20 toward the M / C 13 side or the W / C 14, 15 side. Yes.
 そして、調圧リザーバ20とM/C13の間には補助管路となる管路Dが設けられている。この管路Dを通じ、ギヤポンプ19にてM/C13からブレーキ液を吸入し、管路Aに吐出することで、横滑り防止制御やトラクション制御などの運動制御時において、W/C14、15側にブレーキ液を供給し、制御対象輪のW/C圧を加圧する。 Further, a conduit D serving as an auxiliary conduit is provided between the pressure regulating reservoir 20 and the M / C 13. The brake fluid is sucked from the M / C 13 by the gear pump 19 through this pipe D and discharged to the pipe A, so that the brake is applied to the W / C 14 and 15 side during motion control such as skid prevention control and traction control. Liquid is supplied, and the W / C pressure of the wheel to be controlled is increased.
 一方、上述したように、第2配管系統50bは、第1配管系統50aにおける構成と略同様となっている。具体的には、差圧制御弁16は、差圧制御弁36に対応する。増圧制御弁17、18は、それぞれ増圧制御弁37、38に対応し、減圧制御弁21、22は、それぞれ減圧制御弁41、42に対応する。調圧リザーバ20は、調圧リザーバ40に対応する。ギヤポンプ19は、ギヤポンプ39に対応する。また、管路A、管路B、管路C、管路Dは、それぞれ管路E、管路F、管路G、管路Hに対応する。以上のようにして、車両用ブレーキ装置1の液圧回路が構成されており、ギヤポンプ装置は、これらのうちのギヤポンプ19、39を一体化したものである。ギヤポンプ装置の詳細構造については後述する。 On the other hand, as described above, the second piping system 50b has substantially the same configuration as the first piping system 50a. Specifically, the differential pressure control valve 16 corresponds to the differential pressure control valve 36. The pressure increase control valves 17 and 18 correspond to the pressure increase control valves 37 and 38, respectively, and the pressure reduction control valves 21 and 22 correspond to the pressure reduction control valves 41 and 42, respectively. The pressure regulation reservoir 20 corresponds to the pressure regulation reservoir 40. The gear pump 19 corresponds to the gear pump 39. Further, the pipeline A, the pipeline B, the pipeline C, and the pipeline D correspond to the pipeline E, the pipeline F, the pipeline G, and the pipeline H, respectively. As described above, the hydraulic circuit of the vehicle brake device 1 is configured, and the gear pump device is obtained by integrating the gear pumps 19 and 39 among them. The detailed structure of the gear pump device will be described later.
 ブレーキECU70は、車両用ブレーキ装置1の制御系を司るもので、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成される。ブレーキECU70は、ROMなどに記憶されたプログラムに従って各種演算などの処理を実行し、横滑り防止制御等の車両運動制御を実行する。具体的には、ブレーキECU70は、図示しないセンサ類の検出に基づいて各種物理量を演算し、その演算結果に基づいて車両運動制御を実行するか否かを判定する。そして、ブレーキECU70は、車両運動制御を実行する際には、制御対象輪に対する制御量、すなわち制御対象輪のW/Cに発生させるW/C圧を求める。その結果に基づいて、ブレーキECU70が各制御弁16~18、21、22、36~38、41、42およびギヤポンプ19、39を駆動するためのモータ60を制御することで、制御対象輪のW/C圧が制御され、車両運動制御が行われる。 The brake ECU 70 controls a control system of the vehicle brake device 1 and is configured by a known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like. The brake ECU 70 executes processing such as various calculations according to a program stored in a ROM or the like, and executes vehicle motion control such as skid prevention control. Specifically, the brake ECU 70 calculates various physical quantities based on detection of sensors (not shown), and determines whether or not to execute vehicle motion control based on the calculation results. When executing the vehicle motion control, the brake ECU 70 obtains a control amount for the wheel to be controlled, that is, a W / C pressure generated in the W / C of the wheel to be controlled. Based on the result, the brake ECU 70 controls each control valve 16-18, 21, 22, 36-38, 41, 42 and the motor 60 for driving the gear pumps 19, 39, so that the W of the wheel to be controlled is controlled. / C pressure is controlled and vehicle motion control is performed.
 例えば、トラクション制御や横滑り防止制御のようにM/C13に圧力が発生させられていないときには、ギヤポンプ19、39を駆動すると共に、差圧制御弁16、36を差圧状態にする。これにより、管路D、Hを通じてブレーキ液を差圧制御弁16、36の下流側、つまりW/C14、15、34、35側に供給する。そして、増圧制御弁17、18、37、38や減圧制御弁21、22、41、42を適宜制御することで制御対象輪のW/C圧の増減圧を制御し、W/C圧が所望の制御量となるように制御する。 For example, when pressure is not generated in the M / C 13 as in traction control or skid prevention control, the gear pumps 19 and 39 are driven and the differential pressure control valves 16 and 36 are set in a differential pressure state. As a result, the brake fluid is supplied to the downstream side of the differential pressure control valves 16, 36, that is, the W / C 14, 15, 34, 35 side through the pipelines D, H. And the pressure increase control valve 17, 18, 37, 38 and the pressure reduction control valves 21, 22, 41, 42 are appropriately controlled to control the pressure increase / decrease of the wheel to be controlled. Control to achieve a desired control amount.
 また、アンチスキッド(ABS)制御時には、増圧制御弁17、18、37、38や減圧制御弁21、22、41、42を適宜制御すると共に、ギヤポンプ19、39を駆動することでW/C圧の増減圧を制御し、W/C圧が所望の制御量となるように制御する。 Further, at the time of anti-skid (ABS) control, the pressure increase control valves 17, 18, 37, and 38 and the pressure reduction control valves 21, 22, 41, and 42 are appropriately controlled, and the gear pumps 19 and 39 are driven to drive the W / C. The pressure increase / decrease is controlled so that the W / C pressure becomes a desired control amount.
 次に、上記のように構成される車両用ブレーキ装置1におけるギヤポンプ装置の詳細構造について、図2~図5を参照して説明する。なお、図2は、ポンプ本体100をブレーキ液圧制御用アクチュエータ50のハウジング101に組付けたときの様子を示してあり、例えば、図2および図3の紙面上下方向が車両天地方向となるように組付けられる。 Next, a detailed structure of the gear pump device in the vehicle brake device 1 configured as described above will be described with reference to FIGS. FIG. 2 shows a state where the pump body 100 is assembled to the housing 101 of the brake fluid pressure control actuator 50. For example, the vertical direction in FIG. 2 and FIG. Assembled to.
 上述したように、車両用ブレーキ装置1は、第1配管系統50aと第2配管系統50bの2系統から構成されている。このため、ポンプ本体100には第1配管系統50a用のギヤポンプ19と、第2配管系統50b用のギヤポンプ39の2つが備えられている。 As described above, the vehicle brake device 1 includes two systems, the first piping system 50a and the second piping system 50b. For this reason, the pump main body 100 includes two gear pumps 19 for the first piping system 50a and a gear pump 39 for the second piping system 50b.
 ポンプ本体100に内蔵されるギヤポンプ19、39は、モータ60が第1ベアリング51および第2ベアリング52で支持された回転軸54を回転させることによって駆動される。ポンプ本体100の外形は、アルミニウム製のシリンダ71およびプラグ72によって構成されている。第1ベアリング51はシリンダ71に配置され、第2ベアリング52はプラグ72に配置されている。 The gear pumps 19 and 39 built in the pump main body 100 are driven by the motor 60 rotating the rotary shaft 54 supported by the first bearing 51 and the second bearing 52. The outer shape of the pump body 100 is constituted by an aluminum cylinder 71 and a plug 72. The first bearing 51 is disposed on the cylinder 71, and the second bearing 52 is disposed on the plug 72.
 シリンダ71とプラグ72が同軸的に配置された状態でシリンダ71の一端側がプラグ72に対して圧入されることで一体化され、ポンプ本体100の外形が構成されている。そして、シリンダ71やプラグ72と共にギヤポンプ19、39や各種シール部材等が備えられることによりポンプ本体100が構成されている。 In the state where the cylinder 71 and the plug 72 are coaxially arranged, one end side of the cylinder 71 is pressed into the plug 72 to be integrated, and the outer shape of the pump body 100 is configured. And the pump main body 100 is comprised by providing the gear pumps 19 and 39, various sealing members, etc. with the cylinder 71 and the plug 72. FIG.
 このようにして一体構造のポンプ本体100が構成されている。この一体構造とされたポンプ本体100が、アルミニウム製のハウジング101に形成された略円筒形状の凹部101a内に紙面右方向から挿入されている。そして、凹部101aの入口に掘られた雌ネジ溝101bにリング状の雄ネジ部材(スクリュー)102がネジ締めされて、ポンプ本体100がハウジング101に固定されている。この雄ネジ部材102のネジ締めによってポンプ本体100がハウジング101から抜けない構造とされている。 In this way, the pump body 100 having an integral structure is configured. The pump body 100 having an integral structure is inserted into a substantially cylindrical recess 101a formed in an aluminum housing 101 from the right side of the drawing. Then, a ring-shaped male screw member (screw) 102 is screwed into the female screw groove 101 b dug in the entrance of the recess 101 a, and the pump body 100 is fixed to the housing 101. The pump main body 100 is structured not to be detached from the housing 101 by screwing the male screw member 102.
 このようにポンプ本体100がハウジング101に固定されることでギヤポンプ装置が構成されている。そして、シリンダ71、プラグ72およびハウジング101によってギヤポンプ装置のケースが構成され、このケースの内部にギヤポンプ19、39が収容されている。 The gear pump device is configured by fixing the pump main body 100 to the housing 101 in this way. The cylinder 71, the plug 72 and the housing 101 constitute a gear pump device case, and the gear pumps 19 and 39 are accommodated in the case.
 なお、本明細書では、このポンプ本体100のハウジング101の凹部101aへの挿入方向のことを単に挿入方向という。また、ポンプ本体100や各ギヤポンプ19、39の軸方向および周方向、換言すると回転軸54の軸方向や周方向と一致するポンプ軸方向やポンプ軸周方向を単に軸方向や周方向という。 In this specification, the direction of insertion of the pump body 100 into the recess 101a of the housing 101 is simply referred to as the insertion direction. The axial direction and the circumferential direction of the pump main body 100 and the gear pumps 19 and 39, in other words, the pump axial direction and the pump axial circumferential direction that coincide with the axial direction and circumferential direction of the rotary shaft 54 are simply referred to as axial direction and circumferential direction.
 凹部101aにおける挿入方向前方の先端位置、つまり凹部101aの底部のうち回転軸54の先端(図2における左側端部)と対応する位置において、円形状の第2の凹部101cが形成されている。この第2の凹部101cの径は、回転軸54の径よりも大きくされ、この第2の凹部101c内に回転軸54の先端が位置し、回転軸54がハウジング101と接触しないようにされている。 A circular second concave portion 101c is formed at the front end position in the insertion direction of the concave portion 101a, that is, at the position corresponding to the front end (left end portion in FIG. 2) of the rotating shaft 54 in the bottom portion of the concave portion 101a. The diameter of the second recess 101c is larger than the diameter of the rotation shaft 54, and the tip of the rotation shaft 54 is located in the second recess 101c so that the rotation shaft 54 does not contact the housing 101. Yes.
 シリンダ71およびプラグ72には、それぞれ、中心孔71a、72aが備えられている。これら中心孔71a、72a内に回転軸54が挿入され、シリンダ71における中心孔71aの内周に固定された第1ベアリング51とプラグ72における中心孔72aの内周に固定された第2ベアリング52にて支持されている。 The cylinder 71 and the plug 72 are provided with center holes 71a and 72a, respectively. The rotation shaft 54 is inserted into the center holes 71 a and 72 a, and the first bearing 51 fixed to the inner periphery of the center hole 71 a in the cylinder 71 and the second bearing 52 fixed to the inner periphery of the center hole 72 a in the plug 72. It is supported by.
 第1ベアリング51の両側、つまり第1ベアリング51よりも挿入方向前方の領域と第1、第2ベアリング51、52に挟まれた領域それぞれに、ギヤポンプ19、39が備えられている。 Gear pumps 19 and 39 are provided on both sides of the first bearing 51, that is, in a region in front of the first bearing 51 in the insertion direction and a region sandwiched between the first and second bearings 51 and 52, respectively.
 図3に示すように、ギヤポンプ19は、シリンダ71の一端面を円形状に凹ませた凹部にて構成されるロータ室(収容部)100a内に配置されている。ギヤポンプ19は、ロータ室100a内に挿通された回転軸54によって駆動される内接型ギヤポンプ(トロコイドポンプ)で構成されている。 As shown in FIG. 3, the gear pump 19 is disposed in a rotor chamber (accommodating portion) 100 a constituted by a recess in which one end surface of the cylinder 71 is recessed in a circular shape. The gear pump 19 is constituted by an inscribed gear pump (trochoid pump) driven by a rotating shaft 54 inserted into the rotor chamber 100a.
 具体的には、ギヤポンプ19は、内周に内歯部が形成されたアウターロータ19aと外周に外歯部が形成されたインナーロータ19bとからなる回転部を備えており、インナーロータ19bの中心孔19baに回転軸54が挿入された構成となっている。そして、回転軸54に形成された穴54a内にキー54bが嵌入されており、このキー54bによってインナーロータ19bへのトルク伝達がなされる。 Specifically, the gear pump 19 includes a rotating portion including an outer rotor 19a having an inner tooth portion formed on the inner periphery and an inner rotor 19b having an outer tooth portion formed on the outer periphery, and the center of the inner rotor 19b. The rotary shaft 54 is inserted into the hole 19ba. A key 54b is inserted into a hole 54a formed in the rotating shaft 54, and torque is transmitted to the inner rotor 19b by the key 54b.
 アウターロータ19aとインナーロータ19bは、それぞれに形成された内歯部と外歯部とが噛み合わさって複数の空隙部19cを形成している。そして、回転軸54の回転によって空隙部19cが大小変化することで、ブレーキ液の吸入吐出が行われる。 The outer rotor 19a and the inner rotor 19b have a plurality of gaps 19c formed by meshing inner teeth and outer teeth formed respectively. Then, the suction and discharge of the brake fluid is performed by changing the size of the gap 19c by the rotation of the rotating shaft 54.
 一方、図2に示すように、ギヤポンプ39は、シリンダ71のもう一方の端面を円形状に凹ませた凹部にて構成されるロータ室(収容部)100b内に配置されており、ロータ室100b内に挿通される回転軸54にて駆動される。ギヤポンプ39も、ギヤポンプ19と同様にアウターロータ39aおよびインナーロータ39bを備え、インナーロータ39bの中心孔39ba内に回転軸54が挿入された構成となっている。そして、各ロータ39a、39bの両歯部が噛み合わさって形成される複数の空隙部39cにてブレーキ液の吸入吐出を行う内接型ギヤポンプで構成されている。このギヤポンプ39は、回転軸54を中心としてギヤポンプ19をほぼ180°回転させた配置となっている。このように配置することで、ギヤポンプ19、39のそれぞれの吸入側の空隙部19c、39cと吐出側の空隙部19c、39cとが回転軸54を中心として対称位置となるようにし、吐出側における高圧なブレーキ液圧が第1ベアリング51に与える力を相殺できるようにしている。 On the other hand, as shown in FIG. 2, the gear pump 39 is disposed in a rotor chamber (accommodating portion) 100b constituted by a concave portion in which the other end surface of the cylinder 71 is recessed in a circular shape. It is driven by a rotating shaft 54 inserted into the inside. Similarly to the gear pump 19, the gear pump 39 includes an outer rotor 39a and an inner rotor 39b, and a rotation shaft 54 is inserted into the center hole 39ba of the inner rotor 39b. Each rotor 39a, 39b is constituted by an internal gear pump that sucks and discharges brake fluid in a plurality of gaps 39c formed by meshing both teeth. The gear pump 39 is arranged such that the gear pump 19 is rotated approximately 180 ° around the rotation shaft 54. By arranging in this way, the gaps 19c, 39c on the suction side and the gaps 19c, 39c on the discharge side of the gear pumps 19, 39 are symmetrical with respect to the rotation shaft 54. The force applied to the first bearing 51 by the high brake fluid pressure can be offset.
 これらギヤポンプ19、39は、基本的には同じ構造となっている。そして、本実施形態では、このようなギヤポンプ19、39のケースの一部を構成しているシリンダ71のうちの摺動面71b、71cに形成される研磨筋71f(図4、図5参照)の構成を従来に対して変更している。これによって、損失トルクの低減を図るようにしている。この研磨筋71fの構造の詳細については後で説明する。 These gear pumps 19 and 39 basically have the same structure. In the present embodiment, the polishing bars 71f formed on the sliding surfaces 71b and 71c of the cylinder 71 that constitutes a part of the case of the gear pumps 19 and 39 (see FIGS. 4 and 5). The configuration is changed from the conventional one. As a result, the loss torque is reduced. Details of the structure of the polishing bar 71f will be described later.
 また、シリンダ71の一端面側において、ギヤポンプ19を挟んでシリンダ71と反対側、つまりシリンダ71およびギヤポンプ19とハウジング101との間には、ギヤポンプ19をシリンダ71側に押圧するシール機構111が備えられている。さらに、シリンダ71のもう一方の端面側において、ギヤポンプ39を挟んでシリンダ71と反対側、つまりシリンダ71およびギヤポンプ39とプラグ72との間には、ギヤポンプ39をシリンダ71側に押圧するシール機構115が備えられている。 Further, on one end face side of the cylinder 71, a seal mechanism 111 that presses the gear pump 19 toward the cylinder 71 is provided on the opposite side of the cylinder 71 with the gear pump 19 interposed therebetween, that is, between the cylinder 71 and the gear pump 19 and the housing 101. It has been. Further, on the other end face side of the cylinder 71, a seal mechanism 115 that presses the gear pump 39 toward the cylinder 71 on the opposite side of the cylinder 71 with the gear pump 39 interposed therebetween, that is, between the cylinder 71 and the gear pump 39 and the plug 72. Is provided.
 シール機構111は、回転軸54が挿入される中空部を有するリング状部材で構成されている。このシール機構111にて、アウターロータ19aおよびインナーロータ19bをシリンダ71側に押圧することにより、ギヤポンプ19のうちの一端面側での比較的低圧な部位と比較的高圧な部位とをシールしている。具体的には、シール機構111は、ハウジング101の外郭となる凹部101aの底面およびアウターロータ19aやインナーロータ19bの所望位置と当接することでシール機能を発揮している。 The seal mechanism 111 is composed of a ring-shaped member having a hollow portion into which the rotating shaft 54 is inserted. With this sealing mechanism 111, the outer rotor 19a and the inner rotor 19b are pressed toward the cylinder 71, thereby sealing a relatively low pressure portion and a relatively high pressure portion on one end face side of the gear pump 19. Yes. Specifically, the sealing mechanism 111 exhibits a sealing function by contacting the bottom surface of the concave portion 101a that is an outline of the housing 101 and desired positions of the outer rotor 19a and the inner rotor 19b.
 本実施形態の場合、シール機構111は、中空枠形状とされた内側部材112と環状ゴム部材113および中空枠形状とされた外側部材114とを有した構成とされている。そして、内側部材112の外周壁と外側部材114の内周壁との間に環状ゴム部材113を配した状態で外側部材114内に内側部材112を嵌め込んだ構成とされる。 In the case of this embodiment, the seal mechanism 111 is configured to include an inner member 112 having a hollow frame shape, an annular rubber member 113, and an outer member 114 having a hollow frame shape. Then, the inner member 112 is fitted into the outer member 114 with the annular rubber member 113 disposed between the outer peripheral wall of the inner member 112 and the inner peripheral wall of the outer member 114.
 また、シール機構111の外径は、少なくとも図2の紙面上方においてハウジング101の凹部101aの内径よりも小さくされている。このため、紙面上方におけるシール機構111とハウジング101の凹部101aとの間の隙間を通じてブレーキ液が流動できる構成とされている。この隙間が吐出室80を構成しており、ハウジング101の凹部101aの底部に形成された吐出用管路90に接続されている。このような構造により、ギヤポンプ19は、吐出室80および吐出用管路90を吐出経路としてブレーキ液を排出することができる。そして、ポンプ19の動作時には、高圧な吐出側のブレーキ液圧によって外側部材114がギヤポンプ19側に押圧され、よりシール機構111によるギヤポンプ19の一方の端面のシール性が確保されるようになっている。 Further, the outer diameter of the seal mechanism 111 is set to be smaller than the inner diameter of the concave portion 101a of the housing 101 at least above the plane of FIG. For this reason, it is set as the structure which can flow brake fluid through the clearance gap between the sealing mechanism 111 and the recessed part 101a of the housing 101 above the paper surface. This gap constitutes the discharge chamber 80 and is connected to a discharge conduit 90 formed at the bottom of the recess 101 a of the housing 101. With such a structure, the gear pump 19 can discharge brake fluid using the discharge chamber 80 and the discharge conduit 90 as a discharge path. During the operation of the pump 19, the outer member 114 is pressed against the gear pump 19 by the high brake fluid pressure on the discharge side, and the sealing performance of one end face of the gear pump 19 by the seal mechanism 111 is further ensured. Yes.
 さらに、シリンダ71には、ギヤポンプ19の吸入側の空隙部19cと連通する吸入口81が形成されている。この吸入口81は、シリンダ71のうちギヤポンプ19側の端面から外周面に至るように延設されており、ハウジング101の凹部101aの側面に設けられた吸入用管路91に接続されている。また、図2および図4に示すように、シリンダ71のうちギヤポンプ19側の端面には、中心孔71aと吸入口81とを連通させる吸入溝71dが形成されている。このような構造により、ギヤポンプ19は、吸入用管路91および吸入口81を吸入経路としてブレーキ液を導入することができる。 Further, the cylinder 71 is formed with a suction port 81 communicating with the gap portion 19c on the suction side of the gear pump 19. The suction port 81 extends from the end surface of the cylinder 71 on the gear pump 19 side to the outer peripheral surface, and is connected to a suction pipe 91 provided on the side surface of the recess 101 a of the housing 101. As shown in FIGS. 2 and 4, a suction groove 71 d that connects the center hole 71 a and the suction port 81 is formed on the end surface of the cylinder 71 on the gear pump 19 side. With such a structure, the gear pump 19 can introduce brake fluid using the suction pipe 91 and the suction port 81 as a suction path.
 一方、シール機構115も、回転軸54が挿入される中心部を有するリング状部材で構成されている。このシール機構115にて、アウターロータ39aおよびインナーロータ39bをシリンダ71側に押圧することにより、ギヤポンプ39のうちの一端面側での比較的低圧な部位と比較的高圧な部位とをシールしている。具体的には、シール機構115は、プラグ72のうちシール機構115が収容される部分の端面およびアウターロータ39aやインナーロータ39bの所望位置と当接することでシール機能を発揮している。 On the other hand, the seal mechanism 115 is also composed of a ring-shaped member having a central part into which the rotating shaft 54 is inserted. With this sealing mechanism 115, the outer rotor 39a and the inner rotor 39b are pressed toward the cylinder 71, thereby sealing a relatively low pressure portion and a relatively high pressure portion on one end face side of the gear pump 39. Yes. Specifically, the sealing mechanism 115 exhibits a sealing function by contacting the end surface of the portion of the plug 72 in which the sealing mechanism 115 is accommodated and the desired positions of the outer rotor 39a and the inner rotor 39b.
 シール機構115も、中空枠形状とされた内側部材116と環状ゴム部材117および中空枠形状とされた外側部材118とを有した構成とされている。そして、内側部材116の外周壁と外側部材118の内周壁との間に環状ゴム部材117を配した状態で外側部材118内に内側部材116を嵌め込んだ構成とされる。 The seal mechanism 115 is also configured to include an inner member 116 having a hollow frame shape, an annular rubber member 117, and an outer member 118 having a hollow frame shape. The inner member 116 is fitted into the outer member 118 with the annular rubber member 117 disposed between the outer peripheral wall of the inner member 116 and the inner peripheral wall of the outer member 118.
 このシール機構115は、シール機構111と基本構造は同じ構造であるが、上記したシール機構111とシールを構成する面が反対側となっていることから、それに合わせて構造を変えてある。具体的には、シール機構115については、シール機構111に対する対称形状で構成してあり、回転軸54を中心としてシール機構111に対して180°位相をずらして配置してある。それ以外については、シール機構115は、シール機構111と同様の構造である。 The basic structure of the seal mechanism 115 is the same as that of the seal mechanism 111, but the structure constituting the seal is opposite to that of the seal mechanism 111 described above, and the structure is changed accordingly. Specifically, the sealing mechanism 115 is configured to have a symmetrical shape with respect to the sealing mechanism 111, and is arranged with a 180 ° phase shift with respect to the sealing mechanism 111 around the rotation shaft 54. Other than that, the seal mechanism 115 has the same structure as the seal mechanism 111.
 なお、シール機構115の外径は、少なくとも紙面下方においてプラグ72の内径よりも小さくなっている。このため、紙面下方におけるシール機構115とプラグ72との間の隙間を通じてブレーキ液が流動できる構成とされている。この隙間が吐出室82を構成しており、プラグ72に形成された連通路72bおよびハウジング101の凹部101aの側面に形成された吐出用管路92に接続されている。このような構造により、ギヤポンプ39は、吐出室82や連通路72bおよび吐出用管路92を吐出経路としてブレーキ液を排出することができる。そして、ポンプ39の動作時には、高圧な吐出側のブレーキ液圧によって外側部材118がギヤポンプ39側に押圧され、よりシール機構115によるギヤポンプ39の一方の端面のシール性が確保されるようになっている。 Note that the outer diameter of the seal mechanism 115 is smaller than the inner diameter of the plug 72 at least on the lower side of the drawing. For this reason, the brake fluid can flow through the gap between the seal mechanism 115 and the plug 72 below the paper surface. This gap constitutes the discharge chamber 82, and is connected to a communication path 72 b formed in the plug 72 and a discharge conduit 92 formed on the side surface of the recess 101 a of the housing 101. With such a structure, the gear pump 39 can discharge brake fluid using the discharge chamber 82, the communication path 72b, and the discharge pipe line 92 as discharge paths. During the operation of the pump 39, the outer member 118 is pressed toward the gear pump 39 by the brake fluid pressure on the high discharge side, and the sealing performance of one end face of the gear pump 39 by the seal mechanism 115 is further ensured. Yes.
 一方、シリンダ71のうちギヤポンプ19、39側の端面がシール面としても機能する摺動面71b、71c、つまり各ロータ19a、19b、39a、39bが摺動させられる面にギヤポンプ19、39が当接することでシール(メカニカルシール)が為されている。これにより、ギヤポンプ19、39のうちの他端面側での比較的低圧な部位と比較的高圧な部位とをシールしている。 On the other hand, the end faces of the cylinder 71 on the side of the gear pumps 19 and 39 also serve as sliding surfaces 71b and 71c, that is, the surfaces on which the rotors 19a, 19b, 39a and 39b slide, A seal (mechanical seal) is made by contact. Thus, the relatively low pressure portion and the relatively high pressure portion on the other end face side of the gear pumps 19 and 39 are sealed.
 また、シリンダ71には、ギヤポンプ39の吸入側の空隙部39cと連通する吸入口83が形成されている。この吸入口83は、シリンダ71のうちギヤポンプ39側の端面から外周面に至るように延設されており、ハウジング101の凹部101aの側面に設けられた吸入用管路93に接続されている。このような構造により、ギヤポンプ39は、吸入用管路93および吸入口83を吸入経路としてブレーキ液を導入することができる。 Also, the cylinder 71 is formed with a suction port 83 communicating with the suction side gap 39c of the gear pump 39. The suction port 83 extends from the end surface of the cylinder 71 on the gear pump 39 side to the outer peripheral surface, and is connected to a suction conduit 93 provided on the side surface of the recess 101 a of the housing 101. With such a structure, the gear pump 39 can introduce brake fluid using the suction pipe 93 and the suction port 83 as a suction path.
 なお、図2において、吸入用管路91および吐出用管路90が図1における管路Cに相当し、吸入用管路93および吐出用管路92が図1における管路Gに相当する。 In FIG. 2, the suction conduit 91 and the discharge conduit 90 correspond to the conduit C in FIG. 1, and the suction conduit 93 and the discharge conduit 92 correspond to the conduit G in FIG.
 また、シリンダ71の中心孔71aのうち第1ベアリング51よりも挿入方向後方には、径方向断面がU字状とされた環状樹脂部材120aと、環状樹脂部材120a内に嵌め込まれた環状ゴム部材120bとを備えたシール部材120が収容されている。このシール部材120により、シリンダ71の中心孔71a内での2系統の間のシールがなされている。 In addition, an annular resin member 120a having a U-shaped radial cross section and an annular rubber member fitted in the annular resin member 120a at the rear of the first bearing 51 in the center hole 71a of the cylinder 71 in the insertion direction. The sealing member 120 provided with 120b is accommodated. The seal member 120 provides a seal between the two systems in the center hole 71a of the cylinder 71.
 また、プラグ72の中心孔72aは、挿入方向前方から後方に向かって内径が三段階に縮径させられて段付き形状とされており、その最も挿入方向後方側となる一段目の段付部にシール部材121が収容されている。このシール部材121は、ゴムなどの弾性部材からなるリング状の弾性リング121aを、径方向を深さ方向とする溝部が形成されたリング状の樹脂部材121bに嵌め込んだものであり、弾性リング121aの弾性力によって樹脂部材121bが押圧されて回転軸54と接するようになっている。 Further, the center hole 72a of the plug 72 has a stepped shape in which the inner diameter is reduced in three steps from the front to the rear in the insertion direction, and the first stepped portion on the rearmost side in the insertion direction. The seal member 121 is accommodated in the housing. The seal member 121 is obtained by fitting a ring-shaped elastic ring 121a made of an elastic member such as rubber into a ring-shaped resin member 121b in which a groove having a radial direction as a depth direction is formed. The resin member 121b is pressed by the elastic force of 121a and comes into contact with the rotating shaft 54.
 なお、中心孔72aのうちシール部材121が配置された段の隣の段となる二段目の段付部には、上述したシール機構115が収容されている。上述した連通路72bは、この段付部からプラグ72の外周面に至るように形成されている。また、中心孔72aのうち最も挿入方向前方側となる三段目の段付部には、シリンダ71の挿入方向後方側の端部が圧入されている。シリンダ71のうちプラグ72の中心孔72a内に嵌め込まれる部分は、シリンダ71の他の部分よりも外径が縮小されている。このシリンダ71のうち外径が縮小されている部分の軸方向寸法が中心孔72aの三段目の段付部の軸方向寸法よりも大きくされているため、シリンダ71がプラグ72の中心孔72a内に圧入されたときに、プラグ72の先端位置にシリンダ71とプラグ72とによる溝部74cが形成されるようになっている。 In addition, the sealing mechanism 115 mentioned above is accommodated in the step part of the 2nd step used as the step next to the step in which the sealing member 121 is arrange | positioned among the center holes 72a. The communication passage 72b described above is formed so as to reach from the stepped portion to the outer peripheral surface of the plug 72. In addition, an end of the cylinder 71 on the rear side in the insertion direction is press-fitted into a third stepped portion on the front side in the insertion direction of the center hole 72a. A portion of the cylinder 71 that is fitted into the center hole 72 a of the plug 72 has a smaller outer diameter than other portions of the cylinder 71. Since the axial dimension of the portion of the cylinder 71 whose outer diameter is reduced is made larger than the axial dimension of the third stepped portion of the center hole 72 a, the cylinder 71 is connected to the center hole 72 a of the plug 72. A groove 74c formed by the cylinder 71 and the plug 72 is formed at the tip end position of the plug 72 when press-fitted into the plug 72.
 さらに、プラグ72の中心孔72aは、挿入方向後方でも部分的に径が拡大されており、この部分にオイルシール(シール部材)122が備えられている。このように、シール部材121よりもモータ60側にオイルシール122を配置することで、基本的には、シール部材121によって中心孔72aを通じた外部へのブレーキ液洩れを防止し、オイルシール122により、より確実にその効果が得られるようにしている。 Furthermore, the diameter of the central hole 72a of the plug 72 is partially enlarged even in the rear in the insertion direction, and an oil seal (seal member) 122 is provided in this portion. Thus, by disposing the oil seal 122 closer to the motor 60 than the seal member 121, basically, leakage of brake fluid to the outside through the center hole 72 a is prevented by the seal member 121, and the oil seal 122 , So that the effect can be obtained more reliably.
 このように構成されたポンプ本体100の外周において、各部のシールを行うように環状シール部材としてのOリング73a~73dが備えられている。これらOリング73a~73dは、ハウジング101に形成された2系統の系統同士の間や各系統の吐出経路と吸入経路との間などにおけるブレーキ液をシールするものである。Oリング73aは吐出室80および吐出用管路90と吸入口81および吸入用管路91との間に配置されている。Oリング73bは吸入口81および吸入用管路91と吸入口83および吸入用管路93の間に配置されている。Oリング73cは吸入口83および吸入用管路93と吐出室82および吐出用管路92の間に配置されている。Oリング73dは吐出室82および吐出用管路92とハウジング101の外部の間に配置されている。Oリング73a、73c、73dは、回転軸54を中心として周方向を一周囲むように単に円形状に配置されているが、Oリング73bは、回転軸54を中心として周方向を囲んでいるものの軸方向にずらして配置されることで、回転軸54の軸方向において寸法縮小を可能にしている。 O-rings 73a to 73d as annular seal members are provided on the outer periphery of the pump main body 100 thus configured so as to seal each part. These O-rings 73a to 73d seal brake fluid between the two systems formed in the housing 101 or between the discharge path and the suction path of each system. The O-ring 73 a is disposed between the discharge chamber 80 and the discharge conduit 90 and the suction port 81 and the suction conduit 91. The O-ring 73 b is disposed between the suction port 81 and the suction conduit 91 and the suction port 83 and the suction conduit 93. The O-ring 73 c is disposed between the suction port 83 and the suction conduit 93 and the discharge chamber 82 and the discharge conduit 92. The O-ring 73 d is disposed between the discharge chamber 82 and the discharge conduit 92 and the outside of the housing 101. The O- rings 73a, 73c, and 73d are simply arranged in a circular shape so as to wrap around the circumferential direction around the rotation axis 54, but the O-ring 73b is an axis that surrounds the circumferential direction around the rotation axis 54. By disposing in the direction, the size can be reduced in the axial direction of the rotating shaft 54.
 なお、Oリング73a~73dが配置できるように、ポンプ本体100の外周には溝部74a~74dが備えられている。溝部74a、74bは、シリンダ71の外周を部分的に凹ませることで形成されている。溝部74cは、シリンダ71の外周の凹ませた部分とプラグ72の先端部分によって形成されている。凹部74dは、プラグ72の外周を部分的に凹ませることで形成されている。このような各溝部74a~74d内にOリング73a~73dが嵌め込まれた状態でポンプ本体100をハウジング101の凹部101a内に挿入することで、各Oリング73a~73dが凹部101aの内壁面に押し潰され、シールとして機能させられる。 In addition, groove portions 74a to 74d are provided on the outer periphery of the pump body 100 so that the O-rings 73a to 73d can be arranged. The groove portions 74 a and 74 b are formed by partially denting the outer periphery of the cylinder 71. The groove 74 c is formed by a recessed portion on the outer periphery of the cylinder 71 and a tip portion of the plug 72. The recess 74d is formed by partially denting the outer periphery of the plug 72. By inserting the pump body 100 into the recess 101a of the housing 101 with the O-rings 73a to 73d fitted in the grooves 74a to 74d, the O-rings 73a to 73d are formed on the inner wall surface of the recess 101a. It is crushed and made to function as a seal.
 さらに、プラグ72の外周面は、挿入方向後方において縮径され、段付き部を構成している。上記したリング状の雄ネジ部材102はこの縮径された部分に嵌装され、ポンプ本体100が固定されるようになっている。 Furthermore, the outer peripheral surface of the plug 72 is reduced in diameter in the rear in the insertion direction to form a stepped portion. The ring-shaped male screw member 102 described above is fitted into the reduced diameter portion, and the pump body 100 is fixed.
 以上のような構造によってギヤポンプ装置が構成されている。次に、上述したギヤポンプ19、39のケースの一部を構成しているシリンダ71の摺動面71b、71cの詳細構造について説明する。なお、摺動面71b、71cは同様の構成とされているため、図4および図5では摺動面71b、71cの両方が同じものであるとして図示してある。 The gear pump device is configured by the above structure. Next, the detailed structure of the sliding surfaces 71b and 71c of the cylinder 71 constituting part of the case of the gear pumps 19 and 39 described above will be described. Since the sliding surfaces 71b and 71c have the same configuration, both the sliding surfaces 71b and 71c are illustrated as being the same in FIGS.
 シリンダ71のうちギヤポンプ19、39を挟んでシール機構111、115と反対側の端面により、図4および図5に示すような摺動面71b、71cが構成されている。具体的には、当該端面の中央位置に中心孔71aが形成されていると共に、中心孔71aを挟んだ両側に吸入口81、83および吐出室80、82と対応する位置に配置された吐出溝71eが形成されている。そして、当該端面における中心孔71a、吸入口81および吐出溝71e以外の部分が、ギヤポンプ19、39の駆動時に両ロータ19a、19b、39a、39bが摺動する摺動面71b、71cとされている。 Sliding surfaces 71b and 71c as shown in FIG. 4 and FIG. 5 are configured by the end surface of the cylinder 71 opposite to the seal mechanisms 111 and 115 with the gear pumps 19 and 39 interposed therebetween. Specifically, a central hole 71a is formed at the center position of the end surface, and the discharge grooves are disposed at positions corresponding to the suction ports 81 and 83 and the discharge chambers 80 and 82 on both sides of the center hole 71a. 71e is formed. The portions other than the central hole 71a, the suction port 81, and the discharge groove 71e on the end surface are formed as sliding surfaces 71b, 71c on which the rotors 19a, 19b, 39a, 39b slide when the gear pumps 19, 39 are driven. Yes.
 摺動面は71b、71cには、流体導入溝を構成する研磨筋71fが形成されている。研磨筋71fは、例えば研磨加工によって形成される。本実施形態では、研磨筋71fは、ギヤポンプ19、39の中心から放射状に伸びるように複数本が形成されている。ここでは、ギヤポンプ19、39の中心を中心孔71aの中心としているが、中心孔71aに対して放射状に研磨筋71fが形成されていれば良く、特定の位置を中心として設定していなくても良い。 The sliding surfaces 71b and 71c are formed with polishing bars 71f constituting fluid introduction grooves. The polishing streaks 71f are formed by polishing, for example. In the present embodiment, a plurality of polishing bars 71 f are formed so as to extend radially from the centers of the gear pumps 19 and 39. Here, the center of the gear pumps 19 and 39 is the center of the center hole 71a. However, it is only necessary that the polishing bars 71f be formed radially with respect to the center hole 71a, and the center is not set at a specific position. good.
 複数本の研磨筋71fは、それぞれ、ロータ室100a、100bのうちアウターロータ19a、39aよりも外側の部位(以下、外周高圧領域という)に連通させられている。そして、複数本の研磨筋71fは、外周高圧領域に連通させられた部分が低圧領域となる中心孔71aや吸入口81、83および吸入溝71dとは連通させられないようにされている。本実施形態の場合、複数本の研磨筋71fのうち内周側の端部が中心孔71aや吸入口81、83および吸入溝71dから離間させられている。 The plurality of polishing bars 71f are communicated with portions of the rotor chambers 100a and 100b outside the outer rotors 19a and 39a (hereinafter referred to as outer peripheral high pressure regions). The plurality of polishing bars 71f are configured not to communicate with the central hole 71a, the suction ports 81 and 83, and the suction groove 71d in which the portion communicated with the outer peripheral high pressure region becomes the low pressure region. In the present embodiment, the end on the inner peripheral side of the plurality of polishing bars 71f is separated from the center hole 71a, the suction ports 81 and 83, and the suction groove 71d.
 以上のようにして、シリンダ71の摺動面71b、71cに研磨筋71fが形成されている。 As described above, the polishing bars 71 f are formed on the sliding surfaces 71 b and 71 c of the cylinder 71.
 このような構成の研磨筋71fを形成した場合、研磨筋71fが高圧な吐出圧とされる外周高圧領域と連通させられていることから、研磨筋71f内に高圧なブレーキ液が導入される。このため、高圧なブレーキ液圧に基づいてギヤポンプ19、39を押し返す押し返し効果を得ることができる。そして、研磨筋71fを外周高圧領域に連通させていても、低圧領域となる各部には連通させていない。このため、研磨筋71f内を高圧に保つことができ、押し返し効果が低減することを抑制できる。したがって、損失トルクの低減効果の低下を防ぐことができ、損失トルクの更なる低減を行うことが可能となる。 When the polishing bar 71f having such a configuration is formed, since the polishing bar 71f is in communication with the outer peripheral high-pressure region having a high discharge pressure, a high-pressure brake fluid is introduced into the polishing bar 71f. For this reason, it is possible to obtain a push-back effect of pushing back the gear pumps 19 and 39 based on a high brake fluid pressure. Even if the polishing bar 71f communicates with the outer peripheral high-pressure region, it does not communicate with each part that becomes the low-pressure region. For this reason, the inside of the polishing bar 71f can be maintained at a high pressure, and a reduction in the pushing back effect can be suppressed. Therefore, it is possible to prevent a reduction in the loss torque reduction effect and further reduce the loss torque.
 (第2実施形態)
 本発明の第2実施形態について説明する。本実施形態は、第1実施形態に対して研磨筋71fを変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment of the present invention will be described. In the present embodiment, the polishing bar 71f is changed with respect to the first embodiment, and the others are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment will be described.
 図6および図7に示すように、本実施形態では、研磨筋71fをギヤポンプ19、39の中心から放射状に伸びるように複数本が形成しつつ、研磨筋71fのうち低圧状態の空隙部19c、39cと連通し得る低圧部71faを、それよりも外周側の外周高圧領域と連通させられる高圧部71fbから分離している。 As shown in FIGS. 6 and 7, in the present embodiment, a plurality of the polishing bars 71f are formed so as to extend radially from the centers of the gear pumps 19 and 39, while the low-pressure gap 19c of the polishing bars 71f is formed. The low pressure portion 71fa that can communicate with 39c is separated from the high pressure portion 71fb that communicates with the outer peripheral high pressure region on the outer peripheral side.
 具体的には、ギヤポンプ19、39における各部の流体圧は図8のように示され、吐出圧が導入される高圧領域Ra、吸入圧が導入される低圧領域Rbおよびそれらの中間となる中間圧領域Rcが存在する。そして、ギヤポンプ19、39とシリンダ71の摺動面71b、71cとの間における圧力については図9のように示される。このため、図8および図9に示される圧力関係に基づき、低圧部71faは低圧領域Rbを含む範囲に形成され、高圧部71fbは低圧領域Rbには形成されないようにしている。 Specifically, the fluid pressure of each part in the gear pumps 19 and 39 is shown as shown in FIG. 8, and the high pressure region Ra into which the discharge pressure is introduced, the low pressure region Rb into which the suction pressure is introduced, and the intermediate pressure between them. Region Rc exists. The pressure between the gear pumps 19 and 39 and the sliding surfaces 71b and 71c of the cylinder 71 is shown in FIG. Therefore, based on the pressure relationship shown in FIGS. 8 and 9, the low pressure portion 71fa is formed in a range including the low pressure region Rb, and the high pressure portion 71fb is not formed in the low pressure region Rb.
 図8に示すように、吸入口81、83や吸入溝71dおよび中心孔71aは低圧となる。そして、空隙部19c、39cは、吸入口81、83や吸入溝71dと連通しているとき、さらにはそれらと連通してから体積が増加するまでの間には低圧状態となる。このため、研磨筋71fのうち低圧状態の空隙部19c、39cと連通し得る場所を低圧部71faとし、高圧状態のアウターロータ19a、39aの外周とシリンダ71との間の隙間と連通する場所を高圧部71fbとして、これらを分離している。 As shown in FIG. 8, the suction ports 81 and 83, the suction groove 71d, and the center hole 71a are at a low pressure. The gaps 19c and 39c are in a low pressure state when communicating with the suction ports 81 and 83 and the suction groove 71d, and further until the volume increases after communicating with the suction ports 81 and 83 and the suction groove 71d. For this reason, the place which can be communicated with the low pressure gaps 19c and 39c in the polishing bar 71f is the low pressure part 71fa, and the place where the gap between the outer circumference of the high pressure outer rotor 19a and 39a and the cylinder 71 is communicated. These are separated as the high-pressure portion 71fb.
 換言すれば、所定の領域では研磨筋71fを形成していない。具体的には、図6および図8に示すように、空隙部19c、39cのうち高圧領域Raの部位と低圧領域Rbの部位のいずれも連通しない中間圧領域Rcとなる閉じ込み部19d、39dが位置する範囲には研磨筋71fを形成していない。つまり、閉じ込み部19d、39dの通過軌跡の範囲には研磨筋71fを形成していない。また、空隙部19c、39cが低圧状態となる領域よりも外周側において空隙部19c、39cの移動軌跡に沿った範囲で研磨筋71fを形成していない。 In other words, the polishing bar 71f is not formed in the predetermined region. Specifically, as shown in FIGS. 6 and 8, the confined portions 19d and 39d that become the intermediate pressure region Rc in which neither the high-pressure region Ra nor the low-pressure region Rb communicates among the gaps 19c and 39c. The polishing streaks 71f are not formed in the range where the is located. That is, the polishing streaks 71f are not formed in the range of the trajectory of the closing portions 19d and 39d. Further, the polishing bar 71f is not formed in a range along the movement locus of the gaps 19c, 39c on the outer peripheral side of the area where the gaps 19c, 39c are in a low pressure state.
 ここでいう綴じ込み部19d、39dは、空隙部19c、39cのうち体積が最大となるときのものを意味している。具体的には、ギヤポンプ19、39の回転方向において、空隙部19c、39cは吸入口81、83と連通している部位から吐出室80、82に連通している部位に移動するまでの間に体積が最大となり、その最大となるときの空隙部19c、39cを閉じ込み部19d、39dと呼んでいる。 The binding portions 19d and 39d referred to here mean that of the gap portions 19c and 39c when the volume is maximum. Specifically, in the rotational direction of the gear pumps 19 and 39, the gaps 19 c and 39 c are moved from the site communicating with the suction ports 81 and 83 to the site communicating with the discharge chambers 80 and 82. The gaps 19c and 39c when the volume becomes the maximum are called the closed portions 19d and 39d.
 なお、空隙部19c、39cは、体積が最小となるときの閉じ込み部19e、39eもあるが、この閉じ込み部19e、39eについては研磨筋71fの低圧部71faと連通している。閉じ込み部19e、39eについては体積が小さいので、低圧部71faと連通したとしても圧力変動などの影響は少ない。このため、低圧部71faを閉じ込み部19e、39eに連通させているが、この領域についても研磨筋71fを備えないようにしても良い。 The gaps 19c and 39c also have closed portions 19e and 39e when the volume is minimized, and the closed portions 19e and 39e communicate with the low pressure portion 71fa of the polishing bar 71f. Since the volumes of the confinement portions 19e and 39e are small, even if the confinement portions 19e and 39e communicate with the low pressure portion 71fa, the influence of pressure fluctuations is small. For this reason, the low-pressure part 71fa communicates with the confining parts 19e, 39e. However, the polishing bar 71f may not be provided in this region.
 このように、吸入口81、83などの低圧領域Rbと連通させられる低圧部71faと吐出室80、82などの高圧領域Raに連通させられる高圧部71fbとを分離させるように研磨筋71fを構成しても良い。このようにすれば、より高圧領域から高圧流体が低圧領域側に洩れることを抑制できる。したがって、さらに損失トルクの低減効果の低下を防ぐことができ、損失トルクの更なる低減を行うことが可能となる。 In this way, the polishing bar 71f is configured to separate the low pressure portion 71fa communicated with the low pressure region Rb such as the suction ports 81 and 83 and the high pressure portion 71fb communicated with the high pressure region Ra such as the discharge chambers 80 and 82. You may do it. If it does in this way, it can control that a high pressure fluid leaks from a higher pressure field to the low pressure field side. Therefore, it is possible to further prevent the loss torque from being reduced, and it is possible to further reduce the loss torque.
 (第3実施形態)
 本発明の第3実施形態について説明する。本実施形態は、第2実施形態に対して研磨筋71fを変更したものであり、その他については第2実施形態と同様であるため、第2実施形態と異なる部分についてのみ説明する。
(Third embodiment)
A third embodiment of the present invention will be described. In the present embodiment, the polishing bar 71f is changed with respect to the second embodiment, and the others are the same as those in the second embodiment. Therefore, only the parts different from the second embodiment will be described.
 図10に示すように、本実施形態では、研磨筋71fをギヤポンプ19、39の中心から伸びる放射状の曲線によって構成している。各研磨筋71fの低圧部71faや高圧部71fbは、両端部よりもその中間位置の方がギヤポンプ19、39の回転方向の前方に位置するようにしている。すなわち、低圧部71faや高圧部71fbを湾曲させて凸形状とし、凸部が回転方向の前方を向くようにしている。 As shown in FIG. 10, in this embodiment, the polishing bar 71 f is configured by a radial curve extending from the center of the gear pumps 19 and 39. The low pressure portion 71fa and the high pressure portion 71fb of each polishing bar 71f are positioned so that their intermediate positions are located in front of the rotation direction of the gear pumps 19 and 39 rather than both ends. That is, the low-pressure part 71fa and the high-pressure part 71fb are curved to have a convex shape so that the convex part faces the front in the rotational direction.
 このように、低圧部71faや高圧部71fbを放射状の曲線にて構成すると、ギヤポンプ19、39の回転の際に湾曲させられた部分が楔の役割を果たし、内部に導入されるブレーキ液が内周方向に流動することの妨げとなる。このため、研磨筋71f内のブレーキ液が高圧領域から低圧領域側に抜け難くなって、研磨筋71fの高圧状態を維持できる。これにより、さらに損失トルクの低減効果の低下を防ぐことができ、損失トルクの更なる低減を行うことが可能となる。 As described above, when the low-pressure portion 71fa and the high-pressure portion 71fb are configured with radial curves, the curved portions when the gear pumps 19 and 39 are rotated serve as wedges, and the brake fluid introduced into the interior is contained inside. This hinders the flow in the circumferential direction. For this reason, it becomes difficult for the brake fluid in the polishing bar 71f to escape from the high pressure region to the low pressure region side, and the high pressure state of the polishing bar 71f can be maintained. As a result, it is possible to further prevent the loss torque from being reduced, and to further reduce the loss torque.
 (第4実施形態)
 本発明の第4実施形態について説明する。本実施形態は、第1実施形態に対して研磨筋71fを変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Fourth embodiment)
A fourth embodiment of the present invention will be described. In the present embodiment, the polishing bar 71f is changed with respect to the first embodiment, and the others are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment will be described.
 図11に示すように、本実施形態では、ギヤポンプ19、39の中心位置に図中一点鎖線で示した仮想円Cを設定し、その仮想円Cの接線方向に伸びるように研磨筋71fを設けるようにしている。具体的には、研磨筋71fのうちギヤポンプ19、39の内周側の端部の方が外周側の端部よりも回転方向の前方に位置するように研磨筋71fが設けられている。仮想円Cの大きさについては任意であり、例えば中心孔71aの径以下とされる。 As shown in FIG. 11, in this embodiment, a virtual circle C indicated by a one-dot chain line in the figure is set at the center position of the gear pumps 19 and 39, and a polishing bar 71f is provided so as to extend in the tangential direction of the virtual circle C. I am doing so. Specifically, the polishing bar 71f is provided so that the inner peripheral side ends of the gear pumps 19 and 39 of the polishing bar 71f are located in front of the outer peripheral side in the rotational direction. The size of the imaginary circle C is arbitrary and is, for example, equal to or smaller than the diameter of the center hole 71a.
 このように、研磨筋71fを仮想円Cに対する接線方向に延びるようなレイアウトとしても、第1実施形態と同様の効果を得ることができる。また、研磨筋71fのうちギヤポンプ19、39の内周側の端部の方が外周側の端部よりも回転方向の前方に位置するように研磨筋71fを設けている。このため、ギヤポンプ19、39の回転運動に基づいて、外周側の端部より流入したブレーキ液が内周側の端部に流動させられ易くなる。したがって、研磨筋71fの全域において高圧状態を確保し易くなり、より第1実施形態に示した効果を得ることが可能となる。 As described above, the same effect as that of the first embodiment can be obtained even when the polishing bar 71f has a layout extending in the tangential direction with respect to the virtual circle C. Further, the polishing bar 71f is provided so that the inner peripheral side end portions of the gear pumps 19 and 39 of the polishing bar 71f are located in front of the outer peripheral side end portion in the rotational direction. For this reason, based on the rotational movement of the gear pumps 19 and 39, the brake fluid that has flowed in from the outer peripheral end is easily flowed to the inner peripheral end. Therefore, it becomes easy to ensure a high pressure state in the entire area of the polishing bar 71f, and the effect shown in the first embodiment can be obtained.
 (他の実施形態)
 本発明は上記した実施形態に限定されるものではなく、請求の範囲に記載した範囲内において適宜変更が可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims.
 例えば、流体導入溝として放射状の研磨筋71fを備える例を挙げたが、研磨筋71f以外の溝によって流体導入溝を構成しても良い。例えば、レーザ加工によるレーザ加工溝によって流体導入溝を構成しても良い。レーザ加工溝とする場合、機械加工によって生じるようなバリが発生しないことから、バリによる影響を無くすことができる。また、レーザ加工の場合、加工面が奥まった位置にある場合でも加工可能であることから、流体導入溝の形成容易化を図ることも可能である。 For example, although an example in which the radial polishing bar 71f is provided as the fluid introduction groove has been described, the fluid introduction groove may be configured by a groove other than the polishing line 71f. For example, the fluid introduction groove may be constituted by a laser processing groove by laser processing. In the case of the laser processing groove, since no burrs are generated by machining, the influence of burrs can be eliminated. Further, in the case of laser processing, since it is possible to perform processing even when the processing surface is at a deep position, it is possible to facilitate formation of the fluid introduction groove.
 また、上記各実施形態では、内接型ギヤポンプにて構成された2つのギヤポンプ19、39を有するギヤポンプ装置を例に挙げた。しかしながら、1つのギヤポンプのみが適用されるギヤポンプ装置であっても良い。また、上記各実施形態では、2つのギヤポンプ19、39を備えたギヤポンプ装置とし、各ギヤポンプ19、39の収容部(ロータ室100a、100b)を構成するケースをハウジング101やシリンダ71およびプラグ72によって構成している。しかしながら、これも一例を示したにすぎず、例えばポンプ本体100の外形を構成するもののみでケースが構成されていても良い。 Further, in each of the above embodiments, the gear pump device having the two gear pumps 19 and 39 constituted by the inscribed gear pump is taken as an example. However, it may be a gear pump device to which only one gear pump is applied. Further, in each of the above embodiments, a gear pump device including two gear pumps 19 and 39 is used, and a case constituting a housing portion ( rotor chamber 100a and 100b) of each gear pump 19 and 39 is formed by a housing 101, a cylinder 71, and a plug 72. It is composed. However, this is also merely an example, and the case may be configured only by what constitutes the outer shape of the pump body 100, for example.
 また、シリンダ71の一端面に吸入溝71dを形成しているが、吸入溝71dを備えていない構造であっても良い。その場合、吸入溝71dが位置している部分にも研磨筋71fを形成すると好ましい。 Further, although the suction groove 71d is formed on one end surface of the cylinder 71, a structure without the suction groove 71d may be employed. In that case, it is preferable that the polishing bar 71f is also formed in the portion where the suction groove 71d is located.
 100…ポンプ本体、101…ハウジング、101a…凹部、19、39…回転式ポンプ、19a、39a…アウターロータ、19b、39b…インナーロータ、54…回転軸、71…シリンダ、71a…中心孔、71b、71c…摺動面、71d…吸入溝、71e…吐出溝、71f…研磨筋、71fa…低圧部、71fb…高圧部、72…プラグ、80、82…吐出室、81、83…吸入口、90、92…吐出用管路、91、93…吸入用管路、111、115…シール機構 DESCRIPTION OF SYMBOLS 100 ... Pump main body, 101 ... Housing, 101a ... Recessed part, 19, 39 ... Rotary pump, 19a, 39a ... Outer rotor, 19b, 39b ... Inner rotor, 54 ... Rotary shaft, 71 ... Cylinder, 71a ... Center hole, 71b 71c ... sliding surface, 71d ... suction groove, 71e ... discharge groove, 71f ... polishing streaks, 71fa ... low pressure part, 71fb ... high pressure part, 72 ... plug, 80, 82 ... discharge chamber, 81, 83 ... suction port, 90, 92 ... discharge line, 91, 93 ... suction line, 111, 115 ... sealing mechanism

Claims (6)

  1.  内歯部を有するアウターロータおよび前記アウターロータと複数の空隙部を形成しつつ噛み合わされるインナーロータを有し、前記インナーロータの中心孔に挿通される軸の回転に基づいて前記アウターロータおよび前記インナーロータが回転させられることで流体の吸入吐出動作を行うギヤポンプと、
     前記ギヤポンプが収容される収容部を形成するケースと、
     前記ケースと前記ギヤポンプにおけるポンプ軸方向端面の一方との間に配設され、前記ギヤポンプのうち前記流体を吸入する吸入側および前記軸の周りを含む低圧側と前記流体が吐出される吐出側および前記アウターロータの外周と前記ケースとの間の隙間の一部を含む高圧側とを区画するシール機構とを備え、
     前記シール機構の押し付け力に基づいて前記ギヤポンプにおけるポンプ軸方向端面の他方の端面が前記ケースの摺動面に当接されることで、当該端面での前記ギヤポンプの低圧側と高圧側との間がシールされるギヤポンプ装置において、
     前記摺動面には、前記ギヤポンプの中心から放射状に伸びる筋によって構成され、前記高圧側となる前記アウターロータの外周と前記ケースとの間の隙間の流体が導入される流体導入溝を有し、
     前記流体導入溝は、前記中心孔および前記吸入側から離間させられていることを特徴とするギヤポンプ装置。
    An outer rotor having an inner tooth portion, an inner rotor meshed with the outer rotor while forming a plurality of gaps, and the outer rotor and the outer rotor based on rotation of a shaft inserted through a central hole of the inner rotor A gear pump that performs a suction and discharge operation of fluid by rotating the inner rotor;
    A case forming an accommodating portion in which the gear pump is accommodated;
    A suction side of the gear pump for sucking the fluid, a low pressure side including the periphery of the shaft, a discharge side for discharging the fluid, and a suction pump disposed between the case and one of the end faces in the pump axial direction of the gear pump. A sealing mechanism that partitions a high pressure side including a part of a gap between the outer periphery of the outer rotor and the case;
    The other end surface of the pump axial end surface of the gear pump is brought into contact with the sliding surface of the case based on the pressing force of the seal mechanism, so that the gap between the low pressure side and the high pressure side of the gear pump at the end surface is reached. In the gear pump device that is sealed,
    The sliding surface includes a fluid introduction groove that is configured by a line extending radially from the center of the gear pump and into which a fluid in a gap between the outer periphery of the outer rotor on the high pressure side and the case is introduced. ,
    The gear pump device, wherein the fluid introduction groove is separated from the center hole and the suction side.
  2.  前記流体導入溝は、前記複数の空隙部のうち体積が最大となる閉じ込み部が位置する範囲には形成されていないことを特徴とする請求項1に記載のギヤポンプ装置。 2. The gear pump device according to claim 1, wherein the fluid introduction groove is not formed in a range where a confining portion having a maximum volume among the plurality of gap portions is located.
  3.  前記流体導入溝は、前記複数の空隙部のうち前記吸入側に連通させられて低圧状態となるものと連通し得る場所に形成された部分を低圧部とし、高圧状態となる前記アウターロータの外周と前記ケースとの間の隙間と連通する場所を高圧部として、前記低圧部と前記高圧部とが分離されていることを特徴とする請求項1または2に記載のギヤポンプ装置。 The fluid introduction groove has a portion formed at a place where it can communicate with the suction side of the plurality of gaps that can communicate with the suction side as a low pressure portion, and an outer periphery of the outer rotor that is in a high pressure state. 3. The gear pump device according to claim 1, wherein the low pressure portion and the high pressure portion are separated by using a place communicating with a gap between the case and the case as a high pressure portion. 4.
  4.  前記流体導入溝は、放射状の曲線によって構成され、該流体導入溝それぞれの両端よりも該両端の間に位置する中間位置の方が前記ギヤポンプの回転方向の前方に位置していることを特徴とする請求項1ないし3のいずれか1つに記載のギヤポンプ装置。 The fluid introduction groove is configured by a radial curve, and an intermediate position located between both ends of the fluid introduction groove is located in front of the rotation direction of the gear pump. The gear pump device according to any one of claims 1 to 3.
  5.  前記流体導入溝は、前記ギヤポンプの中心位置に仮想円を設定し、該仮想円の接線方向に伸びる放射状とされていることを特徴とする請求項1ないし3のいずれか1つに記載のギヤポンプ装置。 4. The gear pump according to claim 1, wherein the fluid introduction groove has a virtual circle set at a center position of the gear pump and is radially extended in a tangential direction of the virtual circle. 5. apparatus.
  6.  前記流体導入溝は、該流体導入溝のうち前記ギヤポンプの内周側の端部の方が外周側の端部よりも前記ギヤポンプの回転方向の前方に位置するように形成されていることを特徴とする請求項5に記載のギヤポンプ装置。 The fluid introduction groove is formed such that an end portion on the inner peripheral side of the gear pump in the fluid introduction groove is located in front of an end portion on the outer peripheral side in the rotation direction of the gear pump. The gear pump device according to claim 5.
PCT/JP2016/063197 2015-04-28 2016-04-27 Gear pump device WO2016175242A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680016026.2A CN107407275B (en) 2015-04-28 2016-04-27 Gear pump arrangement
US15/558,675 US20180112662A1 (en) 2015-04-28 2016-04-27 Gear pump device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-091645 2015-04-28
JP2015091645A JP6311644B2 (en) 2015-04-28 2015-04-28 Gear pump device

Publications (1)

Publication Number Publication Date
WO2016175242A1 true WO2016175242A1 (en) 2016-11-03

Family

ID=57198455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063197 WO2016175242A1 (en) 2015-04-28 2016-04-27 Gear pump device

Country Status (4)

Country Link
US (1) US20180112662A1 (en)
JP (1) JP6311644B2 (en)
CN (1) CN107407275B (en)
WO (1) WO2016175242A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6720928B2 (en) * 2017-06-23 2020-07-08 株式会社アドヴィックス Gear pump device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293452A (en) * 1994-04-27 1995-11-07 Daikin Ind Ltd Internal gear pump
JPH0914152A (en) * 1995-06-30 1997-01-14 Jatco Corp Internal gear type rotary pump
JP2014084849A (en) * 2012-10-26 2014-05-12 Nippon Soken Inc Rotary pump and brake device having the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756345B2 (en) * 1990-07-09 1995-06-14 株式会社荏原製作所 Non-contact end face seal
WO1995029353A1 (en) * 1994-04-20 1995-11-02 Durametallic Corporation Face seal with angled grooves
DE59607362D1 (en) * 1996-04-15 2001-08-30 Haldex Barnes Gmbh Gear machine with controllable, balanced pressure field
JP3975857B2 (en) * 2001-08-09 2007-09-12 株式会社日本自動車部品総合研究所 Rotary pump and brake device including the rotary pump
US6736401B2 (en) * 2001-12-19 2004-05-18 Honeywell International, Inc. Laminated finger seal with ceramic composition
US6902168B2 (en) * 2002-03-19 2005-06-07 Eagle Industry Co., Ltd. Sliding element
EP2626604B1 (en) * 2010-10-06 2019-06-12 Eagle Industry Co., Ltd. Sliding part
JP5760267B2 (en) * 2011-09-27 2015-08-05 株式会社アドヴィックス Shaft seal device and pump device using the same
JP5952723B2 (en) * 2012-11-30 2016-07-13 株式会社日本自動車部品総合研究所 Rotary pump and brake device having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293452A (en) * 1994-04-27 1995-11-07 Daikin Ind Ltd Internal gear pump
JPH0914152A (en) * 1995-06-30 1997-01-14 Jatco Corp Internal gear type rotary pump
JP2014084849A (en) * 2012-10-26 2014-05-12 Nippon Soken Inc Rotary pump and brake device having the same

Also Published As

Publication number Publication date
CN107407275A (en) 2017-11-28
US20180112662A1 (en) 2018-04-26
CN107407275B (en) 2018-11-02
JP6311644B2 (en) 2018-04-18
JP2016205339A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP5500004B2 (en) Fluid machine and seal member used therefor
US8851578B2 (en) Rotary pump device and vehicle brake control system
US8678798B2 (en) Rotary pump device having seal mechanism which includes resin member and reinforcing ring in hollow portion of resin member
JP5987524B2 (en) Gear pump device
JP5648618B2 (en) Pump drive
US20090226298A1 (en) Tandem pump
US8708670B2 (en) Structure for coupling rotary shafts and pump device of rotary type
JP6020427B2 (en) Gear pump device
JP5987809B2 (en) Rotary pump device
JP5957638B2 (en) Rotary pump device
JP5861626B2 (en) Inscribed rotor type fluid machinery
WO2011145717A1 (en) Rotation device provided with seal structure
JP6311644B2 (en) Gear pump device
JP6421615B2 (en) Gear pump device
JP2014173566A (en) Rotary pump device and brake device for vehicle including the same
JP6720928B2 (en) Gear pump device
JP2011105206A (en) Brake device for vehicle with rotary pump device
JP2014119011A (en) Rotating machine
JP2009190731A (en) Vehicular brake device using rotary pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786518

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15558675

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786518

Country of ref document: EP

Kind code of ref document: A1