WO2016175194A1 - Supercharger surplus power recovery device for internal combustion engine - Google Patents

Supercharger surplus power recovery device for internal combustion engine Download PDF

Info

Publication number
WO2016175194A1
WO2016175194A1 PCT/JP2016/063013 JP2016063013W WO2016175194A1 WO 2016175194 A1 WO2016175194 A1 WO 2016175194A1 JP 2016063013 W JP2016063013 W JP 2016063013W WO 2016175194 A1 WO2016175194 A1 WO 2016175194A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
hydraulic pump
internal combustion
combustion engine
hydraulic pressure
Prior art date
Application number
PCT/JP2016/063013
Other languages
French (fr)
Japanese (ja)
Inventor
信之 坂入
和徳 大田
貴士 谷口
服部 泰典
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to KR1020177031285A priority Critical patent/KR101859893B1/en
Priority to CN201680025870.1A priority patent/CN107532502B/en
Publication of WO2016175194A1 publication Critical patent/WO2016175194A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a supercharger surplus power recovery device for an internal combustion engine equipped with a supercharger.
  • a turbocharger is used to rotationally drive the turbine by the exhaust gas of the engine, and the supply air density is increased by a compressor rotated by the turbine. The output is improved.
  • a generator is connected to a supercharger and the generator is rotated by the supercharger to generate power (for example, Patent Document 1 and 2).
  • surplus exhaust energy of the engine is directly converted into electric energy, which is used for inboard equipment of a ship equipped with this encin.
  • the applicant of the present invention as a unique technique, effectively uses almost all of the surplus exhaust energy of the engine, and connects the hydraulic pump to the supercharger of the internal combustion engine and rotates the hydraulic pump by the supercharger.
  • Many supercharger surplus power recovery devices for internal combustion engines have been developed for generating hydraulic pressure and recovering surplus exhaust energy using the generated hydraulic pressure (see, for example, Patent Documents 3 and 4).
  • a hydraulic pump is connected to a crankshaft of an internal combustion engine, and the hydraulic pump and a hydraulic pump connected to a supercharger are connected by an oil passage, so that excess exhaust energy is obtained.
  • the hydraulic pump connected to the crankshaft of the internal combustion engine is driven to rotate as a hydraulic motor by the hydraulic pump on the supercharger side, and the surplus power of the supercharger is used to bias the internal combustion engine. It is used, and about 3-4% of the engine output can be recovered. As a result, it is possible to significantly utilize the surplus exhaust energy of the internal combustion engine.
  • this electronically controlled internal combustion engine appropriately adjusts the in-cylinder pressure of the engine by appropriately changing the opening and closing timing of the exhaust valve and the fuel injection valve by an electronic controller, and the internal combustion engine according to the operating conditions and environment.
  • the engine performance can be improved.
  • the hydraulic pressure supplied for operating the exhaust valve and the fuel injection valve varies depending on the engine load, and the amount of hydraulic oil consumed also varies depending on the engine load. Therefore, the hydraulic pressure is controlled by the variable mechanism of the variable displacement hydraulic pump. I have control.
  • this variable displacement hydraulic pump is a system in which the hydraulic pump 103 is driven by shaft power transmitted from the crankshaft of the internal combustion engine 100 via a transmission, or a motor-driven hydraulic pressure (not shown). Driven by a pump.
  • the latter electric motor uses electric power generated by the generator rotated by the power of the auxiliary internal combustion engine described above or different from the above, and accordingly, the fuel consumption of the entire internal combustion engine is correspondingly increased.
  • the hydraulic power necessary for operating the exhaust valve and the fuel injection valve corresponds to approximately 2% of the engine output.
  • the turbocharger surplus power recovery device of the conventional internal combustion engine recovers surplus power of exhaust gas as hydraulic power by rotating the hydraulic pump with the power of the supercharger, and the crankshaft of the engine
  • the hydraulic motor attached to the engine is driven to rotate by this hydraulic power, and the crankshaft is energized to reduce the fuel consumption of the engine.
  • the surplus power recovery device 101 of the supercharger, the exhaust valve, the fuel injection valve, and the like are hydraulically controlled. Therefore, it is necessary to equip both the hydraulic device (hereinafter also referred to as an engine operating device) 102 for the system configuration with a hydraulic pump, valves, safety devices, piping, and the like for the system configuration, resulting in an increase in cost. .
  • the present invention has been made to solve such problems, and in an internal combustion engine in which an operating device for operating the engine is electronically controlled via hydraulic pressure, a system for a supercharger surplus power recovery device for the internal combustion engine
  • the overall power transmission efficiency can be drastically improved, and the redundant arrangement of hydraulic equipment can be eliminated, which can greatly reduce the cost and facilitate the design. It is an object to provide a surplus machine power recovery device.
  • a supercharger surplus power recovery device for an internal combustion engine includes an internal combustion engine in which an operating device for operating the engine is electronically controlled via hydraulic pressure, and an exhaust gas path of the internal combustion engine. And a turbocharger that is rotationally driven by the exhaust gas of the internal combustion engine and supplies supercharged air to the internal combustion engine, and is connected to the supercharger and is rotationally driven by the supercharger to generate hydraulic pressure.
  • a first hydraulic pump that is operated, a hydraulic mechanism that supplies hydraulic pressure to an operating device of the internal combustion engine to operate the internal combustion engine, and a power source that is connected to a power source that generates rotational power and is driven to rotate by the power source.
  • a second hydraulic pump that supplies hydraulic pressure to the operating device, a controller that controls the operation of the hydraulic mechanism, the first hydraulic pump, and the second hydraulic pump, and a hydraulic mechanism that is disposed from the second hydraulic pump to the operating device.
  • First oil to supply hydraulic pressure In the supercharger excess power recovery apparatus for an internal combustion engine having bets, in that a second oil passage for supplying hydraulic pressure from the first hydraulic pump is disposed in the hydraulic mechanism to the operating device.
  • the supercharger surplus power recovery device for an internal combustion engine is provided in an internal combustion engine in which an operating device for operating the engine is electronically controlled via hydraulic pressure, and an exhaust gas passage of the internal combustion engine.
  • a turbocharger that is rotationally driven by the exhaust gas of the internal combustion engine and supplies the supercharged air to the internal combustion engine;
  • a turbine that is disposed in parallel with the supercharger in the exhaust gas path and is rotationally driven by the exhaust gas;
  • a first hydraulic pump connected to a turbine and driven to rotate by the turbine to generate hydraulic pressure, a hydraulic mechanism for supplying hydraulic pressure to an operating device of the internal combustion engine to operate the internal combustion engine, and a power source for generating rotational power
  • a second hydraulic pump that is rotationally driven by the power source and supplies hydraulic pressure to the operating device via the hydraulic mechanism, a controller that controls operations of the hydraulic mechanism, the first hydraulic pump, and the second hydraulic pump, and hydraulic pressure Machine
  • the supercharger surplus power recovery device for an internal combustion engine provided with a first oil passage for supplying hydraulic pressure from the second
  • the operating device for operating the above-mentioned engine means devices such as an exhaust valve and a fuel injection valve necessary for operating the internal combustion engine, and a power source that generates rotational power is, for example, An internal combustion engine, an electric motor, etc. are said.
  • a power source that generates rotational power is, for example, An internal combustion engine, an electric motor, etc. are said.
  • the operating device for operating the above-described engine and the power source for generating rotational power are merely examples, and the present invention is not limited to these.
  • the supercharger surplus power recovery device for an internal combustion engine of the present invention is connected to a supercharger or a turbine and is driven to rotate by the supercharger or the turbine to generate hydraulic pressure.
  • the hydraulic pressure can be directly supplied to the operating device of the internal combustion engine via the second oil passage without using a power source.
  • a conventional supercharger surplus power recovery device for an internal combustion engine in which an operating device for operating an engine is electronically controlled, it is connected to the supercharger and is rotationally driven by this supercharger or turbine to be hydraulically operated.
  • the hydraulic pump connected to the crankshaft of the internal combustion engine is rotationally driven, and then the internal combustion engine and a power source such as an electric motor that is rotationally driven by the electric power generated by the internal combustion engine are operated.
  • the hydraulic pump necessary to supply hydraulic pressure to the equipment is driven to rotate.
  • the second hydraulic pump that is rotationally driven by the power source and supplies hydraulic pressure to the operating device via the hydraulic mechanism must supply a large amount of hydraulic pressure required for operation to the operating device depending on the load of the internal combustion engine. . For this reason, the required capacity or number of second hydraulic pumps must be determined according to the maximum discharge amount.
  • the first hydraulic pump Can supply hydraulic pressure to the operating device via the second oil passage.
  • the required capacity or number of second hydraulic pumps can be reduced by the amount of hydraulic pressure supplied from the first hydraulic pump, and cost reduction can be achieved. Further, the power loss that increases in accordance with the discharge amount can be reduced as the required capacity or the number of second hydraulic pumps decreases.
  • the conventional supercharger surplus power recovery device for the internal combustion engine can be eliminated. That is, the hydraulic pump connected to the crankshaft of the internal combustion engine can be eliminated, and the power loss generated by this hydraulic pump can be completely eliminated.
  • the controller supplies the hydraulic pressure generated by the first hydraulic pump to the operating device via the second oil passage when the internal combustion engine is at a high load.
  • the controller supplies the hydraulic pressure generated by the first hydraulic pump when the internal combustion engine is at a high load directly to the operating device via the second oil passage, so that the excess exhaust energy of the internal combustion engine at the time of the high load is increased. Without power loss, it can be used effectively as the hydraulic pressure required for operating equipment.
  • the hydraulic pressure can still be supplied from the first hydraulic pump to the operating device.
  • the second hydraulic pump can be driven to rotate by the hydraulic pressure generated by the first hydraulic pump via the third oil passage, thereby energizing the rotation of the power source.
  • the power source when the power source is an internal combustion engine, fuel efficiency can be improved directly, and when the power source is an electric motor, it is operated as a generator to generate electric power. Significant improvement in fuel consumption can be achieved.
  • the controller supplies a part of the hydraulic pressure generated by the first hydraulic pump to the operating device via the second oil passage at the time of high load, and the first hydraulic pump It is desirable to supply the remainder of the hydraulic pressure generated by the second hydraulic pump via the third oil passage.
  • the first hydraulic pump can generate a hydraulic pressure that is approximately twice that required for the operating equipment. Accordingly, the controller supplies a part of the hydraulic pressure generated by the first hydraulic pump at the time of high load to the operating device via the second oil passage, and the third hydraulic oil generates the remaining hydraulic pressure generated by the first hydraulic pump.
  • the second hydraulic pump By supplying the second hydraulic pump via the passage, the surplus exhaust energy of the internal combustion engine at the time of high load can be effectively utilized as the hydraulic pressure required for the operating equipment without power loss, and the first hydraulic pressure
  • the rotation of the power source connected to the second hydraulic pump can be energized by the hydraulic pressure generated by the pump.
  • the power source when the power source is an internal combustion engine, fuel efficiency can be improved directly, and when the power source is an electric motor, it is operated as a generator to generate electric power. Significant improvement in fuel consumption can be achieved.
  • the second hydraulic pump is a variable displacement hydraulic pump, and the hydraulic mechanism allows the supply of hydraulic pressure from the second hydraulic pump to the operating device and the first hydraulic pump.
  • a non-return function that prevents backflow of hydraulic pressure from the downstream side of the oil passage to the second hydraulic pump and a control of the controller forcibly allow backflow of hydraulic pressure from the downstream side of the first oil passage to the second hydraulic pump.
  • the first oil passage is provided with a first check valve mechanism having a check release function, and the second oil passage is formed by connecting the operating device side to the downstream side of the first check valve mechanism of the first oil passage.
  • the third oil passage is preferably formed by connecting the second hydraulic pump side to the downstream side of the first check valve mechanism of the first oil passage.
  • the controller turns off the check release function of the first check valve mechanism, so that the second hydraulic pump can supply hydraulic pressure to the operating device of the internal combustion engine, and the first The hydraulic pressure generated by one pump can be supplied to the operating device of the internal combustion engine.
  • the controller since the second hydraulic pump is a variable displacement hydraulic pump, the controller turns on the check release function of the first check valve mechanism, so that the hydraulic pressure generated by the first hydraulic pump is supplied to the second pump.
  • the rotation of the second hydraulic pump including the variable displacement hydraulic pump that is, the rotation of the power source to which the second hydraulic pump is connected can be energized.
  • the hydraulic mechanism can be simplified by the above-described configuration.
  • the hydraulic pump can be rotated forward by the backflow of the hydraulic pressure from the normal discharge port by the variable mechanism.
  • the supercharger surplus power recovery device for the internal combustion engine it is desirable to further include a fourth oil passage that is disposed in the hydraulic mechanism and supplies hydraulic pressure from the second hydraulic pump to the first hydraulic pump.
  • the controller supplies the hydraulic pressure generated by the second hydraulic pump to the first hydraulic pump via the fourth oil passage when the internal combustion engine is under a low load, thereby supplying the first hydraulic pressure. It is desirable to increase the supercharging capability of the supercharger by energizing the rotation of the pump.
  • the controller supplies the hydraulic pressure generated by the second hydraulic pump to the first hydraulic pump via the fourth oil passage when the internal combustion engine is under a low load, thereby energizing the rotation of the first hydraulic pump and the supercharger
  • the supercharger surplus power recovery apparatus for an internal combustion engine further includes a third oil passage that is disposed in the hydraulic mechanism and supplies hydraulic pressure from the first hydraulic pump to the second hydraulic pump, and the first hydraulic pump has a variable capacity.
  • the hydraulic mechanism includes a non-return function that allows the supply of hydraulic pressure from the first hydraulic pump to the second hydraulic pump and prevents backflow of hydraulic pressure from the second hydraulic pump to the first hydraulic pump;
  • the third oil passage is provided with a second check valve mechanism having a check release function forcibly allowing a backflow of hydraulic pressure from the second hydraulic pump to the first hydraulic pump under the control of the controller.
  • the oil passage is preferably composed of the third oil passage.
  • the hydraulic mechanism further includes a third oil passage that supplies hydraulic pressure from the first hydraulic pump to the second hydraulic pump, and the first hydraulic pump is a variable displacement hydraulic pump,
  • the second hydraulic pump is forcibly controlled by a non-return function that allows the hydraulic pressure to be supplied from the first hydraulic pump to the second hydraulic pump and prevents the backflow of hydraulic pressure from the second hydraulic pump to the first hydraulic pump and the controller.
  • a third check valve mechanism having a check release function for allowing a backflow of hydraulic pressure from the first hydraulic pump to the first hydraulic pump is provided in the third oil passage, and the fourth oil passage is constituted by the third oil passage.
  • the hydraulic mechanism can be simplified by the above-described configuration.
  • the hydraulic pump in a variable displacement hydraulic pump, the hydraulic pump can be rotated forward by a reverse flow of hydraulic pressure from a normal discharge port by the variable mechanism.
  • the hydraulic mechanism includes a drain mechanism that drains the hydraulic pressure generated by the first hydraulic pump under the control of the controller and returns the hydraulic pressure to the first hydraulic pump.
  • the hydraulic mechanism includes the drain mechanism that drains the hydraulic pressure generated by the first hydraulic pump under the control of the controller and returns the hydraulic pressure to the first hydraulic pump, thereby supplying the hydraulic pressure from the first hydraulic pump to the operating device.
  • the supply of hydraulic pressure from the first hydraulic pump to the second hydraulic pump and the supply of hydraulic pressure from the second hydraulic pump to the first hydraulic pump can be prevented from being performed.
  • the supercharger surplus power recovery device for an internal combustion engine includes an internal combustion engine in which an operating device for operating the engine is electronically controlled via hydraulic pressure, and an exhaust gas of the internal combustion engine provided in an exhaust gas passage of the internal combustion engine.
  • a supercharger that is rotationally driven by gas and supplies supercharged air to the internal combustion engine; a first hydraulic pump that is connected to the supercharger and is rotationally driven by the supercharger to generate hydraulic pressure; and the internal combustion engine
  • a hydraulic mechanism that supplies hydraulic pressure to the operating equipment of the engine and operates the internal combustion engine; and a power source that is connected to a power source that generates rotational power and is rotated by the power source to supply hydraulic pressure to the operating equipment via the hydraulic mechanism.
  • Two hydraulic pumps a controller that controls the operation of the hydraulic mechanism, the first hydraulic pump, and the second hydraulic pump, and a first oil passage that is disposed in the hydraulic mechanism and supplies hydraulic pressure from the second hydraulic pump to the operating device.
  • a controller that controls the operation of the hydraulic mechanism, the first hydraulic pump, and the second hydraulic pump, and a first oil passage that is disposed in the hydraulic mechanism and supplies hydraulic pressure from the second hydraulic pump to the operating device.
  • Of internal combustion engines equipped with In excess power recovery device comprises a second oil passage for supplying hydraulic pressure to the working device from the first hydraulic pump is disposed in the hydraulic mechanism.
  • the supercharger surplus power recovery device for an internal combustion engine includes an internal combustion engine in which an operating device for operating the engine is electronically controlled via hydraulic pressure, and an exhaust gas passage of the internal combustion engine.
  • a turbocharger that is rotationally driven by the exhaust gas of the engine and that supplies supercharged air to the internal combustion engine, a turbine that is disposed in parallel with the supercharger in the exhaust gas path and is rotationally driven by the exhaust gas, and a turbine
  • a first hydraulic pump that is connected and rotated by a turbine to generate hydraulic pressure, a hydraulic mechanism that supplies hydraulic pressure to an operating device of the internal combustion engine to operate the internal combustion engine, and a power source that generates rotational power.
  • a second hydraulic pump that is rotationally driven by the power source and supplies hydraulic pressure to the operating device via the hydraulic mechanism; a controller that controls the operation of the hydraulic mechanism, the first hydraulic pump, and the second hydraulic pump; Arrangement In the supercharger surplus power recovery device for an internal combustion engine, which is provided with a first oil passage that supplies hydraulic pressure from the second hydraulic pump to the operating device, the hydraulic pressure is provided from the first hydraulic pump to the operating device. A second oil passage is provided.
  • the power transmission efficiency of the entire system of the supercharger surplus power recovery device of the internal combustion engine can be dramatically improved, and hydraulic devices It is possible to eliminate the redundant deployment, and thereby it is possible to greatly reduce the cost and facilitate the design.
  • FIG. 2 is a circuit diagram showing a flow of a hydraulic circuit when the internal combustion engine of FIG. 1 is under a low load.
  • FIG. 2 is a circuit diagram showing a flow of a hydraulic circuit at a medium load of the internal combustion engine of FIG. 1.
  • FIG. 2 is a circuit diagram showing a flow of a hydraulic circuit when the internal combustion engine of FIG.
  • FIG. 2 is a block diagram showing a supercharger surplus power recovery device for an internal combustion engine different from FIG. 1.
  • FIG. 6 is a partial block diagram showing a supercharger surplus power recovery device for an internal combustion engine, which is further different from FIGS. 1 and 5. It is a block diagram which shows the supercharger surplus power recovery apparatus of the conventional internal combustion engine.
  • Reference numeral 1 in FIG. 1 shows, as an example, a low-speed diesel engine (power source, internal combustion engine) for propulsion mounted on a ship, and this engine 1 is required to operate the engine, for example, an exhaust valve,
  • An operating device such as a fuel injection valve is an electronically controlled engine that is electronically controlled via hydraulic pressure, and a supercharger 5 that supplies supercharged air that is rotationally driven by the exhaust gas to the engine 1. It has.
  • the supercharger 5 includes a compressor 6 and a turbine 7, and the compressor 6 and the turbine 7 are connected by a rotating shaft 8.
  • the turbine 7 is rotationally driven by the exhaust gas of the engine 1, and the compressor 6 is rotated by the turbine 7. Thereby, the air supply density of the engine 1 is increased, and the output of the engine is improved.
  • the supercharger 5 is not necessarily limited to a single stage.
  • the engine 1 is not limited to a marine engine, and the type is not limited to a low-speed diesel engine. Includes gas engines fueled by natural gas, city gas, etc., and all other types of electronic control engines.
  • a transmission 9 is connected to the rotating shaft 8 of the supercharger 5, and a variable displacement first hydraulic pump 10 is connected to the transmission 9.
  • a transmission 3 is connected to one end of the crankshaft 2 of the engine 1, and a variable displacement second hydraulic pump 11 is connected to the transmission 3.
  • the second hydraulic pump 11 can be directly connected to the crankshaft 2 of the engine 1 without providing the transmission 3.
  • the number of the first hydraulic pump 10 and the number of the second hydraulic pumps 11 described above is one in FIG. 1, but is merely an example, and a plurality of units may be provided.
  • the first hydraulic pump 10 and the second hydraulic pump 11 are incorporated in the hydraulic mechanism 20.
  • one discharge port 11a of the second hydraulic pump 11 is connected to the oil passage 21, and the engine described above is passed through the check valve 31, the oil passage 22, the check valve 32, and the oil passage 23 in this order.
  • the hydraulic pressure is supplied by being connected to the control circuit of the one operating device.
  • a first oil passage is formed by the oil passages 21, 22, and 23.
  • the other discharge port 11 b of the second hydraulic pump 11 is connected to one discharge port 10 b of the first hydraulic pump 10 via an oil passage 24.
  • the other discharge port 10a of the first hydraulic pump 10 is connected to the oil passage 26, and the check valve 36, the oil passage 27, the oil passage 22, and the oil passage 23 are connected in this order to the operating device 51 of the engine 1 described above. Connected to the control circuit, it can supply hydraulic pressure. Further, the oil passage 27 is also connected to one discharge port 11 a of the second hydraulic pump 11 through the oil passage 22, the check valve 31, and the oil passage 21 in this order.
  • discharge ports 10a and 10b of the first hydraulic pump 10 and the discharge ports 11a and 11b of the second hydraulic pump 11 are both discharge ports.
  • one of the two is a hydraulic discharge port and the other is a hydraulic intake depending on the operating state.
  • the oil passages 26, 27, 22, and 23 form a second oil passage
  • the oil passages 26, 27, 22, and 21 form a third oil passage
  • the oil passages 21, 22, 27, and 26 form a fourth oil passage, respectively.
  • the check valve 31 is integrated with the electromagnetic switching valve 41 to form the first check valve mechanism 30.
  • the first check valve mechanism 30 is a check that forcibly allows a backflow of hydraulic pressure from the oil passage 22 to the oil passage 21, that is, the second hydraulic pump 11, by switching the electromagnetic switching valve 41 under the control of the controller 50. Has a release function.
  • the check valve 31 allows the hydraulic pressure to be supplied from the second hydraulic pump 11 to the control circuit of the operating device 51 through the oil passage 21 and from the oil passage 22 to the first. 2 A normal check function for preventing the backflow of hydraulic pressure to the hydraulic pump 11 is activated.
  • the check valve 31 is forcibly opened to allow the backflow of hydraulic pressure from the oil passage 22 to the second hydraulic pump 11.
  • an accumulator 45 is disposed between the second hydraulic pump 11 and the check valve 31 to absorb hydraulic pressure fluctuations caused by ocean waves, exhaust valve driving, fuel injection, and the like.
  • the check valve 36 and the electromagnetic switching valve 42 form a second check valve mechanism 35.
  • the second check valve mechanism 35 is a check that forcibly allows the backflow of hydraulic pressure from the oil passage 27 to the oil passage 26, that is, the first hydraulic pump 10 by switching the electromagnetic switching valve 42 under the control of the controller 50. Has a release function.
  • the check valve 31 When the check release function is OFF, the check valve 31 allows the hydraulic pressure to be supplied from the first hydraulic pump 10 to the control circuit of the operating device 51 and the check valve 31 through the oil passage 26. Oil passage 2 A normal check function that prevents the backflow of hydraulic pressure from 7 to the oil passage 26, that is, the first hydraulic pump 10, works. On the other hand, when the check release function is ON, as described above, the check valve 31 is forcibly opened to return the hydraulic pressure from the oil passage 27 to the oil passage 26, that is, the first hydraulic pump 10. Is acceptable.
  • An electromagnetic opening / closing valve 44 is disposed between the oil passage 26 and the oil passage 24, and when the electromagnetic opening / closing valve 44 is opened, the oil pressure of the oil passage 26 is drained to the oil passage 24 to increase the oil pressure of the oil passage 26. Can be opened.
  • the oil path 26, the electromagnetic on-off valve 44, and the oil path 24 constitute a drain mechanism.
  • the controller 50 detects, for example, the intake air suction temperature, the supply air pressure downstream of the supercharger 5 and the like by means of sensors, and, based on the detected supply air pressure, intake temperature, etc., as described later.
  • the operations of the hydraulic pump 10, the second hydraulic pump 11, the electromagnetic switching valves 41 and 42, the electromagnetic on-off valve 44, and the like are electrically controlled.
  • the controller 50 may control the operations of the first hydraulic pump 10, the second hydraulic pump 11, the electromagnetic switching valves 41 and 42, the electromagnetic opening / closing valve 44, and the like using parameters other than the above-described supply pressure and suction temperature. is there.
  • the controller 50 operates the electromagnetic switching valve 41 of the first check valve mechanism 30 shown in FIG. 2 to turn off the check release function of the first check valve mechanism 30 and 2
  • the electromagnetic switching valve 42 of the check valve mechanism 35 is operated to turn off the check release function of the second check valve mechanism 35. Further, the electromagnetic opening / closing valve 44 is closed.
  • the check valve 31 prohibits the backflow of hydraulic pressure from the oil passage 22 to the oil passage 21, and the check valve 36 prohibits the backflow of hydraulic pressure from the oil passage 27 to the oil passage 26.
  • the controller 50 rotates the electric motor 52 to generate a hydraulic pressure necessary for starting by the hydraulic pump 53 and supplies the hydraulic pressure to the control circuit of the operating device 51.
  • the check valve 32 also prevents backflow of hydraulic pressure from the oil passage 23 to the oil passage 22.
  • the controller 50 operates the electromagnetic switching valve 41 of the first check valve mechanism 30 to turn on the first check valve mechanism 30. While turning off the check release function, the electromagnetic switching valve 42 of the second check valve mechanism 35 is operated to turn on the check release function of the second check valve mechanism 35. For this reason, the check valve 36 is forcibly opened to allow the backflow of hydraulic pressure from the oil passage 27 to the oil passage 26.
  • the hydraulic pressure generated by the second hydraulic pump 11 is supplied to the control circuit of the operating device 51 via the oil passage 21, the check valve 31, the oil passage 22, the check valve 32, and the oil passage 23 in this order.
  • the hydraulic pressure generated by the second hydraulic pump 11 flows through the oil passage 21, the check valve 31, the oil passage 22, the oil passage 27, the forcibly opened check valve 36, and the oil passage 26 in this order.
  • the rotation of the supercharger 5 connected to the first hydraulic pump 10 is energized by the hydraulic pressure generated by the second hydraulic pump 11 so that the supercharging at the time of low load, which tends to be insufficient, is properly performed.
  • the variable displacement first hydraulic pump 10 can rotate the supercharger 5 in the forward direction also by the backflow of the hydraulic pressure from the discharge port 10a by the variable mechanism.
  • the controller 50 reads the intake air intake temperature detected by the sensor, the supply air pressure in the supply passage on the downstream side of the supercharger 5, and the like. Further, the necessary power for energizing the supercharger 5 is set in the controller 50 for each engine load. The controller 50 controls the power for energizing the supercharger 5 by appropriately changing the capacity of the variable displacement type first hydraulic pump 10 based on the supply pressure, the suction temperature, and the like.
  • the controller 50 operates the electromagnetic switching valve 41 of the first check valve mechanism 30 shown in FIG.
  • the non-return release function 30 is turned off and the electromagnetic on-off valve 44 is opened.
  • the hydraulic pressure generated by the first hydraulic pump is drained from the oil passage 26 to the oil passage 24 through the electromagnetic on-off valve 44 and released, so that the pressure is low and the check is not performed. It does not flow through the valve 36 to the high pressure oil passage 27.
  • the first hydraulic pump 10 that is rotationally driven by the supercharger 5 is in a so-called no-load operation, but a constant pressure of hydraulic pressure is discharged to cool the system.
  • the hydraulic pressure generated by the second hydraulic pump 11 is supplied to the control circuit of the operating device 51 through the oil passage 21, the check valve 31, the oil passage 22, the check valve 32, and the oil passage 23.
  • the controller 50 operates the electromagnetic switching valve 41 of the first check valve mechanism 30 shown in FIG. 3 to release the check of the first check valve mechanism 30. Since the function is OFF, the oil pressure in the oil passage 27 does not flow to the oil passage 26 through the check valve 36 due to the normal check function of the check valve 36.
  • the first hydraulic pump 10 when the internal combustion engine is at a medium load, for example, during a load of 35 to 50%, the first hydraulic pump 10 is in a no-load operation and the hydraulic pressure is supplied to the operating device 51 only by the second hydraulic pump 11. The If it is necessary to disconnect the hydraulic pressure between the first hydraulic pump 10 on the supercharger 5 side and the second hydraulic pump 11 on the engine 1 side, for example, in the case of an emergency stop, the same as described above Operation is performed.
  • the controller 50 operates the electromagnetic switching valve 41 of the first check valve mechanism 30 shown in FIG.
  • the check release function of the mechanism 30 is turned on, and the electromagnetic switching valve 42 of the second check valve mechanism 35 is operated to turn off the check release function of the second check valve mechanism 35. Further, the electromagnetic on-off valve 44 is closed.
  • the check valve 31 of the first check valve mechanism 30 is forcibly opened to allow a backflow of hydraulic pressure from the oil passage 22 to the oil passage 21, that is, the second hydraulic pump 11.
  • the check valve 36 of the second check valve mechanism 35 also allows the flow of hydraulic pressure from the oil passage 26 to the oil passage 27 by a normal check function.
  • the hydraulic pressure generated by the first hydraulic pump 10 is supplied to the control circuit of the operating device 51 through the oil passage 26, the check valve 36, the oil passage 27, the check valve 32, and the oil passage 23 in this order. Is done. For example, when the load is 50% or more, all of the hydraulic pressure required by the operating device 51 can be supplied from the first hydraulic pump 10.
  • the first hydraulic pump 10 can generate a hydraulic pressure that is, for example, about twice that required for the operating device 51. For this reason, the hydraulic pressure generated by the first hydraulic pump 10 passes through the oil passage 26, the check valve 36, the oil passage 27, the oil passage 22, the check valve 31, and the oil passage 21 in this order. 11 is also supplied to the discharge port 11a to urge the rotation of the second hydraulic pump 11.
  • the controller 50 adjusts the hydraulic power recovered from the supercharger 5 by appropriately changing the capacity of the first hydraulic pump 10 based on the maximum power recoverable from the supercharger 5 set in advance.
  • the second hydraulic pump 11 may be connected not to the engine but to an electric motor (power source) 54 that generates rotational power in the same manner as the engine.
  • an electric motor for example, an induction motor is used.
  • the number of revolutions of the induction motor is determined by the frequency of the power system, and always rotates at a constant speed. For this reason, the rotation speed control of the electric motor 54 by the above-described hydraulic mechanism 20 or the like is not particularly required.
  • the above-described surplus hydraulic pressure supplied from the first hydraulic pump 10 generates electric power by operating the motor 54 as a generator, and this electric power is supplied to the power system. Since electric power required in a ship or the like is usually generated by a generator that is rotationally driven by an engine, the fuel efficiency of the engine can be improved as a result. In addition, since the operation of the supercharger surplus power recovery device for the internal combustion engine at the time of low load, medium load, and high load of the engine is the same as that of the engine 1 described above, the description thereof is omitted.
  • a power turbine 55 is disposed in the exhaust gas passage 4 of the engine in parallel with the supercharger 5 via a flow rate adjusting valve 56, and the first hydraulic pump 10 is connected to the power turbine 55.
  • the operation of the supercharger surplus power recovery device for the internal combustion engine at the time of medium load and high load of the engine in this case is the same as that of the engine 1 described above.
  • the rotation of the supercharger 5 cannot be directly urged through the first hydraulic pump 10 by the hydraulic pressure generated by the second hydraulic pump 11 when the engine is under a low load.
  • Others are the same as in the case of the supercharger 5 described above, and the description is omitted.
  • the first hydraulic pump described above is not necessarily a variable displacement type, and may be a fixed displacement type. If it is a fixed capacity type, a large space can be saved. However, when the first hydraulic pump is of a fixed displacement type, the pump cannot be rotated forward by the backflow of the hydraulic pressure from the discharge port. It cannot be added.
  • the supercharger surplus power recovery device of the internal combustion engine is connected to the supercharger 5 or the power turbine 55, and is rotated by the supercharger 5 or the power turbine 55 to generate hydraulic pressure.
  • the hydraulic pump 10 can directly supply hydraulic pressure to the operating device 51 of the engine 1 without going through the engine 1 or the electric motor 52 which is a power source.
  • the conventional second hydraulic pump that is rotationally driven by this power source and supplies hydraulic pressure to the operating equipment via the hydraulic mechanism supplies the hydraulic pressure required for operation to the operating equipment when the internal combustion engine is under a high load. Must be supplied in large quantities. For this reason, the required capacity or number of second hydraulic pumps is determined according to the maximum discharge amount.
  • the first hydraulic pressure The pump 10 directly supplies hydraulic pressure to the operating device 51 via the second oil passage.
  • the required capacity or the number of the second hydraulic pumps 11 can be reduced by the amount of hydraulic pressure supplied from the first hydraulic pump 10, and the cost can be reduced. Further, the power loss that increases in accordance with the discharge amount can be reduced as the required capacity or the number of the second hydraulic pumps 11 decreases.
  • the first hydraulic pump 10 can generate a hydraulic pressure that is, for example, about twice that required for the operating device.
  • the controller 50 supplies a part of the hydraulic pressure generated by the first hydraulic pump 10 to the operating device 51 at the time of high load, and the first hydraulic pump 10 generates it. Since the remaining hydraulic pressure is supplied to the second hydraulic pump 11, it is possible to effectively use the excess exhaust energy of the engine 1 at the time of high load as the hydraulic pressure required for the operating device 51 without power loss due to the hydraulic pump.
  • the rotation of the power source to which the second hydraulic pump 11 is connected can be urged by the hydraulic pressure generated by the first hydraulic pump 10.
  • the power source is the engine 1
  • fuel efficiency is improved directly
  • the power source is the electric motor 52
  • this is operated as a generator to generate electric power.
  • the fuel consumption of the entire internal combustion engine can be improved.
  • a load up to 35% is a low load
  • a load 35 to 50% is a medium load
  • a load 50% or more is a high load.
  • it is different depending on the type and usage form of the internal combustion engine, and is not limited thereto.
  • the supercharger surplus power recovery device for an internal combustion engine according to the present invention is not necessarily mounted on the above-described ship if the operating device for operating the engine is an electronic control through a hydraulic pressure and has a supercharger. It is not limited to the low-speed diesel engines for propulsion that are used, but can be widely used for all kinds of internal combustion engines and for all types of internal combustion engines.

Abstract

[Problem] To dramatically improve power transmission efficiency and avoid having to install redundant hydraulic devices. [Solution] The present invention is equipped with: an internal combustion engine (1) for which operation devices (51) for operating the engine are electronically controlled by means of hydraulic pressure; a supercharger (5); a first hydraulic pump (10) that is rotationally driven by the supercharger, thereby generating hydraulic pressure; a hydraulic mechanism (20); a second hydraulic pump (11) that is rotationally driven by the power source (1) and supplies hydraulic pressure to the operation devices; a controller (50) for controlling the operation of the first hydraulic pump, the second hydraulic pump, and the hydraulic mechanism; first oil passages (21, 22, 23) for supplying hydraulic pressure from the second hydraulic pump to the operation devices; and second oil passages (26, 27, 22, 23) for supplying hydraulic pressure from the first hydraulic pump to the operation devices. In addition, the present invention is equipped with third oil passages (26, 27, 22, 21) for supplying hydraulic pressure from the first hydraulic pump to the second hydraulic pump, and fourth oil passages (21, 22, 27, 26) for supplying hydraulic pressure from the second hydraulic pump to the first hydraulic pump.

Description

内燃機関の過給機余剰動力回収装置Supercharger surplus power recovery device for internal combustion engine
 本発明は、過給機を備えた内燃機関の過給機余剰動力回収装置に関する。 The present invention relates to a supercharger surplus power recovery device for an internal combustion engine equipped with a supercharger.
 従来、ディーゼルエンジンやガスエンジンなどの内燃機関では、過給機(ターボチャージャ)により、エンジンの排気ガスによってそのタービンを回転駆動し、タービンにより回転される圧縮機によって給気密度を高めて、エンジンの出力向上を図っている。 Conventionally, in an internal combustion engine such as a diesel engine or a gas engine, a turbocharger is used to rotationally drive the turbine by the exhaust gas of the engine, and the supply air density is increased by a compressor rotated by the turbine. The output is improved.
 しかしながら、このように過給機を取り付けて排気エネルギの有効利用を図ったとしても、エンジンの高負荷時(高出力時)などには排気エネルギが余剰となり、この余剰排気エネルギを無駄なく利用することが、燃費向上のみならず環境保護の面からも強く要請されている。 However, even if the turbocharger is attached in this way to effectively use the exhaust energy, the exhaust energy becomes surplus when the engine is under a high load (at the time of high output), and this surplus exhaust energy is used without waste. However, there is a strong demand not only for improving fuel efficiency but also for environmental protection.
 このエンジンの余剰排気エネルギを有効利用するものとして、例えば、過給機に発電機を連結し、この発電機を過給機によって回転駆動させて発電を行なうものがある(例えば、特許文献1及び2参照)。この場合には、エンジンの余剰排気エネルギを直接電気エネルギに変換し、それをこのエンシンが搭載された船舶の船内設備等に利用している。 As an example of effective use of the surplus exhaust energy of this engine, for example, a generator is connected to a supercharger and the generator is rotated by the supercharger to generate power (for example, Patent Document 1 and 2). In this case, surplus exhaust energy of the engine is directly converted into electric energy, which is used for inboard equipment of a ship equipped with this encin.
 しかしながら、このように過給機に発電機を連結して電気エネルギとして利用するだけでは、船内消費電力が少ない場合などには、エンジンの排気エネルギを充分に利用しているとは言えず、エンジンの余剰排気エネルギをすべて有効利用することが、燃費向上のみならず環境保護の面からも急務になっている。 However, simply connecting the generator to the turbocharger and using it as electric energy does not mean that the exhaust energy of the engine is fully utilized when the power consumption on the ship is low, etc. It is an urgent task to effectively use all the excess exhaust energy from the viewpoint of environmental protection as well as improving fuel efficiency.
 そこで、本願出願人は、独自の技術として、このエンジンの余剰排気エネルギをほぼすべて有効利用するものとして、内燃機関の過給機に油圧ポンプを連結して過給機によって油圧ポンプを回転駆動させて油圧を発生させ、この発生させた油圧により余剰排気エネルギを回収するための内燃機関の過給機余剰動力回収装置を多数開発してきた(例えば、特許文献3,4参照)。 Therefore, the applicant of the present invention, as a unique technique, effectively uses almost all of the surplus exhaust energy of the engine, and connects the hydraulic pump to the supercharger of the internal combustion engine and rotates the hydraulic pump by the supercharger. Many supercharger surplus power recovery devices for internal combustion engines have been developed for generating hydraulic pressure and recovering surplus exhaust energy using the generated hydraulic pressure (see, for example, Patent Documents 3 and 4).
 例えば、特許文献3,4に記載の発明は、内燃機関のクランク軸に油圧ポンプを連結し、この油圧ポンプと過給機に連結された油圧ポンプとを油路により接続し、排気エネルギに余剰のある内燃機関の高負荷時等に、過給機側の油圧ポンプにより内燃機関のクランク軸に連結した油圧ポンプを油圧モータとして回転駆動し、過給機の余剰動力を内燃機関の付勢に利用するものであり、概ね機関出力の約3~4%を回収することができる。これにより、大幅に内燃機関の余剰排気エネルギの利用を図ることができる。 For example, in the inventions described in Patent Documents 3 and 4, a hydraulic pump is connected to a crankshaft of an internal combustion engine, and the hydraulic pump and a hydraulic pump connected to a supercharger are connected by an oil passage, so that excess exhaust energy is obtained. When the internal combustion engine has a high load, the hydraulic pump connected to the crankshaft of the internal combustion engine is driven to rotate as a hydraulic motor by the hydraulic pump on the supercharger side, and the surplus power of the supercharger is used to bias the internal combustion engine. It is used, and about 3-4% of the engine output can be recovered. As a result, it is possible to significantly utilize the surplus exhaust energy of the internal combustion engine.
 この一方、近年の内燃機関では、主に燃費改善やNOX 排出量の削減を目的として、排気弁や燃料噴射弁の開閉作動を油圧を介して電子制御する電子制御機関が主流になりつつあり、今後建造予定の船舶に搭載されるほぼすべての内燃機関が電子制御機関になる可能性もある(例えば、特許文献5参照)。 On the other hand, in recent internal combustion engines, electronic control engines that electronically control the opening and closing operations of exhaust valves and fuel injection valves via hydraulic pressure are becoming mainstream mainly for the purpose of improving fuel consumption and reducing NOx soot emissions. There is a possibility that almost all internal combustion engines mounted on ships to be built in the future become electronic control engines (see, for example, Patent Document 5).
 すなわち、この電子制御の内燃機関は、排気弁や燃料噴射弁の開閉タイミングを電子コントローラにより適切に変更することで、機関の筒内圧力を任意に調整し、運転条件や環境に応じて内燃機関の機関性能の改善を図ることができる。また、例えば排気弁や燃料噴射弁を作動のために供給する油圧は機関の負荷ごとに異なり、作動油の消費量も機関負荷に応じて変わるため、可変容量型油圧ポンプの可変機構によって油圧を制御している。 In other words, this electronically controlled internal combustion engine appropriately adjusts the in-cylinder pressure of the engine by appropriately changing the opening and closing timing of the exhaust valve and the fuel injection valve by an electronic controller, and the internal combustion engine according to the operating conditions and environment. The engine performance can be improved. In addition, for example, the hydraulic pressure supplied for operating the exhaust valve and the fuel injection valve varies depending on the engine load, and the amount of hydraulic oil consumed also varies depending on the engine load. Therefore, the hydraulic pressure is controlled by the variable mechanism of the variable displacement hydraulic pump. I have control.
 さらに、この可変容量型油圧ポンプは、図7に示すように、内燃機関100のクランク軸から変速機を介して伝達される軸動力により油圧ポンプ103を駆動する方式や、図示しない電動機駆動の油圧ポンプにより回転駆動される。後者の電動機は、結局のところ、上記の又はこれとは別の補助の内燃機関の動力により回転される発電機が発生させた電力を利用するものであるから、その分だけ内燃機関全体の燃費を上昇させる。この排気弁や燃料噴射弁を作動させるために必要な油圧動力は、概ね機関出力の約2%に相当する。 Further, as shown in FIG. 7, this variable displacement hydraulic pump is a system in which the hydraulic pump 103 is driven by shaft power transmitted from the crankshaft of the internal combustion engine 100 via a transmission, or a motor-driven hydraulic pressure (not shown). Driven by a pump. After all, the latter electric motor uses electric power generated by the generator rotated by the power of the auxiliary internal combustion engine described above or different from the above, and accordingly, the fuel consumption of the entire internal combustion engine is correspondingly increased. To raise. The hydraulic power necessary for operating the exhaust valve and the fuel injection valve corresponds to approximately 2% of the engine output.
実開昭61-200423号公報Japanese Utility Model Publication No. 61-200423 特開2004-346803号公報JP 2004-346803 A 特開2006-242051号公報JP 2006-242051 A 特開2011-214458号公報JP 2011-214458 A 特開2010-209747号公報JP 2010-209747 A
 上述のように、従来の内燃機関の過給機余剰動力回収装置は、過給機の動力で油圧ポンプを回転駆動することにより、油圧動力として排気ガスの余剰動力を回収し、機関のクランク軸に取り付けた油圧モータをこの油圧動力によって回転駆動し、クランク軸を加勢することで、機関の燃費を低減するものである。 As described above, the turbocharger surplus power recovery device of the conventional internal combustion engine recovers surplus power of exhaust gas as hydraulic power by rotating the hydraulic pump with the power of the supercharger, and the crankshaft of the engine The hydraulic motor attached to the engine is driven to rotate by this hydraulic power, and the crankshaft is energized to reduce the fuel consumption of the engine.
 しかしながら、まず、排気エネルギを過給機を介して油圧ポンプにより油圧に変換するときに油圧ポンプの動力損失が発生する。次に、この油圧により内燃機関のクランク軸に連結した油圧ポンプ(油圧モータ)により回転動力に変換する際に、この油圧モータの動力損失が発生する。 However, first, when the exhaust energy is converted into hydraulic pressure by the hydraulic pump via the supercharger, power loss of the hydraulic pump occurs. Next, when this hydraulic pressure is converted into rotational power by a hydraulic pump (hydraulic motor) connected to the crankshaft of the internal combustion engine, a power loss of the hydraulic motor occurs.
  また、従来の電子制御機関においては、内燃機関又は電動機から油圧ポンプにより油圧を発生させる場合に、この油圧ポンプでも動力損失が発生する。このため、従来の電子制御の内燃機関における過給機余剰動力回収装置では、システム全体の動力伝達効率が低いという問題がある。 In addition, in a conventional electronic control engine, when hydraulic pressure is generated from an internal combustion engine or an electric motor by a hydraulic pump, power loss also occurs in this hydraulic pump. For this reason, the conventional turbocharger surplus power recovery device in an electronically controlled internal combustion engine has a problem that the power transmission efficiency of the entire system is low.
 これと共に、従来の電子制御の内燃機関の過給機余剰動力回収装置においては、図7に示すように、過給機の余剰動力回収装置101と、排気弁や燃料噴射弁等を油圧制御するための油圧装置(以下、機関作動装置ともいう)102の双方に、システム構成のための油圧ポンプ、バルブ類、安全装置、配管などを重複装備する必要があり、コスト増を招くという問題がある。 In addition, in the conventional supercharger surplus power recovery device for an internal combustion engine of electronic control, as shown in FIG. 7, the surplus power recovery device 101 of the supercharger, the exhaust valve, the fuel injection valve, and the like are hydraulically controlled. Therefore, it is necessary to equip both the hydraulic device (hereinafter also referred to as an engine operating device) 102 for the system configuration with a hydraulic pump, valves, safety devices, piping, and the like for the system configuration, resulting in an increase in cost. .
 また、多数の補機類が錯綜して配設される内燃機関周りにおいて、過給機の余剰動力回収装置101と機関作動装置102とに必要な機器の重複配置が、設計の大きな足かせになっているという問題もある。 Further, around the internal combustion engine in which a large number of auxiliary machines are arranged in a complicated manner, the redundant arrangement of the equipment necessary for the surplus power recovery device 101 and the engine operating device 102 of the supercharger is a major obstacle to the design. There is also a problem that.
 本発明はこのような問題を解決するためになされたもので、機関を作動させるための作動機器が油圧を介して電子制御される内燃機関において、内燃機関の過給機余剰動力回収装置のシステム全体の動力伝達効率を飛躍的に向上させることができ、しかも油圧機器類の重複配置を排除することができ、これにより大幅なコスト削減と設計の容易化を図ることができる、内燃機関の過給機余剰動力回収装置を提供することを課題とする。 The present invention has been made to solve such problems, and in an internal combustion engine in which an operating device for operating the engine is electronically controlled via hydraulic pressure, a system for a supercharger surplus power recovery device for the internal combustion engine The overall power transmission efficiency can be drastically improved, and the redundant arrangement of hydraulic equipment can be eliminated, which can greatly reduce the cost and facilitate the design. It is an object to provide a surplus machine power recovery device.
 上述の課題を解決するために、本発明の内燃機関の過給機余剰動力回収装置は、機関を
作動させるための作動機器が油圧を介して電子制御される内燃機関と、内燃機関の排ガス路に配設されて内燃機関の排気ガスにより回転駆動されて内燃機関に過給された給気を供給する過給機と、過給機に連結されて過給機により回転駆動されて油圧を発生させる第1油圧ポンプと、内燃機関の作動機器に油圧を供給して内燃機関を作動させる油圧機構と、回転動力を発生させる動力源に連結されてこの動力源により回転駆動されて油圧機構を介して作動機器に油圧を供給する第2油圧ポンプと、油圧機構と第1油圧ポンプと第2油圧ポンプとの作動を制御するコントローラと、油圧機構に配設されて第2油圧ポンプから作動機器へ油圧を供給する第1油路とを備えた内燃機関の過給機余剰動力回収装置において、油圧機構に配設されて第1油圧ポンプから作動機器へ油圧を供給する第2油路を備えたことにある。
In order to solve the above-described problems, a supercharger surplus power recovery device for an internal combustion engine according to the present invention includes an internal combustion engine in which an operating device for operating the engine is electronically controlled via hydraulic pressure, and an exhaust gas path of the internal combustion engine. And a turbocharger that is rotationally driven by the exhaust gas of the internal combustion engine and supplies supercharged air to the internal combustion engine, and is connected to the supercharger and is rotationally driven by the supercharger to generate hydraulic pressure. A first hydraulic pump that is operated, a hydraulic mechanism that supplies hydraulic pressure to an operating device of the internal combustion engine to operate the internal combustion engine, and a power source that is connected to a power source that generates rotational power and is driven to rotate by the power source. A second hydraulic pump that supplies hydraulic pressure to the operating device, a controller that controls the operation of the hydraulic mechanism, the first hydraulic pump, and the second hydraulic pump, and a hydraulic mechanism that is disposed from the second hydraulic pump to the operating device. First oil to supply hydraulic pressure In the supercharger excess power recovery apparatus for an internal combustion engine having bets, in that a second oil passage for supplying hydraulic pressure from the first hydraulic pump is disposed in the hydraulic mechanism to the operating device.
 また、別の本発明の内燃機関の過給機余剰動力回収装置は、機関を作動させるための作動機器が油圧を介して電子制御される内燃機関と、内燃機関の排ガス路に配設されて内燃機関の排気ガスにより回転駆動されて内燃機関に過給された給気を供給する過給機と、排ガス路に過給機と並列に配設されて排気ガスにより回転駆動されるタービンと、タービンに連結されてタービンにより回転駆動されて油圧を発生させる第1油圧ポンプと、内燃機関の作動機器に油圧を供給して内燃機関を作動させる油圧機構と、回転動力を発生させる動力源に連結されてこの動力源により回転駆動されて油圧機構を介して作動機器に油圧を供給する第2油圧ポンプと、油圧機構と第1油圧ポンプと第2油圧ポンプとの作動を制御するコントローラと、油圧機構に配設されて第2油圧ポンプから作動機器へ油圧を供給する第1油路とを備えた内燃機関の過給機余剰動力回収装置において、油圧機構に配設されて第1油圧ポンプから作動機器へ油圧を供給する第2油路を備えたことにある。 Further, the supercharger surplus power recovery device for an internal combustion engine according to another aspect of the present invention is provided in an internal combustion engine in which an operating device for operating the engine is electronically controlled via hydraulic pressure, and an exhaust gas passage of the internal combustion engine. A turbocharger that is rotationally driven by the exhaust gas of the internal combustion engine and supplies the supercharged air to the internal combustion engine; a turbine that is disposed in parallel with the supercharger in the exhaust gas path and is rotationally driven by the exhaust gas; A first hydraulic pump connected to a turbine and driven to rotate by the turbine to generate hydraulic pressure, a hydraulic mechanism for supplying hydraulic pressure to an operating device of the internal combustion engine to operate the internal combustion engine, and a power source for generating rotational power A second hydraulic pump that is rotationally driven by the power source and supplies hydraulic pressure to the operating device via the hydraulic mechanism, a controller that controls operations of the hydraulic mechanism, the first hydraulic pump, and the second hydraulic pump, and hydraulic pressure Machine In the supercharger surplus power recovery device for an internal combustion engine provided with a first oil passage for supplying hydraulic pressure from the second hydraulic pump to the operating device, the hydraulic mechanism is arranged to operate from the first hydraulic pump. A second oil passage for supplying hydraulic pressure to the equipment is provided.
 ここで、上述の機関を作動させるための作動機器とは、内燃機関を作動するために必要な、例えば排気弁、燃料噴射弁等の機器を言い、回転動力を発生させる動力源とは、例えば内燃機関、電動機等を言う。ただし、上述の機関を作動させるための作動機器及び回転動力を発生させる動力源とも一例に過ぎず、これらに限定されるものではない。 Here, the operating device for operating the above-mentioned engine means devices such as an exhaust valve and a fuel injection valve necessary for operating the internal combustion engine, and a power source that generates rotational power is, for example, An internal combustion engine, an electric motor, etc. are said. However, the operating device for operating the above-described engine and the power source for generating rotational power are merely examples, and the present invention is not limited to these.
 本発明の内燃機関の過給機余剰動力回収装置は、上述のように、過給機又はタービンに連結されてこの過給機又はタービンにより回転駆動されて油圧を発生させる第1油圧ポンプが、第2油路を介して内燃機関の作動機器に動力源を介さずに直接油圧を供給することができる。 As described above, the supercharger surplus power recovery device for an internal combustion engine of the present invention is connected to a supercharger or a turbine and is driven to rotate by the supercharger or the turbine to generate hydraulic pressure. The hydraulic pressure can be directly supplied to the operating device of the internal combustion engine via the second oil passage without using a power source.
 一方、従来の、機関を作動させるための作動機器が電子制御される内燃機関の過給機余剰動力回収装置においては、過給機に連結されてこの過給機又はタービンにより回転駆動されて油圧を発生させる油圧ポンプが、まず内燃機関のクランク軸に連結された油圧ポンプを回転駆動し、次にこの内燃機関や内燃機関が発生させた電力により回転駆動される電動機等の動力源が、作動機器に油圧を供給するための必要な油圧ポンプを回転駆動させる。 On the other hand, in a conventional supercharger surplus power recovery device for an internal combustion engine in which an operating device for operating an engine is electronically controlled, it is connected to the supercharger and is rotationally driven by this supercharger or turbine to be hydraulically operated. First, the hydraulic pump connected to the crankshaft of the internal combustion engine is rotationally driven, and then the internal combustion engine and a power source such as an electric motor that is rotationally driven by the electric power generated by the internal combustion engine are operated. The hydraulic pump necessary to supply hydraulic pressure to the equipment is driven to rotate.
 ここで、動力源により回転駆動されて油圧機構を介して作動機器に油圧を供給する第2油圧ポンプは、内燃機関の負荷によっては作動機器に作動に必要な油圧を多量に供給しなければならない。このため、第2油圧ポンプの必要容量あるいは台数は、この最大吐出量に応じて決定しなければならない。 Here, the second hydraulic pump that is rotationally driven by the power source and supplies hydraulic pressure to the operating device via the hydraulic mechanism must supply a large amount of hydraulic pressure required for operation to the operating device depending on the load of the internal combustion engine. . For this reason, the required capacity or number of second hydraulic pumps must be determined according to the maximum discharge amount.
 しかしながら、本発明の内燃機関の過給機余剰動力回収装置においては、この最大吐出量が要求される負荷時には排気エネルギにより過給機を回転駆動してもなお余剰があるため、第1油圧ポンプが第2油路を介して作動機器に油圧を供給することができる。 However, in the supercharger surplus power recovery device for an internal combustion engine according to the present invention, since there is still surplus even if the supercharger is rotationally driven by exhaust energy at the time when the maximum discharge amount is required, the first hydraulic pump Can supply hydraulic pressure to the operating device via the second oil passage.
 したがって、第2油圧ポンプの必要容量あるいは台数を第1油圧ポンプからの油圧の供
給分だけ減少させることができ、コスト削減を図ることができる。また、吐出量に応じて増大する動力損失も、第2油圧ポンプの必要容量あるいは台数の減少に伴って、これを減少させることができる。
Therefore, the required capacity or number of second hydraulic pumps can be reduced by the amount of hydraulic pressure supplied from the first hydraulic pump, and cost reduction can be achieved. Further, the power loss that increases in accordance with the discharge amount can be reduced as the required capacity or the number of second hydraulic pumps decreases.
 ここて最も注目すべきことは、従来の内燃機関の過給機余剰動力回収装置においては、過給機により回転駆動される油圧ポンプが発生させた油圧により内燃機関のクランク軸に連結した油圧ポンプを加勢して内燃機関の回転動力に変換する際に、動力損失が発生していた。 What is most notable here is that in the conventional turbocharger surplus power recovery device, the hydraulic pump connected to the crankshaft of the internal combustion engine by the hydraulic pressure generated by the hydraulic pump driven to rotate by the supercharger. When power is converted into rotational power of the internal combustion engine, power loss has occurred.
 しかしながら、本発明の内燃機関の過給機余剰動力回収装置においては、上述のように余剰の排気エネルギは、油圧として第2油路を介して作動機器に直接供給されてその有効利用を図るようにしたから、従来の内燃機関の過給機余剰動力回収装置を排除することができる。すなわち、内燃機関のクランク軸に連結される油圧ポンプを排除することができ、この油圧ポンプにより発生していた動力損失を完全に排除することができる。 However, in the supercharger surplus power recovery device for an internal combustion engine according to the present invention, as described above, surplus exhaust energy is directly supplied to the operating device as hydraulic pressure through the second oil passage so as to be used effectively. Therefore, the conventional supercharger surplus power recovery device for the internal combustion engine can be eliminated. That is, the hydraulic pump connected to the crankshaft of the internal combustion engine can be eliminated, and the power loss generated by this hydraulic pump can be completely eliminated.
 これに加えて、従来は必要であった第1油圧ポンプが内燃機関のクランク軸に連結された油圧ポンプを加勢するために必要な油圧機構を、すべて排除することができる。したがって、従来の内燃機関の過給機余剰動力回収装置の油圧機構を構成していた油圧ポンプ、バルブ類、安全装置、配管などを重複装備する必要がなくなり、大幅なコスト削減を図ることができる。また、多数の補機類が錯綜して配設される内燃機関周りにおいて、過給機の余剰動力回収装置と機関作動装置の油圧機構の重複配置が必要なくなり、設計の容易化を図ることができる。 In addition to this, it is possible to eliminate all the hydraulic mechanisms necessary for urging the hydraulic pump connected to the crankshaft of the internal combustion engine by the first hydraulic pump, which was necessary in the past. Therefore, it is not necessary to equip the hydraulic pumps, valves, safety devices, pipes, etc. that constitute the hydraulic mechanism of the turbocharger surplus power recovery device of the conventional internal combustion engine, so that significant cost reduction can be achieved. . Further, around the internal combustion engine in which a large number of auxiliary machines are arranged in a complicated manner, it is not necessary to overlap the surplus power recovery device of the supercharger and the hydraulic mechanism of the engine operating device, thereby facilitating the design. it can.
 上記内燃機関の過給機余剰動力回収装置において、コントローラは、内燃機関の高負荷時に第1油圧ポンプが発生させた油圧を第2油路を介して作動機器へ供給することが望ましい。 In the supercharger surplus power recovery device of the internal combustion engine, it is desirable that the controller supplies the hydraulic pressure generated by the first hydraulic pump to the operating device via the second oil passage when the internal combustion engine is at a high load.
 このように、コントローラが、内燃機関の高負荷時に第1油圧ポンプが発生させた油圧を第2油路を介して直接作動機器へ供給することにより、高負荷時の内燃機関の余剰排気エネルギを動力損失なく、作動機器に必要な油圧として有効利用することができる。 In this way, the controller supplies the hydraulic pressure generated by the first hydraulic pump when the internal combustion engine is at a high load directly to the operating device via the second oil passage, so that the excess exhaust energy of the internal combustion engine at the time of the high load is increased. Without power loss, it can be used effectively as the hydraulic pressure required for operating equipment.
 上記内燃機関の過給機余剰動力回収装置において、油圧機構に配設されて第1油圧ポンプから第2油圧ポンプへ油圧を供給する第3油路をさらに備えることが望ましい。 In the above-described supercharger surplus power recovery device for an internal combustion engine, it is desirable to further include a third oil passage that is disposed in the hydraulic mechanism and supplies hydraulic pressure from the first hydraulic pump to the second hydraulic pump.
 このように、油圧機構に配設されて第1油圧ポンプから第2油圧ポンプへ油圧を供給する第3油路をさらに備えることにより、第1油圧ポンプから作動機器に油圧を供給してもなお排気ガスエネルギに充分な余剰があるときには、第3油路を介して第1油圧ポンプが発生させた油圧により第2油圧ポンプを回転駆動させて、動力源の回転を加勢することができる。 As described above, by further including the third oil passage that is disposed in the hydraulic mechanism and supplies the hydraulic pressure from the first hydraulic pump to the second hydraulic pump, the hydraulic pressure can still be supplied from the first hydraulic pump to the operating device. When there is a sufficient surplus in the exhaust gas energy, the second hydraulic pump can be driven to rotate by the hydraulic pressure generated by the first hydraulic pump via the third oil passage, thereby energizing the rotation of the power source.
 例えば、動力源が内燃機関の場合には直接燃費向上が図られ,また動力源が電動機の場合にはこれを発電機として作動させて発電を行なわせることにより、結果的に、内燃機関全体の大幅な燃費向上を図ることができる。 For example, when the power source is an internal combustion engine, fuel efficiency can be improved directly, and when the power source is an electric motor, it is operated as a generator to generate electric power. Significant improvement in fuel consumption can be achieved.
 上記内燃機関の過給機余剰動力回収装置において、コントローラは、高負荷時に第1油圧ポンプが発生させた油圧の一部を第2油路を介して作動機器へ供給すると共に、第1油圧ポンプが発生させた油圧の残部を第3油路を介して第2油圧ポンプへ供給することが望ましい。 In the supercharger surplus power recovery apparatus for an internal combustion engine, the controller supplies a part of the hydraulic pressure generated by the first hydraulic pump to the operating device via the second oil passage at the time of high load, and the first hydraulic pump It is desirable to supply the remainder of the hydraulic pressure generated by the second hydraulic pump via the third oil passage.
 内燃機関の高負荷時には、例えば、第1油圧ポンプは作動機器に必要な油圧の約2倍の油圧を発生させることが可能である。したがって、コントローラが、高負荷時に第1油圧ポンプが発生させた油圧の一部を第2油路を介して作動機器へ供給すると共に、第1油圧ポンプが発生させた油圧の残部を第3油路を介して第2油圧ポンプへ供給するようにすることにより、高負荷時の内燃機関の余剰排気エネルギを動力損失なく、作動機器に必要な油圧として有効利用することができると共に、第1油圧ポンプが発生させた油圧により第2油圧ポンプが連結されている動力源の回転を加勢することができる。 When the internal combustion engine is under a high load, for example, the first hydraulic pump can generate a hydraulic pressure that is approximately twice that required for the operating equipment. Accordingly, the controller supplies a part of the hydraulic pressure generated by the first hydraulic pump at the time of high load to the operating device via the second oil passage, and the third hydraulic oil generates the remaining hydraulic pressure generated by the first hydraulic pump. By supplying the second hydraulic pump via the passage, the surplus exhaust energy of the internal combustion engine at the time of high load can be effectively utilized as the hydraulic pressure required for the operating equipment without power loss, and the first hydraulic pressure The rotation of the power source connected to the second hydraulic pump can be energized by the hydraulic pressure generated by the pump.
 例えば、動力源が内燃機関の場合には直接燃費向上が図られ,また動力源が電動機の場合にはこれを発電機として作動させて発電を行なわせることにより、結果的に、内燃機関全体の大幅な燃費向上を図ることができる。 For example, when the power source is an internal combustion engine, fuel efficiency can be improved directly, and when the power source is an electric motor, it is operated as a generator to generate electric power. Significant improvement in fuel consumption can be achieved.
 上記内燃機関の過給機余剰動力回収装置において、第2油圧ポンプは、可変容量型の油圧ポンプからなり、油圧機構は、第2油圧ポンプから作動機器への油圧の供給を許容すると共に第1油路の下流側から第2油圧ポンプへの油圧の逆流を防止する逆止機能と、コントローラの制御により強制的に第1油路の下流側から第2油圧ポンプへの油圧の逆流を許容させる逆止解除機能とを有する第1逆止弁機構を第1油路に備え、第2油路は、その作動機器側が第1油路の第1逆止弁機構の下流側に接続されて形成され、第3油路は、第2油圧ポンプ側が第1油路の第1逆止弁機構の下流側に接続されて形成されることが望ましい。 In the supercharger surplus power recovery device for the internal combustion engine, the second hydraulic pump is a variable displacement hydraulic pump, and the hydraulic mechanism allows the supply of hydraulic pressure from the second hydraulic pump to the operating device and the first hydraulic pump. A non-return function that prevents backflow of hydraulic pressure from the downstream side of the oil passage to the second hydraulic pump and a control of the controller forcibly allow backflow of hydraulic pressure from the downstream side of the first oil passage to the second hydraulic pump. The first oil passage is provided with a first check valve mechanism having a check release function, and the second oil passage is formed by connecting the operating device side to the downstream side of the first check valve mechanism of the first oil passage. The third oil passage is preferably formed by connecting the second hydraulic pump side to the downstream side of the first check valve mechanism of the first oil passage.
 このような構成の油圧機構にすることにより、コントローラが第1逆止弁機構の逆止解除機能をOFFにすることにより、第2油圧ポンプが内燃機関の作動機器へ油圧を供給できると共に、第1ポンプが発生させた油圧を内燃機関の作動機器へ油圧を供給することができる。また、第2油圧ポンプは可変容量型の油圧ポンプからなるから、コントローラが第1逆止弁機構の逆止解除機能をONにすることにより、第1油圧ポンプの発生させた油圧を第2ポンプへ供給できるようになり、可変容量型の油圧ポンプからなる第2油圧ポンプの回転、すなわち第2油圧ポンプが連結される動力源の回転を加勢することができるようになる。 With the hydraulic mechanism having such a configuration, the controller turns off the check release function of the first check valve mechanism, so that the second hydraulic pump can supply hydraulic pressure to the operating device of the internal combustion engine, and the first The hydraulic pressure generated by one pump can be supplied to the operating device of the internal combustion engine. In addition, since the second hydraulic pump is a variable displacement hydraulic pump, the controller turns on the check release function of the first check valve mechanism, so that the hydraulic pressure generated by the first hydraulic pump is supplied to the second pump. Thus, the rotation of the second hydraulic pump including the variable displacement hydraulic pump, that is, the rotation of the power source to which the second hydraulic pump is connected can be energized.
 すなわち、上述の構成によって油圧機構の簡素化を図ることができる。なお、可変容量型の油圧ポンプにおいては、その可変機構によって通常の吐出口からの油圧の逆流によっても油圧ポンプを正転させることができる。 That is, the hydraulic mechanism can be simplified by the above-described configuration. In the variable displacement hydraulic pump, the hydraulic pump can be rotated forward by the backflow of the hydraulic pressure from the normal discharge port by the variable mechanism.
 上記内燃機関の過給機余剰動力回収装置において、油圧機構に配設されて第2油圧ポンプから第1油圧ポンプへ油圧を供給する第4油路をさらに備えることが望ましい。 In the supercharger surplus power recovery device for the internal combustion engine, it is desirable to further include a fourth oil passage that is disposed in the hydraulic mechanism and supplies hydraulic pressure from the second hydraulic pump to the first hydraulic pump.
 このように、油圧機構に配設されて第2油圧ポンプから第1油圧ポンプへ油圧を供給する第4油路をさらに備えることにより、第2油圧ポンプが発生させた油圧を第4油路を介して第1油圧ポンプへ供給することが可能となり、これにより第1油圧ポンプの回転を加勢して過給機の過給能力を高めるようにすれば、排気ガスエネルギが不足して過給不足となった場合にも内燃機関に対して充分な過給を行なうことができる。 In this way, by further including a fourth oil passage that is disposed in the hydraulic mechanism and supplies hydraulic pressure from the second hydraulic pump to the first hydraulic pump, the hydraulic pressure generated by the second hydraulic pump is transferred to the fourth oil passage. If it is possible to supply the first hydraulic pump via the first hydraulic pump and thereby increase the supercharging capability of the supercharger by energizing the rotation of the first hydraulic pump, the exhaust gas energy is insufficient and the supercharging is insufficient. Even in this case, the internal combustion engine can be sufficiently supercharged.
 上記内燃機関の過給機余剰動力回収装置において、コントローラは、内燃機関の低負荷時に第2油圧ポンプが発生させた油圧を第4油路を介して第1油圧ポンプへ供給して第1油圧ポンプの回転を加勢して過給機の過給能力を高めることが望ましい。 In the supercharger surplus power recovery device for the internal combustion engine, the controller supplies the hydraulic pressure generated by the second hydraulic pump to the first hydraulic pump via the fourth oil passage when the internal combustion engine is under a low load, thereby supplying the first hydraulic pressure. It is desirable to increase the supercharging capability of the supercharger by energizing the rotation of the pump.
 このように、コントローラが内燃機関の低負荷時に第2油圧ポンプが発生させた油圧を第4油路を介して第1油圧ポンプへ供給して第1油圧ポンプの回転を加勢して過給機の過給能力を高めることにより、特に排気ガスエネルギが不足して過給不足となりがちな低負
荷時にも、内燃機関に対して充分な過給を行なうことができる。
In this way, the controller supplies the hydraulic pressure generated by the second hydraulic pump to the first hydraulic pump via the fourth oil passage when the internal combustion engine is under a low load, thereby energizing the rotation of the first hydraulic pump and the supercharger By increasing the supercharging capability of the engine, sufficient supercharging can be performed on the internal combustion engine, especially at low loads where exhaust gas energy is insufficient and the supercharging tends to be insufficient.
  上記内燃機関の過給機余剰動力回収装置において、油圧機構に配設されて第1油圧ポンプから第2油圧ポンプへ油圧を供給する第3油路をさらに備え、第1油圧ポンプは、可変容量型の油圧ポンプからなり、油圧機構は、第1油圧ポンプから第2油圧ポンプへの油圧の供給を許容すると共に第2油圧ポンプから第1油圧ポンプへの油圧の逆流を防止する逆止機能とコントローラの制御により強制的に第2油圧ポンプから第1油圧ポンプへの油圧の逆流を許容する逆止解除機能とを有する第2逆止弁機構を第3油路に具備し、上述の第4油路は、この第3油路からなることが望ましい。 The supercharger surplus power recovery apparatus for an internal combustion engine further includes a third oil passage that is disposed in the hydraulic mechanism and supplies hydraulic pressure from the first hydraulic pump to the second hydraulic pump, and the first hydraulic pump has a variable capacity. The hydraulic mechanism includes a non-return function that allows the supply of hydraulic pressure from the first hydraulic pump to the second hydraulic pump and prevents backflow of hydraulic pressure from the second hydraulic pump to the first hydraulic pump; The third oil passage is provided with a second check valve mechanism having a check release function forcibly allowing a backflow of hydraulic pressure from the second hydraulic pump to the first hydraulic pump under the control of the controller. The oil passage is preferably composed of the third oil passage.
 このように、油圧機構に配設されて第1油圧ポンプから第2油圧ポンプへ油圧を供給する第3油路をさらに備え、第1油圧ポンプを可変容量型の油圧ポンプとし、油圧機構が、第1油圧ポンプから第2油圧ポンプへの油圧の供給を許容すると共に第2油圧ポンプから第1油圧ポンプへの油圧の逆流を防止する逆止機能とコントローラの制御により強制的に第2油圧ポンプから第1油圧ポンプへの油圧の逆流を許容する逆止解除機能とを有する第2逆止弁機構を第3油路に具備し、第4油路が、第3油路からなるようにすることにより、コントローラの制御によって第2油圧ポンプが発生させた油圧を第3油路を介して第1油圧ポンプへ供給することができるようになり、これにより、この第1油圧ポンプが連結される過給機の回転を加勢することができる。 As described above, the hydraulic mechanism further includes a third oil passage that supplies hydraulic pressure from the first hydraulic pump to the second hydraulic pump, and the first hydraulic pump is a variable displacement hydraulic pump, The second hydraulic pump is forcibly controlled by a non-return function that allows the hydraulic pressure to be supplied from the first hydraulic pump to the second hydraulic pump and prevents the backflow of hydraulic pressure from the second hydraulic pump to the first hydraulic pump and the controller. A third check valve mechanism having a check release function for allowing a backflow of hydraulic pressure from the first hydraulic pump to the first hydraulic pump is provided in the third oil passage, and the fourth oil passage is constituted by the third oil passage. As a result, the hydraulic pressure generated by the second hydraulic pump by the control of the controller can be supplied to the first hydraulic pump via the third oil passage, and thereby the first hydraulic pump is connected. Boost turbocharger rotation It is possible.
 すなわち、上述の構成によって油圧機構の簡素化を図ることができる。なお、上述のように、可変容量型の油圧ポンプにおいては、その可変機構によって通常の吐出口からの油圧の逆流によっても油圧ポンプを正転させることができる。 That is, the hydraulic mechanism can be simplified by the above-described configuration. As described above, in a variable displacement hydraulic pump, the hydraulic pump can be rotated forward by a reverse flow of hydraulic pressure from a normal discharge port by the variable mechanism.
 上記内燃機関の過給機余剰動力回収装置において、油圧機構は、コントローラの制御により第1油圧ポンプが発生させた油圧をドレインさせて第1油圧ポンプへ戻すドレイン機構を備えることが望ましい。 In the supercharger surplus power recovery device of the internal combustion engine, it is desirable that the hydraulic mechanism includes a drain mechanism that drains the hydraulic pressure generated by the first hydraulic pump under the control of the controller and returns the hydraulic pressure to the first hydraulic pump.
 このように、油圧機構がコントローラの制御により第1油圧ポンプが発生させた油圧をドレインさせて第1油圧ポンプへ戻すドレイン機構を備えることにより、第1油圧ポンプから作動機器への油圧の供給と、第1油圧ポンプから第2油圧ポンプへの油圧の供給と、第2油圧ポンプから第1油圧ポンプへの油圧の供給とを、いずれも行わないようにすることができる。 As described above, the hydraulic mechanism includes the drain mechanism that drains the hydraulic pressure generated by the first hydraulic pump under the control of the controller and returns the hydraulic pressure to the first hydraulic pump, thereby supplying the hydraulic pressure from the first hydraulic pump to the operating device. The supply of hydraulic pressure from the first hydraulic pump to the second hydraulic pump and the supply of hydraulic pressure from the second hydraulic pump to the first hydraulic pump can be prevented from being performed.
 本発明の内燃機関の過給機余剰動力回収装置は、機関を作動させるための作動機器が油圧を介して電子制御される内燃機関と、内燃機関の排ガス路に配設されて内燃機関の排気ガスにより回転駆動されて内燃機関に過給された給気を供給する過給機と、過給機に連結されて過給機により回転駆動されて油圧を発生させる第1油圧ポンプと、内燃機関の作動機器に油圧を供給して内燃機関を作動させる油圧機構と、回転動力を発生させる動力源に連結されてこの動力源により回転駆動されて油圧機構を介して作動機器に油圧を供給する第2油圧ポンプと、油圧機構と第1油圧ポンプと第2油圧ポンプとの作動を制御するコントローラと、油圧機構に配設されて第2油圧ポンプから作動機器へ油圧を供給する第1油路とを備えた内燃機関の過給機余剰動力回収装置において、油圧機構に配設されて第1油圧ポンプから作動機器へ油圧を供給する第2油路を備える。 The supercharger surplus power recovery device for an internal combustion engine according to the present invention includes an internal combustion engine in which an operating device for operating the engine is electronically controlled via hydraulic pressure, and an exhaust gas of the internal combustion engine provided in an exhaust gas passage of the internal combustion engine. A supercharger that is rotationally driven by gas and supplies supercharged air to the internal combustion engine; a first hydraulic pump that is connected to the supercharger and is rotationally driven by the supercharger to generate hydraulic pressure; and the internal combustion engine A hydraulic mechanism that supplies hydraulic pressure to the operating equipment of the engine and operates the internal combustion engine; and a power source that is connected to a power source that generates rotational power and is rotated by the power source to supply hydraulic pressure to the operating equipment via the hydraulic mechanism. Two hydraulic pumps, a controller that controls the operation of the hydraulic mechanism, the first hydraulic pump, and the second hydraulic pump, and a first oil passage that is disposed in the hydraulic mechanism and supplies hydraulic pressure from the second hydraulic pump to the operating device. Of internal combustion engines equipped with In excess power recovery device comprises a second oil passage for supplying hydraulic pressure to the working device from the first hydraulic pump is disposed in the hydraulic mechanism.
 又は、本発明の内燃機関の過給機余剰動力回収装置は、機関を作動させるための作動機器が油圧を介して電子制御される内燃機関と、内燃機関の排ガス路に配設されて内燃機関の排気ガスにより回転駆動されて内燃機関に過給された給気を供給する過給機と、排ガス路に過給機と並列に配設されて排気ガスにより回転駆動されるタービンと、タービンに連
結されてタービンにより回転駆動されて油圧を発生させる第1油圧ポンプと、内燃機関の作動機器に油圧を供給して内燃機関を作動させる油圧機構と、回転動力を発生させる動力源に連結されてこの動力源により回転駆動されて油圧機構を介して作動機器に油圧を供給する第2油圧ポンプと、油圧機構と第1油圧ポンプと第2油圧ポンプとの作動を制御するコントローラと、油圧機構に配設されて第2油圧ポンプから作動機器へ油圧を供給する第1油路とを備えた内燃機関の過給機余剰動力回収装置において、油圧機構に配設されて第1油圧ポンプから作動機器へ油圧を供給する第2油路を備える。
Alternatively, the supercharger surplus power recovery device for an internal combustion engine according to the present invention includes an internal combustion engine in which an operating device for operating the engine is electronically controlled via hydraulic pressure, and an exhaust gas passage of the internal combustion engine. A turbocharger that is rotationally driven by the exhaust gas of the engine and that supplies supercharged air to the internal combustion engine, a turbine that is disposed in parallel with the supercharger in the exhaust gas path and is rotationally driven by the exhaust gas, and a turbine A first hydraulic pump that is connected and rotated by a turbine to generate hydraulic pressure, a hydraulic mechanism that supplies hydraulic pressure to an operating device of the internal combustion engine to operate the internal combustion engine, and a power source that generates rotational power. A second hydraulic pump that is rotationally driven by the power source and supplies hydraulic pressure to the operating device via the hydraulic mechanism; a controller that controls the operation of the hydraulic mechanism, the first hydraulic pump, and the second hydraulic pump; Arrangement In the supercharger surplus power recovery device for an internal combustion engine, which is provided with a first oil passage that supplies hydraulic pressure from the second hydraulic pump to the operating device, the hydraulic pressure is provided from the first hydraulic pump to the operating device. A second oil passage is provided.
 したがって、機関を作動させるための作動機器が電子制御される内燃機関において、内燃機関の過給機余剰動力回収装置のシステム全体の動力伝達効率を飛躍的に向上させることができ、しかも油圧機器類の重複配備を排除することができ、これにより大幅なコスト削減と設計の容易化を図ることができる、という優れた効果を奏する。 Therefore, in an internal combustion engine in which an operation device for operating the engine is electronically controlled, the power transmission efficiency of the entire system of the supercharger surplus power recovery device of the internal combustion engine can be dramatically improved, and hydraulic devices It is possible to eliminate the redundant deployment, and thereby it is possible to greatly reduce the cost and facilitate the design.
本発明の内燃機関の過給機余剰動力回収装置の一例を示すブロック図である。It is a block diagram showing an example of a supercharger surplus power recovery device of an internal-combustion engine of the present invention. 図1の内燃機関の低負荷時の油圧回路の流れを示す回路図である。FIG. 2 is a circuit diagram showing a flow of a hydraulic circuit when the internal combustion engine of FIG. 1 is under a low load. 図1の内燃機関の中負荷時の油圧回路の流れを示す回路図である。FIG. 2 is a circuit diagram showing a flow of a hydraulic circuit at a medium load of the internal combustion engine of FIG. 1. 図1の内燃機関の高負荷時の油圧回路の流れを示す回路図である。FIG. 2 is a circuit diagram showing a flow of a hydraulic circuit when the internal combustion engine of FIG. 図1とは別の内燃機関の過給機余剰動力回収装置を示すブロック図である。FIG. 2 is a block diagram showing a supercharger surplus power recovery device for an internal combustion engine different from FIG. 1. 図1及び図5とはさらに別の、内燃機関の過給機余剰動力回収装置を示す部分ブロック図である。FIG. 6 is a partial block diagram showing a supercharger surplus power recovery device for an internal combustion engine, which is further different from FIGS. 1 and 5. 従来の内燃機関の過給機余剰動力回収装置を示すブロック図である。It is a block diagram which shows the supercharger surplus power recovery apparatus of the conventional internal combustion engine.
 本発明に係る内燃機関の過給機余剰動力回収装置を実施するための形態を、図1ないし図6を参照して詳細に説明する。 A mode for carrying out the supercharger surplus power recovery device for an internal combustion engine according to the present invention will be described in detail with reference to FIGS.
  図1の符号1は、一例としての、船舶に搭載される推進用の低速ディーゼルエンジン(動力源、内燃機関)を示し、このエンジン1は、これを作動させるために必要な、例えば排気弁、燃料噴射弁等の作動機器が油圧を介して電子制御される電子制御機関であり、また、その排気ガスにより回転駆動されて過給された給気をエンジン1へ供給するための過給機5を備えている。 Reference numeral 1 in FIG. 1 shows, as an example, a low-speed diesel engine (power source, internal combustion engine) for propulsion mounted on a ship, and this engine 1 is required to operate the engine, for example, an exhaust valve, An operating device such as a fuel injection valve is an electronically controlled engine that is electronically controlled via hydraulic pressure, and a supercharger 5 that supplies supercharged air that is rotationally driven by the exhaust gas to the engine 1. It has.
 過給機5は圧縮機6とタービン7とからなり、圧縮機6とタービン7は回転軸8で連結されている。エンジン1の排気ガスによりタービン7が回転駆動され、タービン7によって圧縮機6が回転する。これによりエンジン1の給気密度が高められ、エンジンの出力が向上する。 The supercharger 5 includes a compressor 6 and a turbine 7, and the compressor 6 and the turbine 7 are connected by a rotating shaft 8. The turbine 7 is rotationally driven by the exhaust gas of the engine 1, and the compressor 6 is rotated by the turbine 7. Thereby, the air supply density of the engine 1 is increased, and the output of the engine is improved.
 なお、過給機5は、必ずしもその段数が単段のものに限定されるものではない。また、エンジン1は船舶用エンジンに限定されず、形式も低速ディーゼルエンジンに限定されるものではない。天然ガス、都市ガス等を燃料とするガスエンジン、他のすべての形式の電子制御機関が含まれる。 Note that the supercharger 5 is not necessarily limited to a single stage. Further, the engine 1 is not limited to a marine engine, and the type is not limited to a low-speed diesel engine. Includes gas engines fueled by natural gas, city gas, etc., and all other types of electronic control engines.
 図1に示すように、過給機5の回転軸8に変速機9が連結され、変速機9に可変容量型の第1油圧ポンプ10が連結される。エンジン1のクランク軸2の一端に変速機3が連結され、変速機3に可変容量型の第2油圧ポンプ11が連結されている。 As shown in FIG. 1, a transmission 9 is connected to the rotating shaft 8 of the supercharger 5, and a variable displacement first hydraulic pump 10 is connected to the transmission 9. A transmission 3 is connected to one end of the crankshaft 2 of the engine 1, and a variable displacement second hydraulic pump 11 is connected to the transmission 3.
 変速機3を設けずに第2油圧ポンプ11をエンジン1のクランク軸2に直結することもできる。また、上述の第1油圧ポンプ10及び第2油圧ポンプ11は、図1においてはそれぞれ1台であるが、あくまでも一例であり、複数台としてもよい。 The second hydraulic pump 11 can be directly connected to the crankshaft 2 of the engine 1 without providing the transmission 3. In addition, the number of the first hydraulic pump 10 and the number of the second hydraulic pumps 11 described above is one in FIG. 1, but is merely an example, and a plurality of units may be provided.
 第1油圧ポンプ10と第2油圧ポンプ11は、油圧機構20の中に組み込まれる。油圧機構20において、第2油圧ポンプ11の一方の吐出口11aは油路21に接続され、逆止弁31、油路22、逆止弁32、油路23をこの順に介して、上述のエンジン1の作動機器の制御回路に接続されて油圧を供給する。油路21、22、23により第1油路が形成される。第2油圧ポンプ11の他方の吐出口11bは、油路24を介して第1油圧ポンプ10の一方の吐出口10bに接続される。 The first hydraulic pump 10 and the second hydraulic pump 11 are incorporated in the hydraulic mechanism 20. In the hydraulic mechanism 20, one discharge port 11a of the second hydraulic pump 11 is connected to the oil passage 21, and the engine described above is passed through the check valve 31, the oil passage 22, the check valve 32, and the oil passage 23 in this order. The hydraulic pressure is supplied by being connected to the control circuit of the one operating device. A first oil passage is formed by the oil passages 21, 22, and 23. The other discharge port 11 b of the second hydraulic pump 11 is connected to one discharge port 10 b of the first hydraulic pump 10 via an oil passage 24.
 第1油圧ポンプ10の他方の吐出口10aは油路26に接続され、逆止弁36、油路27、油路22、油路23をこの順に介して、上述のエンジン1の作動機器51の制御回路に接続されて、油圧を供給することができる。また、油路27から分岐する形で油路22、逆止弁31、油路21をこの順に介して、第2油圧ポンプ11の一方の吐出口11aにも接続される。 The other discharge port 10a of the first hydraulic pump 10 is connected to the oil passage 26, and the check valve 36, the oil passage 27, the oil passage 22, and the oil passage 23 are connected in this order to the operating device 51 of the engine 1 described above. Connected to the control circuit, it can supply hydraulic pressure. Further, the oil passage 27 is also connected to one discharge port 11 a of the second hydraulic pump 11 through the oil passage 22, the check valve 31, and the oil passage 21 in this order.
 なお、上述の第1油圧ポンプ10の吐出口10a,10b、及び第2油圧ポンプ11の吐出口11a,11bはいずれも吐出口としている。しかしながら、実際は、後述するように、作動状態によってその一方が油圧の吐出口となり、他方が油圧の取入口となるものであるが、本内燃機関の過給機余剰動力回収装置においては、便宜上いずれも吐出口と呼ぶことにする。油路26,27,22,23により第2油路が、油路26,27,22,21により第3油路が、油路21,22,27,26により第4油路がそれぞれ形成される。 Note that the discharge ports 10a and 10b of the first hydraulic pump 10 and the discharge ports 11a and 11b of the second hydraulic pump 11 are both discharge ports. In practice, however, as will be described later, one of the two is a hydraulic discharge port and the other is a hydraulic intake depending on the operating state. However, in the supercharger surplus power recovery device of this internal combustion engine, Is also called a discharge port. The oil passages 26, 27, 22, and 23 form a second oil passage, the oil passages 26, 27, 22, and 21 form a third oil passage, and the oil passages 21, 22, 27, and 26 form a fourth oil passage, respectively. The
 逆止弁31は電磁切替弁41と一体となって第1逆止弁機構30を形成する。第1逆止弁機構30は、コントローラ50の制御により電磁切替弁41が切り替えられて、強制的に油路22から油路21、つまり第2油圧ポンプ11への油圧の逆流を許容させる逆止解除機能を有する。 The check valve 31 is integrated with the electromagnetic switching valve 41 to form the first check valve mechanism 30. The first check valve mechanism 30 is a check that forcibly allows a backflow of hydraulic pressure from the oil passage 22 to the oil passage 21, that is, the second hydraulic pump 11, by switching the electromagnetic switching valve 41 under the control of the controller 50. Has a release function.
 この逆止解除機能がOFFの場合には、逆止弁31は第2油圧ポンプ11から油路21を介して作動機器51の制御回路への油圧の供給を許容すると共に、油路22から第2油圧ポンプ11への油圧の逆流を防止する通常の逆止機能が働く。 When the check release function is OFF, the check valve 31 allows the hydraulic pressure to be supplied from the second hydraulic pump 11 to the control circuit of the operating device 51 through the oil passage 21 and from the oil passage 22 to the first. 2 A normal check function for preventing the backflow of hydraulic pressure to the hydraulic pump 11 is activated.
 他方、この逆止解除機能がONの場合には、上述のように、逆止弁31は強制的に開弁されて油路22から第2油圧ポンプ11への油圧の逆流が許容される。また、第2油圧ポンプ11と逆止弁31との間にアキュムレータ45が配設され、海洋波、排気弁駆動、燃料噴射等に伴って発生する油圧変動をこれにより吸収する。 On the other hand, when the check release function is ON, as described above, the check valve 31 is forcibly opened to allow the backflow of hydraulic pressure from the oil passage 22 to the second hydraulic pump 11. In addition, an accumulator 45 is disposed between the second hydraulic pump 11 and the check valve 31 to absorb hydraulic pressure fluctuations caused by ocean waves, exhaust valve driving, fuel injection, and the like.
 また、逆止弁36は電磁切替弁42と一体となって第2逆止弁機構35を形成する。第2逆止弁機構35は、コントローラ50の制御により電磁切替弁42が切り替えられて、強制的に油路27から油路26、つまり第1油圧ポンプ10への油圧の逆流を許容させる逆止解除機能を有する。 Also, the check valve 36 and the electromagnetic switching valve 42 form a second check valve mechanism 35. The second check valve mechanism 35 is a check that forcibly allows the backflow of hydraulic pressure from the oil passage 27 to the oil passage 26, that is, the first hydraulic pump 10 by switching the electromagnetic switching valve 42 under the control of the controller 50. Has a release function.
 この逆止解除機能がOFFの場合には、逆止弁31は第1油圧ポンプ10から油路26を介して作動機器51の制御回路と逆止弁31への油圧の供給を許容すると共に、油路2
7から油路26、つまり第1油圧ポンプ10への油圧の逆流を防止する通常の逆止機能が働く。他方、この逆止解除機能がONの場合には、上述のように、逆止弁31は強制的に開弁されて油路27から油路26、つまり第1油圧ポンプ10への油圧の逆流が許容される。
When the check release function is OFF, the check valve 31 allows the hydraulic pressure to be supplied from the first hydraulic pump 10 to the control circuit of the operating device 51 and the check valve 31 through the oil passage 26. Oil passage 2
A normal check function that prevents the backflow of hydraulic pressure from 7 to the oil passage 26, that is, the first hydraulic pump 10, works. On the other hand, when the check release function is ON, as described above, the check valve 31 is forcibly opened to return the hydraulic pressure from the oil passage 27 to the oil passage 26, that is, the first hydraulic pump 10. Is acceptable.
 油路26と油路24との間に電磁開閉弁44が配設され、電磁開閉弁44が開弁することにより、油路26の油圧を油路24へドレインさせて油路26の油圧を開放することができる。油路26、電磁開閉弁44、油路24によりドレイン機構が構成される。 An electromagnetic opening / closing valve 44 is disposed between the oil passage 26 and the oil passage 24, and when the electromagnetic opening / closing valve 44 is opened, the oil pressure of the oil passage 26 is drained to the oil passage 24 to increase the oil pressure of the oil passage 26. Can be opened. The oil path 26, the electromagnetic on-off valve 44, and the oil path 24 constitute a drain mechanism.
 コントローラ50は、センサにより例えば給気の吸い込み温度、過給機5の下流側の給気圧力等を検出し、後述するように、この検出した給気圧力、吸い込み温度等に基づいて、第1油圧ポンプ10、第2油圧ポンプ11、電磁切替弁41,42、電磁開閉弁44等の作動を電気的に制御する。なお、コントローラ50が上述の給気圧力及び吸い込み温度以外のパラメータを用いて第1油圧ポンプ10、第2油圧ポンプ11、電磁切替弁41,42、電磁開閉弁44等の作動を制御する場合もある。 The controller 50 detects, for example, the intake air suction temperature, the supply air pressure downstream of the supercharger 5 and the like by means of sensors, and, based on the detected supply air pressure, intake temperature, etc., as described later. The operations of the hydraulic pump 10, the second hydraulic pump 11, the electromagnetic switching valves 41 and 42, the electromagnetic on-off valve 44, and the like are electrically controlled. The controller 50 may control the operations of the first hydraulic pump 10, the second hydraulic pump 11, the electromagnetic switching valves 41 and 42, the electromagnetic opening / closing valve 44, and the like using parameters other than the above-described supply pressure and suction temperature. is there.
 次に、本内燃機関の過給機余剰動力回収装置の作動について説明する。内燃機関の始動時、コントローラ50は、図2に示す第1逆止弁機構30の電磁切替弁41を作動させて、第1逆止弁機構30の逆止解除機能をOFFにすると共に、第2逆止弁機構35の電磁切替弁42を作動させて、第2逆止弁機構35の逆止解除機能をOFFにする。また、電磁開閉弁44を閉弁させている。 Next, the operation of the supercharger surplus power recovery device of the internal combustion engine will be described. When starting the internal combustion engine, the controller 50 operates the electromagnetic switching valve 41 of the first check valve mechanism 30 shown in FIG. 2 to turn off the check release function of the first check valve mechanism 30 and 2 The electromagnetic switching valve 42 of the check valve mechanism 35 is operated to turn off the check release function of the second check valve mechanism 35. Further, the electromagnetic opening / closing valve 44 is closed.
 このため、逆止弁31は油路22から油路21への油圧の逆流を禁止し、逆止弁36は油路27から油路26への油圧の逆流を禁止する。そして、コントローラ50は、電動機52を回転駆動させて、始動に必要な油圧を油圧ポンプ53により発生させて、作動機器51の制御回路へ供給する。このとき、逆止弁32も油路23から油路22への油圧の逆流を防止する。 Therefore, the check valve 31 prohibits the backflow of hydraulic pressure from the oil passage 22 to the oil passage 21, and the check valve 36 prohibits the backflow of hydraulic pressure from the oil passage 27 to the oil passage 26. Then, the controller 50 rotates the electric motor 52 to generate a hydraulic pressure necessary for starting by the hydraulic pump 53 and supplies the hydraulic pressure to the control circuit of the operating device 51. At this time, the check valve 32 also prevents backflow of hydraulic pressure from the oil passage 23 to the oil passage 22.
 次に、内燃機関の低負荷時、例えば始動から負荷35%までの間は、コントローラ50は、第1逆止弁機構30の電磁切替弁41を作動させて、第1逆止弁機構30の逆止解除機能をOFFにすると共に、第2逆止弁機構35の電磁切替弁42を作動させて、第2逆止弁機構35の逆止解除機能をONにする。このため、逆止弁36は強制的に開弁されて、油路27から油路26への油圧の逆流が許容される。 Next, when the internal combustion engine is at a low load, for example, from the start to a load of 35%, the controller 50 operates the electromagnetic switching valve 41 of the first check valve mechanism 30 to turn on the first check valve mechanism 30. While turning off the check release function, the electromagnetic switching valve 42 of the second check valve mechanism 35 is operated to turn on the check release function of the second check valve mechanism 35. For this reason, the check valve 36 is forcibly opened to allow the backflow of hydraulic pressure from the oil passage 27 to the oil passage 26.
 そして、第2油圧ポンプ11が発生させた油圧は、油路21、逆止弁31、油路22、逆止弁32、油路23をこの順に介して、作動機器51の制御回路へ供給される。これと共に、第2油圧ポンプ11が発生させた油圧は、油路21、逆止弁31、油路22、油路27、強制的に開弁された逆止弁36、油路26をこの順に介して、第1油圧ポンプ10の吐出口10aに供給されて、第1油圧ポンプ10の回転を加勢する。 The hydraulic pressure generated by the second hydraulic pump 11 is supplied to the control circuit of the operating device 51 via the oil passage 21, the check valve 31, the oil passage 22, the check valve 32, and the oil passage 23 in this order. The At the same time, the hydraulic pressure generated by the second hydraulic pump 11 flows through the oil passage 21, the check valve 31, the oil passage 22, the oil passage 27, the forcibly opened check valve 36, and the oil passage 26 in this order. And supplied to the discharge port 10a of the first hydraulic pump 10 to urge the rotation of the first hydraulic pump 10.
 すなわち、第2油圧ポンプ11が発生させた油圧により、第1油圧ポンプ10に連結された過給機5の回転を加勢して、過給不足になりがちな低負荷時の過給が適正に行われるようにする。なお、可変容量型の第1油圧ポンプ10は、その可変機構によって吐出口10aからの油圧の逆流によっても過給機5を正転させることができる。 That is, the rotation of the supercharger 5 connected to the first hydraulic pump 10 is energized by the hydraulic pressure generated by the second hydraulic pump 11 so that the supercharging at the time of low load, which tends to be insufficient, is properly performed. To be done. Note that the variable displacement first hydraulic pump 10 can rotate the supercharger 5 in the forward direction also by the backflow of the hydraulic pressure from the discharge port 10a by the variable mechanism.
 コントローラ50は、センサが検出した給気の吸い込み温度、過給機5の下流側の給気路の給気圧力等を読み込む。また、過給機5を加勢するための必要動力は、コントローラ50内に機関負荷ごとに設定されている。コントローラ50は、この給気圧力、吸い込み温度等に基づいて、可変容量型の第1油圧ポンプ10の容量を適切に変化させて、過給機5を加勢する動力を制御する。 The controller 50 reads the intake air intake temperature detected by the sensor, the supply air pressure in the supply passage on the downstream side of the supercharger 5, and the like. Further, the necessary power for energizing the supercharger 5 is set in the controller 50 for each engine load. The controller 50 controls the power for energizing the supercharger 5 by appropriately changing the capacity of the variable displacement type first hydraulic pump 10 based on the supply pressure, the suction temperature, and the like.
 次に、内燃機関の中負荷時、例えば負荷35~50%の間は、コントローラ50は、図3に示す第1逆止弁機構30の電磁切替弁41を作動させて第1逆止弁機構30の逆止解除機能をOFFにすると共に、電磁開閉弁44を開弁させる。 Next, at a medium load of the internal combustion engine, for example, during a load of 35 to 50%, the controller 50 operates the electromagnetic switching valve 41 of the first check valve mechanism 30 shown in FIG. The non-return release function 30 is turned off and the electromagnetic on-off valve 44 is opened.
 電磁開閉弁44を開弁されると、第1油圧ポンプが発生させた油圧は、油路26から電磁開閉弁44を介して油路24へドレインされて開放されるから圧力が低く、逆止弁36を通って圧力の高い油路27へ流れることはない。この場合、過給機5により回転駆動される第1油圧ポンプ10はいわば無負荷運転となるが、システムの冷却ために一定圧の油圧が吐出される。 When the electromagnetic on-off valve 44 is opened, the hydraulic pressure generated by the first hydraulic pump is drained from the oil passage 26 to the oil passage 24 through the electromagnetic on-off valve 44 and released, so that the pressure is low and the check is not performed. It does not flow through the valve 36 to the high pressure oil passage 27. In this case, the first hydraulic pump 10 that is rotationally driven by the supercharger 5 is in a so-called no-load operation, but a constant pressure of hydraulic pressure is discharged to cool the system.
 他方、第2油圧ポンプ11が発生させた油圧は、油路21、逆止弁31、油路22、逆止弁32、油路23を介して作動機器51の制御回路へ供給される。第2油圧ポンプ11が発生させる油圧は比較的高いが、コントローラ50が、図3に示す第1逆止弁機構30の電磁切替弁41を作動させて第1逆止弁機構30の逆止解除機能をOFFにしているから、逆止弁36の通常の逆止機能により、油路27の油圧が逆止弁36を通って油路26へ流れることはない。 On the other hand, the hydraulic pressure generated by the second hydraulic pump 11 is supplied to the control circuit of the operating device 51 through the oil passage 21, the check valve 31, the oil passage 22, the check valve 32, and the oil passage 23. Although the hydraulic pressure generated by the second hydraulic pump 11 is relatively high, the controller 50 operates the electromagnetic switching valve 41 of the first check valve mechanism 30 shown in FIG. 3 to release the check of the first check valve mechanism 30. Since the function is OFF, the oil pressure in the oil passage 27 does not flow to the oil passage 26 through the check valve 36 due to the normal check function of the check valve 36.
 このように、内燃機関の中負荷時、例えば負荷35~50%の間は、第1油圧ポンプ10は無負荷運転となると共に、作動機器51へは第2油圧ポンプ11によってのみ油圧が供給される。なお、過給機5側の第1油圧ポンプ10とエンジン1側の第2油圧ポンプ11との間の油圧の連動を切断する必要がある場合、例えば危急停止時等にも、上述と同様の作動が行われる。 As described above, when the internal combustion engine is at a medium load, for example, during a load of 35 to 50%, the first hydraulic pump 10 is in a no-load operation and the hydraulic pressure is supplied to the operating device 51 only by the second hydraulic pump 11. The If it is necessary to disconnect the hydraulic pressure between the first hydraulic pump 10 on the supercharger 5 side and the second hydraulic pump 11 on the engine 1 side, for example, in the case of an emergency stop, the same as described above Operation is performed.
 次に、内燃機関の高負荷時、例えば負荷50%以上の場合には、コントローラ50は、図4に示す第1逆止弁機構30の電磁切替弁41を作動させて、第1逆止弁機構30の逆止解除機能をONにする共に、第2逆止弁機構35の電磁切替弁42を作動させて、第2逆止弁機構35の逆止解除機能をOFFにする。また、電磁開閉弁44を閉弁させる。 Next, when the internal combustion engine is at a high load, for example, when the load is 50% or more, the controller 50 operates the electromagnetic switching valve 41 of the first check valve mechanism 30 shown in FIG. The check release function of the mechanism 30 is turned on, and the electromagnetic switching valve 42 of the second check valve mechanism 35 is operated to turn off the check release function of the second check valve mechanism 35. Further, the electromagnetic on-off valve 44 is closed.
 このため、第1逆止弁機構30の逆止弁31は強制的に開弁されて、油路22から油路21、つまり第2油圧ポンプ11への油圧の逆流が許容される。また、第2逆止弁機構35の逆止弁36も、通常の逆止機能より油路26から油路27への油圧の流れを許容する。 For this reason, the check valve 31 of the first check valve mechanism 30 is forcibly opened to allow a backflow of hydraulic pressure from the oil passage 22 to the oil passage 21, that is, the second hydraulic pump 11. The check valve 36 of the second check valve mechanism 35 also allows the flow of hydraulic pressure from the oil passage 26 to the oil passage 27 by a normal check function.
 このため、第1油圧ポンプ10が発生させた油圧は、油路26、逆止弁36、油路27、逆止弁32、油路23をこの順に介して、作動機器51の制御回路へ供給される。例えば負荷50%以上の場合には、作動機器51が必要とする油圧のすべてを第1油圧ポンプ10から供給することができる。 Therefore, the hydraulic pressure generated by the first hydraulic pump 10 is supplied to the control circuit of the operating device 51 through the oil passage 26, the check valve 36, the oil passage 27, the check valve 32, and the oil passage 23 in this order. Is done. For example, when the load is 50% or more, all of the hydraulic pressure required by the operating device 51 can be supplied from the first hydraulic pump 10.
 また、エンジン1の高負荷時には、第1油圧ポンプ10は作動機器51に必要な油圧の、例えば2倍程度の油圧を発生させることが可能である。このため、第1油圧ポンプ10が発生させた油圧は、油路26、逆止弁36、油路27、油路22、逆止弁31、油路21をこの順に介して、第2油圧ポンフ11の吐出口11aにも供給されて、第2油圧ポンプ11の回転を加勢する。 Also, when the engine 1 is under a high load, the first hydraulic pump 10 can generate a hydraulic pressure that is, for example, about twice that required for the operating device 51. For this reason, the hydraulic pressure generated by the first hydraulic pump 10 passes through the oil passage 26, the check valve 36, the oil passage 27, the oil passage 22, the check valve 31, and the oil passage 21 in this order. 11 is also supplied to the discharge port 11a to urge the rotation of the second hydraulic pump 11.
 すなわち、第1油圧ポンプ10が発生させた油圧により、第2油圧ポンプ11が連結されたエンジン1の回転が加勢される。コントローラ50は、予め設定されている過給機5から回収可能最大動力に基づいて、第1油圧ポンプ10の容量を適宜に変化させることにより、過給機5から回収する油圧動力を調整する。 That is, the rotation of the engine 1 connected to the second hydraulic pump 11 is energized by the hydraulic pressure generated by the first hydraulic pump 10. The controller 50 adjusts the hydraulic power recovered from the supercharger 5 by appropriately changing the capacity of the first hydraulic pump 10 based on the maximum power recoverable from the supercharger 5 set in advance.
 図5に示すように、第2油圧ポンプ11をエンジンではなく、エンジンと同様に回転動力を発生させる電動機(動力源)54に連結してもよい。この電動機54としては、例えば誘導電動機が使用される。誘導電動機の回転数は電力系統の周波数により決定され、常に一定回転で回転する。このため、上述の油圧機構20等による電動機54の回転数制御は特に必要としない。 As shown in FIG. 5, the second hydraulic pump 11 may be connected not to the engine but to an electric motor (power source) 54 that generates rotational power in the same manner as the engine. As this electric motor 54, for example, an induction motor is used. The number of revolutions of the induction motor is determined by the frequency of the power system, and always rotates at a constant speed. For this reason, the rotation speed control of the electric motor 54 by the above-described hydraulic mechanism 20 or the like is not particularly required.
 そして、エンジンの高負荷時には第1油圧ポンプ10から供給される上述の余剰の油圧により、電動機54が発電機として作動することにより電力を発生させ、この電力が電力系統に供給される。船舶等において必要な電力は、通常エンジンにより回転駆動される発電機により発電されるから、結果的に、エンジンの燃費向上を図ることができる。その他、エンジンの低負荷時、中負荷時、高負荷時における内燃機関の過給機余剰動力回収装置の作動は、上述のエンジン1の場合と同様であるから、説明を省略する。 Then, when the engine is under a high load, the above-described surplus hydraulic pressure supplied from the first hydraulic pump 10 generates electric power by operating the motor 54 as a generator, and this electric power is supplied to the power system. Since electric power required in a ship or the like is usually generated by a generator that is rotationally driven by an engine, the fuel efficiency of the engine can be improved as a result. In addition, since the operation of the supercharger surplus power recovery device for the internal combustion engine at the time of low load, medium load, and high load of the engine is the same as that of the engine 1 described above, the description thereof is omitted.
 図6に示すように、エンジンの排ガス路4に過給機5と並列に流量調整弁56を介してパワータービン55を配設し、このパワータービン55に第1油圧ポンプ10を連結してもよい。この場合のエンジンの中負荷時及び高負荷時における内燃機関の過給機余剰動力回収装置の作動は、上述のエンジン1の場合と同様である。ただし、構造上、エンジンの低負荷時に、第2油圧ポンプ11で発生させた油圧により第1油圧ポンプ10を介して過給機5の回転を直接加勢することはできない。その他は上述の過給機5による場合と同様であるから、説明を省略する。 As shown in FIG. 6, a power turbine 55 is disposed in the exhaust gas passage 4 of the engine in parallel with the supercharger 5 via a flow rate adjusting valve 56, and the first hydraulic pump 10 is connected to the power turbine 55. Good. The operation of the supercharger surplus power recovery device for the internal combustion engine at the time of medium load and high load of the engine in this case is the same as that of the engine 1 described above. However, structurally, the rotation of the supercharger 5 cannot be directly urged through the first hydraulic pump 10 by the hydraulic pressure generated by the second hydraulic pump 11 when the engine is under a low load. Others are the same as in the case of the supercharger 5 described above, and the description is omitted.
 また、上述の第1油圧ポンプは必ずしも可変容量型である必要はなく、固定容量型であってもよい。固定容量型とすれば、大幅な省スペース化が図れる。ただし、第1油圧ポンプを固定容量型とした場合には、吐出口からの油圧の逆流によってポンプを正転させることはできないから、上述の油圧機構20のままでは低負荷時に過給機5の加勢を行うことはできない。 Further, the first hydraulic pump described above is not necessarily a variable displacement type, and may be a fixed displacement type. If it is a fixed capacity type, a large space can be saved. However, when the first hydraulic pump is of a fixed displacement type, the pump cannot be rotated forward by the backflow of the hydraulic pressure from the discharge port. It cannot be added.
 したがって、エンジン1の低負荷時、中負荷時、高負荷時において上述の内燃機関の過給機余剰動力回収装置と同様の作動を行わせるためには、油圧の逆流時にも通常の油圧取入口からのポンプへの流入が可能なように、油圧機構20の構成等を一部変更する必要がある。その他は上述の可変容量型の第2油圧ポンプ10による場合と同様であるから、説明を省略する。 Therefore, in order to perform the same operation as that of the above-described supercharger surplus power recovery device of the internal combustion engine when the engine 1 is under low load, medium load, and high load, a normal hydraulic intake is also used during the backflow of hydraulic pressure. It is necessary to partially change the configuration of the hydraulic mechanism 20 so that the flow into the pump can be made. Others are the same as in the case of the variable displacement type second hydraulic pump 10 described above, and thus the description thereof is omitted.
 以上のように、本内燃機関の過給機余剰動力回収装置は、過給機5又はパワータービン55に連結されて、この過給機5又はパワータービン55により回転駆動されて油圧を発生させる第1油圧ポンプ10がエンジン1の作動機器51へ、動力源であるエンジン1又は電動機52を介さずに直接油圧を供給することができる。 As described above, the supercharger surplus power recovery device of the internal combustion engine is connected to the supercharger 5 or the power turbine 55, and is rotated by the supercharger 5 or the power turbine 55 to generate hydraulic pressure. 1 The hydraulic pump 10 can directly supply hydraulic pressure to the operating device 51 of the engine 1 without going through the engine 1 or the electric motor 52 which is a power source.
 また、従来の、この動力源により回転駆動されて油圧機構を介して作動機器に油圧を供給する第2油圧ポンプは、内燃機関の高負荷時等には、作動機器に作動に必要な油圧を多量に供給しなければならない。このため、第2油圧ポンプの必要容量あるいは台数は、この最大吐出量に応じて決定される。しかしながら、本内燃機関の過給機余剰動力回収装置においては、特に最大吐出量が要求される高負荷時には、排気エネルギにより過給機5を回転駆動してもなお余剰があるため、第1油圧ポンプ10が第2油路を介して作動機器51に油圧を直接供給する。 In addition, the conventional second hydraulic pump that is rotationally driven by this power source and supplies hydraulic pressure to the operating equipment via the hydraulic mechanism supplies the hydraulic pressure required for operation to the operating equipment when the internal combustion engine is under a high load. Must be supplied in large quantities. For this reason, the required capacity or number of second hydraulic pumps is determined according to the maximum discharge amount. However, in the supercharger surplus power recovery device of the internal combustion engine, even when the turbocharger 5 is driven to rotate by exhaust energy, especially at the high load where the maximum discharge amount is required, there is still surplus, the first hydraulic pressure The pump 10 directly supplies hydraulic pressure to the operating device 51 via the second oil passage.
 このため、第2油圧ポンプ11の必要容量あるいは台数を第1油圧ポンプ10からの油圧の供給分だけ減少させることができ、コスト削減を図ることができる。また、吐出量に応じて増大する動力損失も、第2油圧ポンプ11の必要容量あるいは台数の減少に伴って、これを減少させることができる。 For this reason, the required capacity or the number of the second hydraulic pumps 11 can be reduced by the amount of hydraulic pressure supplied from the first hydraulic pump 10, and the cost can be reduced. Further, the power loss that increases in accordance with the discharge amount can be reduced as the required capacity or the number of the second hydraulic pumps 11 decreases.
 ここで最も注目すべきことは、従来の内燃機関の過給機余剰動力回収装置において必要であったエンジンのクランク軸に連結される過給機余剰動力回収装置の油圧ポンプを排除することができ、この油圧ポンプにより発生していた動力損失をすべて排除することができる。また、従来の第1油圧ポンプがエンジンのクランク軸に連結された油圧ポンプを加勢するために必要であった油圧機構を、すべて排除することができることである。 The most notable point here is that it is possible to eliminate the hydraulic pump of the supercharger surplus power recovery device connected to the crankshaft of the engine, which was necessary in the conventional supercharger surplus power recovery device of the internal combustion engine. Therefore, it is possible to eliminate all the power loss generated by the hydraulic pump. Further, it is possible to eliminate all the hydraulic mechanisms that are necessary for the conventional first hydraulic pump to urge the hydraulic pump connected to the crankshaft of the engine.
 したがって、従来の内燃機関の過給機余剰動力回収装置の油圧機構を構成していた油圧ポンプ、バルブ類、安全装置、配管などを重複装備する必要がなくなり、大幅なコスト削減を図ることできる。また、多数の補機類が錯綜して配設される内燃機関周りにおいて、過給機の余剰動力回収装置と機関作動装置の油圧機構の重複配置が必要なくなり、設計の容易化を図ることができる。 Therefore, it is no longer necessary to equip the hydraulic pumps, valves, safety devices, pipes, etc. that constitute the hydraulic mechanism of the turbocharger surplus power recovery device of the conventional internal combustion engine, and the cost can be greatly reduced. Further, around the internal combustion engine in which a large number of auxiliary machines are arranged in a complicated manner, it is not necessary to overlap the surplus power recovery device of the supercharger and the hydraulic mechanism of the engine operating device, thereby facilitating the design. it can.
 また、上述のように、エンジン1の高負荷時には、第1油圧ポンプ10は作動機器に必要な油圧の、例えば約2倍の油圧を発生させることが可能である。本内燃機関の過給機余剰動力回収装置においては、コントローラ50が、高負荷時に第1油圧ポンプ10が発生させた油圧の一部を作動機器51へ供給すると共に、第1油圧ポンプ10が発生させた油圧の残部を第2油圧ポンプ11へ供給するようにしたから、高負荷時のエンジン1の余剰排気エネルギを油圧ポンプによる動力損失なしに作動機器51に必要な油圧として有効利用することができると共に、第1油圧ポンプ10が発生させた油圧により第2油圧ポンプ11が連結されている動力源の回転を加勢することができる。 As described above, when the engine 1 is under a high load, the first hydraulic pump 10 can generate a hydraulic pressure that is, for example, about twice that required for the operating device. In the supercharger surplus power recovery device of the internal combustion engine, the controller 50 supplies a part of the hydraulic pressure generated by the first hydraulic pump 10 to the operating device 51 at the time of high load, and the first hydraulic pump 10 generates it. Since the remaining hydraulic pressure is supplied to the second hydraulic pump 11, it is possible to effectively use the excess exhaust energy of the engine 1 at the time of high load as the hydraulic pressure required for the operating device 51 without power loss due to the hydraulic pump. In addition, the rotation of the power source to which the second hydraulic pump 11 is connected can be urged by the hydraulic pressure generated by the first hydraulic pump 10.
 このため、例えば動力源がエンジン1の場合には直接燃費向上が図られ,また、動力源が電動機52の場合にはこれを発電機として作動させて発電を行なわせることにより、結果的に、内燃機関全体の燃費向上を図ることができる。 For this reason, for example, when the power source is the engine 1, fuel efficiency is improved directly, and when the power source is the electric motor 52, this is operated as a generator to generate electric power. The fuel consumption of the entire internal combustion engine can be improved.
 なお、上述の内燃機関の過給機余剰動力回収装置は一例にすぎず、本発明の趣旨に基づいて種々の変形が可能であり、それらを本発明の範囲から排除するものではない。また、上述の内燃機関の過給機余剰動力回収装置においては、負荷35%までを低負荷とし、負荷35~50%を中負荷とし、また負荷50%以上を高負荷としたが、あくまでも一例であって内燃機関の種類や利用形態等により異なるものであり、これらに限定されるものではない。 The above-described supercharger surplus power recovery device for an internal combustion engine is merely an example, and various modifications can be made based on the gist of the present invention, and they are not excluded from the scope of the present invention. Further, in the above-described supercharger surplus power recovery device for an internal combustion engine, a load up to 35% is a low load, a load 35 to 50% is a medium load, and a load 50% or more is a high load. However, it is different depending on the type and usage form of the internal combustion engine, and is not limited thereto.
 本発明の内燃機関の過給機余剰動力回収装置は、機関を作動させるための作動機器が油圧を介して電子制御され、かつ過給機を有する内燃機関であれば、必ずしも上述の船舶に搭載される推進用の低速ディーゼルエンジンに限定して利用されるものではなく、あらゆる種類の内燃機関に、そしてあらゆる形式の内燃機関に広く利用することができる。 The supercharger surplus power recovery device for an internal combustion engine according to the present invention is not necessarily mounted on the above-described ship if the operating device for operating the engine is an electronic control through a hydraulic pressure and has a supercharger. It is not limited to the low-speed diesel engines for propulsion that are used, but can be widely used for all kinds of internal combustion engines and for all types of internal combustion engines.
1 エンジン(動力源、内燃機関)
2 クランク軸
3 変速機
4 排ガス路
5 過給機
6 圧縮機
7 タービン
8 回転軸
9 変速機
10 第1油圧ポンプ
10a,10b,11a,11b 吐出口
11 第2油圧ポンプ
20 油圧機構
21,22,23,24,26,27 油路
30 第1逆止弁機構
31,32,36 逆止弁
35 第2逆止弁機構
41,42 電磁切替弁
44 電磁開閉弁
45 アキュムレータ
50 コントローラ
51 作動機器
52 電動機
53 油圧ポンプ
54 電動機(動力源)
55 パワータービン
56 流量調整弁
100 内燃機関
101 過給機余剰動力回収装置
102 機関作動装置
103 油圧ポンプ
1 Engine (power source, internal combustion engine)
2 crankshaft 3 transmission 4 exhaust gas path 5 supercharger 6 compressor 7 turbine 8 rotary shaft 9 transmission 10 first hydraulic pumps 10a, 10b, 11a, 11b discharge port 11 second hydraulic pump 20 hydraulic mechanisms 21,22 23, 24, 26, 27 Oil passage 30 First check valve mechanism 31, 32, 36 Check valve 35 Second check valve mechanism 41, 42 Electromagnetic switching valve 44 Electromagnetic switching valve 45 Accumulator 50 Controller 51 Actuating device 52 Electric motor 53 Hydraulic pump 54 Electric motor (power source)
55 Power turbine 56 Flow rate adjusting valve 100 Internal combustion engine 101 Supercharger surplus power recovery device 102 Engine operating device 103 Hydraulic pump

Claims (10)

  1.  機関を作動させるための作動機器(51)が油圧を介して電子制御される内燃機関(1)と、前記内燃機関の排ガス路に配設されて前記内燃機関の排気ガスにより回転駆動されて前記内燃機関に過給された給気を供給する過給機(5)と、前記過給機に連結されて前記過給機により回転駆動されて油圧を発生させる第1油圧ポンプ(10)と、前記内燃機関の前記作動機器に油圧を供給して前記作動機器を作動させて前記内燃機関を作動させる油圧機構(20)と、回転動力を発生させる動力源(1,54)に連結されて前記動力源により回転駆動されて前記油圧機構を介して前記作動機器に油圧を供給する第2油圧ポンプ(11)と、前記第1油圧ポンプと前記第2油圧ポンプと前記油圧機構の作動を制御するコントローラ(50)と、前記油圧機構に配設されて前記第2油圧ポンプから前記作動機器へ油圧を供給する第1油路(21,22,23)とを備えた内燃機関の過給機余剰動力回収装置において、前記油圧機構に配設されて前記第1油圧ポンプから前記作動機器へ油圧を供給する第2油路(26,27,22,23)を備えたことを特徴とする内燃機関の過給機余剰動力回収装置。 An operating device (51) for operating the engine is electronically controlled via hydraulic pressure, and the internal combustion engine (1) is disposed in an exhaust gas passage of the internal combustion engine and is rotationally driven by the exhaust gas of the internal combustion engine, A supercharger (5) for supplying supercharged air to the internal combustion engine, a first hydraulic pump (10) connected to the supercharger and driven to rotate by the supercharger to generate hydraulic pressure; Connected to a hydraulic mechanism (20) for operating the internal combustion engine by supplying hydraulic pressure to the operating device of the internal combustion engine to operate the internal combustion engine, and a power source (1, 54) for generating rotational power. A second hydraulic pump (11) that is rotationally driven by a power source and supplies hydraulic pressure to the operating device via the hydraulic mechanism, and controls the operations of the first hydraulic pump, the second hydraulic pump, and the hydraulic mechanism. A controller (50); In the supercharger surplus power recovery device for an internal combustion engine, comprising a first oil passage (21, 22, 23) that is disposed in the hydraulic mechanism and supplies hydraulic pressure from the second hydraulic pump to the operating device. A supercharger surplus power of an internal combustion engine, comprising a second oil passage (26, 27, 22, 23) disposed in a hydraulic mechanism and supplying hydraulic pressure from the first hydraulic pump to the operating device. Recovery device.
  2.  機関を作動させるための作動機器が油圧を介して電子制御される内燃機関と、前記内燃機関の排ガス路(4)に配設されて前記内燃機関の排気ガスにより回転駆動されて前記内燃機関に過給された給気を供給する過給機(5)と、前記排ガス路に前記過給機と並列に配設されて前記内燃機関の前記排気ガスにより回転駆動されるタービン(55)と、前記タービンに連結されて前記タービンにより回転駆動されて油圧を発生させる第1油圧ポンプ(10)と、前記内燃機関の前記作動機器に油圧を供給して前記作動機器を作動させて前記内燃機関を作動させる油圧機構(20)と、回転動力を発生させる動力源に連結されて前記動力源により回転駆動されて前記油圧機構を介して前記作動機器に油圧を供給する第2油圧ポンプと、前記第1油圧ポンプと前記第2油圧ポンプと前記油圧機構の作動を制御するコントローラと、前記油圧機構に配設されて前記第2油圧ポンプから前記作動機器へ油圧を供給する第1油路とを備えた内燃機関の過給機余剰動力回収装置において、前記油圧機構に配設されて前記第1油圧ポンプから前記作動機器へ油圧を供給する第2油路を備えたことを特徴とする内燃機関の過給機余剰動力回収装置。 An internal combustion engine in which an operating device for operating the engine is electronically controlled via hydraulic pressure, and an exhaust gas passage (4) of the internal combustion engine, which is rotationally driven by the exhaust gas of the internal combustion engine, is connected to the internal combustion engine. A supercharger (5) for supplying supercharged air, and a turbine (55) disposed in parallel to the supercharger in the exhaust gas path and rotated by the exhaust gas of the internal combustion engine; A first hydraulic pump (10) connected to the turbine and driven to rotate by the turbine to generate hydraulic pressure; and supplying the hydraulic pressure to the operating device of the internal combustion engine to operate the operating device to operate the internal combustion engine. A hydraulic mechanism (20) to be operated, a second hydraulic pump connected to a power source for generating rotational power and driven to rotate by the power source to supply hydraulic pressure to the operating device via the hydraulic mechanism; 1 A pressure pump, a second hydraulic pump, a controller that controls the operation of the hydraulic mechanism, and a first oil passage that is disposed in the hydraulic mechanism and supplies hydraulic pressure from the second hydraulic pump to the operating device. The supercharger surplus power recovery device for an internal combustion engine includes a second oil passage that is disposed in the hydraulic mechanism and supplies hydraulic pressure from the first hydraulic pump to the operating device. Charger surplus power recovery device.
  3.  前記コントローラ(50)は、前記内燃機関(1)の高負荷時に前記第1油圧ポンプ(10)が発生させた油圧を前記第2油路(26,27,22,23)を介して前記作動機器(51)へ供給することを特徴とする請求項1又2に記載の内燃機関の過給機余剰動力回収装置。 The controller (50) operates the hydraulic pressure generated by the first hydraulic pump (10) during the high load of the internal combustion engine (1) via the second oil passage (26, 27, 22, 23). The supercharger surplus power recovery device for an internal combustion engine according to claim 1 or 2, characterized in that the supercharger surplus power recovery device is supplied to the device (51).
  4.  前記油圧機構(20)に配設されて前記第1油圧ポンプ(10)から前記第2油圧ポンプ(11)へ油圧を供給する第3油路(26,27,22,21)をさらに備えたことを特徴とする請求項1ないし3のいずれかに記載の内燃機関の過給機余剰動力回収装置。 A third oil passage (26, 27, 22, 21) that is disposed in the hydraulic mechanism (20) and supplies hydraulic pressure from the first hydraulic pump (10) to the second hydraulic pump (11) is further provided. The supercharger surplus power recovery device for an internal combustion engine according to any one of claims 1 to 3.
  5.  前記コントローラ(50)は、前記内燃機関(1)の高負荷時に前記第1油圧ポンプ(10)が発生させた油圧の一部を前記第2油路(26,27,22,23)を介して前記作動機器(51)へ供給すると共に前記第1油圧ポンプが発生させた油圧の残部を前記第3油路(26,27,22,21)を介して前記第2油圧ポンプ(11)へ供給することを特徴とする請求項4に記載の内燃機関の過給機余剰動力回収装置。 The controller (50) passes a part of the hydraulic pressure generated by the first hydraulic pump (10) at a high load of the internal combustion engine (1) through the second oil passage (26, 27, 22, 23). Then, the remaining hydraulic pressure generated by the first hydraulic pump is supplied to the second hydraulic pump (11) via the third oil passage (26, 27, 22, 21). The supercharger surplus power recovery device for an internal combustion engine according to claim 4, wherein the supercharger surplus power recovery device is supplied.
  6.  前記第2油圧ポンプ(11)は、可変容量型の油圧ポンプからなり、前記油圧機構(20)は、前記第2油圧ポンプから前記作動機器(51)への油圧の供給を許容すると共に前記第1油路(21,22,23)の下流側から前記第2油圧ポンプへの油圧の逆流を防止する逆止機能と、前記コントローラ(50)の制御により強制的に前記第1油路の下流側から前記第2油圧ポンプへの油圧の逆流を許容させる逆止解除機能とを有する第1逆止
    弁機構(30)を前記第1油路に備え、前記第2油路(26,27,22,23)は、前記作動機器側が前記第1油路の前記第1逆止弁機構の下流側に接続されて形成され、前記第3油路(26,27,22,21)は、前記第2油圧ポンプ側が前記第1油路の前記第1逆止弁機構の下流側に接続されて形成されることを特徴とする請求項4又は5に記載の内燃機関の過給機余剰動力回収装置。
    The second hydraulic pump (11) is a variable displacement hydraulic pump, and the hydraulic mechanism (20) allows the supply of hydraulic pressure from the second hydraulic pump to the operating device (51) and the first hydraulic pump. A non-return function for preventing a back flow of hydraulic pressure from the downstream side of one oil passage (21, 22, 23) to the second hydraulic pump and the downstream of the first oil passage by control of the controller (50). The first oil passage is provided with a first check valve mechanism (30) having a non-return release function that allows backflow of hydraulic pressure from the side to the second hydraulic pump, and the second oil passages (26, 27, 22, 23) is formed by connecting the operating device side to the downstream side of the first check valve mechanism of the first oil passage, and the third oil passage (26, 27, 22, 21) The second hydraulic pump side is connected to the downstream side of the first check valve mechanism of the first oil passage. It is formed Te supercharger excess power recovery apparatus for an internal combustion engine according to claim 4 or 5, characterized in.
  7.  前記油圧機構(20)に配設されて前記第2油圧ポンプ(11)から前記第1油圧ポンプ(10)へ油圧を供給する第4油路(21,22,27,26)とをさらに備えたことを特徴とする請求項1に記載の内燃機関の過給機余剰動力回収装置。 And a fourth oil passage (21, 22, 27, 26) disposed in the hydraulic mechanism (20) for supplying hydraulic pressure from the second hydraulic pump (11) to the first hydraulic pump (10). The supercharger surplus power recovery device for an internal combustion engine according to claim 1.
  8.  前記コントローラ(50)は、前記内燃機関(1)の低負荷時に前記第2油圧ポンプ(11)が発生させた油圧を前記第4油路(21,22,27,26)を介して前記第1油圧ポンプ(10)へ供給して前記第1油圧ポンプの回転を加勢して前記過給機(5)の過給能力を高めることを特徴とする請求項7に記載の内燃機関の過給機余剰動力回収装置。 The controller (50) transmits the hydraulic pressure generated by the second hydraulic pump (11) at a low load of the internal combustion engine (1) via the fourth oil passages (21, 22, 27, 26). The supercharging of the internal combustion engine according to claim 7, wherein the supercharging capability of the supercharger (5) is increased by supplying the hydraulic pressure to a single hydraulic pump (10) to urge the rotation of the first hydraulic pump. Machine excess power recovery device.
  9.  前記油圧機構(20)に配設されて前記第1油圧ポンプ(10)から前記第2油圧ポンプ(11)へ油圧を供給する第3油路(26,27,22,21)をさらに備え、前記第1油圧ポンプは、可変容量型の油圧ポンプからなり、前記油圧機構は、前記第1油圧ポンプから前記第2油圧ポンプへの油圧の供給を許容すると共に前記第2油圧ポンプから前記第1油圧ポンプへの油圧の逆流を防止する逆止機能と、前記コントローラ(50)の制御により強制的に前記第2油圧ポンプから前記第1油圧ポンプへの油圧の逆流を許容する逆止解除機能とを有する第2逆止弁機構(35)を前記第3油路に備え、前記第4油路(21,22,27,26)は、前記第3油路からなることを特徴とする請求項7又は8に記載の内燃機関の過給機余剰動力回収装置。 A third oil passage (26, 27, 22, 21) disposed in the hydraulic mechanism (20) for supplying hydraulic pressure from the first hydraulic pump (10) to the second hydraulic pump (11); The first hydraulic pump is a variable displacement hydraulic pump, and the hydraulic mechanism allows the supply of hydraulic pressure from the first hydraulic pump to the second hydraulic pump and from the second hydraulic pump to the first hydraulic pump. A check function for preventing backflow of hydraulic pressure to the hydraulic pump, and a check release function for forcibly allowing backflow of hydraulic pressure from the second hydraulic pump to the first hydraulic pump under the control of the controller (50); The second check valve mechanism (35) having the above is provided in the third oil passage, and the fourth oil passage (21, 22, 27, 26) comprises the third oil passage. Supercharger surplus motion of internal combustion engine according to 7 or 8 Recovery system.
  10.  前記油圧機構(20)は、前記コントローラ(50)の制御により前記第1油圧ポンプ(10)が発生させた油圧をドレインさせて前記第1油圧ポンプへ戻すドレイン機構(26,44,24)を備えたことを特徴とする請求項1ないし9のいずれかに記載の内燃機関の過給機余剰動力回収装置。 The hydraulic mechanism (20) includes drain mechanisms (26, 44, 24) that drain the hydraulic pressure generated by the first hydraulic pump (10) under the control of the controller (50) and return it to the first hydraulic pump. The supercharger surplus power recovery apparatus for an internal combustion engine according to any one of claims 1 to 9, further comprising:
PCT/JP2016/063013 2015-04-30 2016-04-26 Supercharger surplus power recovery device for internal combustion engine WO2016175194A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177031285A KR101859893B1 (en) 2015-04-30 2016-04-26 Supercharger surplus power recovery device for internal combustion engine
CN201680025870.1A CN107532502B (en) 2015-04-30 2016-04-26 Supercharger surplus power recovery device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-092862 2015-04-30
JP2015092862A JP6012810B1 (en) 2015-04-30 2015-04-30 Supercharger surplus power recovery device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2016175194A1 true WO2016175194A1 (en) 2016-11-03

Family

ID=57145147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063013 WO2016175194A1 (en) 2015-04-30 2016-04-26 Supercharger surplus power recovery device for internal combustion engine

Country Status (4)

Country Link
JP (1) JP6012810B1 (en)
KR (1) KR101859893B1 (en)
CN (1) CN107532502B (en)
WO (1) WO2016175194A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6383925B1 (en) * 2017-06-21 2018-09-05 株式会社三井E&Sマシナリー Supercharger surplus power recovery device for internal combustion engine and ship
JP6409162B1 (en) * 2017-10-02 2018-10-24 株式会社三井E&Sマシナリー Supercharger surplus power recovery device for internal combustion engine and ship

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6348640B1 (en) * 2017-07-05 2018-06-27 株式会社三井E&Sホールディングス Supercharger surplus power recovery device for internal combustion engine and ship
KR200488841Y1 (en) * 2018-02-07 2019-03-26 (주)준마플랜트 Dust collector
KR20200140504A (en) * 2019-06-07 2020-12-16 가부시키가이샤 미쯔이 이앤에스 머시너리 Turbo charger excess power recovery device for internal combustion engine, and ship

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198383A (en) * 2006-01-28 2007-08-09 Man Diesel As Large-sized engine
JP2011214458A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Supercharger surplus power recovery device of internal combustion engine
US20130174541A1 (en) * 2010-07-07 2013-07-11 Hinrich Meinheit Device and vehicle or production machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892840B2 (en) * 2002-12-25 2007-03-14 一義 福地 Hydraulic drive device using electric motor
JP2006090156A (en) * 2004-09-21 2006-04-06 Shin Caterpillar Mitsubishi Ltd Method for regenerating waste heat energy and waste heat energy regenerating device
JP2006242051A (en) * 2005-03-02 2006-09-14 Mitsui Eng & Shipbuild Co Ltd Surplus exhaust energy recovery system for engine
US20120180481A1 (en) * 2011-01-19 2012-07-19 Davorin Kapich Hybrid turbocharger system with brake energy revovery
US8935077B2 (en) * 2011-01-20 2015-01-13 Ecomotors, Inc. Controlling an engine having an electronically-controlled turbocharger
JP5808128B2 (en) * 2011-03-31 2015-11-10 三菱重工業株式会社 Gas fired engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198383A (en) * 2006-01-28 2007-08-09 Man Diesel As Large-sized engine
JP2011214458A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Supercharger surplus power recovery device of internal combustion engine
US20130174541A1 (en) * 2010-07-07 2013-07-11 Hinrich Meinheit Device and vehicle or production machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6383925B1 (en) * 2017-06-21 2018-09-05 株式会社三井E&Sマシナリー Supercharger surplus power recovery device for internal combustion engine and ship
WO2018235887A1 (en) * 2017-06-21 2018-12-27 株式会社三井E&Sマシナリー Supercharger surplus power recovery device for internal combustion engine, and ship
KR20190025747A (en) * 2017-06-21 2019-03-11 가부시키가이샤 미쯔이 이앤에스 머시너리 Supercharger surplus power recovery device and ship of internal combustion engine
KR102018587B1 (en) * 2017-06-21 2019-11-04 가부시키가이샤 미쯔이 이앤에스 머시너리 Supercharger surplus power recovery device and ship of internal combustion engine
JP6409162B1 (en) * 2017-10-02 2018-10-24 株式会社三井E&Sマシナリー Supercharger surplus power recovery device for internal combustion engine and ship
WO2019069816A1 (en) * 2017-10-02 2019-04-11 株式会社三井E&Sマシナリー Turbo charger excess power recovery device for internal combustion engine, and ship
KR20190042016A (en) * 2017-10-02 2019-04-23 가부시키가이샤 미쯔이 이앤에스 머시너리 Supercharger surplus power recovery device and ship of internal combustion engine
KR102012289B1 (en) 2017-10-02 2019-08-20 가부시키가이샤 미쯔이 이앤에스 머시너리 Supercharger surplus power recovery device and ship of internal combustion engine

Also Published As

Publication number Publication date
CN107532502A (en) 2018-01-02
CN107532502B (en) 2020-01-21
JP6012810B1 (en) 2016-10-25
JP2016211386A (en) 2016-12-15
KR101859893B1 (en) 2018-05-18
KR20170124622A (en) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2016175194A1 (en) Supercharger surplus power recovery device for internal combustion engine
KR101234466B1 (en) Turbo compound system and method for operating same
JP5709293B2 (en) Supercharger surplus power recovery device for internal combustion engine
JP2006242051A (en) Surplus exhaust energy recovery system for engine
JP2008111384A (en) Surplus exhaust energy recovery system for marine engine
JP2011214461A (en) Supercharger surplus power recovery device of internal combustion engine
JP6364691B2 (en) Supercharger surplus power recovery device for internal combustion engine
JP5886188B2 (en) Supercharger surplus power recovery device for internal combustion engine
JP2014234761A (en) Power recovery device for internal combustion engine
CN109874332B (en) Supercharger residual power recovery device for internal combustion engine, and ship
JP6165796B2 (en) Supercharging assist device for load fluctuation of internal combustion engine
JP5793438B2 (en) Supercharging assist device for load fluctuation of internal combustion engine
JP5461226B2 (en) Two-stage turbocharging system
JP6348637B1 (en) Supercharger surplus power recovery device for internal combustion engine and ship
JP2016160787A (en) Starter of engine, starting method, and ship including starter
JP6383925B1 (en) Supercharger surplus power recovery device for internal combustion engine and ship
JP6348640B1 (en) Supercharger surplus power recovery device for internal combustion engine and ship
JP2000204957A (en) Internal combustion engine with supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177031285

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786471

Country of ref document: EP

Kind code of ref document: A1